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Abstract Three quantum chemistry methods (B3LYP,

M05-2X and CBS-4B3*) have been used, in combination

with SMD and CPCM continuum solvent models, to

calculate the aqueous pKa values of common organic

compounds (aliphatic alcohols, carboxylic acids, amines,

phenols, benzoic acids and pyridines) by using an isodes-

mic reaction. Good precision is found for all the studied

functional groups, resulting mean absolute deviations of

0.5–1 pKa units (equivalent to the best results obtained with

thermodynamic cycles). It is worthy to note that no explicit

water molecules were needed with the isodesmic reaction.

In addition, the quality of the results is not strongly

dependent on the combination of quantum chemistry

method, solvent model and reference species. Therefore,

the isodesmic reaction could be successfully used when

dealing with gas-phase unstable species, with species that

undergo large conformational changes between gas-phase

and solution-phase or other difficult cases for the thermo-

dynamic cycles.

Keywords pKa calculation � Isodesmic reaction �
Continuum solvent model

1 Introduction

Great efforts have been devoted during the last years to

develop computational strategies for the accurate predic-

tion of pKa values [1].

The traditional approach in theoretical pKa calculations is

based on the use of thermodynamic cycles that combine gas-

phase deprotonation free energies (DGgas) and the solvation

energies (DGsolv) of the involved species. The use of such

cycles is due to the fact that it is not rigorously correct to

obtain the free energy of deprotonation in solution (DGsoln)

by calculating the free energies of the involved species

according to the rigid rotor-harmonic approximation in the

continuum solvent, as discussed previously in detail [2, 3]. In

fact, the rigorous calculation would require much more

costly simulation methods in which the solvent is explicitly

considered, together with a free energy calculation procedure.

The use of thermodynamic cycles shows problems for

those species that are gas-phase unstable or undergoes

large conformational changes between gas-phase and

solution-phase. However, it is possible to calculate the

approximate free energies of deprotonation in solution by

using the isodesmic reaction, since gas-phase energies are

not required for the pKa calculation (Scheme 1). Addi-

tionally, this reaction scheme, also known as relative pKa

calculation or proton exchange reaction, benefits from the

Scheme 1 Isodesmic reaction employed for the pKa calculation of

AHq. DGsoln stands for the free energy in solution of the acid–base

reaction. The global charge of the acid species and its conjugate base

are represented by q and q - 1, respectively. The charges of the

reference species and its conjugate base are represented by m and

m - 1, respectively
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absence of the proton free energy of solvation, which is a

potential source of error in the calculated free energies (2).

The pKa of the acid AH can be calculated from Eqs. 1–3

and the experimental pKa value of the reference species BH

DGsoln ¼ GsolnðBHmÞ þ GsolnðAq�1Þ � GsolnðAHqÞ
� GsolnðBm�1Þ ð1Þ

Gsoln ¼ Esoln þ Gnes þ DGcorr soln ð2Þ

pKa AHqð Þ ¼ DGsoln

2; 303RT
þ pKaðBHmÞ ð3Þ

As previously noted, it is not possible to calculate the

exact free energies in solution because the partition

functions of the involved species (AHq, BHm, Aq-1 and

Bm-1) are unknown. Our group [3] recently proposed to

calculate approximate free energies in solution under the

assumption that gas-phase vibrational partition functions of

the solutes as an approximation for the solution-phase and,

secondly, that rotational and translational contributions to

the free energies corresponding to conjugate acid and

base species are of similar magnitude so, according to

Eq. 1, they mostly cancel out. According to Eq. 2, the

approximate free energies of each species in solution

(Gsoln) are calculated as the sum of the potential energy of

the solute (Esoln) which includes the electric response of the

continuum solvent, all the non-electrostatic contributions

to the solute–solvent interaction (namely dispersion,

repulsion and cavitation energies) which are all inclu-

ded in the term Gnes, and the contribution to the free

energies from the vibrational motion of the nuclei at 298 K

(DGcorr_soln).

