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Preface

The 9th International Symposium on Computer Music Modeling and Retrieval,
CMMR2012 “Music & Emotions” took place at Queen Mary University, June
19–22, 2012. This symposium, which was initiated in 2003, has been organized
in several European countries as well as in the East (Bhubaneswar, India), and
was this year jointly organized by the Centre for Digital Music, London, and
the CNRS - Laboratoire de Mécanique et d’Acoustique, Marseille. The post
proceedings of the previous CMMR conferences were all published in the Lecture
Notes in Computer Sciences Series (LNCS 2771, LNCS 3310, LNCS 3902, LNCS
4969, LNCS 5493, LNCS 5954, LNCS 6684, LNCS 7172).

A total of 150 delegates from 24 different countries were gathered during the
4 days of the conference and the various contributions included oral sessions,
posters, demos, panels and tutorials. In line with previous CMMR events, a
multi-disciplinary approach associating traditional music information retrieval
(MIR) and sound modeling topics with human perception and cognition, musi-
cology, and philosophy was exposed.

In addition, music submissions were solicited within the framework of the
CMMR2012 New Resonances music festival that was held each evening at
Wilton’s Music Hall. A “Cross-Disciplinary Perspectives on Expressive Perfor-
mance” Workshop was also organized by Andrew McPherson (Queen Mary Uni-
versity) on the first day of the conference.

This year, CMMR2012 put a special emphasis on music and emotion re-
lated research topics. Music and emotion have been subject to a large number
of studies in varied fields of research. For instance, within the field of cognitive
science, music-induced emotions as well as the positive affect music can have
on intellectual faculties have been thoroughly investigated. Various types of ex-
pressive intentions between composers, performers and listeners have also been
examined by musicologists and psychologists. From a different standpoint, music
informatics researchers have employed machine learning algorithms to discover
relationships between objective features computed from audio recordings and
subjective mood labels given by human listeners. In spite of all these investi-
gations, the understanding of the genesis of musical emotions and the mapping
between musical structures and emotional responses remain unanswered research
problems.

Three prominent keynote speakers with considerably different backgrounds
and links to the conference theme (i.e., Pr. Laurent Daudet from Paris Diderot
University, Pr. Patrik N. Juslin from Uppsala University and film score composer
and producer Simon Boswell) gave high quality presentations of their respec-
tive domains. The conference contributions were distributed in seven technical
sessions, two poster sessions, one demo session, two panel sessions, three con-
certs, two tutorials and a workshop. Among these contributions, 28 papers were
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selected for the present post proceedings edition, which is divided into seven
sections corresponding to the technical sessions and an 8th session in which four
workshop contributions are selected.

We would first of all like to thank all the participants of CMMR2012 who
strongly contributed to the success of this conference. We would also like to thank
the Program Committee members for their indispensable paper reports and the
Music Committee for the difficult task of selecting the artistic contributions.
We are particularly grateful to the local Organizing Committee at Queen Mary
University who made sure that all the practical issues were under control. Finally,
we would like to thank Springer for agreeing to publish the CMMR2012 post
proceedings in their LNCS series.

June 2013 Mitsuko Aramaki
Mathieu Barthet

Richard Kronland-Martinet
Sølvi Ystad
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The Six Emotion-Face Clock as a Tool for Continuously 
Rating Discrete Emotional Responses to Music 
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Abstract. Recent instruments measuring continuous self-reported emotion 
responses to music have tended to use dimensional rating scale models of emotion 
such as valence (happy to sad). However, numerous retrospective studies of 
emotion in music use checklist style responses, usually in the form of emotion 
words, (such as happy, angry, sad…) or facial expressions. A response interface 
based on six simple sketch style emotion faces aligned into a clock-like 
distribution was developed with the aim of allowing participants to quickly and 
easily rate emotions in music continuously as the music unfolded. We tested the 
interface using six extracts of music, one targeting each of the six faces: ‘Excited’ 
(at 1 o’clock), ‘Happy’ (3), ‘Calm’ (5), ‘Sad’ (7), ‘Scared’ (9) and ‘Angry’ (11). 
30 participants rated the emotion expressed by these excerpts on our ‘emotion-
face-clock’. By demonstrating how continuous category selections (votes) 
changed over time, we were able to show that (1) more than one emotion-face 
could be expressed by music at the same time and (2) the emotion face that best 
portrayed the emotion the music conveyed could change over time, and (3) the 
change could be attributed to changes in musical structure. Implications for 
research on orientation time and mixed emotions are discussed. 

