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Abstract. In real applications, labeled instances are often deficient
which makes the classification problem on the target task difficult. To
solve this problem, transfer learning techniques are introduced to make
use of existing knowledge from the source data sets to the target data
set. However, due to the discrepancy of distributions between tasks, di-
rectly transferring knowledge will possibly lead to degenerated perfor-
mance which is also called negative trasnfer. In this paper, we adopted
the Gaussian process to alleviate this problem by directly evaluating the
distribution differences, with the parameter-free Minimum Description
Length Principle (MDLP) for encoding. The proposed method inher-
its the good property of solid theoretical foundation as well as noise-
tolerance. Extensive experiments results show the effectiveness of our
method.
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1 Introduction

Transfer learning [13] provides a solution for real applications to induce models
on a target task given a large amount of auxiliary data. Take the four universities
example into consideration, given a set of data sets of different universities and
colleges, we can find useful information from them to help further classification
on a data set of a new university (or a college) into several categories such as
students, faculties, stuffs and so on. Assume that data sets of two universities,
denoted by U1, U2, and two colleges, denoted by C1, C2, are in the source domain,
we try to classify instance in a new college, say Ct, with a few labeled data.

Directly applying the latent functions or hypothesis drawn from the source
domain generally may not lead to satisfactory performance on the target domain,
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which is regarded as negative transfer. Some of the information from the source
domain may probably hinder the performance if the distributions between the
source domain and the target domain are too dissimilar [10]. Although there
exists extensive research works on transfer learning, as stated in the survey paper
[13], how to avoid negative transfer is an important issue but yet not be studied
intensively. In the example, if we directly use the hypothesi on U1 to Ct, the
error rate may be very high due to the different distributions underlying the two
data sets. To avoid negative transfer, it is reasonable to consider the similarities
between a source task and a target task, and several works have been done to
find the similarities between tasks [1,12,2,3].

In multi-task learning, the similarities between tasks can be evaluated by dis-
tances between instances or the similarity between distributions. It is reasonable
because all the tasks are treated as symmetric. There are enough instances in
each task for us to find the underlying distributions. However, difficulties are en-
countered when we try to deal with transfer learning. In transfer learning setting,
instances in the target task is often inadequate, generally it is difficult to find
the distribution. Methods to measure the similarities for multi-task learning can
not be directly adopted and the negative transfer tends to happen. Furthermore,
labeling instances in the target task is expensive and time consuming.

In this paper, we tackle this problem from a two-level point of view, and try to
directly solve the negative transfer problem by adopting the Gaussian process.
Our main idea to calculate the task-level similarity is based on the purpose to
use only auxiliary information in the source domain. The intuition is that it
is difficult to find the ground-truth distribution on the target task, so we do
not try to perform operations on the target data but only to use the labeled
data for testing the “hypotheses”. Therefore, an MDLP (Minimum Description
Length Principle) [11] based method is adopted, because it can evaluate models
on data sets and also parameter-free and robust to noise. For the instance-level
similarity, we design a kernel functions by using the obtained information from
the task-level similarity. We call our algorithm the GPTL (Gaussian Process for
Transfer Learning).

2 Problem Setting and Preliminaries

2.1 Gaussian Process for Classification

A Gaussian process is a stochastic process and a collection of random variables.
All these variables in a finite number have joint Gaussian distributions. We can
interpret in that, the Gaussian distribution is over vectors, and the Gaussian
process is over functions. We have the following definition that, a function f is
distributed as a Gaussian process with mean function m and covariance function
k, which is also denoted as a “kernel”.

f ∼ GP (m(x), k(x,x′)) (1)

Due to the space limit, we will introduce GP in more detail in the extension
of this manuscript.
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2.2 Preliminaries for Encoding

A data set D consists of n examples d1, d2, . . . , dn. Each example di is de-
scribed with attributes a1, . . . , am as an attribute value vector (ai1, ai2, . . . , aim)
of length m and belongs to one of M classes, of which labels are represented by
c1, c2, . . . , cM . A classifier h is a function which outputs a class label given an
attribute value vector. We call the process of learning a classifier from a data set
classification. A classifier with a simple interpretation and a high classification
accuracy is most preferable.

