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Abstract. Due to the increasing amount of large data sets, efficient learning al-
gorithms are necessary. Also the interpretation of the final model is desirable to
draw efficient conclusions from the model results. Prototype based learning al-
gorithms have been extended recently to proximity learners to analyze data given
in non-standard data formats. The supervised methods of this type are of special
interest but suffer from a large number of optimization parameters to model the
prototypes. In this contribution we derive an efficient core set based preprocess-
ing to restrict the number of model parameters to O( n

ε2
) with n as the number

of prototypes. Accordingly, the number of model parameters gets independent of
the size of the data sets but scales with the requested precision ε of the core sets.
Experimental results show that our approach does not significantly degrade the
performance while significantly reducing the memory complexity.

1 Introduction

Modern measurement technologies e.g. in the life sciences provide large data sets with
multiple sources of domain knowledge, which can be used to optimize the analysis
of the data. Accordingly methods which can integrate domain knowledge and are in-
terpretable are of special interest [1]. Prototype algorithms are interpretable models
and have been recently extended to simplify domain knowledge integration in differ-
ent ways. They represent their decisions in terms of typical representatives contained
in the input space or by approximations thereof. Prototypes can directly be inspected
by human experts in the same way as data points: for example, physicians can inspect
prototypical medical cases, prototypical images can directly be displayed on the com-
puter screen, prototypical action sequences of robots can be performed in a robotic
simulation, etc. Since the decision in prototype-based techniques usually depends on
the similarity of a given input to the prototypes stored in the model, a direct inspection
of the taken decision in terms of the responsible prototype becomes possible.

Different algorithms have been proposed to obtain supervised and unsupervised pro-
totype models. One key element is the representation of the data, either by an appropri-
ate metric [2] or by using similarities or dissimilarities as obtained from domain specific
measures of proximities. In the latter case the data are represented by an N ×N matri-
ces P of proximity measures, with N as the number of samples and the prototypes are
modeled using a n×N coefficient matrix, with n as the number of prototypes.

If P consists of metric similarities, later denoted as S 1 , we have a kernel matrix and
can use standard kernel classifiers like the Support Vector Machine (SVM) [3] or the

1 If P are dissimilarities, as e.g. obtained from Euclidean distances we denote the matrix by D.
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Probabilistic Classifier Vector Machine (PCVM) [4]. But, the SVM type algorithms de-
termine models which are not interpretable because the model parameters are extreme
cases of the data and hence less interpretable by the domain expert [5]. The PCVM is
better to interpret but has an initial runtime complexity of O(N3) which scales down
during learning to O(m3) with m as the number of effectively used basis functions, us-
ing sparsity constraints [4]. The memory complexity of PCVM scales in a similar way
from O(N2) to O(m2) during the optimization. For proximity data supervised prototype
based learning algorithms have in general a runtime complexity of O(n2 ·N) using the
recent approximation strategies [6] and a memory complexity of O(n ·N), with n � N .
In this paper we will derive a strategy to reduce this memory complexity to O( n

ε2
), inde-

pendent of the number of samples, which obviously also improves the practical runtime
for larger data sets, although the theoretical runtime complexity lasts with O(N). We
will achieve this by using the concept of core sets [7], already used successfully in
supervised learning in [8]. First we will give a short introduction to prototype based
learning for proximity data and highlight current problems in this field. Subsequently,
we give a brief review of core sets and link both approaches. In the experiments we
show that the proposed method is efficient compared with the standard strategies.

2 Prototype Based Learning

Prototype based learning is a very generic approach (see e.g. [9]) with good general-
ization properties [10]. The prototypes, as the main model parameters are derived as
representants of the quantized data space. Accordingly the models are sparse. More
recent extension of prototype based approaches for proximity data, represent the pro-
totypes by means of linear combinations of the original data [11], where the models
become often very dense [5].

