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Preface

The 9th International Symposium on Computer Music Modeling and Retrieval,
CMMR2012 “Music & Emotions” took place at Queen Mary University, June
19-22, 2012. This symposium, which was initiated in 2003, has been organized
in several European countries as well as in the East (Bhubaneswar, India), and
was this year jointly organized by the Centre for Digital Music, London, and
the CNRS - Laboratoire de Mécanique et d’Acoustique, Marseille. The post
proceedings of the previous CMMR conferences were all published in the Lecture
Notes in Computer Sciences Series (LNCS 2771, LNCS 3310, LNCS 3902, LNCS
4969, LNCS 5493, LNCS 5954, LNCS 6684, LNCS 7172).

A total of 150 delegates from 24 different countries were gathered during the
4 days of the conference and the various contributions included oral sessions,
posters, demos, panels and tutorials. In line with previous CMMR events, a
multi-disciplinary approach associating traditional music information retrieval
(MIR) and sound modeling topics with human perception and cognition, musi-
cology, and philosophy was exposed.

In addition, music submissions were solicited within the framework of the
CMMR2012 New Resonances music festival that was held each evening at
Wilton’s Music Hall. A “Cross-Disciplinary Perspectives on Expressive Perfor-
mance” Workshop was also organized by Andrew McPherson (Queen Mary Uni-
versity) on the first day of the conference.

This year, CMMR2012 put a special emphasis on music and emotion re-
lated research topics. Music and emotion have been subject to a large number
of studies in varied fields of research. For instance, within the field of cognitive
science, music-induced emotions as well as the positive affect music can have
on intellectual faculties have been thoroughly investigated. Various types of ex-
pressive intentions between composers, performers and listeners have also been
examined by musicologists and psychologists. From a different standpoint, music
informatics researchers have employed machine learning algorithms to discover
relationships between objective features computed from audio recordings and
subjective mood labels given by human listeners. In spite of all these investi-
gations, the understanding of the genesis of musical emotions and the mapping
between musical structures and emotional responses remain unanswered research
problems.

Three prominent keynote speakers with considerably different backgrounds
and links to the conference theme (i.e., Pr. Laurent Daudet from Paris Diderot
University, Pr. Patrik N. Juslin from Uppsala University and film score composer
and producer Simon Boswell) gave high quality presentations of their respec-
tive domains. The conference contributions were distributed in seven technical
sessions, two poster sessions, one demo session, two panel sessions, three con-
certs, two tutorials and a workshop. Among these contributions, 28 papers were
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selected for the present post proceedings edition, which is divided into seven
sections corresponding to the technical sessions and an 8th session in which four
workshop contributions are selected.

We would first of all like to thank all the participants of CMMR2012 who
strongly contributed to the success of this conference. We would also like to thank
the Program Committee members for their indispensable paper reports and the
Music Committee for the difficult task of selecting the artistic contributions.
We are particularly grateful to the local Organizing Committee at Queen Mary
University who made sure that all the practical issues were under control. Finally,
we would like to thank Springer for agreeing to publish the CMMR2012 post
proceedings in their LNCS series.

June 2013 Mitsuko Aramaki
Mathieu Barthet

Richard Kronland-Martinet

Selvi Ystad
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The Six Emotion-Face Clock as a Tool for Continuously
Rating Discrete Emotional Responses to Music

Emery Schubertl, Sam Fergusonz, Natasha Farrarl,
David Taylor', and Gary E. McPherson’

! Empirical Musicology Group, University of New South Wales, Sydney, Australia
E.Schubert@unsw.edu.au,
{natashajfarrar,david.anthony.taylor}@gmail.com
% University of Technology, Sydney, Australia
samuel . john. ferguson@gmail .com
3 Melbourne Conservatorium of Music, University of Melbourne, Melbourne, Australia
g.mcpherson@unimelb.edu.au

Abstract. Recent instruments measuring continuous self-reported emotion
responses to music have tended to use dimensional rating scale models of emotion
such as valence (happy to sad). However, numerous retrospective studies of
emotion in music use checklist style responses, usually in the form of emotion
words, (such as happy, angry, sad...) or facial expressions. A response interface
based on six simple sketch style emotion faces aligned into a clock-like
distribution was developed with the aim of allowing participants to quickly and
easily rate emotions in music continuously as the music unfolded. We tested the
interface using six extracts of music, one targeting each of the six faces: ‘Excited’
(at 1 o’clock), ‘Happy’ (3), ‘Calm’ (5), ‘Sad’ (7), ‘Scared’ (9) and ‘Angry’ (11).
30 participants rated the emotion expressed by these excerpts on our ‘emotion-
face-clock’. By demonstrating how continuous category selections (votes)
changed over time, we were able to show that (1) more than one emotion-face
could be expressed by music at the same time and (2) the emotion face that best
portrayed the emotion the music conveyed could change over time, and (3) the
change could be attributed to changes in musical structure. Implications for
research on orientation time and mixed emotions are discussed.

Keywords: Emotion in music, continuous response, discrete emotions,
time-series analysis, film music.

1 Introduction”

Research on continuous ratings of emotion expressed by music (that is, rating the
music while it is being heard) has led to improvements in understanding and modeling
music’s emotional capacity. This research has produced time series models where

This article is a considerably expanded version of a submission titled ‘Continuous Response
to Music using Discrete Emotion Faces’ presented at the International Symposium on
Computer Music and Retrieval (CMMR) held in London, UK, 19-22 June, 2012.

M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 1-f8] 2013.
© Springer-Verlag Berlin Heidelberg 2013



2 E. Schubert et al.

musical features such as loudness, tempo, pitch profiles and so on are used as input
signals which are then mapped onto emotional response data using least squares
regression and various other strategies [1-4].

One of the criticisms of self-reported continuous response however, is the rating
response format. During their inception in the 1980s and 1990s [5, 6] such measures
have mostly consisted of participants rating one dimension of emotion (such as the
happiness, or arousal, or the tension, and so on) in the music. This approach could be
viewed as so reductive that a meaningful conceptualization of emotion is lost. For
example, Russell’s [7, 8] work on the structure of emotion demonstrated that a large
amount of variance in emotion can be explained by two fairly independent
dimensions, frequently labeled valence and arousal. The solution to measuring
emotion continuously can therefore be achieved by rating the stimulus twice (that is,
in two passes), once along a valence scale (with poles of the scale labeled positive and
negative), and once along an arousal scale (with poles labeled active and sleepy) [for
another multi-pass approach see 9]. In fact, some researchers have combined these
scales at right angles to form an ‘emotion space’ so as to allow a good compromise
between reductive simplicity (the rating scale), and the richness of emotional meaning
(applying what were thought to be the two most important dimensions in emotional
structure simultaneously and at right angles) [e.g. 10-12].

The two dimensional emotion space has provided an effective approach to help
untangle some of the relations between musical features and emotional response, as
well as providing a deepening understanding of how emotions ebb and flow during
the unfolding of a piece of music. However, the model has been placed under scrutiny
on several occasions. The most critical matter that is of concern in the present
research is theory and subsequent labeling of the emotion dimensions and ratings. For
example, the work of Schimmack [13, 14] has reminded the research community that
there are different ways of conceptualizing the key dimensions of emotion, and one
dimension may have other dimensions hidden within it. Several researchers have
proposed three key dimensions of emotion [15-17]. Also, dimensions used in the
‘traditional’ two dimensional emotion space may be hiding one or more dimensions.
Schimmack demonstrated that the arousal dimension is more aptly a combination of
underlying ‘energetic arousal’ and ‘tense arousal’. Consider, for instance, the emotion
of ‘sadness’. On a single ‘activity’ rating scale with poles labeled active and sleepy,
sadness will most likely occupy low activity (one would not imagine a sad person
jumping up and down). However, in a study by Schubert [12] some participants
consistently rated the word ‘sad’ in the high arousal region of the emotion space (all
rated sad as being a negative valence word). The work of Schimmack and colleagues
suggests that those participants were rating sadness along a ‘tense arousal’ dimension,
because sadness does contain conflicting information about these two kinds of arousal
— high tension arousal but low activity arousal.

Some solutions to the limitation of two dimensions are to have more than two
passes when performing a continuous response (e.g. valence, tense arousal and
activity arousal), or to apply a three dimensional GUI with appropriate hardware
(such as a three dimensional mouse). However, in this paper we take the dilemma of
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dimensions as a point of departure and apply what we believe is the first attempt to
use a discrete emotion response interface for continuous self-reported emotion ratings.

Discrete emotions are those that we think of in day-to-day usage of emotions, such
as happy, sad, calm, excited and so forth. They can each be mapped onto the
emotional dimensions discussed above, but can also be presented as independent,
meaningful conceptualizations of emotion [18-22]. An early continuous self-reported
rating of emotion in music that demonstrated an awareness of this discrete structure
was applied by Namba et al. [23], where a computer keyboard was labeled with
fifteen different discrete emotions. As the music unfolded, participants pressed the
key representing the emotion that the music was judged to be expressing at that time.
The study has to our knowledge not been replicated, and we believe it is because the
complexity of learning to decode a number of single letters and their intended
emotion-word meaning. It seems likely that participants would have to shift focus
between decoding the emotion represented on the keyboard, or finding the emotion
and then finding its representative letter before pressing. And this needed to be done
on the fly, meaning that by the time the response was ready to be made, the emotion
in the music may have changed. The amount of training (about 30 minutes reported in
the study) needed to overcome this cognitive load can be seen as an inhibiting factor.

Inspired by Namba er al’s pioneering work, we wanted to develop a way of
measuring emotional response continuously but one which captured the benefits of
discrete emotion rating, while applying a simple, intuitive user interface.

2 Using Discrete Facial Expressions as a Response Interface

By applying the work of some of the key research of emotion in music who have used
discrete emotion response tools [24-26], and based on our own investigation [27], we
devised a system of simple, schematic facial expressions intended to represent a range
of emotions that are known to be evoked by music. Furthermore, we wanted to
recover the geometry of semantic relations, such that similar emotions were
positioned beside one another, whereas distant emotions were physically more distant.
This approach was identified in Hevner’s [28-31] adjective checklist. Her system
consisted of groups of adjectives, arranged in a circle in such a way as to place
clusters of words near other clusters of similar meaning. For example, the cluster of
words containing ‘bright, cheerful, joyous ...” was adjacent to the cluster of words
containing ‘graceful, humorous, light...’, but distant from the cluster containing the
words ‘dark, depressing, doleful...’. Eventually, the clusters would form a circle,
from which it derived its alternative names ‘adjective clock’ [32] and ‘adjective
circle’ [31]. Modified version of this approach, using a smaller number of words, are
still in use [33]. Our approach also used a circular form, but using faces instead of
words. The model was similar to that used by Schlosberg [34] and Russell [35], who
each placed photographs of graded facial emotional expressions on a two-dimensional
space. Consequently, we named the layout an ‘emotion-face clock’. Evidence
suggests that cross-cultural and even non-literate cultures are adept at speedy
interpretation of emotional expressions in faces [36, 37], making faces generalizable
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and suitable for emotion rating tasks, and therefore more so than words. Further,
several emotional expressions are universal [38, 39] making the reliance on a non-
verbal, non-language specific format appealing [40-42].

Selection of faces to be used for our response interface were based on the literature
of commonly used emotion expressions to describe music [43, 44], the
recommendations made on a review of the literature by Schubert and McPherson [45]
but also such that the circular arrangement was plausible. Hence, three criteria were
used: (1) that a broad range of well understood emotions were selected, (2) that they
could be represented by simple comic style face sketches in an equi-distributed
circular format in emotion space, and (3) that they were likely to be useful for
describing music and musical experiences. To satisfy the first criterion, we used a
commonly reported form of six basic emotions, happiness, sadness, anger, fear,
surprise, and disgust [46]. To satisfy the second and third criteria, surprise was
replaced with excited, disgust was deleted because it is considered a non-musical
emotion [47] and calm was added [excited and calm being emotions considered more
useful for describing music in those locations of the emotion space—1 o’clock and 5
o’clock respectively—, as according to 48]. Cartoon faces [see 49] were constructed
to correspond roughly with the emotions from top moving clockwise (see Fig. 1):
Excited (at 1 o’clock), Happy (3), Calm (5), Sad (7), Scared (9) and Angry (11
o’clock), with the bottom of the circle separated by Calm and Sad. The words used to
describe the faces are selected for the convenience of the researchers. Although a
circle arrangement was used, a small additional gap between the positive emotion
faces and the negative emotion faces was imposed, namely an additional spatial gap
between angry and excited, and between calm and sad, reflecting the semantic
distance between these pairs of emotions (Fig. 1). Russell [35], for example, had these
gaps at 12 o’clock and 6 o’clock filled with a surprise and sleepy face respectively.
We did not impose our labels of the emotion-face expressions onto the participants.
Pilot testing using retrospective ratings of music using the verbal expressions are
reported in Schubert et al. [27].

3 Aim

The aim of the present research was to develop and test the emotion-face clock as a
means of continuously rating the emotion expressed by extracts of music.

4 Method

4.1  Participants

Thirty participants were recruited from a music psychology course that consisted of a
range of students including some specializing in music. Self-reported years of music
lessons ranged from 0 to 16 years, mean 6.6 years (SD = 5.3 years) with 10
participants reporting no music lessons (‘0’ years). Ages ranged from 19 to 26 years
(mean 21.5 years, SD = 1.7 years). Twenty participants were male.
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4.2  Software Realisation

The emotion-face clock interface was prepared, and controlled by MAX/MSP software,
with musical extracts selected automatically and at random from a predetermined list of
pieces. Mouse movements were converted into one of eight states: Centre, one of the six
emotions represented by schematic faces, and ‘Elsewhere’ (Fig. 1). The eight locations
were then stored in a buffer that was synchronized with the music, with a sampling rate
of 44.1kHz. Given the redundancy of this sampling rate for emotional responses to
music [which are in the order of 1 Hz — see 50], down-sampling to 25Hz was performed
prior to analysis. The facial expressions moving around the clock in a clockwise
direction were Excited, Happy, Calm, Sad, Scared and Angry, as described above. Note
that the verbal labels for the faces are for the convenience of the researcher, and do not
have to be the same as those used by participants. The intention of the layout was that
the expressions progressed sequentially around the clock such that related emotions
were closer together than distant emotions, as described above. However, the quality of
our labels were tested against participant data using the explicit labeling of the same
stimuli in an earlier study [27].

Continually move the mouse to the face(s) that best matches
the emotion the MUSIC IS EXPRESSING as quickly as possible.

Elsewhere

Fig. 1. Structure of six emotion-face-clock graphic user interface. Face colours were based on
[27]. Crotchet icon in Centre was green when ready to play, red when excerpt was playing, and
grayed out, opaque when the excerpt had completed playing. Text in top two lines provided
instructions for the participant. White boxes, arrows and labels were not visible to the
participants. These indicate the regions used to determine the eight response categories.

4.3 Procedure

Participants were tested one at a time. The participant sat at the computer display and
wore headphones. After introductory tasks and instructions, the emotion-face clock
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interface was presented, with a green icon (quaver) in the centre (Fig. 1). The participant
was instructed to click the green button to commence listening, and to track the emotion
that the music was expressing by selecting the facial expression that best matched the
response. They were asked to make their selection as quickly as possible. When the
participant moved the mouse over one of the faces, the icon of the face was highlighted
to provide feedback. The participant was asked to perform several other tasks between
continuous the rating tasks. The focus of the present report is on continuous rating over
time of emotion that six extracts of music were expressing.

4.4  Stimuli

Because the aim of this study is to examine our new continuous response instrument,
we selected six musical excerpts for which we had emotion ratings made using
tradition post-performance ratings scales from a previous study [27]. The pieces were
taken from Pixar animated movies, based on the principle that the music would be
written to stereotypically evoke a range of emotions. The excerpts selected were 11 to
21 seconds long with the intention of primarily depicting each of the emotions of the
six faces on the emotion-face clock. In our reference to the stimuli in this report, they
were labeled according to their target emotion: Angry, Scared, Sad, Calm, Happy and
Excited. More information about the selected excerpts is shown in Table 1. When
referring to a musical stimulus the emotion label is capitalized and italicised.

Table 1. Stimuli used in the study

Stimulus code  Film music excerpt Start time within CD Duration of
(target emotion) track (MM’SS elapsed) excerpt (s)
Angry Up: 52 Chachki Pickup 00"53 17
Calm Finding Nemo: Wow 00"22 16
Excited Toy Story: Infinity and 00"15 16
Beyond
Happy Cars: McQueen and Sally 00"04 16
Sad Toy Story 3: You Got 01"00 21
Lucky
Scared Cars: McQueen's Lost 00"55 11

5 Results and Discussion

Responses were categorized into one of eight possible responses (one of the six
emotions, the Centre region, and any other space on the emotion-face clock labeled
‘Elsewhere’ — see Fig. 1) based on mouse positions recorded during the response to
each piece of music. This process was repeated for each sample (25 per second). Two
main analyses were conducted. First, the relationships between the collapsed
continuous ratings against rating scale results from a previous study using the same
stimuli, and then an analysis of the time series responses for each of the six stimuli.
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5.1 Summary Responses

In a previous study, 26 participants provided ratings of each of the six stimuli used in
the present study (see [27] for details) along 11 point rating scales from ‘0 (not at all)’
to ‘10 (a lot)’. The scales were labeled orthographically as Angry, Scared, Sad, Calm,
Happy and Excited. No faces were used in the response interface for that study.

The continuous responses from the current study were collapsed so that the number
of votes a face received as the piece unfolded was tallied, producing a proportional
representation of faces that were selected as indicating the emotion expressed by each
face for a particular stimulus. The plots of these results are shown in Fig. 2. Take for
example the responses made to the Angry excerpt. All participants’ first ‘votes’ were
for the ‘Centre’ category because they had to click the ‘play’ icon at the Centre region
of the emotion-face clock to commence listening. As participants decided which face
represented the emotion expressed, they moved the mouse to cover the appropriate
face. So, as the piece unfolded, at any given time, some of the 30 participants might
have the cursor on the Angry face, while some on the Scared face, and another who
may not yet have decided remains in the Centre or has moved the mouse, but not to a
face (‘Elsewhere’). With a sampling rate of 25 Hz it was possible to see how these
votes changes over time (the focus of the next analysis). At each sample, the votes
were tallied into the eight categories. Hence each sample had a total of 30 votes (one
per participant). At any sample it was possible to determine whether participants were
or were not in agreement about the face that best represented the emotion expressed
by the music.

The face by face tallies for each of these samples were accumulated and divided by
the total number of samples for the excerpt. This provided a summary measure of the
time-series to approximate the typical response profile for the stimulus in question.
These profiles are reported in Fig. 2 in the right hand column. Returning to the Angry
example we see that participants spent most time on the Angry face, followed by
Scared and then the Centre. This suggests that the piece selected indeed best
expressed anger according to the accumulated summary of the time series. The second
highest votes belonging to the Scared face can be interpreted as a ‘near miss’ because
of all the emotions on the clock, the scared face is semantically closest to the Angry
face, despite obvious differences (for a discussion, see [27]). In fact, when comparing
the accumulated summary with the post-performance rating scale profile (from the
earlier study), the time series produces a profile more in line with the proposed target
emotion. The post-performance ratings demonstrate that Angry is only the third
highest scored scale, after Scared and Excited. The important point, however, is that
Scared and Excited are located on either side of the emotion-face clock, making them
the most semantically related alternatives to angry of the available faces. For each of
the other stimuli, the contour of the profiles for post-performance ratings and
accumulated summary of continuous response are identical.

These profile matches are evidence for the validity of the emotion-face clock
because they mean that the faces are used to provide a similar meaning to the emotion
words used in the post-performance verbal ratings. We can therefore be reasonably
confident that at least five of the faces selected can be represented verbally by the five
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verbal labels we have used (the sixth — Anger, being confused occasionally with
Scared, and this ‘confusion’ may be a consequence of the nature of the emotion
expressed by the face, or the music, or both). The similarity of the profile pairs in Fig.
2 is also indicative of the reliability of the emotion-face clock because it more-or-less
reproduces the emotion profile of the post-performance ratings.

Two further observations are made about the summary data. Participants spend
very little time away from a face or the Centre of the emotion-face clock (the
Elsewhere region is selected infrequently for all six excerpts). While there is the
obvious explanation that the six faces and the screen Centre occupy the majority of
the space on the response interface (see Fig. 1) the infrequent occurrence of the
Elsewhere category also may indicate that participants are fairly certain about the
emotion that the music is conveying. That is, when an emotion face is selected by a
participant, they are likely to believe that face to be the best selection, even if it is in
disagreement with the majority of votes, or with the a priori proposed target emotion.
If this were not the case, we might expect participants to hover in ‘no man’s land’ of
the emotion-face clock—Elsewhere and Centre. The apparent ‘confidence’ may also
be a consequence of the instruction to select a face as quickly as possible, suggesting
that accuracy of face selection is not important enough to justify vacillation (a point to
which we shall return).

The ‘no man’s land’ response may be reflected by the accumulated time spent in
the Centre region. As mentioned, time spent in the Centre region is biased because
participants always commence their responses from that region (in order to click the
play button). The Centre region votes can therefore be viewed as indicating two kinds
of systematic responses: (1) initial response time and (2) response uncertainty. Initial
response time is the time required for a participant to orient to the required task just as
the temporally unfolding stimulus commences. The orienting process generally takes
several seconds to complete, prior to ratings becoming more ‘reliable’ [51-53]. So
stimuli in Fig. 2 with large bars for ‘Centre’ may require more time before an
unambiguous response is made.

The Scared stimulus has the largest number of votes for the Centre location (on
average, at any single sample, eight out of thirty participants were in the Centre
region of the emotion-face clock). Without looking at the time series data (see next
subsection), we may conclude that the Scared excerpt produced the least ‘confident’
rating, or that the faces provided were unable to produce satisfactory alternatives for
the participants.

Using this logic (long time spent in the Centre and Elsewhere), we can conclude
that the most confident responses were for those pieces where accumulated time spent
in the Centre and Elsewhere were the lowest. The Calm stimulus had the highest
‘confidence’ rating (an average of about 4 participants at the Centre or Elsewhere
combined). Interestingly, the Calm example also had the highest number of
accumulated votes for any single category (the target, Calm emotion) — which was
selected on average by 18 participants at any given time.

The analysis of summary data provides a useful, simple interpretation of the
continuous responses. However, to appreciate the richness of the time course
responses, we now examine the time-series data for each stimulus.
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5.2  Continuous Responses

Fig. 3 shows the plots of the stacked responses from the 30 participants at each time
sample by stimulus. The beginning of each time series, thus, demonstrates that all
participants commenced their response at the Centre (the first, left-most vertical ‘line’
of each plot is all black, indicating the Centre). By scanning for black regions for each
of the plots in Fig. 3 some of the issues raised in the accumulated summary analysis,
above, are addressed. We can see that the black and grey disappears for the Calm plot
after 6 seconds have elapsed. For each of the other stimuli a small amount of doubt
remains at certain times — in some cases a small amount of uncertainty is reported
throughout (there are no time samples in the Scared and Excited stimuli where all
participants have selected a face). Furthermore, the largest area of black and grey
occurs in the Scared plot.

Another important observation of the time-series of Fig. 3 is the ebb and flow of
face frequencies. In the summary analysis it was possible to see the selection of more
than one emotion face indicating the emotion expressed by the music. However, here
we can see when these ‘ambiguities’ occur. The Angry and Sad stimuli provide the
clearest examples of more than one non-chronometrically salient emotion. For the
Angry excerpt, the ‘Scared’ face is frequently reported in addition to Angry. And the
number of votes for the Scared face slightly increase toward the end of the excerpt.
Thus, it appears that the music is expressing two emotions at the same time, or that
the precise emotion was not available on the emotion-face clock.

The Sad excerpt appears to be mixed with Calm for the same reasons (co-existence
of emotions or precision of the measure). While the Calm face received fewer votes
than the Sad face, the votes for Calm peak at around the 10" second (15 votes
received over the time period 9.6 to 10.8s) of the Sad except. The excerpt is in a
minor mode, opening with an oboe solo accompanied by sustained string chords and
harp arpeggios. At around the 15" second (peaking at 18 votes over the time period
15.00 to 15.64s) the number of votes for the Calm face begins to decrease and the
votes for the Sad face peak. Hence, some participants may find the orchestration and
arch shaped melody in the oboe more calm than sad. Until some additional
information is conveyed in the musical signal (at around the 14" second), responses
remain on Calm. At the 10™ second of this excerpt the oboe solo ends, and strings
alone play, with cello and violin coming to the fore, with some portamento (sliding
between pitches). These changes in instrumentation may have provided cues for
participants to make the calm to sad shift after a delay of a few seconds [50].

Thus a plausible interpretation of the mixed responses is that participants have
different interpretations of the various emotions expressed, and the emotion
represented by the GUI faces. However, the changes in musical structure are
sufficient to explain a change in response. What is important here, and as we have
argued elsewhere, is that the difference between emotions is (semantically) small
[27], and that musical features could be modeled to predict the overall shift away
from calmness and further toward sadness in this example. The different choice of
faces could be explained by the semantic similarity of the region that the two faces
encompass in dimensional emotion-space.
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Fig. 3. Time series plots for each stimulus showing stacked frequency of faces selected over
time (see Table 1 for duration on x-axis) for the 30 participants (y-axis), with face selected
represented by the colour code shown. Black and grey representing Centre of emotion-face
clock (where all participants commence continuous rating task) and anywhere else respectively.
Note that the most dominant colour (the most frequently selected face across participants and
time) match with the target emotion of the stimulus. X-axis denotes time in seconds. Y-axis
denotes proportion of participants selecting a region of the emotion-face clock, expressed as a
percentage of total participants.
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5.3  Response Latency Issues

The time taken for ‘most’ participants to make a decision about the selection of a first
face appears to have an identifiable range across stimuli. Inspection of Fig. 3 reveals
that in the range of 0.5 seconds through to 5 seconds most participants have selected a
face. This provides a rough estimate of the initial orientation time for emotional
response using categorical data (for more information, see [51]). The generally
shortened initial orientation time estimates (up to around 5 seconds) compared to
those in previously published results (around 8 seconds) may simply be due to the
task, because participants were asked to respond as quickly as possible [no instruction
regarding required speed of response was cited in the studies of 51, 52].

Nevertheless, since we do not get a majority of participants quickly finding the first
face shortly after the music first sounds (usually no faces selected within the first
second), we propose that the processing of and the response to musical information
may be taking place via three related cognitive pathways. One path begins by
interpreting the audio input and making an emotion judgment [e.g. 54] which then
leads to the mouse movement motor planning. This path continues with the execution
of the actual technical portion of the required task, which is the act of moving the
mouse to the face that best describes the emotion portrayed by the music. Once the
mouse is moved to the desired position, some more processing needs to occur to
check that the position is the desired emotion face. This is the ideal response path we
were seeking in our study so as to satisfy the task to respond ‘as quickly as possible’,
and is shown as Path 1 in Fig. 4. Our current, ongoing analysis suggests that under
these conditions mouse movement takes a short amount of time with respect to
processing time, in the order of 5% of the time from hearing to selection. Hence, Fig.
4 displays the mouse movement box as being considerably narrower than the
processing box (box width representing approximate, proportional time spent on
processing and mouse movement).

It may be that the mouse is moved repeatedly while the listener continues to listen
but has not made a final decision. This is still represented in Fig. 4 as Path 1, but
consists of looping around that path, with (usually small) mouse perturbations while
processing takes place. For example, the listener may move the mouse out of the
Centre region into the Elsewhere region in preparation for a quick response, but
without yet having been able to decide on which face to select. This combination of
indecision and mouse movements we refer to as prevarication, and continues until the
listener ceases looping around Path 1 (for example, having made a decision about
which face to select), or takes some other processing path.

The listener may also be undecided about which emotion face to select, but not
move the mouse (leave it in the Centre region)—Path 2. This path may loop until the
listener has made a decision, or commences prevaricating (Path 1).

In a study by Lucas et al [55] apparently meaningless or aimless (off-task) mouse
movement were referred to as ‘skywriting” — though their task required continuous
response to dimensional emotion rating scales (specifically, valence and arousal),
rather than discrete emotion faces [See also 56]. We think the differences between
skywriting and prevarication may be subtly and importantly different—that the
former does not employ on-task processing, but the effect is the same — systematic
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selection of an emotion face, is not made. Finally, although the paths shown in Fig. 4
suggest sequenced processing, the effect can be parallel — where the mouse may be in
‘no man’s land’ while processing (and decision making) continues.

————»| music->emotion face |certain selected
—>

emotion

i processing > face

juswaAcw

Path 3 (skywriting) Path 2 (uncertain)

Path 1 (response execution or prevarication)

Fig. 4. Proposed cognitive processing paths as listener makes decisions about which face best
matches the emotion portrayed by the incoming music as quickly as possible. Under ideal
conditions, fastest response is achieved via Path 1 in a single cycle, with processing required to
make a decision and check that the action of moving the mouse (small box of left) was
accurate, However, when the decision is more complex (e.g. ambiguous musical features,
insufficient data, emotion face expressions inadequate, and changing conditions of music
input), one of two (non exclusive) possibilities may occur: The participant may take Path 2,
repeatedly assessing (processing) while music input continues, but without mouse movements,
or Path 1, where the mouse is moved while continuing to process the music—that is, response
is uncertain, but mouse is moved in a hesitant, prevaricating way. This prevarication during
processing continues while a decision is not made (looping around Path 1 continues) or
switching to another path (or making a final mouse movement then exiting the loop via the
‘certain’ path). Finally, mouse movements might be made aimlessly without attention to the
music and without task related processing. This is shown as Path 3, and is referred to as
skywriting, which continues until the participant returned to more focused, task related
processing. Width of boxes signifies rough proportion of response time contribution: mouse
movements take a short time relative to task processing time.

6 Conclusions

In this paper we reported the development and testing of a categorical response
interface consisting of a small number of salient emotional expressions upon which
participants can rate emotions as a piece of music or other stimulus unfolds. We
developed a small set of key emotional expression faces found in basic emotion and
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music research, and arranged them into a circle such that they were meaningfully
positioned in space, and such that they resembled traditional valence-arousal rating
scale interfaces (positive emotions toward the right, high arousal emotions toward the
top). We called the response space an emotion-face clock because the faces
progressed around a clock in such a way that the expressions changed in a
semantically related and plausible manner.

The interface was then tested using particular pieces that expressed the emotions
intended to represent the emotional expression portrayed by each of the six faces. The
system was successful in measuring emotional ratings in the manner expected. The
post-performance ratings used in an earlier study had profile contours that matched
the profile contours of the accumulated summary of continuous response in the new
device for all but the Angry stimulus. We took this as evidence for the reliability and
validity of the emotion-face clock as a self-report continuous measure of emotion.

Continuous response plots allowed investigation of the ebb and flow of ratings,
demonstrating that for some pieces two emotions were dominant (the target Angry
and target Sad excerpts in particular), but that the composition of the emotions
changed over time, and that the change could be attributed to changes in musical
features. When no face is selected by a participant while the music is playing we
conclude that the participant is (A) orienting to the stimulus—usually at the start of
the piece, (B) actually not identifying any emotion in the music, (C) prevaricating
(dithering between making a decision while keeping the mouse away from any of the
faces), which may even continue throughout a piece, as appears to have happened to
at least one participant for the Scared and Excited stimuli. Hence, the continuous,
online task is complicated by the constant stream of new musical information that
may be supporting or contradicting the decision that the listener is trying to make in
real time.

When there were different faces selected across participants at a given moment in
time (more than one emotion face receiving votes), we conclude that (1) More than
one emotion is identified simultaneously, and as a one-face-at-a-time interface,
different emotion selection is distributed statistically, (2) An approximate response is
given because the resolution of the instrument is not sufficient, meaning, as with
conclusion 1, that different faces are selected by chance, (3) The two (or more) faces
selected cover a semantically similar region of emotion space that is indicative of the
emotion expressed by the music, (4) Participants are responding in a staggered
(lagged) manner, with some reacting quickly to the most recent part of the music,
possibly even anticipating, others still responding to musical material of the recent
past, and so forth [4, 53, 57]. Conclusion (3) is related to (2), except that it highlights
the success of the emotion-face clock being superimposed intuitively on a two-
dimensional emotion space, because the selection of adjacent faces need not be seen
as errors or confusions, but as occupying a shared region that best describes the
emotion being portrayed (as do the emotions represented by adjacent faces of Angry
and Scared, and the adjacent faces represented by Sad and Calm).

We do not deny the possibility that listeners could hear ‘conflicting” emotions
simultaneously. Indeed, recent research has demonstrated how musical features can
be manipulated to induce a perception of mixed, distant emotions such as sadness and
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happiness [58, 59]. Research will be required to see how the present instrument might
explain such conflicting emotions portrayed by music (see Conclusion 1, above, for
example), and may even help to resolve whether multiple emotion votes at the same
point in the music are due to the poor resolution of the instrument, or because
statistically some listeners select one of the two possible emotion faces, while others
select the other at the same point in time.

Further analysis will reveal whether musical features can be used to predict
categorical emotions in the same way that valence/arousal models do (for a review,
see [4]), or whether six emotion faces is optimal. Given the widespread use of
categorical emotions in music metadata [60, 61], the categorical, discrete approach to
measuring continuous emotional response is bound to be a fruitful tool for researchers
interested in automating emotion in music directly into categorical representations.
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Abstract. ‘Emotion in Motion’ is an experiment designed to understand the
emotional responses of people to a variety of musical excerpts, via self-report
questionnaires and the recording of electrodermal activity (EDA) and heart rate
(HR) signals. The experiment ran for 3 months as part of a public exhibition in
Dublin, having nearly 4000 participants and over 12000 listening samples.
This paper presents the methodology used by the authors to approach this re-
search, as well as preliminary results derived from the self-report data and the

physiology.

Keywords: Emotion, Music, Autonomic Nervous System, ANS, Physiological
Database, Electrodermal Activity, EDR, EDA, POX, Heart Rate, HR,
Self-Report Questionnaire.

1 Introduction

‘Emotion in Motion’ is an experiment designed to understand the emotional responses
of people during music listening, through self-report questionnaires and the recording
of physiological data using on-body sensors. Visitors to the Science Gallery, Dublin,
Ireland were asked to listen to different song excerpts while their heart rate (HR) and
Electrodermal Activity (EDA) were recorded along with their responses to questions
about the affective impact of the music. The songs were chosen randomly from a pool
of 53 songs, which were selected to elicit positive emotions (high valence), negative
emotions (low valence), high arousal and low arousal. In addition to this, special ef-
fort was made in order to include songs from different genres, styles and eras. At the
end of each excerpt, subjects were asked to respond to a simple questionnaire regard-
ing their assessment of the song, as well as how it made them feel.

Initial analysis of the dataset has focused on validation of the different measure-
ments, as well as exploring relationships between the physiology and the self-report
data, which is presented in this paper.

Following on from this initial work we intend to look for correlations between
variables and sonic characteristics of the musical excerpts as well as factors such as
the effect of song order on participant responses and the usefulness of the Geneva
Emotional Music Scale [1] in assessing emotional responses to music listening.

M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 19-83] 2013.
© Springer-Verlag Berlin Heidelberg 2013
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1.1 Music and Emotion

Specificity of musical emotions versus ‘basic’ emotions. While the field of emotion
research is far from new, from Tomkins theory of ‘discrete’ emotions [2] or Ekman’s
[3] studies on the ‘universality’ of human emotions to the fMRI enabled neuroimag-
ing studies of today [4], there is still debate about the appropriateness of the existing
‘standard’ emotion models to adequately describe emotions evoked through musical
or performance related experiences. It has been argued that many of the ‘basic’ emo-
tions introduced by Ekman, such as anger or disgust, are rarely (if ever) evoked by
music and that terms more evocative of the subtle and complex emotions engendered
by music listening may be more appropriate [5]. It is also argued that the triggering of
music-related emotions may be a result of complex interactions between music, cog-
nition, semantics, memory and physiology as opposed to a direct result of audio
stimulation [6, 7]. For instance a given piece of music may have a particular signifi-
cance for a given listener e.g. it was their ‘wedding song’ or is otherwise associated
with an emotionally charged memory.

While there is still widespread disagreement and confusion about the nature and
causes of musically evoked emotions, recent studies involving real-time observation
of brain activity seem to show that areas of the brain linked with emotion (as well as
pleasure and reward) are activated by music listening [8]. Studies such as these would
seem to indicate that there are undoubtedly changes in physiological state induced by
music listening, with many of these correlated to changes in emotional state.

It is also important to differentiate between personal reflection of what emotions
are expressed in the music, and those emotions actually felt by the listener [9]. In the
study presented on this paper we specifically asked participants how the music made
them feel as opposed to any cognitive judgments about the music.

During the last few decades of emotion research, several models attempting to ex-
plain the structure and causes of human emotion have been proposed. The ‘discrete’
model is founded on Ekman’s research into ‘basic’ emotions, a set of discrete emo-
tional states that he proposes are common to all humans; anger, fear, enjoyment, dis-
gust, happiness, sadness, relief, etc. [10].

Russell developed this idea with his proposal of an emotional ‘circumplex’, a two
or three axis space (valence, arousal and, optionally, power), into which emotional
states may be placed depending on the relative strengths of each of the dimensions,
i.e. states of positive valence and high arousal would lead to a categorization of ‘joy’.
This model allows for more subtle categorization of emotional states such as ‘relaxa-
tion’ [11].

The Geneva Emotional Music Scales (GEMS) [1] have been developed by Marcel
Zentner’s team at the University of Zurich to address the perceived issue of emotions
specifically invoked by music, as opposed to the basic emotion categories found in
the majority of other emotion research. He argues that musical emotions are usually a
combination of complex emotions rather than easily characterised basic emotions
such as happiness or sadness. The full GEMS scale consists of 45 terms chosen for
their consistency in describing emotional states evoked by music, with shorter 25
point and 9 point versions of the scale. These emotional states can be condensed into
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9 categories which in turn group into 3 superfactors: vitality, sublimity and unease.
Zentner also argues that musically evoked emotions are rare compared to basic/day-
to-day emotions and that a random selection of musical excerpts is unlikely to trigger
many experiences of strong musically evoked emotions. He believes that musical
emotions are evoked through a combination of factors which may include the state of
the listener, the performance of the music, structures within the music, and the listen-
ing experience [5].

Lab versus Real World. Many previous studies into musically evoked emotions have
noted the difficulty in inducing emotions in a lab-type setting [12, 13], far removed
from any normal music listening environment. This can pose particular problems in
studies including measurements of physiology as the lab environment itself may skew
physiological readings [14]. While the public experiment/installation format of our
experiment may also not be a ‘typical’ listening environment, we believe that it is
informal, open and of a non-mediated nature, which at the very least provides an in-
teresting counterpoint to lab-based studies, and potentially a more natural set of re-
sponses to the stimuli.

1.2  Physiology of Emotion

According to Bradley and Lang, emotion has "almost as many definitions as there are
investigators", yet "an aspect of emotion upon which most agree, however, is that in
emotional situations, the body acts. The heart pounds, flutters stops and drops; palms
sweat; muscles tense and relax; blood foils; faces blush, flush, frown, and smile" [15,
pp- 581]. A plausible explanation for this lack of agreement among researchers is
suggested by Cacioppo et al. in [16, pp. 174]. They claim that "...language sometimes
fails to capture affective experiences - so metaphors become more likely vehicles for
rendering these conscious states of mind", which is coherent with the etymological
meaning of the word emotion; it comes from the Latin movere, which means to move,
as by an external force.

For more than a century, scientists have been studying the relationship between
emotion and its physiological manifestation. Analysis and experimentation has given
birth to systems like the polygraph, yet it has not been until the past two decades, and
partly due to improvements and reduced costs in physiological sensors, that we have
seen an increase in emotion recognition research in scientific publications [17]. An
important factor in this growth has been responsibility of the Affective Computing
field [18], interested in introducing an emotion channel of communication to human
computer interaction.