The MDLP may be viewed as a principle for avoiding overfitting, i.e., it is
a means to balance the simplicity of a classifier and its goodness-of-fit to the
data [4,9]. As a principle for preferring a classifier in classification, it is stated in
MDLP that the best classifier hbest among the ones h that can be learned from
D is given as follows.

hbest = argmin
h

(− logP (h)− logP (D|h)) (2)

Due to the space limit, we neglect the detailed explanation of the theoretical
background of GPTL, readers can refer to [5,7,6] or the extended version of this
manuscript. We provide the coding methods here considering encoding a binary
string of length a which consists of b binary 1s and (a− b) binary 0s [4,9]. In the
sender and the receiver problem, the receiver is assumed to know the length a.
An obvious method is to send the number b of binary 1s with the code length

log(a+ 1) then specify the positions of binary 1s with the code length log

(
a
b

)

[4,9]. We hereafter call this method a binary coefficient method and denote the
required code length by Θ (a, b) as follows.

Θ (a, b) ≡ log(a+ 1) + log

(
a
b

)

Now we consider a problem of sending an integer a under the assumption
that a = b is most likely and the occurrence probability P (i) of a = i is given
by P (b)φ|b−i|, where φ is a constant given by the user.

We denote the length − log
[
P (b)φ|b−a|] required to send a given b by Λ(a, b)

and it can be easily obtained as

Λ(a, b) = log

[
3−

(
1

2

)b
]
+ |b− a| (3)

3 The GPTL Algorithm

3.1 Arrange Related Tasks

For the source tasks S1, S2, ..., Sk, we can easily obtain the latent function
f1, f2, ..., fk underlying the source data sets based on the Gaussian process. We
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denote the fi as the “hypothesis” in the MDLP. As it is difficult to find the true
distribution underlying the target data set given inadequate instances, our idea
is to use existing latent functions and fit each fi to the target data set to evaluate
the similarities. MDLP has advantages to do such jobs.

In order to find the source data set which has the most similar distributions
with the target data set, we need to find the one in fi (i = 1 to k) which can
maximize the probability P (fi|Dt). It turns out to be the maximization of:

argmax
fi

P (Dt|fi)P (fi)

P (Dt)
(4)

In the evaluation procedure, P (Dt) is neglected as a constant. By negative
encoding with MDLP, this could be calculated as

Li ≡ − logP (Dt|fi)− logP (fi) = − log
∏
i

P (dti|fi)− logP (fi) (5)

where dti represents the i-th instance in Dt.
This could be regarded as the sender and receiver problem, and evaluated by

MDLP. Then the key issue is to design a delicate coding method. Note that,
a simple way to encode the first part of formula (2) is to specify the wrong
predictions of the class labels in T based on fi. The second part can be regarded
as the complexity of the latent function fi. This also coincides with the basic
format of the refined MDL with one part as the stochastic complexity of the
data related to the model and the other part as the parametric complexity.

To encode − logP (fi), since each fi is assumed to follow a Gaussian distribu-
tion as fi ∼ N (0,K), we only need to calculate the code length of the kernel
matrix K (K is a matrix with each entry Kij as a kernel function k(xi, xj)).
Commonly, the squared-exponential covariance function is adopted as a kernel
in Gaussian process:

k(xi, xj) = σ2
f exp(−

1

2l2
(xi − xj)

2) (6)

Then we only need to code the two parameters σf and l. A direct way is
to code the two real values using Λ(σf , 0) and Λ(l, 0). Notice that, even with
limited information from labeled data in the target task, we could obtain roughly
a function ft as similar to the true distribution of T . Let the corresponding
parameters in the kernel function of ft be as σ′

f and l′. Therefore, we can use
Λ(σf , σ

′
f ) and Λ(l, l′) to send the two values under the assumption that σf = σ′

f

and l = l′ are most likely. Then the code length should be:

− logP (fi) = Λ(σf , σ
′
f ) + Λ(l, l′) (7)

Then we obtain the code length Li between each Si and T . The source task
with the shortest code length is regarded to “best fit” the target data, thus the
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distribution is more similar to the one in the target task. Then the source data
sets are arranged in ascending order on the code length with the target data set
T .

3.2 The Instance Level Similarities

To represent the similarity between two instances from different tasks, we are
motivated to construct a kernel function by using the code length which is re-
garded as the similarity measurements between tasks. Based on an existed kernel
k(xi, xj), we design an extended one k̃(xi, xj) as follows:

k̃(xi, xj) = exp(
1

1 + exp(−Li)
)k(xi, xj) (8)

It is easy to prove that k̃(xi, xj) is also a kernel if exp( 1
1+exp(−Li)

) is regarded
as a positive constant.

