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Abstract. Covariance matrix adaptation evolution strategy (CMA-ES)
has demonstrated competitive performance especially on multimodal non-
separable problems. However, CMA-ES is not capable of dealing with
problems having several hundreds dimensions. Motivated by that co-
operative coevolution (CC) has scaled up many kinds of evolutionary
algorithms (EAs) to high dimensional optimization problems effectively,
we propose an algorithm called CC-CMA-ES which apply CC to CMA-
ES in order to scale up CMA-ES to large scale problems. CC-CMA-ES
adopts a new sampling scheme which does not divide population into
small subpopulations and conducts mutation and crossover operations in
subpopulation to generate offspring, but extracts a subspace Gaussian
distribution from the global Gaussian distribution for subspace sampling.
Also in CC-CMA-ES, two new decomposition strategies are proposed in
order to balance exploration and exploitation. Lastly, an adaptive scheme
is adopted to self-adapt appropriate decomposition strategy during evo-
lution process. Experimental studies on a series of benchmark functions
with different characteristic have been conducted and verified the excel-
lent performance of our newly proposed algorithm and the effectiveness
of the new decomposition strategies.

1 Introduction

Evolutionary algorithms (EAs) have been widely used in the field of numerical
optimization [1]. However, they also suffer from ”the curse of dimensionality”
[2]. Cooperative coevolution (CC) [3] is an evolutionary framework based on
divide-and-conquer strategy which has been used to scaling up some of EAs
successfully [4–7]. DECC-G [4], proposed a decomposition scheme called ran-
dom grouping which divides D-dimensional solution vector into m s-dimensional
subvectors (D = m × s) and conducts this many times each at the beginning
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of an optimization cycle to improves the probability of distributing interacting
variables into a common subspace. MLCC [5] extended DECC-G by incorporat-
ing a self-adaptation strategy to select appropriate dimension for the subspace.
CCPSO2 [6], imitating MLCC, adopted Cauchy and Gaussian based PSO as
subspace optimizer. CCVIL [7] proposed a method to learn interacting variables
other than random decomposition.

In this paper, we consider scaling up a representative kind of EAs, namely co-
variance matrix adaptation evolution strategy (CMA-ES) [8]. CMA-ES samples
offspring via a multivariate Gaussian distribution and use offspring to update
this distribution. It has demonstrated competitive performance compared with
other EAs particular on multimodal non-separable problems [9]. However, CMA-
ES also suffers from the curse of dimensionality. A variant of CMA-ES, namely
sep-CMA-ES [10], has been proposed which can achieve linear time and space
complexity. Unfortunately, experimental results have revealed the performance of
sep-CMA-ES drops significantly with increasing dimensionality [11]. Motivated
by all of those, we proposed an algorithm called CC-CMA-ES which apply CC
to CMA-ES in order to scale up CMA-ES to large scale optimization problems.
CC-CMA-ES adopts a new sampling scheme which does not divide population
into small subpopulations and conducts mutation and crossover operations like
that in DECC-G etc., but extracts a subspace Gaussian distribution from the
global Gaussian distribution for subspace sampling. Also, two new decomposition
strategies are proposed and an adaptive scheme is used to self-adapt appropriate
decomposition strategy among two new decomposition strategies together with
random based decomposition strategy during evolution process.

The rest of this paper is organized as follows. Section 2 describes CMA-ES
briefly. Section 3 presents our new algorithm - CC-CMA-ES in detail, including
new decomposition strategies and their adaptation scheme, sampling and update
of distribution. Section 4 describes experimental setup and experimental results
analysis. Finally, Section 5 concludes this paper.

2 Covariance Matrix Adaptation Evolution Strategy

As a respective of EAs, different from other EAs having mutation and crossover
operations, CMA-ES firstly estimates a distribution from the samples and then
takes sample to generate offspring using this distribution and repeats it until a
stop criteria is satisfied.

x
(g+1)
k ∼ N(xg

w, (σ
g)2 · Cg), k = 1, 2, · · · , λ (1)

Equation 1 shows the sampling process at generation g. μg, Cg and σg are the
Gaussian mean, covariance matrix and global step size respectively at generation
g. CMA-ES has rotation invariant feature that is produced by C. This feature is
the key of success for CMA-ES. When updating covariance matrix C, CMA-ES
not only adopt current sample with better fitness but use history distribution
information. Namely, CMA-ES combines rank-μ update and rank-one update
[8]. The disadvantage of CMA-ES is its high time complexity, O(D3), where
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D is the dimension of the solution vector, which avoids its application on high
dimensional problems.