It should be noted that both solvation energies of neutral

species and gas-phase free energies (of neutral and charged

species) can be determined with an accuracy of 1 kcal/mol

[1], however, solvation energies of charged species calcu-

lated with continuum solvent models show, at best, average

errors of 4 kcal/mol [4, 5]. According to the isodesmic

reaction scheme, such errors should not be present in the

pKa calculation as solvation energies are not required. In

any case, a higher accuracy in the pKa calculation is

expected for the isodesmic reaction since a good cancel-

lation of errors is expected if both the reference species

(BHm) and the acid species (AHq) present the same electric

charge and similar structure.

So far the isodesmic reaction has mainly been used for

the calculation of enthalpies of formation [6] but, con-

cerning pKa calculations, it has been less used than the

thermodynamic cycles. Li et al. [7] reported that relative

instead of absolute pKa values are predicted with higher

precision when combining ab initio methods and contin-

uum solvent models for the study of methylimidazoles in

aqueous solution. A recent combined experimental and

theoretical study performed by Ruiz-López et al. [8] also

shows that remarkably low errors are obtained when using

the isodesmic reaction for diprotic species. Govender and

Cukrowski [9, 10] have employed this scheme, together

with PCM solvent model and UA0 cavities for the calcu-

lation of the successive dissociation constants of nitrilo-

propanoic and nitrilotriacetic acids, obtaining errors of

0.2–3 pKa units.

Our group [3] has recently employed the isodesmic

reaction (Scheme 1) to calculate the pKa of substituted

pyridines and carbon acids. The results obtained for pyri-

dines were equivalent to those of thermodynamic cycles

[11] but no explicit water molecules were needed to

increase the accuracy [3]. Concerning carbon acids, the

mean absolute deviation of 2 pKa units was also equivalent

to the best results obtained with thermodynamic cycles

[12, 13] with the advantage that the electric charge of the

reference species was not determinant for a good precision

[3]. We also reported the pKa values of amino acids with

very low errors (i.e., 0.22 and 0.19 pKa units for the dis-

sociation of carboxylic and amino groups, respectively)

which are one of the paradigmatic difficult cases for ther-

modynamic cycles as the major tautomers in solution-

phase and gas-phase are different [3].

The main objective in this work is to evaluate the

robustness of the isodesmic reaction in the calculation of

pKa values of common acid–base organic functionalities

and to compare such results with those calculated with

thermodynamic cycles previously reported in the literature.

Two different continuum solvent models were employed

(namely CPCM [14–16] and SMD [17, 18]) in combination

with three quantum chemistry methods, two common DFT

functionals (B3LYP [19] and M05-2X [20, 21]) and the

composite method CBS-4B3* [3, 22].

2 Methodology

The pKa values of aliphatic alcohols, carboxylic acids,

aliphatic amines, benzoic acids, phenols and pyridines cal-

culated with the isodesmic reaction (Scheme 1) according to

Eqs. 1–3 are displayed in Table 1.

The criterion followed to choose the reference species

BH was the similitude of chemical structure with the

studied species AH so; for alcohols, carboxylic acids and

amines, the reference species are, respectively, ethanol,

acetic acid and ethylamonium ion, while phenol, benzoic

acid and pyridinium ion were the references for phenols,

benzoic acids and pyridines, respectively.

Three quantum chemistry methods, specifically B3LYP

[19], M05-2X [20, 21] and CBS-4B3* [3, 22], have been

used to calculate the free energies of Eq. 2. In all cases, the

geometries were optimized and characterized as energy

minima by the absence of imaginary frequencies according
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to the 6-311??G(d,p) basis set. The CBS-4B3* composite

method is a simplification of the CBS-QB3 method

in which the CCSD(T) calculations and the energetic

corrections of spin contamination and empirical correc-

tions are suppressed [22]. This method benefits of lower

computational costs and provides as accurate deprotona-

tion free energies [22] and pKa values [3] as the original

CBS-QB3.

