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Abstract Using strong laser pulses, we show that it is

possible to control the spin state in a model system

based on a two-electron extension with spin couplings of

the Shin–Metiu Hamiltonian, truncated to account for the

lowest electronic energy states. We consider two differ-

ent models depending on the number of electronic states

included in the calculation. The initial electronic state

determines when the spin state is stable or not in the

absence of an external field. In the latter case, by non-

resonant dynamic Stark effect, we show that it is pos-

sible to avoid spin transitions with strong fields, using

different pulse frequencies. This effective spin locking

requires minimizing absorption to excited singlets as well

as decoupling the singlet and triplet electronic states. In

the first case, we show that it is possible to force the

spin transition by a combination of two pulses, a chirped

pulse and a transform limited pulse, where the time-

delay must be chosen to maximize spin switching on a

different electronic state. Our results show that forcing

the spin switching is a more difficult goal than avoiding

it and that this goal becomes highly restricted when

many electronic pathways or multi-photon processes are

available.

Keywords Dynamic Stark effect � Wave-packet

dynamics � Quantum control

1 Introduction

Laser control of quantum processes is an active arena

particularly in the application of femtosecond laser pulses

to quantum-state excitation and unimolecular reactions

[1–3]. Successful laser control experiments have been

reported in an increasing variety of physical systems,

including complex chemical and biological processes [1, 2].

Addressing the dynamics of complex systems, the

mechanism of the optical control is often understood from

the spectral features of the pulses [4] (albeit with important

caveats [5]), implying correlations between the pulse fre-

quencies and the Hamiltonian resonances, with relative

phases of the spectrum adding important dynamical infor-

mation concerning the cross-talk of the resonances [6].

However, this picture is no longer valid when strong fields

are used. Nonresonant effects may then completely shift or

distort the Hamiltonian spectrum, which is no longer

independent of the pulse spectrum [7–13]. It is possible to

base the control mechanism solely on the effects of the

nonresonant dynamic Stark effect (NRDSE) [14–18]. This

strategy is particularly useful when the aim of the control

problem is to ‘‘disconnect’’ an undesired transition [16, 17].

The NRDSE is behind many interesting control scenarios

involving molecular alignment [19–26], the control of

photodissociation reactions [14, 15, 27–29], or the control
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of singlet–triplet transitions [16–18], which is also the

motivation of this work.

The spin–orbit coupling is a relativistic effect that

mainly affects the Hamiltonian of systems with heavy

nuclei [30]. In molecules, the spin–orbit transition is one of

the main sources that causes the breakdown of the Born–

Oppenheimer approximation in the dynamics of excited

states, inducing intersystem crossing (ISC) and altering the

spectroscopy and photodissociation of molecules and the

relaxation rates in complex biological systems [31, 32].

Although in not heavy atoms, the mass is often invoked as

a reason to neglect the ISC processes, simulations of the

dynamics of polyatomic molecules with light atoms have

shown that the effect of ISC must be taken into account in

many occasions [33–35]. In solids, the spin coupling

between different states can be used to create states of

mixed multiplicity and to prepare optical spin switches

[36–39]. These are important in spintronics [40] and may

have potential application as quantum information storage

or quantum information processing devices [41].

Rather than using a realistic Hamiltonian for a particular

system, in this work we use the very generic Shin–Metiu

(SM) Hamiltonian that models charge transfer processes in

some matrix environments [42–47]. The original SM

model is conveniently extended to include two electron

processes with singlet–triplet couplings [48, 49]. This

extended Shin–Metiu (ESM) model is particularly inter-

esting because one can treat electron and nuclear processes

at the same level, without invoking the Born–Oppenheimer

approximation. Recently, we have shown that in the

dynamics of the ESM with strong fields, ionization is

important and it is in fact the dominant process [49]. In this

work, however, we neglect ionization and use the adiabatic

states (electronic potential curves) obtained from the

electronic Hamiltonian of the ESM in the Born–Oppen-

heimer approximation to simulate the dynamics of the

nuclear coordinates under the influence of laser pulses and

singlet–triplet couplings. For this reason, in Sect. 2 we

study the ESM and give the different electronic potentials

and couplings. We also show the spin-coupling dynamics

of the system starting from different initial states.