3 Proposed Algorithm

At the beginning of each optimization cycle of CC-CMA-ES, a decomposition
strategy will be selected from a decomposition pool according their history
performance and then the search space will be decomposed into several non-
overlapping subspaces. Next, each subspace will be optimized sequently for a
fixed number of fitness evaluations by a subspace CMA-ES whose parameters
are extracted from a global CMA-ES and updated using the samples. At the
end of each cycle, the performance record for the current selected decomposition
strategy will be updated using its performance in this cycle. The same cycle
will be conducted many times until a stop criteria is satisfied. The framework
of CC-CMA-ES is showed in Algorithm 1 and each part of CC-CMA-ES will be
described in detail as follows.

Algorithm 1. CC-CMA-ES

Require: space dimension dimension D, subspace dimension s, offspring size λ and
fitness evaluation maximum maxfes

1: Initialize D × 1 mean vector xw, D × D covariance matrix C, global step size σ
and other control parameters for global CMA-ES;

2: Initialize best solution best and the performance record;
3: Choose a decomposition strategy and decompose solution vector into m disjoint

parts (so, each subspace has dimension s = D/m) (Sect. 3.2 in detail);
4: Set sub = 1 to start an optimization cycle;
5: Extract s×1 subspace mean vector xsub and s× s covariance matrix Csub from xw

and C and generate λ offspring using N(xsub, σ
2 · Csub) (Sect. 3.3 in detail);

6: Evaluate offspring and update best if exists better offspring;
7: Update xsub, Csub and take them back to xw, C (Sect. 3.4 in detail);
8: If the number of fitness evaluations reaches maxfes, stop. Else, if sub < m, sub++

and go to step 5. Others, update performance record and go to step 3.

3.1 New Decomposition Strategies

In this paper, we propose two new decomposition strategies called Min-Variance
decomposition strategy (MiVD) and Max-Variance decomposition strategy
(MaVD) respectively. The emphasis of those new decomposition strategies is
on the balance of exploration and exploitation.

MiVD and MaVD decompose space based on the diagonal of the covariance
matrix. They firstly rank variables in the solution vector according to their vari-
ances in the diagonal of the covariance matrix and then separate the solution
vector into several sub-vectors. MiVD decomposes variables with similar vari-
ances into a subspace to minimize the diversity among their variances. Opposite,
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MaVD(D,m,C)

1 diagC ← diag(C);
2 s ← D/m;
3 subInfo ← ∅;
4 [sortedDiagC, sortedIndex]
← sort(diagC);

5 for i ← 1 to m
6 Si ← sortedIndex(i : s : D);
7 subInfo ← subInfo ∪ {Si};
8 end
9 return subInfo;

MiV D(D,m,C)

1 diagC ← diag(C);
2 s ← D/m;
3 subInfo ← ∅;
4 [sortedDiagC, sortedIndex]
← sort(diagC);

5 for i ← 1 to m
6 Si ← sortedIndex((i− 1) · s + 1 : i · s);
7 subInfo ← subInfo ∪ {Si};
8 end
9 return subInfo;

Fig. 1. Pseudocode of MaVD (left) and MiVD (right)

MaVD guarantees the diversity of the diagonal values of the variables in the same
subspace as large as possible. Figure 1 shows their pseudocode. The sum of the
volume of the tolerance region (hyperellipsoid) for each subspace with the same
confidence by MiVD is larger than that of MaVD, which leads to MiVD is ap-
propriate for exploration while MaVD for exploitation. From this perspective,
random decomposition (RD) is a compromise between MiVD and MaVD.

3.2 Adaptive Decomposition Strategy Scheme

In CC-CMA-ES, three decomposition strategies – MaVD, MiVD and RD, will
construct a pool and be used in an adaptive manner in order to accommodate
various demands for decomposition strategy during environmental changeable
evolution process like that in [5].

A performance record maintains the history performance for each decomposi-
tion strategy for a fixed number of optimization cycles (set to 5 in experiment),
showed in Table 1. Rows indicate different decomposition strategies and columns
indicate different cycles. Each item in the record demonstrates the fitness im-
provement rate of the best solution in this optimization cycle and is set to 1
initially. The probability of applying certain decomposition strategy is calcu-
lated by (3). At the beginning of each optimization cycle, we use stochastic
universal selection method to select a decomposition strategy and record the
fitness of the best solution found so far as bestvalold. After an optimization cy-
cle, the fitness bestvalnew for new best will be obtained. The improvement rate
for the decomposition strategy used in this cycle will be calculated according to
(2) and the oldest history improvement of this decomposition strategy will be
deleted to leave room for the new.