Assume data xi ∈ R
D, i = 1, . . . , N, are given in a D dimensional space. Prototypes

are elements wj ∈ R
D, j = 1, . . . ,K, of the same space with W = {w1, . . . ,wK},

the set of all prototypes of the model. They decompose data into receptive fields
R(wj) = {xi : ∀k d(xi,wj) ≤ d(xi,wk)} based on some metric distance measures, like
the squared Euclidean distance d(xi,wj) = ‖xi − wj‖2 . The goal of prototype-based
machine learning techniques is to find prototypes which represent a given data set as
accurately as possible. We will also assume that the data xi are equipped with prior
class labels c(xi) ∈ {1, . . . , L} in a finite set of priorly known classes in the crisp case
or can be associated to a vector of class assignments l(xi) ∈ [0, 1]L, normalized such
that

∑L
k l(xi)

k = 1 which we will call soft or fuzzy labels. One of the most popular ap-
proaches for supervised prototype learning is the Robust Soft LVQ [12], a large margin
classifiers [10], optimizing a cost function using gradient descend.

For proximity data an extended RSLVQ was proposed in [13]. One assumes wj =
∑

l αjlxl where αjl > 0 with
∑

l αjl = 1. Then, we can compute for a given data point
xi: ‖xi − wj‖2pq = sii − 2

∑
l αjlsil +

∑
ll′ αjlαjl′sll′ Hence we can compute distances

of all data points and prototypes based on pairwise data similarities: sij ∈ S only, in
quadratic time. Further, we do not need to represent prototypes wj explicitly, rather,
the coefficients αjl are sufficient. Similarly, we find ‖xi − wj‖2pq =

∑
l αjldil − 1/2 ·

∑
ll′ αjlαjl′dll′ provided

∑
l αjl = 1. Hence, as an alternative, we can compute distances

via all pairwise dissimilarities: dij ∈ D of data in quadratic time. In the following
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we will focus on similarities only, but extensions to metric dissimilarities are straight
forward using techniques of [14].

The coefficient matrix Γ , with αjl being the l-th coefficient of the j prototype, has
most often n×N entries and is densely populated in the final model. Strategies to im-
prove this by explicit sparsity concepts have been proposed in [5,13] but introduced
additional parameters and are hard to control. Also these techniques are often not ap-
plicable in the first steps of the optimization such that, similar like for PCVM the initial
complexity is high and a large number of parameters needs to be estimated. There are
two issues, one is the potentially large squared proximity matrix P and the second is
the dependent matrix Γ . In [15] a concept, known as core sets was used to approach the
first problem, we will use similar ideas to approach the second problem, an issue for
prototype based models, due to the explicit modeling of the prototypes by data points.

3 Core Sets

The notion of core-sets appears in solving the approximate minimum enclosing ball
(MEB) problem in computational geometry [7].

Definition 1 (Minimum enclosing ball problem). Let {v1, . . . ,vm} ∈ R
D a set of

points. The objective is to find a minimum enclosing ball with radius R and center point
c such that ‖c− vi‖2 ≤ R2 ∀i. Hence B(c,R) = {v|R ≥ ‖c− v‖,v ∈ V }.

As shown in [15], the MEB problem can be equivalently express as a quadratic dual
optimization problem: MEB = min

αi≥0,
∑

αi=1
αKα� − ∑

i αiK(i, i), with K the kernel

matrix defined on V and c and v represented in a kernel space as shown before. The
radius R is obtained by solving R =

∑
i αiK(i, i) − αKα�. The center is used only in

the distance calculation which can be expressed using the kernel trick and is a linear
combination of the training points based on the obtained α-vector, c =

∑
i=1 αiφ(vi).

Definition 2 (Core set). Let S = {v1, . . . ,vk} ⊆ V , then Q ⊂ S is a core set, if S ⊂
B(c, (1 + ε)R) and B(c,R) = MEB(Q).

An encouraging property of core-sets is that the number of elements in it is independent
of the data dimensionality and size [7]. Obviously the notion of a MEB ball is closely
related to that of a prototype. The prototype, represents a set of points as a receptive
field, which borders are constrained by the other prototypes, whereas the MEB repre-
sents a set of points, restricted by the radius R and the center position c. The center of
the MEB and the prototype position, defined on the same set of points, may not coin-
cide. Nevertheless, a MEB around a set of points in a receptive field of a prototype is
often a good approximation for this field.