One of the main problems of emotion recognition experiments using physiology is
the amount of influencing factors that act on the Autonomic Nervous System (ANS)
[19]. Physical activity, attention and social interaction are some of the external factors
that may influence physiological measures. This has led to a multi-modal theory for
physiological differentiation of emotions, where the detection of an emotional state
will not depend on a single variable change, but in recognizing patterns among sev-
eral signals. Another issue is the high degree of variation between subjects and low
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repeatability rates, which means that the same stimulus will create different reactions
in different people, and furthermore, this physiological response will change over
time. This suggests that any patterns among these signals will only become noticeable
when dealing with large sample sizes.

2 Methodology

2.1  Experimental Design

The aim of this study is to determine what (if any) are the relationships between the
properties of an excerpt of music (dynamics, rhythm, emotional intent, etc.), the self-
reported emotional response, and the ANS response, as measured through features
extracted from EDA and HR. In order to build a large database of physiological and
self-report data, an experiment was designed and implemented as a computer work-
station installation to be presented in public venues. The experiment at the Science
Gallery — Dublin' lasted for three months (June-August 2010), having nearly 4000
participants and over 12000 listening samples. The music selection included in its 53
excerpts contains a wide variety of genres, styles and structures, which, as previously
mentioned, were selected to have a balanced emotional intent between high and low
valence and arousal.

To be part of the experiment, a visitor to the Science Gallery was guided by a me-
diator to one of the four computer workstations, and then the individual followed the
on-screen instructions to progress through the experiment sections (see Fig. 1 (b)).
These would first give an introduction to the experiment and explain how to wear the
EDA and HR sensors. Then, the participant would be asked demographic and back-
ground questions (e.g. age, gender, musical expertise, music preferences, etc.). After
completing this section, the visitor would be presented with the first song excerpt,
which was followed by a brief self-report questionnaire. The audio file is selected
randomly from a pool of songs divided in the four affective categories. This was re-
peated two more times, taking each music piece from a different affective category, so
each participant had a balanced selection of music. The visitor was then asked to
choose the most engaging and the most liked song from the excerpts heard. Finally,
the software presented the participant plots of his or her physiological signals against
the audio waveform of the selected song excerpts. This was accompanied with a brief
explanation of what these signals represent.

Software. A custom Max/MSP* patch was developed which stepped through the dif-
ferent stages of the experiment (e.g. instructions, questionnaires, song selection, etc.)
without the need of supervision, although a mediator from the gallery was available in
case participants had any questions or problems. The software recorded the partici-
pants’ questions and physiological data into files on the computer, as well as some
extra information about the session (e.g. date and time, selected songs, state of

! http://www.sciencegallery.com/
http://cycling74.com/products/max/
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sensors, etc.). All these files were linked with a unique session ID number which was
later used to build the database.

Sensors and Data Capture. Mediaid POX-OEM M15HP® was used to measure HR
using infra-red reflectometry, which detects heart pulse and blood oxygenation. The
sensor was fitted by clipping on to the participant’s fingertip as shown in Fig. 1 (a).

() (b)

Fig. 1. (a) EDA and HR Sensors. (b) Participants during ‘Emotion in Motion’ experiment. To
record EDA, a sensor developed by BioControl Systems was utilised.* This provided a con-
tinuous measurement of changes in skin conductivity. Due to the large number of participants,
we had to develop a ‘modular’ electrode system that allowed for easy replacement of failed
electrodes.

In order to acquire the data from the sensors, an Arduino® microcontroller was
used to sample the analogue data at 250 Hz and to send via serial over USB commu-
nication to the Max/MSP patch. The code from SARCduino® was used for this pur-
pose. For safety purposes the entire system was powered via an isolation transformer
to eliminate any direct connection to ground. Full frequency response closed-cup
headphones with a high degree of acoustic isolation were used at each terminal, with
the volume set at a fixed level.

Experiment Versions. During the data collection period, variations were made to the
experiment in order to correct some technical problems, add or change the songs in
the pool, and test different hypothesis. All of this is annotated in the database. For
example, at the beginning participants were asked to listen to four songs in each ses-
sion, later this was reduced to three in order to shorten the duration of the experiment.
The questionnaire varied in order to test and collect data for different questions sets
(detailed below), which were selected to compare this study to other experiments
in the literature (e.g. the GEMS scales), analyse the effect of the questions in the

3 http://www.mediaidinc.com/Products/M15HP_Engl.htm

4 http://infusionsystems.com/catalog/product_info.php/products_id/203
3 http://www.arduino.cc

6 http://www.musicsensorsemotion.com/2010/03/08/sarcduino/
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physiology by running some cases without any questions, and also collect data for our
own set of questions. The results presented in this paper are derived from a portion of
the complete database with consistent experimental design.

Scales and Measures

LEMtool. The Layered Emotion Measurement Tool (LEMtool) is a visual measure-
ment instrument designed for use in evaluating emotional responses to/with digital
media [20]. The full set consists of eight cartoon caricatures of a figure expressing
different emotional states (Joy/Sadness, Desire/Disgust, Fascination/Boredom, Satis-
faction/Dissatisfaction) through facial expressions and body language. For the pur-
poses of our experiment we used only the Fascination/Boredom images positioned at
either end of a 5 point Likert item in which participants were asked to rate their levels
of ‘Engagement’ with each musical excerpt.

SAM — Self Assessment Mannekin. The SAM is a non-verbal pictorial assessment
technique, designed to measure the pleasure, arousal and dominance associated with a
person’s affective response to a wide range of stimuli [21]. Each point on the scale is
represented by an image of a character with no gender or race characteristics, with 3
separate scales measuring the 3 major dimensions of affective state; Pleasure,
Arousal, and Dominance. On the Pleasure scale the character ranges from smiling to
frowning, on the Arousal scale the figure ranges from excited and wide eyed to a
relaxed sleepy figure. The Dominance scale shows a figure changing in size to repre-
sent feelings of control over the emotions experienced.

After initial pilot tests we felt that it was too difficult to adequately explain the
Dominance dimension to participants without a verbal explanation so we decided to
use only the Pleasure and Arousal scales.

Likert Scales. Developed by the psychologist Rensis Likert [22], these are scales in
which participants must give a score along a range (usually symmetrical with a mid-
point) for a number of items making up a scale investigating a particular phenome-
non. Essentially most of the questions we asked during the experiment were Likert
items, in which participants were asked to rate the intensity of a particular emotion or
experience from 1 (none) to 5 (very strong) or bipolar version i.e. 1 (positive) to 5
(negative).

GEMS — Geneva Emotional Music Scales. The 9 point GEMS scale [1] was used to
ask participants to rate any instance of experiencing the following emotions: Wonder,
Transcendence, Tenderness, Nostalgia, Peacefulness, Energy, Joyful activation, Ten-
sion, and Sadness. Again, they were asked to rate the intensity with which they were
felt using a 5 point Likert scale.

Tension Scale. This scale was drafted by Dr. Roddy Cowie of QUB School of Psy-
chology. It is a 5 point Likert scale with pictorial indicators at the Low and High ends
of the scale depicting a SAM-type mannekin in a ‘Very Relaxed” or ‘Very Tense’
state.
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Chills Scale. This was adaptation from the SAM and featured a 5 point Likert scale with
a pictorial representation of a character experiencing Chills / Shivers / Thrills / Goose-
bumps (CSTG), as appropriate, above the scale. The CSTG questions of the first version
of the experiments were subsequently replaced with a single chills measure/question.

2.2 Song Selection and Description

The musical excerpts used in the experiment were chosen by the researchers using
several criteria: most were selected on the basis of having been used in previous ex-
periments concerning music and emotion, while some were selected by the research-
ers for their perceived emotional content. All excerpts were vetted by the researchers
for suitability. As far as possible we tried to select excerpts without lyrics, or sections
in which the lyrical content was minimal.’

Each musical example was edited down to approximately 90 seconds of audio. As
much as possible, edits were made at ‘musically sensible’ points i.e. the end of a
verse/chorus/bar. The excerpts then had their volume adjusted to ensure a consistent
perceived level across all excerpts. Much of the previous research into music and
emotion has used excerpts of music of around 30 seconds which may not be long
enough to definitely attribute physiological changes to the music (as opposed to a
prior stimulus). We chose 90 seconds duration to maximize the physiological changes
that might be attributable to the musical excerpt heard. Each excerpt was also proc-
essed to add a short (< 0.5 seconds) fade In/Out to prevent clicks or pops, and 2 sec-
onds of silence added to the start and end of each sound file. We also categorized each
song according to the most dominant characteristic of its perceived affective content:
Relaxed = Low Arousal, Tense = High Arousal, Sad=Low Valence, Happy = High
Valence. Songs were randomly selected from each category pool every time the ex-
periment was run with participants only hearing one song from any given category.

Acoustic Feature Extraction. In order to analyse the relationship between the sonic
and structural features of the musical excerpts and the participants experiences whilst
listening to the excerpts, it was necessary to extract these features from the excerpts,
preferably via an automatic software based approach in order to ensure consistency
and repeatability. There are a wide range of potential features that can be extracted
but for the purposes of this analysis we chose to focus on the musical mode (Ma-
jor/Minor) and dynamic range variability of the excerpts.

Key and mode information was automatically extracted using the commercial
‘Mixed in Key’ (MiK) software.® The outputs from this software were compared with
information available from online sources to determine the accuracy of the automatic
extraction and in most cases these matched well.

Dynamic range values were calculated using the free stand-alone Windows version
of Algorhythmix TT-Dynamic Range (TT-DR) Meter.” This software calculates the

7 The full list of songs used in the experiment is available in the Appendix.
8 www.mixedinkey.com
K http://www.pleasurizemusic.com/es/es/download#menul
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average loudness of an audio file (RMS, an established loudness measurement stan-
dard) and also calculates a Dynamic Range (DR) value, the difference between the
peak headroom and the top 20 average RMS measurements, to give an integer value
representing the overall density, thickness or ‘loudness’ of the audio file analysed.
With this method lower DR values represent consistently ‘loud’ recordings lacking
dynamic range. These values were then entered into the database to be incorporated
into the analysis.

2.3  Feature Extraction from Physiology and Database Built

Database Built. Once the signals and answer files were collected from the experi-
ment terminals, the next step was to populate a database with the information of each
session and listening case. This consisted in several steps, detailed below.

First, the metadata information was checked against the rest of the files with the
same session ID number for consistency, dropping any files that had a wrong file-
name or that were corrupted. Subsequently, and because the clocks in each acquisition
device and the number of samples in each recorded file can have small variations, the
sample rates (SR) of each signal file were re-calculated. Moreover, some files had
very different number of samples, which were detected and discarded by this process.
To calculate the SR of each file, a MATLAB'® script counted the number of samples
of each file, and obtained the SR using the duration of the song excerpt used in that
recording. Two conditions were tested: a) that the SR was within an acceptable range
of the original programmed SR (acquisition device) and b) that the SR did not present
more than 0.5% variation over time. After this stage, the calculated SR was recorded
as a separate variable in the database.

Finally, the data from each song excerpt was separated from its session and copied
into a new case in the database. This means that each case in the database contains
variables with background information of the participant, answers to the song ques-
tionnaire, and features extracted from the physiological signals, as well as metadata
about the session (experiment number, SR, order in which the song was heard, termi-
nal number, date, etc.).

EDAtool and HRtool. Two tools developed in MATLAB were used to extract fea-
tures from the physiological data: EDAtool and HRtool. Extraction of features in-
cluded detection and removal of artifacts and abnormalities in the data. The output
from both tools consisted of the processed features vectors and an indication of the
accuracy of the input signal, which is defined as the percentage of the signal which
did not present artifacts. This value can be utilized later to remove signals from the
database that fall below a specified confidence threshold.""

EDAtool. EDAtool is a function developed to pre-process the EDA signal. Its process-
ing includes the removal of electrical noise and the detection and measurement of

10 yww . mathworks . com/products/matlab/

1 Latest versions can be found in:
http://www.musicsensorsemotion.com/tag/tools/
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artifacts. Additionally, it separates the EDA signal into phasic and tonic components
(please refer to [23] for a detailed description of EDA). Fig. 2 shows an example of
the different stages of the EDAtool.
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Fig. 2. Stages of the EDAtool on a Skin Conductance signal. The top plots show the original
signal and the low-passed filtered signal (dotted), which removes any electrical noise. The next
plots show the artifact detection method, which identifies abrupt changes in the signal. (a)
shows a signal above the confidence threshold used in this experiment, while signal in (b)
would be discarded. The third row from the top shows the filtered signals with the artifacts
removed. The bottom plots show the phasic and tonic (dotted) components of the signal.
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Fig. 3. Stages of the HRtool on an ECG signal. The top plot shows the raw ECG signal. The
two middle plots show the peak detection stages, with a dynamic threshold. The bottom plot
shows the final HR vector, with the resulting replacement of values that were outside the speci-
fied ranges (marked as dots in the plot). In this example, accuracy is at 85.9%, which falls
below the acceptance tolerance for this experiment, and would be discarded as a valid case.
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HRtool. HRtool is a function developed to convert the data from an Electrocardiogram
(ECG) or Pulse Oximetry (POX) signal into an HR vector. This involves three main
stages (see Fig. 3), which are the detection of peaks in the signal (which is different
for a POX or an ECG signal), the measurement of the interval between pulses and the
calculation of the corresponding HR value. Finally, the algorithm evaluates the HR
vector replacing any values that are outside the ranges entered by the user (e.g. maxi-
mum and minimum HR values and maximum change ratio between two consequent
pulses).

3 Preliminary Analysis

We are not aware of any similar study with a database of this magnitude, which has
made it difficult to apply existing methodologies from smaller sized studies [17, 19].
Consequently, a large portion of the research presented in this paper has been dedi-
cated to do exploratory analysis on the results; looking to identify relationships be-
tween variables and to evaluate the validity of the questionnaire and physiological
measurements.

3.1  Preliminary Results from Questionnaire

General Demographic Information. After removing all data with artifacts, as de-
scribed previously, an overall sample size of 3343 participants representing 11041
individual song listens was obtained. The remaining files were checked for consis-
tency and accuracy and no other problems found.

The mean DOB was 1980 (Std. Dev. 13.147) with the oldest participants born in
1930 (22 participants, 0.2%). 47% of the participants were Male, 53% Female, with
62.2% identifying as ‘Irish’, and 37.8% coming from the ‘Rest of the World’.

In the first version of the experiment participants heard four songs (1012 partici-
pants) with the subsequent versions consisting of three songs (2331 participants).

Participants were asked if they considered themselves to have a musical back-
ground or specialist musical knowledge, with 60.7% indicating ‘No’ and 39.3% indi-
cating ‘Yes’. Interestingly, despite the majority of participants stating they had no
specialist musical knowledge, when asked to rate their level of musical expertise from
‘1= No Musical Expertise’ to ‘5= Professional Musician’ 41.3% rated their level of
musical expertise as ‘3’.

Participants were also asked to indicate the styles of music to which they regularly
listen (by selecting one or more categories from the list below). From a sample of
N=3343 cases, preferences broke down as follows: Rock 68.1%, Pop 60.3%, Classical
35%, Jazz 24.9%, Dance 34.2%, Hip Hop 27%, Traditional Irish 17%, World 27.9%,
and None 1.2%.

Self-Report Data. An initial analysis was run to determine the song excerpts identi-
fied as most enjoyed and engaging. At the end of each experiment session, partici-
pants were asked which of the 3 or 4 (depending on experiment version) excerpts they
had heard was the most enjoyable and which they had found most engaging. These
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questions were asked in all 5 versions of the experiment, making them the only ones
to appear in all versions (other than the background or demographic questions).

The excerpts rated as ‘Most Enjoyed’ were James Brown ‘Get Up (I Feel Like be-
ing a) Sex Machine’ and Juan Luis Guerra ‘A Pedir Su Mano’ with these excerpts
chosen by participants in 55% of the cases where they were one of the excerpts heard.
At the other end of the scale, the excerpts rated lowest (fewest percentage of ‘Most
Enjoyed’) were Slayer ‘Raining Blood’ and Dimitri Shostakovich ‘Symphony 11, Op.
103 — 2" Movement’ with these excerpts chosen by participants in 13% of the cases
where they were one of the songs heard.

Participants were also asked to rate their ‘Liking’ of each excerpt (in experiment
versions 1-3). Having analysed the mean values for ‘Liking’ on a per-song basis, the
songs with the highest means were Jeff Buckley ‘Hallelujah’ (4.07/5) and The Verve
‘Bittersweet Symphony’ (4.03/5). The songs with the lowest mean values for ‘Liking’
were Slayer ‘Raining Blood’ (2.66/5) and Vengaboys ‘We like to party!’ (2.93/5).

The excerpt rated most often as ‘Most Engaging’ was Clint Mansell’s ‘Requiem
for a Dream Theme’ with this excerpt chosen by participants in 53% of the cases
where it was one of the excerpts heard. At the other end of the scale, the excerpt rated
lowest (fewest percentage of ‘Most Engaging’) was Ceoltéiri Chualann ‘Marbhna
Luimnigh’ with this excerpt chosen by participants in 11% of the cases where it was
one of the excerpts heard.

Interestingly, when the mean values for ‘Engagement’ for each excerpt were calcu-
lated, Clint Mansell’s ‘Requiem for a Dream Theme’ was only rated in 10th place
(3.74/5), with Nirvana ‘Smells Like Teen Spirit’ rated highest (3.99/5), closely fol-
lowed by The Verve ‘Bittersweet Symphony’ (3.95/5) and Jeff Buckley ‘Hallelujah’
(3.94/5). It was observed that while mean values for engagement are all within the 3-4
point range, there are much more significant differences between songs when partici-
pants were asked to rate the excerpt which they found ‘Most Engaging’, with partici-
pants clearly indicating a preference for one song over another.

The excerpts with the lowest mean values for ‘Engagement’ were Primal Scream
‘Higher Than The Sun’ (3.05/5) and Ceolt6iri Chualann ‘Marbhna Luimigh’ (3.09/5).
The excerpts with the highest mean values for Chills / Shivers / Thrills / Goosebumps
(CSTG) were Jeff Buckley ‘Hallelujah’ (2.24/5), Mussorgsky ‘A Night on the Bare
Mountain’ (2.23/5) and G.A. Rossini ‘William Tell Overture’ (2.23/5). The excerpts
with the lowest mean values for CSTG were Providence ‘J.O. Forbes of Course’
(1.4/5), Paul Brady ‘Paddys Green Shamrock Shore’ (1.43/5) and Neil Young ‘Only
Love Can Break Your Heart’ (1.5/5).

An analysis was also run to attempt to determine the overall frequency of partici-
pants experiencing the sensation of CSTG. The number of instances where CSTG
were reported as a 4 or 5 after a musical excerpt was tallied, giving 872 reports of a 4
or 5 from 9062 listens, meaning that significant CSTGs were experienced in around
10% of cases.

A selection of the musical excerpts used (some of which were outliers in the above
analyses) were mapped on to an emotional circumplex (as per Russell 1980), with
Arousal and Valence (as measured using the SAM) as the Y and X axes respectively.
An overall tendency of participants to report positive experiences during music listening
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was observed, even for songs which might be categorised as ‘Sad’ e.g. Nina Simone.
Arousal responses were a little more evenly distributed but still with a slight positive
skew. It seems that while some songs may be perceived as being of negative affect or
‘sad’, these songs do not in the majority of cases induce feelings of sadness. It may
therefore be more appropriate to rescale songs to fit the circumplex from ‘saddest’ to
‘happiest’ (lowest Valence to highest Valence) and ‘most relaxing’ to ‘most exciting’
(lowest Arousal to highest Arousal) rather than using the absolute values reported (as
seen on Fig. 4). This ‘positive’ skew indicating the rewarding nature of music listening
corroborates previous findings as documented in Juslin and Sloboda 2001 [24]. In future
versions of this experiment we hope to identify songs that extend this mapping and are
reported as even ‘sadder’ than Nina Simone.
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Fig. 4. Circumplex mapping of selected excerpts after a normalisation process to rescale the
values 0 -1 with the lowest scoring excerpt in each axis as ‘0’ and the highest as ‘1’

In addition we mapped all the excerpts on to the circumplex and identified each ac-
cording to which of the initial affective categories the development team had placed
them in e.g. Happy, Sad, Tense or Relaxed. As seen in Fig. 5 the self-reported Va-
lence and Arousal scores for the Happy and Sad categories were for the most part
remarkably consistent, clustering in the upper right and lower left quadrants of the
circumplex respectively (happiness usually being characterised as a state of positive
valence and medium to high arousal, sadness as negatively valence and with low
arousal). Participant responses for the Tense and Relaxed categories were less
clearly defined yet still tended to group above and below the median line for Arousal
respectively. This may be due to greater ambiguity as to what defines a ‘tense’ song
versus a song that induces high arousal and also positive valence, indeed examining
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Fig. 5 one can see that the excerpts positioned in the extreme of the upper right quad-
rant all belong to the Tense category. Fig. 4 shows the outliers in all categories as well
as typical examples in each group.
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Fig. 5. Circumplex mapping of all normalised excerpts to show position of excerpts from
Happy/Sad/Tense/Relaxed categories

MODE. A Mann-Whitney U test was used to examine significant differences between
songs in Major and Minor modes in how they affected the listeners self-reports of
Valence (negativity/positivity) and Arousal (drowsy/lively) as measured with the
SAM. Songs in Major modes (N = 4428, mean rank = 4530.28) were found to score
significantly higher (U = 10254, 255.00, p <.05) than Minor modes (N = 4501, mean
rank = 4400.78) in terms of how they affected self-reports of valence.

This appears to indicate that increased levels of positive affect (as evaluated using
the SAM) are associated with songs in a Major mode.

Songs in Major modes (N = 4428, mean rank = 4551.80) were found to score
significantly higher (U = 10349, 563.00, p < .01) than Minor keys (N = 4501, mean
rank = 4379.61) in terms of how they affected self-reports of arousal. This appears to
indicate that increased levels of arousal may be associated with songs in a Major
mode.

Songs in Major modes were also found to have a relationship with the listeners en-
gagement with the music (p < .01), indicating that listeners’ were more engaged with
music in a major mode.

There did not however appear to be any relationship between listeners’ ‘liking’ of
the music (as measured with a 5 point Likert item) and whether the music was in a
major or minor mode.
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Dynamic Range. A Spearman’s rho correlation was used to examine the relationship
between the participants’ self-reported Valence and Arousal (as measured with the
SAM) and the Dynamic Range of the excerpt they had listened to (as measured with
the TT-DR Meter). A significant negative correlation was found between Valence and
Dynamic Range (r[8927] = - 0.119, p <.01). The negative correlation would appear to
indicate that excerpts with less variable dynamic range (usually those that have un-
dergone dynamic range compression, an audio production technique) are associated
with positive valence.

A significant negative correlation was also found between Arousal and Dynamic
Range (r[8927] = - 0.211, p <.01). The negative correlation would appear to indicate
that excerpts with less variable dynamic range are associated with high arousal.

A Spearman’s rho correlation was used to examine the relationship between the
participants self-reported Engagement (as measured with the LEMtool) and the Dy-
namic Range of the excerpt they had listened to (as measured with the TT-DR Meter).
A significant negative correlation was found between Engagement and Dynamic
Range (r[8927] = - 0.053, p <.01). The negative correlation would appear to indicate
that excerpts with less variable dynamic range are associated with high Engagement.

A significant negative correlation was found between Liking and Dynamic Range
(r[8927] = - 0.029, p <.01). The negative correlation would appear to indicate that ex-
cerpts with less variable dynamic are associated with increased liking of the excerpt.

3.2  Preliminary Results from Physiology

Features Extracted from Physiology. Due to the scope and nature of the experi-
ment, the statistical analysis of the physiological signals has been approached as a
continuous iteration, extracting a few basic features from the physiology, running
statistical tests and using the results to extract new features. For this reason, the re-
sults from the physiology presented in this paper are still in a preliminary stage. Table
1 shows the features that have been extracted from the 3 physiological vectors re-
corded in each case of the database (Phasic EDA, Tonic EDA and HR).

Evaluation of Measurements

Dry Skin Issue. Originally, the accuracy level given by the EDAfool was calculated only
from the amount of artifacts presented during the duration of the EDA signal, without
considering the measured samples values’ relationship to the range of the sensor. Pre-
liminary analysis of the features extracted from EDA, filtering for signals that presented
less than 10% of artifacts, resulted in an overwhelming amount of signals with variances
close or equal to zero, which did not correlate with any of the variables measured or
changed during the experiment. At first, these participants were considered to simply
have a flat EDA response, yet further analysis proved differently.

In order to analyse the effect that the initial impedance of each subject might have
on the EDA response, the mean of the first 10 EDA samples was calculated and added
to the database as a new variable (Init_EDA). Fig. 6 shows the distribution of this
initial impedance, for EDA signals with confidence levels above 90% (calculated only
for motion artifacts).
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Table 1. Summary of statistical features extracted from physiological vectors

Abbreviation Description
SD_EDAP Standard Deviation of phasic EDA
mean_EDAP Mean of phasic EDA

RMS_EDAP Root Mean Square of phasic EDA
End_EDAT Tonic EDA end value*

Area_EDAT Trapezoidal numerical integration of tonic EDA
SD_EDAT Standard Deviation of tonic EDA
Lin_EDAT Linearity (difference between tonic EDA and linear regression)

RMS_EDAT Root Mean Square of tonic EDA

Init EDA Initial value of tonic EDA (average of 1st 10 samples)
Range_EDAP Range of phasic EDA
Range_EDAT Range of tonic EDA
HR Average HR during recording
mean_HRV Mean of normalised* HR vector
End_HRV End value of normalised* HR vector
SDNN Standard Deviation of NN intervals
RMSSD Square Root of the Mean Squared Difference of successive NN
LF_HRV Low Frequency HRV (0.04-0.15[Hz])
HF_HRV High Frequency HRV (0.15-0.4[Hz])
LtoH_HRV Low to High HRYV frequency Ratio
pNNS0 Fraction of NN > 50ms
pNN20 Fraction of NN > 20ms
TSP Total Spectral Power up to 0.04[Hz]

* These results are obtained after removing the initial offset from the vector.
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Fig. 6. Histogram of the mean of the 1st 10 samples of the EDA signal; equivalent to the initial
conductivity. The histogram shows a large group of participants with an initial conductivity
around the 160 mark (high impedance).



34 J. Jaimovich, N. Coghlan, and R. Benjamin Knapp

The distribution shows a clear predominance of a group of participants that presented
very high initial impedance (around the 160 mark, with over 1700 participants). Al-
though the origin of this irregularity is not clear, it is equivalent to the measurement of
the EDA sensor when it has an open circuit (e.g. no skin connection). Due to the deci-
sion to use dry-skin electrodes (avoiding the application of conductive gel prior to the
experiment), it is possible that this abnormality corresponds to a large group of partici-
pants in which the sensor did not make a good connection with the skin, probably due to
them having a drier skin than the rest of the participants. It is also interesting to point
out that there were a few hundred cases in which the sensor failed to work correctly (e.g.
cases with conductivity near zero). For these reasons, the number of cases used for the
analysis was filtered by the Init_EDA variable, looking for values that had normal im-
pedance (above open-circuit value and below short-circuit value), at the cost of signifi-
cantly reducing the valid cases in the database by approximately 37%.

EDA Level Dependence. While doing preliminary analysis on the EiM database, an
inverse proportional relationship was found between the EDA level and the amplitude
of changes in the EDA signal. Originally this was thought as being caused by a non-
linearity of the sensor utilised, which was observed and corrected, although the EDA
level still presented an influence on all features extracted from EDA. Fig. 7 shows an
example of valid EDA signals for one excerpt, showing the phasic component of
EDA. When analysing the amplitude of each phasic signal compared to its baseline
EDL, the inverse relationship is apparent. This relationship is better illustrated in Fig.
8, by dividing participants in 10 groups of equidistant EDA starting levels against
their phasic standard deviation. EDA initial level correlation coefficients with EDA
features range from .35 (mean_EDAP) to .62 (RMS_EDAP), all with p-values < .001.

Phasic EDA - Minnie Riperton - Reasons - 111 cases

Phasic EDA Level (%)

40
Audio waveform
L aadaaan L Lan \ T

“o 10 20 30 40 50 60 70 80
time (s)

Fig. 7. Example of the inverse relationship of EDA level on the phasic response variability.
Excerpt corresponds to Minnie Riperton ‘Reasons’, N=111.
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Fig. 8. Phasic SD versus EDA level, split into ten equidistance bins, in ascending order
(N=2013)

Even though the EDA level dependence has been discussed in the psychophysiol-
ogy literature for over 4 decades [23, see 25], it is surprisingly not considered when
processing EDA signals in numerous publications [see 2628, and 7 to name a few].
The origin of this relationship has been attributed to the Law of Initial Values (LIV)
[29], in which the amplitude of ANS responses is reciprocal to their baselines, as well
as to the “ceiling and bottom effects” [23]. This means that a very high or very low
baseline limits the range in which an EDA signal can vary (as seen in Fig. 7). Some
baseline correction methods have been suggested, such as using Autonomic Liability
Scores [30] or performing data transformations. Yet, an empirical elucidation of the
relationship between EDA level and phasic changes is still to be provided, and base-
line corrections remain to be problematic [23].

Effect of Age and Gender on Physiological Measures. Age and gender have been
related to influence changes in HRV and EDA. HRV decreases with age [31], and
variation is greater for females than males [32], this includes both spectral and tempo-
ral measures of HRV [33, 34]. The influence of gender and age on EDA features is
less reported, yet Boucsein [23] cites studies in which both EDL and SCR amplitudes
decrease for older participants. He also summarises several studies in which females
present higher levels of EDA, and male subjects having higher amplitude of SCRs.
Correlation analyses revealed significant relationships (p<.001) between age
groups and several HR features, including: mean_HR, SDNN, RMSSD, LF_HRYV,
HF_HRV, pNN50, pNN20, and TSP features. A closer look at these sets of features
per age group can be seen in Fig. 9. The plot of standard scores shows a clear de-
crease of HRV for older age groups, in agreement with the literature. The correlation
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Fig. 9. Z-scores for HR features that correlate with age. Error bars correspond to 95% confi-
dence intervals.

between average HR and age can be explained mainly by the group of younger par-
ticipants (aged between 10 and 20), which have a tendency to higher mean HR values
[35]. Another plausible non-exclusive explanation is the effect of heart conditions,
more frequent in older participants, causing higher average heart rates with age [36,
37]. With regard to gender, females do not show higher variability than males (except
for a non-significant increase for ages 51-70), yet they do have higher HFF_HRV val-
ues, and lower LtoH_HRYV ratio [31].

EDA level per age group and gender are shown in Fig. 10. Even though EDL
shows a slight decrease between the age groups of 10-20 and 41-50, these stabilise for
older groups. Conversely, female participants show significantly lower EDA levels
than male participants. Additionally, no other EDA feature shows significant differ-
ences between age groups.

It is important to state that many of the averages and trends described in the litera-
ture are measured in resting and un-stimulated environments, whereas the correlations
presented in this experiment are measured with musical stimulus (except for
Init_EDA), and are not necessarily comparable to these criterions.

Effect of Average HR on HRV Features. Mean HR value, calculated during the dura-
tion of the musical excerpt, showed significant correlations (p<.001) with several
HRV features, including large effect sizes with pNN20, TSP and RMSSD. The
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relationship between the average HR and HRV is not broadly mentioned in the litera-
ture, although Tsuji et al. [38] indicate it as being the “strongest clinical determinant
of HRV”, having an inverse association with HRV [39].

Gender
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Fig. 10. EDA level before listening to the excerpt per age group, for male and female partici-
pants. Error bars correspond to 95% confidence intervals.

Factor Analysis of Physiological Features. Principal Component Analysis (PCA) was
performed on a selection of features, excluding features with high degrees of correla-
tion (it is important to state that all physiological features are derived from only two
channels, EDA and HR, which can produce problems of multi-collinearity between
features. This needs to be addressed prior to running a PCA). Principal Component
Analysis shows three salient factors after rotation. These indicate a clear distinction
between frequency-related features from HR vector (Component 1: SDNN, HF_HRYV,
LF_HRV, Age and RMSSD), features from EDA (Component 2: Area_EDAT,
End_EDAT and SD_EDAP) and secondary features from HRV (Component 3:
mean_HRYV and End_HRYV).

Correlation between Factors and Questionnaire. The three salient components from
PCA were correlated against a selection of the self-report questionnaire: Song En-
gagement, Song Positivity, Song Activity, Song Tension, Song CSTG, Song Likeness
and Song Familiarity. Results show a relationship between components 1 and 2 with
the self-report questionnaire (see Table 2).

It is important to point out that the correlation coefficients presented below explain
only a small portion of the variation in the questionnaire results. Furthermore, it is
interesting that there was no significant correlation between CSTG and the 2™
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component, taking into account that 10% of the participants reported to experience
CSTG. Nevertheless, it is fascinating to see a relationship between physiological fea-
tures and self-reports such as song likeness, positivity, activity and tension.

Table 2. Correlation between components from physiology and questionnaire

Correlation by component (p<.001)

Question 1 5 :

Song Engagement -.081 .075 -

Song Positivity - .097 -

Song Activity - 110 -

Song Tension - .044 -

Song Chills/Shivers/Thrills/Goosebumps - - -
Song Likeness -.052 .061 -

Song Familiarity -.060 .083 -

Music Events versus Physiology. Analysis of temporal changes in correlation with the
excerpt’s musical changes has been explored. Preliminary results show a relationship
between the three physiological vectors; phasic EDA, tonic EDA and HR, with
changes in the music content, such as dynamics and structure. Fig. 11 shows two ex-
amples of pieces that present temporal correlation between physiology and music
dynamic (a clear example is shown Fig. 11 (b) between the phasic EDA and the audio
waveform after the 60 second mark).

E. W. Elgar - Enigma Varitions, Nimrod Jeff Buckley - Hallelujah
Phasic EDA - 108 cases - Mean 110 Phasic EDA - 180 cases - Mean x10

L L L L
0 20 40 80 80 100
Tonic EDA - 108 cases - Mean x10
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Fig. 11. Plots of changes in Phasic EDA, Tonic EDA, HR and audio waveform (top to bottom)
during the duration of the song excerpt. Physiological plots show multiple individual responses
overlapped, with the mean overlaid on top (dotted). (a) plots are for Elgar’s ‘Enigma Varia-
tions’, and plots in (b) are for an excerpt of Jeff Buckley’s ‘Hallelujah’.
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4 Discussion

Due to the public gallery nature of this study, work has mainly been focused in im-
proving the acquisition of signals, and the algorithms that correctly identify and
remove noise and artifacts. Any unaccounted variation at this stage can impact the
validity of the statistical tests that use physiological measurements. It is important to
point out that with the current sensor design, which requires no assistance and can be
used by participants briefed with short instructions; we are obtaining approximately
65% valid signals (with a confidence threshold of 90%). This has to be taken into
account when calculating group sizes for experiments that require physiological sens-
ing of audiences.

The analysis of the physiological measures shows high levels of dispersion be-
tween participants for the same feature, which seems to indicate that large sample
sizes need to be maintained for future experiments. Nonetheless, the preliminary re-
sults presented in this paper are a significant indication of the possible relationships
that explain the way we react to musical stimuli. Correlations between physiology and
self-report questionnaire, in groups of this size, are a statement that this relationship
undoubtedly exists. Our findings relating to the frequency of ‘chill’ responses to mu-
sical excerpts in around 10% of participants are also broadly consistent with the find-
ings of previous studies [40—42]. We are yet to further define the precise musical cues
and variables that influence changes.

In examining the relationship between acoustic features and induced affective re-
sponses one must pay particular attention to the complex nature of musical stimuli.
While there do appear to be relationships between musical/acoustic features such as
mode and changes in Valence and Arousal, it is more difficult to define a piece of
music as having a specific affective character based on these features alone. For in-
stance an excerpt may be in a minor key, have a high tempo and little dynamic range
variation (such as Slayer — Raining Blood) and be associated with tension or negative
valence, yet another excerpt bearing similar acoustic features (such as Nirvana —
Smells Like Teen Spirit) may be associated with elation and positive valence (see
Fig. 4). It is clear that perception of the affective content of a piece of music is more
than the sum of its acoustic or musical features.

Next steps in the analysis will be focusing on additional physiological descriptors,
multimodal analysis of the dataset, looking at temporal changes (versus the current
whole song approach) and measures of correlation and entrainment with musical fea-
tures. After the implementation in Dublin, ‘Emotion in Motion’ has been installed in
public spaces in the cities of New York, Genoa and Bergen. Each implementation of
the experiment has been enhanced and new songs have been added to the pool. We
believe augmenting the sample size of these kinds of studies is a requirement to start
elucidating the complex relationship between music and our affective response to it.
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Appendix: List of Music Pieces in Emotion in Motion (Dublin)

Artist Title
Anton Bruckner Te Deum
Aphex Twin Digeridoo
Arvo Pirt Spiegel Im Spiegel For Violin And Piano
Bing Crosby White Christmas
Black Eyed Peas I gotta Feeling
Ceoltdiri Chualann Marbhna Luimnigh
Ceoltéiri Chualann Marcshlua Ui Neill

Clint Mansell
Dimitri Shostakovich
E. W. Elgar
G. A. Rossini
G. F. Handel

G. T. Holst
Grainne Hambley
J. S. Bach
James Brown
Jeff Buckley
Johan Strauss
John McSherry

Requiem For A Dream (Theme)
Symphony 11, op. 103, 2™ Movement
Enigma Variations, Nimrod
William Tell Overture
The Arrival Of The Queen Of Sheba from
Solomon
Jupiter, the Bringer of Jollity
Eleanor Plunkett
Cello Suite No 1 in G major I. Prelude
Get Up (I feel like being a) Sex Machine
Hallelujah
Chit Chat Polka
An Bhean Chaointe
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Artist Title

John Williams Schindlers List

Juan Luis Guerra A Pedir Su Mano

M. P. Mussorgsk A Night On The Bare Mountain

Mazzy Star Into Dust

Neil Youn Only Love can break your heart

Nirvana Smells Like Teen Spirit

Paul Brad Paddys Green Shamrock Shore

O Ry Colewibbrey

Planxt Cunla (without lyrics)

Providence J. O. Forbes of Corse

Saint Saens Carnival of the Animals (Finale)

Sharon Shannon Blackbird

Silvio Rodriguez Coda Te Conozco

Slayer Raining Blood

The Commodores with Lionel Richie Easy like Sunday Mornin,

The Undertones Teenage Kicks

U2 One

Vinnie Kilduff Sean Sa Cheo
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Abstract. This paper examines the induction of emotions while listening to
Romantic orchestral music. The study seeks to explore the relationship between
subjective ratings of felt emotion and acoustic and physiological features. We
employed 75 musical excerpts as stimuli to gather responses of excitement and
pleasantness from 20 participants. During the experiments, physiological
responses of the participants were measured, including blood volume pulse
(BVP), skin conductance (SC), respiration rate (RR) and facial electromyography
(EMQG). A set of acoustic features was derived related to dynamics, harmony,
timbre and rhythmic properties of the music stimuli. Based on the measured
physiological signals, a set of physiological features was also extracted. The
feature extraction process is discussed with particular emphasis on the interaction
between acoustical and physiological parameters. Statistical relations among
audio, physiological features and emotional ratings from psychological
experiments were systematically investigated. Finally, a forward step-wise
multiple linear regression model (MLR) was employed using the best features,
and its prediction efficiency was evaluated and discussed. The results indicate that
merging acoustic and physiological modalities substantially improves prediction
of participants’ ratings of felt emotion compared to the results using the
modalities in isolation.

