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Abstract. Music is widely perceived as expressive of emotion. However,
there is no consensus on which factors in music contribute to the expres-
sion of emotions, making it difficult to find robust objective predictors
for music emotion recognition (MER). Currently, MER systems use su-
pervised learning to map non time-varying feature vectors into regions of
an emotion space guided by human annotations. In this work, we argue
that time is neglected in MER even though musical experience is intrinsi-
cally temporal. We advance that the temporal variation of music features
rather than feature values should be used as predictors in MER, because
the temporal evolution of musical sounds lies at the core of the cognitive
processes that regulate the emotional response to music. We criticize the
traditional machine learning approach to MER, then we review recent
proposals to exploit the temporal variation of music features to predict
time-varying ratings of emotions over the course of the music. Finally,
we discuss the representation of musical time as the flow of musical in-
formation rather than clock time. Musical time is experienced through
auditory memory, so music emotion recognition should exploit cognitive
properties of music listening such as repetitions and expectations.

Keywords: Music, Time, Emotions, Mood, Automatic Mood Classifi-
cation, Music Emotion Recognition.

1 Introduction

One of the recurring themes in treatises of music is that music both evokes
emotions in listeners (emotion induction) and expresses emotions that listeners
perceive, recognize, or are moved by, without necessarily feeling the emotion
(emotion perception) [14]. The emotional impact of music on people and the as-
sociation of music with particular emotions or ‘moods’ have been used in certain
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contexts to convey meaning, such as in movies, musicals, advertising, games,
music recommendation systems, and even music therapy, music education, and
music composition, among others. Empirical research on emotional expression
started about one hundred years ago, mainly from a music psychology perspec-
tive [9], and has successively increased in scope up to today’s computational
models. Research on music and emotions usually investigates listeners’ response
to music by associating certain emotions to particular pieces, genres, styles,
performances, among many others.

The mechanisms whereby music elicits emotions in listeners are not well un-
derstood. A central question in the study of music and emotions is “Which
attributes or musical qualities, if any, elicit emotional reactions in listeners?
[14U31]” At first, we should identify factors in the listener, in the music, and in
the context that influence musical emotions (i.e., emotional reactions to music).
Only then can we proceed to develop a theory about specific mechanisms that
mediate among musical events and experienced emotions.

Among the causal factors that potentially affect listeners’ emotional response
to music are personal, situational, and musical. Personal factors include age,
gender, personality, musical training, music preference, and current mood. Situ-
ational factors can be physical such as acoustic and visual conditions, time and
place, or social such as type of audience, and occasion. Musical factors include
genre, style, key, tuning, orchestration, among many others.

Juslin and Vastfjall [14] sustain that there is evidence of emotional reac-
tions to music in terms of various subcomponents, such as subjective feeling,
psychophysiology, brain activation, emotional expression, action tendency, emo-
tion regulation and these, in turn, feature different psychological mechanisms
like brain stem reflexes, evaluative conditioning, emotional contagion, visual im-
agery, episodic memory, rhythmic entrainment, and musical expectancy. They
state that “none of the mechanisms evolved for the sake of music, but they
may all be recruited in interesting (and unique) ways by musical events. Each
mechanism is responsive to its own combination of information in the music, the
listener, and the situation.”

The literature on the emotional effects of music [I5l9] has accumulated evi-
dence that listeners often agree about the emotions expressed (or elicited) by a
particular piece, suggesting that there are aspects in music that can be associated
with similar emotional responses across cultures, personal bias or preferences.
Several researchers imply that there is a causal relationship between music fea-
tures and emotional response [9], giving evidence that certain music dimensions
and qualities communicate similar affective experiences to many listeners.

An emerging field is the automatic recognition of emotions (or ‘mood’) in
music, also called music emotion recognition (MER) [I7]. The aim of MER is to
design systems to automatically estimate listeners’ emotional reactions to mu-
sic. A typical approach to MER, categorizes emotions into a number of classes
and applies machine learning techniques to train a classifier and compare the re-
sults against human annotations [I7J49I23]. The ‘automatic mood classification’
task in MIREX epitomizes the machine learning approach to MER, presenting
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systems whose performance range from 22 to 65 percent [I1]. Some researchers
speculate that musical sounds can effectively cause emotional reactions (via brain
stem reflex, for example). Researchers are currently investigating [I2/17] how to
improve the performance of MER systems. Interestingly, the role of time in the
automatic recognition of emotions in music is seldom discussed in MER research.

Musical experience is inherently tied to time. Studies [T924[1336] suggest
that the temporal evolution of the musical features is intrinsically linked to
listeners’ emotional response to music, that is, emotions expressed or aroused
by music. Among the cognitive processes involved in listening to music, memory
and expectations play a major role. In this article, we argue that time lies at the
core of the complex link between music and emotions, and should be brought to
the foreground of MER systems.

The next section presents a brief review of the classic machine learning ap-
proach to MER. We present the traditional representation of musical features
and the model of emotions to motivate the incorporation of temporal information
in the next section. Then, we discuss an important drawback of this approach,
the lack of temporal information. The main contribution of this work is the
detailed presentation of models that exploit temporal representations of music
and emotions. We also discuss modeling the relationship between the temporal
evolution of musical features and emotional changes. Finally, we speculate on
different representations of time that better capture the experience of musical
time before presenting the conclusions and discussing future perspectives.

2 Machine Learning and Music Emotion Recognition

Traditionally, computational systems that automatically estimate the listener’s
emotional response to music use supervised learning to train the system to map
a feature space representing the music onto a model of emotion according to
annotated examples [I74923|T1]. The system can perform classification [2I] or
regression [48], depending on the nature of the representation of emotions (see
Sec. 22). After training, the system can be used to predict listeners’ emotional
responses to music that was not present in the training phase, assuming that
it belongs to the same data set and therefore can be classified under the same
underlying rules. System performance is measured comparing the output of the
system with the annotation for the track.

Independently of the specific algorithm used, the investigator that chooses
this approach must decide how to represent the two spaces, the music features
and the emotions. On the one hand, we should choose music features that cap-
ture information about the expression of emotions. Some features such as tempo
and loudness have been shown to bear a close relationship with the perception
of emotions in music [38]. On the other hand, the model of emotion should
reflect listeners’ emotional response because emotions are very subjective and
may change according to musical genre, cultural background, musical training
and exposure, mood, physiological state, personal disposition and taste [9]. We
argue that the current approach misrepresents both music and listeners’ emo-
tional experience by neglecting the role of time. In this article, we advance that
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Fig. 1. Illustration of feature extraction. Part a) shows the bag-of-features approach,
where the music piece is represented by a non time-varying vector of features @; aver-
aged from successive frames. Notice that there is only one global emotion ¥; associated
with the entire piece as well. In part b), Both music features ¢ and emotion annotations
Y are kept as a time series.

the temporal variation of music features rather than the feature values should
be used as predictors of musical emotions.