Keywords: Emotion in music, continuous response, discrete emotions,  
time-series analysis, film music. 

1 Introduction∗ 

Research on continuous ratings of emotion expressed by music (that is, rating the 
music while it is being heard) has led to improvements in understanding and modeling 
music’s emotional capacity. This research has produced time series models where 
                                                           
∗  This article is a considerably expanded version of a submission titled ‘Continuous Response 

to Music using Discrete Emotion Faces’ presented at the International Symposium on 
Computer Music and Retrieval (CMMR) held in London, UK, 19-22 June, 2012. 
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musical features such as loudness, tempo, pitch profiles and so on are used as input 
signals which are then mapped onto emotional response data using least squares 
regression and various other strategies [1-4]. 

One of the criticisms of self-reported continuous response however, is the rating 
response format. During their inception in the 1980s and 1990s [5, 6] such measures 
have mostly consisted of participants rating one dimension of emotion (such as the 
happiness, or arousal, or the tension, and so on) in the music. This approach could be 
viewed as so reductive that a meaningful conceptualization of emotion is lost. For 
example, Russell’s [7, 8] work on the structure of emotion demonstrated that a large 
amount of variance in emotion can be explained by two fairly independent 
dimensions, frequently labeled valence and arousal. The solution to measuring 
emotion continuously can therefore be achieved by rating the stimulus twice (that is, 
in two passes), once along a valence scale (with poles of the scale labeled positive and 
negative), and once along an arousal scale (with poles labeled active and sleepy) [for 
another multi-pass approach see 9]. In fact, some researchers have combined these 
scales at right angles to form an ‘emotion space’ so as to allow a good compromise 
between reductive simplicity (the rating scale), and the richness of emotional meaning 
(applying what were thought to be the two most important dimensions in emotional 
structure simultaneously and at right angles) [e.g. 10-12].  

The two dimensional emotion space has provided an effective approach to help 
untangle some of the relations between musical features and emotional response, as 
well as providing a deepening understanding of how emotions ebb and flow during 
the unfolding of a piece of music. However, the model has been placed under scrutiny 
on several occasions. The most critical matter that is of concern in the present 
research is theory and subsequent labeling of the emotion dimensions and ratings. For 
example, the work of Schimmack [13, 14] has reminded the research community that 
there are different ways of conceptualizing the key dimensions of emotion, and one 
dimension may have other dimensions hidden within it. Several researchers have 
proposed three key dimensions of emotion [15-17]. Also, dimensions used in the 
‘traditional’ two dimensional emotion space may be hiding one or more dimensions. 
Schimmack demonstrated that the arousal dimension is more aptly a combination of 
underlying ‘energetic arousal’ and ‘tense arousal’. Consider, for instance, the emotion 
of ‘sadness’. On a single ‘activity’ rating scale with poles labeled active and sleepy, 
sadness will most likely occupy low activity (one would not imagine a sad person 
jumping up and down). However, in a study by Schubert [12] some participants 
consistently rated the word ‘sad’ in the high arousal region of the emotion space (all 
rated sad as being a negative valence word). The work of Schimmack and colleagues 
suggests that those participants were rating sadness along a ‘tense arousal’ dimension, 
because sadness does contain conflicting information about these two kinds of arousal 
– high tension arousal but low activity arousal. 

Some solutions to the limitation of two dimensions are to have more than two 
passes when performing a continuous response (e.g. valence, tense arousal and 
activity arousal), or to apply a three dimensional GUI with appropriate hardware 
(such as a three dimensional mouse). However, in this paper we take the dilemma of 
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dimensions as a point of departure and apply what we believe is the first attempt to 
use a discrete emotion response interface for continuous self-reported emotion ratings.  

Discrete emotions are those that we think of in day-to-day usage of emotions, such 
as happy, sad, calm, excited and so forth. They can each be mapped onto the 
emotional dimensions discussed above, but can also be presented as independent, 
meaningful conceptualizations of emotion [18-22]. An early continuous self-reported 
rating of emotion in music that demonstrated an awareness of this discrete structure 
was applied by Namba et al. [23], where a computer keyboard was labeled with 
fifteen different discrete emotions. As the music unfolded, participants pressed the 
key representing the emotion that the music was judged to be expressing at that time. 
The study has to our knowledge not been replicated, and we believe it is because the 
complexity of learning to decode a number of single letters and their intended 
emotion-word meaning. It seems likely that participants would have to shift focus 
between decoding the emotion represented on the keyboard, or finding the emotion 
and then finding its representative letter before pressing. And this needed to be done 
on the fly, meaning that by the time the response was ready to be made, the emotion 
in the music may have changed. The amount of training (about 30 minutes reported in 
the study) needed to overcome this cognitive load can be seen as an inhibiting factor. 

