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Abstract. Modern manufacturing facilities waste various energy
savings opportunities (ESO) and lack proper performance indicators to
measure energy efficiency on the production line. The ESO is an opportu-
nity window calculated from on-line production data, such as production
count, machine downtime records, buffer levels, and machine idle status,
allowing certain machines to be turned off for energy savings without
negatively affecting throughput. New energy efficiency performance in-
dicators are presented that use real time production data to identify
the least energy efficiency machine on the line. The energy savings op-
portunity strategy utilizes the Energy Efficiency Performance Indicators
(EEPI) to take the opportunity window for the least energy efficient ma-
chine at opportune times, allowing for improvements to be made to the
machine, increasing the overall energy efficiency of the line.

Keywords: Energy Savings Opportunities, Energy Efficiency Perfor-
mance Indicators.

1 Introduction

With escalating fuel prices and increasing global competition, manufacturing
companies are seeking methods to cut costs in any way possible. There are
many opportunities to reduce costs in the energy consumption of the facility.
These companies are searching for a way to reduce energy cost without sacrific-
ing quality or affecting the yield of their products. The energy consumption in
the industrial sector has almost doubled in the past 60 years and accounts for
about one-half of the world’s total energy consumption [1,2]. In the US alone, the
industrial sector spent over $100 billion in energy costs [3] and was responsible
for approximately 34% of all energy consumed in 2006. In a typical manufac-
turing plant, the largest source of energy consumption is the production system
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where 67% of the total energy cost is attributed to the production process [4].
Being the center of a manufacturing system, production operation directly im-
pacts energy distribution within the manufacturing environment as a whole. The
dynamics of the energy demand, largely determines the total energy cost, since
the cost of energy (e.g., electricity) actually varies minute-by-minute depending
on demand and peak power.

There are few studies that address factory floor planning while considering
energy saving opportunities [5-8]. Previous work into this topic has been severely
limited with most work focusing on maintaining the quality of the product and
the desired productivity while neglecting the energy saving potential. These
methods treat the energy consumption as an additional cost term for an opti-
mization problem or the consumption is analyzed as a result of high level decision
making and scheduling. The energy consumption is considered a byproduct of
the production system and not a main driver in the decision process on the fac-
tory floor or the control scheme of the overall system.

Some existing methods, such as the energy treasure hunt developed at GE
[9] focused on developing weekend and daily shutdown plans, and managing
the leak tag program. Such program is mainly based on non-operation obvious
waste, requires expert knowledge on the part of the inspector, and is a ”trial and
error” manual procedure. There is still a lack of integrated systematic control
methodology to drive overall effective energy savings.

One main obstacle in providing an integrated systematic control scheme is
the lack of appropriate performance indicators for the facility. While many com-
panies are able to provide key performance indicators (KPI) for a plant, these
indicators do not properly address the problem areas on the floor [10-11]. These
indicators normally single out the machine with the most energy usage, however
this machine may not necessarily be the key issue in terms of energy inefficiency.
This is due to the nonlinearity of the production system, which makes it difficult
to quantify the impact of individual downtime incidents on the entire operation.
The machine center with the most energy usage may not be the least energy
efficient machine because of the effects of downtime effects from other machines.

This paper develops and implements new Energy Efficient Performance In-
dicators (EEPI) that incorporate energy usage from all facets of the manufac-
turing floor and the facility, and provide energy saving opportunity in real-time
production. The EEPI takes into account random downtime events on the man-
ufacturing floor and will allocate the energy usage into two separate categories
based on permanent production loss and the lack of synchronization on the floor.
This allows the identification of the process that is the most energy inefficient.
In addition, the ESO will be applied to save energy and reduce the peak energy
consumption so as to reduce overall cost.

The rest of the paper is structured as follows. In section 2 we present back-
ground and assumptions. We discuss the energy efficiency performance indicators
in Section 3. Section 4 provides simulation studies of the energy opportunities.
We dissect the results and provide conclusions and future work in Section 5.



304 M. Brundage et al.

2 Assumptions and Background

This papers utilizes continuous flow models as seen in Figure (1) [12-14]. The
continuous flow model will treat the quantity of jobs in the buffer as varying
continuously from zero to the capacity of the buffer as opposed to integer steps.
This is done for ease of analysis. The actual system dynamics are not affected
by this assumption regardless if the system is continuous or discrete [15,16]. For
the serial production line as seen above, we can make the following assumptions:

1. Each station Si has a constant rated speed equal to 1
Tm

, where Tm is the cycle
time of the station. A station will run at its rated speed if it is operational
and is neither starved nor blocked.