The goal of the study is to survey the extent to which

optical control of the singlet–triplet transfer is possible,

either by adiabatically ‘‘freezing’’ the spin populations by

means of a laser, such that the rate of spin transfer is

substantially reduced, or by forcing the spin transition

when this is negligible. The control of these processes is

based either on a pump–dump pulse sequence or on the

NRDSE scheme, whose principles are briefly reviewed for

the system of study in Sect. 3. Preliminary results have

shown that the NRDSE scheme can induce spin freezing,

although ionization takes over the system in\50 fs. In this

work, we study in detail the processes of both spin locking

and spin switching. Two models of different complexity

(involving different number of electronic states and cou-

plings) are introduced. In Sect. 4, we analyze spin locking

for both models, outlining the different roles of the pulse

parameters, and in Sect. 5, we study the more difficult

process of spin-state switching. Finally, Sect. 6 is the

summary and conclusions.

2 Hamiltonian model and field-free dynamics

The electronic potentials and dipole couplings are obtained

from the Born–Oppenheimer limit of an extended version

of the Shin–Metiu model (ESM), including spin cou-

plings. The ESM consists of an ion (coordinate R) and

two electrons (coordinates x, y) confined to move in a

single dimension, interacting with each other and two

additional fixed ions through screened Coulomb interac-

tions. Because of exchange symmetry, the spatial wave

function is either symmetric (wS(x, y, R, t), singlet (S)) or

anti-symmetric (wT(x, y, R, t), triplet (T)) with respect to

electron exchange. Details are given in ref. [49].

The spin uncoupled Born–Oppenheimer potential

energy curves and electronic wave functions are obtained

by imaginary time propagation of an electronic wave

function of singlet/triplet symmetry wM(x, y, t;R)

(M = S, T) at fixed nuclear position R

wMðx; y; t;RÞ ¼ e�HeltwMðx; y; t ¼ 0;RÞ ð1Þ
with the electronic Hamiltonian operator

Helðx; y;RÞ ¼ � 1

2

o2

ox2
� 1

2

o2

oy2
þ Vðx; y;RÞ ð2Þ

for different values of R. In the absence of spin coupling in

the electronic Hamiltonian, the wave function symmetry is

conserved. For long times, t, wM(x, y, t;R) converges to the

ground state uM
1 ðx; y;RÞ of the respective symmetry and the

norm of the wave function decreases as NðtÞ ¼ e�2V1ðRÞt:
After the ground state is determined, the next higher

eigenstate uM
2 ðx; y;RÞ is obtained by another imaginary

time propagation starting from an initial state where the

ground state is projected out:

~wMðx; y; t ¼ 0;RÞ ¼ wMðx; y; t
¼ 0;RÞ � wMðx; y; t ¼ 0;RÞ� 		uM

1 ðx; y;RÞ



� uM
1 ðx; y;RÞ: ð3Þ

Higher eigenstates are calculated successively using the

same scheme. In this way, the basis of Born–Oppenheimer

electronic states fuM
j ðx; y;RÞg and their respective

potential curves Vj
M(R) are obtained. Dipole and spin

couplings are evaluated with respect to these electronic

basis as well.
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To monitor spin transitions, we introduce in a heuristic

way a spin-coupling term of the form

Jðx; yÞ ¼ kðx� yÞ; ð4Þ
where the coupling strength-parameter is chosen as k ¼
1:028 
 10�3 eV/Å. For simplicity, we neglect the possible

dependence of the coupling on the nuclear coordinate R.