4 Prototype Models by Core Sets

The idea is to represent a prototype wj in the matrix Γ by those coefficients αjl which
are used to model the MEB of this set of points. This approximation is reasonable as
long as the receptive field is close to a sphere, in the similarity space. This is also an
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implicit assumption of prominent prototype learning algorithms like the original Ro-
bust Soft LVQ [12], where the prototypes are actually modeled as Gaussians with equal
bandwidth. We will derive our approach as a pre-processing step prior to any prototype
model. In general prototype learning algorithms are initialized, class wise by unsuper-
vised clustering approaches [12], using e.g. k-means or soft competitive learning (SCL)
[16] with the number of prototypes per class specified by the user as a meta parameter.
For large scale problems novel approximations of k-means or SCL are available, like
approximate and core k-means [17,18] or fast SCL [19]. We will focus on the latter
one, which is a batch methods using quasi-newton optimization and is efficient also
for N ≥ 1e6, assuming a small number of clusters n. In each case we assume that the
training data have been already partitioned by an unsupervised clustering approach into
disjunct subsets. Our approach is summarized in Alg. 1

Algorithm 1. Prototype representation by core sets.
1: init:
2: Let T be a set of labeled training points and Γ an empty matrix n×N
3: ε = 0.1 � Fixed approximation error of the MEB
4: Let Z = {z1, . . . , zn} a set of classwise clustered training data
5: zj = {(x1, l1)

j , . . . , (xk, lk)
j} using e.g. kmeans

6: for all zj ∈ Z do
7: [αj , Sj ] := MEB(zj , ε)
8: � α-values of the MEB solution for cluster j, Sj core set indices w.r.t. T
9: Γj := αj

10: � Represent prototype j by the MEB solution for cluster j at indices Sj

11: end for
12: Γ := Simplify(Γ ) � Reduce Γ to non-empty columns
13: return Γ ;

The MEB algorithm used in line 7 of Alg. 1 is the same as used in [8]. Starting with
two random initial points the MEB is increased in each iteration by the point which is
farthest away until the set is covered by the MEB within a circle of (1+ε)×R. A cluster
is described by the α values as obtained from the MEB. In general the MEB needs only
few iterations such that the number of core set points for a cluster is often in the range
of 1− 10, theoretically it is bounded by O( 1

ε2
).

To identify the point which is farthest away in the MEB algorithm, probabilistic
sampling is employed [8]. Assume we have a ranking (rank) of the distances of all
points to the current center c. We now choose the set F as the 5% points which are
furthest away from c, or have a high rank. The probabilistic sampling strategy ensures
that a selection of only 59 random points from the training data will contain a point
from F with a probability of 95%. The core set S is typically very small |S| � N such
that the runtime complexity of the calculation of the quadratic optimization problem
in the MEB’s in Algorithm 1 is given by O(|Sj |2). For the addressed scale of N we
will consider this complexity as sufficient. For very large N it would also be possible
to avoid the calculation of a MEB if we know the expected radius r for our problem.
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This could be done following concepts of [20] using an enclosing ball concept, but we
will not discuss this in the following.

Obviously, the Γ matrix needs not to be defined in advance and may grow during
the steps of Algorithm 1 if we add |Sj | = qj , columns to Γ for each prototype because
all zj are disjunct. The obtained matrix Γ can subsequently be used in any prototype
based classifier for proximity data as an initial model. Using e.g. a supervised prototype
classifier the prototypes can be further optimized to improve the class discrimination.
For a prototype j this can be done by modifying the coefficients in the j row of the
matrix Γ . As will be exemplary shown in the following this can be done by adapting
not only the already used coefficients Γj· but also those not yet used to represent of the
prototype due to the disjunct initialization. As an example we consider a checker board
problem with 4 × 4 clusters in 2 − D. We represent these data by an Euclidean inner
product kernel and define two multi-modal classes as shown in Figure 1, such that one
class has 5 clusters and the other 11 clusters. The number of prototypes is defined as 7

per class, which is (theoretically) sufficient to discriminate between the classes, using
some boundary effects of the data. Since the Γ matrix is initialized class wise and the
number of prototypes is 7 per class, the larger class is underrepresented.