Inspired by Namba et al’s pioneering work, we wanted to develop a way of 
measuring emotional response continuously but one which captured the benefits of 
discrete emotion rating, while applying a simple, intuitive user interface. 

2 Using Discrete Facial Expressions as a Response Interface 

By applying the work of some of the key research of emotion in music who have used 
discrete emotion response tools [24-26], and based on our own investigation [27], we 
devised a system of simple, schematic facial expressions intended to represent a range 
of emotions that are known to be evoked by music. Furthermore, we wanted to 
recover the geometry of semantic relations, such that similar emotions were 
positioned beside one another, whereas distant emotions were physically more distant. 
This approach was identified in Hevner’s [28-31] adjective checklist. Her system 
consisted of groups of adjectives, arranged in a circle in such a way as to place 
clusters of words near other clusters of similar meaning. For example, the cluster of 
words containing ‘bright, cheerful, joyous …’ was adjacent to the cluster of words 
containing ‘graceful, humorous, light…’, but distant from the cluster containing the 
words ‘dark, depressing, doleful…’. Eventually, the clusters would form a circle, 
from which it derived its alternative names ‘adjective clock’ [32] and ‘adjective 
circle’ [31]. Modified version of this approach, using a smaller number of words, are 
still in use [33]. Our approach also used a circular form, but using faces instead of 
words. The model was similar to that used by Schlosberg [34] and Russell [35], who 
each placed photographs of graded facial emotional expressions on a two-dimensional 
space. Consequently, we named the layout an ‘emotion-face clock’. Evidence 
suggests that cross-cultural and even non-literate cultures are adept at speedy 
interpretation of emotional expressions in faces [36, 37], making faces generalizable 
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and suitable for emotion rating tasks, and therefore more so than words. Further, 
several emotional expressions are universal [38, 39] making the reliance on a non-
verbal, non-language specific format appealing [40-42].  

Selection of faces to be used for our response interface were based on the literature 
of commonly used emotion expressions to describe music [43, 44], the 
recommendations made on a review of the literature by Schubert and McPherson [45] 
but also such that the circular arrangement was plausible. Hence, three criteria were 
used: (1) that a broad range of well understood emotions were selected, (2) that they 
could be represented by simple comic style face sketches in an equi-distributed 
circular format in emotion space, and (3) that they were likely to be useful for 
describing music and musical experiences. To satisfy the first criterion, we used a 
commonly reported form of six basic emotions, happiness, sadness, anger, fear, 
surprise, and disgust [46]. To satisfy the second and third criteria, surprise was 
replaced with excited, disgust was deleted because it is considered a non-musical 
emotion [47] and calm was added [excited and calm being emotions considered more 
useful for describing music in those locations of the emotion space—1 o’clock and 5 
o’clock respectively—, as according to 48]. Cartoon faces [see 49] were constructed 
to correspond roughly with the emotions from top moving clockwise (see Fig. 1): 
Excited (at 1 o’clock), Happy (3), Calm (5), Sad (7), Scared (9) and Angry (11 
o’clock), with the bottom of the circle separated by Calm and Sad. The words used to 
describe the faces are selected for the convenience of the researchers. Although a 
circle arrangement was used, a small additional gap between the positive emotion 
faces and the negative emotion faces was imposed, namely an additional spatial gap 
between angry and excited, and between calm and sad, reflecting the semantic 
distance between these pairs of emotions (Fig. 1). Russell [35], for example, had these 
gaps at 12 o’clock and 6 o’clock filled with a surprise and sleepy face respectively. 
We did not impose our labels of the emotion-face expressions onto the participants. 
Pilot testing using retrospective ratings of music using the verbal expressions are 
reported in Schubert et al. [27]. 

3 Aim 

The aim of the present research was to develop and test the emotion-face clock as a 
means of continuously rating the emotion expressed by extracts of music. 