J(x, y) creates new potential energy terms that couple (and

mix) the Born–Oppenheimer electronic potentials. They

are obtained from

VSn;TmðRÞ ¼
Z

dx dyuS
nðx; y;RÞJðx; yÞuT

mðx; y;RÞ: ð5Þ

where uS
n and uT

m denote the electronic eigenfunctions of

singlet and triplet symmetry, respectively. To monitor

laser-driven dynamics, we calculate the transition dipole

moments

lMn;Mm
ðRÞ ¼

Z
dx dyuM

n ðx; y;RÞð�x� yÞuM
m ðx; y;RÞ:

ð6Þ
where M = S or T.

In Fig. 1, we show the first electronic singlet and triplet

potentials obtained from the ESM Hamiltonian for a par-

ticular choice of parameters (screening parameters

Rc = Re = Rf = 1.5 Å and charge numbers Z1 = Z2 = Z =

1 for the ESM Hamiltonian, see ref. [49]), neglecting the

spin-coupling terms. The general feature of these potentials

is that the singlet and triplet states come on pairs, showing

either a double-well structure or a single equilibrium

geometry at R = 0. Because the two electrons tend to be at

opposite sides of the central ion (that is, each facing a

different end-ion), the exchange symmetry of the electronic

wave function does not lead to substantial energy differ-

ences between the singlet and the triplet wave functions.

Thus, the singlet–triplet transfer due to the VSj;Tj terms (for

j = 1, 3, etc.) is expected to be large. However, V2
S and V2

T

(V5
S and V5

T as well, for higher energies) have a different

structure near the equilibrium geometry and the spin-cou-

pling mechanism is not efficient for any reasonable value

of k.

In addition to the spin coupling, nonadiabatic coupling

terms could have been included. The energy separation

between the singlet curves (and between the triplet curves

as well) makes internal conversion processes very unlikely,

as shown in the numerical results obtained solving the full

vibronic Hamiltonian [49]. Thus, we neglect their contri-

bution in the present work.

In Fig. 2, we show the population dynamics starting

either from V1
S or from V2

S in the absence of any external

field. We solve the time-dependent Schrödinger equation

for the nuclear motion in two electronic states (Sj and Tj,

for j either 1 or 2),

i
o
ot

wS
j

wT
j

 !
¼ � 1

2m

d2

dR2

wS
j

wT
j

 !

þ VS
j ðRÞ VSj;TjðRÞ

VSj;TjðRÞ VT
j ðRÞ

� �
wS
j

wT
j

 !
ð7Þ

using the split-operator with fast Fourier transform tech-

nique. In Eq. (7), m is the mass of a proton.

For the choice of the coupling parameter k, we observe

full singlet–triplet switching in a period T* 120 fs starting

in V1
S, and practically no triplet contamination starting from

V2
S (the maximum population in T2 is 3 
 10�5). The goal of

this work is to design optical processes to avoid the spin

-4 -2 0 2 4

R (Å)

3.5

4

4.5

5

5.5

6

6.5

E
 (

eV
)

ω(S1→S2)ω(T1→T2)

Fig. 1 Potential curves for the lowest three electronic states with

singlet (M = S, solid lines) and triplet (M = T, dashed lines)
symmetries. Notice that T1 and T3 practically coincide with S1 and

S3, while S2 and T2 have different equilibrium geometries. Also

shown in the figure are the frequencies for the Franck–Condon

resonant transition between S1 ! S2 and T1 ! T2
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Fig. 2 Singlet triplet population transfer in the absence of an external

field. In solid lines, we show the population of S1 and T1 when the

dynamics starts in S1. In dashed line, we show the population of S2

when the dynamics starts from this excited state. In this case, the

population in T2 remains practically zero and it is not shown
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dynamics from V1
S (that is, to induce spin locking) and to

force it starting fromV2
S (that is, to induce spin switching). To

that end, we will use the NRDSE or a pump–dump scheme.