1 Introduction

With the recent advances in diverse fields of technology there is an emerging interest
in recognizing and understanding the emotional content of music. Music emotion
recognition plays an important role in music retrieval, mood detection, health care,
and human-machine interfaces. Moreover, the entire body of music collections
available to humans is increasing rapidly, and there is a need to intelligently classify
and retrieve music according to the emotions they elicit from listeners. Indeed,
emotion recognition is considered a key issue in integrating emotional intelligence
within advanced human-machine interaction. Thus, there is strong motivation for
developing systems that can recognize music-evoked emotions. In the following, we
briefly review some of the work related to music emotion recognition based on
acoustical and physiological features.

M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 44-57] 2013.
© Springer-Verlag Berlin Heidelberg 2013
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The emotions elicited during music listening are influenced by a number of
structural music characteristics, including tempo, mode, timbre, harmony and
loudness [1, 2]. In a pioneering publication [3], Li and Ogihara used acoustic features
to classify music into mood categories. They achieved an accuracy of 45% using a
database of 499 music clips selected from different genres annotated by a subject.
They used a SVM-based multilabel classification method and determined the
accuracy of their model using micro and macro-averaged precision. In [4] the authors
used a similar variety of acoustic features for 800 classical music clips and achieved a
recognition accuracy of 85%. Within the framework of Music Information Research
Evaluation eXchange (MIREX), Tzanetakis reported an accuracy of 63.5% using a
limited number of acoustic features [5]. Within the same framework, Peeters used a
larger number of acoustic features and reported only a slight improvement [6],
whereas in the next year Kim et al. proposed a system that reached a recognition
accuracy of 65.7% [7].

Music emotion recognition has employed a number of approaches. In [8] the
automatic detection of emotion in music was modeled as a multi-label classification
task. A series of multi-label classification algorithms were tested and compared, with
the predictive power of different audio features reaching an average precision of 81%.
However, recent research in music emotion recognition from audio has shown that
regression approaches can outperform existing classification techniques. In [12] the
effectiveness of emotion prediction using different musical datasets (classical, film
and popular music) was investigated. Their model had low generalizability between
genres for valence (16%) and moderate generalizability between genres for arousal
(43%), suggesting that valence operates differently depending on the musical genre.
In [9] the authors used multiple acoustic features to predict pleasure and arousal
ratings for music excerpts. They found that audio features are better for predicting
arousal than valence and that the best prediction results are obtained for a
combination of different features. In [10] a regression approach with combinations of
audio features was employed in music emotion prediction. They found that the best
performing features were spectral contrast and Mel-frequency cepstral coefficients
(MFCC). The best performance, however, was achieved by a combination of features.
In a recent publication [11], audio-based acoustical features for emotion classification
were evaluated. A data set of 2090 songs was used, different audio features were
extracted, and their predictive performance was evaluated. The results suggest that a
combination of spectral, rhythmic and harmonic features yields the best results.

Despite the progress achieved on emotion recognition using audio features alone,
the success of these various models has reached a glass ceiling. In order to improve
the recognition accuracy of audio-based approaches, many studies have exploited the
advantages of using additional information from other domains. This approach has led
to the development of methods combining audio and lyrics [13-16], audio and tags
[17], and audio and images [18], all of which result in moderate increases in
recognition accuracy. There is a large body of studies establishing the relationship
between physiological responses and musical emotions during music listening.
Several studies have attempted to demonstrate whether the basic emotions induced by
music are related to specific physiological patterns [19-23]. The relation between
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discrete emotions and emotion-specific physiological response patterns predicted by
theorists, however, still remains an open problem.

Indeed, the attempt to provide robust, incontrovertible evidence of emotional
induction during music listening remains a tremendous challenge. The adoption of
psychophysiological measures provides one possible solution, as they offer direct,
objective evidence of autonomic and somato-visceral activation. Physiological
responses during music listening include variations in heart rate, respiration
electrodermal activity, finger temperature, and surface electromyography. Little
attention, however, has been paid to the effect of physiological signals in music emotion
recognition. The main problem of using physiological signals is the difficulty of
mapping physiological patterns to specific emotional states. Furthermore, recording
physiological signals requires the use of sensors and the analysis of signals that often
reflect innervation by distinct branches of the autonomic nervous system (ANS). On the
other hand, physiological signals have certain advantages, as they provide an objective
measure of the listener’s emotional state without relying on participant self-reports.

In [24] the authors used movie clips to induce emotions in 29 subjects, and
combining physiological measures and subjective ratings achieved 83% recognition
accuracy. In [25] the authors recorded four biosignals from subjects listening to songs
and reached a recognition accuracy of 92%. Kim [26] used music excerpts to
spontaneously induce emotions, measured electromyogram, electrocardiogram, skin
conductivity and respiration changes, and then extracted the best features, achieving a
classification accuracy of 70% and 90% for subject-independent and subject-dependent
classification, respectively. Recently, in [27] a multimodal approach was based on
physiological signals for emotion recognition, using music video clips as stimuli. They
recorded EEG signals, peripheral physiological signals and frontal video. A variety of
features was extracted and used for emotion recognition by using different fusion
techniques. The results, however, demonstrated only a modest increase in recognition
performance, indicating limited complementarity of the different modalities.

An important issue in musical emotion recognition is the modeling of perceived
musical emotions. The two main approaches to modeling emotions in music-related
studies are the categorical and the dimensional approach. According to the categorical
approach, emotions are conceptualized as discrete entities, and there are a certain number
of basic emotions, such as happiness, sadness, anger, fear and disgust, from which all
subsequent emotional states are ultimately derived [28]. In music-related studies, emotion
researchers often employ music-specific emotion labels (awe, frisson), or they use
emotion terms that are more suitable to everyday musical experience (peacefulness,
tenderness). Whereas the categorical model often employs these apparently distinct
labels, in the dimensional approach all of the emotions experienced in everyday life are
characterized (or supported) by two underlying dimensions: valence, which is related to
pleasure-displeasure, and arousal, which is related to activation-deactivation. Thus, all
emotions can be characterized in terms of varying degrees of valence and arousal [29,
30]. Both approaches have been recently investigated in relation to musical emotions
[31], and their limitations were analyzed and discussed. In our study, the dimensional
approach was employed because existing research in psychophysiology can find little
evidence to suggest that there are emotion-specific physiological descriptors [21]. Rather,
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psychophysiological responses appear to be related to the underlying dimensions of
arousal and valence [32].

To the best of our knowledge, a combination of audio and physiological features
has not been used in music emotion recognition research. There are, however, studies
combining speech and physiological features for emotion recognition. In [33] and
[34] the authors used combined voice data and physiological signals for emotion
recognition. By fusing the features from both modalities, they achieved higher
recognition accuracy compared with recognition results using the individual
modalities.

The primary aim of the present work is to investigate the acoustic and
physiological effects on the induction of emotions by combining audio and
physiological features for music emotion recognition. Following [35] and [36], we
argue that there is a possible route of emotion elicitation by peripheral feedback, and
thus, that physiological arousal may influence the intensity and valence of emotions.
In our study, we want to investigate the possibility of increasing the prediction rate of
felt emotion through peripheral feedback by using acoustic and physiological features.
The emotion recognition task is formulated as a regression problem, in which the
arousal and valence ratings for each musical excerpt are predicted using a forward
step-wise multiple linear regression model. During the experiment, music excerpts
were employed as stimuli and the physiological responses of the listeners were
measured, which included blood volume pulse, respiration rate, skin conductivity, and
facial electromyographic activity. Both audio and physiological features were
extracted, and the best features were combined and used for emotion recognition.

To combine the two modalities, it is important to determine at which stage in the
model the individual modalities should be combined, or fused. A straightforward
approach is to simply merge the features from each modality, called feature-level
fusion. The alternative is to fuse the features at the decision level based on the outputs
of separate single classifiers, called decision-level fusion. The existing literature on
bimodal emotion recognition using speech features and physiological changes [34]
demonstrates that feature-level fusion provides higher recognition accuracies
compared to decision-level fusion. Therefore, in our study we employed feature-level
fusion.

2 Methods

Participants. Twenty non-musicians (10 females) were recruited as participants
(mean age = 26 years). The participants reported less than one year of training on an
instrument over the past five years and less than two years of training in early
childhood. In addition, all participants reported that they liked listening to Classical
and Romantic music. The participants also filled out a demographic questionnaire and
passed an audiometric test in order to verify that their hearing was normal.

Stimuli. Seventy-five music excerpts from the late Romantic period were selected for
the stimulus set. The excerpts were 35 to 45 seconds in duration and selected by a
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music theorist from the Romantic, late Romantic, or Neo-classical period (from 1815
to 1900). These genres were selected under the assumption that music from this time
period would elicit a variety of emotional reactions along both dimensions of the
emotion model. Moreover, each excerpt was selected to clearly represent one of the
four quadrants of the two-dimensional emotion space formed by the dimensions of
arousal and valence. Ten excerpts were chosen from a previous study [37] and 65
excerpts from our own personal collection. Aside from the high-arousal/negative-
valence quadrant, which had 18 excerpts, the other three quadrants contained 19
excerpts each.

Procedure. During the experiment, five physiological signals were measured,
including facial electromyography (EMG) of the smiling (zygomaticus major) and
frowning (corrugator supercilii) muscles, skin conductance (SC), respiration rate
(RR), and blood volume pulse (BVP). EMG measures the muscle activity through
surface voltages generated when muscles contract. It is often employed to index
emotional valence [38]. EMG sensors were placed above the zygomaticus major and
corrugator supercilli muscles. SC is typically employed to index the physiological
arousal of participants [38]. It measures the skin’s ability to conduct electricity as a
result of variations in sweat-gland activity. To measure SC, we positioned electrodes
on the index and ring fingers of the non-dominant hand. RR is one of the
characteristics of respiration change. A stretch sensor attached around the torso was
used to record the breathing activity of the listeners. Heart rate variability (HRV) is
the corresponding characteristic of heart rate activity derived from blood volume
(BVP) pulse, which is measured with a plethysmograph attached to the middle finger
of the non-dominant hand.

During the experiment the participants were asked to sit in a comfortable and
relaxed position. They were told that it was crucial not to move during the baseline
recordings and while the excerpts were playing. Following a practice trial to
familiarize the participants with the experimental task, there was a two-minute
baseline period in which their physiological measurements were taken. To remove
inter-individual variability, seven additional one-minute baselines were recorded after
each block of ten excerpts. Following each excerpt, participants rated their level of
experienced excitement and pleasantness on 7-point continuous-categorical Likert
scales.

3 Audio Feature Extraction

A theoretical selection of musical features following [12] was made based on musical
characteristics such as dynamics, timbre, pitch, harmony, rhythm and structure using
the MIR Toolbox for MATLAB [40]. For all features a series of statistical descriptors
was computed, such as the mean, the standard deviation and the linear slope of the
trend across frames. A total of 58 descriptors related to these features was thus
extracted from the musical excerpts. Table 1 lists the various acoustic features and
statistical descriptors extracted.
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Table 1. The acoustic feature set extracted from the audio signals

Domain No. Name

Dynamics 1-3 RMS'??

Timbre 4-18 Spectral Centroid"*® Spectral Flux'**  Spectral
Spread'?? Spectral Entropy'** Roughness'*?

Pitch 19-24  Chromagram"*? Pitch"*?

Tonality 25-36 Key Clarity"*® Key Strength'*® Harmonic Change
Detection Function'** Mode"*

Rhythm 37-49 Fluctuation Pattern’ Attack Times'** Event Density'>
Tempo'*? Pulse Clarity"*?

Structure 50-58 Spectral Novelty"*?, Rhythmic Novelty'>?, Tonal
Novelty'??

Mean' Standard deviation” Slope®

3.1 Dynamics

We computed the RMS amplitude to examine whether the energy is evenly
distributed throughout the signals, or to determine whether certain frames are more
contrasted than others.

3.2 Timbre

A set of 5 features related to musical timbre were extracted from the Short-term
Fourier Transform: Spectral Centroid, Spectral Flux, Spectral Spread and Spectral
Entropy. Spectral Centroid represents the degree of timbre brightness. Spectral Flux is
related to the degree of temporal evolution of the spectral envelope. Spectral Spread
indicates the breadth of the spectral envelope. Spectral Entropy is used to capture the
formants and the “peakedness” of the spectral distribution. Roughness was also
derived from the peaks in the spectrogram based on the model in [41] and represents
the sensory dissonance of the sound.

3.3 Pitch

Two pitch features were derived. The Chromagram represents the energy distribution of
the signals wrapped around the 12 pitch classes. The Pitch was also computed using an
advanced pitch extraction method which divides the audio signal into two channels
below and above 1000 Hz and computes the autocorrelation of the low channel, the
envelope of the high channel, and sums the autocorrelation functions [45].

3.4  Tonality

The signals were also analyzed according to their harmonic characteristics. A
Chromagram representing the distribution of pitch-classes is created. Key Strength
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computes the cross-correlation of the Chromagram with each possible major or minor
key. The Key Clarity is the Key Strength of the key with the highest Key Strength out
of all 24 keys [42]. The Harmonic Change Detection Function is a measure of the flux
of the Tonal Centroid, and it captures the tonal diversity across time [43]. Finally, to
model the Mode of each piece, a computational model that distinguishes major and
minor excerpts was employed. It calculates an overall output that continuously ranges
from zero (minor mode) to one (major mode) [44].

3.5 Rhythm

Fluctuation Pattern represents the rhythmic periodicity along auditory frequency
channels) [46], and Attack Times refers to the estimation of note onset times. The Event
Density measures the overall amount of simultaneous events in a musical excerpt. The
tempo of each excerpt in beats per minute (BPM) was estimated by first computing a
spectral decomposition of the onset detection curve. Next, the autocorrelation function
was translated into the frequency domain in order to be compared to the spectrum curve,
and the two curves were subsequently multiplied. Then a peak-picking algorithm was
applied to the spectrum representation to select the best candidate tempo. The Pulse
Clarity, a measure of the rhythmical and repetitive nature of a piece, was finally
estimated by the autocorrelation of the amplitude envelope.

3.6 Structure

A degree of repetition was estimated through the computation of novelty curves [47]
based on the spectrogram, the autocorrelation function, the key profiles and the
Chromagram, each representing a different aspect of the novelty or static temporal
nature of the music, such as Spectral, Rhythmic, and Tonal Novelty.

4 Physiological Feature Extraction

From the five psychophysiological signals, we calculated a total of 44 features,
including conventional statistics in both the time and frequency domains. Table 2 lists
the various physiological features extracted.

Table 2. The feature set extracted from the physiological signals

Domain No Name

Blood volume pulse 1-6 BVp! 3456

Heart-rate 7-21 Heart-rate'>**>6789 gGDNN '35
Respiration-rate 2226  BRV'?3#3

Skin conductivity 27-32  Skin conductivity'>**%6
Electromyography 33-44  EMGc'*¥*36 EMGz! 2?56

(Corrugator-Zygomaticus)

Mean' Standard deviation? Median® Maximum* Minimum® Derivative® SpecVLF’ SpecLF® SpecHF®
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4.1 Blood Volume Pulse (BVP)

First, we normalized the blood volume pulse (BVP) signal by subtracting the
preceding baseline from the signal. From the normalized BVP we computed time-
series statistics, such as the mean, standard deviation, median, max, min and the
derivative. To obtain HRV (heart rate variability) from the initial BVP signal, each
signal was filtered, the QRS complex was detected, and finally the RR intervals (all
intervals between adjacent R waves) or the normal-to-normal (NN) intervals (all
intervals between adjacent QRS complexes resulting from sinus node depolarization)
were determined. In the time-domain representation of the HRV time series, we
calculated statistical features, including the mean, the standard deviation of all NN
intervals (SDNN), the standard deviation of the first derivative of the HRV, the
number of pairs of successive NN intervals differing by greater than 50 ms (NN50),
and the proportion derived by dividing NN50 by the total number of NN intervals. In
the frequency-domain representation of the HRV time series, three frequency bands
are typically of interest: the very-low frequency (VLF) band (0.003-0.04 Hz), the low
frequency (LF) band (0.04-0.15 Hz), and the high frequency (HF) band (0.15-0.4 Hz)
[26]. From these sub-band spectra, we computed the dominant frequency and mean
power of each band by integrating the power spectral densities (PSD) obtained using
Welch’s algorithm.

4.2  Respiration Rate

After detrending with the mean value of the entire signal and low-pass filtering with a
cut-off frequency of 2.2 Hz, we calculated the Breath Rate Variability (BRV) by
detecting the peaks in the signal. From the BRV time series, we computed the mean,
standard deviation, median, max, min and derivative values.

4.3  Skin Conductivity (SC)

The mean, median, standard deviation, max, min, and derivative were extracted as
features from the normalized SC signal and the low-passed SC signal, which used a
0.3 Hz cut-off frequency. In order to remove DC drift caused by physical processes
like sweat evaporation off the surface of the skin, the SC signal was detrended by
removing continuous, piecewise linear trends in the two low-passed signals: the very
low-passed (VLP) signal was filtered with a 0.08 Hz cutoff frequency, and the low-
passed (LP) signal was filtered with a 0.2 Hz cutoff frequency.

4.4  Electromyography (EMG)

From the EMG signals we took a similar approach to the one we employed for the SC
signal. From the normalized and low-passed signals, the mean, median, max, min, and
derivative of the signal were extracted as features.
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5 Results

For the 75 excerpts a forward step-wise multiple linear regression (MLR) model
between the acoustical and physiological descriptors and participant ratings was
computed to gain insight into the importance of features for the arousal and valence
dimensions of the emotion space. Table 3 provides the regression estimates and
variance inflation factors (VIF) for each of the excitement and pleasantness ratings.
The VIF quantifies the severity of multicollinearity in an ordinary least squares
regression analysis. Table 4 shows the outcome of the corresponding analysis of the
physiological features. Finally, Table 5 shows the outcome of the analysis of the
combined acoustic and physiological features.

Table 3. Mean audio features and standardized beta weights of the regression analysis for
excitement and pleasantness

Excitement p VIF Pleasantness p VIF
RMS ** 17 2.30 Key Clarity ** S1 1.06
Spectral Novelty ** -21  1.56 Pitch ** 32 1.06
Spectral Spread ** -41 210 Key Mode ** -.30 1.00
Spectral Entropy ** 24 1.15 Attack Times * -.19 1.00
Spectral Centroid ** 25 1.13

Pulse Clarity ** 18 2.00

R? = .84 for Excitement. R? = 42 for Pleasantness. * p < .05, ** p < .01

Table 4. Physiological features and standardized beta weights of the regression analysis for
excitement and pleasantness

Excitement B VIF Pleasantness )i VIF
SDNN'#* -42 1.32
Bvp*** -27 1.08 Heart-rate®** =37 1.00
Skin C*## -31 1.17 EMGc*** -.28 1.00
EMGz'"** 25 1.11
Skin C"* 21 1.07
Heart-rate™ .20 1.08

Mean' Standard deviation? Maximum® Minimum* SpecHF®

R? = 55 for Excitement. R? = 21 for Pleasantness. * p<.05, ** p<.01

Shown in Table 3, the regression model provides a good account of excitement
(R* = .84) using only acoustic features (means of RMS energy, spectral centroid,
spread, entropy and pulse clarity). Four features significantly predicted the
pleasantness ratings (R’ =.42): the means of Key Clarity, Mode, Pitch and Attack
Times. Thus the results show that features related to characteristics of harmony, pitch,
and articulation contribute most to pleasantness.
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Table 5. Combined audio and physiological features and standardized beta weights of the
regression analysis for excitement and pleasantness

Excitement B VIF Pleasantness B VIF
RMS! sk .16 2.28 Key clarity' ** 46 1.00
Spectrum Novelty' ** -21 1.59 Pitch' ** .23 1.06
Spectral Spread' ** -34 2.29 Key mode' ** -41 1.07
Spectral Entropy' ** 23 2.24 EMGZ’® #* .36 1.06
Spectral Centroid' ** .26 1.40 Attack Time'#* -24 1.06
SDNN?## -21 1.21 Heart-rate*** =22 1.13
Pulse clarity'** .19 1.57

Mean' Minimum? Derivative® SpecLF*
R? = .87 for Excitement. R? = .56 for Pleasantness. * p<.05, ** p<.01

Using only physiological features, the model provides an account of excitement
with R* =.55 (see Table 4). The standard deviation of the NN intervals (SDNN) in the
heart rate signals contributes most to excitement, along with the max value of the
BVP and the mean and minimum of the skin conductance and EMGz signals. The
power spectrum of the heart rate in the high frequency band (0.15-0.4 Hz) also
contributes to this dimension. For the pleasantness dimension the model provides R* =
.21 using the standard deviation of the heart rate signals and the minimum of the
EMGc signals. Finally, using combined acoustical and physiological information
(means of RMS energy, Spectral Centroid, Spread, Entropy, Pulse Clarity and the
maximum value of SDNN), the model provides an account of excitement with R’ =
.87. The corresponding estimates for pleasantness use acoustic features related to Key
Clarity, Mode, Pitch and the attack slope, and physiological features related to the
EMGz and heart rate (R* = .56).

6 Discussion

In the present paper, the relationships among acoustic features and physiological
features in emotional reactions to Romantic music were investigated. Our goal was to
determine the importance of acoustic features in predicting the global emotional
experience with music as measured with subjective ratings provided after each
stimulus, and to explore the extent to which physiological activity may increase the
prediction rate of emotion felt through peripheral feedback. A regression model based
on a set of acoustic parameters and physiological features was systematically
explored. The correlation analysis demonstrates that low- and mid-level acoustic
features, such as RMS energy, Spectral Centroid, Spectral Spread, Spectral Entropy,
and Pulse Clarity, significantly predict emotional excitement. The corresponding best
features for the prediction of pleasantness are Key Clarity, Mode, Pitch and Attack
Times. This result is in agreement with existing work on acoustic feature selection for
emotion classification [10]. As far as the physiological features are concerned, the
results indicate that features obtained from time and frequency analysis of the HRV
series (SDNN, BVP), along with features of skin conductance, are decisive in the
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prediction of participant ratings of excitement. Furthermore, features such as heart
rate and corrugator EMG are important for pleasantness prediction. These findings are
in agreement with previous research on music emotion recognition using
physiological signals [26] and also support the findings of previous studies, according
to which SC is linearly correlated to the intensity of arousal [22].

To the best of our knowledge a combination of audio and physiological features has
not been employed in music emotion recognition tasks, and thus, we cannot compare
our results with existing studies. There are, however, previous studies combining speech
features and physiological responses for emotion recognition [33, 34]. The results of
these studies show that the combination of speech and physiological features results in a
moderate improvement of 3% for both valence and arousal. In our case the
corresponding improvements are 3% and 14%, respectively, suggesting that the
combination of acoustic and physiological features can provide more complementary
information compared to the combination of speech and physiological features.

Existing results show that combined acoustic features provide better prediction for
arousal than for valence [11, 10]. Therefore, the significant increase of pleasantness
prediction by employing both acoustic and physiological features in our study is
noteworthy here. It seems that EMG measures and spectral features of HRV play a
significant role for the correct differentiation of positive and negative valence, and
thus contribute substantially to improved valence prediction. This result is of
particular importance, as valence is an otherwise elusive and opaque dimension in
music emotion research. Moreover, MIR approaches thus far have only considered
objective acoustical/musical features in an emotion recognition task, thereby failing to
account for the role of physiological responses in the evocation of subjective feelings.
Thus, any attempt to model a listener’s affective state must also account for how
subjective ratings of emotional experience may interact with the internal
physiological state of the listening individual. Indeed, we hypothesize that our
autonomic and somato-visceral reactions during music listening may influence the
intensity and valence of our emotions through a process of peripheral feedback.

7 Future Work

There are several aspects in the work presented here that need to be addressed in
future research. It remains to be investigated whether this particular model can be
applied to other music-listening populations using other musical styles. Indeed, we
believe that this approach could lead to fundamental advances in different areas of
research because it may provide consistent descriptions of the emotional effects of
particular musical stimuli. This, in turn, will have important implications for a number
of disciplines, such as psychology and music therapy. In our study, feature-level
fusion was employed. However, it appears that simply combining modalities with
equal weighting does not always result in improved recognition accuracy. An
alternative approach would be to decompose an emotion recognition problem into
sub-problems, treating valence and arousal separately. For valence recognition, audio
features could be used, whereas for arousal recognition physiological changes could
be used.
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Abstract. This paper presents two novel hybrid spatial audio systems
demonstrated for use in two-dimensional applications with their scala-
bility to three-dimensions. The emphasis of these hybrid systems is to
give further creative freedom to a composer, sound engineer or sound
designer. The systems are principally based on the end result of Am-
bisonics spatial audio reproduction systems. Since Ambisonics systems
are used primarily for temporary sound installations and exhibits, the
use of B-Format can be unnecessary. Therefore these systems revert to
producing channel based content rather than sound field content that
is later separately decoded. The presented systems use the decoder as
a real-time sound manipulation feature on a per sound source basis. A
comparison is drawn between the two systems and each method is de-
scribed as to how it can be used as part of a standard music production
workflow.

Keywords: Ambisonics, variable-order, variable-decoder, polar pattern,
octagon, spatial audio, surround sound, 2D, 3D.

1 Ambsionics Background

The work in this paper is based on Higher Order Ambisonics systems. Michael
Gerzon led the original Ambsionics development team in the 1970s and wrote
papers on the subject throughout his career [11H13]. Further work has been done
to expand Ambisonics into Higher Order Ambisonics |35, [15] and to develop
decoders, speaker layouts and evaluation of systems |1, |9, 10, [14, [17, [18, [31]].
The basis of Ambisonics is to represent a three-dimensional auditory scene as a
sound field representation that can later be reconstructed for any user speaker
layout. An Ambisonics representation is based on a fixed order that is linked
to the localisation attributes of sound sources. Ambisonics theory is based on
spherical harmonics calculated from legendre polynomials.

cosnd n>0
sinnf n<O0

Vo (N2D)(6,6) = V2P sin ) = { 1)

By (sin ) = \/ (2= o) EZ B Zi: Py (sin ) . 2)

M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 58-BI] 2013.
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Where Y,,,,, is the spherical harmonic, n is the degree, m is the order and Pon
the associated Legendre polynomial.

The above equations use the N2D normalisation scheme. Several schemes exist
for Ambisonics and affect the maximum gain of each spherical harmonic. When
these are applied to a monaural sound source a sound field representation is
created and is known as B-Format. The 2D representation is based only on the
angular value 6 as ¢ = 0°. The spherical harmonic expansion of the sound field
is truncated to a finite representation known as the Ambisonic order M and
each prior order m is included, 0 < m < M. For each included order m the
degrees calculated are n = Fm. The total amount of harmonics in the sound
field representation is 2M + 1.

Once encoded, Ambisonics material can be played back over various speaker
layouts using a suitable decoder. The minimum number of speakers to correctly
reproduce 2D Ambisonics is 2M + 2 [22]. For a regular layout, i.e. one that has
the speakers equally spaced, the angular separation is simply 360°/L where L
is the number of speakers for 2D reproduction. For a regular layout the decoder
matrix can be calculated by using the Moore-Penrose pseudo-inverse matrix of
the spherical harmonics at each speaker position.

Yi0,0)(spk1) Y —1)(spkl) Y1 1y(spkl) ... Y(arm)(spkl) f

: : : o (3)
Y(070)(spkN) Y(1,—1)(3P/<7N) Y(1,1)(3P/<7N) Y(M,m)(spkN)

Gerzon specified criteria for low and high frequencies reproduction known as
rV and rE vectors [11, [12, [14]. The given pseudo-inverse decoder results in the
standard, rV, decoder matrix. To create a decoder that maximises the rE vector
the decoder is then multiplied with gains g, r based on each component’s order
and the system order.

grE = Pp(largest root of Pyyq) . (4)

Furthermore the decoding can be changed to what is known as In-Phase de-
coding, using the g7, prase coeflicients, so that there are no negative gains used
to create the sound’s directionality.

M!
_ = . 5
9gIn—Phase (M+m)'(Mfm)' ( )
Ambisonics can be seen as creating a polar pattern of M*" order in the direc-
tion of the sound source where the polar pattern is sampled by discrete speaker
positions. By increasing the amount of speakers the resolution of the polar pat-
tern is increased. In turn, by increasing the order, the directionality is increased
and by using different decoders as described above, the rear-lobe is altered.
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2 Variable-Order, Variable-Decoder Ambisonics

This section presents the novel idea of Variable-Order, Variable-Decoder Am-
bisonics. The concept allows for varying the reproduced polar pattern, and
therefore the sharpness of localisation, by setting the order used to a non-
integer value. Further to this, the idea of a variable-decoder is discussed that
can alter the amount of rear lobe of the sampled polar pattern. The two vari-
ables are linked but not interchangeable. The order alters the width of the main
lobe, whilst altering the amount and gain of, the rear lobes. The decoder alters
the gain of rear lobes whilst consequently altering the width and gain of the
main lobe.

2.1 Variable-Order

The result of encoding a monaural sound source to Ambisonics B-Format and
then decoding it for a speaker layout is equivalent to applying a gain to the
monaural sound and sending it to each speaker. Therefore in this described
approach, the audio signal is not converted to B-Format. Instead, the gains are
calculated numerically and applied based on the octagonal layout.

The variable-order is created by calculating the decoders of the identical type,
for each order. Since we are dealing with an octagonal layout the orders used
are 0 through 3. The spherical harmonic values are calculated for all included
orders for the sound source location # and speaker gains obtained. By using

270

—05
- —-15
— — 25

(a) Orders 1, 2 and 3 (b) Orders 0.5, 1.5 and 2.5

Fig. 1. The reproduced polar pattern of a sound source at § = 0° for Ambisonics
orders 1 through 3 are shown in (a). The half orders of 0.5, 1.5 and 2.5 are
shown in (b).
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interpolation the variable-order can be created by a mixture of 0" and 1%,
1%t and 2" and 2"¢ and 3"¢ speaker gains. Figure [1 (a) shows the sampled
polar pattern for the whole orders. Figure [1 (b) shows the half orders using the
variable-order approach. As can be expected, the polar pattern of half orders
are directly between the whole orders. The variable-order approach can be used
to create the polar pattern of any decimal value order representation. For an
Ambisonics representation the gain of all speakers must equal one. This fact is
important so that a sound source does not experience an overall gain boost when
the variable-order is used as a creative feature.

2.2 Variable-Decoder

Three types of Ambisonics decoders have been presented in section [ where
each is used for a specific purpose. However, these decoders offer an aspect of
creativity in being able to manipulate the rear lobe of the polar pattern, thus
altering the shape of the sound source’s polar pattern.

The variable-decoder can be calculated in the same manner as for the variable-
order concept. By using a weighted ratio that equals 1 of two types of decoder, a
variable pattern can be created. The weightings are calculated between rV and
rE decoders and the rE and In-Phase decoders. This is because the rE polar
pattern lies between the basic and In-Phase patterns.

Figure [ shows the three decoders for order 1.5 on the left and the decoders
half way between the rV and rE decoders and the rE and In-Phase decoders.
The variable-decoder lies at the given ratio between the standard decoders.

v
- - -rE ‘

Between rV and rE
— — — Between rE and In-Phase

— — In-Phase

(a) rV, rE and In-Phase decoders (b) Variable-decoders

Fig. 2. The three standard decoder types for order 1.5 are shown in (a) and the
intermediate decoders in (b)
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2.3 Observations

The proposed methodology creates a set of variable-order, variable-decoder
speaker signals for an octagonal arrangement of speakers. The end result is sam-
pling the sound scene at regular intervals of a third order polar pattern [6]. The
resultant gain GGy, for the speaker at position 61 can be calculated by eq. (Ia)

The sum of the gain of the orders must equal one; that is Zgil Gp =1
Gr = ag+ajcos(0 +0r) + azcos(2(0 +0r)) + azcos(3(0 +0r)) . (6)

Therefore the variable-order is equivalent to increasing the next order gain
whilst the ratio of the prior orders’ gains remain the same. The variable-decoder,
is like altering the ratio between the ag and a; gain coefficients thus changing
the base polar pattern, as well as altering the ratio between higher orders.

2.4 Test Case

FigureE shows the plots for both second and third order using a variable-decoder
of 0.8 r'V and 0.2 rE for a sound source at § = 93°. The lower plot (¢) shows
2.2 variable-order. The resultant variable-order has a maximum point between
the two whole orders and the other lobes are smoothed out. The secondary lobes
become more like an In-Phase decoder. The sum of the speakers for the variable-
order, variable-decoder remains 1. Hence no normalisation of the speaker signals
is needed. Due to the changing of the secondary lobe gains, the decoder type
attributes associated to integer orders are lost.

2.5 Calculating in the Decoder

The methodology presented here to calculate the Variable-Order, Variable-
Decoder Ambisonics has been to use a lookup table approach. First, all of the
values between the two decoders for the lower and higher integer order are inter-
polated. Then the resultant variable-decoders for both orders are interpolated to
produce the final signals. This has involved no creation of B-Format due to the
speaker feeds directly being produced by multiplying the sound source by the re-
sultant speaker gains. The same effect can be obtained by means of manipulating
the decoder. To calculate a variable-order decoder directly, the n = F¥m compo-
nents for individual order m = [M] of the variable order need to be multiplied
by a factor, v as shown in eq. (@), that is chosen by the user.

f 1... v v

Yi0,0)(spk1) ... Y(rary,—1ar) (sPEL) Y(1ar7,1ar7) (5PK1)
Y'(O’O)(spkN) e Y((M"L_[M])(Spkl) Y([M]JM])(SpkN) 1 ... UV UV
(7)

The decoder type gains can then be multiplied to eq. (ﬁ) by use of a further
matrix. This uses the variable x as the interpolation factor between the normal
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Fig. 3. The speaker gains of § = 93° for second (a) and third (b) order and the

gains for 2.2 order (c) using a variable-decoder as presented in section 2.4 with
rV of 0.8 and rE of 0.2.

and g,g or g-g and gr._ prase Zains as presented in section El The matrix to
change the decoder type is given as:

1-— K(O’O)(Spkjl) R f{([M]’,(M])(Spk‘l) 1-— K((M]’[M])(Spk‘l)

1-— m(o,o)(spk:N) I H((ML_[M])(SpkN) 1-— H([M],(M])(SpkN)
K9(0,0)(8PK1) . £g(1am —1ar)) (SPEL) Kg(1ap fary (SPED)
S 5 | (®)
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The use of egs. (ﬁﬁ and (E) are compared to the initial interpolation, or lookup

table method in fig.

. The original methodology as described in the beginning of

this paper is shown in (a) and the direct manipulation of the decoder approach
in (b). It can be seen that they do in fact result in the same outcome.

0.8

0.6

Speaker Gains
2

o
[N}

Order = 0.4, Decoder = 0
— — —Order = 0.7, Decoder = 0.6
T

0 60 120 180
0
(a) Lookup Table Approach

0.8

Speaker Gains

Order = 0.4, Decoder =0
— — —Order = 0.7, Decoder = 0.6
T

120 ~60 0 60 120 180
0()
(b) In Decoder Calculation

Fig. 4. This figure shows the identically produced speakers’ gains for a sound
source placed at # = 0° using both the lookup table approach and calculating
the variable-order and variable-decoder within the decoder.
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2.6 rV, rE, Power and Energy of Variable-Ambisonics

widt To further examine this system’s behaviour as a result of the variable-order
and variabe-decoder, the r'V and rE vectors proposed by Gerzon [3,[11,12,114,131]
will be evaluated, as well as the power and energy values upon which those
metrics are based. The results are displayed in fig. I3. Between zeroth and first
order the rV linearly goes between zero and one. This is a somewhat obvious
result as zeroth order has no directionality and first order is the minimum for a
directional response. The power for which is the denominator for calculating rV,
resulting in a constant value of one for each value of #. This is to be expected
since the speakers are regularly spaced and meet the minimum N criterion of
N > 2M + 1. Although an expected result, it does determine that variable-order
is valid for rV cues and that the power is constant irrespective of variable-
order. The rE result however is an interesting one. We can see that the rE is
maximised at approximately m + 0.6 orders, not at the whole integer orders.
This can be attributed to the polar pattern produced becoming more like an rE
decoder polar pattern than an rV decoder. The response of rE is not linear to the
m— 0.6 points but curved either side. Conversely the energy is not maximised at
m+ 0.6 orders. The energy between integer orders shows an exponential growth.
These results indicate that the variable-order effect should be examined for the
variable-decoders.
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Fig. 5. The rV and rE vector, power and energy values for zeroth through to third
order for Variable-Order, Variable-Decoder Ambisonics. The decoder used is the
regular rV decoder from the pseudo-inverse function. The values are independent
of 0 since in a regular speaker array the rV, rE, power and energy are constant
for N > 2M + 1.
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Figure 16 shows the rV vector (a), rE vector (b) and energy (c) values for
variable-orders of variable-decoder. The power is not shown in this figure as for all
cases it has a value of one. Thus for power the Variable-Order, Variable-Decoder
Ambisonics satisfies the constant power condition. The rV plot shows that the

Magnitude
o o o o
n E (] o -

o
"o
i

Magnitude

rE/NP
05 WIE
Variable—Order Variable-Decoder

(a) rV Vector

Variable-Order

Variable-Decoder

(b) rE Vector

Fig.6. rV, rE vector (figures a and b) and Energy attributes (figure c) of
Variable-Order, Variable-Decoder Ambisonics. Under various conditions the in-
termediate order values are not linear between the normal integer orders.
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Fig. 6. (Continued)

rV vector is reduced as the variable-decoder increases from zero. For all variable-
decoder values the rV linearly increases between integer order values. For the
same variable-order the r'V value is linear between rV and rE decoders, and then
the rE and In-Phase decoders. The rE values show that the curved nature of the
rV decoder for variable-order is smoothed out as the variable-decoder increases
above one. The rE decoder shows a slight curve between the integer orders in
rE value, but for the In-Phase decoder the increase is linear between integer
orders. The results show that for the m 4 0.6 order the rV decoder now performs
similarly to the In-Phase decoder for rE value. Finally, the energy plot shows the
reduction of the curvature of energy value as the variable-decoder is increased
from zero order. It shows that the energy is always greatest for variable-decoder
of zero, rV decoder, and falls in value as the variable-decoder is increased. The
maximum energy values for a variable-order are for the rV decoder. It can be
determined that the greater energy value does not result in the best rE vector
value.

To conclude, using variable-order can result in a heightened rE vector value for
Variable-Order, Variable-Decoder Ambisonics and is better than the next highest
integer order. This is where the rE value is maximised around the m + 0.6 point.

2.7 Composition/Production Tool Implementation

The tool to use the variable-order and variable-decoder methodology has been
implemented in the Max/MSP 5 software environment for Mac OSX. The tool is
designed to receive audio signals from digital audio workstations (DAW), e.g. via
Jack or Soundflower, for a total of 16 monaural and 4 stereo signals. The controls
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Fig. 7. The user interface for the Variable-Order, Variable-Decoder Ambisonics
spatialisation tool

for each channel are sent via midi commands which are stored in a digital audio
workstation project. User Control Panels were built for this function for the
Cubase/Nuendo environment, but VSTs, AUs or other midi capable software
can be used to control the settings for each sound source. The premise for this
is that no extra saved data is needed that cannot be stored in a common DAW
project.

Figureﬁ shows the user interface for the tool. The user definable parameters on
the interface are On/Off, midi driver, audio driver and where to save a recorded
file. The interface has eight LED style meters for monitoring the signal level
going to each speaker so that distortion can be avoided. Since users may not
always have an eight speaker layout available, a binaural (over headphones) mix
is simultaneously available.

2.8 Distance

Distance is a user definable parameter and is accomplished by gain attenuation
only. No delay has been included since for music purposes pitch shifting of sound
sources will affect the overall tonal effect and harmonicity of the work, alter the
speed and therefore ensemble timing of the music and finally can include zip-
per noise. The 1/r inverse law is used to implement the gain change at sources
greater than 1.0 where the maximum value is 10. Since the roll off of 1/r sim-
ulates anechoic conditions, the feature is given as a creative and not real-world
application. For sources that are placed inside the speaker layout the distance
calculation changes to 1 + cos(90°r) so that infinite gain is not reached. The
maximum gain at the central position is 2.0, or approximately +6dB.