The solvent effects have been taken into account in all

geometry optimizations and also energy calculations by

using the CPCM model [13–15] with the UAKS cavities

[23] as implemented in Gaussian 03 [23] and the SMD

model [17, 18] as implemented in Gaussian 09 [24].

2.1 Results and discussion

Table 2 shows the mean absolute deviations (MAD)

between the experimental and calculated pKa values of

each functional group according to the combination of

solvent model (CPCM or SMD) and the quantum chemistry

method (B3LYP, M05-2X or CBS-4B3*).

Several important points can be extracted after analyz-

ing the values of Table 2. First of all, it should be noted

that no combination of quantum chemistry method and

continuum solvent model stand out by providing much

lower errors than the other combinations. In fact, the

highest difference between MAD values is 0.67 pKa units

for the CPCM/M05-2X and SMD/M05-2X calculations of

aliphatic alcohols.

Concerning all the organic functionalities, the MAD

values are lower than 1 pKa units in all cases with the

exception of the pKa values predicted with SMD for

the aliphatic alcohols, which show MAD values lower

than 1.3 pKa units. The best results correspond to the

primary amines and benzoic acids with MAD values

lower than 0.35 (Table T3 of Supporting Information)

and 0.5 (Table 2) pKa units, respectively, for the SMD

calculations.

Table 1 Pyridines, aliphatic alcohols, carboxylic acids, amines, phenols and benzoic acids studied in this work

Pyridines Alcohols Carboxylic acids Amines Phenols Benzoic acids

2-Methylpyridine Methanol Chloroacetic Methylamine p-Cyanophenol o-Chlorobenzoic

3-Methylpyridine 2-Chloroethanol Formic Propylamine o-Chlorophenol m-Chlorobenzoic

4-Methylpyridine Propanol 3-Chlorobutanoic i-Propylamine m-Cyanophenol p-Chlorobenzoic

2,3-Dimethylpyridine i-Propanol Benzoic Butylamine m-Chlorophenol p-Methylbenzoic

2,4-Dimethylpyridine 2-Butanol 4-Chlorobutanoic 2-Butylamine m-Fluorophenol m-Methylbenzoic

3-Bromopyridine tert-butanol Hexanoic tert-Butylamine p-Chlorophenol p-Fluorobenzoic

3-Fluoropyridine Propanoic Trimethylamine p-Fluorophenol

3-Cyanopyridine Pentanoic Dimethylamine m-Methylphenol

3-Chloropyridine Trimethylacetic p-Methylphenol

o-Methylphenol

Table 2 Mean absolute deviations (MAD), standard deviation (SD)

and maximum absolute deviation (AD max) of aqueous pKa values

calculated using different methods (CBS-4B3*/6-311??G(d,p),

B3LYP/6-311??G(d,p) and M05-2X/6-311??G(d,p)), and solvent

models (CPCM and SMD)