2.1 Music Features

Typically, MER systems represent music with a vector of features. The features
can be extracted from different representations of music, such as the audio, lyrics,
the score, social tags, among others [I7]. Most machine learning methods de-
scribed in the literature use the audio to extract the music features [17/49/23/1T].
Music features such as root mean square (RMS) energy, mel frequency cepstral
coefficients (MFCCs), attack time, spectral centroid, spectral rolloff, fundamen-
tal frequency, and chromagram, among many others, are calculated from the
audio by means of signal processing algorithms [27/12J48]. The number and type
of features dictates the dimensionality of the input space (some features such
as MFCCs are multidimensional). Therefore, there usually is a feature selection
or dimensionality reduction step to determine a set of uncorrelated features.
A common choice for dimensionality reduction is principal component analysis
(PCA)[26I12/21]. Huq et al [12] investigate four different feature selection algo-
rithms and their effect on the performance of a traditional MER system. Kim et
al [177] presented a thorough state-of-the-art review of MER in 2010, exploring a
wide range of research in MER systems, particularly focusing on methods that
use textual information (e.g., websites, tags, and lyrics) and content-based ap-
proaches, as well as systems combining multiple feature domains (e.g., features
plus text). Their review is evidence that MER systems rarely exploit temporal
information.

The term ‘semantic gap’ has been coined to refer to perceived musical infor-
mation that does not seem to be contained in the acoustic patterns present in
the audio, even though listeners agree about its existence [47]. Music happens
essentially in the brain, so we need to take the cognitive mechanisms involved in
processing musical information into account if we want to be able to model peo-
ple’s emotional response to music. Low-level audio features give rise to high-level
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musical features in the brain, and these, in turn, influence emotion recognition
(and experience). This is where we argue that time has a major role, still ne-
glected in most approaches found in the literature. However, only very recently
have researchers started to investigate the role of time in MER. On the one
hand, the different time scales in musical experience should be respected [42].
On the other hand, the temporal changes of some features are more relevant
than feature values isolated from the musical context [3].

Usually, MER systems use a “bag of features” approach, where all the features
are stacked together [I2]. However, these features are associated with different
levels of music experience, namely, the perceptual, the rhythmic, and the for-
mal levels. These levels, in turn, are associated with different time scales [42].
Music features such as pitch, loudness, and duration are extracted early in the
processing chain that converts sound waves reaching the ear into sound percep-
tion in the brain. Rhythm and melody depend hierarchically on the features
from the previous level. For example, melody depends on temporal variations of
pitch. Subsequently, the formal level is comprised of structural blocks from the
melodic and harmonic level.

Fig. [ illustrates the music feature extraction step in MER. Typically, these
features are calculated from successive frames taken from excerpts of the audio
that last a few seconds [I7/49123/TTI1T2] and then averaged like seen in part a)
of Fig. [l losing the temporal correlation [23]. Consequently, the whole piece (or
track) is represented by a static (non time-varying) vector, intrinsically assuming
that musical experience is static and that the listener’s emotional response can
be estimated from the audio alone. Notice that, typically, each music piece (or
excerpt) is associated with only one emotion, represented by ¥; in Fig. [ll The
next section explores the representation of emotions in more detail.

2.2 Representation of Emotions

The classification paradigm of MER research uses categorical descriptions of
emotions where the investigator selects a set of “emotional labels” (usually mu-
tually exclusive). Part a) of Fig. @ illustrates these emotional labels (Hevner’s
adjective circle [10]) clustered in eight classes. The annotation task typically con-
sists of asking listeners to choose a label from one of the classes for each track.
The choice of the emotional labels is important and might even affect the results.
For example, the terms associated with music usually depend on genre (pop mu-
sic is much more likely than classical music to be described as “cool”). As Yang
[49] points out, the categorical representation of emotions faces a granularity
issue because the number of classes might be too small to span the rich range of
emotions perceived by humans. Increasing the number of classes does not nec-
essarily solve the problem because the language used to categorize emotions is
ambiguous and subjective [9]. Therefore, some authors [I7/49] have proposed to
adopt a parametric model from psychology research [30] known as the circum-
plex model of affect (CMA). The CMA consists of two independent dimensions
whose axes represent continuous values of valence (positive or negative semantic
meaning) and arousal (activity or excitation). Part b) of Fig. 2 shows the CMA
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Fig. 2. Examples of models of emotion. The left-hand side shows Hevner’s adjective
circle [I0], a categorical description. On the right, we see the circumplex model of affect
[30], a parametric model.

and the position of some adjectives used to describe emotions associated with
music in the plane. An interesting aspect of parametric representations such as
the CMA lies in the continuous nature of the model and the possibility to pin-
point where specific emotions are located. Systems based on this approach train
a model to compute the valence and arousal values and represent each music
piece as a point in the two-dimensional emotion space [49].

One common criticism of the CMA is that the representation does not seem to
be metric. That is, emotions that are very different in terms of semantic mean-
ing (and psychological and cognitive mechanisms involved) can be close in the
plane. In this article, we argue that the lack of temporal information is a much
bigger problem because music happens over time and the way listeners associate
emotions with music is intrinsically linked to the temporal evolution of the mu-
sical features. Also, emotions are dynamic and have distinctive temporal profiles
(boredom is very different from astonishment in this respect, for example).

2.3 Mathematical Notation

In mathematical terms, the traditional approach to MER models the relationship
between music @ and emotions ¥ according to the following

U= f(D,A,e¢) (2.1)

where W represents the emotion space, ® represents the music, f models the
functional relationship between ® and ¥ parameterized by A with error e.
Therefore, in this approach, MER becomes finding the values for the parameters
A ={ap, a1, ...,any} that minimize the error {e} and correctly map each &; € ®
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Fig. 3. Simple examples of machine learning applied to music emotion recognition.
Part a) shows an example of classification. In part b), we see an example of regression.

onto their corresponding ¥; € ¥. Notice that subscript ¢ means an instance of
the pair {¥, @} (an annotated music track). Here, ®; = [¢1, P2, ..., dn] is an N
dimensional vector of music features and ¥; can be a semantic label represent-
ing an emotion for the classification case or continuous values of psychological
models such as a valence/arousal pair ¥; = {v, a}.