2. A machine is starved if it is operational and its upstream buffer is empty.
3. A machine is blocked if it is operational and its downstream buffer is full.
4. The first machine, S1, is never starved and the last machine, SM , is never

blocked.
5. Each Buffer B2, B3, ..., BM have a finite capacity. B2, B3, ..., BM denotes the

maximum capacity of the buffer.
6. SM∗ = argminm=1,...M

1
Tm

is unique.
7. W is the actual energy consumption for the production system.
8. The total rated power consumption of the line is P = P1 + P2+, ..., PM .
9. d∗i = The opportunity window of machine i [17-19].

Fig. 1. A Serial Production Line with M Machines and M-1 Buffers

3 Energy Efficiency Performance Indicators

For the development of the Energy Efficiency Performance Indicators, we must
first introduce an energy baseline for the factory. The first step in this process
if to define the overall production time of the manufacturing line. The entire
production line is dictated by the slowest machine in the system, S∗

m = 1/T ∗
m,

where T ∗
m is the cycle time of the slowest machine. If the production count of

the line is M , then we can define the overall production time as:

tp =
M

Sm∗
= M × Tm∗ . (1)

Knowing that this is the baseline, this means that the actual time it takes to
produce M parts will always be:

tr ≥ tp, (2)

where tr is the actual production time to produce M parts. We can now quantify
the energy consumption to a dynamic and static portion in the manufacturing
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process, and categorize the energy consumption in detail (production related and
unrelated). The dynamic part is attributed to random disruptions on the line,
while the static part is related to synchronization operation. The static part of
the energy consumption can be defined as W1, which can be seen in equation
(3):

W1 = W × tp
tr
. (3)

The dynamic portion of the energy consumption due to random downtime
events on the line is W2 and can be defined as:

W2 = W × tr − tp
tr

. (4)

As one can see the total energy consumption W1+W2 = W . The next step in
the process is to distribute the energy consumption at the machine level to aid
in developing the Energy Performance Indicator (EPI) for the entire line. The
portion of the energy consumption that is due to normal machine operation can
be estimated using the power rating of the individual machines. It is defined as
Wi,1:

Wi,1 = W1 × Pi

P
, (5)

where Pi is the power consumption of machine i and P is the rated power
consumption of the entire line. Next, we develop the portion of energy that is
wasted during permanent production loss, which is Wi,2. Permanent production
loss occurs when there is a downtime event, di, at machine i that is longer
than the opportunity window d∗i . This will cause the slowest machine to become
blocked or starved depending on the location of the down machine. Using this
knowledge, the formula for Wi,2 becomes:

Wi,2 = W2 × (di − d∗i )
Σ(di − d∗i )

. (6)

We can then use Wi,1 and Wi,2 to find the energy consumption per part at
each machine, ECPP :

ECPP =
Wi,1 +Wi,2

Mi
, (7)

where Mi is the production count of machine i. If we sum the ECPP for every
machine, this will give us the performance indicator for the production line,
which we will delineate as the energy performance indicator (EPIActual).

EPIActual =
M∑

i=1

Wi,1 +Wi,2

Mi
. (8)

When there is no energy waste the Wi,2 term goes to zero, which gives the
energy baseline, defined as EPIBaseline:
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EPIBaseline =

M∑

i=1

Wi,1

Mi
. (9)

As one can see as the production becomes very inefficient and Mi becomes
small, while Wi,1 and Wi,2 grow larger the EPIActual will grow larger than the
baseline. The larger the gap between the baseline and the EPIActual, and the
higher the EPIActual the less efficient the production line is performing.

