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Abstract. This paper presents an analysis of a feature space generated by ex-
tracting properties related to pattern density and Euclidean distances between 
neurons from the self-organizing map network. Hence, along with the weight 
vector, each neuron has a 2-D feature vector associated with it, whose compo-
nents are extracted from the U-matrix and a hit matrix, where latter is based on 
hyperspheres centered on each neuron. This collection of feature vectors, that 
represents the neurons of the network, is partitioned into different groups, and 
their labels are carried back to the data space as well as the neuron grid, in order 
to perform the tasks of clustering, noise reduction and visualization. Experi-
ments were carried out using synthetic and real world data sets. 
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1 Introduction 

The increasingly quantity of data produced in the modern world have maximized the 
necessity for understanding and exploiting the information existent [1][2], while si-
multaneously overcoming its quality related problems. The self-organizing maps 
(SOM) [3][4] are artificial neural networks widely used in the data mining field for 
partitioning the data into similar groups and as a tool for visualization through low 
dimensionality projections of multidimensional data, due to the fact that classic clus-
tering algorithms may be applied to the SOM neurons [5], and many visualization 
techniques associates data characteristics to the topologically ordered neuron grid, so 
that an insight of the data distribution may be obtained [6]. 

This paper focuses on performing the clustering task, noise filtering and visualiza-
tion through partitioning the self-organizing map according to the distribution of fea-
ture vectors associated with the neurons, which enclose characteristics related to pat-
tern density and distances between neurons.  

The paper is organized as follows. Section 2 provides a brief review of the SOM 
network and related visualization methods; also the derived feature space is defined. 
In Section 3, the proposed approach is described. The results of the experiments and 
discussions are presented in Sections 4 and 5, respectively. 
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2 Self-Organizing Maps and Derived Feature Space 

The self-organizing maps are neural networks based on unsupervised learning. They 
are composed by a lattice of neurons, each one associated with a weight vector  in 
the p-dimensional data space. In this work, the SOM is trained using the batch mode, 
in which the whole data set is fed at once to the network. At each epoch, the BMUs 
(neurons with the smallest Euclidean distance from their associated weight vectors to 
the input patterns) for all patterns are determined, so the  neurons of the network 
can be simultaneously updated according to (1): 

             1 ∑ ,∑ ,  (1)

 
where  denotes the iteration,  is a weight vector associated with the jth neuron, 

 is the ith input pattern,  is the total number of patterns, and ,  is the neigh-
borhood kernel, which is usually a Gaussian function defined by the neighborhood 
radius . 

In order to inspect the relative sizes and positions of clusters in a given data set, vi-
sualization techniques must be applied to a trained SOM network, which are typically 
matrix plots of Euclidean distances between neurons or pattern density, such as the 
popular U-matrix [7] and P-matrix [8], respectively. The U-matrix consists of an im-
age that portrays the Euclidean distances in the data space between the SOM neurons. 
Regions of small and large distances are often regarded as clusters and their borders, 
respectively. The P-matrix is generated by counting the number of patterns inside a 
Pareto hypersphere centered on each neuron.     

The proposed feature space consists of the following concept: for each neuron in 
the grid, besides the weight vector in the data space, there is also associated with it a 
2-D feature vector, which carries meaningful information from the data set. The cha-
racteristic of the feature vector distribution is analyzed so as to diminish the noise 
present in the data set, to perform a clustering task or to visualize similar groups of 
neurons. In this work, the feature vector  of a neuron  has two components: 

          (2)

 
The first component ( ) is the value extracted from the neuron’s corresponding 

position in U-matrix. However, it is negated with the purpose of becoming a measure 
of similarity instead of dissimilarity. The second component ( ) is obtained from the 
matrix plot in which every position entails the number of patterns inside a hyper-
sphere centered in that neuron, where the radius is determined as the minimum so all 
neurons have at least one pattern inside its respective hypersphere. This approach is 
inspired from the P-matrix visualization method. The radius of this hit matrix H is 
then defined as:   
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max min  (3)

where 1,2, … , , and 1,2, … , . 
It is assumed that, in general, the feature space should comprise three main regions 

(Fig. 1), which correspond to neurons that are positioned in the core of the clusters 
(region 1), in their frontier (region 2) or between them (region 3). The values of the 
components are normalized in the range 0; 1 . 
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Fig. 1. The three colored regions correspond to regions that enclose interpolating (region 3 -
red), boundary (region 2 - green) and cluster’s neurons (region 1 - blue). The lines r, s, and t 
symbolize generic hyperplanes that divide the feature space. 