The intuition behind formula (8) is that, the kernel function should take both
the task similarity and instance similarity together. Note that, when instances
are from the same task, the coefficient exp( 1

1+exp(−Li)
) is set to be 1 and thus

the kernel function takes the original format.

4 Experiments

We perform experiments on the data sets from the UCI repository1 and the Text
data sets. The three data sets in the UCI repository used in the experiments are
mushroom and splice. We adopted a pre-processing method [14,16] on them to
fit the transfer learning scenario. For the Text data sets, we choose 20NewsGroup
data sets2.

The mushroom data set has 8124 examples with 22 attributes in each ex-
ample and one binary class label. The splice data set has 3190 examples with
60 attributes in each example and one binary class label. We adopt the same
strategy in [14] and [16] to split each data set into two.

The number of examples in the source task is set to be 1000 which is the
same as in [16]. We investigated the influence of the number of instances in the
target data set, and the noise level in the target data set. The noise is added by
reversing the correct class labels of the examples in the training data sets.

We follow the splitting strategy on 20Newsgroups data sets as [14]. Three data
sets are chosen which are rec vs talk, rec vs sci and sci vs talk. For example, in
rec vs talk data set, all the positive instances are from the category rec, while
negative ones are from the category talk. The instances in the source domain and
the target domain are selected based on the subcategories. In the experiments,
each of the target tasks in the three data sets are chosen as the single target

1 http://archive.ics.uci.edu/ml/
2 http://people.csail.mit.edu/jrennie/20Newsgroups

http://archive.ics.uci.edu/ml/
http://people.csail.mit.edu/jrennie/20Newsgroups
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task, and the training data in the three data sets are all chosen as the source
tasks. In such a way, S contains 3 different tasks as S1, S2 and S3 and we test
our algorithm in this transfer learning setting.

Our GPTL is compared with the COITL [16] and TrAdaBoost [14], Active
Transfer (AT) [15] and k-NN with k = 3 as well as the basic SVM. The hy-
perplanes are obtained by C-SVC with polynomial kernel, which are considered
effective to data with a large number of features and without class noise.

For the UCI data sets, each of them has one source task and one target task,
GPTL is thus used only in the instant level to select useful parts. For the Text
data sets, both the two levels are examined. We mainly test two factors in the
experiments. One is the different number of instances in the target task. We set
|T | equals to 50 and 100, respectively. The other is the noise level in the target
task from 0% to 15%.

Table 1 and 2 provide the results on the mushroom data set and the splice
data set, respectively. Generally speaking, the error rates go up with the noise
level increases. If the target domain has more labeled instances, for example,
|T | = 100, the accuracy is obviously better. From Table 1 we observed that
GPTL is better than other methods in most circumstances. However, because
the mushroom data set is well organized, for all the methods, it is easier to
find the underlying hypotheses. That is why in some cases our algorithm is
outperformed by the state-of-the-art methods. In Table 2, in this larger and
more complex data set, our method is the best among all the methods, and the
improvements are much larger than that in the mushroom data set.

Table 1. Results on mushrom data set

Percentage of noise on T
0% 3% 6% 9% 12% 15%

SVM 0.087 0.12 0.146 0.173 0.19 0.207
GPTL 0.082 0.11 0.132 0.147 0.163 0.165

|T |=50 TrAdaBoost 0.158 0.159 0.173 0.191 0.168 0.195
KNN 0.117 0.125 0.153 0.147 0.167 0.163

COITL 0.132 0.144 0.146 0.161 0.168 0.159
AT 0.156 0.196 0.177 0.16 0.185 0.142

SVM 0.067 0.052 0.111 0.129 0.167 0.198
GPTL 0.061 0.074 0.079 0.103 0.105 0.136

|T |=100 TrAdaBoost 0.145 0.143 0.158 0.178 0.167 0.166
KNN 0.081 0.084 0.104 0.12 0.147 0.159

COITL 0.103 0.08 0.087 0.121 0.11 0.112
AT 0.2 0.189 0.177 0.199 0.184 0.178

Table 3, Table 4 and Table 5 provide the results on rec vs talk, rec vs sci,
and sci vs talk, respectively, with |T | equals to 50 and 100. From these table,
it can be seen that our method is obviously better than other methods, even
under noise conditions. It is a proof of the robustness of our method given only
a few labeled instances in the target domain. We also notice that, when the sci
vs talk data set is used as the target task, the error rates for all the methods
are slightly higher than that of the other two data sets. The possible reason is
that the discrepancy of distributions between the source domain and the target
domain is large.
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Table 2. Results on splice data set