4 Method 

4.1 Participants  

Thirty participants were recruited from a music psychology course that consisted of a 
range of students including some specializing in music. Self-reported years of music 
lessons ranged from 0 to 16 years, mean 6.6 years (SD = 5.3 years) with 10 
participants reporting no music lessons (‘0’ years). Ages ranged from 19 to 26 years 
(mean 21.5 years, SD = 1.7 years). Twenty participants were male.  
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interface was presented, with a green icon (quaver) in the centre (Fig. 1). The participant 
was instructed to click the green button to commence listening, and to track the emotion 
that the music was expressing by selecting the facial expression that best matched the 
response. They were asked to make their selection as quickly as possible. When the 
participant moved the mouse over one of the faces, the icon of the face was highlighted 
to provide feedback. The participant was asked to perform several other tasks between 
continuous the rating tasks. The focus of the present report is on continuous rating over 
time of emotion that six extracts of music were expressing.  

4.4 Stimuli  

Because the aim of this study is to examine our new continuous response instrument, 
we selected six musical excerpts for which we had emotion ratings made using 
tradition post-performance ratings scales from a previous study [27]. The pieces were 
taken from Pixar animated movies, based on the principle that the music would be 
written to stereotypically evoke a range of emotions. The excerpts selected were 11 to 
21 seconds long with the intention of primarily depicting each of the emotions of the 
six faces on the emotion-face clock. In our reference to the stimuli in this report, they 
were labeled according to their target emotion: Angry, Scared, Sad, Calm, Happy and 
Excited. More information about the selected excerpts is shown in Table 1. When 
referring to a musical stimulus the emotion label is capitalized and italicised. 

Table 1. Stimuli used in the study 

Stimulus code 
(target emotion)

Film music excerpt  Start time within CD 
track (MM’SS elapsed) 

Duration of 
excerpt (s) 

Angry Up: 52 Chachki Pickup 00"53 17 
Calm Finding Nemo: Wow  00"22 16 
Excited Toy Story: Infinity and 

Beyond 
00"15 16 

Happy Cars: McQueen and Sally 00"04 16 
Sad Toy Story 3: You Got 

Lucky 
01"00 21 

Scared Cars: McQueen's Lost  00"55 11 

5 Results and Discussion 

Responses were categorized into one of eight possible responses (one of the six 
emotions, the Centre region, and any other space on the emotion-face clock labeled 
‘Elsewhere’ – see Fig. 1) based on mouse positions recorded during the response to 
each piece of music. This process was repeated for each sample (25 per second). Two 
main analyses were conducted. First, the relationships between the collapsed 
continuous ratings against rating scale results from a previous study using the same 
stimuli, and then an analysis of the time series responses for each of the six stimuli. 
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5.1 Summary Responses 

In a previous study, 26 participants provided ratings of each of the six stimuli used in 
the present study (see [27] for details) along 11 point rating scales from ‘0 (not at all)’ 
to ‘10 (a lot)’. The scales were labeled orthographically as Angry, Scared, Sad, Calm, 
Happy and Excited. No faces were used in the response interface for that study.  

The continuous responses from the current study were collapsed so that the number 
of votes a face received as the piece unfolded was tallied, producing a proportional 
representation of faces that were selected as indicating the emotion expressed by each 
face for a particular stimulus. The plots of these results are shown in Fig. 2. Take for 
example the responses made to the Angry excerpt. All participants’ first ‘votes’ were 
for the ‘Centre’ category because they had to click the ‘play’ icon at the Centre region 
of the emotion-face clock to commence listening. As participants decided which face 
represented the emotion expressed, they moved the mouse to cover the appropriate 
face. So, as the piece unfolded, at any given time, some of the 30 participants might 
have the cursor on the Angry face, while some on the Scared face, and another who 
may not yet have decided remains in the Centre or has moved the mouse, but not to a 
face (‘Elsewhere’). With a sampling rate of 25 Hz it was possible to see how these 
votes changes over time (the focus of the next analysis). At each sample, the votes 
were tallied into the eight categories. Hence each sample had a total of 30 votes (one 
per participant). At any sample it was possible to determine whether participants were 
or were not in agreement about the face that best represented the emotion expressed 
by the music. 