2.9 Inside Panning

Sound sources that have a distance of less than 1.0 are placed inside the speaker
array. This is done by altering the reproduced polar pattern. If the order of re-
production is 1 then this is the same as cancelling out the 1st order spherical
harmonics and doubling the zeroth order spherical harmonics. This methodology
was first presented in HE] For the case of third order two-dimensional Ambison-
ics, the maximum allowed in this tool, the inside-panning function is expanded.
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Fig. 8. The change in polar pattern exerted by a third order sound source as it
is moved from a distance of 1.0 to 0.0 to be placed in the middle of the speaker
array

The result is that even orders are doubled and odd orders are cancelled out.
This again is all done as numerical and not audio calculations. Figure |§ shows
the polar pattern change going from 1.0 to 0.0. The result is strong lobes from
opposite poles giving the psychoacoustic illusion of the sound source being at
the centre of the array.

2.10 Reverberation

Reverberation is produced in the tool by transforming the sound source into
B-Format and processing it through either the Wigware VST (Virtual Studio
Technology) reverberation plugin |31] based on the freeverb algorithm or by using
a convolution plugin using B-Format impulse responses, such as those available
[20, [30].
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2.11 Original Composition

The authors commissioned a composer to create a multimedia piece that used
the creative aspects of the Variable-Order, Variable-Decoder tool and technology.
The piece was originally written for speakers and video projection. The work has
subsequently been shown at various events and is available as a binaural version
online. The following describes the work in the composer’s words:

The composition was written with the intention of being realised through
the wuse of the Variable-Order, Variable-Decoder Ambisonics two-
dimensional tool for an octagonal speaker arrangement (ed. as described
in section @) This allowed for a greater creativity in conveying layers
within the musical scene at varying distances, widths and positions across
a horizontal plane. The tool helped create a greater sense of foreground
and background. Placing the ‘mechanical’ elements in the distance and
wide when in city surroundings for example, but brought to the centre
and narrowed when portraying a specific man-made character/element
such as the record player, horse, dog and heart. The cello and violin parts
were generally placed in the stereo field in accordance with their on-screen
presence but the distance feature was employed to convey the strength of
the character’s emotions, getting closer at climax points to create in-
tensity for the listener. The tool was used most creatively in trying to
achieve a sense of movement through swirling musical layers around the
full range of the eight speakers for example in the rapid bustling city and
spiral staircase scene, equally in the slow panning of the opening and pier
scenes.

When working with the composer on the mixing stage of the work, the effect
of the source width could be clearly heard, as well as the distance change. The
aspect of width helped enhance the use of the space surrounding the listener and
the use of distance emphasised the busy nature of the world being portrayed by
objects coming and going. The use of rotating the sound field was successfully
used to indicate character movement and disorientation. The use of the variable-
decoder was sparse, partly due to overlapping of the variable-order control where
both alter the sound source width, but where the variable-order is far more
intuitive to the user, in this case, the composer.

3 Variable-Polar Pattern Reproduction

Since the final output of an Ambisonics reproduction to the speakers is the same
as sampling a polar pattern [3] exhibited by the audio source material, a new
method is created whereby the intermediary B-Format and decoding is omitted.

Eargle [6, [21] gives two formulations for calculating higher order polar pat-
terns. The first is given for calculating cardioid patterns in the form of G =
(0.5 4 0.5 cos(0))cos™ =1 (9) for the M*" order, which is expanded for any base
polar pattern in eq. (9) below. We define a base polar pattern as that created as
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a mixture of zeroth, A, and first, B, order components to calculate a gain G at
horizontal angular position §. Where A + B = 1 is constant.

G = (A+ Bcos(0)) cos™=Y (9) . (9)

The second equation for a higher order pattern is given as the product of two
or more first order microphone patterns:

G = (A1 + Bycos(0)) (A + Bacos(0))...(Ay + Barcos(9)) . (10)

where A;...pr and Bj...ps are the zeroth and first order terms for each order. To
keep controls to a minimum we can limit the possible polar patterns so that
[A1, B1] = [Ag, Ba] = [Am, By By using this identity we can use a variable
order for M below:

_ J(A+ Beos (9))M M is odd
¢= {_(A+BCOS @)M) M iseven - (11)

Figure [d shows the differences for calculating omni-directional, cardioid and
figure-of-eight polar patterns using eq. (IQ) method and eq. (Iﬂ) method. It can
be seen for method A that for the omni-directional above first order the pattern
changes to a figure-of-eight pattern of order M — 1. When looking at higher
order cardioid for method A, we see that rear lobes are formed on the cardioid
pattern. Finally the figure-of-eight pattern for method A behaves as expected
and so are not shown; as the order increases the angular distance between the
-3dB points decreases, giving a narrower polar pattern around the maxima and
minima points. In the results of eq. (Iﬁ]) method, the omni-directional pattern
remains omni-directional at all orders. The cardioid pattern for eq. (IJ__1|) method
does not develop rear lobes, but becomes a beam like pattern. Finally the figure-
of-eight pattern for eq. (1J__1|) method behaves like that of method A, as we expect;
a tighter figure-of-eight with greater side rejection. From these findings eq. (Iﬂ)
method will be used as it produces the most useful higher order polar patterns.

The gain applied to the L speaker is given as:

G- {(A—i—Bcos (0 —0,)M M is odd
L=

—(|A+ Becos (0 —0r)|M) M iseven - (12)

To maintain a constant level whilst varying the order and/or polar pattern,
like in the variable-Ambisonics method, a factor C' is needed to scale the speaker
gains:

1
= N .
6,
L=1

where the maximum order is based on N number of speakers being used, M =
(N — 2)/2. Note that this will give a variable order and using the || function
will give the highest integer order available.

c (13)
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Fig. 9. Comparison of pattern methods A from eq. (@) and B from eq. (ﬂ) for
omni-directional (a and b) and cardioid (c and d) as discussed in section g

The produced gains for § — 6 are shown in fig. [1d. The sub-cardioid repro-
duction increases directivity with variable-order whilst the rear and side of the
pattern is reduced in gain. The cardioid pattern has a constant zero point at
the anti-pole, where the directivity and gain of the single positive lobe increases
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Fig. 10. Variable orders 1.0 to 3.0 for sub-cardioid (a), cardioid (b) and hyper-
cardioid (c) polar patterns

with order. The hyper-cardioid pattern has a single negative lobe at the anti-
pole of the main positive lobe. With an increase in order the directivity and gain
of the main lobe increases whilst the negative lobe decreases in gain. Since this
method uses a base polar pattern, of which the order can be changed variably,
a user of a system can see the change in polar pattern easily. The figure-of-eight
polar pattern poses a problem. Due to the equal gain of opposite polarities at
anti-poles, the gains tend to infinity because of the cancellation when calculating
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C in eq. (IE) This also creates a problem since a speaker signal would have a
maximum above unity gain. For this reason the base polar pattern should be
limited so that 0 < A < 0.75 in eq. (IE)

The calculation of speaker gains in this way is similar to 3DVMS |2, [7, [16,
29|, three dimensional virtual microphone synthesis, where higher order cardioid
patterns are used. This has been compared to Ambisonics by Manola et. al.
[16], although in their findings there were errors of localisation circa 180° which
questions the methods used and the validity of the results.

3.1 Real-Time Application

A demonstration application was built using Max/MSP that is controlled and
fed audio by a digital audio workstation. Audio is sent from each track using
outputs via Jack OS X audio router as monaural sound sources. Control data is
sent from a VST audio plugin on each audio track using the OSC (Open Sound
Control) protocol [32] using a similar, but reverse, idea to that described in [§].
The audio plug-in does not process the audio in any way as its only use is to
communicate OSC commands in this system environment.

The VST presents controls to the user; Azimuth, Pattern, Order and Speakers.
The Azimuth control is ranged [-180 180]° anti-clockwise. The Pattern control
varies the base polar pattern. The Order control alters the variable order of the
sound source. This control’s range is altered by the Speakers control as described
in section[d. Therefore it can be set as a relative maximum order, especially if the
audio mixture is going to be played back over different speaker configurations.
The Speaker control has the range [4 12] in whole integers to represent the
amount of speakers in the reproduction array. Finally the VST has 20 programs.
These programs are presets to change the audio track that the VST is altering
in the application. When changing program the other controls remain the same.

The Max/MSP application presents the user with minimal controls since they
are for the most part received from the VSTs within the DAW project. The user
can turn audio processing on/off, select the sound source’s graph to be plotted,
view the number of speakers being used and see output meters for the 12 possible
speakers. Of most interest to a user are the graphs that are plotted. This is a
plot of the polar pattern being used by the chosen sound source. The positive
lobe is shown in red and the negative in blue within the applications display
window. This is plotted on top of up to twelve black circles representing the
speaker positions. This gives the user visual feedback of how the controls of the
VST are affecting the sound source reproduction. The graph to make things
clear is normalised, meaning eq. (IE) is ignored for plotting purposes to avoid
confusion to the user.

3.2 Vector Driven Variable-Polar Pattern Reproduction

Vector Base Amplitude Panning [23-28] in two dimensions gives the same result
as the cosine/sine power panning law resulting between the two speakers neigh-
bouring the sound source. This fact can be exploited to calculate the highest
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order reproducible by the neighbouring speakers. If the sound source is assumed
to be directly inbetween the speakers and that the polar pattern reproduced is
that of a cardioid, where the most highly directional sound source is desired, then
the highest order can be calculated. The differing cardioid patterns are shown
for different speaker separation in fig. 11 Equation (@) shows the calculated
highest order, My, under these assumptions.

log <\}2)

" 1og (0.5 + 0.5 cos (ar1))

Where 0y, is the angle between the mid-point of the neighbouring speakers
and one of the speakers, or put another way; the angular separation between the
neighbouring speakers divided by two.

My (14)

240 :
270
(a) Speaker separation 6n;r of(b) Speaker separation Oasr of 45°.
65.53°.

(c) Speaker separation @arr, of 30°.(d) Speaker separation 0asr of 15°.

Fig. 11. The cardioid patterns calculated for four different speaker separations;
65.53°, 45°, 30° and 15°. The respective My values are 1.00, 2.19, 5.00 and 20.17.
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This could be expanded for any polar pattern by taking the logarithm of
eq. (Iﬂ) in the denominator of eq. (ﬂ) Caution has to be taken when using
polar patterns with negative lobes. It is not guaranteed, due to the speaker
placement, that the negative gains will be reproduced at all. This could result in
the exhibited polar pattern varying with the source position as My is changing.

It is, however, not guaranteed that the sound source will be in the middle of
the two neighbouring speakers. When at a speaker’s location the sound source is
only reproduced by that speaker alone and therefore the calculated order would
be infinite as there is no directional truncation. To overcome this problem the two
neighbouring midpoints between the closest three speaker are found. The highest
order of both midpoints is found using eq. (@) and then interpolated based
on the angular distance between the sound source and the speaker midpoints.
Finally the interpolated My is used in eq. (IE) to find the initial speaker gains
and the power kept constant by eq. (IE) This procedure is shown in the flow
diagram in fig. [12.

3.3 Expanding to Three-Dimensions

Expansion from the two-dimensional formulae used so far to three-dimensions is

trivial. Expanding this theory to the three-dimensional case requires replacing

the cos (A) terms to cos (6) sin (¢) in eqs. (1), () and (1). The resulting three-
dimensional polar pattern is thus given as:

G, = {(A+Bcos(9—0L)sin(¢¢L))M M is odd (15)

—(|JA4+ Bcos(0 —0r)sin (¢ — ¢r)|M) M iseven

where ¢ is the elevation angle of the sound source and ¢;, the elevation angle of
the speaker gain being calculated. The speaker gains will need normalising after
calculation using eq. ).

4 Comparison

In this section we present a comparison between the Variable-Order, Variable-
Decoder Ambisonics system and the Variable-Polar Pattern Reproduction
system.

It can be seen in the difference between the speaker gains shown in figs. E],
[ and [1d that the former system gives a higher degree of directionality due to
higher gain at the main lobe position. However, it does also introduce more rear
lobes of both negative and positive gain, whereas the latter system retains the
amount of rear lobes throughout the change of variable-order. The controls of
altering a base polar pattern and variable-order are intuitive to an end user and
have a clear distinction when looking at the plots of altering one or another
of the parameters. With the first system this is not the case and the two vari-
able controls both alter the same attributes of the polar pattern, although in
different ways.
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Fig. 12. Block diagram of the calculation of the Vector Driven Variable-Polar
Pattern Reproduction. The Variable-Polar Pattern block could be exchanged for
Variable-Order, Variable-Decoder Ambisonics or other spatialisation method.

A comparison between the two methods can be drawn using the rV and rE
vectors. Figure [13 shows this comparison using 2.5 order. The left column shows
the results for the Variable-Order, Variable-Decoder Ambisonics system and the
right column the results for the Variable-Polar Pattern Reproduction system.
The In-Phase decoder and cardioid pattern both produce identical polar patterns
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(a) Variable-Ambisonics rV  (b) Hyper-Cardioid Repro-
Decoder duction

(c) Variable-Ambisonics rE  (d) Cardioid Reproduction
Decoder

(e) Variable-Ambisonics In- (f) Sub-Cardioid Reproduc-
Phase Decoder tion

Fig. 13. Comparison of variable-ambisonics and variable source pattern using rV
and rE vectors to represent low and high frequency directional cues presented
in section [ for order 2.5
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and so have the same rV and rE values. High frequencies are localised better than
lower frequencies. The rV decoder and hyper-cardioid are similar in that they
both have rear negative lobe(s). The hyper-cardioid has an rV above 1.1 which is
unseen in Ambisonics unless the decoding is done for an order that the speakers
cannot be replayed on and in that case is an error. The rV decoder however has
better high frequency localisation than the hyper cardioid. The sub-cardioid, as
one might expect, has poor localisation for both high and low frequencies.

5 Conclusion

Two novel spatial audio systems have been presented and used in real appli-
cations that give end users, such as composers, musicians, sound engineers or
sound designers, further creative freedom of spatial audio reproduction other
than angular position and distance attenuation. The systems have been based
on the theoretical underpinnings of Higher Order Ambisonics, however, by elim-
inating the use of B-Format as a sound scene representation results in a channel
based approach like that of stereo, 5.1 and 7.1. It could be argued that by re-
moving the sound field representation format that it has lost one of the best
traits of Ambisonics, although in many situations such spatial audio systems are
designed for a particular exhibition or speaker reproduction environment where
the B-Format signal is not published or shared.

The first system presented here has been used to produce an animation sound
track exploring the creative use of the system. From this experience and the
composer’s feedback the second system was developed. Overall the second system
offers intuitive user controls and a wider degree of freedom.

Examples of both these systems are available as binaural sound tracks for
playback over headphones and can be seen at:
www.elec.qmul.ac.uk/digitalmusic/audioengineering /spatialaudio/index.html.
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Abstract. The 3D audio coding forms a competitive research area due to the
standardization of both international standards (i.e. MPEG) and localized stan-
dards (i.e. Audio and Video Coding Standard workgroup of China, AVS). Per-
ception of 3D audio is a key issue for standardization and remains a challenging
problem. Besides current solutions adopted from traditional audio engineering,
we are working for an original 3D audio solution for compression. This paper
represents our initial results about 3D audio perception include directional mea-
surement of Just Noticeable Difference (JND) and Perceptual Entropy (PE). We
also represent the possible applications of these results in our future researches.

Keywords: 3D audio, perceptual audio processing, audio compression.

1 Introduction

With the current trend of 3D movies and the popularization of 3DTV, 3D audio and
video technology has become a research topic in multimedia technology. To provide
the audience with a more immersive and integrated audio-visual experience, audio
must work collaboratively with 3D video to provide three dimensional sound effects.
However, existing 3DTV and 3D movie systems usually adopt conventional stereo
audio and surround sound technology, which only provides very limited sound locali-
zation ability and envelopment in horizontal plane. Although there is not a generally
acknowledged definition for 3D audio, it is widely accepted that 3D audio must have
the following characteristics; localization of sound image in arbitrary direction in 3D
space, realizing the distance perception of sound and giving a improved feeling of
audio scene. Nowadays two types of technology are able to satisfy the requirement of
3D audio, one is based on physical principles and aims at reconstructing the original
sound field, the other is based on principle of human perception and aims at giving
the listener a virtual sound image. Wave Field Synthesis (WFS), Ambisonics and 22.2
multichannel systems are three typical 3D audio systems following those principles.
This paper is arranged as follows. In Sect. 2 an introduction to the three 3D audio
systems is presented and the existing problems are discussed, where we conclude the
complexity of the 3D systems and efficiency of the signal compression will be two
problems for the popularization of 3D audio. In Sect. 3 we present our related work in
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3D audio technology, including hearing mechanism and signal compression research.
More specifically, we investigate the JND of the direction perception cues for human
in horizon plane. This is useful in simplification the 3D audio recording and playback
systems, and removing the redundant perceptual information in 3D audio signals. In
Sect. 4 the development trends of 3D audio and our future work are discussed.

2 Brief View of Typical 3D Audio Systems

2.1  Wave Field Synthesis (WFS)

a. The Principle of Wave Field Synthesis

The concept of WES was introduced by Berkhout in 1988 [1], its physical theory can
date back to Huygens principle which suggests that a wave which propagates from a
given wave front can be considered as emitted either by the original sound source or
by a secondary source distribution along the wave front [2]. To reconstruct the prima-
ry sound field, the distribution of secondary source can replace primary source. The
concept was later developed by Kirchhoff and Rayleigh, and the Kirchhoff-Helmholtz
integral they proposed can be interpreted as follows: if appropriately secondary
sources are driven by the values of the sound pressure and the directional pressure
gradient caused by the virtual source on the boundary of a closed area, then the wave
field within the region is equivalent to the original wave field [3]. By adding a degree
of freedom to the secondary source distribution, Kirchhoff-Helmholtz generalized
Huygens principle.

b. Realization of WFS

According to the above theory, WES reproduces the primary sound field in time and
space by making using of small and individually driven loudspeakers array, and can
recover the spatial image precisely in the half space of receiving end from loudspeak-
er arrays [4].

But there is some limit for WES in application. WFES needs a continuous, closed
surface and a large number of idealized loudspeakers, but in practice there is only a
discontinuous loudspeaker array. According to spatial nyquist sampling Theorem, if
the interval between loudspeakers is less than half the wavelength of a sound wave,
aliasing will not occur [5].

So according to spatial nyquist sampling Theorem, WFS can be realized by limited
and discrete loudspeakers within a certain frequency range. For example, limited line
loudspeaker with even intervals can reconstruct sound field in 2D horizontal plane
[6]. In the recording stage, the listening area is surrounded by a microphone array.
The microphone array consists of pressure and velocity microphones, which record
the primary sound field of external sound sources. In the reconstruction stage, the
microphones will be replaced by the loudspeakers. Each loudspeaker is driven by
signal recorded by the corresponding microphone. The geometric shape of the micro-
phone array and loudspeaker are the same [7].
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2.2  Ambisonics

a. The Principle of Ambisonics

Ambisonics emerged in the 1970’s and the main contributor is Gerzon [8]. The prin-
ciples of Ambisonics are as follows. A certain wave (sound field) can be expanded on
a sphere in sphere coordinate system by spherical harmonic functions. At the opposite
end, superposition of spherical harmonic functions can rebuild a wave (sound field).
There are n=2m+1 spherical harmonic functions at every order m of Ambisonics, a
3D system of M order consists of all spherical harmonic functions at every order m
(0<m=<M), total channel number N satisfies N=(M+1)2.

b. Two Simple Format of Ambisonics

The first format of Ambisonics proposed by Gerzon is B format, which displays an
omnidirectional sound field by four channels: W, X, Y, Z [9]. Traditional monophony
and stereophony can be seen as the subsystems of Ambisonics [10]. Sound location in
horizontal plane is realized using three channels W, X, Y, and the fourth channel Z is
used for reconstructing height information. Channel W is a pressure signal, and X, Y,
Z are directional signal. B-format is used in studio and professional application.

The second format of Ambisonics is UHJ system which can convert directional
sound into two or more channels and solve the incompatibility problem of four chan-
nels Ambisonics with monophony, stereophony [11, 12]. The coding scheme provided
by UHIJ can be used in broadcasting, digital audio recording [13].

¢. Playback Technology of Ambisonics

According to the principle of Ambisonics, the decomposition of a sound field requires
the expansion of infinite order spherical harmonic functions. But in practical applica-
tion, limited order truncation of spherical harmonic functions expansion is necessary.
B-format is one order expansion. Ambisonics was expanded to high order in the
1990’s, the sweet point was enlarged to an area. High order Ambisonics promotes
sound location with the price of more channels and loudspeakers. We can get better
reconstruction quality using higher order Ambisonics. The encoding process of Ambi-
sonics is to preserve the result of spherical harmonic functions multiplying the signal
picked up by microphones. The decoding process is to calculate a group of louds-
peaker signals according to the rebuilt sound field that must be equal to the primary
sound field at listening point. This can be done by solving the inverse matrix
which consists of spherical harmonic functions that are associated with locations of
loudspeakers.

2.3 22.2 Multichannel Sound Systems

a. Fundamentals of Multichannel Sound Systems

The research of spatial hearing and sound source localization indicates that there are
slight time and level differences between two ears when spatial sound signals arrive at
the ears. For the estimation of direction and distance of sound source, the difference
between the two ears signals is most relevant. Actually these differences, called
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binaural cues, are Interaural Time Difference (ITD) and Interaural Level Difference
(ILD). ILD and ITD indicate the level difference and time difference between left and
right ears respectively [14].

b. Stereo, 5.1 Surround Sound and 22.2 Multichannel System

The binaural localization theory is utilized in stereo system, i.e. time and level differ-
ences between signals from two loudspeakers are utilized in sound reproduction in
order to reconstruct the spatial perception of the audience.

Traditional stereo cannot provide the sense of encirclement and immersion because
the perception of the sound environment mainly relies on the lateral reflected sound.
Surround sound, which constitutes an extension of stereophony, provides full spatial
immersion by using reverberation and reflection. The most typical multichannel
surround systems are the Dolby surround system, DTS Digital Surround.

Since loudspeakers in Dolby 5.1 are arranged in the same horizontal plane, the
reproduction sound image cannot be extended to three dimensions. In 2009, Dolby
laboratory presented ProLogic 11z, which extended Dolby 7.1 with height channels
(7.1+2). By reproducing early and late reflections and reverberation, ProLogic Iz
provide a much wider range of spatial sound effects such as spatial depth and spatial
impression [15]. The ProLogic IIz configuration is showed in Fig. 1. Audyssey
Dynamic Surround Expansion (DSX) is a scalable technology that expands auditory
perception by adding height channels, which is in a similar way to Dolby 9.1.
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Fig. 1. Dolby 11z configuration

NHK laboratory developed the 22.2 multichannel prototype system in 2003. The
system consists of three layers of loudspeakers and overcome the lack of height per-
ception with 3D immersion and sound image localization. K. Hiyama and Keiichi
Kubota evaluated the minimum number of loudspeakers and its arrangement for re-
producing the spatial impression of diffuse sound field respectively [16]. The results
showed that if the interval between adjacent loudspeakers is 45° in both horizontal
and vertical plane, there is sufficient horizontal sound envelopment and a good sense
of spatial impression. Therefore, the 22.2 multichannel system consists of loudspeak-
ers with a middle layer of ten channels, an upper layer of nine channels, and a lower
layer of three regular channels and two Low Frequency Effects (LFE) channels. Fig. 2
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shows detailed arrangement of loudspeakers [17]. The vertical loudspeaker interval of
the 22.2 multichannel is around 45°, which can induce the vertical spatial uniformity
[18]. The 22.2 multichannel system reproduces sound images in all three dimensional
directions around a listener and stable sound localization over the entire screen area.
Subjective evaluations shows that subjects have better impressions using Ultrahigh-
Definition TV (UHDTV) contents with 22.2 multichannel sound system than with
Dolby5.1 system [19].

Speakers in upper layer(9)

Speakers in lower layer(3) ~ .\.

Low-frequency effects bass
speakers(2)

Fig. 2. 22.2 multichannel system layout

2.4  Problems of Existing 3D Audio Systems

Not need to know the loudspeaker layout at the encoding stage is the main advantage
of Ambisonics, at decoding stage the loudspeaker signal can be counted according to
the loudspeaker layout. The encoding format is an effective reconstruction of 3D
sound field, allowing for direct dealing with the three dimensional space characteris-
tics of the sound field such as rotation and mirroring. But along with the increase of
order, more precise direction information is carried by spherical harmonic functions,
which provides a more accurate location. But data quantity increases rapidly, which
requires higher CPU processing power. In addition, the hypothesis that the location of
the listener is known may lead to a limit listening area.

The character of WES is that Kirchhoff-Helmholtz integral can ensure the rebuilt
sound field synthesized by secondary sources is the same as the primary source, pre-
serving time and space characteristics of primary source. So listeners can receive and
locate the sound source as if it were a real listening space, and walk in the listening
area at will while sound image remains unchanged. But WFS needs more loudspeak-
ers and has a higher requirement for site and equipment which is expensive.

The research on compression of Ambisonics and WFS is limited, although recently
some progress [20,21,22] has been made. But the compression efficiency cannot meet
the requirement of real-time broadcasting and transmitting.
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The 22.2 multichannel system, which is based on conventional surround systems
plus high and low channels to produce three dimensional sound images, can be easily
downmixed for 5.1 system reproduction. It is likely to become a popular 3D system
since terminals can be set up with little cost using simplified configuration (10.1 and
8.1 channels), especially when the 5.1 system has already been installed. In 2011, ITU
(Report BS.2159-2) pointed out that the 22.2 multichannel system has some problems
to be solved: The method to localize more efficiently by using the upper and lower
layers and how to reproduce three dimensional sound image movements. In addition,
although it is not difficult to downmix 22.2 channel signals to 5.1 channel signals, the
3D spatial audio effects are discarded. Hence, producing three dimensional effects in
home entertainment environments with limited loudspeakers is a problem. Further-
more, without compression, the data rate of 22.2 system can reach 28Mbps and the
size of an one-hour audio file is about 100Gb. As a result, it is not possible for
the current storage device and transmission channel to adapt to this enormous data.
The application and development of 22.2 multichannel systems are constrained by the
technology of compression.

3 Hearing Mechanism and Compression Research in 3D Audio

3.1 The Research of Hearing Mechanism

From mono, stereo, surround sound, and then to the 3D audio, the main line of de-
velopment in audio systems is to extend the range of the sound image. Audiences are
able to locate the sound which is any position around them in order to bring them a
better sense of encirclement and immersion. The positioning of spatial orientation for
sound sources is an important content of 3D audio, while the study of perceptual
characteristics is an important research field of 3D audio. For example, the arrange-
ment position of the 24 speakers in 22.2-channel system is based on the test and
analysis of the angle resolution of sound in horizontal and vertical plane by human
ear. In addition, the perceptual research of spatial orientation parameters for
sound source is also important for the efficient encoding of the multi-channel audio
signal. Therefore, the perceptual characteristics of sound source localization parame-
ters in the 3D sound field are an important way to solve the problems of 3D audio
systems.

The perceptual sensitivity of the sound source in the horizontal plane is significant-
ly better than that of the vertical plane or distance by the human auditory system. In
the horizontal plane, the positioning of the sound source is dependent on the two bin-
aural cues: ITD and ILD. The human ear can perceive a change in sound image
orientation only when the difference of binaural cues reaches a certain threshold val-
ue. This threshold value is known as Just Noticeable Difference (JND). The influen-
cing factors of JND for binaural cues are various, including frequency and orientation
of the sound source. A wide range of measurements and analysis of these factors has
been performed.
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Hershkowitz in 1969 [23] and Mossop in 1998 [24] have been researching the
influence of sound source position on the perceptual threshold JND of ITD and
ILD. The results show that the greater the difference of left and right channels in
intensity and time, the larger the JND value of the human perception. This shows
that the human ear is less sensitive when the sound source is closer to the left and
right sides.

Millers in 1960 measured JNDs of ILD on the midline with pure tones and there
were 5 Normal-Hearing (NH) subjects took part in the experiment [25]. The result is
as follows: INDs were around 1dB for 1000Hz, around 0.5dB for frequencies higher
than 1000Hz and somewhat smaller than 1dB for frequencies lower than1000Hz. The
test data showed worse sensitivity of ILD at 1000Hz than at either higher or lower
frequencies. Larisa in 2011 has been researching the influence of the frequency of the
signal on the JND of ITD. The results showed that the perceptual threshold of ITD
has a strong dependence on the frequency [26].

The measurement data of JND for binaural cues were fragmented and the conclu-
sions were generally described qualitatively for perceptual threshold of binaural
cues. It is difficult to perform mathematical analysis and model accurately and cannot
fully reveal the principal of the perceptual threshold of binaural cues. So the JND
measurement of binaural cues in all-round, full-band and the mathematical analysis
are important issues to reveal the perceptual characteristics of binaural cues. In
order to solve the above problem, we have undertaken the research of perceptual
characteristics for binaural cues:

In order to study the impact of the frequency and direction on binaural cues JND,
our team measured full band JND of binaural cues and analyzed its statistics and
distribution characteristics.

a. Subjects. 12 NH subjects participated in this study, 7 males and 5 females, all
subjects were aged between 19 and 25 years.

b. Stimuli. The method in this article used a two-alternative-forced-choice paradigm
to measure the JND. Both reference and test signals were 250 ms in duration
including 10 ms raised-cosine onset and offset ramps. They were randomly combined
into stimulus and separated by 500 ms duration. The stimuli were create by personal
computer and presented to the subjects over headphones (Sennheiser HDA 215)
at a level of 70 dB SPL. In order to exclude other factors influence on this experi-
ment, the environment of the entire testing process should be consistent and the
intensity of test sound must remain around 70 dB SPL. Meanwhile the ITD should be
zero in the whole experiment in order to remove the effect on the result caused by
other binaural cues and the sum of energy of left and right channels should remain
unchanged.

The reference values of ILD in these experiments were 0, 1, 3, 5, 8 and 12 dB,
which respond to 6 azimuths (about 0~60°) in the horizontal plane from midline to the
direction of the left ear.



Perceptual Characteristic and Compression Research in 3D Audio Technology 89

The whole frequency domain was divided into 20 sub-bands, each frequency
sub-band satisfied the same perceptual characteristics of human ear.

The stimuli are pure tones whose frequencies are the center frequencies of
sub-bands, these frequencies are 75, 150, 225, 300, 450, 600, 750, 900, 1200, 1500,
1800, 2100, 2400, 2700, 3300, 4200, 5400, 6900, 10500, 15500 Hz.

c. Method. Discrimination thresholds were estimated with an adaptive procedure.
During any given trial, subjects would listen to two stimuli by activating a button on a
computer screen by mouse-click, with a free number of repeats but the order of two
stimulus were changed. The subjects should indicate which one was lateralized to the
left relatively by means of an appropriate radio button response in 1.5 s.

An adaptive, 1-up-3-down method was also used in this article. The difference of
ILD in dB was increased in every one wrong or decreased in every three consecutive
correct judgments. The difference between reference and test signals in first trials was
the initial variable, which was much larger than the target JND, it was changed by an
given step according to previous test results.

The step was changed adaptively, it was adjusted by 50% for the first two rever-
sals, 30% for the next two reversals, then linear changed in a small step size for the
next three reversals, until the final step size reach the expected accuracy for the last
three reversals. In a transformed-up-down experiment, the stimulus variable and its
direction of change depend on the subjects’ responses. The direction alternates back
and forth between “down” and “up”. Every transform between “down” and “up” was
defined as a reversal.

Because of heavy workload of these experiments, adaptive test software was de-
signed to simplify the experiments and the process of data collection and analysis.
The software automatically generated test sequences and played one after another.
According to the listener’s choice, the software changed ILD values of test stimulus
properly, and saved the results to excel sheet until listener hardly distinguished the
orientation differences between two sequences. And the value of ILD at this time was
the JND value.

d. Results. After a subjective listening test for half a year, we got 120 groups (six
azimuths and twenty frequencies) of data, each group containing 12 JNDs corres-
ponding to 12 subjects. For every group, we select the data that has the confidence
degree of 75% to be JND in that condition. Some JND curves in different reference of
ILD were plotted in Fig. 3:

e The curves vary with the reference ILD, the larger the reference ILD, the higher
the corresponding curve. The JND is the most sensitive in the central plane for
human perception, and the least sensitive at lateral.

e  Human ear is most sensitive to the middle frequency bands except 1000 Hz and
less sensitive to the high frequency bands and low frequency bands.
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3. 4B

Fig. 3. JND curve of ILD with different frequencies and reference ILD

A binaural perceptual model is established and used in quantisation of ILD. It
solves the problem of the perceptual redundancy removal of spatial parameters. Expe-
rimental results show that this method can reduce the bitrate by about 15% compared
with parametric stereo, while maintaining the subjective sound quality.

3.2 Perceptual Information Measurement for Multichannel Audio Signal

Multimedia contents abound with subjective irrelevancy—objective information we
cannot sense. For audio signals, this means lossless to the extent that the distortion
after decompression is imperceptible to normal human ears (usually called transparent
coding). The bitrate can be much lower than for true lossless coding. Perceptual audio
coding [27] by removing the irrelevancy greatly reduces communication bandwidth or
storage space. Psychoacoustics provides a quantitative theory on this irrelevancy: the
limits of auditory perception, such as the audible frequency range (20-20000 Hz), the
Absolute Threshold of Hearing (ATH), and masking effect [28]. In state-of-the-art
perceptual audio coders, such as MPEG-2/4 Advanced Audio Coding (AAC), 64 kbps
is enough for transparent coding [29]. The Shannon entropy cannot measure the
perceptible information or give the bitrate bound in this case.

For perceptual audio coding technology, determining the lower limit bitrate for
transparent audio coding is an important question. Perceptual Entropy (PE) gives an
answer to this question [30], which shows that a large amount of audio with CD quali-
ty can be compressed with 2.1 bit per sample. PE indicates the least number of bits for
quantising mono audio channel without perceptual distortion. This is widely used in
the design of quantisers and fast bit allocation algorithm.

Nevertheless, PE has significant limitations when measuring perceptual informa-
tion. This limitation primarily comes from the underlying monaural hearing model.
Humans have two ears to receive sound waves in a 3D space: not only is the time and
frequency information perceived— needing just individual ears—but also spatial
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information or localization information—needing both ears for spatial sampling.
Due to the unawareness of binaural hearing, PE of multichannel audio signals is
simplified to the supposition of PE of individual channels. This is significantly larger
than real quantity of information received because multichannel audio signals usually
correlate.
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Fig. 4. Binaural Cue Physiological PerceptionModel (BCPPM)

Following the concept of PE, we establish a Binaural Cue Physiological Processing
Model (BCPPM, Fig. 4). Based on MCPPM, we using EBR filter to simulate the
human cochlea filter effect, and the JND of binaural cues to estimate the absolute
threshold of spatial cues.

a. SPE Definition. From the information theory viewpoint, we see BCPPM as a
double-in-multiple-out system (Fig. 4). The double-in is the left ear entrance sound
and the right ear entrance sound. The multiple-out consists of 75 effective ITDs,
ILDs, and ICs (25 CBs, each with a tuple of ITD, ILD, and IC). Like in computing
PE, we view each path that leads to an output as a lossy subchannel. Then there are 75
such subchannels. Unlike PE, what a subchannel conveys is not a subband spectrum
but one of ITD, ILD, and IC of the subband corresponding to the sub-channel. In each
sub-channel, there are intrinsic channel noises (resolution of spatial hearing), and
among sub-channels, there are interchannel interferences (interaction of binaural
cues). Then there is an effective noise for each sub-channel. Under this setting, each
sub-channel will have a channel capacity. We denote SPE(c), SPE(¢), and SPE(J)
for the capacity of IC, ITD, and ILD sub-channels respectively. Then SPE is defined
as the overall capacity of these sub-channels, or the sum of capacities of all the
sub-channels:

SPE= . SPE(c)+SPE(t)+SPE(l) (1)

all subbands
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To derive SPE(c), SPE(t), and SPE(1), we need probability models for IC, ITD, and
ILD. Although the binaural cues are continuous, the effective noise quantizes them
into discrete values. Let [L-P], [T-P], and [C-P] denote the discrete ILD, ITD, and IC
source probability spaces:

L:i, L, ... L .. 1
[L-P] :
PL): P({), PWU), ... PU), ... PdU,)
[T.P]{ T:t, t,, o b, o 1ty ’ o
P(T): P(t), P(t), ... P@), ... P@,)
[C-P] { C:c, ¢ wony €y m Cy
P(C): P(Cl)’ P(Cz), cey P(Ci)’ . P(CN)

where [, t;, and ¢; are the ith discrete values of ILD, ITD, and IC, respectively, and
P(1), P(t;), and P(c;) the corresponding probabilities. Then we have

SPE() ==Y p(i)log, p(i)
i=1
Ny

SPE(t) ==Y p(t,)log, p(t,) 3)

i=1

SPE(c) ==Y p(c))log, p(c,)

i=1

b. CB Filterbank. We use the same method as that in PE to implement the CB filter-
bank. Audio signals are first transformed to the frequency domain by DFT of 2048
points with 50% overlap between adjacent transform blocks. Then a DFT spectrum is
partitioned into 25 CBs.

c¢. Binaural Cues Computation. ILD, ITD, IC are computed in the DFT domain as
described in [31].

d. Effective Spatial Perception Data. The resolutions or quantization steps of the
binaural cues can be determined by JND experiments. Denote by At, AA, and An the
resolutions of ITD, ILD, and IC, respectively. Generally, they are signal dependent
and frequency dependent. For simplicity, we use constant values: At = 0.02 ms,
AL = 1dB, and An =0.1.

We ignore the effect of IC on ILD and only consider the effect of IC on ITD for
SPE computation. Lower IC leads to lower resolution of ITD. This is equivalent to
higher JND of ITD. Then the effective JND on subband b, denoted as At' (b), can be
formulated as the following:

At(b)
IC(b)

AT'(b) = €]
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Then we have the following effective perception data gy p(b), grrp(b), and gic(b) of
ILD, ITD, and IC, respectively by quantization, where |-| represents the round down

function:
ILD(b)

bhy=2

Gun () { AA() J
|| e
Gurp (D) = 2{ Az(b)/ IC(b)J N
1-IC(D)

b =

Gic(b) [An(b)J

Suppose that gy p(b), girp(b), and gic(b) are uniformly distributed by (3), the SPE
are expressed as

1 . 1-1IC(b) . ITD(b)
SPE:—Z:z:(log2 int +1 |+alog,| 2int| |———— |+1
= An(b) Az(b) /1C(b) (6)
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Fig. 5. Perceptual spatial information of stereo sequences sampled at 44.1 kHz. Four curves are
speech, simple mixed audio, complex mixed audio and single instrument.

e. Results. Fig. 5 shows the SPE of four different stereo signals from MPEG test
sequences. The experiment suggests that SPE of speech signal is very low. This is
because the human voice is often recorded with fixed position without change. So
coding this kind of stereo audio signals requires a low bit rate. The average SPE for
speech signals is 2.75kbps, for simple mixed audio is 3.66kbps, for complex mixed
audio is 3.49kbps and for a single instrument is 6.90kbps. In other words, to achieve
transparent stereo effect, audio signals required more than 7kbps, which is close to the
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bitrate 7.7kbps of PS. So the proposed SPE can reflect the amount of perceptual spa-
tial information that is ignored by PE. Experiments on stereo signals of different types
have confirmed that SPE is compatible with the spatial parameter bitrate of PS.