The initial post-labeling accuracy is 90%, using the prototype learner presented in
[19] we adapt the positions of the prototypes and also the labeling of the prototypes.
After 100 iterations we obtain an optimized prototype representation as shown in Figure
1. We observe that the smaller, over represented class, has lost prototypes to the under
represented class. These prototypes now show new non-vanishing coefficients in Γ for
the indices of the new class they have been assigned to and have also changed their class
labeling. The final accuracy is 99% showing that the core-set representation coupled
with supervised post training has sufficient representation power.
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Fig. 1. Checker board data: initial model (left) and after optimization (right) using core sets and
a kernel RSLVQ formulation. The top plot shows the data with the given labeling, the right plot
the predicted labels on the final model. Initially both classes are modeled by 7 prototypes. The
class labels are denoted by different shapes and colors. The prototypes are black squares. Using
the initial model a misclassification of 10% is obtained (not illustrated). In the right figure one
obtains an accuracy of 99%, few misclassifications can be observed shown as cyan ♦.

5 Experiments

We now show the efficiency of the approach at different data sets, represented by metric
proximities, given as a kernel. The number of prototypes was defined such that a rea-
sonable modeling of the data can be achieved guided by the number of classes and prior
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Table 1. Experiments with different kernels using the core approach and random selection. Pre-
diction accuracy (Acc), runtime (RT) and memory complexity (used points in Γ (Pts))

Data set Core k% 10%
Acc RT Pts Acc RT Pts Acc RT Pts

Checker 99.06 ± 0.52% 54.68s 29.4 ± 1.1 66.21 ± 0.94 9.36 31 99.42 ± 0.7% 74.3s 7200
MNIST 86.81 ± 0.5% 241s 731.8 ± 3.3 86.13 ± 0.09 113.45 732 90.37 ± 1.0% 513s 5600
USPS 87.68 ± 1% 101.6s 714 ± 5.1 87.51 ± 1.3% 80.9s 714 88.18 ± 0.6% 95.22s 880
SPAM 87.48 ± 2% 15.23s 31± 1.2 84.66 ± 4.1% 6.91s 31 89.72 ± 0.4% 10.71s 369
Phoneme 83.20 ± 3.7% 14.62s 83.4± 0 75.52 ± 8.4% 9.02s 84 84.57 ± 4.0% 14.26s 293
Image 78.62 ± 1.7% 8.2s 27± 1.7 77.7 ± 1.6% 4.4s 27 80.73 ± 3.9% 4.79s 167

experiments of the authors [19]. Please note, that the measure of prediction accuracy
on the test data is only used to demonstrate the stability of our approach, we did not do
any meta-parameter tuning, although the obtain results are already competitive.

The MNIST data 2 contain 70000, 784-dimensional binary images from 10 digit
classes which have been processed by a neural kernel k(vi,vj) = tanh(av�i vj + b)

with a = 0.0045 and b = 0.11 acc. to [17], we used 10 prototypes per class.
The Checkerboard data is an artificial data set with 90000 2−dimensional samples

organized on a 3× 3 grid with alternating labels in two classes, 5 prototypes have been
used per class with a linear kernel to provide the similarities. By construction this data
set is highly multimodal.