3 Proposed Approach 

After training a SOM network, the feature vectors are generated with the values ob-
tained from the U-matrix and the hit matrix H, so an analysis can be carried out to 
perform noise reduction, clustering or visualization. The main goal is to identify in-
terpolating neurons, i.e. those neurons that do not belong to a cluster and just link 
close-knit groups of neurons, which represent the core of the clusters.  

In order to partition the data of the feature space, the k-means algorithm [9] and a 
competitive network [10] were used. The assumption described in Section 2 was sim-
plified in the sense that only two regions were considered, that is, the generic line s of 
Fig. 1, so one part of the boundary neurons would be included in the interpolating 
neurons subset and the other to the clusters’ neurons subset. Although not critical to 
most of the data sets used in the experiments, this simplification of the hypothesis was 
not functional considering two data sets, and thus it cannot be generally used. If the 
points in the feature space regarding data sets with noise may be modeled as an expo-
nential function with a reasonable goodness-of-fit statistics of the curve fitting, then 
the partitioning of the feature vectors into two subsets corresponding to the interpolat-
ing neurons and the clusters’ neurons may also be accomplished using the common 
elbow criterion as a threshold. After the segmentation in the feature space, the subset 
with the largest median of the Euclidean norm is considered as the core of the clus-
ters. For the purpose of reducing the noise, the final step consists of determining the 
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patterns from which each neuron is related, and then eliminate from the data set the 
ones that are associated with interpolating neurons. Conversely, when the task being 
considered is clustering, then the clusters are identified and labeled in the SOM grid 
using 4-neigborhood connected components labeling (CCL) [11]. Regions that are not 
connected and are smaller than a percentage of the total number of SOM neurons (α) 
are disregarded. All the remaining neurons are classified through the k Nearest 
Neighbor algorithm (kNN) [12], in which the parameter k was set to 1. At last, the 
patterns are labeled using the partitioned SOM. 

In the case that a data set has several close clusters with extremely different densi-
ties, the proposed method may not be directly applied as described. Nonetheless, dif-
ferent regions of similar neurons of the SOM may be highlighted by visualizing the 
partitioning of the feature space into different number of regions. 

4 Experiments 

The SOM Toolbox [13] was used to implement the SOM networks, which were 
trained using the batch mode (1000 epochs) and linear initialization. The Table 1 
sums up the characteristics of the data sets used in the experiments, which are de-
picted in Fig. 2. They come from [14-17], and the data set D2 was artificially generat-
ed. Such databases were preprocessed using the linear normalization, i.e. the data 
sets’ attributes were normalized in the 0; 1  cube.  

Table 1. Data sets characteristics 

Data set Dim. Size Clusters Type Main problem 
DS3 2 10000 9 Synthetic Clusters with different shapes / noise 
Engytime 2 4096 2 Synthetic Overlapping clusters  
Hepta 3 212 7 Synthetic Clusters with different variances 
Tetra 3 400 4 Synthetic Very close clusters 
Twodiamonds 2 800 2 Synthetic Clusters connected by a bridge 
Wingnut 2 1016 2 Synthetic Clusters with variable densities 
D2 4 600 4 Synthetic Data set with high dimensionality 
D3 2 1500 5 Synthetic Gaussian clusters 
Wine 13 178 3 Real World Data set with high dimensionality 

 
The analysis carried out over the feature space using the proposed approach is pre-

sented in detail considering the DS3 data set through the Figs. 3 to 7. A SOM network 
of size 100x100 was trained with the parameters previously described and final 
neighborhood radius equal to zero. The Fig. 3 depicts the U-matrix and P-matrix  
generated using the SOMVIS Package, as well as the proposed hit matrix H. Consi-
dering the Fig. 3 ‘b’ and ‘c’, both of which contains information of pattern density, 
the definition of the clusters boundaries are  sharper in item ‘c’, and thus the feature 
space is generated using the values of the matrixes of the items ‘a’ and ‘c’ (Fig. 4a). 
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Fig. 2. Illustration of the data sets: (a) DS3, (b) Engytime, (c) Hepta, (d) Tetra, (e) Twodia-
monds, (f) Wingnut, (g) D3, (h) D2 and (i) Wine, both with a  2-D PCA projection. 

 

Fig. 3. (a) U-matrix, (b) P-matrix, and (c) H-matrix (with the radius defined by Eq. 3) of the 
SOM network trained with the DS3 data set.  