δij =
∣∣∣bestvalnew − bestvalold

bestvalold

∣∣∣ (2)

probabilityi =
eθi∑3
p=1 e

θp
where θi =

n∑
j=1

δij . (3)
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Table 1. Performance record

cycle1 cycle2 cyclej cyclen
Max-Variance decomposition δ11 δ12 δ1j δ1n

Random decomposition δ21 δ22 δ2j δ2n
Min-Variance decomposition δ31 δ32 δ3j δ3n

3.3 Subspace Sampling and Fitness Evaluation

After decomposition, subspaces have been obtained denoted as Si =
{xi1, xi2, . . . , xis}, i = 1, 2, . . . ,m, D = m × s where D is the dimension of
the problem, m is the number of subspaces and s is the dimension of subspace.
When optimizing subspace Si, use Gaussian distribution N(xSi , σ

2 ·CSi) to gen-
erate λ offsprings. σ is the global step size. xSi and CSi are extracted from the
global mean vector xw and the covariance matrix C via the related dimension
indexes in this subspace. For example, when D = 4, s = 2 and being optimized
subspace Si consists of dimension 1 and 3, namely Si = {x1, x3}, the xSi and
CSi will be extracted from the D × 1 global mean vector xw and the D × D
covariance matrix C as follows.

⎡
⎢⎢⎣
1.8
0.9
3.2
5.3

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣
1.2 0.2 0.4 0.9
0.2 1.7 0.7 0.85
0.4 0.7 2.3 0.56
0.9 0.85 0.56 2.8

⎤
⎥⎥⎦ extract−−−−−→

[
1.8
3.2

]
and

[
1.2 0.4
0.4 2.3

]

We use greedy strategy [12] to evaluate the fitness for subspace samples.
Namely, we take place of the values of the variables related to current sub-
space in the best solution best found so far using sampled offspring and use the
fitness of this complete solution as the fitness of offspring. After optimization of
each subspace, the best solution best will be updated if better solution is found.

3.4 Updating CMA-ES Parameters

xSi , CSi and σ will be updated using offspring [8]. Then we will take place the
portion of the global mean xw and covariance matrix C related to current sub-
space while other portions are fixed by those subspace parameters to guarantee
the newest correlation information for subsequent usage, that is, this procedure
is the inverse process of extracting xSi and CSi from xw and C. As the example
in 3.3, after optimizing subspace Si = 1, 3, updating the subspace mean vector
xSi and the subspace covariance matrix CSi and take those back to the global
mean vector xw and the global covariance matrix C is showed as follows.

[
1.8
3.2

] [
1.2 0.4
0.4 2.3

]
update−−−−→

[
2.8
4.2

] [
2.2 0.88
0.88 1.9

]
reverse−−−−−→

⎡
⎢⎢⎣

2.8
0.9
4.2
5.3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.2 0.2 0.88 0.9
0.2 1.7 0.7 0.85
0.88 0.7 4.2 0.56
0.9 0.85 0.56 2.8

⎤
⎥⎥⎦
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Table 2. The results are the mean best values averaged over 25 independent runs and
standard deviation. Wilcoxon signed rank test with significance 0.05 for CC-CMA-ES
and each other algorithm have been conducted and statistically significant results are
labeled by superscript *.

Function Dim DECC-G MLCC CCPSO2 CC-CMA-ES

f1 1000 mean 6.28e − 06∗ 1.24e-23∗ 2.94e − 05∗ 5.77e − 09
std 9.62e − 06 4.94e − 23 4.39e − 05 1.00e − 09

f2 1000 mean 1.32e + 03 5.67e+00∗ 6.63e + 00∗ 1.33e + 03
std 5.23e + 01 8.92e + 00 3.14e + 01 1.11e + 02

f3 1000 mean 1.11e + 00∗ 1.41e − 10 8.41e − 06∗ 1.51e-13
std 2.70e − 01 7.02e − 10 7.54e − 06 6.73e − 15

f4 1000 mean 2.25e + 11∗ 1.03e + 11∗ 7.21e + 11∗ 2.20e+09
std 1.43e + 11 4.41e + 10 9.66e + 11 1.31e + 09

f5 1000 mean 7.28e + 14 7.28e + 14 7.28e + 14∗ 7.28e + 14
std 1.65e + 07 1.68e + 06 3.17e + 05 4.65e + 06

f6 1000 mean 1.84e+05∗ 9.07e + 05 8.60e + 05 5.83e + 05
std 2.89e + 04 1.84e + 05 3.03e + 05 4.79e + 05

f7 1000 mean 9.92e + 08∗ 8.64e + 08∗ 3.21e + 09∗ 7.45e+06
std 5.62e + 08 8.10e + 08 2.18e + 09 1.21e + 07

f8 1000 mean 6.82e + 15∗ 5.25e + 15∗ 1.47e + 16∗ 3.88e+14
std 3.17e + 15 2.83e + 15 1.47e + 16 2.87e + 14

f9 1000 mean 5.78e + 08∗ 8.51e + 08∗ 7.66e + 08∗ 3.71e+08
std 1.52e + 08 1.73e + 08 3.82e + 08 1.83e + 08