Fig. Bl shows a simple example of classification and regression to illustrate
Eq. ([ZJ). Part a) illustrates linear classification into two classes, while part b)
shows linear regression. In part a), the black dots represent instances of the first
class, while the white dots represent the other class. The dashed line is the linear
classifier (i.e., the MER system) that separates the input parameter space ® =
{¢1, P2} into two regions that correspond to the classes ¥ = {black, white}. For
example, a MER system that takes chords as input and outputs the label happy
for major chords and sad for minor chords. In this case, ® is major or minor and
could be encoded as ¢, the first interval and ¢ the second interval in cents, f
is a binary classifier (such as a straight line with parameters A = {ag,a1}), and
U = {happy, sad}. The error e would be associated with misclassification, that
is, points associated with one class by the system but labeled with the other.
The system could be then used to classify inputs (music) that were not a part of
the training data into “happy” or “sad” depending on which category (region)
it falls into.

Part b) shows ¥ as a linear function of a single variable ¢ as ¥ = ag + a;¢. In
this case, the dots are values of the independent variable or predictor ¢ associ-
ated with ¥. For instance, ¢ represents loudness values positively correlated with
arousal, represented by ¥. Notice that both ¢ and ¥ are real-valued, and the
MER system f modeling the relationship between them is the straight dashed
line with parameters A = {ag, a1} obtained by regression (expectation maxi-
mization or least-squares). The modeling error € being minimized is the differ-
ence between the measures (the dots in the figure) and the model (the dashed
line). The MER system can estimate arousal for new music tracks solely based
on loudness values.
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A more general MER system following the same approach would model ¥ as
a linear combination of predictors @ using multiple regression as follows

v, :a0+a1¢i,1+...+aN¢i’N+...+e (22)

where ¥; is the representation of emotion and @; = {¢;,} are the music
features. This model assumes that emotions can be estimated as a linear com-
bination of the music features, such as @; = {loud, fast} music is considered
¥ = {upbeat}. Generally, the errors e are supposed uncorrelated with one an-
other (additive error) and with @, whose underlying probability distribution has
a major influence on the parameters A. Naturally, fitting a straight line to the
data is not the only option. Sophisticated machine learning algorithms are usu-
ally applied to MER, such as support vector machines [T2/I7]. However, these
algorithms are seldom appropriate to deal with the temporal nature of music
and the subjective nature of musical emotions.

2.4 Where Does the Traditional Approach Fail?

The traditional machine learning approach to MER assumes that the music
features are good predictors of musical emotions due to a causal relationship
between ® and ¥. The map from feature space to emotion space is assumed to
implicitly capture the underlying psychological mechanisms leading to an emo-
tional response in the form of a one-to-one relationship. However, psychological
mechanisms of emotional reactions to music are usually regarded as information
processing devices at various levels of the brain, using distinctive types of in-
formation to guide future behavior. Therefore, even when the map f explains
most of the correlation between between ® and ¥, it does not necessarily mean
that it captures the underlying psychological mechanism responsible for the emo-
tional reaction (i.e., correlation does not imply causation). In other words, while
Eq. 1) can be used to model the relationship between music features and
emotional response, it does not imply the existence of causal relations between
them.

Eq. (1) models the relationship between music features and emotional re-
sponse from a behavioral viewpoint, supposing that the emotional response is
consistent across listeners, irrespective of cultural and personal context. Cur-
rently, MER systems rely on self-reported annotations of emotions using a model
such as Hevner’s adjective circle or the CMA. On the one hand, this approach
supposes that the model of emotion allows the expression of a broad palette of
musical emotions. On the other hand, it supposes that self-reports are enough to
describe the outcome of several different psychological mechanisms responsible
for musical emotions [I4]. Finally, the listener’s input is only provided in the
form of annotations and only used when comparing these annotations to the
emotional labels output by the system, neglecting personal and situational fac-
tors. The terms ‘semantic gap’ [47/4] and ‘glass ceiling’ [I] have been coined to
refer to perceived musical information that does not seem to be contained in the
audio even though listeners agree about its existence. MER research needs to
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bridge the gap between the purely acoustic patterns of musical sounds and the
emotional impact they have on listeners by modeling the generation of musical
meaning [I5]. Musical experience is greater than auditory impression [22]. The
so called ‘semantic gap’ is a mere reflection of how the current typical approach
misrepresents both the listener and musical experience.

Here we argue that the current approach misrepresents both music and lis-
teners’ emotional experience by neglecting the role of time. Currently, MER
research ignores evidence [T9124IT3T4] suggesting the existence of complex re-
lationships between the dynamics of musical emotions and the response to how
musical structure unfolds in time. The examples given in Fig. B illustrate this
point (although in a very simplified way). Neither system uses temporal infor-
mation at all. In part a), the input music is classified as “happy” or “sad” based
solely on whether it uses major or minor chords, ignoring chord progression, in-
versions, etc. Part b) supposes a rigid association between loudness and arousal
(loud music is arousing), ignoring temporal variations (like sudden changes from
soft to loud).

Krumhansl [20] suggests that music is an important part of the link between
emotions and cognition. More specifically, Krumhansl investigated how the dy-
namic aspect of musical emotion relates to the cognition of musical structure.
According to Krumhansl, musical emotions change over time in intensity and
quality, and these emotional changes covary with changes in psycho-physiological
measures [20]. Musical meaning and emotion depend on how the actual events
in the music play against this background of expectations. David Huron [13]
wrote that humans use a general principle in the cognitive system that regu-
lates our expectations to make predictions. According to Huron, music (among
other stimuli) influences this principle, modulating our emotions. Time is a very
important aspect of musical cognitive processes. Music is intrinsically temporal
and we need to take into account the role of human memory when experienc-
ing music. In other words, musical experience is learned. As the music unfolds,
the learned model is used to generate expectations, which are implicated in the
experience of listening to music. Meyer [25]24] proposed that expectations play
the central psychological role in musical emotions.

3 Time and Music Emotion Recognition

We can incorporate temporal information into the representation of the music
features and into the emotional response. In the first case we calculate the music
features sequentially as a time-series, while the last case consists of recording
listeners’ annotations of emotional responses over time and keeping the infor-
mation as a time-series. Fig. illustrates the music features and emotions
associated with music (represented by the score) over time. Thus ¢ (t) is the
current value of a music feature, and ¢ (¢ + 1) is the subsequent value. Similarly,
W (t) and ¥ (¢t + 1) follow each other.