The face by face tallies for each of these samples were accumulated and divided by 
the total number of samples for the excerpt. This provided a summary measure of the 
time-series to approximate the typical response profile for the stimulus in question. 
These profiles are reported in Fig. 2 in the right hand column. Returning to the Angry 
example we see that participants spent most time on the Angry face, followed by 
Scared and then the Centre. This suggests that the piece selected indeed best 
expressed anger according to the accumulated summary of the time series. The second 
highest votes belonging to the Scared face can be interpreted as a ‘near miss’ because 
of all the emotions on the clock, the scared face is semantically closest to the Angry 
face, despite obvious differences (for a discussion, see [27]). In fact, when comparing 
the accumulated summary with the post-performance rating scale profile (from the 
earlier study), the time series produces a profile more in line with the proposed target 
emotion. The post-performance ratings demonstrate that Angry is only the third 
highest scored scale, after Scared and Excited. The important point, however, is that 
Scared and Excited are located on either side of the emotion-face clock, making them 
the most semantically related alternatives to angry of the available faces. For each of 
the other stimuli, the contour of the profiles for post-performance ratings and 
accumulated summary of continuous response are identical.  

These profile matches are evidence for the validity of the emotion-face clock 
because they mean that the faces are used to provide a similar meaning to the emotion 
words used in the post-performance verbal ratings. We can therefore be reasonably 
confident that at least five of the faces selected can be represented verbally by the five 
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verbal labels we have used (the sixth – Anger, being confused occasionally with 
Scared, and this ‘confusion’ may be a consequence of the nature of the emotion 
expressed by the face, or the music, or both). The similarity of the profile pairs in Fig. 
2 is also indicative of the reliability of the emotion-face clock because it more-or-less 
reproduces the emotion profile of the post-performance ratings. 

Two further observations are made about the summary data. Participants spend 
very little time away from a face or the Centre of the emotion-face clock (the 
Elsewhere region is selected infrequently for all six excerpts). While there is the 
obvious explanation that the six faces and the screen Centre occupy the majority of 
the space on the response interface (see Fig. 1) the infrequent occurrence of the 
Elsewhere category also may indicate that participants are fairly certain about the 
emotion that the music is conveying. That is, when an emotion face is selected by a 
participant, they are likely to believe that face to be the best selection, even if it is in 
disagreement with the majority of votes, or with the a priori proposed target emotion. 
If this were not the case, we might expect participants to hover in ‘no man’s land’ of 
the emotion-face clock—Elsewhere and Centre. The apparent ‘confidence’ may also 
be a consequence of the instruction to select a face as quickly as possible, suggesting 
that accuracy of face selection is not important enough to justify vacillation (a point to 
which we shall return). 

The ‘no man’s land’ response may be reflected by the accumulated time spent in 
the Centre region. As mentioned, time spent in the Centre region is biased because 
participants always commence their responses from that region (in order to click the 
play button). The Centre region votes can therefore be viewed as indicating two kinds 
of systematic responses: (1) initial response time and (2) response uncertainty. Initial 
response time is the time required for a participant to orient to the required task just as 
the temporally unfolding stimulus commences. The orienting process generally takes 
several seconds to complete, prior to ratings becoming more ‘reliable’ [51-53]. So 
stimuli in Fig. 2 with large bars for ‘Centre’ may require more time before an 
unambiguous response is made.  

The Scared stimulus has the largest number of votes for the Centre location (on 
average, at any single sample, eight out of thirty participants were in the Centre 
region of the emotion-face clock). Without looking at the time series data (see next 
subsection), we may conclude that the Scared excerpt produced the least ‘confident’ 
rating, or that the faces provided were unable to produce satisfactory alternatives for 
the participants. 

Using this logic (long time spent in the Centre and Elsewhere), we can conclude 
that the most confident responses were for those pieces where accumulated time spent 
in the Centre and Elsewhere were the lowest. The Calm stimulus had the highest 
‘confidence’ rating (an average of about 4 participants at the Centre or Elsewhere 
combined). Interestingly, the Calm example also had the highest number of 
accumulated votes for any single category (the target, Calm emotion) — which was 
selected on average by 18 participants at any given time. 