However, the EPIActual cannot completely describe the energy efficiency of
individual machines. For example, certain machines may have to consume larger
energy than other machines, so it cannot be concluded that this machine is en-
ergy inefficient. The key is the proportion of the energy consumed in effectively
producing products. Therefore, an additional performance indicator is defined
as the Energy Efficiency Performance Indicator (EEPI). This performance in-
dicator for an individual machine is equal to:

EEPIi =
Wi,1

Wi,1 +Wi,2
. (10)

4 Case Studies

The production system for the case study is a 5 Machine 4 Buffer system (5M4B)
with maximum buffer contents of 18 parts for each buffer. The parameters of
the line can be seen in Table 1. The simulation time for this study is 168 hours
with an 8 hour warmup time

Table 1. Production Line Parameters

Parameter m1 m2 m3 m4 m5

CT (mins/part) 3 3 5 3 3
MTTR (mins) 37.5 37.5 0 37.5 37.5
MTBF (mins) 150 150 150 150 150
Efficiency (%) 80% 80% 100% 80% 80%
Power (kW) 500 500 100 500 500

4.1 Case 1: d = 0

The line is first run without any inserted opportunity windows. This will serve as
our base scenario without any energy efficiency control strategy. The EPIActual

for the entire line is calculated using the formula in equation (8) and can be seen
in Figure (2).

The solid line indicates the EPIBaseline, which is the energy consumption
without any permanent production loss, calculated from equation (9). The dashed
line represents the actual EPI for the entire manufacturing line. This case will
allow us to compare the following cases when we insert downtime events into the
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Fig. 2. EPI and EEPI with d = 0

production line. If the EPIActual is greater than this case then the production
line is less energy efficient than without any energy opportunity windows. If the
gap between the two is smaller than Case 1 then the line is more energy efficient.

To find the least energy efficient machine in the line, we utilize equation
(10), and plot the results in Figure (2). This indicates the energy efficiency for
individual machines since it takes into account the permanent production loss
at each machine due to random downtime events. In this case, machine 2 is the
least energy efficient machine as indicated by EEPI since downtime events at
machine 2 cause the slowest machine, machine 3, to become starved, therefore
causing permanent production loss. Machine 3 has an EEPI equal to 1.0 because
it has no random downtime events, any time not producing parts is due to the
other machines causing it to be blocked or starved.

4.2 Case 2: d = d∗
i

The next case takes into account inserted opportunity windows. There is per-
manent production loss for this case because the random downtime events due
to machine inefficiencies cause the buffer levels to not reach their full capacity,
therefore decreasing the opportunity window . The permanent production loss
is 12.3% when compared to case 1.

The production count of machine 3 and machine 5 can be seen in Figure
(3). Only two machines are shown since each machine except the slowest has
the same parameters and would make it difficult to see the inserted opportunity
windows in this figure if all were shown at once. Only a portion of the simulation
is shown as well to better illustrate the production count of each machine.

Fig. 3. Production Count of Machine 3 & 5 for d = d∗i
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The inserted opportunity window for machine 5 can be seen from approxi-
mately 425 mins - 450 mins where the machine has zero change in production
count. The EPIActual and the EPIBaseline of the entire line with the inserted
opportunity windows can be seen in Figure (4).

Fig. 4. EPI for the Entire Line with d = d∗i

As one can see the EPIActual and the EPIBaseline decreases for the entire
line with the insertion of energy savings opportunities, which is due to the small
production loss. The EEPI for each machine can be seen in Figure (4). The
EEPI once again illustrates that machine 2 is the least energy efficient. The
EEPI cannot be compared to other scenarios, as it is only an indicator of
the machine efficiency for each given case. It enables us to identify the least
energy efficient machine on the line. Theses results demonstrate that EPIActual

and EPIBaseline decreases with inserted ESO. This is due to the fact that al-
though the inserted downtime saves the overall energy consumption per part,
too much ESO may have the risk to cause more energy consumed by the idling
of the bottleneck machine. Therefore, an appropriate ESO strategy without sac-
rificing production is the key. Furthermore, EEPI captured the portion of the
energy used on actually producing parts for each machine rather than downtime
and idling, therefore it is used to identify the least energy efficient machine of
the production line and help to find the root cause of energy inefficiency.

5 Conclusions and Future Work

This paper investigates energy saving opportunities for a serial production line
while developing new energy performance indicators for the production line and
at the machine level. The performance indicators are tested using simulation
studies using three different cases. These studies use different downtime events
to prove the concept of the energy opportunity window as well as the energy
performance indicators. The indicators are able to correctly identify the machine
with the least energy efficiency for each case.

The next step in this research is to develop a control methodology to help
alleviate the problem of the least energy efficient machine by utilizing the energy
opportunity window or by performing preventative maintenance.
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