There are several ways of exploiting the information from the temporal vari-
ation of music features and emotions. A very straightforward way would be to
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use time-series analysis and prediction techniques, such as using previous values
to predict future values of the series. In this case, the investigator could use past
values of a series of valence/arousal {v,a} annotations over time to predict the
next {v,a} value. A somewhat more complex approach is to use the temporal
behavior of one time series as predictors of the next value of another series. In
this case, the temporal variation of the music features would be used as pre-
dictors in regression. Thus variations in loudness rather than loudness values
are used to predict the arousal associated. Several techniques can be employed,
such as regression analysis, dynamical system theory, as well as machine learn-
ing algorithms developed to model the dynamic behavior of time series. Thus
the next section reviews approaches to MER that use the temporal variation of
music features as predictors of musical emotions.

3.1 Time Series and Prediction

The feature vector should be calculated for every frame of the audio signal and
kept as a time series as shown in Fig. In other words, the music features
@, are now represented by a time-varying vector &@; (t) = {¢; (t),¢: (t — 1),
@i (t—2),...,0; (t — N)}. The temporal correlation of the features must be ex-
ploited and fed into the model of emotions to estimate listeners’ response to the
repetitions and the degree of “surprise” that certain elements might have [3§].
The simplest way to incorporate temporal information from the music features is
to include time differences, such as loudness values and also loudness variations
(from the previous value). This MER system uses information about how loud
a certain passage sounds and also if the music is getting louder (building up
tension, for example), using previous values of features to predict the next (is
loudness going to increase or decrease?) and compare these predictions against
how the same features are unfolding in the music as follows

i (t+1)=a1¢; (t) +azp; (t —1)+asd; (t—2)+...+¢ (3.1)

where ¢; (t + 1) represents the next value for the feature ¢;, ¢;(t) the present
value, ¢; (t — 1) the previous, and so forth. The predictions ¢; (¢ + 1) can be used
to estimate listeners’ emotional responses. Listeners have expectations about how
the music is unfolding in time. For instance, expectations about the next term in
a sequence (the next chord in chord progression or the next pitch in melodic con-
tour) or expectations about continuous parameters (become louder or brighter).
Whenever listeners’ expectations are correct it is rewarding (fulfillment) and
when they are not it is unrewarding (tension).

3.2 Emotional Trajectories

A very simple way of recording information about the temporal variation of
emotional perception of music would be to ask listeners to write down the emo-
tional label and a time stamp as the music unfolds. The result is illustrated in
Fig. However, this approach suffers from the granularity and ambiguity
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Fig. 4. Temporal variation of emotions. The left-hand side shows emotional labels
recorded over time. On the right, we see a continuous conceptual emotional space with
an emotional trajectory (time is represented by the arrow).

issues inherent of using a categorical description of emotions. Ideally, we would
like to have an estimate of how much a certain emotion is present at a particular
time. Krumhansl [19] proposes to collect listener’s responses continuously while
the music is played, recognizing that retrospective judgments are not sensitive
to unfolding processes. However, in this study [19], listeners assessed only one
emotional dimension at a time. Each listener was instructed to adjust the posi-
tion of a computer indicator to reflect how the amount of a specific emotion (for
example, sadness) they perceived changed over time while listening to excerpts
of pieces chosen to represent the emotions [19)].

Recently, there have been proposals to collect self-report of emotional
reactions to music [39], including software such as EmotionSpace Lab [35],
EmuJoy [28], and MoodSwings [16]. EmotionSpace Lab [35] allows listeners
to continuously rate emotions while listening to music as points on the {v, a}
(valence-arousal) plane (CMA), giving rise to an emotional trajectory on a two-
dimensional model of emotion like the one shown in Fig. (time is represented
by the arrow). Use of the CMA accommodates a wide range of emotional states
in a compact representation. Similarly, EmuJoy[28] allows continuous self-report
of emotions over time in two-dimensional space (CMA). MoodSwings [16] is an
online collaborative game designed to collect second-by-second labels for music
using the CMA as model of emotion. The game was designed to capture {v, a}
pairs dynamically (over time) to reflect emotion changes in synchrony with mu-
sic and also to collect a distribution of labels across multiple players for a given
song or even a moment within a song. Kim et al. state that the method provides
quantitative labels that are well-suited to computational methods for parameter
estimation.
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A straightforward way of using information from the sequence of emotional
labels &; (t) to predict future values would be to use the underlying dynamics of
the temporal variation of the sequence itself, like expressed below

v; (t + 1) =ag+ a1¥; (t) + as¥; (t — 1) + as¥; (t — 2) + ...+ € (32)

Notice that Eq. (3:2) fits a linear prediction model to the time series of emo-
tional labels ¥; (t) under the assumption that the previous values in the series
can be used to predict future values, indicating trends and modeling the inertia
of the system. In other words, the model assumes that increasing values of ¥; (t)
indicate that the next value will continue to increase by a rate estimated from
previous rates of growth, for example.

3.3 Modeling Musical Emotions from Time-Varying Music Features

Finally, we should investigate the relationship between the temporal variation
of musical features and the emotional trajectories. MER systems should include
information about the rate of temporal change of musical features. For example,
we should investigate how changes in loudness correlate with the expression
of emotions. Early studies used time series analysis techniques to investigate
musical structure. Vos et al [46] tested the structural and perceptual validity
of notated meter applying autocorrelation to to the flow of melodic internals
between notes from thirty fragments of compositions for solo instruments by
J. S. Bach.

Recently, researchers started exploring the temporal evolution of music by
treating the sequence of music features as a time series modeled by ordinary
least squares [36J38], linear dynamical systems such as Kalman filters [32/3334],
dynamic texture mixtures (DTM) [844], auto-regressive models (linear predic-
tion) [I8], neural networks [5l6)7/45], among others. Notice that these techniques
are intimately related. For example, the Kalman filter is based on linear dynam-
ical systems discretized in the time domain and modeled as a Markov chain,
whereas the hidden Markov model can be viewed as a specific instance of the
state space model in which the latent variables are discrete.

First of all, it is important to distinguish between stationary and nonstation-
ary sequential distributions. In the stationary case, the data evolves in time,
but the distribution from which it is generated remains the same. For the more
complex nonstationary situation, the generative distribution itself is evolving in
time.

