
H. Yin et al. (Eds.): IDEAL 2013, LNCS 8206, pp. 202–209, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Scale-Free Based Memetic Algorithm
for Resource-Constrained Project Scheduling Problems

Lixia Wang and Jing Liu

Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education,
Xidian University, Xi'an 710071, China

kjdxwlx@126.com, neouma@mail.xidian.edu.cn

Abstract. The resource-constrained project scheduling problem (RCPSP) is a
popular problem that has attracted attentions of many researchers with various
backgrounds. In this paper, a new memetic algorithm (MA) based on scale-free
networks is proposed for solving RCPSPs, namely SFMA-RCPSPs. In SFMA,
the chromosomes are located on a scale-free network. Thus, each chromosome
can only communicate with the ones that have connections with it. In the expe-
riments, benchmark problems, namely Patterson, J30 and J60, are used to vali-
date the performance of SFMA. The results show that the SFMA performs well
in finding out the best known solutions especially for Patterson and J30 data
sets, besides, the average deviations from the best known solutions are small.
Therefore, SFMA improves the search speed and effect.

Keywords: scale free networks, memetic algorithms, local search, resource-
constrained project scheduling.

1 Introduction

Usually, a project is made up of several tasks and each task needs time and resources
to complete. When the gross of resource is limited, and there occurs precedence rela-
tionships among these tasks, it comes the resource-constrained project scheduling
problem (RCPSP). We can image this problem as a generalization of the well-known
job shop scheduling problem, and it belongs to the class of combinatorial problems
that is most difficult to solve, i.e., it is NP-hard [1].

In recent years, the research on scale-free networks becomes more and more popu-
lar [2]. In a scale-free network, most vertices have few connections with other nodes
but there exist a few of vertices that have large amounts of connections [3], then these
vertices with relatively large connections play an important part in communication of
information in the network [2]. Various of networks in real world have the scale-free
properties, such as World Wide Web [4], neural networks [5], metabolic interaction
networks [6]. Therefore, more and more researchers propose to combine scale-free
networks with existing algorithms to solve optimization problems [2].

Evolutionary algorithms (EAs), a kind of stochastic global optimization methods
inspired by the biological mechanism of evolution and heredity, have been successful-
ly used to solve various problems [7-12]. Memetic algorithms (MAs) are proposed by

 A Scale-Free Based Memetic Algorithm for RCPSP 203

Pablo Moscato [13], and are also called genetic local search, cultural algorithms or
hybrid genetic algorithms [14]. In fact, MAs are the combination of population-based
global search and the heuristic local search [15-17]. This kind of combination makes
the search efficiency of MAs outperform EAs. Therefore, we propose using MAs to
solve RCPSPs. The SFMA is tested on the Patterson, J30 and J60 sets, the results
obtained show that it performs well in improving the search efficiency.

Many methods have been proposed for RCPSPs, such as heuristics methods, they
can be divided into priority rule-based X-pass methods, non-standard metaheuristics
and classical metaheuristics etc [18], Classical metaheuristics consist of genetic algo-
rithm, simulated annealing algorithm, tabu search algorithm, particle swarm optimiza-
tion algorithm, ant colony optimization etc [19]. Alcaraz and Maroto propose a GA
based on the serial SGS and list representation [20]. Valls et al. develop a SA method
focuses on forward-backward improvement [21]. Fleszar and Hindi use a variable
neighborhood search to solve the RCPSP [1].

The rest of this paper is organized as follows. Section 2 introduces the detail con-
tent about the SFMA. Section 3 gives the experiments on the benchmark data sets.
Section 4 concludes the work in this paper.