The next stage consists of partitioning the feature space into two regions of similar 
neurons. The region with the largest median of the Euclidean norm is regarded as the 
one representing the core of the data set’s clusters. This may be achieved using any 
kind of clustering algorithm; in the case of this particular map, the k-means algorithm 
was applied. If the objective is to perform the noise filtering, then patterns associated 
with the interpolating neurons (mostly noise) are excluded from the data set (Fig. 4c). 

The feature space may reveal different regions of neurons with similar characteris-
tics as a function of the number k of the partitions of this space, and therefore it can 
be used as a tool for visualization. In Fig. 5, the dependence of the method with the 
value of the parameter k is depicted. As expected, when partitioning the feature space 
into 2 regions, the boundary neurons are included in both the interpolating neurons 
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subset and core of the clusters subset. Considering k equal to 3 leads to the appear-
ance of the boundary neurons as a group of its own. Finally, increasing the value of k 
turns stricter the neurons’ intra-group similarity.  

In order to automatically find the clusters of the DS3 data set, the CCL was applied 
to the image of Fig. 5a, and the result obtained is depicted in Fig. 6a. After labeling 
the group of neurons related to the clusters, the interpolating neurons may be labeled 
by flooding or by the kNN algorithm, and in this work the latter is used (Fig. 7a). At 
last, the segmented SOM is used to label the data set. 

 

 

Fig. 4.(a) Feature space data divided into 2 regions using the k-means algorithm. (b) The 2 
groups of neurons viewed in the data space. Classified neurons of the SOM network are shown 
in red (interpolating neurons subset) and blue (cluster’s neurons subset). Neurons of the same 
group are represented with the same colors in items ‘a’ and ‘b’. (c) Filtered data set.  

 

Fig. 5. Matrix plots with the same size as the network lattice. The partitions of the feature space 
are shown for (a) k = 2, (b) k = 3, and (c) k = 4, in which each color correspond to neurons of 
the same group.  

 

 

Fig. 6. (a) Labeled neurons of the SOM grid using CCL. (b) Labeled data set. 
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The Fig. 7 also depicts the results of partitions obtained by the watershed [18] and 
k-means algorithms, the latter applied over the SOM neurons in the data space, with 
the parameter k defined by the best value of the Davies-Bouldin index (DBI) [19]. 
The watershed algorithm was applied to the U-matrix image of Fig. 3a after a mor-
phological image processing (filtering through area open and area close) [20], where 
the area size was set to half the maximum dimension of the map [17]. The proposed 
method was able to uncover the 9 clusters of the DS3 data set, whereas the watershed 
and k-means algorithms found 8 and 30 clusters, respectively. 

 

 

Fig. 7. (a) Labeled SOM neurons trough the (a) k-means in the feature space with posterior 
CCL, (b) k-means in the data space over the SOM neurons,  with the DBI criterion for the 
choice of the parameter k, (c) watershed algorithm over the U-matrix of Fig. 3a. 

In order to perform the clustering task for the remaining data sets, several experi-
ments were carried out using diverse values for the following parameters: map size, 
grid type, final neighborhood radius (σ ), the minimum cluster size ( ), and number 
of neuron regions ( ). The majority of the map sizes was defined according to [3][5] 
and ended up to be rectangular, the others were defined as square maps, as they led to 
better results (Table 2). Different sizes were considered as multiples of the original 
size. The scale factor  is such that 0.75,1,1.25,1.5,1.75,2 .  

Table 2. Summary of the parameters used throughout the experiments 

Data set Wine Engytime Hepta Tetra Twodiamonds Wingnut D2 D3 

Map size (S=1) 8x8 21x15 10x10 10x10 20x7 10x10 18x7 16x12 

k 2 2 3 3 2 2 2 2 

α (%) 1 1 1 5 1 5 1 1 
*  1 1 1 1 0 1 1 1 

*Final neighborhood radius during the SOM training. 
 

The k-means and competitive network were chosen to perform the partition of the 
representation of the neurons in the feature space. Due to the random initialization of 
the k-means algorithm, it was repeated 100 times and the result with the smallest sum 
of squared errors was selected. The competitive network was trained with 100 epochs. 
The results obtained were compared to the same methods applied to the SOM neurons 
in the data space, using the same parameter settings. In this case, the parameter k 
ranged from 2 to √ , where  is the total number of neurons of the network, and 
again, the one with best DBI value was chosen. The Watershed algorithm applied to 
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the U-matrix image of each trained SOM. The Fig. 8 depicts the results obtained 
while varying the mentioned parameters. The classification accuracy (CA) [21] was 
used for evaluating the results (Fig. 8). The CA consists of the percentage of the prop-
erly classified patterns with respect to the complete data set.   