3 The NRDSE scheme

In order to understand the physical mechanism underlying

the control of the spin coupling via the NRDSE, it is enough

to consider the simplest polarizable two-level system with

one singlet (S) and one triplet (T) state, coupled via VST,

whose energy can be Stark shifted by a nonresonant elec-

tromagnetic field with envelope EðtÞ [50]. Suppose that for a

given field frequency, the dynamic polarizabilities for the

singlet and triplet states are aj(x) (j = S, T, we will often

omit the frequency dependence in the following). Then

choosing the field-free singlet energy as the zero point of

energy, the effective Hamiltonian for the system is

H ¼ �aSEðtÞ2=2 VST

VST Dð0Þ � aTEðtÞ2=2

� �
ð8Þ

where Dð0Þ is the energy difference between the states in

the absence of the field. One can choose an instantaneous

zero point of energy that includes the Stark-shift

contribution to the singlet energy, making the Hamiltonian

H ¼ 0 VST

VST DðEÞ
� �

ð9Þ

where DðEÞ ¼ Dð0Þ � ðaT � aSÞE2ðtÞ=2: The Rabi formula

can then be used to predict the spin-coupling dynamics.

Suppose the system is initially in the singlet state,

assuming for simplicity a constant envelope E, the

population in the triplet will be

PT ¼ VST

Xe

� �2

sin2 Xet ð10Þ

where Xe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
ST þ DðEÞ2

q
: For instance, if Dð0Þ � jVST j

(as in the ESM model, starting in V1
S where Dð0Þ ¼ 0),

substantial spin transfer will occur at sST = p / 2VST. This

spin-mixing dynamics can be halted while a laser pulse acts

if DðEÞ � VST . Conversely, if Dð0Þ � VST (as in the ESM

starting in V2
S) full population transfer can be induced by

making DðEÞ ¼ 0 and timing the pulse duration exactly as

se ¼ p=2Xe. Thus, a laser-controlled spin switch can be

created whenever the dynamic polarizability of the singlet

state is different from that of the triplet state, aS = aT.

Moreover, the dynamic polarizabilities depend on the pulse

frequency x as well. Additionally, the two-level theory can

be used to propose alternative (more robust) quantum

control scenarios [50].

The extension of the effective 2-level Hamiltonian to the

nuclear Hamiltonian in the Born–Oppenheimer

approximation is straightforward. Neglecting population

absorption one can obtain [51]

H¼� 1

2m

d2

dR2
I

þ VS
1 ðRÞ�aSðR;xÞEðtÞ2=2 VS1;T1

ðRÞ
VS1;T1

ðRÞ VT
1 ðRÞ�aTðR;xÞEðtÞ2=2

� �
ð11Þ

Since VS1;T1
ðRÞ is almost constant (and small) around the

equilibrium geometries of the V1
S potential and V1

S(R) &
V1
T(R), in the absence of the field, the population dynamics

is practically that of a two-level system, where the singlet–

triplet population transfer does not lead to wave-packet

dynamics. This prediction explains the excellent agreement

between the population dynamics in Fig. 2 and the result of

applying the Rabi formula. For strong fields, however,

Eq. (11) does not give quantitative results. Firstly, because

it is difficult to evaluate the dynamic polarizabilities

aj(R, x), and secondly, because multi-photon absorption to

excited states usually cannot be neglected. Therefore, in the

following results, we solve the time-dependent Schrödinger

equation including different sets of electronic states.

Within the Born–Oppenheimer approximation, the

nuclear dynamics Hamiltonian in the presence of the con-

trol field �cðtÞ; is

Heff ¼� 1

2m

d2

dR2
I

þ

VS
1 �lS1;S2

�cðtÞ VS1;T1
VS1;T2

�lS1;S2
�cðtÞ VS

2 VS2;T1
VS2;T2

VT1;S1
VT1;S2

VT
1 �lT1;T2

�cðtÞ
VT2;S1

VT2;S2
�lT1;T2

�cðtÞ VT
2

0BBB@
1CCCA
ð12Þ

where I is the 4 9 4 unit matrix. In Eq. (12), we have

restricted the Born–Oppenheimer expansion to the minimal

symmetric set (MSS) of electronic states that can represent

the dynamics of the system under the influence of an

external field that controls the singlet–triplet transition. In

the numerical calculations, we use ‘‘square’’ laser pulses

with fast ramps of sin2ðpðt � t0Þ=ssÞ form. The switching

on/off time is set to ss = 25 fs.