2 Scale-Free Based Memetic Algorithm for RCPSP

2.1 RCPSPs

In a resource-constrained project scheduling problem, a project is made up of n tasks
which are marked by 1, 2, …, n. A duration dj is needed to finish task j [22]. The ob-
jective of RCPSPs is to arrange the start time for these tasks. In the same time, two
kinds of constraints exist to bound the work; they are called precedence constraints
which can be depicted by a graph shown in Figure 1 and resource capacities. The
precedence constraints mean that a task can not be arranged before all of its predeces-
sors have been finished [23]. Every process to complete a task needs certain of time
and resources. The aim is to find out start and finish time for all of the tasks, at the
same time, both the constraints given above must be satisfied and the duration of the
project or the resources cost or some other suitable objective is optimized [5]. Makes-
pan is the most popular objective function for RCPSP, because people would like to
use the least time to complete a project. In this paper, makespan is used as the objec-
tive function.

As shown in figure 1, each vertex represents a task, task 1 and n are dummy tasks
with their durations d1 and dn both be zeros. Task 1 and n are called the initial task
and final task which must be arranged before and after all of the other tasks respec-
tively. If there is an arrow between task i and j of length di, it presents that task i is j’s
predecessor and j can not start before i has finished, di is the duration of i. All imme-
diate successors of the task i make up of a set represented by Ai, in the same way, the
set of task i’s immediate predecessors is denoted by Bi [24]. We use γi to presents the
amount of predecessors of task i, it equals to the number of arrows terminate at vertex
i in figure 1. The graph thus defined must be acyclic; otherwise, someone will be its
own predecessor [7].

204 L. Wang and J. Liu

Fig. 1. Precedence graph

2.2 Population Initializations with Scale-Free Structure

For a node k in a network, its degree distribution usually expressed by P(k). In tradi-
tional random networks just like ER networks, the degree distribution obeys the Pois-
son distribution [3]. In fact, the distribution of real networks is far from the Poisson
distribution [25], it is similar to a simple form:

 P (k) ~ k-r (1)

Here γ is a constant exponent which varies between 1.8 and 2.5 [3]. Its speed of
falling off is much slower than ER networks, so it allows a few nodes to have large
connections. Researchers call this distribution a power-law distribution [3].

Before initializing the population, firstly construct the scale free network to deposit
the chromosomes. The network is constructed according to BA-modal, which is pro-
posed by Barabási and Albert [25].

Algorithm 1. Construction of the BA modal
Step 1: Produce a network with m0 nodes attach to each other;
Step 2: When a new node is generated, calculate the degree distribution of these

existing nodes, then select which m nodes (node) to attach according to the distribu-
tion, here m and m0 are both integers and m<m0;

Step 3: Execute step 2 repeatedly, until the total number of nodes is enough.
After finishing the construction of scale free network, the chromosomes are gener-

ated corresponding to the vertices on the network. Three methods are used to produce
the initial population alternately until every vertex on the network has a chromosome
and the corresponding. The first two methods are recomposed from the famous algo-
rithms [7], and the third one is proposed by us, here we just give the detail procedure
of the third one.

Suppose all the tasks are presented in a nonperiodic graph G, each task corresponds
to one node, if there is an arrow from node i to node j (i, j∈G), thus task i is called the
immediate predecessor of task j, or task j is the immediate successor of task i. γi is
used to present the number of immediate successors of task i.

Algorithm 2. Method 3 for initialization
Step 1: For each task v of G, calculate its number of immediate predecessors γw, s

is an empty set use to deposit tasks;

 A Scale-Free Based Memetic Algorithm for RCPSP 205

Step 2: Find out the tasks those γs are zeros then select only one task w randomly
and arrange it into s.

Step 3: For the task arranged just now, find out its immediate successors for exam-
ple task v, then γv =γv -1;

Step 4: Find out the tasks that γ=0 and belong to the immediate successors of the
task arranged just now, then arrange one of them randomly, repeat step 3 and 4 until
no task can be arranged;

Step 5: Repeat step 2, 3 and 4 until all of the tasks in G have been arranged into s,
then a chromosome has been produced.