Using PE to evaluate the perceptual information, only interchannel redundancy and
irrelevancy are exploited; the overall PE is simply the sum of PE of the left and right
channels. Using SPE based on BCPPM, interchannel redundancy and irrelevancy are
also exploited; the overall perceptual information is about one normal audio channel
plus some spatial parameters, which has significantly lower bitrate. For the above
reason, PE gives much higher bitrate bound than SPE. PE is compatible with the tra-
ditional perceptual coding schemes, such as MP3 and AAC, in which channels are
basically processed individually (except the mid/side stereo and the intensity stereo).
So PE gives meaningful bitrate bound for them. But in Spatial Audio Coding (SAC),
multichannel audio signals are processed as one or two core channels plus spatial
parameters. SPE is necessary in this case and generally gives much lower bitrate
bound (~1/2). This agrees to the sharp bitrate reduction of SAC.

4 Tendency of 3D Audio Technology and Our Future Work

4.1 Hearing Mechanism Research on 3D Audio

The spatial orientation cues of sound include three aspects: azimuth angle, elevation
angle and distance. There are many acoustic factors to perceive the distance of a
sound source, such as the source of the sound (sound pressure level and spectrum),
the transmission environment (reflected sound, high-frequency losses and environ-
mental noise) as well as listening factors. So the current research focuses on the ex-
pression and extraction of distance cues. Hence, the perceptual characteristic of the
3D spatial orientation is an important research direction for 3D audio technology.

Our future work will focus on the perceptual characteristics of 3D spatial orienta-
tion. The main work will include: design experiments to obtain perceptual threshold
of 3D spatial position, mathematical analysis to establish representation model of
perceptual sensitivity in 3D spatial orientation, get the perceptual distortion of sound
image in the different offset of spatial orientation, obtain the equivalent distortion
curve of azimuth angle and elevation angle in 3D spatial orientation, and to establish a
position distortion model of 3D spatial position. Through the above research, we ex-
pect to establish the basic theory of perceptual mechanism for 3D audio systems and
provide theoretical support for 3D audio collection, processing, reconstruction, play-
back and evaluation.

4.2  High Efficiency Compression for 3D Audio Signal

Existing 3D audio compression technology has exploited the perceptual redundancy
within each individual channel. From the same sound field and same sound source,
3D audio signals of different channels intrinsically exhibit strong correlation. Parame-
tric coding is able to extract the cues of sound image direction, width and scene
information to reduce the interchannel redundancy, and achieve high compression
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efficiency using fewer channels with side information. Parametric coding for 3D au-
dio is able to fulfill the compression requirement of transmission and storage while
keep 3D effect meantime, so it is a strong direction in 3D audio compression research.

Since the compression is highly efficient, the reconstructed 3D effect strongly de-
pends on the cues that described corresponding spatial information. The existing 3D
audio parameter coding quantises those cues uniformly and reconstruction error in
every direction is the same. However, according to human perceptual characteristic in
3D space, the JND to sound direction exists and varies widely in all directions. If
reconstruction error for direction cues exceed corresponding threshold, perceptible 3D
effect distortion is produced. So how to utilize human perceptual characteristics in 3D
space for 3D audio parametric coding will be included in our future work. Our goal is
to develop the 3D spatial perception information measurement and establish a compu-
tational model of 3D audio orientation perception for effective representation of 3D
audio parameterization

4.3  The Evaluation of 3D Audio Quality

Along with the developments of the 3D audio technology, research institutions such
as NHK [32] and Deutsche Telekom Laboratorie [33], are carrying out the subjective
evaluation of the 3D audio system. Because the subjective evaluation is based on the
human who is the main body directly involved in the evaluation, the result is more
explicit and reasonable in spite of spending a lot of time and manpower during the
period of the assessments. So, more and more scholars [34-36] are trying to establish
the objective evaluation model for the 3D audio system, hoping to look for an objec-
tive evaluation model based on the human perception of the audio quality to assess
the effects of a 3D sound field. The performance of the proposed model is comparable
with the subjective evaluation method.

However, the current methods used to establish an objective evaluation model do
not introduce the spectral cues related to the elevation perception of sound events, the
envelopment or immersion in diffuse sounds, or the proximity and distance of sound
events as the acoustic characteristic parameters. Research of the objective evaluation
methods of the 3D audio is occuring on to investigate the spectral cues of the eleva-
tion, envelopment and distance perception of the 3D sound field.

In the study of the objective evaluation method of the 3D audio quality, we draw
up an objective evaluation model, based on the acoustic characteristic parameters of a
3D audio signal, to predict the perceptual acoustic attributes of the 3D sound field.
Including the Basic Audio Quality (BAQ), the Timbral Fidelity (TF), the 3D Frontal
Spatial Fidelity (3DFSF) and the 3D Surround Spatial Fidelity (3DSSF). The study
includes establishing the acoustic characteristic parameter set related to the 3D per-
ceptual sound field, obtaining a predictable mapping of the perceptual acoustic
attributes and the acoustic characteristic parameters of a 3D audio quality, and build-
ing up an objective evaluation model of the 3D perceptual sound field by fitting the
performances of the subjective evaluation and objective evaluation. Because the main
aim of this study is to express the spectral cues related to the elevation perception of a
3D sound field, we should try to analyze the duplex spectral effects of the pinna to
further improve the technology of the 3D audio objective evaluation.
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5 Conclusion

The complexity and large capacity limit the promotion and application of 3D audio.
To solve these problems, the National Natural Science Foundation of China, Tsinghua
University, Wuhan University and other colleges organized the Second International
Symposium of 3D video and audio. In the 3D audio workshop, basic theory and
research on the recording, compression and reconstruction for 3D audio was empha-
sized. We also hope to promote the research work to become part of the next genera-
tion standard for the audio and video coding (AVS2) of China. This paper gives a
brief introduction on current 3D audio systems. At the same time, our research
work on the hearing mechanism and compression coding are presented. Finally our
future work is introduced, which includes the research of perception characteristic,
compression coding and the quality evaluation.
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Abstract. This paper presents a rolling sound synthesis model which
can be intuitively controlled. For that purpose, different aspects of the
rolling phenomenon are explored: physical modeling, perceptual studies
and signal morphology. Based on these approaches, we propose a syn-
thesis model that reproduces the main perceptual features responsible
for the evocation of rolling action. Finally, a control strategy based on
ball’s properties (perceived size, asymmetry, speed, trajectory) and the
irregularity of the surface is proposed.

Keywords: Rolling Sounds, Sound Synthesis and Control, Environmen-
tal Sound Synthesis, Sound Invariants, Physically Informed Synthesis,
Rolling ball.

1 Introduction

This study is part of a larger project (MétaSo) which aim is to build a realtime
sound synthesis platform that offers intuitive controls of sounds to end users. In
fact nowadays almost any everyday sound can be realistically synthesized, but
the question of intuitive control of sound synthesis processes is still a substantial
challenge. For instance, an impact sound can be represented and synthesized
by a sum of exponentially decayed sinusoids [38]. However, obtaining a specific
impact sound reflecting for instance the material, size or shape of the impacted
object by acting directly on the synthesis parameters (amplitudes, frequencies
and damping coefficients of the sinusoidal components) is quite impossible, even
for expert users. To cope with this problem, perceptually relevant signal struc-
tures have to be identified through listening tests to define mapping strategies
that enable such intuitive controls.

One aim of the MétaSon project is to propose a sound synthesizer with associ-
ated high-level (or intuitive) controls. To achieve this, we assume that the sound
(signal) contains so-called sound invariants, i.e. signal morphologies that are re-
sponsible for the recognition of particular sound events [I527]. These invariants
can be either structural invariants or transformational invariants. Structural in-
variants reflect the intrinsic properties of an object and enable us to recognize
it, whereas transformational invariants are linked to external interactions with
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this object and enable us to recognize the actions that produced the sound. For
instance a string produces a sound with a particular spectro-temporal structure
that is recognized by the listener, even if it is bowed (violin), plucked (guitar) or
hit (piano). Likewise, it is possible to recognize that a cylinder bounces even if it
is made of glass, wood or metal [25]. Hence, “if an event is something happening
to a thing, the something happening is presumed to be specified by transfor-
mational invariants while the thing that it is happening to is presumed to be
described by structural invariants” [28].

For instance, Warren and Verbrugge studied auditory transformational invari-
ants with recorded bouncing and breaking glass sounds [39]. They first showed
listeners’ ability to differentiate these sounds, then they identified the specific
patterns responsible for the recognition of the interaction and then validated
the identified transformational invariants by synthesis. Concerning the object,
listening tests revealed that the evocation of a specific material is correlated to
the damping of spectral components [37U21IIT6] and to the roughness [2], while
the hardness of the striking mallet is related to the characteristics of the time
attack [13]. Aramaki et al. used the results of such studies to propose an impact
sound synthesizer with high-level controls [3] that enables the user to directly
control perceived attributes of sound sources such as the object’s material or
size. These previous studies confirm that these invariants are strong enough to
evoke both the object an the interaction with this object.

On the basis of these structural and transformational invariants, we propose
a sound synthesis action/object paradigm in which the sound is defined as the
result of an action on an object. In this paradigm, the object’s properties are sep-
arated from the interactions it is subjected to. From a synthesis point of view, we
used subtractive synthesis models based on a source-filter structure. This kind of
model originally came from speech analysis and synthesis [4], but has also been
studied in the context of musical sounds [31] and in the context of continuous
interaction sound synthesis [38J22]. The source-filter model is an approximation
of physical modeling : it stands that in an interaction, the physical exciter (for
instance the vocal folds in the case of speech production) is decoupled from the
resonator (the vocal tract). In the case of voiced vowel synthesis, the excitation
(source) is a pulse train which is passed through a filter bank that simulates
the vocal tract resonance for a particular vowel. In the case of rubbing sounds
for instance, the interaction (source) can be represented by an adequate excita-
tion signal while the object’s modes (filter) can be represented by an adequate
resonant filter bank [14].

This paper is devoted to a particular type of interaction, the rolling action.
In the next section we will present the literature on rolling sounds, then in the
we will propose a sound synthesis model for rolling sounds. Section [] will be
devoted to the control strategy, and in the last section we will conclude and
propose some perspectives for this work.
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2 Previous Studies on Rolling Sounds

Different approaches to the synthesis of rolling sounds can be found in the liter-
ature. Physical modeling of the phenomenon and the computation of equations
with finite difference scheme has been proposed. Stoelinga et al. derived a phys-
ical model that produces rolling sounds [32] from previous studies on impact
sounds on damped plates [I0J23]. This model can reproduce phenomena like the
Doppler effect, which is also found in the measures. However, sound examples
are not fully convincing, i.e. the sounds do not clearly evoke rolling objects. This
can be explained by the lack of amplitude modulation, as the model considers
the rolling object as a perfect sphere (i.e. the mass center is the geometrical cen-
ter), which is never the case in reality. It is important to note that these models
cannot be computed in real time.

Another approach is the physically informed modeling. In [I7], Hermes pro-
posed a synthesis model that consisted of simulating the excitation by a series of
impacts following a Poisson law amplitude modulated to account for the asym-
metry of the ball. This pattern was further convolved with the impulse response
of the object (represented by a sum of gamma-tones) on which the ball rolled.
The author justified the shape of the impulse response by the fact that the colli-
sions between the ball and the plate are “softer” than in a classical representation
that uses a sum of exponentially decaying sinusoids. Otherwise, in order to feed
the source-filter model with parameters from real recorded sounds, Lagrange et
al. [22] and Lee et al. [24] proposed an analysis/synthesis scheme. This scheme
consists in extracting the excitation pattern (considered as a series of micro im-
pacts) and the object’s resonances (the resonance of the rolling object and the
surface on which it rolls are not separated). Van den Doel et al. [38] proposed
a model where modal resonators were fed with a noise whose spectral envelope
was defined by \/ 1/(w — p)? + d? where p and d are respectively the frequency
and the damping of the resonance, in order to enhance the resonance near the
rolling object’s modes. The authors also proposed a similar source-filter model
to generate rubbing sounds. In both of these models, the velocity is conveyed by
filtering the signal with a lowpass filter whose cutoff frequency is tuned accord-
ing to the motion’s speed. Rath proposed a model for rolling sounds which is
between physical modeling and physically informed considerations [30]. Based on
a nonlinear contact model for impact sound synthesis [5], Rath added a supple-
mentary physically inspired control layer to produce rolling sounds. More details
concerning this model will be given later (Sect. B]).

As far as sound “invariants” related to the evocation of rolling objects are con-
cerned, several studies can be found in the literature. For instance, Houben et al.
studied the auditory ability to distinguish the largest or the fastest ball between
two recorded sounds. They showed that at constant velocity (respectively at con-
stant size) listeners can distinguish the largest (respectively the fastest) rolling
ball with good accuracy. The performance is impaired when the two factors (i.e.
velocity and size) are crossed [19]. They also attempted to identify acoustic cues
that characterize the size and speed of rolling balls, like auditory roughness or
spectral structure. The influence of spectral and temporal properties was studied
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in [20] by crossing the temporal content of a stimulus with the spectral content
of another stimulus and using the obtained sound (the obtained stimulus had
its spectrum very close to one stimulus and its temporal envelope very close
to the other stimulus) in a perceptual experiment. It was shown that only the
spectral structure was used to determine the fastest or largest ball and that re-
sults were better for the size judgement than for the speed judgement. However
only recordings without clear amplitude modulations (due to an unbalanced ball
or a deviation from perfect sphericity) were used in the experiment. This can
explain why no temporal cues were found. The authors further investigated the
influence of this amplitude modulation in [I8]. Artificial amplitude modulations
were added to the recordings used in the previous experiments. Perceptual ex-
periments showed that amplitude modulations clearly influence the perceived
size and speed.

Another important perceptual effect is caused by the influence of the modes of
the support on which the ball rolls. These modes are excited differently along the
ball’s trajectory, depending on the excitation point. This effect can be observed
as varying ripples in the time-frequency representation of rolling sounds and is
due to the interference between the sound generated at the point of contact
between the ball and the plate and the sound reflected at the edges of the plate
[33]. Murphy et al. [29] performed a series of perceptual experiments to judge the
quality of the analysis-synthesis algorithm described in [22]. In a first experiment,
the listeners described the rolling sounds as “static”. Then they simulated the
ball’s displacement with a time-varying comb filter, which resulted in rolling
sounds that were perceived as more realistic.

Based on those previous studies on synthesis and perception of rolling sounds,
we will propose a sound synthesis scheme in the next section.

3 Sound Synthesis Model

The proposed synthesis model aims at reproducing the main perceptual features
behind the evocation of rolling actions. For that, we explored different aspects
of the rolling phenomenon (physical, perceptual and signal morphology) and we
concluded on the relevance of the following attributes: the nonlinear interaction
force between the rolling ball and the plate, the amplitude modulation due to the
imperfect sphericity of the ball, the timbre variation induced by the displacement
of the contact point along the trajectory and the timbre variation induced by
the ball’s velocity. In the proposed synthesis scheme, each of these attributes are
reproduced by separate processes. Hence, we here propose a modular approach
to synthesize rolling sounds. Each step of this sound synthesis model will be
detailed in this section.

3.1 Nonlinear Interaction Force

From our point of view, the model proposed by Rath [30] produces the most
convincing sounds. This model consists in transforming a physical model of col-
liding objects into a rolling sounds model. Basically, the model proposed by
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Avanzini et al. [5] allows to produce bouncing sounds. This model couples an
exciter (a hammer or a ball for instance) to a resonant object (which is defined
by its modes, each of them represented by a mass-spring-damper system) with
a nonlinear interaction force that takes into account the compression and the
velocity of compression between the two colliding objects [26] as described in
the equations below:

T =T — Ty
-;I}r + grj;r + WrLy = 7irf(.’1,‘,.’1',') (1)
Ze = 77716.}0(*%3*@) +g
with
kx® + Ax®z ,x >0

flai) ={ o @

The terms labeled with an r stands for the resonant object and those labeled
with an e for the exciter (for further information on the physics or on the im-
plementation, refer to [5U30]). The term x represents the compression between
the two objects, and f is the nonlinear interaction force between the exciter and
the surface that depends on the compression z. By adding a time-varying signal
that captures the fact that a rolling ball “scans” the rough surface on which it
rolls in a particular way to the compression term, this model produces sounds
that clearly evoke a ball rolling on a rough surface. As one can note in Fig. [I]
this interaction force is a series of impacts. Moreover, this force has a particular
structure, i.e. it evolves over time in a particular way and the impacts are related
in a specific manner.

It is possible to synthesize a signal that captures the main characteristics of
this nonlinear interaction force (paper in preparation). Indeed, we can simulate
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Fig. 1. Interaction force between the ball and the surface resulting from a simulation
of the synthesis model proposed by [30] (top) and a zoom on this force (bottom)
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the behavior of the two time series by the amplitudes of the impacts (A™) and
the intervals between each impact (A%). Thus, our model allows to reproduce
series of Dirac pulses with specific statistics.

Then, each Dirac pulse is shaped by an impact model. A simple and efficient
impact model is the raised cosine (see [§]). Moreover, as the interaction force
is nonlinear, the impact’s duration varies with its amplitude [9J6]. This effect
is taken into account. The sharpness of the pulses, which affect the sound’s
brightness, can also be controlled by empirically using an additional exponent &
in the original raised cosine model. The used pulse model is then :

13
Frax _ 2mn
Fexe(n) = s {1 cos (Nexc)] ,n € [0, Nexc] (3)
0 , otherwise

with Fhax the impact’s amplitude and Nexc the impact duration.

From a perceptual point of view, we observed that it is the nonlinear interac-
tion force between the rolling ball and the plate that carries the main relevant
information that characterizes the action to roll. This force can be considered as
a transformational invariant related to the rolling action and, in the proposed
synthesis paradigm {source/resonance}, as the source signal. Indeed, by con-
volving the computed force resulting from the interaction of a rolling ball and a
rough surface with an impulse response of a resonant object, a realistic rolling
sound is produced.

3.2 Amplitude Modulation

As exposed in Sect. 2l Houben showed that modulating the amplitude of rolling
sounds influence the perceived size and speed [I8]. Such an amplitude modulation
can be due to imperfect sphericity of the rolling marble, or to the asymmetry of
its mass center. As proposed by multiple authors [T7/18/30], the modulation can
be approximated by a sinusoidal modulation. Thus, the incoming signal f(t) is
modulated as :

y(t) = [L+ mcos (2mvnt)] f(t) (4)

with v, o< &/r, @ and r are respectively the ball’s velocity and radius.

3.3 Position Dependent Filtering

As previously pointed out, a marble that rolls on a plate excites its modes
differently along its trajectories, depending on its location on the plate. This
effect is due to the interference between the sound generated at the point of
contact between the ball and the plate and the sound reflected at the edges of
the plate [33]. Each reflected source is the delayed version of the sound, and
the delay time of each comb filter can be calculated thanks to an image source
method [I]. Hence, we simulate the reflection of the four first order images for
a square plate, depending on a chosen listening point on the plate, on the ball’s
position and on the first natural frequency of the plate. As already pointed out
by Murphy et al. [29], this effect enhance the sensation of the ball’s displacement.
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3.4 Velocity Dependent Filtering

In the synthesis model for rubbing sounds proposed by Van den Doel et al.
[38], the transversal velocity of the contact point controls the cutoff frequency
of a lowpass filter. This is important for the rendering of the gesture velocity
sensation. As we found that using this lowpass filtering step in the rolling sound
synthesis model also convey information about velocity of the rolling ball, this
effect is added to our rolling model.

The whole synthesis scheme is presented in Fig. [l The associated controls
will be presented in the next section.
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Fig. 2. General framework of the synthesis model to produce rolling sounds. High-level
controls associated with the resonant surface were proposed in [3].
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4 Control Strategy

Intuitive controls that are adapted to non-expert users are displayed in the upper
part of Fig. 2l The proposed controls on the ball’s properties are its perceived
size, asymmetry, speed and trajectory. The irregularity of the surface can also
be controlled. The mapping between high- and low-level controls (i.e. synthesis
parameters defined in Sect. B]) are also presented in Fig.

As one can note, the action is clearly separated from the resonant object (the
surface on which the ball rolls) according to our paradigm. This means that the
source part of the model can be modified to evoke interactions, independently of
the resonant object. Conversely, it is possible to change the perceived properties
of the resonant object while preserving the type of interaction. Concerning the
resonant object, high-level controls associated with the perceived material, size
or shape were previously proposed [3]. Going further, this distinction between
interactions and object should make it possible to propose control strategies
facilitating the creation of sound metaphors, like “bouncing water” or “rolling
wind”.

5 Conclusion

We proposed a rolling sound synthesis model in a source-filter approach. This
model is clearly adapted to our paradigm that separates the action and the
object in the modeling process.

This model is controllable in an intuitive way and a real-time implementation
has been carried out. Thanks to this real-time implementation, parameters like
the velocity of the ball can be directly controlled by the user with a graphical
tablet as input for more interactivity.

Possible improvements could be achieved with the use of inharmonic comb
filters to simulate the ball’s position. In fact in [33], Stoelinga et al. analyzed
the wave dispersion (i.e. the frequency dependent wave velocity) in a plate and
concluded that frequency dependent comb filters added more realism when sim-
ulating a ball approaching the edge of a plate. This was confirmed thanks to
perceptual experiments by Murphy et al. [29].

A generic model that allows continuous transitions between interactions (from
rolling to scratching or from rubbing to squealing) is currently investigated, in
order to propose intuitive navigation through the possible interactions between
solids. Actually, the rolling model is sufficiently generic to synthesize various
interactions such as rubbing and scratching [ITJI2], and we are currently inves-
tigating the integration of other interactions such as nonlinear friction [7134].

This synthesizer is a powerful tool, for sound design or sonification, but also
for fundamental research, to investigate auditory perception as it was done for
instance by Thoret et al. who studied the relations between gestures and sounds
[35136]. In particular, the influence of the velocity profile (profiles of a human
gesture versus the profiles of a rolling ball for instance) on the perceived in-
teraction could be precisely investigated since the velocity is one of the control
parameters of the synthesizer.
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Abstract. This paper describes the creative and technical processes behind
earGram, an application created with Pure Data for real-time concatenative
sound synthesis. The system encompasses four generative music strategies that
automatically rearrange and explore a database of descriptor-analyzed sound
snippets (corpus) by rules other than their original temporal order into musically
coherent outputs. Of note are the system’s machine-learning capabilities as well
as its visualization strategies, which constitute a valuable aid for decision-
making during performance by revealing musical patterns and temporal
organizations of the corpus.

Keywords: Concatenative sound synthesis, recombination, and generative
music.

1 Introduction

In electronic music, sampling is the act of taking a portion or sample of a particular
recording and reusing it in a different piece. Apart from some previous minor and
isolated experiments, the technique started to be largely explored in the late 1940s,
namely by the group of composers and researchers working at the home of French
Radio in Paris. Since then, we have witnessed a proliferation of sampling techniques
that explore two main lines of research: the use of different musical time scales,
namely the composition with micro-temporal scales, i.e. micromontage; and the
development of software and algorithmic strategies that automate components of the
technique, such as the segmentation and assemblage processes, as explored, for
instance, in granular synthesis.

Although many strategies for composing with audio samples towards a higher level
of automation have been presented in recent decades, the manipulation of such
musical structures is still a very laborious and time-consuming task. Commonly, it
demands the use of digital audio workstations to analyze, manipulate and render audio
data, whose processing paradigm is still highly attached to analog means of working
with audio.

M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 110-f29] 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Concatenative sound synthesis (hereafter, CSS) is a technique for synthesizing
sounds by concatenating short audio segments (called units). It relies on a large
database of segmented and descriptor-analyzed sound snippets (called corpus) to
assemble a given target phrase by selecting the units that best match the target
specification according to a distance measure in the descriptors space. CSS is
grounded in the sampling techniques mentioned in the previous paragraphs and can be
seen as an extension of granular synthesis towards a higher level of automation by
adopting a finer description and representation of the grains, enhancing the selection
and assemblage processes through audio-content based analysis. The technical basis
of this synthesis method was devised in the context of speech synthesis in the late-
1980s [1]. CSS began to find its way in musical composition and performance in 2000
[2, 3]. However, even if the musical community has largely adopted this technique,
the vast majority of the literature in this domain is mainly focused on solving
technical problems that enhance the efficiency of these systems, paying very little
attention to its musical applications.

The application detailed here, i.e. earGram, is a Pure Data' (hereafter, PD) patch
that implements a CSS engine and several exploratory tools for musical creative
practices. The major motivation behind earGram is to design software that could
creatively explore a corpus of segmented and descriptor-analyzed units in an
interactive and intuitive fashion. Four generative music strategies that recombine the
corpus into musically coherent outputs are detailed here. The recombination strategies
rely on two different approaches: the first uses the corpus to synthesize targets defined
by imposed (metric and harmonic) templates selected by the user beforehand, and the
second creates a novel music output while retaining the time-varying acoustic
morphologies of the audio source(s). The system encompasses both the analysis and
synthesis of soundscapes and polyphonic music and targets an audience more
familiarized with music theory than with music technology. This is particularly
evident in the devised description scheme used to characterize the units of the corpus,
which utilizes a terminology derived from musical theory and practice, instead of the
common low-level audio features. The need to develop this set of descriptors also
emerged from several collaborations that the first author established with various
composers, namely because of the difficulties experienced by these last in dealing
with low-level audio descriptions of the corpus [4]. Similar approaches that devise a
scheme of descriptors based on theoretical or practical musical knowledge can be
found in the work of Julian Ricard [5] and Norbert Schnell [6].

EarGram not only allows the rapid prototyping of generative music processes (i.e.
the implementation of unit selection strategies), but also offers several built-in
algorithms that rearrange the corpus according to simple and intuitive instructions that
can be manipulated by the user in real time. The recombination strategies
implemented in earGram result from the adaptation of existing strategies from
computer algorithmic assisted composition (hereafter, CAAC) to audio content-based
processing. These strategies are suitable for interactively composing soundscapes,

! http://puredata.info/
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infinitely extending a particular monophonic or polyphonic music sample without
using mere repetitions, altering the meter of a song, or even synchronizing different
layers of units.

Of note is the system’s ability to group units into representative clusters, which, in
combination with various visualization strategies, provide a valuable and intuitive
representation of the audio source(s) content. These representations were designed
with the purpose of being a decisive decision-making aid during performance.

Our approach to CSS is inspired by Tristan Jehan’s Skeleton [7] and Diemo
Schwarz’s cataRT [8]. The architecture and the conceptual approach of the two
systems is our fundamental basis. The analysis-synthesis models presented by Jehan
[7] and implemented in Skeleton, especially the perceptual and structural modeling of
the music surface, was of seminal importance for the development of the machine
listening and learning in earGram. Schwarz’s cataRT was equally important due to the
similarities of the programing environment used and its real-time capabilities.

2 System Design

In this section, we provide an overview of the design scheme of earGram (see Fig. 1),
which is composed of four modules: (1) machine listening, (2) machine learning, (3)
database, and (4) composing.

The first block, machine listening is responsible for segmentation of the audio
source provided initially by the user into representative units and for providing an
analysis of the their content by referring to machine listening strategies.

machine listening machine learning composing
P segmentation clustering recombination methods/
feature extraction visualization playing modes
audio data modeling synthesis
database

Fig. 1. Design scheme of earGram

The second block of the system covers several machine learning algorithms to: (1)
cluster the corpus into representative groups of units, (2) provide intuitive and
interactive visualizations of the corpus, and (3) deduce the meter and build statistical
models that convey a representation of the temporal evolution of the harmonic, timbre
and noisiness characteristics of the audio source(s). At this stage, a list of pointers to
audio segments, their respective feature vector and the harmonic, timbre and metric
models are stored in a database.
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While the first two blocks are rather analytical, the last is operational. It
encompasses four generative music strategies, referred to as recombination methods
or playing modes. Synthesis, the last operation of the algorithm chain, is not only
responsible for concatenating selected units from the corpus but also for some signal
processing techniques. These techniques, which include adaptive filtering,
reverberation, chorus, and spectral shift, enhance the concatenation quality between
adjacent units and constitute a mean of artistic expression. Referring to CSS
terminology, this last block is responsible for defining a target phrase and retrieving
the best matching units according to the selection procedure.

3 Initialization of the System and General User Preferences

Initially, the user must select the type of project he/she wants to create, depending on
the type of audio source(s) used: (1) single audio track, (2) folder comprising multiple
audio files, or (3) live signal input. Instead of creating a new project, the user may
also open a previously saved one.

During the creation of a new project the user must also feed the system with audio
data that will serve as a basis to construct the corpus. This data will be commonly
addressed as audio source(s). The source(s) constitutes the raw material that is
concatenated during synthesis for creating new sonic structures thereby directly
affecting the quality of the resulting output.

As mentioned earlier, earGram targets an audience more familiarized with music
theory and practice than music technology. It demands very little knowledge of
MIR-related terminology, which is commonly abundant in CSS software. The system
design, and especially its interface, conveys a usability that allows the rapid creation
of consistent musical results. Taking that into consideration, the system assumes by
default a configuration that needs little or no fine-tuning in order to start generating
some consistent results. However, expert users can also alter most settings to convey
their needs via the preferences panel accessible through the main interface. In the
following sections we will describe the system in detail and point out relevant
differences between the auto-assigned preferences and the user-definable settings.

4 Machine Listening

The machine listening module in earGram is responsible for creating a corpus of
labeled sound snippets. It encompasses two operations: (1) the segmentation of the
audio source(s) into units and (2) the creation of a feature vector that characterizes the
content of each unit.

4.1  Segmentation

The current implementation of earGram has three strategies that automatically
segment the audio source(s) into units: (1) uniform size, (2) onset, and (3) beat. The
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first mode, uniform size, segments the audio source(s) at regular intervals according
to a user-defined length. Onset, the second segmentation mode, defines units by
slicing the audio continuum at the beginning of a musical note or other sound in
which the amplitude surpasses an assigned threshold (amplitude peaks) or at sudden
changes in the spectrum. The last segmentation strategy is beat, which defines units at
the beginning of beats (if a regular pulse is found). The beat-tracker algorithm used in
earGram is largely based on S. Dixon [9].

The system also incorporates an auto-segmentation mode that automatically
chooses between onset or beat segmentation modes depending on the characteristics
of the audio signal. This mode is activated by default so that less experienced users
can utilize it more easily. If a clear pulse is found, the auto-mode segmentation will
select beat segmentation instead of onset. In order to inspect the presence of a regular
pulse, the system attempts to find clear peaks with harmonic relationships to the
spectral flux autocorrelation function. If no such peaks are found, the system will
segment the audio at each onset.

4.2  Morphological Analysis of the Units

The machine listening block comprises a second task: to assign a feature vector to
each unit. It aims at describing relevant characteristics of the unit’s content, which
will represent them throughout the system. Each feature vector can be seen as a
signature of the unit by significantly reducing its digital audio representation to a
minimal yet meaningful collection of numerical features. Relevant perceptual features
of the unit’s content are described according to a descriptors scheme presented in
Table 1. Pierre Schaeffer’s morphological criteria of sound perception [10] and the
later extensions of his work by Dennis Smalley [11] and Lasse Thoresen [12] inspired
the construction of the descriptors scheme.

The top horizontal layer of the descriptor’s scheme relates to two seminal concepts
from Schaeffer’s morphology: matter and form. Matter corresponds to “what we
would hear if we could freeze the sound” [10]. Form describes the temporal evolution
of a particular criterion over the length of the units.

The criteria under matter are represented by a numerical value on a limited and
infinite topological space whose limits correspond to typological musical categories. In
other words, each descriptor or criterion represents a sound feature by a numerical
value that is meaningful in relation to a finite space whose limits correspond to specific
types of sound. For example, the noisiness criterion is definable according to a space
whose limits are 0 and 1, which represent two types of sound (noise and a sinusoid).
Within these limits, the noisiness of the units is defined by a numerical value. The
criterion of matter is further divided in two other categories, main and complementary.
These categories distinguish between descriptors that produce meaningful results for
the entire database and those that are only valid for a smaller part of it. The criteria
under the main category encompass the totality of the units of the corpus, while the
complementary category only considers part of the database of units.

The criteria under form offer a representation of the temporal evolution of a
particular audio descriptor. It is represented either by a curve that exposes the
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descriptors’ evolution or by basic statistical properties of the curve, such as mean or
the standard deviation. The amplitude envelope curve is a clear example that falls
under this category.

Two important properties have guided the implementation of our descriptors
scheme. The first is to provide a set of descriptors that are definable according to the
same finite space (whose limits are specific musical types), avoiding and
consequently, dealing with the normalization of the feature vectors. The second
property that guided the descriptors scheme’s implementation is the invariability of
the descriptors in relation to the units’ length. In other words, the set of descriptors
used in earGram allow meaningful comparisons between units with different lengths.

Table 1. Description scheme used in earGram to characterize the unit’s content according to
morphological criteria of sound perception

Matter
Form
Main Complementary
Pitch
isi Noisiness
Noisiness .
Fundamental bass (root profile
Mass relationship)
Spectral
variability
Brightness
Harmonic Spectral width
timbre
Sensory dissonance
(roughness)
D .
Dynamic Loudness yn.amlc
profile

The following sub-section will inspect all descriptors used and will be organized
according to the three perceptual criteria (topmost vertical layer of the scheme): (1)
mass, (2) harmonic timbre, and (3) dynamic, which unfold into twelve descriptors.
Below we provide a conceptual and technical description of each descriptor. Its
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computational implementation relies on the use of individual low-level audio features
or combinations of them. If not specified, William Brent’s library timbrelD is used to
provide the low-level feature extraction in PD [13]. We chose this library for its
robustness, efficiency, and ability to work in both real time and non-real time.

Criteria of Mass. The criteria of mass encompass four descriptors: (1) noisiness, (2)
pitch, (3) fundamental bass, and (4) noisiness profile. The first is a main descriptor of
matter, the middle ones are secondary descriptors of matter, and the last descriptor
falls under the form category.

Measures of noisiness estimate the amount of noisy components in the signal as
opposed to tonal components. Alternatives to this feature are the measure of
pitchness, tonalness, or harmonicity, which offer a very similar and “inverse”
description of the noisiness of a sound. Related research presents two common
approaches to compute such criterion such as the use of low-level descriptors (e.g.
spectral flatness [14] or zero-crossing rate [1, 15]) or by applying pattern matching
techniques to compare between the spectral distribution of a sound and the expected
distribution of partials according to an induced fundamental frequency [5, 6]. While
the first approach is relatively poor and crude since it does not know any information
about musical signals with harmonic relations, the last approach is not consistent to
describe polyphonic audio signals because it is not feasible for a polyphonic signal
transcription to estimate the fundamental frequencies and environmental sounds since
it only consistently characterizes pitched sounds.

We decided to adopt a combination of low-level spectral descriptors to determine
the noisiness of a sound since earGram deals with both polyphonic audio signals and
environmental sounds. After several empirical tests we decided to calculate the
noisiness criterion as the weighted sum of the following four descriptors: (1) spectral
flatness, (2) spectral kurtosis, (3) spectral skewness, and (4) spectral irregularity.
Through empirical tests we assigned the following weights to the aforementioned
descriptors: spectral flatness 0.5, spectral kurtosis 0.2, spectral skewness 0.1, and
spectral irregularity 0.2. These values make spectral flatness the most significant factor
with spectral kurtosis, spectral skewness and spectral irregularity being useful to
primarily balance the descriptor into an even distribution of noisy and pitched sounds.
These values may also be used to enhance the detail of estimation pitched sounds (i.e.,
spectral kurtosis reveals the “peakedness” of the spectra and spectral irregularity
enhances the difference between jagged and smooth spectra). The noisiness descriptor
ranges between 0 and 1 where O represents a full saturated (noisy) spectrum and 1
represents a pure sinusoidal without partials. Within these two extremes we cover the
totality of audible sounds including instrumental, vocal or environmental sounds.

Pitch or fundamental frequency is a secondary criterion of mass as it only conveys
meaningful results for pitched sounds, and thus may reduce the corpus to a smaller
collection of units. There are several robust algorithms to estimate the fundamental
frequency of monophonic audio signals, however, algorithms for polyphonic pitch
detection are not reliable yet. Therefore, this descriptor is confined for the
characterization of monophonic audio signals. The estimation of the fundamental
frequency is done by sigmund~ a PD built-in object by M. Puckette.
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The fundamental bass descriptor reports the root of a chord. Similar to the pitch
criterion, it is a secondary criterion as it may reduce the corpus to a smaller number of
units. We implemented this descriptor as a method for overcoming the problem of
characterizing the pitch content of polyphonic audio signals. The fundamental bass is
computed by an altered version of a PD object from the Dissonance Model Toolbox
by Alexandre Porres [16].

The temporal evolution of the mass is expressed by two descriptors: (1) noisiness
profile and (2) spectral variability. The noisiness profile describes the development of
the noisiness at uniform and overlapping intervals throughout the unit’s length. This is
expressed in two ways: the first provides a curve of the features evolution and the
second reduces the evolution to a series of single values that carry substantial
information concerning its temporal dimension, such as maximum, minimum, mean,
and standard deviation.

Spectral variability describes the amount of change in the spectrum of a signal by
comparing the spectrum of consecutive frames. It is computed by the low-level audio
descriptor spectral flux and is calculated as the Euclidean distance between two (non-
normalized) spectra or the mean value between various analyzed windows. The use of
non-normalized spectra not only accounts for spectral differences, but also denotes
sudden changes in the overall power. The output of this descriptor is twofold: a curve
denoting the spectral variability of the unit and a single numerical value that expresses
the overall spectral variability throughout the unit duration.

Criteria of Harmonic Timbre. The perceptual criteria under harmonic timbre
presented in Schaeffer’s morphology [10] as well as the further reconsiderations by
Smalley [11] and Thoresen [12] are very misleading, inconsistent, and fail at presenting
a concise set of descriptors for this category. In order to define a set of systematic
and computationally reliable descriptors, we base ourselves on psychoacoustic models
of dissonance, implemented in PD by Alexandre Porres [16], to characterize harmonic
timbre, namely a set of brightness, spectral width, and sensory dissonance (roughness).

Brightness, also referred to as sharpness, is an important perceptual attribute of
sound and closely correlates with the centroid of the spectrum. In linguistics, it
provides a clear distinction between the sounds of vowels and consonants (e.g. the
sound ‘i’ is considered brighter than ‘u’ and ‘t’ brighter than ‘d”). In music it helps to
discern and further categorize the sound (e.g. the spectrum of the various instruments).
Brightness is computationally expressed by the centroid of the spectra. The resulting
value is expressed in Hertz and we decided to constrain its range to the human audible
frequency range which is roughly 20 Hz-20 kHz. This is further scaled between 0 and
1 to convey the same range as the other descriptors.

Spectral width expresses the interval between the extremities of the sound spectral
components and it may help in distinguishing between saturated spectra and sparse
distributions. For instance if we have a corpus of instrumental samples, we may
distinguish between chords or tones with many partials and sinusoidal sounds or poor
spectral distributions. An exact computational model of such criterion poses a few
issues because we shall consider that the spectral representation of the computed
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audio signal may encompass noise even if the ideal conditions during recording were
met. Instead of considering a solution for this problem, which has been subject to many
publications and research, we adopted a simpler yet effective workaround. In order to
increase both the robustness and reliability of the value expressed by this descriptor,
we used a common low-level audio feature, spectral spread, which describes the
concentration of the power spectrum around the spectral centroid.

In psychoacoustics, the roughness of a sound is the most relevant perceptual
phenomenon to characterize sensory dissonance. Roughness depends on the distance
between the partials measured in critical bandwidths, and it creates an audible
phenomenon that is normally addressed as “fast beats” (i.e. amplitude fluctuations
that occur at a rate over 20Hz up to a Critical Bandwidth).

Criteria of Dynamic. The loudness criterion expresses the amplitude of a unit by a
single value and is defined by the square root of the sum of the squared sample values,
commonly addressed as root-mean-square (RMS), which provides an approximate idea
of loudness. If the units have a considerably long duration, the value expressed by the
loudness criterion may be relatively crude since it is a temporal criterion by nature.
However, even if the reduction of the loudness criterion to a unitary value may be seen
as oversimplifying or too loose a description of this perceptual phenomenon, it may
constitute a reliable source for many applications in comparison with a full detailed
description of the envelope curve over the length of the event.