For all other data sets we use an elm kernel [21], which is a defacto parameter free
RBF kernel. USPS 3 contain 11000, 256-dimensional character feature vectors from 10

classes analyzed by 10 prototypes per class. The SPAM database 4, contain 4601, 57-
dimensional feature vectors in 2 classes which have been modeled by 2 prototypes per
class. Further we used the phoneme data set with 3656 points in 20 dimensions with
13, slightly imbalanced classes. For this data set 1 prototype per class was taken. As
another example we used the Image data set with 2086 sample in 18 dimensions and 2

classes, modeled by 2 prototypes per class and taken from [22].
All initial clusterings were obtained by fast SCL [19] with a runtime complexity of

O(n3 ·N). We evaluate the runtime and memory complexity using our presented core-set
approach (core), an alternative representation by selecting a random subset of samples
for the prototype modeling with respect to 10% of the data and with k% where, k is set
to get a similar complexity as within the core-set model. As the final prototype classifier
we use a full probabilistic formulation of kernel RSLVQ [13,23]. All experiments are
done within a 5− fold crossvalidation.

The results are shown in Table 1 for multiple data sets, with different data charac-
teristics (number of classes, number of samples, data dimensionality). We also experi-
mented with a different number of columns of the Γ matrix, or different random subsets
of representation points, to obtain a similar accuracy than by the core-set approach. The
minimal subset size for the Checker data is with around 5% leading to an accuracy of
94% with 301 representation points. For the Phoneme data 5% representation points are

2 http://yann.lecun.com/exdb/mnist/
3 http://www.cs.nyu.edu/˜roweis/data.html
4 http://archive.ics.uci.edu/ml/datasets

http://yann.lecun.com/exdb/mnist/
http://www.cs.nyu.edu/~roweis/data.html
http://archive.ics.uci.edu/ml/datasets
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necessary to get 83% with 147 points. For the MNIST, USPS, SPAM and the Image data
a random subset at k% is already sufficient.

As a general result we find that the proposed approach (core column of Table 1)
shows similar good prediction results compared to a large model5, shown in the 10%

column. As expected the number of representation points, defined by the core set ap-
proach is in general very small, with one exception, for the USPS data where the core-
set model is only 20% smaller than the largest considered set.

If we compare our results with a randomly chosen representation set of the same
size as the core-set model, shown in column k%, we found that in all cases the core-set
model has an equivalent, or in parts substantial better prediction accuracy. For some
data sets and using a random selection strategy, the number of representation points has
to be substantially increased by a factor of 10 to achieve a similar accuracy.

Depending on the data set a random representation set may substantially degenerate
the accuracy of the final model, as shown for the Checker and the Phoneme data set. This
can be potentially be explained by the multimodality of these data sets. With respect to
the experiments the proposed approach is a systematic and effective strategy to sample
a representation set from the training data. For larger data sets a naive random sampling,
constrained by the available memory can fail and the obtained models are unnecessary
complicated and hard to interpret. Without the information, available here by the core-set
approach, it would not easy to guess a reasonable value for k%but we would rely on adhoc
decision like 1% or 10% of the data upper-bounded by the available memory. Using the
core-set approach the necessary memory to achieve a very good model representation is
5−10 times smaller for the considered data than using a adhoc decision for the considered
data. Theoretically the memory complexity scales with O( n

ε2
), independent of N , such

that for very large data sets our strategy is even more interesting.

6 Conclusions

Prototype based models for proximity data are complex and less interpretable for large
data sets. This is due to the large coefficient matrix Γ , representing the prototypes by
linear combination of original training points. The presented technique automatically
identifies a small set of representation points for the modeling of proximity prototypes.
The approach achieves competitive prediction accuracy with respect to more complex
prototype models. The number of representation points is automatically selected and is
independent of the number of training points. The obtained model is not only sparse,
with low memory requirements, but also accelerates the model calculation. This effect is
most pronounced for large data. The technique can be effectively used to obtain sparse
prototype models also for very large proximity data.

Acknowledgements. This research and development project is funded by the German
Federal Ministry of Education and Research (BMBF) within the Leading-Edge Cluster
Competition and managed by the Project Management Agency Karlsruhe (PTKA). The
author is responsible for the contents of this publication. Additional funding was pro-
vided by the Cluster of Excellence 277 CITEC funded in the framework of the German
Excellence Initiative.

5 A full model, using N points is often too costly, but some experiments with larger representa-
tion sets did not significantly improve the accuracy
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