The extension of the model to include a more complete

set of electronic states is straightforward. In addition to the

MSS, we have considered a model including the 6 lowest

singlet and triplet states (LSS). These 12 Born–Oppenhei-

mer states span the energy range of any 3-photon process

starting in S1 for all laser frequencies used in this work. It

should be noted though that the ESM model favors fast

multi-photon excitation from the initial state to the ioni-

zation continuum [49]. The ionization process is not con-

sidered in this work. However, as pointed out in [49], the

ionization process does not affect considerably the spin
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dynamics and some observables such as the averaged spin

angular momentum of the system, hint that the controlled

process is still acting on the small population surviving

ionization.

4 Spin-state locking

4.1 Dynamics using the MSS model

The results with the MSS model can be used as proof-of-

principles for the optical control of the singlet–triplet

transition. The initial state is the ground vibrational

eigenstate of S1, which is an even function with maximum

probability on both potential wells. As an example, in

Fig. 3, we show the population dynamics in the four

electronic states using a single control pulse �c with dif-

ferent parameters that give best results over different fre-

quency intervals. The overall duration of the pulse is set to

200 fs to display more clearly the effect of spin locking.

We have found robust solutions in the space of param-

eters for a broad range of peak intensities and frequencies.

Although strong pulses are needed to overcome the small

transition dipole, the results are not very sensitive to the

peak intensity. In general, for larger peak amplitude �0 the

population is more evenly spread between the singlet

potentials with smaller excitation of the triplet states.

The frequency must be chosen detuned from the S1 !
S2 resonance (�hxðS1 ! S2Þ � 1 eV), defined in the initial

Franck–Condon region, to avoid absorption to a different

state. In the example of Fig. 3a, �hx ¼ 1:68 eV is slightly

above the resonance between T1 and T2

(�hxðT1 ! T2Þ � 1:6 eV) and thus clearly blue shifted with

respect to xðS1 ! S2Þ. Therefore, we expect a larger

positive Stark-shift on V1
T than in V1

S, allowing the effective

decoupling of these potentials with �0 ¼ 0:017 a.u. or lar-

ger (implying a peak intensity I0 of 10.1 TW/cm2).

Other frequency intervals can be chosen: If x is between

xðS1 ! S2Þ and xðT1 ! T2Þ the dynamic Stark-shift

should be positive in V2
S but negative in V1

T. Weaker fields

could then decouple the electronic states. However, it is

more difficult to avoid populating the V2
S potential. For the

results in Fig. 3b, we use �hx ¼ 1:39 eV and the same peak

intensity (I0 = 10.1 TW/cm2).

With x\ðxðS1 ! S2Þ;xðT1 ! T2ÞÞ both V2
S and V1

T

experience a negative Stark-shift (larger in V1
S) that give

similar results as those shown in case (a). However, multi-

photon excitation to S2 becomes resonant and as a result,

more population is excited to S2. The different shapes of

the potentials induce nuclear motion that shows up in some

Rabi oscillations between the electronic populations in S1

and S2. In Fig. 3c, for �hx ¼ 0:84 eV, we have slightly

reduced the pulse intensity to I0 = 8.95 TW/cm2.

4.2 Dynamics in the LSS model

When considering a larger set of electronic states, the

control of the process becomes more complex. On one

hand, the different electronic states normally add to the

polarizabilities, increasing the effect of the Stark effect:

weaker pulses could in principle be used. On the other

hand, one has to care about many possible resonances

(xðS1 ! SjÞ;xðSj ! Sk)) that lead to absorption and

multi-photon ladder climbing of electronic states. Given

the intensities required to decouple the singlet–triplet

transition, the second effect is clearly more dominant than

the first one, making the spin-state locking quite more

challenging in the LSS model than in the MSS model.