The dynamic profile is a form criterion of dynamic since it represents the evolution
of the amplitude of the units. It is expressed in two different ways: (1) by the
amplitude envelope curve or (2) by the characteristics of its shape (maximum,
minimum, mean, and standard deviation).

5 Machine Learning

The second module of the system aims at (1) clustering the collection of units from
the database, (2) creating visual representations of the corpus, and (3) modeling the
harmonic, timbre and metric structure of the audio source(s) over time.

5.1  Clustering

Clustering intends to group similar segments to form collections of units. It aims at
revealing musical patterns and particular temporal organizations of the music structure
that can be applied differently during performance. The current implementation
comprises three non-hierarchical clustering algorithms: k-means, quality-threshold
clustering (QT-clustering) [17], and DBSCAN [18].

Our choice fell on this set of clustering algorithms because they form a good
collection of tools to explore and automatically organize the corpus into distinctive
groups. If the user wants to have a concise number of clusters defined a priori and
consider all units in the corpus in order to create distinct corpus for different layers or
sections the choice should fall on k-means. On the other hand, if the user wants to
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define the quality of the clusters based on threshold of similarity or neighborhood
proximity between units, he/she should choose either QT-clustering or DBSCAN. On
the last two clustering algorithms the user may also define the minimum number of
elements per cluster. Another important property of these algorithms in relation to k-
means is their ability to detect outliers that can be treated differently during
performance namely by excluding them from the corpus as they may require special
attention. Euclidian distance is the distance metric used to calculate the similarity
amongst units in all clustering methods.

K-means partitions the corpus into clusters by allocating each unit to the cluster with
the nearest centroid. The total number of clusters k needs to be defined a priori.
However, the k-means implementation in earGram may suggest to the user the optimum
number of clusters for a particular corpus by applying a technique known as ‘elbow
method’. Our implementation of the technique follows two steps. First, we calculate the
distortion (i.e. sum of the squared distances between each unit and its allocated centroid)
for each different value of k, ranging from 2 to 9 clusters; and subsequently, the
algorithm assign the parameter k to the number of clusters at the point which a higher
number of clusters does not offer a much better modeling of the data.

QT-clustering was developed by L. Heyer, S. Kruglyak, and S. Yooseph [17] to
cluster gene expression patterns. Quality is defined by the cluster diameter and the
minimum number of units contained in each cluster. Initially, the user assigns the two
parameters. However, the user does not need to define the number of clusters a priori.
All possible clusters are considered and a candidate cluster is generated with respect
to every unit and tested in order of size against the quality criteria. In addition, it
identifies outliers that should be treated differently (notably excluded) at runtime.

DBSCAN defines the clusters based on the neighborhood proximity and the
density of the units in a cluster. Our implementation follows the algorithm described
by M. Ester, H. Kriegel, J. Sander, and X. Xu [18]. The user must initially define two
parameters: (1) the neighborhood proximity threshold and (2) the minimum density
within the radius of each unit. Similarly to the QT-clustering algorithm, DBSCAN
avoids defining a priori the number of clusters. However, the algorithm finds
arbitrarily shaped clusters very diverse from the ones found by the QT-clustering. It
can even find clusters surrounded by (but not connected to) a different cluster.

5.2  Visualization

The visualizations strategies implemented in earGram were designed for three main
purposes: (1) give the user a better understanding of the corpus and similarity between
units, (2) allow interactive and guided exploration of the corpus, and (3) assist in the
decision-making processes during performance.

The visual representations implemented in earGram can be divided in four groups,
which depict different hierarchical levels of the music structure: (1) waveform is the
lowest representation level and one of the most common visualizations of audio data
(the boundaries of the segments are provided on top of the waveform and below the
waveform is a representation of the bark spectrum of the units), (2) 2d-plots and star
coordinates [19], reveals the similarity between units by their representation on a two
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dimensional plane, (3) similarity matrix and arc diagram [20] aims to present the
long-term (temporal) structure of the corpus, and (4) parallel coordinates [21]
examines the high-dimension descriptors space.

Besides depicting relevant information of the corpus, most visualization strategies
are interactive and allow the user to define regions of the audio source(s) that may be
used distinctively during performance.

The waveform representation (see Fig. 2, Image 1) helps the user to examine the
segmentation of the audio source(s) and browse the collection of units in their original
order.

Fig. 2. Five visualizations of a corpus comprising a single-track audio source — 4 by Aphex
Twin. From top to bottom and left to right: (1) waveform representation, (2) main interface of
earGram that incorporates a 2d-plot representation of the corpus, (3) similarity matrix
encompassing all available descriptors, (4) similarity matrix that uses the color scheme
gathered from the cluster representation depicted in 2, and finally (5) visualization of the corpus
by the arc diagram algorithm.
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The 2D-plot representation (see Fig. 2, Image 2) is one of the most common
visualizations of the corpus adopted in CSS software. To each axis is assigned a
particular feature (from the collection of descriptors available), which causes units
with similar characteristics to be closely plotted. It is especially suitable for browsing
and exploring the corpus by navigating its representation. The units’ color offers
another layer of information. The color of each unit is defined by a list with three
elements that correspond to the red, green, and blue values of an additive (RGB) color
model. The R, G, and B values represent audio features from the available set of
descriptors.

Star coordinates is a dimensionality reduction algorithm implemented in earGram
that allows visualization of high-dimensional data on a 2D representation. The
algorithm was formulated by E. Kandogan [19] and it maps high-dimensional data
linearly to 2D or 3D using the vector sum. The choice of this algorithm over other
popular dimensionality reduction algorithms such as multidimensional scaling or
principal component analysis (PCA) was due to its understandability (each dimension
still preserves the same meaning). A clear disadvantage of star coordinates is the need
to explore the representation by weighing the variables and assigning different angles
to each axis to find interesting patterns.

By depicting pairwise similarity between the units of the corpus, both self-
similarity matrix and arc diagram reveal analogous patterns of the audio source(s),
which ultimately expose the long-term structure of the data (see Fig. 2, Images 3, 4,
and 5). The user can interact with these representations by grouping and selecting
collections of units that can be addressed differently during performance.

Parallel coordinates [21] is a known algorithm used to visualize high-dimensional
data and analyze multivariate data. It indicates the tendencies and the distribution of
the descriptors.

5.3  Modeling the Descriptions of the Units over Time

Machine learning block encompasses a third operation module that is responsible for
creating probabilistic models that represent the temporal evolution of the harmonic,
timbre and noisiness content of the audio source(s) after segmentation and induce the
meter of the audio source(s) if the beat segmentation mode was applied.

Harmony, timbre, and noisiness are modeled by transition probability tables that
represent the probability between the different variables of each characteristic (states).
The set of all states and their transition probabilities characterizes a Markov chain,
which later allows the generation of new sequences based on stochastic processes.

In order to create a transition probability table, each feature needs to characterize
the unit’s content according to a finite number of predefined classes or states. We will
further detail the used states to represent harmony, timbre, and noisiness, respectively.
The unit’s harmonic content is characterized by the pitch class profile (0-11) of the
fundamental bass. Timbre is characterized by a single integer that represents the three
highest bark spectrum bins out of a total of 24 bins. The compound value is achieved
by following three operations: (1) the three highest bins numbers are sorted from the
lowest to the highest and converted into binary representation; then (2) the second and
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the third bins numbers are shifted to the left by 5 and 10 cases, respectively; and
finally (3) the three numbers are reconverted to decimal representation and added.
Noisiness is represented by 10 states that are devised by dividing the descriptor’s
range in ten equal parts and assigning to each interval a numerical label from 0 to 9.

Whenever the audio is segmented on a pulse basis (if a regular beat is found),
earGram attempts to induce the most regular pattern on the autocorrelation function of
the spectral variability (spectral flux) description of the units in their original temporal
order (each unit is defined by a single numerical value). It constitutes a naive meter
induction algorithm, which provides uniquely the number of pulses per measure. The
autocorrelation function examines periods from 2 to 12 units, and picks the highest
value of the autocorrelation function. Even it is a bit inadequate to call the technique
meter induction, it satisfies our purpose of finding uniform patterns (number of pulses
that expose regularities over time) on the surface of the unit’s descriptions.

6 Database

The database stores most of the data produced in the machine listening and learning
modules including pointers to the beginning and end of each unit in samples, feature
vectors, probability transition tables, and various other details concerning the audio
source(s).

Particular attention is given to the storage of the feature vectors since they need to
be easily accessed in real-time. The descriptors (audio features) are implemented in
PD as a collection of arrays. Each individual array stores the data correspondent to a
particular feature to allow an effective and rapid search within a particular feature
without compromising the retrieval of all features that characterize a particular unit.

The database and several variables used for segmentation, analysis, and audio data
modeling can be saved in a text file and opened at a later stage. This saves a
considerable amount of time in future uses of the same sound source(s) since the
construction of the database is quite time-consuming, especially if we are dealing with
hundreds or thousands of units.

7 Composing

In earGram, the main drive behind the analysis of the audio source(s), covered in the
machine listening and learning blocks, is primarily synthesis. This section will start by
detailing four recombination methods that automatically re-arrange the corpus by
means differing from the units’ original temporal order into musically coherent outputs
(Sect. 7.1.1-7.1.4) and the synthesis method responsible for concatenating the selected
units from the corpus (Sect. 7.2). Using CSS terminology, the following recombination
strategies are used for defining a target phrase and retrieving the units from the corpus
that best match the target specification, which are further concatenated in the last
operation of the algorithm chain.
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The methods for recombination convey the creation of three different musical
results: (1) sonic textures or soundscapes (spaceMap and soundscapeMode),
(2) infinitely extending the length of a particular audio sample without recurring to
simple repetitions of the material (infiniteMode), and (3) defining targets that reflect a
particular pre-assigned meter (shuffMeter).

7.1 Recombination Methods

SpaceMap. This method allows the interactive exploration of the corpus by the
navigation of a 2D-visual representation. It can be seen as an extended granular
synthesis engine where grains are organized in a meaningful visual representation. It
aims at creating sonic textures with controllable nuances. It is a very powerful method
to use in performance and with improvisation in particular, not only because of the
automatic and meaningful segmentation that the software produces. Additionally,
after a segment is defined it is consequently plotted in the interface, creating an
almost instantaneous representation of the input signal during performance.

Several parameters, such as gain, density of events, pitch deviations, and stereo
panning can be changed during performance and can affect each unit separately. All
parameters can have a certain degree of random variability. The software also allows
the creation of several bus-channels that may incorporate audio effects. At runtime,
the representation of the units in the interface can be changed without affecting the
synthesis, except when dealing with a live input signal.

SpaceMap has three playing modes: (1) mouseOver — continuously plays units at a
specified density according to the mouse position on the screen; (2) pointerClick —
plays units according to the pointer position but uniquely when the mouse button is
pressed; and (3) colorPicker — same procedure as point 1, but the selection of the
units is based on their RGB color values that are retrieved from a navigable grid of
colors.

InfiniteMode. The second recombination method implemented in earGram, aims at
generating an arbitrarily long musical excerpt, given a relatively short audio source(s)
by scrambling the units’ original temporal order. The output of this mode never
repeats, nor loops the synthesized material, yet keeps playing by reconstructing the
time-varying acoustic morphologies of the audio source(s). It gives better results in
projects that comprise a corpus assembled from a single audio track and covers the
generation of both soundscapes and polyphonic music.

Both the definition of the target and the selection of the unit that best matches the
target specification are done on a unit basis. The target specification for a new unit is
defined according to the characteristics of the previously selected and played unit.
The resulting sequence of concatenated units conveys the metric structure and the
representation of the models that encapsulate the temporal evolution of the harmonic,
timbre and noisiness of the audio source(s) (detailed in Sect. 5.3). The user needs to
select the characteristics that will guide the target definition, because some may not
apply to the audio source(s) used. The interface of infiniteMode allows the user to
select up to three of the four available characteristics (meter, harmony, timbre and
noisiness). On the interface, there are two buttons that automatically assign
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characteristics for composing soundscapes (timbre and noisiness) and polyphonic
music (meter, harmony and timbre).

The following paragraphs will first succinctly describe the characteristics
used to evolve the generation of new music structures, and then address the algorithm
design.

The timbre qualities and noisiness of the units’ spectra, as well as the harmonic
content (fundamental bass) of the audio source(s) are preserved if the characteristics
timbre, noisiness and harmony are selected in the interface. Three distinct transition
probability (previously described in Sect. 5.3) represent the temporal evolution of
these characteristics. Relying on these tables and the previously selected units, a
target specification for a future event is defined.

To preserve the distribution of metrical accents in the audio source(s), the
algorithm retrieves the units that were previously labeled at each metrical accent. For
example, all units in the machine learning modules are labeled with their position in
the metric grid in a sequence that goes from 1 to number of pulses per measure. If the
meter characteristic is selected at runtime, the algorithm attempts to preserve the
metrical distribution previously devised by sequencing units with consecutive pulse
labels.

The chain of operations of infiniteMode can be described in three steps: (1) define
a target specification, (2) pick the unit or collection of units that satisfies the target
specification, and finally, (3) from the collection of units selected in point 2, select the
unit with the most similar spectra to the previously played unit in order to avoid
discontinuities between adjacent (concatenated) units.

The definition of a target specification relies on the characteristics of the
previously played units. The target covers the characteristics selected by the user in
the interface according to the abstract models of the characteristics. When a new unit
is triggered, the algorithm examines all selected characteristics, and defines a group of
units that match the target for each of them. It then finds the units that are common to
all groups of characteristics. From the remaining units, it selects the one that
minimizes the distance on the bark spectrum representation to the previous selected
unit.

If the algorithm does not find any unit that satisfies all the assigned characteristics,
the algorithm will sequentially ignore characteristics until it finds suitable candidates.
The selected characteristics on the upper slots will have priority over the lower ones.
If we have three selected characteristics and the algorithm does not find any common
units for a specific query, it will eliminate the third characteristic and again examine
the number of units that satisfy the query. If it still cannot retrieve any units it will
eliminate the second characteristic and so on.

SuffMetter. Clarence Barlow’s metric indispensability principle [22] has been
successfully applied as a metrical supervision procedure to automatically generate
drum patterns in a particular style [23], as well as a model for constraining a
stochastic algorithm that generates rhythmic patterns in a particular time signature
[24]. Both of the aforementioned generative algorithms operate with symbolic music
representations. ShuffMeter uses Barlow’s principle to define a template that is
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translated to a target specification in order to synthesize musical phrases that reflect
the use of a particular meter that is defined in advance by the user.

Given the scope of this paper and space restrictions, we cannot detail all the
implementation of Barlow’s metric indispensability. However, we follow the
implementation described in [23]. After assigning a meter and a specific metrical
level, the algorithm defines a template that represents the probabilistic weight each
accent should have in order to perceive that particular meter, as well as a hierarchical
organization of the strong and weak beats of the meter. We translate this template
representation into two audio descriptors: loudness and spectral variability (spectral
flux), by assuming that spectral and loudness changes are most likely to occur on the
stronger metrical accents. Also, to simplify the computation we merged both
descriptors into a single integer per unit by a function that defines each unit by the
mean of both descriptors values. At each query the algorithm gathers the
indispensability weight for that specific accent, and retrieves all units from the corpus
that fall on the range that comprehends the value plus an additional range of 0.1 that is
subtracted and added to it, respectively.

We can apply this principle either on the totality of the corpus or on separate
clusters, allowing as many layers as there are existing clusters. The user can navigate
in real time on a squared map, which adapts the definition of the targets by regulating
the indispensability’s weights (see Fig. 3). Two pairs of variables mapped to each of
the vertices of the square will adapt the configuration of the weights. Rough-smooth,
will adjust the variability between all accents and loud-soft will scale the weights
proportionally (Fig. 4 depicts the indispensability weights’ distribution conveying the
mapping adjustment according to the clusters position in Fig. 3).

- -

Fig. 3. Interface of shuffMeter

Each concatenated unit is triggered by a timer assigned to the duration of each
pulse according to the induced beats per minute (bpm). The user may also alter the
bpm manually. SchuffMeter adopts a static temporal grid in order to synchronize
several units that may present slight differences in length. If the units’ length does not
match the specified duration, they are consequently stretched in time, which changes
the playing speed of the audio signal without affecting the pitch.
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Fig. 4. Indispensability weights’ distribution for four pulses of a 4/4 bar given by C. Barlow’s
formula [22]. The 3 graphs have a color correspondence to the clusters depicted on Fig. 3 and
each configuration was scaled and conveys a percentage of variance according to their position
on the navigable map.

SoundscapeMode. As the name implies, the last recombination mode implemented in
earGram was designed to synthesize soundscapes in real time. It may be a valuable
tool in sound design for movies or installations, because it maps segments onto a
navigable squared space according to perceptual audio qualities. The navigable space
is divided in four regions arranged in pairs of interconnected variables, similar to the
interface of shuffMeter (see Fig. 3). The first set of variables controls the density of
events (dense and sparse) and the second controls the roughness of the events (smooth
and sharp).

Density defines the number of units played simultaneously, and ranges from 1 to 5
events. Smooth-sharp dichotomy, the second set of variables, aims at regulating and
organizing the corpus in terms of diversity and stability. This last expressive quality is
assigned to the audio feature given by the spectral variability descriptor (single
numeric value per unit), which measures how quickly the power spectrum changes
over time. The choice of this descriptor was due to its strong property for denoting
onsets and sudden changes in the power spectrum and thus revealing how stable is the
spectrum of the unit is. It should be noted that the terms used in the interface are not
fixed sound types; instead, they are highly dependent on the source file(s). For
instance, if we feed the system with samples with very smooth spectral shapes, the
difference between smooth and sharp will be almost imperceptible.

Similarly to infiniteMode, we added a module at the end of the unit selection
procedure that intends to maintain the best possible continuation between concatenated
units by avoiding loudness and spectral discontinuities. This is done by gathering all
candidates for a specific query within a unit and finding the one that minimizes the
distance to the previously selected unit on the non-normalized bark spectrum.

7.2  Synthesis

Synthesis is done by concatenating units with a slight overlap. Each unit is played
with a with Gaussian amplitude envelope. Most recombination methods incorporate
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strategies to avoid spectral discontinuities between adjacent units. However, in order
to improve the concatenation quality, an additional feature is added at the end of the
algorithm chain as a means to filter remaining transition discontinuities in the audio
flow. This is done by smoothing the unit’s transitions by spectral interpolation with
the help of an object from the Soundhack plugins bundle [25] named
+spectralcompand~, which is a spectral version of the standard expander/compressor,
commonly known as compander. It divides the spectrum in 513 bands and processes
each of them individually. The algorithm computes an average of the spectrum over
the last 50 ms iteratively and applies it as a mask during synthesis.

8 Musical Applications

Four recombination algorithms that synthesize a novel music output based on given
audio examples were detailed in this paper. These algorithms are suitable for a variety
of music situations spanning from installations to concert music. The design of the
system does not reflect any particular musical style. Our main purpose was to design
an agnostic music system that could learn from the music it draws its database from
and define coherent target phrases to be synthesized. Thus, the music output is highly
dependent on the sound source(s) assigned by the user. Also, some guidance must be
expected from the user to select certain recombination methods over others given the
nature of the sound source(s). In other words, if we fill the database with polyphonic
music signals segmented on a beat basis, it will be highly implausible that this
collection of units will produce a consistent result when using soundscapeMode,
which is mainly intended for synthesizing soundscapes.

The system is easily adjustable to the context of interactive performance. All
recombination methods have some degree of variability that can be easily controlled
on the GUI by a computer operator in real time or mapped to data extracted in real
time such as motion or audio characteristics. The interface of all recombination
methods is intuitive and built as navigable maps that are almost self-explainable.

The main purpose behind the machine listening and learning techniques
implemented in earGram is to drive synthesis. However, the software may be useful
for other application domains outside this realm. The machine listening and learning
blocks combined with the visualization strategies of the corpus may constitute a
valuable resource for the purpose of analyzing music in various fields such as
computational musicology and cognitive musicology.

9 Conclusions and Discussion

This paper presented earGram, a novel CSS application built in Pure Data that
comprises four generative strategies for interactive music contexts focusing on
usability problems of CSS and filling the gap between computer algorithmic assisted
composition strategies and audio content-based processing strategies.

Major differences from similar software include the focus on data-driven or rule-
based generative music strategies that re-assign the original temporal order of the
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units into targets that: (1) arbitrarily extend a particular audio excerpt while retaining
the source morphology (like being on hold), (2) dynamically change the meter of the
audio source(s), and (3) organize the raw material into interactive, navigable maps
suitable for creating soundscapes and/or browsing and exploring the corpus.

A particular concern that guided system implementation was to avoid the need for
the user to deal with MIR-related terminology, particularly by devising a description
scheme for the characterization of the units based on theoretical and practical musical
knowledge.

The use of Barlow’s indispensability algorithm proved to be an efficient method
for assuring metrical coherence in the recombination process as well as the Markov
chain algorithm for modeling the time varying morphologies of the audio source(s).

The machine learning strategies used, notably the clustering algorithms, enhance
most of the visualizations revealing more clearly the long-term structure of the piece.

Both the software, several sound examples for all playing modes described in
this paper, and the project template used to create each example are available at:
https://sites.google.com/site/eargram/.

10 Future Work

A better understanding of the nature of the audio source(s) is seminal for refining
many features of the system and providing increased usability. CSS is highly
dependent on the quality of the database from which it draws its units. By recognizing
in more detail particular qualities of the audio source(s), we could constrain a
particular corpus to specific applications or playing modes thereby avoiding
incoherent musical results.

Sequencing various playing modes in the same performance or using concurrent
and synchronous recombination methods at runtime is still a very arduous process in
the current software implementation. However, a set of objects that allows a more
flexible use of the corpus adapted for the easy implementation of concurrent or
sequenced playing modes is under development.
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Abstract. Even though we generally don’t pay attention to the fric-
tion sounds produced when we are writing or drawing, these sounds
are recordable, and can even evoke the underlying gesture. In this pa-
per, auditory perception of such sounds, and the internal representations
they evoke when we listen to them, is considered from the sensorimotor
learning point of view. The use of synthesis processes of friction sounds
makes it possible to investigate the perceptual influence of each gestures
parameter separately. Here, the influence of the velocity profile on the
mental representation of the gesture induced by a friction sound was
investigated through 3 experiments. The results reveal the perceptual
relevance of this parameter, and particularly a specific morphology cor-
responding to biological movements, the so-called 1/3-power law. The
experiments are discussed according to the sensorimotor theory and the
invariant taxonomy of the ecological approach.

Keywords: Sensorimotor Approach of Auditory Perception, Friction
Sounds, 1/3 power law, Biological Movement.

1 Introduction

The relation between sound and movement is a very wide field of research. In
this article we will focus on a particular topic related to this field namely the
relation between a sound and a specific movement: the human drawing move-
ment. Evoking a movement with a monophonic source only by acting on timbre
variations of the sound is a process often used by electroacoustic musicians and
sound engineers. Musicology analyses proposed semiotic descriptions of perceived
movements in musical pieces [I0]. Moreover, the general relations between in-
trinsic sound properties and movements have been tackled in previous studies by
Adrien Merer in [27] and [28]. The motions evoked by monophonic sounds were
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investigated from two angles, first by using a free categorization task, with so-
called abstract sounds, that is, sounds which source was not easily identifiable.
And secondly with a perceptual characterization of these evoked motions by
studying the drawings produced by a group of subjects using a purpose graphi-
cal user interface. These studies had a very interesting approach which enabled
to extract relevant perceptual features of relations between timbre variations of
a sound and the evoked movements, and led to a sound synthesizer of evoked
movements based on semantic and graphics controls.

Different psychological studies tackled the problem of sound event recogni-
tion. They principally based on the ecological approach of visual perception in-
troduced by Gibson [15] which supports the idea that perception emerges from
the extraction of invariant features in a sensory flow, and moreover from the
organization of the perceptual system itself. This approach has been formalized
for the auditory perception in different studies [A6/T2/T3]. Opposed to this view,
the information theory proposed that the perception is the result of a process
with multiple steps which enables the association between a memorized abstract
representation, and its identity and signification. In [29], McAdams has an in-
termediate position, he proposed to adopt the point of view of the information
theory, and the notion of auditory representation, but keeping the terminology
of invariants features which comes from ecological approach. It is well adapted to
the description of the material world, and particularly in highlighting that some
properties are perceived as invariant when others can change without changing
the perception and signification of the stimulus. Moreover, we can argue that as
it essentially concerns the recognition of sound events, it is adapted to adopt a
representationalist view with this terminology to describe the information which
is used to compare a representation of a stimulus with memorized representa-
tions. It is therefore proposed that the acoustic properties that carry information
that enables the recognition of a sound event can be defined as structural and
transformational invariants. The information that enables to identify the na-
ture of the sound source was defined as a structural invariant. For instance, it
has been shown that impact sounds contain sufficient information to enable the
discrimination between the materials of impacted objects [47/182]. The informa-
tion that specifies the type of change is known as a transformational invariant.
For instance, a study revealed that the rhythm of a series of impacts enables to
predict if a glass will break or bounce [40].

In the following study, we will focus on a particular type of sound event,
the sound produced by the friction between a pen and a paper when we are
drawing. This sound is audible but we did not necessary pay attention to it.
The timbre variations contained in it may enable to imagine a movement and
therefore a gesture. Are we able to recognize the gesture from the friction sound?
If yes, can we imagine the shape which has been drawn? A graphical gesture can
be mainly defined as a couple of velocity and pressure profiles which induce
changes in the produced friction sound. In the following we will focus on the
velocity profile of the gestures. We will investigate whether this information is
sufficient to recognize a gesture and if it can be considered as a transformational
invariant concerning human graphical gestures.
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The relation between sound and gesture can be approached regarding a general
theory at the edge between philosophy and cognitive sciences, called enaction,
which was introduced by Francisco J. Varela [37I38]. This theory proposed a new
approach of cognition distinct from the classical top down and bottom up models
coming from cognitivist and connectionist approaches. He reintroduced actions
and intentions at the center of our conception of cognitive processes involved
in the perception of a stimulus. Varela defined the notion of incarned/embodied
actions which can be summed up by the main idea that our perceptual pro-
cesses are modeled by our actions and intentions, and that actions are central
and cannot be separated from perception. Regarding the invariant taxonomy, it
can be hypothesized that invariants which are used by the perceptual processes
to identify a sound event refer to embodied properties of these actions [37]. As
mentioned before, it should still be noted that invariant taxonomy comes from
the ecological approach which is not consistent in many points with the enactive
theory, but in this study, we will consider the notion of invariant as the infor-
mation used by perceptual processes to identify and to recognize an event. The
low level coding of embodied action has been supported by functional imagery
observations in monkeys which revealed the existence of specific neurons in the
ventral premotor cortex, the so-called mirror neurons, which fired either when
the monkeys make an action or when they just observe it [32IIT]. These obser-
vations have also been done in monkeys in the case of the auditory modality
[19]. Finally, other electrophysiological and anatomical observations have been
done with musicians whose brain area involved in the practice of their instru-
ment was activated when they just listened to the instrument. Moreover, it has
been shown that the intensity of activation is higher according to the musician’s
degree of expertise [3]. These last observations highlighted the importance of the
perception—action coupling, also called the sensorimotor loop, in the perceptual
processes and particularly in the case of auditory perception.

In this paper, we will investigate the relation between a friction sound pro-
duced by someones drawing and the evoked movement with the previous embod-
ied action approach. It enables to make strong hypothesis about the dynamic
features which can be imagined from a friction sound. We will aim at highlight-
ing which parameters of the gesture can be evoked through a friction sound.
Here we focus on the velocity profile, to set up experiments which investigate
this question, we need friction sounds produced by a specific velocity profile.
A graphic tablet and a microphone can be used for this purpose. This solution
enables the analysis of the sound regarding the gesture properties but doesn’t
provide the possibility to control precisely the velocity of the writer. For control
purposes, it would be more interesting to create synthetic friction sounds from
given velocity profiles. A synthesis process of friction sounds which enables to
synthesize such friction sounds will be present in a following section.

Finally, we will investigate the representation of a gesture from a friction sound
in three experiments in which both recorded and synthesized friction sounds are
used. In the first two, friction sounds produced when a writer draws different
shapes will have to be associated to static visual shapes to identify if friction
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sounds can evoke a specific gesture, and furthermore a geometric shape. A third
experiment investigates the relevance of a biological relation which links the
velocity of a human gesture to the curvature of the trajectory from the auditory
point of view. The results of these experiments will be discussed according to
the sensorimotor theoretical background finally.

2 A Synthesis Model of Friction Sounds

In the three experiments which will be presented, a part of the stimuli will be
generated with a sound synthesis process. The main goal will be to evaluate the
relevance of the velocity profile in the representation of a gesture underlying
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Fig.1. Panel A: Physically Informed Friction Sound Synthesis Model - The friction
sound is assumed as a series of impact of a plectrum, in our study the pen, on the asper-
ities of a modal resonator — Panel B: Implementation of the phenomenological model
with a source-filter approach that enables to separate the action, here the gesture, the
object, here a paper on a table. The different levels of control are presented. The high
level one corresponds to the intuitive control proposed to a user which enables to define
an object from a semantical control of its perceived material and shape, while the low
level corresponds to the synthesis parameters.
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a friction sound: Are we able to imagine the gesture made only by listening
the friction sound? Can we even recognized the shape which is drawn from
the sound? And at last, is there morphologies, so-called invariants, linked to
the velocity profile which enable the recognition of a human gesture from an
auditory point of view?

From a synthesis point of view, a paradigm well adapted to the invariant’s
taxonomy is the action/object paradigm. It consists in defining the sound as the
result of an action on an object (e.g. “rubbing on a metal plate”). A natural
way to implement the action/object paradigm is to use subtractive synthesis,
also called a source filter approach. This method enables to separate synthesis
of the action, the exciter, e.g. the transformational invariant, and the object,
the resonator, e.g. the structural invariant. To synthesize friction sounds with
this approach, we used physically informed model, also called, phenomenological
model presented by Gaver in [I2] and improved by Van den Doel in [30]. It aims
at reproducing the perceptual effect rather than the real physical behavior.

This approach considers a friction sound as the result of a series of impacts
produced by the interaction between the pencil mine and the asperities of the
surface, see Fig. [[l With a source-resonator model, it is possible to synthesize
friction sounds by reading a noise wavetable with a velocity linked to the velocity
of the gesture and filtered by a resonant filter bank adjusted to model the char-
acteristics of the object which is rubbed or scratched (see Fig.[) [7U8]. The noise
wavetable represents the profile of the surface which is rubbed. Resonant filter
bank simulates the resonances of the rubbed object and is characterized by a
set of frequency and bandwidth values [12]. This synthesis model is particularly
well tuned for our study, it indeed enables to generate a synthetic friction sound
which varies only according to the velocity of the gesture.

3 A Relevant Acoustical Information: The Timbre
Variations due to the Velocity of the Pen

Graphical tablets henceforth allowed to accurately record dynamical information
like velocity and pressure, and to use it for comparing two shapes according to
the kinematics which have produced them. As evoked before, many studies have
highlighted the importance of the velocity profile in the production of a move-
ment, and in particular, of graphical movements. Moreover, the friction sound
synthesis previously presented enables to synthesize the friction sounds produced
when someone is drawing based on the velocity profile only. As mentioned in the
introduction, the velocity profile is a very important characteristic of a gesture,
which may be involved at different levels of perception of a biological movement
both in the visual system [41[43] and in the kinesthetic one [45]. Here we aim at
investigating if this parameter is also a relevant cue to identify a drawn shape
from a friction sound.

Recording Session. We asked someone to draw six different shapes on a paper,
see Figure [Bl While the velocity profile of the drawing movement was recorded
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Fig. 2. Experimental recording set-up

thanks to a graphic table, the friction sound produced by the pen on the
paper was also recorded with a microphone, see Fig. [ for the experimental
set up. The writer was asked to draw each shape as fluidly and as naturally
as possible. Empirical observations were made just by listening to the recorded
friction sounds. The circle seems to be a very particular shape. It indeed has a
very uniform friction sound, with little timbre variations, while the ellipse, arches,
line and loops have more important ones. The lemniscate seems intermediate
between the other shapes, it indeed has a sound which contains more variations
than the circle, but less than the loops, the arches and the line. Among the shapes
which have a lot of timbre variations like ellipse, loops, line and arches, it should
be noted that the line and the arches are distinct from the loops and the ellipse
actually. They contain cusps, which imply silences in the friction sounds which
are very audible and provide important perceptual cues linked to the geometry
of the drawn shape.

Dealing with these empirical considerations, we chose to establish two corpuses
of four shapes, one composed of shapes that are a prior: distinct, the ellipse,
the circle, the line and the arches. The second one of shapes which are a priori
closer, i.e. the ellipse, the loops, the lemniscate and the circle. In particular, the
first one has shapes which contain cusps: line and arches. A period of the velocity
profile for each shape is presented in Fig.[d] for the arches and the loops, only one
period of the four shapes is presented. The circle has a specific velocity profile

! Wacom Intuos 3.
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Fig. 3. The six shapes chosen for the experiments
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Fig. 4. Periods of the velocity profiles normalized and resampled on 512 samples used
to compute the clustering

with a velocity almost constant during the whole drawing process. Otherwise, the
durations of one period vary considerably according to the different shapes. To
avoid this problem, the stimuli which have been chosen in the following contained
four periods for the ellipse, the lemniscate and the line (one could say four round
trips for this one). For the circle, only two periods were chosen, since the global
duration for one period was indeed longer than for the other shapes. The whole
durations of the chosen stimuli are summarized in Table [l

A way to formally compare shapes of the two corpuses according to a dynam-
ical dimension is to compare the proximity of the recorded velocity profiles with

Table 1. Durations of the Performances Chosen for the Recorded Velocity Profiles and
Friction Sounds (in Seconds)

Circle Ellipse Arches Line Lemniscate Loops

5.2 5.8 5.1 5.2 5.6 5.4
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a metric. Thus, in a second time, to set up listening tests with friction sounds as
stimuli to establish a perceptual distance between pairs of shapes. At last, the
classifications computed from these mathematical and perceptual distances can
be compared to evaluate if the velocity profile provides a relevant information
from an auditory point of view.

3.1 Clustering of Geometrical Shapes from the Velocity Profile

Practically, recorded velocity profiles correspond to series of N measurements v;
at the sample frequency of the graphic tablet (here 200 Hz). A velocity profile is
then defined as an array of N points according to the duration of the drawing.
Finally, to compare two velocity profiles v and w it is necessary to be able to
compare two vectors of different lengths. The durations of two drawings is indeed
most of the time different for different shapes.

Euclidean Distance between Two Velocity Profiles. A common mathe-
matical tool used to compare two vectors is the inner scaler product that enables
to define a distance according to a metric. The choice of the metric is crucial.
It indeed defines the way the distance between shapes will be calculated, and it
defines an objective measure between two shapes in terms of velocity profiles.
The most classical metric is the euclidean one which corresponds to the following
inner product between two vectors v; and w;, of the same length:

N
(vjw) = kawk (1)
k=1

The distance between two velocity profiles can then be obtained from the Eu-
clidean distance, d(v,w) = [[v — w|| = /(v — w|v — w), which is minimal when
v = w and increases as the difference between v and w increases. In the case
of velocity profiles, since arrays are of different lengths. It has been chosen to
resample each velocity profile in 512 samples and to normalize them according
to their mean value. The rationale is that the recordings are about the same
duration, see Table [[l Thus, this normalization does not introduce a bias in the
calculus of the distance. More complex algorithms exist to compute a distance
between two arrays of different lengths, such as Dynamic Time Warping [20].
This last one is effective but very expensive in computing time and provide no
significant advantages here from the resampling.

Dissimilarity Matrix and Clustering. The Euclidean distance enables to
compute a distance between each pair of shape for each corpus (6 pairs for
each corpus). And moreover, to create a dissimilarity matrix D in which each
cell represents the distance between the two velocity profiles associated to two
shapes. The diagonal values of this matrix are equal to 0, indeed the distance
between two equal velocity profiles is null. Two hierarchical clustering analysis of
D, with complete linkage, were then effectuated from the dissimilarity matrices
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Ellipse Arches Line Circle Ellipse Loops Lemniscate Circle

(A) Corpus 1 (B) Corpus 2

Fig.5. Panel A and B: Ascending hierarchical clustering computed from the dissimi-
larity matrices computed from the corpus 1 and 2 respectively

of each corpus. The dendrograms corresponding to this matrices are presented
in Fig. Bl A dendrogram corresponds to a hierarchical tree which represents a
classification of different objects, here the velocity profiles. The height of each
U-shape represents the distance between two objects or two clusters. For the
two corpuses, the clusterings confirm the empirical observations, the circle is the
shape that is most different from the others in the two sets of shapes. This could
be explained by its velocity profile that is almost constant. In the first corpus,
it is noticeable that the arches seem to be about equally distant from the ellipse
and the line. In the second corpus, as expected, the ellipse and the loops are
very close while the lemniscate is intermediate between the circle and the other
two shapes. In order to determine if the previous classification obtained from
the velocity profiles is relevant from an auditory perceptual point of view, two
listening tests have been set up.

3.2 Clustering of Geometrical Shapes from Perceptual Comparisons
of Friction Sounds

The previous mathematical clustering based on the velocity of the gesture made
to draw the shapes enables to evaluate the proximity between the shapes of
the two corpuses from an objective point of view. Our aim is to evaluate if the
velocity profile is also a relevant information to compare two shapes from the
perception of friction sounds. In other words, to investigate if the velocity profile
conveys information about a gesture from the auditory point of view.

In the following, two listening tests with recorded and synthesized sounds
produced during the drawing that were to be associated to the four shapes of each
corpus are presented. Clusterings can then be obtained from the results of the
listening tests and compared with the mathematical ones obtained previously.
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In order to establish a perceptual clustering of the shapes, the two listening tests
consist in a association test where subjects have to associate the friction sounds
to the correct shapes.

Experiment 1 — Distinct Shapes

Subjects. Twenty participants took part in the experiment: 9 women and 11
men. The average age was 30.65 years (SD=13.11). None of the subjects were
familiar with the topic of the study before the test.

Stimuli. The first listening test deals with the shapes of the corpus 1 which
contains the most distinct shapes with regard to the velocity profile. The auditory
stimuli are composed of eight friction sounds, four recorded and four synthesized,
obtained from the shapes of corpus 1 collected during the recording sessions
presented previously. The synthesized sounds were generated with the friction
sound synthesis model previously presented.

Task. The subjects were asked to univocally associate four friction sounds —
among the four available — to the four shapes. The test was composed by eight
trials: 2 types of sound x 4 repetitions.

Results and Short Discussion. For each subject and each type of sound — synthe-
sized vs. recorded — sixteen scores of association between a sound and a shape
were averaged across the four trials. All the results were stored in confusion ma-
trices. The global averaged scores of success of the four shapes for recorded and
synthesized stimuli are presented in Table 2l The results are clear, each friction
sound has been properly associated to the corresponding shape above a random
leved. Moreover the synthesized stimuli provide results which are not signifi-
cantly different from the recorded ones which confirms the hypothesis about the
perceptual relevance of the velocity profile.

Table 2. Scores of success for recorded and synthesized stimuli of corpus 1 aver-
aged across subjects — Mean and Standard Error in Percentages — Scores higher than
statistical chance are bolded

Circle Ellipse Arches Line

Recorded 98.75 81.25 80. 87.5
1.25  6.25 6.44 1.72

Synthesized 98.75 87.5 82.5 97.5
1.25 497 576 3.08

2 The random level is defined at a 25% sound to shape association rate.
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Experiment 2 — Close Shapes

Subjects. Fighteen participants took part in the experiment, 8 women and 10
men. Their average age was 31.56 years (SD=13.73). None of the subjects were
familiar with the topic of the study prior to the test.