2.3 Competition-Crossover Operator

As all of the chromosomes are fixed on a scale-free network, it represents that a
chromosome can change information only with the one who has connection relation-
ship with it. For each chromosome s in the population, we firstly find out the units
connect with it and compare those fitness values, the unit has the smallest makespan
is marked as m, let m execute the mutation operator then obtain a new chromosome
labeled p2, the mutation operator will be introduced in the content below, let s be p1.
At present if a random number produced is larger than the crossover probability Pc,
we select the makespan smaller one between p1 and p2 as a new unit and mark by snew,
then s will be replaced by snew; otherwise, if the random number is smaller than Pc, the
crossover operator will be executed, here we use the two-point operator adapted from
[7], the detail procedure is introduced below.

Algorithm 3. Crossover Operator
Let p1 and p2 be the two parents, c1 and c2 be the children. n is the total number of

the tasks as well as the length of a chromosome.
Step 1: Generate two numbers r1 and r2 randomly, r1< r2, r1, r2 are both integers

and belong to interval (1, n).
Step 2: c1(1: r1) = p1(1: r1) and c1(r2+1: n) = p1(r2+1: n).
Step 3: for j=1: n, if p2 (j) is not belong to c1, then r1= r1+1 and c1(r1) = p2(j).
Similarly, c2 is obtained in the same way by interchanging p1 and p2. Now there are

four units include p1, p2, c1, c2, then choose the one with the minimum makespan to
replace s. In addition, if the parents are valid, the children produced are valid too,
because the children inherit the prior orders from their parents.

2.4 Mutation Operator and Local Search Operator

The mutation operator is adapted from [7]. This kind of mutation is helpful to the diversi-
ty of the population. For any task in a chromosome, our method to mutate is to find the
interval that allows the task to move and will not violate the precedence constraints. The
detail of the operator is described as follow; image s is a valid chromosome.

Algorithm 4. Mutation operator
Step 1: Choose a task i among all of the tasks in random except 1 and n, here n indi-

cates the length of the chromosome, then find out its position pi in the chromosome s;
Step 2: For the tasks belong to i’s immediate predecessors, calculate their largest

position in the chromosome s marked l; similarly, find out the smallest position of the
tasks of i’s immediate successors and label as e;

206 L. Wang and J. Liu

Step 3: Randomly generate an integer k between l and e, and k can not equal to pi;
Step 4: Then task i can move to position k, and a new chromosome is generated.
In order to keep the better units in current generations, we only receive the mutation

ones whose makespans are smaller than before. Finally, compare the fitness value of the
new chromosome with the old one’s, and reserve the individual with the smaller makes-
pan.

Calculate the fitness values of the current population and find out the minimum
makespan, as the number of chromosomes whose fitness values are equal to the min-
imum makespan is not only one, the SFMA find out the whole chromosomes and
execute local search upon them to make their fitness values less and less. Here we let
the best individuals in the current generations execute mutation operator 20 times.
During the experiments we can see that this operator is much helpful to obtain the
optimal makespan rapidly.

2.5 Implementation of SFMA

The overall scheme of the SFMA is demonstrated in Algorithm 7 below. As states
above, MAs are GAs combine with local search, competition-crossover and mutation
are belonging to the GAs, step 10-12 are local search. The algorithm is stopped when
either the minimum makespan is equal to the best-known makespan or the total sche-
dules produced exceed the number we set.

Algorithm 5. The implementation of SFMA
1. Algorithm begin;
2. Construct the scale free network by BA modal;
3. Initialize original population;
4. Calculate the fitness values of the population;
5. Store the minimum makespan of the current population as fmin;
6. while the stopping conditions are not satisfied;
7. Execute competition-crossover operators;
8. Execute mutation operator;
9. Find out the minimum makespan in the current population fc;
10. for the chromosomes whose fitness values are equal to fc;
11. Execute local search;
12. end
13. Update the minimum makespan fmin;
14. end
15. Algorithm end

3 Experiments

In this section, the benchmark problems from PSPLIB [26], namely Patterson, J30,
and J60, are used to validate the performance of SFMA. In the following experiments,
for each instance, 10 independent runs are executed and the average values of the
following criteria are used to show the performance of the SFMA:

 A Scale-Free Based Memetic Algorithm for RCPSP 207

(1) %NBS: It means the percentage ratio of the best known solutions found by the
SFMA to the total number of instances [7].