f10 1000 mean 2.91e + 07∗ 5.08e + 07∗ 4.02e + 07∗ 7.55e+05
std 1.14e + 07 2.51e + 07 3.82e + 07 5.02e + 05

f11 1000 mean 1.21e + 11∗ 1.08e + 11∗ 4.49e + 11∗ 1.59e+08
std 7.35e + 10 8.53e + 10 3.04e + 11 1.47e + 08

f12 1000 mean 9.58e + 03∗ 3.33e + 03∗ 1.46e + 03 1.27e+03
std 6.30e + 03 2.98e + 03 5.17e + 02 4.26e + 02

f13 905 mean 8.88e + 09∗ 7.20e + 09∗ 2.73e + 10∗ 6.70e+08
std 3.21e + 09 2.96e + 09 7.43e + 09 1.14e + 09

f14 905 mean 1.34e + 11∗ 1.09e + 11∗ 5.50e + 11∗ 7.10e+07
std 5.18e + 10 6.98e + 10 2.55e + 11 1.25e + 08

f15 1000 mean 1.20e + 07∗ 7.44e+06∗ 5.30e + 08∗ 3.03e + 07
std 9.91e + 05 1.33e + 06 9.26e + 08 6.08e + 06

4 Experimental Studies

4.1 Experimental Setup

We have chosen the benchmark functions provided by CEC2013 Special Session
on large scale global optimization [13] for evaluating CC-CMA-ES and compar-
isons with other algorithms. The algorithms for comparisons consist of DECC-G,
MLCC and CCPSO2 all of which are state-of-art CC based algorithms and have
demonstrated remarkable performance on large scale global optimization. The
control parameters used in those algorithms could be found in [4–6]. For CC-
CMA-ES, the size of offspring is set to 50 and the number of subspaces is set
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to 20. We set the maximum fitness evaluations for each iteration of optimizing
a certain subspace to 10× s where s is the dimension of this subspace. For fair
comparison, the stop criterion for all algorithms is the same number of fitness
evaluations 3e6 and each algorithm will run for 25 times independently.

4.2 Experimental Results

From Table 2, CC-CMA-ES performs significantly better on eleven out of fifteen
functions compared with DECC-G, which demonstrates that CC-CMA-ES is
more effective in capturing the correlation between variables through the use of
covariance matrix. CC-CMA-ES was outperformed significantly by DECC-G on
function 6 and 15 where function 6 are partially separable function and function
15 are fully non-separable function. The reason may be the decomposition of
space in CC-CMA-ES results into the correlation among variables could not be
updated timely and accurately. CC-CMA-ES outperforms MLCC significantly
on nine functions and was outperformed significantly on function 1, 2 and 15.
It is noteworthy that function 1 and 2 are fully-separable functions. And on
the other fully-separable function 3, CC-CMA-ES does not outperform MLCC
significantly. Combing the results of DECC-G, we could find the effectiveness
of MLCC derived from the self-adaptative scheme of subspace dimension. The
comparison result on function 15 is similar to that of DECC-G, which reveals
the disadvantage of CC-CMA-ES on fully non-separable problems. CC-CMA-
ES outperforms CCPSO2 significantly on all functions except function 2 and 6.
The phenomenon of CC-CMA-ES was outperformed on function 2 shows similar
result to that of MLCC, which demonstrated the relative weakness of CC-CMA-
ES on fully separable functions compared with its strength on partially additive
separable functions.

It is noteworthy CC-CMA-ES outperforms best on all three overlapping func-
tions 12, 13 and 14. Overlapping functions were included in CEC2013 benchmark
functions for the first time, and no related results on those functions have been
reported. The effectiveness of CC-CMA-ES on overlapping functions shows the
advantage of combing CMA-ES and CC framework where CMA-ES can cap-
ture the interdependence among variables and CC can alleviate the hardness of
CMA-ES on high dimension problems.

5 Conclusion

In this paper, we propose a new algorithm CC-CMA-ES which scales up CMA-ES
to high dimensional problems using CC. In this algorithm, two new decomposi-
tion strategies are proposed which are based on the diagonal of the covariance
matrix of CMA-ES to keep the balance between exploration and exploitation
in evolution process. To coordinate different decomposition strategy, an adap-
tive decomposition strategy scheme is adopted which could select appropriate
decomposition strategy adaptively. Comprehensive experiment studies on large
scale problems demonstrated the effectiveness of our proposed algorithm and
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verified the validity of the new decomposition strategies and adaptive decompo-
sition strategy scheme. Although the effectiveness of the two new decomposition
strategies has been verified on the whole, it still needs studies on fully non-
separable problems. Moreover, those two new decomposition strategies could be
used in other EAs in order to study their performance in various circumstances.
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