Ordinary Least Squares. Schubert [36/38] studied the relationship between
music features and perceived emotion using continuous response methodology
and time-series analysis. In these studies, both the music features @, (t) and
the emotional responses ¥, (t) are multidimensional time series. For example,

D(t) = [p1(t) p1(t—1)... 1 (t— N)]T are loudness values over time and

T, (t)=[a®)a(t—1)...a(—N)] " are arousal ratings annotated over time.
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Schubert [36J38] proposes to model each component of ¥ (¢) as a linear combi-
nation of features @ (t) plus a residual error € (¢) as follows

v (t) o1 (t) P2(t) ... on (D) ay e (t)
v(t—1) pr(t—1) ¢(t—1) ... on(t—1) | |az e(t—1)

ot—M)| et M) da(t—M) . on(t-M)| lan| |et-N)

where the model parameters A = {a;} are fit so as to best explain variability
in ¥ (t). The error term € (¢) is included to account for discrepancies between
the deterministic component of the equation and the actual data value. Two
fundamental premises of this model are that the error term be reasonably small
and that it fluctuate randomly. Notice that the error term e (¢) is simply

€(t) =W () — AD(t). (3.4)

Thus the coefficients A = {a;} can be estimated using standard squared-
error minimization techniques, such as ordinary least squares (OLS). OLS can
be interpreted as the decomposition of ¥ (t) onto the subspace spanned by &; (¢).

Notice that Eq. 3] considers the music features and the emotions as non-
causal time series because information about the past (previous times) and about
the future (all succeeding times) is used. Eq. (33)) simply models ¥ (¢) as a
linear combination of a set of feature vectors @ (¢) where time is treated as
vector dimensions. Mathematically, ¥ (¢) is projected onto the subspace that
& (t) spans, which is usually not orthogonal. This means that the music features
used might be linearly dependent. In other words, if one of the features can
be expressed as a linear combination of the others, then it is redundant in the
feature set because it is correlated (colinear) with the other features.

More importantly, information about the rate of change of musical features is
not exploited. The temporal correlation between successive values of features also
plays an important role in listeners’ emotional experience. The model in Eq. (3:3)
supposes that listeners’ emotional responses over time depend on loudness values
over time, but not on loudness “variations”. A straightforward way to consider
variations in time series is to create a new sequence of values with the first order
differences as follows

AV (t) = AAD (t) + ... + ¢ (3.5)

where A is the first order difference operator AW (t) = ¥ (t) — ¥ (t—1).
Difference time series answer questions like “how much does ¥ change when
& changes”? [36].

Schubert [36] proposed to use music features (loudness, tempo, melodic con-
tour, texture, and spectral centroid) as predictors in linear regression models
of valence and arousal. This study found that changes in loudness and tempo
were associated positively with changes in arousal, and melodic contour varied
positively with valence. When Schubert [38] discussed modeling emotion as a
continuous, statistical function of musical parameters, he argued that the statis-
tical modeling of memory is a significant step forward in understanding aesthetic
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responses to music. In simple terms, the current system output depends on its
previous values. Another interpretation is that the system exhibits “inertia”, i.e.,
no sudden changes occur. Naturally, the input variables (music features) are also
likely to exhibit autocorrelation.

Finally, Schubert [37] studied the causal connections between resting points
and emotional responses using interrupted time series analysis. This study is
related to a hypothesis proposed by Leonard Meyer [25] that “arousal of affect”
results from musical expectations being temporarily suspended. Meyer suggests
that there is a relationship between musical expectations, tension, and arousal.
Schubert concluded that resting points are associated with increased wvalence.

The approach proposed by Schubert implicitly assumes that the relationship
between the temporal evolution of music features and the emotional trajectories
is linear and mutually independent, discarding interactions between music fea-
tures. The interactions between musical variables are a prominent factor in music
perception and call for joint estimation of coupled music features and modeling
of said interactions. Finally, Schubert’s approach does not generalize, applying
to each piece analyzed.

Linear Dynamical System. A linear system models a process where the out-
put can be described as a linear combination of the inputs as in Eq. (Z:2). When
the input is a stationary signal corrupted by noise, a Wiener filter can be used
to filter out the noise that has corrupted the signal. The Wiener filter uses the
autocorrelation of input signal and crosscorrelation between input and output to
estimate the filter, which can be later used to predict future values of the input.

Linear dynamical systems also model the behavior of the input variable @ (¢),
usually from its past values. The Kalman Filter gives the solution to generic
linear state space models of the form

B(t) = AD(t—1) +q(t) (3.6)
W(t) = HP () +r (1) (3.7)

where vector @ (t) is the state and ¥ (t) is the measurement. In other words, the
Kalman filter extends the Wiener filter to nonstationary processes, where the
adaptive coefficients of the filter are iteratively (recursively) estimated.

Schmidt and Kim [3233)34] have worked on the prediction of time-varying
arousal-valence pairs as probability distributions using multiple linear regression,
conditional random fields, and Kalman filtering. Each music track is described
by a time-varying probability distribution from a corpus of annotations they
have collected with an online collaborative game [16] from several users. Their
first effort [33] to predict the emotion distribution over time simply uses multiple
linear regression (MLR) to regress multiple feature windows to these annotations
collected at different times without exploiting the time order or the temporal
correlation of the features or the emotions.

Then, Schmidt and Kim [32] modeled the temporal evolution of the music
features and the emotions as a linear dynamical system (LDS) such as Eq. (3.0]).
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The model considers the labels ¥ (t) as noisy observations of the observed music
features @ (t) and uses a Kalman filter approach to fit the parameters. They com-
pare the results against their previous MLR approach, which considers that each
pair feature @; annotation ¥; is statistically independent and therefore neglects
the time-varying nature of music and emotions. Interestingly, they conclude that
a single Kalman filter models well the temporal dependence in music emotion
prediction for each music track. However, a mixture of Kalman filters must be
employed to represent the dynamics of a music collection.

Later, Schmidt and Kim [34] propose to apply conditional random fields
(CRF) to investigate how the relationship between music features and emotions
evolve in time. They state that CRF models both the relationships between
acoustic data (the music features) and emotion space parameters and also how
those relationships evolve over time. CRF is a fully connected graphical model
of the transition probabilities from each class to all others, thus representing
the link between music features and the annotated labels as a set of transition
probabilities, similarly to hidden Markov models (HMM). An interesting find-
ing of this work is that the best performing feature for CRF prediction was
MFCC rather than spectral contrast as reported earlier [32]. Schmidt and Kim
conclude by speculating that this might be an indication that MFCC provides
more information than spectral contrast when modeling the temporal evolution
of emotion.