 

 

Fig. 8. Mean classification accuracy and standard deviation, for the clustering task performed 
by the k-means and competitive network both in the data set space and the feature space, as 
well as the watershed algorithm applied to the U-matrix generated by the trained SOMs. 

The k-means and competitive networks applied to the SOM neurons in the data 
space along with the DBI were not able to find the correct number of clusters in none 
of the 6 maps (scale factor S) for the data sets Engytime, Twodiamonds and Wingnut. 
The difficulties encountered by the watershed algorithm for the Twodiamonds data set 
rely in the fact that this data set has connected clusters. Thus, in this case density me-
trics are more relevant than distance metrics, which is the one displayed in the U-
matrix that is used for segmentation. The watershed algorithm was used after the 
same previously described morphological image processing. It must be noted that 
improved results using this algorithm may be obtained by thoroughly fine tuning the 
area size used in the filtering stage. 

As several maps were trained, additional measures related to the clustering task 
were made necessary: the correct clustering frequency (CF) and clustering efficiency 
(CE). The CF measures the percentage of runs in which the correct number of clusters 
was found, because the CA is only calculated if and only if the correct number of 
clusters was found. The CE gives an overall performance measure of the clustering  , as it takes into account the number of times the right number 
of cluster was found and how correct was the classification. The CFs obtained are 
depicted in detail in Table 4 for all the clustering methods used in the experiments.  

Although the methods have shown a good overall performance in terms of mean 
classification accuracy, it must be noted that clustering the feature space and going 
back to apply the results in the data space demonstrated itself more consistent due to 
the fact that the correct number of clusters was identified in more simulations than the 
other methods (see the CE depicted in the radar plot of Fig. 9). For instance, the low-
est CFs considering the k-means and the competitive network used for clustering the 
feature space are 67% and 83% of the runs, respectively, whereas the lowest percen-
tage is 0% for the same algorithms applied to the neurons of the SOM in the data 
space, or 33% when using watershed. Besides, the mean classification accuracy was 
above 0.8 for all tested data sets, with comparatively small standard deviations.  

Kmeans (Feature Space)
Competitive (Feature Space)
Kmeans (Data Space)
Competitive (Data Space)
Watershed (U-matrix)
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Table 3. Classification Frequency 

Data set 
Feature Space Data Set Space 

k-means Competitive k-means Competitive Watershed 
Wine 1.00 1.00 0.33 0.17 0.67 
Engytime 1.00 0.83 0.00 0.00 1.00 
Hepta 0.83 0.83 0.67 0.67 1.00 
Tetra 1.00 1.00 1.00 0.67 0.83 
Twodiamonds 0.67 1.00 0.00 0.00 0.67 
Wingnut 1.00 1.00 0.00 0.00 0.83 
D3 1.00 1.00 0.83 0.83 1.00 
D2 1.00 0.83 0.33 0.17 0.33 

 

 

Fig. 9. Classification efficiency for the clustering task performed by the k-means and competi-
tive network both in the data set space and the feature space, as well as the watershed algorithm 
applied to the U-matrix generated by the trained SOMs. 

5 Conclusions 

An analysis of the feature space generated by extracting properties related to density 
and distances between neurons of the SOM network was presented. Applications of 
the feature space include data filtering so as to reduce noise, as well automatically 
detecting the number of clusters and used as a tool for visualization.   

In order to partition the data set or to reduce the noise, classical clustering algo-
rithms may be used as well as the elbow method if an exponential curve fit is feasible. 
In this work the k-means algorithm and the competitive network were used with the 
simplified assumption that in most data sets exist only two types of neurons, however 
this hypothesis may not be considered universal, as it worked with the great majority, 
but not all data sets, where the separation in three regions is necessary. The results 
were compared to the same clustering algorithms applied to the neurons of the SOM 
network in the data space, as well as with the watershed technique. The proposed 
method was able to consistently segment the SOM into the correct number of clusters 
with high classification accuracies. If the clusters present in a given data set have 
utterly different variances, then the method may not be applied. Nevertheless, neurons 
with similar characteristics may be depicted as a matrix plot for a given number of 
partitions of the feature space (k), and therefore provide clues to the data clusters’ 
relative positions and sizes. 

Kmeans (Feature Space)
Competitive (Feature Space)
Kmeans (Data Space)
Competitive (Data Space)
Watershed (U-matrix)
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