Stimuli. The second listening test deals with the shapes of corpus 2 which have
shapes with closer geometries. Auditory stimuli are composed by eight friction
sounds obtained from the shapes of corpus 2, four recorded and four synthesized,
collected during the recording sessions presented previously. As for the experi-
ment 1, the synthesized stimuli are generated with the friction sound synthesis
model presented previously.

Task. The task was the same as in Experiment 1.

Results and Short Discussion. The data analysis is the same as in the previ-
ous experiment. The results reveal that, except for the loops, each sound was
associated with the correct shape with a success rate above random level. Only
the recorded loops were not recognized above chance. The scores of success are
summarized in Table Bl Confusions appear between the ellipse and the loops,
the score of association between these two shapes is not significantly different
which means that they were confounded, see Table [3

Clustering Analysis. The two previous listening tests revealed that when
shapes are sufficiently different, it is possible to discriminate them simply from
friction sounds. To valid entirely this statement, an additional analysis is nec-
essary. A perceptual distance matrix between shapes was therefore computed
from the confusion matrices obtained in the two experiments. They were firstly
symmetrized, to implicitly merge the rate of association of sound i to shape j
with the rate of association of sound j to shape 7 into one value representing the
perceptual distance between the two shapes. The symmetrized confusion matrix
C is obtained by: ,

- C+C

=1 @)
with C* the transposed version of matrix C. Then a discrimination matrix D
was obtained by D =1—C. At last a pairwise distance matrix D is computed
with the Euclidean metric.

For each corpus, two discrimination matrices are computed: one for the
recorded sounds, and one for the synthesized one. Like for the mathematical
dissimilarity matrix, an ascending hierarchical clustering are computed from
these discrimination matrices and provide dendrograms. Four clusterings are
made from the whole results, see Fig. B and [ A global observation of the
dendrograms lead us to hypothesize that, for the two corpuses, the two per-
ceptual shapes classifications, synthesized vs. recorded, are equivalent. Indeed,
in each case, the relative rank of proximity between whole shapes are the same.
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Table 3. Scores of success for recorded and synthesized stimuli of corpus 2 (A) —
Scores of association between loops and ellipse for recorded and synthesized stimuli
(B). All the scores are averaged across the subjects. Mean and standard error are
presented in percentages. Scores higher than statistical chance are bolded.

(A)
Circle Ellipse Lemniscate Loops
Recorded 97.22 41.67 68.06 29.17
2.78 7.29 8.04 7.36
Synthesized 100. 50. 81.94 43.06
0. 4.52 6.00 6.00
(B)
Ellipse Sound <+ Loops Sound Loops Sound < Ellipse Sound
Recorded 51.39 45.83
6.22 7.89
Synthesized 45.83 43.06
5.05 4.87

To statistically validate this, it is necessary to introduce the notion of cophenetic
distances.

The problem of comparing two dendrograms has already been studied in phy-
logenetics. One goal of this field of biology is to understand the evolution of
living beings according to molecular sequencing and morphological data which
are collected into dissimilarity matrices and presented with dendrograms. Thus,
the comparison of dendrograms has been tackled to compare morphological and
molecular observations. As previously presented, a dendrogram is a representa-
tion of distances between different objects, and the composition of the clusters
of the dendrogram is made according to a specific metric. A dendrogram is then
characterized by distances between clusters, in which a specific distance has been
defined and is called the cophenetic distancdd [35)].

3 According to the help of the function cophenet in Matlab(©), the cophenetic distance
can be defined as:

The [...] distance between two observations is represented in a dendrogram
by the height of the link at which those two observations are first joined. That
height is the distance between the two subclusters that are merged by that link.
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Fig. 6. An example of dendrogram and the associated cophenetic distances c;,; between
the different objects — The cophenetic distances are summed up in an array: C' =
[c1,2,¢1,3, C1,4,C2,3, C2,4, C3,4] — and can be compared with cophenetic distances of others
dendrograms with Pearson’s and Spearman’s correlation coefficients

An example of dendrogram and the associated cophenetic distances are pre-
sented in Fig. Bl The cophenetic distances are sorted in an array for each den-
drogram. To determine whether two dendrograms are statistically equivalent, it
has been proposed to compute the Pearson’s and Spearman’s correlation coeffi-
cients between the two arrays of cophenetic distances. The Pearson’s correlation
coefficient r corresponds to a quantitative comparison of the linear correlation
between shapes. And the Spearman’s correlation coefficient p, corresponds to a
qualitative comparison of the clusterings which takes into account of the ranks
of the cophenetic distances between shapes.

We wanted to compare the two dendrograms obtained in each listening test.
With the statistical method presented here, no significant differences are ob-
served both for the experiment 1 and 2. The correlation coefficients are presented
in Fig. [1

3.3 Comparison between Clusterings

Previous comparisons revealed that from a perceptual point of view, the syn-
thesized friction sounds generated from recorded velocity profiles contained the
same relevant information than the recorded ones, which seems to confirm that
the velocity profile is the information which is perceptually relevant to recover a
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(A) Corpus 1

Synthesized Sounds Recorded Sounds

Distance (Arbitrary Scale)

Ellipse Arches Line Circle Ellipse Arches Line Circle

(B) Corpus 2

Synthesized Sounds Recorded Sounds

Distance (Arbitrary Scale)

Ellipse Loops Lemniscate Circle Ellipse Loops Lemniscate Circle

Fig. 7. Panel A: Ascending hierarchical clustering computed from the confusion ma-
trices of the experiment 1 - Significant correlations were found between cophenetic
distances of the two clusterings (r = .89 and p = 1.) — Panel B: Ascending hierarchi-
cal clustering computed from the confusion matrices of the experiment 2 - Significant
correlations were found between cophenetic distances of the two clusterings (r = .94
and p = 1.) — All correlation coefficients are significant

gesture through a friction sound. To completely validate this initial hypothesis,
the perceptual and the mathematical dendrograms have been compared using
the statistical method of cophenetic distances presented in the previous para-
graph. The comparison reveals that for each corpus, except for the Pearson’s
correlation coefficient obtained for the recorded sounds of the experiment 1, the
comparisons between the perceptual clusterings are not significantly different
from the mathematical ones (see Table Hl for the Pearson’s and Spearman’s cor-
relation coefficient). This result reinforces the importance of the velocity profile
in the perceptual process underlying the sound to shape association task, which
was already suggested with the correlation between the perceptual dendrograms
obtained from the listening tests.



144 E. Thoret et al.
Table 4. Pearson’s and Spearman’s correlations, respectively noted r and p, between

the cophenetic distances obtained from the perceptual and the mathematical cluster-
ings of the two experiments — Significant comparisons are bolded

Experiment 1 Experiment 2

r P r p
Recorded .58 .93 .98 .93
Synthesized .89 .93 .94 .93

3.4 Discussion

The clusterings reported here highlight the perceptual relevance of the velocity
profile to evoke a graphical human movement. We firstly established an objective
classification of shapes of two corpuses from the velocity recorded on a person
drawing them. Shapes expected to have a close geometries are also close accord-
ing to this metric like the ellipse and the loops for instance.

Our interest dealt with the auditory perception of gestural movements, and
particularly to determine if the velocity of a gesture is perceptually relevant to
characterize a gesture. We therefore compared the mathematical classification
with perceptual ones thanks to the results of two listening tests, one for each
corpus. The tests were composed of friction sounds recorded when the same per-
son draws the shapes. Synthetic sounds generated only from the velocity were
also used, which made it possible to investigate the perceptual relevance of the
velocity. The variation of timbre involved in the recorded and in the synthe-
sized sounds enabled the shape recognition. Finally, the comparisons between
the perceptual and the mathematical classifications confirmed that the velocity
profile of a gesture contains relevant information about the gesture underlying
a friction sound. In particular that a sound can evoke a gesture. And even, to
evoke a geometrical shape although the relation between a velocity profile and
a shape is not bijective, i.e. one velocity profile can be the cause of the drawing
movement of several geometrical shapes.

Henceforth we know that the velocity profile transmits sufficient information
about the gesture, sufficient, to a certain extent, to discriminate different shapes
from sounds. This implies that the kinematics of the gesture and the geometrical
characteristics of the drawn shape are correlated and gives an invariant informa-
tion which enables subjects to extract a common representation of the gesture
evoked by the sound, a so-called transformational invariant.
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4 An Acoustical Characterization of a Human Gesture

When someone draws a shape on a paper, the final trace is static and all the
dynamic information is lost a priori. The previous experiments pointed out that
from an acoustical point of view, the velocity profile of a gesture was a relevant
information to recognize a gesture from the friction sound produced when some-
one is drawing. It indeed enabled the discrimination of shapes when they were
distinct. Conversely, when the shapes had close geometries, perceptual confusions
between sounds (both for recorded and synthesized ones) appeared in particular
for the ellipse and the loops. This result reveals that the gesture made to draw
a shape is closely linked to its geometry and particularly to its kinematics.

4.1 The 1/3-Power Law

Many studies have already focused on this relation between the kinematics of a
movement and the geometry of a trajectory. In particular, studies led by Paolo
Viviani and his colleagues since the eighties highlighted that a biomechanics
constraint implies the velocity of a gesture to depend on the curvature of the
traveled trajectory [39]. Besides, they proposed a power law relation between the
angular velocity of the pen and the curvature of the drawn trajectory [22140]. In
terms of tangential velocity v; and curvature C, it can be written:

vi(s) = KC(s)? (3)

K is called the velocity gain factor and is almost constant during a movement. s
is the curvilinear abscissa. The exponent £ is close to 1/3 for adults’ drawing [42]
and the law has therefore been called the 1/3-power law. Possible description of
this relation is that when we draw a shape, we accelerate in the flattest parts
and we slow down in the most curved ones. This general principle constrains the
production of biological movements but has also consequences in other sensori-
motor modalities. Visual experiments revealed that a dot moving along a curved
shape was perceived as the most constant when the relation between its velocity
and the curvature of the traveled trajectory followed the 1/3-power law, even
when the velocity variations exceeded 200% [43]. The relevance of this law has
also been studied in the kinesthetic modality and revealed the same perceptual
constraint [45].

This law can partly explain why the ellipse and the loops from the previous
experiment were confounded. As their geometries were close, the velocities were
also close, and as the produced friction sounds mainly depend on the velocity,
they were not different enough to be distinguishable from an acoustical point of
view. This law has therefore audible consequences, and it is legitimate to wonder
if this biological invariant can be calibrated in the auditory modality.

4.2 Auditory Calibration

We adapted the protocol of visual calibration of the power law proposed in [43]
to investigate the auditory perception of biological motion.
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Subjects. Twenty participants took part in this experiment. Their average age
was 29.42 years (SD=12.54).

Stimuli. While in the visual case studied in [43] the stimuli which were adjusted
by subjects were moving visual dots, in the acoustical case, they were friction
sounds. The previous synthesis model of friction sounds was used to generate a
sound only from the kinematics (i.e. the velocity profile). These velocity profiles
were computed by using the S-power law with a fixed mean velocity K. To
avoid evoking specific known shapes, the curvature profiles were computed from
pseudo-random shapes, see Fig. [§ for an example.

Fig. 8. An Example of Pseudo-Random Shape

Task. Each subject effectuated 6 trials and a pseudo-random shape was gener-
ated for each trial. The subjects listened to the corresponding friction sound and
were asked to adjust the sound until they perceived a sound which evoked the
most fluid /natural movement. They could act on the timbre variations with two
buttons which modified the [ value. The subjects were unaware of the param-
eter on which they were acting. The initial value of 8 was randomized at each
trial and the shape was not shown to the subjects to make them focus on the
sound only.

Results and Short Discussion. The subjects adjusted the exponent value with
a mean value of $=0.36 (SD=0.08), it is therefore not significantly different
from the 1/3-power law (p=0.10). This indicates that to produce a sound which
evoked a fluid and natural gesture, the velocity profiles from which a friction
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sound is generated should follow the 1/3-power law. This result reinforces the
importance of kinematics in the perception and representation of gestures from
a cognitive viewpoint. The sensorimotor relations between auditory and other
modalities have more or less been investigated regarding the mental representa-
tion of gestures.

To conclude, one of our motivations was to control a friction sound synthesis
model with intuitive controls. The research perspectives that we can expect made
it possible to imagine a sound synthesis platform which enables to synthesize
sounds from intuitive controls based on the 1/3-power law. The scope of such a
platform is presented in Fig.[@ An interesting perspective of experiment 3 would
be to ask the subject to adjust the sound (implicitly the exponent of the power
law) evoking an aggressive and jerky gesture, or conversely the sound evoking
a sweet caress, which are two gestures evoking different intentions. Intentions
are closely linked to emotions and could be classified according to the classic
valence-arousal scale [5]. Intuitively, the high parameter values of the power law
would correspond to an aggressive and jerky gesture, i.e. to strong accelerations
and strong decelerations at a high velocity. And conversely, for the caress, which
involves a priori a slower and smoother gesture, the power law corresponding
values would be small. Not especially null for the exponent, which corresponds to
a uniform and constant movement and which has therefore no audible variations,
but for values high enough to perceive a smooth and sweet gesture.

Evocation Level - Emotional and Gestural Descriptions

Neutralilty Gentleness Smoothness Aggressiveness
00— — 0
Uniform Gesture Caress Fluid Gesture Saccaded Gesture \

Mid-Level - The 1/3-Power Law

Velocity Gain Factor (i.e. mean velocity) Exponent \ What a
. g vlues o - N l' gentle caress !
B
7

Synthesis Model of Friction

Geometrical
B

Pseudo-Random

Shape X Y
aVAVR/aVaY Velocity Profile Synthesis
—> Power Law |—»|  Model
Cunature AN of Fricton

aVAN

Fig.9. Architecture of the friction sound synthesis platform with intuitive controls
of the evocation. The controls discussed in the conclusion such as, aggressiveness and
gentleness, have been proposed. A formal calibration of the velocity gain factor and
the exponent with respect to the gestural and emotional descriptors will be conducted
in future works.
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5 General Discussion

The starting point of this study was to investigate the relation between sounds
and gestures, more specifically to understand whether a sound can evoked a
gesture, and which characteristics could be conveyed by sound. In a general
context, in the previous studies by Adrien Merer [2728], concerning the relation
between an abstract sound and the evoked movements, the following questions
were evoked: Why a sound evoke a specific movement? For instance, why does a
sound evoke something oscillating or rotating? We therefore found it interesting
to tackle this question in the case of human drawing movement regarding the
sensorimotor considerations presented before.

By adopting the invariant’s taxonomy, the results of the three previous exper-
iments gave important cues about one transformational invariant which charac-
terizes a gesture: its kinematic. Henceforth we know that the velocity transmits
relevant information about the gesture, which moreover can be associated to a
geometric shape to a certain extent. At last, the third experiment brings to light
the relevance of a biological relation between the velocity and the curvature from
the auditory point of view, which has never been investigated before. This last
experiment also showed the interesting result that, to evoke a fluid and natural
gesture through a friction sound, the velocity profile should follow the 1/3-power
law, which means that friction sounds could directly informed about the natu-
ralness and the fluidity of a gesture. This point has to be discussed because it
opens the possibility to recognize qualities of a human gesture through sounds,
which provides new perspectives in the understanding of auditory perception
and its relation with other modalities.

Going back to the task of the experiment 3, it is interesting to ask ourself
what it involves to ask someone to adjust a friction sound to obtain the most
fluid and natural sound according to a human gesture? In a representationalist
view, it firstly means that our perceptual system has to extract an information
from the timbre variations — mainly the brightness in the case of friction sounds
— which is then abstracted and internalized as the velocity. And secondly, to
compare it with an internal representation of fluidity to decide if this veloc-
ity corresponds to a fluid gesture, and eventually to change a parameter of the
sound and to start the process again. This view is not trivial and supposes that
we have internal representations of gestures — and moreover fluid gesture — which
can be compared with the one computed from an incoming auditory stimulus.
In the case of experiment 1 and 2, we are even able to associate this dynamic
representation of the gesture to a geometrical one, the static visual shape. The
problem of representations in perception has been widely discussed in the visual
modality to understand how a physical system, such as the brain, can makes the
feeling of seeing, which is not a priori a physical state. The enactive approach
of Varela presented in the introduction placed the action in the center of the
perceptual processes. The sensorimotor theory of perception of Kevin O’Regan
[31] proposed an interesting approach of this assumption. It is argued that see-
ing is not making an internal representation of the outside world from the visual
input, in other words to make a mirror in the brain of the world from a visual



Reenacting Sensorimotor Features of Drawing Movements 149

stimulus. It is proposed that seeing is knowing about things to do with the out-
side world, i.e. knowing the actions you can make with the outside world and
their consequences on your sensory input. For instance, seeing a wine glass is
not having a picture of it in the head, but it is projecting what you can do with
it, filling it or drinking it for example. Based on behavioral and neurophysio-
logical observations, Marc Jeannerod and Alain Berthoz respectively introduced
the notion of Simulated Action — the perception is a simulated action, [T6HIIT].
It sums up the idea that perceiving, whatever the modality, is extracting the
relevant information to interact with the objects of perception, e.g. grasping the
glass to drink it. It is therefore making hypothesis about what and how I can
interact with it according to my motor competences. For example, when we see
a tea cup on a table, we are able to say which hand is the most adapted to grasp
it according to the position of the handle, the right hand if the handle turn to
right and conversely. Simulated action seems to involve the same processes as
the one proposed in the sensorimotor theory of O’Regan.

If we apply the sensorimotor approach to the auditory perception in the case
of the sounds produced by drawing movements, the same distinction as in the
visual case can be made. Listening to the friction sounds produced by someone
who is drawing is not making an internal representation of the sound produced
by the gesture, but it is imagining executing the corresponding gesture to which
the acoustical consequences are the perceived sound with the same timbre vari-
ations. All the action planning is involved in this task, from the intention to the
proactive simulation of the execution of the movement. Finally, according to the
sensorimotor paradigm, to perceive a friction sound it is almost already doing the
gesture which has produced the sound. This distinction is interesting because it
gives a relevant approach to make hypothesis about the invariant features which
enable the auditory recognition of acoustical events. Regarding the previous def-
inition of a simulated action, the third experiment reinforces this notion from
the auditory point of view. The subjects have been able to take the place of the
writer and to adjust the sound by mentally simulating the gesture they would
have executed and to compare it with the internal reference of fluid gestures. Un-
derstanding the behavior of human beings involves understanding their actions,
intentions, and even emotions, to react and to behave appropriately. The main
difference between humans and animals is definitely the existence of a highly
developed language, which enables sharing of actions, intentions and emotions
through a common channel of communication among individuals. An hypothesis
widely accepted now is that our verbal language derived from a gestural one,
in which actual words were screams and contortions [33]. Nowadays, the abil-
ity of humans to speak articulately enables to use quasi exclusively the vocal
channel rather than the gestural one. But we have not completely abandoned
the gestures, and it is commonly observed that when we speak, we make a lot of
gestures with a very important signification according to the context to supply
our speech [30]. Another observation about gestural language and more generally
about corporeal language, is related to the postural communication in animals.
Darwin studied the dog postures and their significations, and remarked that
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posture can either evoke hostile intents or humble and affectionate mood [9].
Hence gestures and more generally corporeal articulations have a lot of percep-
tual significations, in line with the third experiment previously presented from
the auditory modality which will be discussed.

In experiment 3, we proposed a perspective of intuitive controls based on emo-
tional and gestural descriptions. The close relation between intention, emotion
and gesture was addressed in a musical context, this question has been addressed
by Marc Leman [23], a proposition to explain interpretations and emotions in-
volved by musical and aesthetic experiences by considering the corporeal en-
gagement, and the corporeal resonances, which are non linguistic descriptions of
music and involved emotions. Such corporeal engagement has been suggest in the
case of the emotions we feel when we see a painting. It could be due to the fact
that we try to imagine the gestures, and therefore the underlying intentions of
the artist. This question has been already discussed in [26] regarding functional
imagery studies which revealed that our motor areas involved in drawing were
also activated when we see passively a letter we are able to trace [24]25]. These
results suggest that the visual perception of a stimulus involved all the processes
implied in the motor planning, and could be the basis of emotions engaged when
we perceive an artistic performance. Jeannerod suggests it in the case of the
perception of a dance performance [I7]. He proposed that we may perceptually
take the place of the dancer in order to feel his sensorial state, so the emotions
we can feel from a dance performance could be explained by such a perceptual
process coupling perception to simulated action. By analogies with such pro-
cesses involved in vision and according to the results of the experiment 3, we
could imagine that such simulated actions should also be involved in the case
of the perception of a musical piece, but more experiments, either behavioral or
from functional imagery should be done to confirm such a strong hypothesis.

Finally, the enactive theory and the notion simulated action are a well adapted
framework for studying the perception of auditory objects which involved a hu-
man action like the friction sounds produced when someone is drawing. More-
over, the invariant taxonomy seems also well adapted to this. But to extend
these approaches to environmental sounds. which do not necessary involved an
embodied action, we have to define a general concept of action and to take into
account our interaction with the surrounding world with an holistic point of
view. For instance, the sound of a river flowing does not involve a human action,
in the sense of producing a motor act such as drawing or making a movement.
And finally, what is simulated when we listen such sound? It is maybe more
generally linked to experience rather than a simulated motor action. And maybe
it would be interesting to define a notion which could be named a simulated
situation, which englobes embodied active actions but also contains more gen-
eral experiences. This point will not be discussed here but have to be clarified
to establish a general ontology of sound perception based on the sensorimotor
and phenomenal contingencies. It would also be interesting to discuss and to
contextualize the invariants taxonomy regarding this more general framework.
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Abstract. An important question for both signal processing and audi-
tory science is to understand which features of a sound carry the most
important information for the listener. Here we approach the issue by
introducing the idea of “auditory sketches”: sparse representations of
sounds, severely impoverished compared to the original, which neverthe-
less afford good performance on a given perceptual task. Starting from
biologically-grounded representations (auditory models), a sketch is ob-
tained by reconstructing a highly under-sampled selection of elementary
atoms. Then, the sketch is evaluated with a psychophysical experiment
involving human listeners. The process can be repeated iteratively. As a
proof of concept, we present data for an emotion recognition task with
short non-verbal sounds. We investigate 1/ the type of auditory repre-
sentation that can be used for sketches 2/ the selection procedure to
sparsify such representations 3/ the smallest number of atoms that can
be kept 4/ the robustness to noise. Results indicate that it is possible
to produce recognizable sketches with a very small number of atoms
per second. Furthermore, at least in our experimental setup, a simple
and fast under-sampling method based on selecting local maxima of the
representation seems to perform as well or better than a more tradi-
tional algorithm aimed at minimizing the reconstruction error. Thus,
auditory sketches may be a useful tool for choosing sparse dictionaries,
and also for identifying the minimal set of features required in a specific
perceptual task.

1 Introduction

Sound signals are one-dimensional time series, reflecting the variation of acoustic
pressure in the air. There is a variety of ways to represent such time-series,
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starting with Fourier transforms or wavelet analyses [I]. Each representation
is defined in a set of basis functions on which the time-series are projected:
complex exponentials for the Fourier analysis, or dilated and translated versions
of a mother wavelet for wavelets. In an “atomistic” view of this analysis process
[2], the set of basis functions is often called the “dictionary”, and its elements
the “atoms”. Desirable properties for a dictionary may be the orthogonality
between elements, or its completeness and invertibility (i.e., it is possible to
represent any signal and transform it back without any loss of information).
More recently, for applications such as source separation or denoising, further
properties have been shown to be useful, such as sparsity (see [3] for a review),
where only a few non-zeros coefficients can be used to represent a signal. In
practice, exact sparsity is never achieved for sound signals, but still most of
them can be well approximated by sparse representations (the approximation
error decays quickly as the number of terms increases), a property often referred
to as compressibility. Such sparse representations are usually computed through
some non-linear algorithms, optimizing a balance between sparsity and data
fidelity [4].

The size and nature of the (possibly over-complete) dictionary must be care-
fully chosen, as larger dictionaries tend to provide sparser representations, but
the computational cost of the associated estimation algorithms may become
prohibitive, and high coherence in the dictionary elements may result in identifi-
ability issues. The choice of the dictionary elements, or “atoms”, is also of prime
importance, as these must be designed to fit local features of the signals under
study ; they can be chosen a priori or learnt on the data itself [5].

In this paper, we outline an original method for investigating sparse repre-
sentations of sound signals, based on perceptual considerations. The underlying
idea is simple: sounds are not just any time-series, they are time-series that are
being perceived by listeners. As a consequence, not all information in sound is
relevant for a given listening task. For instance, speech content is remarkably
resilient to large acoustic distortions [6], showing that a massive information-
loss can be tolerated for tasks like speech intelligibility in quiet. The key is that
the distortion should preserve a small but sufficient set of features for the task.
Here we introduce the metaphor of an “auditory sketch”: a sketch is a signal
that has been severely impoverished compared to the original sound, and thus
is clearly distinguishable from it, but that still retains enough of the original
critical features to afford good performance on a target task.

A schematic of the work flow we suggest to obtain auditory sketches is pre-
sented on Fig. [l The method is iterative, and places the listener at the centre of
the design loop. The first proposal is to use auditory models. Auditory models re-
fer to a class of signal-processing algorithms trying to mimick the way the acous-
tic signal is transformed along the human auditory pathways. For instance, the
cochlea performs a time-frequency decomposition, which can be approximated
to a first degree by a bank of overlapping band-pass filters [7]. The resulting
representation is often termed an “auditory spectrogram”. Subsequent stages of
processing in the auditory pathways display more complex processes, which are
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Fig. 1. Overview of the sketch design method. An auditory representation of a natural
sound is generated (in this example, an auditory spectrogram) and only a few features
are retained. The auditory model is then inverted for re-synthesis of the candidate
sketch. Psychophysical experiments involving human listeners are then used to evaluate
the efficiency of the selected features. The process is repeated iteratively to discover a
sparse set of features that afford good performance with sound class and task at hand.

currently only poorly understood. For instance, neurons in the primary audi-
tory cortex exhibit a variety of selectivity to spectro-temporal features such as
spectral, temporal, or joint-spectral temporal modulations. Models nevertheless
exist to idealise such a processing as a bank of 2-D wavelets operating on the
auditory spectrogram [8]. Such schematic “cortical” representations have been
shown, for instance, to be sufficiently rich to be an efficient front-end for timbre
classification [9].

It is hoped that, because they are inspired by the physiology of the human
ear, such auditory representations will contain the features that are relevant to
perception. However, these representations are massively over-complete, so it is
not obvious to assess which part of the representation is relevant for a given task.
This is where we use a second step in the sketches method: the representations
are sparsified by keeping only a small set of non-zero coefficients. A variety of
selection algorithms can be envisioned, as discussed below.

Finally, to check that the relevant features have been preserved, we invert the
sparse representations back into sound signals. The resulting sounds are then
used in psychophysical tests with human listeners. The process should be re-
peated iteratively until the selection of sparse features affords good performance
on the target perceptual task.

In this paper, we present preliminary data as a proof of concept for the
sketches process. We compare two different auditory models, aimed at represent-
ing two distinct stages of auditory processing: the auditory spectrogram and the
cortical representation [8]. The selection of non-zero coefficients from the models
is obviously a central issue, and here we compare two potential candidates: a sim-
ple peak-picking algorithm, and an analysis-based iterative thresholding method
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[10]. Finally, the psychophysical task chosen is that of recognition of emotion in
short sound snippets. Sounds are extracted from a calibrated database of nat-
ural emotional signals [I1], transformed as sketches, and then listeners have to
identify the original emotion in a forced-choice task (happiness, anger, sadness,
disgust). Only the first iteration in the method is tested.

2 Sparse Representations of Sounds: Dictionaries and
Algorithms

The “sketching” problem we are interested in can be formalized as follows. We
look for the sketch x € R, representation of the audio signal y such as

Yy =X+e, (1)

where € stands for the difference between the original audio signal y and its
sketch x. Within our study, the sketch x is then assumed to have a sparse
representation in a given dictionary.

Traditionally, the quality of the sparse representation is measured both in
terms of sparsity and approximation (i.e., the fidelity to the original signal). It
depends on the dictionary in which the decomposition is performed, and the pro-
cedure for the selection of sparse features (and the corresponding algorithms).
Here, an additional stage is considered. Following the algorithmic procedure im-
plementing the sparse decomposition, the appropriateness of the resulting sketch
to the target task is further tested through a psychophysical evaluation (see
Fig. [Ml). Ideally, the whole procedure is then iterated to refine both the dictio-
nary and the procedure for the selection of sparse features (in terms of objective
functions, sparsity levels and algorithms). In this section, we discuss a priori
choices for the dictionary, in Subsect. 2] and the decomposition procedures,
in Subsect. These can be thought of as reasonable initial conditions for the
sketches process. In the context of this paper, they also serve to illustrate the
potential of the method.

2.1 Auditory-Motivated Dictionaries

The choice of the dictionary is deeply related to the targeted application. In
denoising tasks, for example, emphasis may be put on the match to the charac-
teristics of the signal itself. Here, we will favour biologically-inspired dictionaries
that take into account the ear physiology. The underlying hypothesis is that per-
ception is shaped by the neural processing of sound. For instance, the frequency
selectivity observed in auditory masking (which part of the sound will effectively
be detected by a listener) is thought to be linked to frequency selectivity on the
cochlea.

We chose to use the auditory model described by Chi et al. [§] and freely
available as the “NSL toolbox”[]. As mentioned in the introduction, the model

!http://www.isr.und.edu/Labs/NSL/Software.htm
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includes both an auditory spectrogram and a “cortical” spectro-temporal anal-
ysis of the spectrogram. It has proved successful for several signal-processing
applications, such speech intelligibility assessment [I2], or computational mod-
eling of timbre perception [9].

The model consists of two major auditory transformations:

i) The early stage transforms the one-dimensional acoustic waveform to a two-
dimensional pattern obtained with a bank of constant-Q filters, followed by
spectral sharpening (lateral inhibition) and compression. Fig. [ illustrates
the result of such a transformation, producing what is termed an auditory

spectrogram.
4000+ 1 5
2000} 1 4
N —
T O
5 35
f=
S 1000+ L ey g g
ES =
£ o ™ :
2
500 ———— q
1
250 1

100 200 300 400 500 600 700 800
Time (ms)

Fig. 2. Example of an auditory spectrogram (AU: arbitrary units, log scale). The sound

analyzed is a short affect burst expressing anger [II]. The voiced quality of the sound

is visible in the harmonic structure of the frequency components, which are themselves

shaped by the vocal formants. A continuous glide of the fundamental frequency (up

then down) is also salient.

ii) The cortical stage implements then a more complex spectrotemporal analy-
sis, presumed to take place in the mammalian primary auditory cortex. The
transformation relies on a bank of filters, selective to different spectrotem-
poral modulation parameters which range from slow to fast rates temporally
and from narrow to broad scales spectrally. It results in a four-dimensional,
time-frequency-scale-rate representation, referred to as the cortical represen-
tation of the signal. A detailed description of such a representation is beyond
the scope of the paper, the reader is refered to [§]. Fig. Bl nevertheless illus-
trates some features of the cortical representation.
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Fig. 3. Example of a cortical representation (AU: arbitrary units). The sound is the
same as in Fig. [2l We only illustrate the projection of the 4-D cortical representation
on the “rate” and “scale” dimensions (the cortical representation was averaged over
time and over frequency channels). The pattern of rate and scale coefficients describe
the spectro-temporal evolution of the sound. For instance, because the fundamental
frequency glide induces temporal amplitude modulations in many frequency channels,
there is a range of non-zero modulation rates in the representation. The left and right
panels are for upward and downward spectro-temporal modulations, respectively (see
[8] for details).

Because our method relies on a listening test, an important issue is the in-
vertibility of the representations used. If phases are preserved, the (standard or
auditory) spectrograms are easily invertible, akin to the overlap-add resynthesis
procedure of the standard spectrogram. However, if non-linear processing makes
phase information meaningless, as is the case here (lateral inhibition, threshold-
ing, compression), perfect reconstruction cannot be achieved.

In order to obtain time-domain signals that are compatible with the spectro-
gram, one can resort to phase estimation algorithms that exploit the intrinsic
redundancy of the transforms, such as the Griffin and Lim [I3] phase recon-
struction iterative procedure, or improvements thereof (see [14] for a review).
It should be noted that this algorithm reconstructs a set of phases that are
consistent, but that may be completely different from the original phases, thus
precluding any time-domain sample-by-sample comparison. Here, we use the
method of [15], developed for auditory spectrograms and which provides recon-
structions that are highly perceptually similar to the original signal, whenever
the auditory spectrogram is not modified.

The parameters chosen for the model of [§] were as follows. The audio sig-
nals were sampled at 16kHz. The auditory spectrogram was obtained with a
bank of 128 bandpass filters and 8-ms time windows. The cortical stage had 5
rate channels for temporal modulations (from 1 to 32Hz) and 6 scale channels
for spectral modulation (from 0.5 to 8 cycles/octave), resulting in a redundant
representation 60-times larger than the original signal.



160 C. Suied et al.

2.2 Sparsification of Auditory Models

The next step in the design of sketches is the choice of a selection procedure
for the features. Here again many choices are possible. Note that the iterative
method of Fig. [lis conceived precisely as a way to refine the selection process.
As a first step, to gain some insight into the kind of methods that could serve
as initial choices in the iterative process, we compare two selection procedures
contrasting two different approaches:

— Algorithm IHT (iterative hard thresholding), based on a sparse analysis
scheme
— Algorithm PP (peak-picking), based on peak-picking of local maxima

It is important to stress that, as we shall discuss, these two procedures are not
just different from an algorithmic point of view. More importantly, one of them
aims at optimizing the quadratic reconstruction error (IHT), while the other
(PP) is purely feedforward and does not include any optimization step. In both
cases, the ultimate success of the selection or otherwise is estimated by means
of the perceptual task.

Algorithm IHT: Sparse Analysis by Iterative Hard Thresholding. Two
mathematical sparsity formalisms are possible, according to the adopted —
analysis or synthesis — approach. On the one hand, from the analysis point
of view and within our sketching problem, the sketch x is assumed to produce a
sparse output, which can be expressed under a matrix formulation as

z = Ax, (2)

where z € RM is sparse, i.e., contains few non-zero elements, and A is a (M x N)-
matrix with M > N representing the analysis operator. On the other hand, from
the synthesis point of view, the sketch x is seen as the sparse combination of
atoms, namely

x = Dz, (3)

where D is a (N x M)-matrix with M > N representing the dictionary, and z
is sparse.

Within the sparse-representation framework, the synthesis approach consti-
tutes the most common formalism, being the subject of numerous contributions
(see e.g., [10] for a review of the algorithms dealing with synthesis sparsity).
However, as described above, the representations we chose rely on a sequence
of filters applied to the signal and analyzing their outputs, which tends to favor
the analysis point of view.

Furthermore, the sparsity constraint in which we are interested in is not taken
into account in the same way within both formalisms. The synthesis formulation,
by its generative nature, leads potentially to a greater compactness of the signal.
But, with this formulation, the choice of the atoms to represent the signal has
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huge implications: a wrong decision may cause the selection of additional wrong
atoms as compensation. This is not the case with the analysis formulation, where
all atoms contribute equally to the representation of the signal [I7]. We will thus
adopt the analysis point of view in the remain of the paper. Hence, depending
on the processing level, a sketch x of the audio signal y is built from a sparse
auditory spectrogram or a sparse cortical representation of the signal y.

Considering the analysis formulation (2], the estimation of the sketch x can
then be expressed as

x* = argmin ||y — x||3 subject to ||[Ax||o < L, (4)
X

where ||.||o denotes the ¢y pseudo-norm, counting the number of non-zero
elements, and L is a parameter specifying the maximum number of non-zero
elements in z.

Finding the exact solution of (@) is an NP-hard problem, i.e., it generally
requires a combinatorial search over the entire solution space. Here, we use a
suboptimal (but tractable) algorithm based on the iterative hard thresholding
procedure introduced in [I0]. This algorithm presents indeed several desirable
properties:

i) Its implementation is very simple, in accordance with a filter-bank procedure,
as considered within our model (see Subsect. [21]).

ii) Its complexity is low, in O(NlogN), N being the number of iterations.
This property is very valuable since the considered biologically inspired
model involves complex mathematical computations, requiring thus a light
integration procedure.

Note that the analysis-based IHT algorithm is different from the most standard
synthesis-based iterative hard thresholding algorithms in the literature [I8], often
used in the framework of compressed sensing.

Algorithm PP: Peak-Picking of Local Maxima. The second algorithm
considered in this paper is based on a simple local maxima detection.

The procedure, with variants already used in the literature (see e.g., [19J20]),
is based on a local gradient evaluation. In our case, the peak-picking was done
on either the auditory spectrogram (finding 2-D local maxima) or the cortical
representation (finding 4-D local maxima). The algorithm proceeds as follows :
first, all local maxima (on the magnitude of the coefficients) are selected. Then,
they are sorted by decreasing order and only the L largest are kept, L being
related to the desired degree of sparsity. Note that this algorithm is not iterative,
without any optimization procedure, and therefore is very fast.

It should also be noted that, as opposed to the vast majority of sparse de-
composition/analysis algorithms, such as THT described above, the goal of this
analysis scheme is not to achieve the best approximation (in a least-squares
sense) of the signal for a given number of coefficients. Instead, the rationale
is that, if the representation itself is efficient, the selection mechanism can be
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rather crude: within a zone of the parameters space, local maxima should express
salient features.

3 Psychophysical Experiments

The core idea of the sketches process is to put the listener at the centre of
the design procedure. Thus, as candidate sketches are obtained, they are used
in a perceptual task where a performance measure can be obtained. If a high
performance is observed, then this indicates that the set of features that have
been selected in the sparsification process is sufficient for the task, even though
the sketch itself may sound very different from the original signal.

We now report two experiments using a perceptual task of emotion recogni-
tion. We asked listeners to report whether a short vocal sound expressed happi-
ness, sadness, anger, or disgust. Each emotion was represented by several sound
samples, selected from a calibrated database [I1]. The main aim was to provide
a first test of the sketches approach: could listeners perform the task on sounds
that were severely impoverished compared to the original? More precise ques-
tions as to the nature of the sketching process were asked in each experiment.

3.1 Experiment 1: Comparison of Two Auditory Representations

Rationale. Here we wanted to investigate the influence of the basic representa-
tion used to produce sketches. We used auditory models, but contrasted auditory
spectrograms with spectro-temporal “cortical” representations. The robustness
of sketches to the presence or absence of noise was also tested. Indeed, if we as-
sume that the goal of the sketches is to identify perceptually-important features
of sounds, a certain robustness to noise is desirable. Robustness to noise is thus
one indication that the representation is well-suited to the sound class of inter-
est. Finally, the sparsity that can be achieved with the method was evaluated:
a better representation should produce a sparser code.

Material and Methods

Participants. There were 10 participants (6 men and 4 women), aged between 19
and 39 years (M = 25.8 years). All listeners had self-reported normal-hearing.
They all provided informed consent to participate in the study, which was con-
ducted in accordance with the guidelines of the declaration of Helsinki.

Stimuli. All sounds were derived from the Montreal Affective Voices database
[11]. They consisted of recorded nonverbal emotional interjections (on the French
vowel /a/). Among the available stimuli, we selected four emotions that were
easily recognized (see [I1]): anger, disgust, happiness, and sadness. Each emo-
tional interjection was uttered by 10 different actors (5 male and 5 female). The
original sounds had very different durations (from 0.4 s to 1.2 s), so we short-
ened some of the stimuli (happiness and sadness, mainly) to avoid recognition
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cues linked to duration. The modified versions of the sounds were still easily rec-
ognized, as confirmed by an informal experiment. The modified sounds had an
average duration of 0.99 s (std= 0.2). A repeated-measures ANOVA performed
on the 40 sounds (4 emotions for the 10 speakers) revealed no significant dif-
ferences between the mean duration of each emotion [F'(3,27) = 0.95;p = 0.4].
These 40 sounds constituted the baseline stimuli.