Dynamic Texture Mixture. A dynamic texture (DT) is a generative model
that takes into account both the instantaneous acoustics and the temporal dy-
namics of audio sequences [§]. The texture is assumed to be a stationary second-
order process with arbitrary covariance driven by white Gaussian noise (i.e.,
a first-order ARMA model). The model consists of two random variables, an
observed variable W (t) that encodes the musical emotions, and a hidden state
variable @ (t) that encodes the dynamics (temporal evolution) of the music fea-
tures. The two variables are modeled as a linear dynamical system.

B (t) = AD (t — 1) + v (1) (3.8)
W (t) = Cb(t) +w(t) (3.9)

While the DT in Eq. (3:8) models a single observed sequence, a mizture of dy-
namic textures (DTM) models a collection of sequences such as different musical
features. DTM has been applied in automatic segmentation [2] and annotation
[8] of music, as well as MER [44].

Vaizman et al [44] propose to use dynamic texture mixtures (DTM) to “in-
vestigate how informative the dynamics of the audio is for emotional content”.
They created a data set of 76 recordings of piano and vocal performances where
“the performer was instructed to improvise a short musical segment that will
convey to listeners in a clear manner a single emotion, one from the set of
{happy, sad, angry, fear ful} [44].” These instructions were then used as ground
truth labels. Vaizman et al claim that they “obtained a relatively wide variety of
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acoustic manifestations for each emotional category, which presumably capture
the various strategies and aspects of how these specific emotions can be conveyed
in Western music.” Finally, they model the dynamics of acoustic properties of
the music applying DTM to a temporal sequence of MFCCs extracted from their
recordings. A different DTM model must be trained for each class (emotional
label) using an iterative expectation maximization (EM) algorithm. After train-
ing, we can calculate the likelihood that a new music track was “generated” by
a given DTM (i.e., the track belongs to that class). Notice that the model in
Eq. (38)) is equivalent to a first-order state space model.

Auto Regressive Model. Korhonen et al. [I§] assume that, since music
changes over time, musical emotions can also change dynamically. Therefore,
they propose to measure emotion as a function of time over the course of a piece
and subsequently model the time-varying emotional trajectory as a function of
music features. More specifically, their model assumes that musical emotions de-
pend on present and past feature values, including information about the rate of
change or dynamics of the features. Mathematically, the model has the general
form

U (t,A) = f1D; (t),P; (t—1),...,6;, (1), € (t —1)] (3.10)

where ¥; (¢, A) represents the emotions as a function of time ¢, A are the param-
eters of the function f that maps the music features @; (t) and its past values
@, (t—1),... with approximation error € (t). Notice that the model does not
include dependence on past values of ¥; (¢, A).

In this work, Korhonen et al. [18] adopt linear models, assuming that f can
be estimated as a linear combination of current and past music features @ given
an estimation error € to be minimized via least-squares and validated by K-fold
cross-validation and statistical properties of the residual error € [I8]. The mod-
els they consider are the auto-regressive with exogenous inputs (ARX) shown
in Eq. (BII) and a state-space representation shown in Eq. (312) and BI3)
following.

U(t)+ A (O)F(t—1)+ ...+ Apn ()T (t—m) = (3.11)
Bo(0)®(t) + ...+ B, (0)D(t —n) +e(t) '
where @ (t) is the N-dimensional music feature vector (NN is the number of fea-
tures), ¥ (t) is an M-dimensional musical emotion vector (M is the dimension
of the emotion representation), Ay is a matrix of coeflicients (zeros) and By is
the matrix of coefficients (poles).

P(t+1)=A0)D(t) +BO)u(t)+ K (0)e(t) (3.12)
U(t)=C0)D(t)+D(O)u(t)+e(t) (3.13)

where @ (t) is the N-dimensional music feature vector (NN is the number of fea-
tures), A () is a matrix representing the dynamics of the state vector, B () is
a matrix describing how the inputs (music features) affect the state variables &,
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C () is a matrix describing how the state variables @ affect the outputs (emo-
tion), D (0) is a matrix describing how the current inputs (music features) affect
the current outputs, and K () is a matrix that models the noise in the state
vector @. They used a dataset of 6 pieces “to limit the scope,” while the to-
tal duration was 20 min. They report that the best model structure was ARX
using 16 music features and 38 parameters, whose performance was 21.9% for
valence and 78.4% for arousal. An interesting conclusion is that previous valence
appraisals can be used to estimate arousal, but not the other way around.

Artificial Neural Networks. Coutinho and Cangelosi [Bl6[7] propose to use
recurrent neural networks to model continuous measurements of emotional re-
sponse to music. Their approach assumes “that the spatio-temporal patterns of
sound convey information about the nature of human affective experience with
music” [6]. The temporal dimension accounts for the dynamics of music features
and emotional trajectories and the spatial component accounts for the parallel
contribution of various musical and psycho-acoustic factors to model continuous
measurements of musical emotions.

Artificial neural networks (ANN) are nonlinear adaptive systems consisting of
interconnected groups of “artificial neurons” that model complex relationships
between inputs and outputs. ANNs can be viewed as nonlinear connectionist ap-
proaches to machine learning, implementing both supervised and unsupervised
learning. Generally, each “artificial neuron” implements a nonlinear mathemat-
ical function ¥ = f (&), such that the output of each neuron is represented as a
function of the weighted sum of the inputs as follows

N

where ¥; is the ¢t" output,®; is the 4t input, f is the map between input and
output, and g is called activation function, usually nonlinear.

There are feed-forward and recurrent networks. Feed-forward networks only
use information from the inputs to “learn” the implicit relationship between
input and output in the form of connection weights, which act as long-term
memory because once the feed-forward network has been trained, the map re-
mains fixed. Recurrent networks use information from past outputs and from
the present inputs in a feedback loop. Therefore, recurrent networks can process
patterns that vary across time and space, where the feedback connections act as
short-term memory (or memory of the immediate past)[3l6].

Coutinho and Cangelosi [BI6I7] sustain that the structure of emotion elicited
by music is largely dependent on dynamic temporal patterns in low-level music
structural parameters. Therefore, they propose to use the Elman neural net-
work (ENN), an extension of feed-forward networks (such as the multi-layer
perceptron) that include “context” units to remember past activity by storing
and using past computations of the network to influence the present processing.
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Mathematically,

D)= Fil0 (=1, u®] = F | wis® (=) + D wiu ()] (315)

W(t)=hi[@ )] =h | Y wi;b;(t)| (3.16)

where Eq. (3.1%) is the next state function and Eq. BI6]) is the output function.
In these equations, @ is the musical features, ¥ is the emotion pair {v, a}, w are
the connection weights (the network long-term memory), and u are the internal
states of the network that encode the temporal properties of the sequential input
at different levels. The recursive nature of the representation endows the network
with the capability of detecting temporal relationships of sequences of features
and combinations of features at different time lags [6].