CPCM SMD

CBS-

4B3*

B3LYP M05-

2X

CBS-

4B3*

B3LYP M05-

2X

Pyridines

MAD 0.57 0.75 0.83 0.62 0.80 0.78

SD 0.48 0.74 0.55 0.36 0.39 0.44

AD

max

1.44 2.17 1.87 1.29 1.34 1.55

Alcohols

MAD 0.85 0.68 0.62 1.20 1.01 1.29

SD 0.49 0.46 0.51 0.96 0.75 0.97

AD

max

1.54 1.19 1.22 2.84 2.27 2.85

Carboxylic acids

MAD 0.78 0.98 0.79 0.57 0.64 0.67

SD 0.42 0.36 0.47 0.36 0.54 0.59

AD

max

1.32 1.44 1.51 1.13 1.54 1.89

Amines

MAD 0.87 0.72 0.90 0.24 0.35 0.27

SD 0.84 0.74 1.00 0.19 0.25 0.20

AD

max

2.51 2.20 2.89 0.63 0.83 0.71

Phenols

MAD 0.90 1.08 1.02 0.70 0.89 0.87

SD 0.57 0.68 0.68 0.48 0.57 0.56

AD

max

2.16 2.71 2.57 1.66 2.18 2.10

Benzoic acids

MAD 0.45 0.57 0.41 0.41 0.50 0.34

SD 0.29 0.41 0.30 0.35 0.48 0.29

AD

max

0.95 1.36 0.82 1.05 1.39 0.69
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Considering the MAD values obtained with both CPCM

and SMD solvent models, the best results correspond to the

SMD model for carboxylic acids, amines, phenols and

benzoic acids independently of the quantum chemistry

method, whereas CPCM provides lower MAD values for

the aliphatic alcohols. Finally, the results of both solvent

models for pyridines and primary amines (Table T3 of

Supporting Information) show no significant differences.

Regarding the quantum chemistry method, the best

results are provided by the CBS-4B3* method for 7 out of

12 combinations, specifically for pyridines, carboxylic

acids and phenols with CPCM (MAD values of 0.57, 0.78

and 0.90 pKa units, respectively) and pyridines, carboxylic

acids, amines and phenols with SMD (MAD values of 0.62,

0.57, 0.24 and 0.70 pKa units, respectively). The M05-2X

gives the best results for the alcohols and benzoic acids

with CPCM and also benzoic acids with SMD, while the

B3LYP functional gives the best results for the amines with

CPCM and alcohols with SMD (Table 2).

As noted, the pKa values obtained with the isodesmic

reaction exhibit low errors for all the functionalities,

independently of the combination of method and solvent

model so, we considered important to compare our results

with previously reported theoretical pKa values calculated

with thermodynamic cycles.

Theoretical pKa values of aliphatic alcohols have been

reported in several studies [25–28] among which stand out

the one of Pliego and Riveros [25], which reports the pKa

values of methanol and ethanol with MAD values of 0.5

pKa units with the IPCM model and including 2–3 explicit

water molecules. Namazian and Heidary [26] obtained the

pKa of methanol, ethanol, propanol and isopropanol with

maximum errors lower than 0.5 pKa units by using the

CPCM model to calculate the solvation energies. In close

agreement with such studies, MAD values of 0.62 pKa

units are obtained for the CPCM/M05-2X calculations

when using the isodesmic reaction (Table 2).

Carboxylic acids have been also extensively studied in

theoretical pKa calculations [28–38]. Namazian and Halvani

[32] calculated the pKa of 66 acids with the PCM model and

B3LYP functional and obtained average errors of 0.5 pKa

units. In another study, Toth et al. [31] calculated the

pKa values of five carboxylic acids at the CPCM/HF/

6-31?G(d)//HF/6-31G(d) level with average errors of

0.5 pKa units. Such average errors are similar to those

obtained in this study with the SMD solvent model (Table 2).

The pKa values of amines were calculated with good

accuracy [39–43]. For example, average errors of 0.46 pKa

units calculated with the PCM model at the B3LYP/6-

31?G*//MP2/6-31?G* level including an explicit water

molecule were reported in the work of Behjatmanesh-

Ardakani et al. [42]. In the present work, an accuracy of

*0.3 pKa units is found for the CPCM model when

considering just the primary amines (Table T3 of Sup-

porting Information), although higher errors are obtained

when including secondary and tertiary amines (Table 2).

Nevertheless, the SMD model provides, in all cases, MAD

errors lower to 0.3 pKa units (Table 2).

Scmidt am Busch and Knapp [37] calculated the pKa of

benzoic, p-methylbenzoic, m-methylbenzoic and p-chloro-

benzoic acids with MAD values of 0.5 pKa units. As seen

in Table 2, the errors obtained from the isodesmic reaction

are even lower, particularly those of SMD/M05-2X cal-

culations (i.e., 0.34 pKa units).