For the “noise” conditions, pink noise was added to the original sounds, with
a signal-to-noise ratio of -6 dB.

The sketch process was performed either on the original sound or on the noise
version of the sound. In this first experiment, it was only performed using the
PP algorithm. Two auditory representations were compared: the auditory spec-
trogram and the cortical representation (see above). Three degrees of sparsity
were also compared: 10, 100, and 1000 features/second were retained from the
auditory representations. The measure of features/second, which we refer to as
the degree of sketch, is only indirectly related to the quantity of information
retained from the original signal (as for instance it ignores the size and nature
of the dictionnary). However, it serves here as a first approximation of sparsity.

Apparatus. Stimuli were presented through an RME Fireface digital-to-analog
converter at a 16-bit resolution and a 44.1 kHz sample-rate. They were presented
to both ears simultaneously through Sennheiser HD 250 Linear II headphones.
Presentation level was at 70 dB(A), as calibrated with a Bruel & Kjaer (2250)
sound level meter and ear simulator (B&K 4153). Listeners were tested individ-
ually in a double-walled Industrial Acoustics (IAC) sound booth.

Procedure. A 4-AFC (Alternative Forced Choice) paradigm was used. In each
trial, participants heard a single sound, which could be one of the 4 target
emotions. They had to indicate whether the sound they just heard was a repre-
sentative sound of happiness, sadness, anger, and disgust. Visual feedback was
provided after each response.

14 conditions were presented in a randomized fashion to each participant,
for a total of 1120 stimuli in total: original sounds vs. sketches and no noise
vs. noise. For the sketches, we compared the auditory spectrogram vs. cortical
representation and the degree of sketch (10, 100, or 1000 feat/s). The experiment
lasted approximately 1 hour. The experiment was divided into small blocks, to
allow time for breaks.

Results. Results are illustrated on Fig. @l A first important observation is the
overall good performance, well above the chance level (i.e. 25%), with a mean
percent correct of 93% for the original sounds, and of 55% for the sketches
sounds. A second key result rests upon the comparison of the two auditory mod-
els used to create the sketches: overall, the auditory spectrogram outperformed
the cortical representation. Data were analyzed with a repeated-measures anal-
ysis of variance (ANOVA). We first evaluated the overall difference between
the original sounds and the sketches, in the two noise conditions. A repeated-
measure ANOVA revealed main significant effects for the type of sound (original
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Fig. 4. Results for Experiment 1. Recognition performance of the sketches sounds cor-
responding to two different auditory models (aud spec for the auditory spectrogram,
and cortical model), without (left panel) and with (right panel) noise. Error bars cor-
respond to the standard error of the mean. Performance was overall higher for the au-
ditory spectrogram than for the cortical model. These recognition data for the sketches
sounds are compared to an upper baseline : the average recognition performance for
the original sounds (black line). They are also compared to a lower baseline: the chance
level, i.e. 25% here (dotted gray line).

vs. sketch) [F'(1,8) = 1172.55; p < 0.0001] and for the noise condition (silence
vs. noise) [F(1,8) = 441.81;p < 0.0001], as well as a significant interaction be-
tween these two variables [F(1,8) = 21.66;p < 0.005]. These results show that
the overall recognition performance was better for the original sounds than for
the sketches, and that, as expected, noise had a detrimental effect on perfor-
mance; the influence of noise was more pronounced for the sketches than for the
original sounds.

We then analyzed in more details data for the sketches sounds only. We
performed a repeated-measure ANOVA with noise (silence vs. noise), model
(auditory spectrogram vs. cortical), and features (10, 100, and 1000 feat/s) as
within-subjects variables. It revealed main significant effects of noise
[F'(1,8) = 582,23; p < 0.0001], model [F'(1,8) = 101, 44; p < 0.0001], and features
[F'(2,16) = 138,01; p < 0.0001]. It also revealed significant interaction between
features and model [F(2,16) = 89, 80; p < 0.0001], features and noise
[F(1,8) = 21,09;p < 0.0001], as well as a significant third-order interaction be-
tween features, model, and noise [F(1,8) = 37,81;p < 0.0001]. These results
highlight that: performance was better in silence than in noise; performance
increased as the number of features per second increased; the auditory spectro-
gram model led to better performance than the cortical model (with one notable
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exception, that was responsible for the significant third-order interaction: in the
noise condition, for 1000 feat/s, the cortical model led to better performances
than the auditory spectrogram model).

3.2 Experiment 2: Comparison of Two Sparsification Algorithms

Rationale. Experiment 1 served as a first proof of concept of the sketches pro-
cess: the overall recognition performance for sketches sounds was good (55%, i.e.
well above the chance level). This was the case even though the selection algo-
rithm, PP, was extremely crude and did not contain any optimization. Here, we
compare the PP algorithm with a more traditional signal-processing approach,
the THT algorithm, that minimizes the reconstruction error (see Sect. 22)).

Material and Methods

Participants. There were 10 participants (5 men and 5 women), aged between
19 and 34 years (M = 23.2 years). All listeners had self-reported normal-hearing.
They all provided informed consent to participate in the study, which was con-
ducted in accordance with the guidelines of the declaration of Helsinki.

Stimuli. Stimuli were very similar to Experiment 1, the only differences here
being that: (i) only the auditory spectrogram was used as an auditory repre-
sentation for the computation of the sketches; (ii) two sparsification algorithms
were used to produce the sketches: IHT and PP (see Subsect. for details).

Apparatus and Procedure. The apparatus was the same as in Experiment 1. The
procedure was also very similar. Here, the 12 conditions that were presented in a
randomized fashion to the participant were a combination of 3 parameters: type
of algorithm (IHT vs. PP), noise (with or without), and degree of sketch (10,
100, and 1000 feature/second).

Results. Results of this second experiment are illustrated on Fig.[Bl This second
experiment confirms and reproduces some important results of Experiment 1: an
overall good recognition performance, with a mean percent correct of 93% for
the original sounds, and of 60% for the sketches sounds. It also shows that the
PP algorithm generally outperformed the THT algorithm. Similar analyses as
for the Experiment 1 were conducted. Firstly, the overall ANOVA reproduced
results of Experiment 1: performance was better for the original sounds than
for the sketches [F(1,9) = 708.77; p < 0.0001]; performance was also better in
silence that in the noise [F'(1,9) = 119.44;p < 0.0001]. For this experiment as
well, the detrimental effect of the noise was more pronounced for the sketches
than for the original sounds [significant interaction between the type of sound
and the noise condition: [F'(1,9) = 12: 90;p < 0 : 006].

Secondly, a detailed repeated-measures ANOVA on the sketches only re-
vealed that: as expected, performance was better in silence than in noise
[F'(1,9) = 148.98; p < 0.0001]; performance increased as the number of features
per second increased [F'(2,18) = 283.89; p < 0.0001].
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Fig.5. Results for Experiment 2. Recognition performance of the sketches sounds
corresponding to two different sparsifying algorithms (PP for peak-picking, and THT
for iterative hard thresholding), without (left panel) and with (right panel) noise. Error
bars correspond to the standard error of the mean. Performance was overall higher for
the PP than for the IHT algorithm. These recognition data for the sketches sounds are
compared to an upper baseline: the average recognition performance for the original
sounds (black line). They are also compared to a lower baseline: the chance level, i.e.
25% here (dotted gray line).

It also showed that performance was overall better for the PP algorithm than
for the IHT algorithm [F(1,9) = 54.72; p < 0.0001]. All second-order interactions
were also significant:

[features x algorithm : F'(2,18) = 85.92; p < 0.0001.

features x noise : F'(2,18) = 32.39; p < 0.0001.

algorithm x noise : F(1,9) = 49.46; p < 0.0001]. Finally, the third-order inter-
action was also significant [F'(1,9) = 28.07; p < 0.0001], and highlighted that the
only exception for which the IHT algorithm outperformed the PP algorithm was
in the noise condition, with 1000 feat/s.

4 Discussion

The main aim of this study was to investigate the feasibility of the auditory
sketches idea. From the results, it seems that the sketches design method out-
lined in Fig. [ has some potential. In the experiments, even though the vast
majority of the parameters was omitted, the perceptual task (emotion recog-
nition for nonverbal interjections) was performed well above chance: sketches
retained some of the relevant information with as little as 10 features/seconds.
More information-theoritic work remains to be done on quantifying the sparsity
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that was actually achieved, because features/second is an imperfect measure, but
the results nevertheless strongly suggest that sparse representations of sounds
based on biologically-motivated models produce perceptually relevant results.

Further observations can be made by comparing the variants we tested for the
sketches process. Perhaps surprisingly, a state-of-the-art sparse decomposition
algorithm minimizing reconstruction error (IHT) did not lead to better results
than a simple peak-picking and thresholding (PP) without any optimization. In
fact, in general, the reverse was true, and PP largely outperformed IHT. These
preliminary results need to be extended with a larger variety of stimuli and per-
ceptual tasks, but still, we can speculate on such an outcome. Because auditory
models are inspired by the physiology of the human hearing system, they may
be particularly relevant as an auditory representation. A simple algorithm like
PP, although not optimal (in the least-square sense for the approximation), may
be enough to capture important features by sampling some of the important
landmarks of the representations.

Fig. [l illustrates this point, by highlighting an important difference between
the two selection algorithms. The PP algorithm tends to select relatively distant
atoms (see Fig.[Bla)) as an extended high-energy patch in the representation can
be summarized with a single peak. In contrast, the IHT algorithm will attempt
to capture accurately such high-energy patches and will use several atoms to
do so (see Fig.[B(c)). These opposite behaviors lead to different reconstructions:
whereas IHT achieves a highly precise reconstruction of some particular parts of
the original spectrogram (see Fig. Pl and Fig. [B(d)), this is done at the expense
of smaller coverage of the whole parameter space.

However, we should point out that it is probably too early to generalize the
superiority of a local maxima detection over a least-squares approach. The IHT
algorithm constitutes one possible way to solve problem () amongst a large
number of possibilities. We chose IHT for implementation and complexity rea-
sons (see Subsect.[2:2)) but other algorithms could potentially improve the results
(see e.g., approaches based on a problem relaxation [2T22], or greedy algorithms
[23]). The sparsity-at-analysis point of view can also be questioned, and could be
compared to more standard synthesis approaches. Further experiments could fi-
nally investigate some other sparsifying procedures, intermediate between peak-
picking and energy-maximizing, for instance iterative procedures based on a
time-frequency masking model [24].

Another surprising result is the overall better performance for the auditory
spectrogram representation compared to the cortical one. One of the limitations
of the sounds we used was their short duration (around 1s). The cortical model
contains filters tuned to longer modulations, so it is possible that any potential
benefit of the spectro-temporal analysis only becomes apparent for longer sounds.

Finally, we found that the recognition of sketches was robust to a moderate
amount of noise, but less so than for the original signal. This is in line with many
psychophysical observations showing that degraded signals are more susceptible
to noise. Nevertheless, one hypothesis for the sketches was that sparsification
would lead to some denoising. Our results suggest that either the representations
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Fig. 6. Sparse auditory spectrograms obtained by means of the PP algorithm ((a) and
(b)) and the IHT algorithm ((c) and (d)), directly after the decomposition ((a) and
(c)) and after resynthesis of the audio signal ((b) and (d)). Here, we keep 100 feat./s.
AU: arbitrary units, log scale.

failed at this goal, or that, more likely, the selection procedure could be improved.
Such an approach has proven successful for denoising of speech signals, with the
cortical model [25]: by increasing the dimensionality of the representation, noise
and signal get mapped into different parts of the parameter space.

5 Perspectives

This preliminary study already shows that only a few features extracted from an
auditory-based representation can produce a sound with recognizable perceptual
traits. Even though the resulting sketch may be highly distorted compared to
the original, under certain constraints, the selected features can be sufficient for
recognition of complex properties such as emotional content. Obviously, more
work remains to be done on each stage of the sketching process, and in particular,
the iterative nature of the algorithm needs to be put to the test.

In addition, a few ideas emerge on how sound features should be combined in
order to build recognizable auditory sketches. For a task of sound recognition,
it seems that it is more important to have some cues on how energy is spread in
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the time-frequency plane, rather than a precise description of the most energetic
components. Interestingly, this is similar to what is being done in state-of-the-
art audio fingerprinting techniques, that choose salient points as local maxima
in large blocks on the time-frequency plane. More precisely, it seems that the
right way to select atoms is not purely based on energy criteria, but also their
information content: we need to select a set of atoms that carry energy but also
whose mutual information is minimal. In other words, we shift from the standard
paradigm of sparsity justified by Occam’s razor (amongst 2 explanations, prefer
the one that is simplest) to an “informed” version (amongst 2 explanations,
prefer the one that brings you more information on top of a prior model). This
brings us close to the original sketches metaphor: to sketch a visual object, an
artist will usually not attempt photographic realism. Rather, in a few pencil
lines, an attempt will be made to capture what makes this object unique. It is
our hypothesis that such an approach may have interesting implications for signal
processing, but also for understanding how human listeners perform recognition
tasks (see e.g. [20]).
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Abstract. Music is widely perceived as expressive of emotion. However,
there is no consensus on which factors in music contribute to the expres-
sion of emotions, making it difficult to find robust objective predictors
for music emotion recognition (MER). Currently, MER systems use su-
pervised learning to map non time-varying feature vectors into regions of
an emotion space guided by human annotations. In this work, we argue
that time is neglected in MER even though musical experience is intrinsi-
cally temporal. We advance that the temporal variation of music features
rather than feature values should be used as predictors in MER, because
the temporal evolution of musical sounds lies at the core of the cognitive
processes that regulate the emotional response to music. We criticize the
traditional machine learning approach to MER, then we review recent
proposals to exploit the temporal variation of music features to predict
time-varying ratings of emotions over the course of the music. Finally,
we discuss the representation of musical time as the flow of musical in-
formation rather than clock time. Musical time is experienced through
auditory memory, so music emotion recognition should exploit cognitive
properties of music listening such as repetitions and expectations.

Keywords: Music, Time, Emotions, Mood, Automatic Mood Classifi-
cation, Music Emotion Recognition.

1 Introduction

One of the recurring themes in treatises of music is that music both evokes
emotions in listeners (emotion induction) and expresses emotions that listeners
perceive, recognize, or are moved by, without necessarily feeling the emotion
(emotion perception) [14]. The emotional impact of music on people and the as-
sociation of music with particular emotions or ‘moods’ have been used in certain
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contexts to convey meaning, such as in movies, musicals, advertising, games,
music recommendation systems, and even music therapy, music education, and
music composition, among others. Empirical research on emotional expression
started about one hundred years ago, mainly from a music psychology perspec-
tive [9], and has successively increased in scope up to today’s computational
models. Research on music and emotions usually investigates listeners’ response
to music by associating certain emotions to particular pieces, genres, styles,
performances, among many others.

The mechanisms whereby music elicits emotions in listeners are not well un-
derstood. A central question in the study of music and emotions is “Which
attributes or musical qualities, if any, elicit emotional reactions in listeners?
[14U31]” At first, we should identify factors in the listener, in the music, and in
the context that influence musical emotions (i.e., emotional reactions to music).
Only then can we proceed to develop a theory about specific mechanisms that
mediate among musical events and experienced emotions.

Among the causal factors that potentially affect listeners’ emotional response
to music are personal, situational, and musical. Personal factors include age,
gender, personality, musical training, music preference, and current mood. Situ-
ational factors can be physical such as acoustic and visual conditions, time and
place, or social such as type of audience, and occasion. Musical factors include
genre, style, key, tuning, orchestration, among many others.

Juslin and Vastfjall [14] sustain that there is evidence of emotional reac-
tions to music in terms of various subcomponents, such as subjective feeling,
psychophysiology, brain activation, emotional expression, action tendency, emo-
tion regulation and these, in turn, feature different psychological mechanisms
like brain stem reflexes, evaluative conditioning, emotional contagion, visual im-
agery, episodic memory, rhythmic entrainment, and musical expectancy. They
state that “none of the mechanisms evolved for the sake of music, but they
may all be recruited in interesting (and unique) ways by musical events. Each
mechanism is responsive to its own combination of information in the music, the
listener, and the situation.”

The literature on the emotional effects of music [I5l9] has accumulated evi-
dence that listeners often agree about the emotions expressed (or elicited) by a
particular piece, suggesting that there are aspects in music that can be associated
with similar emotional responses across cultures, personal bias or preferences.
Several researchers imply that there is a causal relationship between music fea-
tures and emotional response [9], giving evidence that certain music dimensions
and qualities communicate similar affective experiences to many listeners.

An emerging field is the automatic recognition of emotions (or ‘mood’) in
music, also called music emotion recognition (MER) [I7]. The aim of MER is to
design systems to automatically estimate listeners’ emotional reactions to mu-
sic. A typical approach to MER, categorizes emotions into a number of classes
and applies machine learning techniques to train a classifier and compare the re-
sults against human annotations [I7J49I23]. The ‘automatic mood classification’
task in MIREX epitomizes the machine learning approach to MER, presenting
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systems whose performance range from 22 to 65 percent [I1]. Some researchers
speculate that musical sounds can effectively cause emotional reactions (via brain
stem reflex, for example). Researchers are currently investigating [I2/17] how to
improve the performance of MER systems. Interestingly, the role of time in the
automatic recognition of emotions in music is seldom discussed in MER research.

Musical experience is inherently tied to time. Studies [T924[1336] suggest
that the temporal evolution of the musical features is intrinsically linked to
listeners’ emotional response to music, that is, emotions expressed or aroused
by music. Among the cognitive processes involved in listening to music, memory
and expectations play a major role. In this article, we argue that time lies at the
core of the complex link between music and emotions, and should be brought to
the foreground of MER systems.

The next section presents a brief review of the classic machine learning ap-
proach to MER. We present the traditional representation of musical features
and the model of emotions to motivate the incorporation of temporal information
in the next section. Then, we discuss an important drawback of this approach,
the lack of temporal information. The main contribution of this work is the
detailed presentation of models that exploit temporal representations of music
and emotions. We also discuss modeling the relationship between the temporal
evolution of musical features and emotional changes. Finally, we speculate on
different representations of time that better capture the experience of musical
time before presenting the conclusions and discussing future perspectives.

2 Machine Learning and Music Emotion Recognition

Traditionally, computational systems that automatically estimate the listener’s
emotional response to music use supervised learning to train the system to map
a feature space representing the music onto a model of emotion according to
annotated examples [I74923|T1]. The system can perform classification [2I] or
regression [48], depending on the nature of the representation of emotions (see
Sec. 22). After training, the system can be used to predict listeners’ emotional
responses to music that was not present in the training phase, assuming that
it belongs to the same data set and therefore can be classified under the same
underlying rules. System performance is measured comparing the output of the
system with the annotation for the track.

Independently of the specific algorithm used, the investigator that chooses
this approach must decide how to represent the two spaces, the music features
and the emotions. On the one hand, we should choose music features that cap-
ture information about the expression of emotions. Some features such as tempo
and loudness have been shown to bear a close relationship with the perception
of emotions in music [38]. On the other hand, the model of emotion should
reflect listeners’ emotional response because emotions are very subjective and
may change according to musical genre, cultural background, musical training
and exposure, mood, physiological state, personal disposition and taste [9]. We
argue that the current approach misrepresents both music and listeners’ emo-
tional experience by neglecting the role of time. In this article, we advance that
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Fig. 1. Illustration of feature extraction. Part a) shows the bag-of-features approach,
where the music piece is represented by a non time-varying vector of features @; aver-
aged from successive frames. Notice that there is only one global emotion ¥; associated
with the entire piece as well. In part b), Both music features ¢ and emotion annotations
Y are kept as a time series.

the temporal variation of music features rather than the feature values should
be used as predictors of musical emotions.

2.1 Music Features

Typically, MER systems represent music with a vector of features. The features
can be extracted from different representations of music, such as the audio, lyrics,
the score, social tags, among others [I7]. Most machine learning methods de-
scribed in the literature use the audio to extract the music features [17/49/23/1T].
Music features such as root mean square (RMS) energy, mel frequency cepstral
coefficients (MFCCs), attack time, spectral centroid, spectral rolloff, fundamen-
tal frequency, and chromagram, among many others, are calculated from the
audio by means of signal processing algorithms [27/12J48]. The number and type
of features dictates the dimensionality of the input space (some features such
as MFCCs are multidimensional). Therefore, there usually is a feature selection
or dimensionality reduction step to determine a set of uncorrelated features.
A common choice for dimensionality reduction is principal component analysis
(PCA)[26I12/21]. Huq et al [12] investigate four different feature selection algo-
rithms and their effect on the performance of a traditional MER system. Kim et
al [177] presented a thorough state-of-the-art review of MER in 2010, exploring a
wide range of research in MER systems, particularly focusing on methods that
use textual information (e.g., websites, tags, and lyrics) and content-based ap-
proaches, as well as systems combining multiple feature domains (e.g., features
plus text). Their review is evidence that MER systems rarely exploit temporal
information.

The term ‘semantic gap’ has been coined to refer to perceived musical infor-
mation that does not seem to be contained in the acoustic patterns present in
the audio, even though listeners agree about its existence [47]. Music happens
essentially in the brain, so we need to take the cognitive mechanisms involved in
processing musical information into account if we want to be able to model peo-
ple’s emotional response to music. Low-level audio features give rise to high-level



Modeling Musical Emotions from Time-Varying Music Features 175

musical features in the brain, and these, in turn, influence emotion recognition
(and experience). This is where we argue that time has a major role, still ne-
glected in most approaches found in the literature. However, only very recently
have researchers started to investigate the role of time in MER. On the one
hand, the different time scales in musical experience should be respected [42].
On the other hand, the temporal changes of some features are more relevant
than feature values isolated from the musical context [3].

Usually, MER systems use a “bag of features” approach, where all the features
are stacked together [I2]. However, these features are associated with different
levels of music experience, namely, the perceptual, the rhythmic, and the for-
mal levels. These levels, in turn, are associated with different time scales [42].
Music features such as pitch, loudness, and duration are extracted early in the
processing chain that converts sound waves reaching the ear into sound percep-
tion in the brain. Rhythm and melody depend hierarchically on the features
from the previous level. For example, melody depends on temporal variations of
pitch. Subsequently, the formal level is comprised of structural blocks from the
melodic and harmonic level.

Fig. [ illustrates the music feature extraction step in MER. Typically, these
features are calculated from successive frames taken from excerpts of the audio
that last a few seconds [I7/49123/TTI1T2] and then averaged like seen in part a)
of Fig. [l losing the temporal correlation [23]. Consequently, the whole piece (or
track) is represented by a static (non time-varying) vector, intrinsically assuming
that musical experience is static and that the listener’s emotional response can
be estimated from the audio alone. Notice that, typically, each music piece (or
excerpt) is associated with only one emotion, represented by ¥; in Fig. [ll The
next section explores the representation of emotions in more detail.

2.2 Representation of Emotions

The classification paradigm of MER research uses categorical descriptions of
emotions where the investigator selects a set of “emotional labels” (usually mu-
tually exclusive). Part a) of Fig. @ illustrates these emotional labels (Hevner’s
adjective circle [10]) clustered in eight classes. The annotation task typically con-
sists of asking listeners to choose a label from one of the classes for each track.
The choice of the emotional labels is important and might even affect the results.
For example, the terms associated with music usually depend on genre (pop mu-
sic is much more likely than classical music to be described as “cool”). As Yang
[49] points out, the categorical representation of emotions faces a granularity
issue because the number of classes might be too small to span the rich range of
emotions perceived by humans. Increasing the number of classes does not nec-
essarily solve the problem because the language used to categorize emotions is
ambiguous and subjective [9]. Therefore, some authors [I7/49] have proposed to
adopt a parametric model from psychology research [30] known as the circum-
plex model of affect (CMA). The CMA consists of two independent dimensions
whose axes represent continuous values of valence (positive or negative semantic
meaning) and arousal (activity or excitation). Part b) of Fig. 2 shows the CMA
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Fig. 2. Examples of models of emotion. The left-hand side shows Hevner’s adjective
circle [I0], a categorical description. On the right, we see the circumplex model of affect
[30], a parametric model.

and the position of some adjectives used to describe emotions associated with
music in the plane. An interesting aspect of parametric representations such as
the CMA lies in the continuous nature of the model and the possibility to pin-
point where specific emotions are located. Systems based on this approach train
a model to compute the valence and arousal values and represent each music
piece as a point in the two-dimensional emotion space [49].

One common criticism of the CMA is that the representation does not seem to
be metric. That is, emotions that are very different in terms of semantic mean-
ing (and psychological and cognitive mechanisms involved) can be close in the
plane. In this article, we argue that the lack of temporal information is a much
bigger problem because music happens over time and the way listeners associate
emotions with music is intrinsically linked to the temporal evolution of the mu-
sical features. Also, emotions are dynamic and have distinctive temporal profiles
(boredom is very different from astonishment in this respect, for example).

2.3 Mathematical Notation

In mathematical terms, the traditional approach to MER models the relationship
between music @ and emotions ¥ according to the following

U= f(D,A,e¢) (2.1)

where W represents the emotion space, ® represents the music, f models the
functional relationship between ® and ¥ parameterized by A with error e.
Therefore, in this approach, MER becomes finding the values for the parameters
A ={ap, a1, ...,any} that minimize the error {e} and correctly map each &; € ®
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Fig. 3. Simple examples of machine learning applied to music emotion recognition.
Part a) shows an example of classification. In part b), we see an example of regression.

onto their corresponding ¥; € ¥. Notice that subscript ¢ means an instance of
the pair {¥, @} (an annotated music track). Here, ®; = [¢1, P2, ..., dn] is an N
dimensional vector of music features and ¥; can be a semantic label represent-
ing an emotion for the classification case or continuous values of psychological
models such as a valence/arousal pair ¥; = {v, a}.

Fig. Bl shows a simple example of classification and regression to illustrate
Eq. ([ZJ). Part a) illustrates linear classification into two classes, while part b)
shows linear regression. In part a), the black dots represent instances of the first
class, while the white dots represent the other class. The dashed line is the linear
classifier (i.e., the MER system) that separates the input parameter space ® =
{¢1, P2} into two regions that correspond to the classes ¥ = {black, white}. For
example, a MER system that takes chords as input and outputs the label happy
for major chords and sad for minor chords. In this case, ® is major or minor and
could be encoded as ¢, the first interval and ¢ the second interval in cents, f
is a binary classifier (such as a straight line with parameters A = {ag,a1}), and
U = {happy, sad}. The error e would be associated with misclassification, that
is, points associated with one class by the system but labeled with the other.
The system could be then used to classify inputs (music) that were not a part of
the training data into “happy” or “sad” depending on which category (region)
it falls into.

Part b) shows ¥ as a linear function of a single variable ¢ as ¥ = ag + a;¢. In
this case, the dots are values of the independent variable or predictor ¢ associ-
ated with ¥. For instance, ¢ represents loudness values positively correlated with
arousal, represented by ¥. Notice that both ¢ and ¥ are real-valued, and the
MER system f modeling the relationship between them is the straight dashed
line with parameters A = {ag, a1} obtained by regression (expectation maxi-
mization or least-squares). The modeling error € being minimized is the differ-
ence between the measures (the dots in the figure) and the model (the dashed
line). The MER system can estimate arousal for new music tracks solely based
on loudness values.
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A more general MER system following the same approach would model ¥ as
a linear combination of predictors @ using multiple regression as follows

v, :a0+a1¢i,1+...+aN¢i’N+...+e (22)

where ¥; is the representation of emotion and @; = {¢;,} are the music
features. This model assumes that emotions can be estimated as a linear com-
bination of the music features, such as @; = {loud, fast} music is considered
¥ = {upbeat}. Generally, the errors e are supposed uncorrelated with one an-
other (additive error) and with @, whose underlying probability distribution has
a major influence on the parameters A. Naturally, fitting a straight line to the
data is not the only option. Sophisticated machine learning algorithms are usu-
ally applied to MER, such as support vector machines [T2/I7]. However, these
algorithms are seldom appropriate to deal with the temporal nature of music
and the subjective nature of musical emotions.

2.4 Where Does the Traditional Approach Fail?

The traditional machine learning approach to MER assumes that the music
features are good predictors of musical emotions due to a causal relationship
between ® and ¥. The map from feature space to emotion space is assumed to
implicitly capture the underlying psychological mechanisms leading to an emo-
tional response in the form of a one-to-one relationship. However, psychological
mechanisms of emotional reactions to music are usually regarded as information
processing devices at various levels of the brain, using distinctive types of in-
formation to guide future behavior. Therefore, even when the map f explains
most of the correlation between between ® and ¥, it does not necessarily mean
that it captures the underlying psychological mechanism responsible for the emo-
tional reaction (i.e., correlation does not imply causation). In other words, while
Eq. 1) can be used to model the relationship between music features and
emotional response, it does not imply the existence of causal relations between
them.

Eq. (1) models the relationship between music features and emotional re-
sponse from a behavioral viewpoint, supposing that the emotional response is
consistent across listeners, irrespective of cultural and personal context. Cur-
rently, MER systems rely on self-reported annotations of emotions using a model
such as Hevner’s adjective circle or the CMA. On the one hand, this approach
supposes that the model of emotion allows the expression of a broad palette of
musical emotions. On the other hand, it supposes that self-reports are enough to
describe the outcome of several different psychological mechanisms responsible
for musical emotions [I4]. Finally, the listener’s input is only provided in the
form of annotations and only used when comparing these annotations to the
emotional labels output by the system, neglecting personal and situational fac-
tors. The terms ‘semantic gap’ [47/4] and ‘glass ceiling’ [I] have been coined to
refer to perceived musical information that does not seem to be contained in the
audio even though listeners agree about its existence. MER research needs to
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bridge the gap between the purely acoustic patterns of musical sounds and the
emotional impact they have on listeners by modeling the generation of musical
meaning [I5]. Musical experience is greater than auditory impression [22]. The
so called ‘semantic gap’ is a mere reflection of how the current typical approach
misrepresents both the listener and musical experience.

Here we argue that the current approach misrepresents both music and lis-
teners’ emotional experience by neglecting the role of time. Currently, MER
research ignores evidence [T9124IT3T4] suggesting the existence of complex re-
lationships between the dynamics of musical emotions and the response to how
musical structure unfolds in time. The examples given in Fig. B illustrate this
point (although in a very simplified way). Neither system uses temporal infor-
mation at all. In part a), the input music is classified as “happy” or “sad” based
solely on whether it uses major or minor chords, ignoring chord progression, in-
versions, etc. Part b) supposes a rigid association between loudness and arousal
(loud music is arousing), ignoring temporal variations (like sudden changes from
soft to loud).

Krumhansl [20] suggests that music is an important part of the link between
emotions and cognition. More specifically, Krumhansl investigated how the dy-
namic aspect of musical emotion relates to the cognition of musical structure.
According to Krumhansl, musical emotions change over time in intensity and
quality, and these emotional changes covary with changes in psycho-physiological
measures [20]. Musical meaning and emotion depend on how the actual events
in the music play against this background of expectations. David Huron [13]
wrote that humans use a general principle in the cognitive system that regu-
lates our expectations to make predictions. According to Huron, music (among
other stimuli) influences this principle, modulating our emotions. Time is a very
important aspect of musical cognitive processes. Music is intrinsically temporal
and we need to take into account the role of human memory when experienc-
ing music. In other words, musical experience is learned. As the music unfolds,
the learned model is used to generate expectations, which are implicated in the
experience of listening to music. Meyer [25]24] proposed that expectations play
the central psychological role in musical emotions.

3 Time and Music Emotion Recognition

We can incorporate temporal information into the representation of the music
features and into the emotional response. In the first case we calculate the music
features sequentially as a time-series, while the last case consists of recording
listeners’ annotations of emotional responses over time and keeping the infor-
mation as a time-series. Fig. illustrates the music features and emotions
associated with music (represented by the score) over time. Thus ¢ (t) is the
current value of a music feature, and ¢ (¢ + 1) is the subsequent value. Similarly,
W (t) and ¥ (¢t + 1) follow each other.

There are several ways of exploiting the information from the temporal vari-
ation of music features and emotions. A very straightforward way would be to
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use time-series analysis and prediction techniques, such as using previous values
to predict future values of the series. In this case, the investigator could use past
values of a series of valence/arousal {v,a} annotations over time to predict the
next {v,a} value. A somewhat more complex approach is to use the temporal
behavior of one time series as predictors of the next value of another series. In
this case, the temporal variation of the music features would be used as pre-
dictors in regression. Thus variations in loudness rather than loudness values
are used to predict the arousal associated. Several techniques can be employed,
such as regression analysis, dynamical system theory, as well as machine learn-
ing algorithms developed to model the dynamic behavior of time series. Thus
the next section reviews approaches to MER that use the temporal variation of
music features as predictors of musical emotions.

3.1 Time Series and Prediction

The feature vector should be calculated for every frame of the audio signal and
kept as a time series as shown in Fig. In other words, the music features
@, are now represented by a time-varying vector &@; (t) = {¢; (t),¢: (t — 1),
@i (t—2),...,0; (t — N)}. The temporal correlation of the features must be ex-
ploited and fed into the model of emotions to estimate listeners’ response to the
repetitions and the degree of “surprise” that certain elements might have [3§].
The simplest way to incorporate temporal information from the music features is
to include time differences, such as loudness values and also loudness variations
(from the previous value). This MER system uses information about how loud
a certain passage sounds and also if the music is getting louder (building up
tension, for example), using previous values of features to predict the next (is
loudness going to increase or decrease?) and compare these predictions against
how the same features are unfolding in the music as follows

i (t+1)=a1¢; (t) +azp; (t —1)+asd; (t—2)+...+¢ (3.1)

where ¢; (t + 1) represents the next value for the feature ¢;, ¢;(t) the present
value, ¢; (t — 1) the previous, and so forth. The predictions ¢; (¢ + 1) can be used
to estimate listeners’ emotional responses. Listeners have expectations about how
the music is unfolding in time. For instance, expectations about the next term in
a sequence (the next chord in chord progression or the next pitch in melodic con-
tour) or expectations about continuous parameters (become louder or brighter).
Whenever listeners’ expectations are correct it is rewarding (fulfillment) and
when they are not it is unrewarding (tension).

3.2 Emotional Trajectories

A very simple way of recording information about the temporal variation of
emotional perception of music would be to ask listeners to write down the emo-
tional label and a time stamp as the music unfolds. The result is illustrated in
Fig. However, this approach suffers from the granularity and ambiguity
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Fig. 4. Temporal variation of emotions. The left-hand side shows emotional labels
recorded over time. On the right, we see a continuous conceptual emotional space with
an emotional trajectory (time is represented by the arrow).

issues inherent of using a categorical description of emotions. Ideally, we would
like to have an estimate of how much a certain emotion is present at a particular
time. Krumhansl [19] proposes to collect listener’s responses continuously while
the music is played, recognizing that retrospective judgments are not sensitive
to unfolding processes. However, in this study [19], listeners assessed only one
emotional dimension at a time. Each listener was instructed to adjust the posi-
tion of a computer indicator to reflect how the amount of a specific emotion (for
example, sadness) they perceived changed over time while listening to excerpts
of pieces chosen to represent the emotions [19)].

Recently, there have been proposals to collect self-report of emotional
reactions to music [39], including software such as EmotionSpace Lab [35],
EmuJoy [28], and MoodSwings [16]. EmotionSpace Lab [35] allows listeners
to continuously rate emotions while listening to music as points on the {v, a}
(valence-arousal) plane (CMA), giving rise to an emotional trajectory on a two-
dimensional model of emotion like the one shown in Fig. (time is represented
by the arrow). Use of the CMA accommodates a wide range of emotional states
in a compact representation. Similarly, EmuJoy[28] allows continuous self-report
of emotions over time in two-dimensional space (CMA). MoodSwings [16] is an
online collaborative game designed to collect second-by-second labels for music
using the CMA as model of emotion. The game was designed to capture {v, a}
pairs dynamically (over time) to reflect emotion changes in synchrony with mu-
sic and also to collect a distribution of labels across multiple players for a given
song or even a moment within a song. Kim et al. state that the method provides
quantitative labels that are well-suited to computational methods for parameter
estimation.
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A straightforward way of using information from the sequence of emotional
labels &; (t) to predict future values would be to use the underlying dynamics of
the temporal variation of the sequence itself, like expressed below

v; (t + 1) =ag+ a1¥; (t) + as¥; (t — 1) + as¥; (t — 2) + ...+ € (32)

Notice that Eq. (3:2) fits a linear prediction model to the time series of emo-
tional labels ¥; (t) under the assumption that the previous values in the series
can be used to predict future values, indicating trends and modeling the inertia
of the system. In other words, the model assumes that increasing values of ¥; (t)
indicate that the next value will continue to increase by a rate estimated from
previous rates of growth, for example.

3.3 Modeling Musical Emotions from Time-Varying Music Features

Finally, we should investigate the relationship between the temporal variation
of musical features and the emotional trajectories. MER systems should include
information about the rate of temporal change of musical features. For example,
we should investigate how changes in loudness correlate with the expression
of emotions. Early studies used time series analysis techniques to investigate
musical structure. Vos et al [46] tested the structural and perceptual validity
of notated meter applying autocorrelation to to the flow of melodic internals
between notes from thirty fragments of compositions for solo instruments by
J. S. Bach.

Recently, researchers started exploring the temporal evolution of music by
treating the sequence of music features as a time series modeled by ordinary
least squares [36J38], linear dynamical systems such as Kalman filters [32/3334],
dynamic texture mixtures (DTM) [844], auto-regressive models (linear predic-
tion) [I8], neural networks [5l6)7/45], among others. Notice that these techniques
are intimately related. For example, the Kalman filter is based on linear dynam-
ical systems discretized in the time domain and modeled as a Markov chain,
whereas the hidden Markov model can be viewed as a specific instance of the
state space model in which the latent variables are discrete.

First of all, it is important to distinguish between stationary and nonstation-
ary sequential distributions. In the stationary case, the data evolves in time,
but the distribution from which it is generated remains the same. For the more
complex nonstationary situation, the generative distribution itself is evolving in
time.

Ordinary Least Squares. Schubert [36/38] studied the relationship between
music features and perceived emotion using continuous response methodology
and time-series analysis. In these studies, both the music features @, (t) and
the emotional responses ¥, (t) are multidimensional time series. For example,

D(t) = [p1(t) p1(t—1)... 1 (t— N)]T are loudness values over time and

T, (t)=[a®)a(t—1)...a(—N)] " are arousal ratings annotated over time.
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Schubert [36J38] proposes to model each component of ¥ (¢) as a linear combi-
nation of features @ (t) plus a residual error € (¢) as follows

v (t) o1 (t) P2(t) ... on (D) ay e (t)
v(t—1) pr(t—1) ¢(t—1) ... on(t—1) | |az e(t—1)

ot—M)| et M) da(t—M) . on(t-M)| lan| |et-N)

where the model parameters A = {a;} are fit so as to best explain variability
in ¥ (t). The error term € (¢) is included to account for discrepancies between
the deterministic component of the equation and the actual data value. Two
fundamental premises of this model are that the error term be reasonably small
and that it fluctuate randomly. Notice that the error term e (¢) is simply

€(t) =W () — AD(t). (3.4)

Thus the coefficients A = {a;} can be estimated using standard squared-
error minimization techniques, such as ordinary least squares (OLS). OLS can
be interpreted as the decomposition of ¥ (t) onto the subspace spanned by &; (¢).

Notice that Eq. 3] considers the music features and the emotions as non-
causal time series because information about the past (previous times) and about
the future (all succeeding times) is used. Eq. (33)) simply models ¥ (¢) as a
linear combination of a set of feature vectors @ (¢) where time is treated as
vector dimensions. Mathematically, ¥ (¢) is projected onto the subspace that
& (t) spans, which is usually not orthogonal. This means that the music features
used might be linearly dependent. In other words, if one of the features can
be expressed as a linear combination of the others, then it is redundant in the
feature set because it is correlated (colinear) with the other features.

More importantly, information about the rate of change of musical featur