This study used the dataset from Korhonen et al. [I8]. They concluded that
the spatio-temporal relationships learned fro the training set were successfully
applied to a new set if stimuli and interpret this as long-term memory, as op-
posed to the dynamics of the system (associated with short-term memory). The
result of canonical correlation analysis revealed that loudness is positively cor-
related with arousal and negatively with valence, spectral centroid is positively
correlated with both arousal and valence, spectral fluxz correlated positively with
arousal, sharpness correlated positively with both arousal and wvalence, tempo
is correlated with high arousal and positive valence, and finally texture is pos-
itively correlated with arousal. Later, Vempala and Russo [45] compared the
performance of a feed-forward network and an Elman network for predicting
{v, a} ratings of listeners recorded over time for musical excerpts. They found
similar correlations between music features and {v, a} values.

3.4 Overview

This section presents a brief overview of the techniques discussed previously.
Table [I] summarizes features of the models for each approach, providing com-
ments on aspects such as limitations and applicability.

4 Discussion

Most approaches that treat emotional responses to music as a time-varying func-
tion of the temporal variation of music features implicitly assume that time
presents certain deterministic properties. In the models discussed above, time is
modeled as clock time. However, musical time can be very subjective as music is
experienced by the listener. Naturally, listeners’ emotional reactions to music are
closely related to the subjective experience of time rather than objective clock
time. An interesting analogy is perception of frequencies and the Mel scale [43].
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Table 1. Overview of the proposals to model musical emotions from time-varying
music features. The table briefly summarizes model features with general comments

for each of the approaches reviewed in Sec. [3.31

Approach

Ordinary
Least
Squares

Linear
Dynamical
System

Dynamic
Texture
Mixture

Auto
Regressive
Model

Artificial
Neural
Network

Model Features

Linear

Stationary

Noncausal

Independent estimation
Memoryless

Linear

Stationary (Wiener, CRF)

Nonstationary (Kalman)
Causal

Independent estimation
(Wiener, Kalman)

e Joint estimation (CRF)

Memoryless

Linear

Stationary

Causal

Independent estimation
memoryless

Linear

Stationary

Causal

Independent estimation
Memoryless

Nonlinear
Nonstationary
Causal

Joint estimation
Memory

Comments

Does not model temporal system
dynamics

Does not model interactions be-
tween music features

Models arousal and valence sepa-
rately

e Models each piece separately
e Least-squares error minimization

e Models temporal system dynamics
e Does not model interactions be-

tween music features
Kalman)

(Wiener,

e Models each piece separately
e Least-squares error minimization
e Underlying filtering model is hard-

ly musical

e Models temporal system dynamics
e Does not model interactions be-

tween music features

e Borrowed from video
e Models each piece separately
e Expectation maximization param-

eter fit

e Models temporal system dynamics
e Does not model interactions be-

tween music features

e Borrowed from statistics
e Models each piece separately
e Least-squares error minimization

e Models temporal system dynamics
e Models interactions between music

features

e Many parameters
e Difficult interpretation
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Human auditory perception of frequencies is closer to logarithmic rather than lin-
ear, thus linear frequency representations such as the Fourier transform present
a distorted picture of the information that is used to interpret the sounds that
reach the ear. Therefore, in what follows, this article discusses modeling time in
MER as subjective musical time rather than objective clock time.

Time. Conceptually, time can be seen from an objective or subjective point of
view. Clocks are evidence of the objective interpretation of time as independent
of anyone to experience it. Subjectively, the notion of time comes from the ex-
perience of change, sensory or otherwise [29]. Pressing [29] states that “Time
is not a stimulus but a construction, an inference.” Scientifically, the concept
of time can be incorporated into measurements of physical quantities. In this
case, time is a measure of change that involves expenditure of energy and there-
fore increase in entropy. Thus physical time is directly linked to the tendency
of macroscopic physical systems to disorder. As a consequence, physical time
involves irreversibility on macroscopic scales.

However, musical time differs from scientific time in many respects. Possible
procedures to establish the nature of musical time are mathematical formalism
and cognitive psychology. Mathematical formalism usually addresses objective
clock time, which may be used to model the temporal processes used by com-
posers. Cognitive psychology is concerned with subjective time, studying the
mental representation of time.

Newton constructed a deterministic set of mathematical relations that allowed
prediction of the future behavior of moving objects and allowed deduction of the
past behavior of the moving objects. All that one needed in order to do this
was data in the present regarding these moving objects. Isaac Newton believed
in absolute space and absolute time. According to the Newtonian view, time
is a dimension in which events and objects “move through” or an entity that
“flows”. Gottfried Leibniz and Immanuel Kant, among others, believed that time
and space “do not exist in and of themselves, but ... are the product of the way
we represent things”, because we can know objects only as they appear to us.

Scientific Properties of Time. Usually, objective time presents some
properties as follows [29]

1. Time provides an ordering for events. In classical physics and ordinary expe-
rience, this ordering is unique for any given set of events and chosen observer.

2. This ordering has a unique direction. This unique direction gives rise to the
irreversibility of some macroscopic phenomena and is related to the rise in
entropy (or disorder) of isolated systems.

3. Time separates events into three distinct categories: past, present, future.

4. Time is measurable. The existence of clocks that agree to high accuracy (in
non-relativistic surroundings) provides the utility of this notion. Clock time
is virtually synonymous with scientific time. Time’s measurability means
that in mathematical terms it acts as a metric space, i.e. a space with a
function that defines distance.
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5. Time is continuous (but also discrete). In classical physics, time is continu-
ous. Quantum mechanics provides a discrete interpretation of time based on
the principle of uncertainty.

Musical Properties of Time. The properties of scientific time have paral-
lels in music [29]. For example, the musical events have a unique time ordering
and the unique direction of time is usually “accepted.” Also, past, present, and
future remain useful concepts, and all musical events are subject to clock measur-
ability. Finally, the continuity or arbitrary divisibility of time applies to sound
perception. Most of these properties are associated with objective clock time,
such as measured by a metronome or marked on scores. However, when it comes
to listening to music, musical time has a subjective, experienced, psychological
component. The composer Dennis Smalley [40/41] wrote that “spectrum is per-
ceived through time and time is perceived as spectral motion”, suggesting that
sound perception is inherently linked to the auditory perception of change.