The theoretical prediction of pKa values of substituted

phenols has also been reported in different studies

[28, 37, 44, 45]. Liptak et al. [44] reported RMSD errors

between 0.4 and 3.9 pKa units depending on the calculated

solvation energies. As can be seen in Table 2, in our case, the

MAD values are slightly over 0.5 pKa units and under 1 pKa

unit for most of the method and solvent model combinations.

Concerning pyridines, mean deviations lower than 1 pKa

unit were reported [11, 46–50]. In a previous work of our

group [11], we evaluated the accuracy of different ther-

modynamic cycles, the importance of explicit water mole-

cules and the influence of using gas-phase or solution-phase

optimized geometries when calculating the solvation ener-

gies with the CPCM model. In the best cases, mean errors of

0.5 pKa units were reported when using a single explicit

water molecule [11]. The results provided by the isodesmic

reaction (Table 2) show the same precision than the best

obtained with thermodynamic cycles (i.e., MAD values

between 0.57 and 0.83 pKa units) without requiring explicit

solvent molecules.

The lowest MAD values obtained with each solvent

model, together with other MAD values of previous works

that used thermodynamic cycles are depicted in Fig. 1. As

can be seen, the accuracy of the isodesmic reaction pre-

dicted pKa values is of the same order of those predicted

with thermodynamic cycles for pyridines, benzoic acids

and carboxylic acids for both CPCM and SMD models.

Concerning amines, the SMD/CBS-4B3* calculations

outperform the errors of thermodynamic cycles. Besides, in

the worst-case scenario, the difference between MAD

values of isodesmic reaction and thermodynamic cycles is

lower than 0.6 pKa units.

We have chosen the carboxylic acids and amines to

evaluate the influence of the reference species on the cal-

culated pKa values. Tables 3 and 4 show the MAD values

obtained when using different references for carboxylic

acids and amines, respectively. The resulting MAD values

for carboxylic acids vary between 0.5 and 1.0 pKa units

unless chloroacetic and formic acids are used as reference

species. Regarding the amines, the MAD values fluctuate

between 0.28 and 0.78 pKa units regardless of the reference

is a primary, secondary or tertiary amine.
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Rebollar-Zepeda and Galano [51] had recently reported

a comprehensive assessment of reaction schemes and

density functionals for the pKa calculation of amines. Their

evaluation of the isodesmic reaction points out that the

precision of the calculated pKa values is strongly dependent

on the reference species [51]. It is well known that the

acidity of amines is significantly influenced by the solvent

accessibility to the amino group. Since continuum solvent

models do not reproduce the solvent structure around the

solute, it is not possible to model the steric effects on the

solvation of the amino group caused by its substituents.

Consequently, not only the electrostatic characteristics

have to be taken into account for the selection of the ref-

erence species but also the steric behavior of the substitu-

ents should be similar to the studied amine species.

However, it is not trivial to model such effects by the

introduction of explicit water molecules in the calculation

because the dynamic contribution of the substituents to the

solvation structure would require statistical treatment by

monte carlo or molecular dynamics simulations.

To get a deeper insight into the influence of the refer-

ence species, the pKa of some functional groups has been

calculated by using a structurally different species

(Table 5). Specifically, the pKa of benzoic acids, phenols

and pyridines were calculated by considering acetic acid,

ethanol and ethylamine, respectively, as reference species.