Percentage of noise on T
0% 3% 6% 9% 12% 15%

SVM 0.302 0.321 0.354 0.368 0.391 0.346
GPTL 0.2 0.211 0.235 0.243 0.296 0.314

|T |=50 TrAdaBoost 0.343 0.296 0.318 0.323 0.314 0.39
KNN 0.375 0.354 0.347 0.379 0.398 0.415

COITL 0.385 0.401 0.388 0.422 0.394 0.436
AT 0.468 0.47 0.441 0.469 0.48 0.478

SVM 0.232 0.23 0.276 0.293 0.309 0.322
GPTL 0.19 0.207 0.232 0.23 0.249 0.255

|T |=100 TrAdaBoost 0.234 0.3 0.302 0.267 0.294 0.299
KNN 0.331 0.349 0.352 0.377 0.367 0.396

COITL 0.319 0.339 0.327 0.362 0.367 0.374
AT 0.472 0.458 0.474 0.484 0.465 0.477

Table 3. Results on rec vs talk as the target task

Percentage of noise on T
0% 3% 6% 9% 12% 15%

SVM 0.154 0.174 0.189 0.228 0.227 0.23
GPTL 0.135 0.138 0.165 0.185 0.203 0.219

|T |=50 TrAdaBoost 0.236 0.234 0.275 0.309 0.32 0.321
KNN 0.207 0.255 0.237 0.256 0.244 0.305

COITL 0.206 0.255 0.229 0.25 0.241 0.294
AT 0.472 0.364 0.38 0.388 0.488 0.49

SVM 0.088 0.166 0.177 0.269 0.285 0.295
GPTL 0.105 0.144 0.16 0.179 0.24 0.258

|T |=100 TrAdaBoost 0.265 0.283 0.338 0.348 0.355 0.338
KNN 0.23 0.248 0.267 0.277 0.281 0.283

COITL 0.224 0.245 0.257 0.267 0.278 0.283
AT 0.406 0.363 0.492 0.477 0.315 0.517

Table 4. Results on rec vs sci as the target task

Percentage of noise on T
0% 3% 6% 9% 12% 15%

SVM 0.163 0.177 0.187 0.181 0.223 0.24
GPTL 0.133 0.145 0.152 0.176 0.215 0.21

|T |=50 TrAdaBoost 0.266 0.289 0.292 0.353 0.351 0.375
KNN 0.245 0.224 0.255 0.246 0.261 0.3

COITL 0.243 0.236 0.259 0.255 0.268 0.311
AT 0.41 0.37 0.44 0.325 0.354 0.419

SVM 0.139 0.152 0.153 0.174 0.21 0.213
GPTL 0.136 0.142 0.15 0.169 0.19 0.202

|T |=100 TrAdaBoost 0.24 0.23 0.24 0.228 0.267 0.284
KNN 0.216 0.185 0.192 0.182 0.212 0.231

COITL 0.206 0.2 0.194 0.183 0.22 0.231
AT 0.433 0.316 0.399 0.359 0.315 0.438

Table 5. Results on sci vs talk as the target task

Percentage of noise on T
0% 3% 6% 9% 12% 15%

SVM 0.183 0.195 0.223 0.24 0.307 0.364
GPTL 0.175 0.191 0.203 0.22 0.25 0.256

|T |=50 TrAdaBoost 0.301 0.282 0.317 0.372 0.372 0.409
KNN 0.285 0.305 0.301 0.327 0.307 0.385

COITL 0.286 0.303 0.318 0.327 0.31 0.385
AT 0.368 0.425 0.446 0.382 0.366 0.371

SVM 0.221 0.235 0.239 0.264 0.329 0.342
GPTL 0.165 0.173 0.18 0.196 0.21 0.215

|T |=100 TrAdaBoost 0.195 0.219 0.255 0.244 0.213 0.23
KNN 0.184 0.185 0.196 0.194 0.194 0.233

COITL 0.172 0.184 0.188 0.188 0.192 0.234
AT 0.352 0.399 0.323 0.327 0.418 0.362
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5 Conclusion

This paper proposed a transfer learning algorithm based on Gaussian process.
By directly evaluating the distribution differences between tasks, we alleviate
the problem of negative transfer. MDLP was also adopted to balance both the
simplicity of the hypothesis and the goodness-of-fit to the data. In the experi-
ments, our method was proved to outperform other methods and also be robust
to noise.
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