Some properties of objective time listed above are modified in musical time.
The most affected are 1, 2, and 4. Musically, time is inferred from ordered events.
Thus time perception can only be approximately modeled as clock time because
we ignore timing differences (and even tempo differences) to a substantial de-
gree. The directionality of time is first of all a property of short-term memory.
As for long-term memory, we have a memory of duration, but our memory of
time order is rather imprecise once things are in the past. Redundancy is in an
interesting way related to the temporal order of musical events and directional-
ity of musical time. Recycling a theme is not just a way of improving long-term
memory storage, it is also a musical way of making the time order less important.

The dichotomy between clock (objective) time and experienced (subjective)
time has been the subject of considerable debate in music [29]. Snyder [42] views
time as linked to the rate of change of incoming information. In this discussion,
Snyder wrote that information refers to novelty and the removal of uncertainty.
Habituation occurs at many levels of consciousness, cognitive as well as percep-
tual, and on many different time scales, from seconds to years. Thus we may not
notice or remember experiences that keep repeating. However, the limitation of
the capacity of memory is a limitation on how much novelty (i.e., information)
it can handle. To be coherent and memorable, a message must have a certain
amount of non-informative repetition or redundancy, which produces a certain
amount of invariance or regularity. The redundancy in messages acts as a kind
of implicit memory rehearsal, allowing us to have certain expectations about the
messages we perceive and making them predictable to some extent.

In relation to music, we can find redundancy at different levels of music expe-
rience. Repetition of similar waveforms create pitch perception. The concepts of
rhythm, tempo, and meter rely on repetition. The constraints of tuning systems
and scales limit the number of elements used in a melody, creating redundancy
in melodic patterns. At the formal level, redundancy includes symmetries and
repetition of entire sections. Snyder suggests that this repetition, in addition
to being a memory retrieval cue, is a metaphor for the process of remembering
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itself. When a pattern that appeared earlier in a piece of music reappears, it
is like a recollection - an image of the past reappearing in the present, and its
familiarity gives stability. Therefore, Snyder proposes that these associative rep-
etitions are a factor in establishing closure, and points that introduce new and
unfamiliar material (higher information content), such as transitions, are less
stable and have a higher tension value. Snyder concludes that information can
be related to tension in music. Musical tension, in turn, is associated with emo-
tional experience. As stated before, the patterns of repetition and expectations
in music are directly related to listeners’ emotional reactions. One could argue
that information measures over time are more suitable to bear a causal relation
with arousal/valence ratings than music features. But what is the link between
the flow of information in music and the perception of time?

Time is often thought of as existing independently of human experience. This
objective notion of time is closely related to scientific concept of irreversibility of
certain phenomena. Another possible interpretation is that time is an abstract
construction of the human mind based on certain aspects of memory. The sub-
jective notion of time is constructed from our perceptions of objects and events,
and its qualities at a given moment depend on the relationships between these
perceptions. In this sense, what we perceive in a given amount of time to some
extent determines our sense of the length of that time. In other words, subjective
time perception is a measure of the flow of information.

The concepts of information and redundancy are intrinsically related to mu-
sical form especially because they have a profound effect on our perception and
memory of lengths of time. Our judgment of the length of a time period longer
than the limits of short-term memory depends on the nature of the events that
“fill” it. At first, it might seem reasonable to assume that how long a length
of time appears to take depends on how many events happen within it, but
in reality it seems to depend also on how much information we process from
those events. Thus a time period filled with novel and unexpected events will be
remembered as longer than an identical (in clock time) period filled with redun-
dant or expected events. This implies that our expectations affect our sense of
duration. Novel events take up more memory space and are usually remembered
as having taken longer. On the other hand, ordinary events,which fit comfort-
ably within our predefined schemas and require little attention and processing,
are described as taking up little memory space and in retrospect seem to have
taken less time to happen.

Note, however, that the above are descriptions of duration as remembered,
not as experienced. Indeed, duration as experienced tend to be the opposite of
duration remembered. “Boring” time periods with little information are experi-
enced as being long, but remembered as shorter. Conversely, time periods filled
with unusual, informative sequences of events, can seem to flow very rapidly
while occurring, but are remembered as longer. Thus a musical passage filled
with repetitive events can seem, in retrospect, shorter than one filled with un-
predictable events. In other words, proportional relations of clock time do not
necessarily establish similar relations of proportional experienced time or re-
membered time lengths. However, this effect seems to diminish with repeated
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listening. In addition, regular pulse and metrical frameworks seem to make it
easier to get a more accurate sense of larger durational proportions.

Musical time is designed by composer and articulated by performer, shaping
the perceptual processes of the listener. Systematic repetition of patterns can
dull time perception, stretch or even eliminate the parallels between objective
and subjective time. Continuity can be undermined by many traditional musi-
cal procedures, such as staccato. The hierarchical nature of time is intrinsically
related to the three levels of time perception, such that “horizontal” aspects
of time focus on on succession of events whereas “vertical” aspects focus on
coordination between parts, synchrony, overlay, among others.

5 Conclusions

Research on automatic recognition of emotion in music, still in its infancy, has
focused on comparing “emotional labels” automatically calculated from differ-
ent representations of music with those of human annotators. MER systems
commonly use supervised learning techniques to map non time-varying music
feature vectors into regions of the emotion space. The music features are typi-
cally extracted from short audio clips and the system associates one emotion to
each piece. The performance of MER systems using machine learning has been
stagnant. Studies in music psychology suggest that time is essential in emotional
expression. In this article, we argue that MER has neglected the temporal nature
of music. We advocate the incorporation of time in both the representation of
musical features and the model of emotions. This article reviews recent proposals
in the literature to model musical emotions from time-varying music features. Fi-
nally, we discussed the representation of musical time as subjective time, rather
than clock time.

The drawbacks of applying supervised learning to non time-varying repre-
sentations of music and emotions are widely recognized by MER researchers.
However, there is no standard way of representing temporal information in MER.
This article urges MER researchers to model musical emotions from time-varying
music features. The main point we make is that the temporal dynamics of music
features are better predictors of musical emotions than feature values. However,
we argue that currently, the models that take temporal dynamics into consid-
eration are not appropriate to deal with music because they were originally
developed for other purposes. Currently, we have the means to model the rel-
evant features over scientific (clock) time. However, musical time is not in the
equation.

Future perspectives include the development of computational models that ex-
ploit the temporal dynamics of music features as predictors of musical emotions.
Only by including temporal information in automatic recognition of emotions
can we advance MER systems to cope with the complexity of human emotions
in one of its canonical means of expression, music.
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