(2) %ERR: Means the average error; we calculate this error according the follow-
ing expression:

%ERR 100%
solution_makespan - best_makespan

best_makespan
= •

 (6)

In the scale free network we generate, m indicates the number of vertices (vertex)
connected by the new node, we randomly choose one hundred instances from the J30
sets and test the effect of m on %NBS, there we set m to be 1, 2, 3, 4, 5, 8 respective-
ly, and other parameters are the same, the results are shown in Table 1, from the re-
sults we can see, the smaller m is set, the better it performs. Besides, through the tests
on the same data, we find that the two point crossover operator performs better than
the one point crossover operator.

Table 1. Comparison of different m

m 1 2 3 4 5 8
%NBS 76.0 74.7 73.7 74.3 73.1 74.2

In the local search process, as the number of individuals whose fitness values are
equal to the minimum one is unconcern, we choose several individuals to execute
local search operator rather than only one individual. The results shown in Table 2
proves this. Through the results, we can see that no matter the %NBS or the %ERR,
the multi units method performs much better than the single unit method. Table 3
shows the average deviations, and the stopping criterias are maximum of 1000, 5000
schedules respectively. The results validate that the deviations are not small enough,
so in the future, it is a goal for us to reduce the deviation.

Table 2. Comparison of local search with single unit and multi units

Data sets Local search %NBS %ERR AvgEvals
Patterson Single unit 93.36 0.08 954
Patterson Multi units 98.73 0.02 735

J30 Single unit 82.68 0.47 1607
J30 Multi units 88.27 0.28 1867
J60 Single unit 67.42 1.78 4130
J60 Multi units 70.04 1.42 4707

Table 3. Deviation from critical-path lower bound

Data sets
Max schedules

1000 5000

J30 0.94 0.42

J60 14.58 13.06

208 L. Wang and J. Liu

4 Conclusions

In this paper, we proposed a SFMA for the single project, single mode, resource-
constrained project scheduling problem. The SFMA combines the global search and
the local search, so that it can search the solution space much more thoroughly. Be-
sides, it is characterized by introducing a scale-free network, here we construct a
scale-free network to let the chromosomes to fix on, when executing the competition
and crossover operators, the chromosomes can not operate with random individuals
but must with the ones attach to them. Thus the good individuals can influence others
more. The SFMA is tested on the Patterson, J30 and J60 sets, the average rates of best
known solutions found by SFMA are rather high especially on Patterson data sets and
J30 sets, it proves that the SFMA improves the search efficiency.

Acknowledgement. This work is partially supported by the National Natural Science
Foundation of China under Grants 61271301 and 61103119, and the Fundamental
Research Funds for the Central Universities under Grant K5051202052.

References

1. Krzysztof, F., Khalil, S.H.: Solving the resource-constrained project scheduling problem
by a variable neighbourhood search. European Journal of Operational Research 155(1),
402–413 (2004)

2. Cheng, Z., Yi, Z.: Scale-free fully informed particle swarm optimization algorithm. Infor-
mation Sciences 181(20), 4550–4568 (2011)

3. Oliver, H., Michael, S., Wolfgang, K.: Scale-Free Networks the Impact of Fat Tailed De-
gree Distribution on Diffusion and Communication Processes. Wirtschaftsinformatic,
267–275 (2006)

4. Barabási, A.L., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the
topology of the world wide web. Physica A 281(1-4), 69–77 (2000)

5. Egúluz, V.M., Chialvo, D.R., Cencchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain
functional networks. Phys. Rev. Lett. 94(1) (2005)

6. Jeong, H., Mason, S., Barabási, A.L., Oltvai, Z.N.: Lethality and centrality in protein net-
works. Nature 411, 41–42 (2001)

7. Khalil, S.H., Hongbo, Y., Krazysztof, F.: An Evolutionary Algorithm for Resource-
Constrained Project Scheduling. IEEE Transactions on Evolutionary Computation 6(5),
512–518 (2002)