In Fig. 4, we analyze the time-averaged populations in

the triplets and excited singlets (all except S1) as a function

of the pulse frequency and intensity

hPTi ¼ 1

sl

X6

j¼1

Zsl
0

wT
j ðtÞjwT

j ðtÞ
D E

dt

hPESi ¼ 1

sl

X6

j[ 1

Zsl
0

wS
j ðtÞjwS

j ðtÞ
D E

dt

ð13Þ
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Fig. 3 Electronic states population dynamics in the MSS model with

different pulse frequencies and intensities: a with �hx ¼ 1:63 eV and

I0 = 10.1 TW/cm2, b with �hx ¼ 1:41 eV and I0 = 10.1 TW/cm2 and

c with �hx ¼ 0:87 eV and I0 = 8.95 TW/cm2
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where sl = 200 fs is the pulse duration. The goal of

decoupling the S1 ! T1 transition involves minimizing

hPTi (avoiding the singlet–triplet transition) and hPESi
(avoiding the absorption to other electronic states).

Whereas with stronger pulses, hPTi is small for all the

range of frequencies explored in this work, hPESi is par-

ticularly large at lower frequencies, obviously around

xðS1 ! S2Þ, but also very much until x[xðT1 ! T2Þ.
Disregarding vibrational excitation, the LSS model

includes all singlet states that can be accessed by three

photons at �hx
 1:7 eV.

In Fig. 5, we show the population dynamics for three

different cases. For the three frequency windows

x\xðS1 ! S2Þ (smaller), xðS1 ! S2Þ�x�xðT1 ! T2Þ
(intermediate) and x[xðT1 ! T2Þ (larger), we have

chosen x and �0 such that both hPTi and hPESi are mini-

mized. This gives �hx ¼ 0:87 eV, I0 = 7.9 TW/

cm2; �hx ¼ 1:41 eV, I0 = 5.0 TW/cm2; and �hx ¼ 1:63 eV,

I0 = 10.1 TW/cm2, respectively.

In general, for all frequencies below the S1 ! S2 reso-

nance at the pulse intensities needed for spin locking, there

is always substantial absorption to excited singlet states.

For the best results shown in Fig. 5, the population in the

singlets is mostly steady at 0.9 (although there is some slow

decay into the triplets) but the population is widely spread

between S1, S2 and S3. The ladder climbing excitation

mechanism is very efficient in the ESM model.

As discussed in Sect. 3, the NRDSE mechanism is more

efficient using intermediate frequencies. Thus, spin locking

can be achieved with less intense pulses. To minimize

absorption to S3, the frequency must be smaller than

1.42 eV. However, 3-photon excitation to S5 cannot be

avoided. In the best results shown in Fig. 5, 90 % of the

population is kept on the singlet states, but there is a clear

beating between population in S1 and S5. Within the con-

straints of the LSS model, best results are obtained for

larger frequencies. Here, part of the population goes to S6.

In Fig. 6, we show the evolution of the nuclear proba-

bility density of all the singlet states for smaller and

intermediate frequencies (the results for larger frequencies

are very similar to those for intermediate frequencies). In

the first case, the nuclear wave packet spreads and becomes

mostly delocalized (although some coherent vibrational

motion can be observed). This is mainly because the

geometry of S3 (with a single minima) is very different

from that of S1 and S2. Surprisingly, very little singlet–

triplet transfer is observed in the population of the different

excited singlet states. When the laser is turned off only a

small fraction of the population undergoes singlet–triplet

conversion.
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Fig. 4 Time-averaged population in all the triplet and all excited singlet

states as a function of pulse frequency and intensity, for peak intensities

(in TW/cm2) of 5.0 (circles), 7.9 (squares) and 10.1 (diamonds). The
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T2 Franck–Condon transitions are resonant at the equilibrium geometry
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Fig. 5 Electronic states population dynamics in the LSS model with

best pulse parameters in the three frequencies ranges. a with �hx ¼
0:87 eV \�hxðS1 ! S2Þ; b with �hxðS1 ! S2Þ� �hx ¼ 1:41 eV

� �hxðT1 ! T2Þ and c with �hx ¼ 1:63 eV [ �hxðT1 ! T2Þ. Other

parameters are given in the text. AS stands for the population of all

singlet states and AT for the population of all the triplet states
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For intermediate and larger frequencies, the nuclear

wave-packet dynamics is still mostly confined to the bot-

tom of the potential energy in V1
S and much singlet–triplet

conversion is observed when the laser is turned off.