In the first case, MAD values of 0.5 pKa units result when

using acetic acid which is similar to the precision obtained

if the reference species were the benzoic acid. However,

the errors in the pKa values of phenols are significantly

larger (i.e., MAD values between 4.0 and 6.5 pKa units)

when using ethanol as reference species. Such different

behavior for benzoic acids and phenols can be attributed to
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Fig. 1 Comparison between the

best mean absolute deviations

(MAD) obtained with CPCM

and SMD solvent models and

MAD values reported in

previous studies that used

thermodynamic cycles

Table 3 Effect of the reference species on the accuracy of the cal-

culated pKa values of carboxylic acids expressed as mean absolute

deviations (MAD)

Reference CPCM SMD

CBS-

4B3*

B3LYP M05-

2X

CBS-

4B3*

B3LYP M05-

2X

Acetic ac. 0.78 0.98 0.79 0.57 0.64 0.67

Chloroacetic ac. 1.45 1.72 1.50 0.84 1.42 1.70

Formic ac. 1.11 1.51 1.13 1.02 1.45 1.17

3-Chlorobutanoic

ac.

0.74 1.25 0.80 0.57 0.66 0.79

Benzoic ac. 0.86 0.89 0.86 0.78 0.64 0.88

4-Chlorobutanoic

ac.

0.74 0.89 0.79 0.58 0.64 0.67

Hexanoic ac. 0.88 1.09 0.98 0.69 0.82 0.72

Propanoic ac. 0.84 1.00 0.89 0.91 0.96 0.82

Pentanoic ac. 0.88 1.06 0.92 0.66 0.73 0.74

Trimethylacetic

ac.

1.07 1.25 1.31 0.87 1.01 0.81
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the delocalization of the negative charge to the p-system in

the phenoxyde species, which causes significant differ-

ences in the electrostatic interactions of the deprotonated

oxygens of phenoxydes and aliphatic alcoxydes. However,

delocalization of the negative charge in benzoate anions is

low so the charge distribution of carboxylate groups in

benzoates is similar to that of aliphatic carboxylates. When

using ethylamine as reference, the MAD values in the pKa

of pyridines increase up to 2.8 pKa units for the CPCM

calculations but remain closer to the MAD values when

using pyridine as reference for the SMD calculations

(Table 5). Therefore, it is worthy to note that the chemical

structure should not be the only criterion to consider when

choosing the reference species and that the cancellation of

errors due to similarities in the solute–continuum interac-

tions is not always trivial.

As a suggestion of one of the referees, we considered the

inclusion of the rotational and translational contributions,

calculated from gas-phase partition functions, to the free

energies in solution. Such contributions had a minor effect

of 0.01 to 0.1 pKa units for all the studied functional

groups. Only for two species, methanol and methylamine,

these energies had higher and significant contribution to the

pKa values (i.e., 0.54 and 0.43 pKa units, respectively).

However, it has to be noted that this result only stresses the

fact that rotational and translational free energies of the

conjugate acid–base pairs calculated with gas-phase parti-

tion functions are very similar and, therefore, largely cancel

out in Eq. 1. In addition, this result does not entail the actual

rotational and translational free energies of the conjugate

acid–base species to be necessarily similar.

In summary, it has been shown that the isodesmic

reaction scheme provides reliable results in the pKa calcu-

lation of common organic functionalities, with pKa values

comprised between 1 and 19. The accuracy of the isodesmic

reaction predicted pKa values with combinations of com-

mon quantum chemistry methods and continuum solvent

models is similar to that provided by thermodynamic

cycles. Besides, no explicit water molecules are required to

obtain a good accuracy. Although the reference species

influences the precision of the calculated pKa values, the

cancellation of errors in the isodesmic reaction allows more

flexible criteria in the choice of the reference species. So,

taken everything into account, it is worth to consider

this procedure for theoretical pKa predictions, especially

for those cases where the thermodynamic cycles show

problems related to gas-phase calculations.

Acknowledgments This work was funded by the Spanish Govern-

ment in the framework of Project CTQ2008-02207/BQU. One of us

(R.C.) wishes to acknowledge a fellowship from the Spanish MEC

within the FPU program. The authors are grateful to ‘‘Centro de

Cálculo de Superomputación de Galicia’’ (CESGA) and to ‘‘Centre de
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