8. Zhong, W., Liu, J., Xue, M., Jiao, L.: A multiagent genetic algorithm for global numerical
optimization. IEEE Trans. on Syst., Man, and Cybern., Part B 34(2), 1128–1141 (2004)

9. Liu, J., Zhong, W., Jiao, L.: A multiagent evolutionary algorithm for constraint satisfaction
problems. IEEE Trans. on Syst., Man, and Cybern., Part B 36(1), 54–73 (2006)

10. Liu, J., Zhong, W., Jiao, L.: Moving block sequence and organizational evolutionary algo-
rithm for general floorplanning with arbitrarily shaped rectilinear blocks. IEEE Trans. on
Evolutionary Computation 12(5), 630–646 (2008)

11. Jiao, L., Liu, J., Zhong, W.: An organizational coevolutionary algorithm for classification.
IEEE Trans. on Evolutionary Computation 10(1), 67–80 (2006)

 A Scale-Free Based Memetic Algorithm for RCPSP 209

12. Liu, J., Zhong, W., Jiao, L.: A multiagent evolutionary algorithm for combinatorial opti-
mization problems. IEEE Trans. on Systems, Man, and Cybernetics Part B 40(1), 229–240
(2010)

13. Pablo, M.: On evolution, search, optimization, genetic algorithms and martial arts towards
memetic algorithms Caltech concurrent computation program. C3P Report (1989)

14. Joshua, D. K., David, W.C.: M-PAES: A memetic algorithm for multiobjective optimiza-
tion. Evolutionary Computation 1(1), 325–332 (2000)

15. Ong, Y.S., Keane, A.J.: Met-lamarckian learning in memetic algorithms. IEEE Transaction
on Evolutionary Computation 8(2), 99–110 (2004)

16. Ong, Y.S., Lim, M.H., Zhu, N.: Classification of adaptive memetic algorithms: a compara-
tive study. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernet-
ics 36(1), 141–152 (2006)

17. Ong, Y.S., Lim, M., Chen, X.: Memetic computation-Past, present & future (Research
Frontier). IEEE Computational Intelligence Magazine 5(2), 24–31 (2010)

18. Rainer, K., Sonke, H.: Experimental investigation of heuristics for resource-constrained
project scheduling: An update. European Journal of Operational Research 174(1), 23–37
(2006)

19. Tormos, P., Lova, A.: An efficient multi-pass heuristic for project scheduling with con-
strained resources. International Journal of Production Research 41, 1071–1086 (2003)

20. Alcaraz, J., Maroto, C.: A robust genetic algorithm for resource allocation in project sche-
duling. Annals of Operations Research 102, 83–109 (2001)

21. Valls, V., Ballestin, F., Quintanilla, M.S.: Justification and RCPSP: A technique that pays.
European Journal of Operational Research 165, 375–386 (2005)

22. Blazewicz, J., Lenstra, J.K., Rinnooy, A.H.G.: Scheduling subject to resource constraints:
Classification and complexity. Discrete Appl. Maths. 5, 11–24 (1983)

23. Valls, V., Ballestin, F., Quintanilla, M.S.: A hybrid genetic algorithm for the resource-
constrained project scheduling problem. European Journal of Operational Research 185(2),
495–508 (2008)

24. Tormos, P., Lova, A.: A Competitive Heuristic Solution Technique for Resource-
Constrained Project Scheduling. Annals of Operations Research 102, 65–81 (2001)

25. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

26. Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general class of
resource-constrained project scheduling problems. Management Science 41(10),
1693–1703 (1995)

	A Scale-Free Based Memetic Algorithm for Resource-Constrained Project Scheduling Problems
	1 Introduction
	2 Scale-Free Based Memetic Algorithm for RCPSP
	2.1 RCPSPs
	2.2 Population Initializations with Scale-Free Structure
	2.3 Competition-Crossover Operator
	2.4 Mutation Operator and Local Search Operator
	2.5 Implementation of SFMA

	3 Experiments
	4 Conclusions
	References