5 Spin-state switching dynamics

As discussed in Sect. 2, almost all electronic singlet states

practically overlap with the triplet states, so that the spin-

transfer dynamics is very efficient. For the lowest energy

potentials, only in S2, there is no singlet–triplet transition.

Following the NRDSE recipe (Sect. 3), in order to transfer

the population from S2 to T2, one first needs to force a near-

degeneracy of the two electronic states by Stark shifting the

states using a strong nonresonant pulse. The electronic

structure of the singlets around S2 is quite different from

that of the triplets around T2 (S2 is closer to S1 while T2 is

closer to T3), so that in principle the dynamic polarizabil-

ities can be quite different and the NRDSE can be applied.

However, the energy difference between the states at the

equilibrium configuration of S2 is approximately 1 eV,

while the transition electronic dipoles are relatively small,

making it impossible to compensate the energy difference

by Stark-shift using any reasonably strong laser pulse.

Thus, the singlet–triplet transfer cannot be indirectly

induced by a single control pulse.

Instead of applying the NRDSE, in this work, we design

an alternative dump–pump strategy that requires two pulses

controlling the time-delay between them. The idea is

sketched in Fig. 7. First, we apply a dump pulse that moves

the population from S2 to S1. Then, we wait for the efficient

singlet–triplet transfer between S1 and T1. Finally, a pump

pulse is applied to transfer the population from T1 to T2. In

the following, we present the results obtained within the

MSS model.

A typical result with approximately optimized pulse

parameters is shown in Fig. 8. Here, we have chosen a

negatively first chirped pulse with intensity I0 = 5.9 TW/

cm2, duration sl = 90 fs and frequency x(t) = x0 ? b
(t - t0)/2, where �hx0 ¼ 1:15 eV, �hb ¼ �0:0136 eV/fs and

t0 is the center of the pulse. The transformed-limited sec-

ond pulse has I0 = 0.9 TW/cm2, sl = 40 fs and �hx0 ¼
1:52 eV. The parameters of the first pulse are optimized to

achieve maximal population transfer (approx 90 %) in a

reasonably short time. Since the equilibrium geometry of

S2 and S1 is very similar, it is difficult to disentangle the

optical Rabi flopping between S2 and S1 from the spin Rabi

flopping between S1 and T1. To avoid the S1 ! S2 back-

transition, one needs to use chirped pulses. We chose a

negative chirp, but it is possible to use positively chirped

pulses as well. Since the S2 ! S1 Franck–Condon transi-

tion is at lower energies than the S2 ! S3 transition, at first

look the choice of a positive chirp would seem a better

option to minimize absorption into highly excited singlet

states. For the MSS model, however, the results are slightly

better for the negatively chirped pulses.

On the other hand, the equilibrium geometry of T1 is

very different from that of T2. The time-delay between the

pulses, sd = 110 fs, is chosen to facilitate maximal singlet–

triplet conversion between S1 and T1. For the second pulse,

one can use a transformed-limited pulse because the wave

packet in T2 moves away from the Franck–Condon window

and naturally deactivates the probability of stimulated

emission. The parameters of the second pulse are chosen to

maximize the yield of the T1 ! T2 transition in a very

short time.

In Fig. 9, we show a contour plot of the time evolution

of the nuclear probability densities of singlet and triplet

spin character, separately. During the S2 ! S1 stimulated
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Fig. 6 Nuclear probability density for all the singlet states in the LSS

model with a �hx ¼ 0:87 eV and I0 = 7.9 TW/cm2 and b �hx ¼ 1:41
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Fig. 7 Scheme of the dump–pump strategy used to induce spin

switching between S2 and T2. We show the potential energy curves
and the wave packets after the different stages of the process
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emission and the S1 ! T1 spin transfer, the singlet nuclear

wave packet remains basically in the same region (around

R = ±2.5 Å). The triplet nuclear wave packet appears at

later states and moves toward R = 0, where the minima of

T2 is located.

Unfortunately, it is not possible to achieve similar

results with the LSS model, regardless of the sign of chirp.

The main problem is that in the Franck–Condon region the

transition dipole between S1 and S2 is much smaller (a

factor of 100 times smaller) than the transition dipole

between S2 and S3 or between S1 and S5 or S6. As a con-

sequence, the dump pulse must be very strong and the

transition competes with two- and three-photon absorption

to other excited states, similarly at what happened when

using low frequencies to lock the population in S1. For the

optimal parameters used above, a population of only 0.06

arrives to T2 at the end of the process, while singlet–triplet

transitions between several excited states account for a

total 22 % of population in the triplet states.

6 Summary and conclusions

In this work, we analyzed in detail the role of different

laser parameters in the control of the singlet–triplet tran-

sition by means of the NRDSE. Following previous work

[49], we used the ESM model to obtain the electronic

potentials, dipole couplings and singlet–triplet couplings.

Depending on the number of potentials included in the

calculation, we defined two approximate models: the

minimal MSS model and the larger LSS model. Multi-

photon ionization and internal conversion were not taken

into account. The time-dependent Schrödinger equation for

the nuclear motion was then solved for these models

starting from different electronic states in order to force

spin locking when the laser-free dynamics implied full

singlet-triplet conversion, or spin switching, when the

laser-free dynamics conserved the spin state.

Certainly, the 3-D 5-particle collinear ESM Hamilto-

nian implies strong restrictions on the motion of the

electrons and ion which show in the potentials and cou-

plings. In particular, the singlet and triplet electronic

states tend to have very similar energies, facilitating fast

ISC processes. On the other hand, the model favors multi-

photon ladder-type ionization, making strong-field control

rather difficult. Still, we believe that the ESM is suffi-

ciently flexible to allow the interplay of very different

processes which can be analyzed to great detail, making

the model an excellent numerical ‘‘laboratory’’ to test

different control scenarios.

In this work, we focused on finding appropriate laser

strategies and tuning the laser parameters in conditions

where there is strong competence between different non-

linear processes, albeit disregarding ionization. Although

appropriate laser parameters for spin switching were dif-

ficult to find even in the MSS model and were not found in

the LSS model, spin locking was shown to be possible for

different frequency windows. The smallness of the dipole

couplings in the Franck–Condon region required the use of

very strong pulses, which drove population to excited

singlet states and thus opened new routes for spin transi-

tions from the excited singlet to excited triplet states.

Forcing a balance between two goals, minimizing the

population in the triplet states and the population in the

excited singlet states, was found to be a good strategy to

identify control pulse frequencies and intensities that

would maximally decouple the initial singlet state from the

triplet states while at the same time they minimize the

disturbance on the system.
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Fig. 8 Electronic states population dynamics in the MSS model

applying the dump–pump scheme to induce singlet–triplet transfer

from S2 to T2. The pulse parameters are given in the text
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Although previous work [49] showed that multi-photon

ionization is the fastest process in the ESM model under

the pulse intensities used in this work, the results also

showed that ionization occurred mainly in the Franck–

Condon window and did not affect the spin dynamics. In

particular, the NRDSE was shown to maintain the control

on the spin populations of the remaining (nonionized) parts

of the system. Given that the full vibronic dynamics

requires considerable computation time, the strategy used

in this work also paves the way to identifying the best

control scenarios when ionization is taken into account. We

expect that this control strategy will be effective when the

required laser intensity is smaller, for instance in weaker

spin-coupling conditions.
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16. González-Vázquez J, Sola IR, Santamaria J, Malinovsky VS

(2006) Quantum control of spinorbit coupling by dynamic Stark-

shifts induced by laser fields. Chem Phys Lett 431:231–235
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38. Gómez-Abal R, Ney O, Satitkovitchai K, Hübner W (2004) All-
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