The analysis of summary data provides a useful, simple interpretation of the 
continuous responses. However, to appreciate the richness of the time course 
responses, we now examine the time-series data for each stimulus. 
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5.2 Continuous Responses 

Fig. 3 shows the plots of the stacked responses from the 30 participants at each time 
sample by stimulus. The beginning of each time series, thus, demonstrates that all 
participants commenced their response at the Centre (the first, left-most vertical ‘line’ 
of each plot is all black, indicating the Centre). By scanning for black regions for each 
of the plots in Fig. 3 some of the issues raised in the accumulated summary analysis, 
above, are addressed. We can see that the black and grey disappears for the Calm plot 
after 6 seconds have elapsed. For each of the other stimuli a small amount of doubt 
remains at certain times – in some cases a small amount of uncertainty is reported 
throughout (there are no time samples in the Scared and Excited stimuli where all 
participants have selected a face). Furthermore, the largest area of black and grey 
occurs in the Scared plot. 

Another important observation of the time-series of Fig. 3 is the ebb and flow of 
face frequencies. In the summary analysis it was possible to see the selection of more 
than one emotion face indicating the emotion expressed by the music. However, here 
we can see when these ‘ambiguities’ occur. The Angry and Sad stimuli provide the 
clearest examples of more than one non-chronometrically salient emotion. For the 
Angry excerpt, the ‘Scared’ face is frequently reported in addition to Angry. And the 
number of votes for the Scared face slightly increase toward the end of the excerpt. 
Thus, it appears that the music is expressing two emotions at the same time, or that 
the precise emotion was not available on the emotion-face clock.  

The Sad excerpt appears to be mixed with Calm for the same reasons (co-existence 
of emotions or precision of the measure). While the Calm face received fewer votes 
than the Sad face, the votes for Calm peak at around the 10th second (15 votes 
received over the time period 9.6 to 10.8s) of the Sad except. The excerpt is in a 
minor mode, opening with an oboe solo accompanied by sustained string chords and 
harp arpeggios. At around the 15th second (peaking at 18 votes over the time period 
15.00 to 15.64s) the number of votes for the Calm face begins to decrease and the 
votes for the Sad face peak. Hence, some participants may find the orchestration and 
arch shaped melody in the oboe more calm than sad. Until some additional 
information is conveyed in the musical signal (at around the 14th second), responses 
remain on Calm. At the 10th second of this excerpt the oboe solo ends, and strings 
alone play, with cello and violin coming to the fore, with some portamento (sliding 
between pitches). These changes in instrumentation may have provided cues for 
participants to make the calm to sad shift after a delay of a few seconds [50]. 

Thus a plausible interpretation of the mixed responses is that participants have 
different interpretations of the various emotions expressed, and the emotion 
represented by the GUI faces. However, the changes in musical structure are 
sufficient to explain a change in response. What is important here, and as we have 
argued elsewhere, is that the difference between emotions is (semantically) small 
[27], and that musical features could be modeled to predict the overall shift away 
from calmness and further toward sadness in this example. The different choice of 
faces could be explained by the semantic similarity of the region that the two faces 
encompass in dimensional emotion-space. 
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Fig. 3. Time series plots for each stimulus showing stacked frequency of faces selected over 
time (see Table 1 for duration on x-axis) for the 30 participants (y-axis), with face selected 
represented by the colour code shown. Black and grey representing Centre of emotion-face 
clock (where all participants commence continuous rating task) and anywhere else respectively. 
Note that the most dominant colour (the most frequently selected face across participants and 
time) match with the target emotion of the stimulus. X-axis denotes time in seconds. Y-axis 
denotes proportion of participants selecting a region of the emotion-face clock, expressed as a 
percentage of total participants. 
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5.3 Response Latency Issues 

The time taken for ‘most’ participants to make a decision about the selection of a first 
face appears to have an identifiable range across stimuli. Inspection of Fig. 3 reveals 
that in the range of 0.5 seconds through to 5 seconds most participants have selected a 
face. This provides a rough estimate of the initial orientation time for emotional 
response using categorical data (for more information, see [51]). The generally 
shortened initial orientation time estimates (up to around 5 seconds) compared to 
those in previously published results (around 8 seconds) may simply be due to the 
task, because participants were asked to respond as quickly as possible [no instruction 
regarding required speed of response was cited in the studies of 51, 52]. 

Nevertheless, since we do not get a majority of participants quickly finding the first 
face shortly after the music first sounds (usually no faces selected within the first 
second), we propose that the processing of and the response to musical information 
may be taking place via three related cognitive pathways. One path begins by 
interpreting the audio input and making an emotion judgment [e.g. 54] which then 
leads to the mouse movement motor planning. This path continues with the execution 
of the actual technical portion of the required task, which is the act of moving the 
mouse to the face that best describes the emotion portrayed by the music. Once the 
mouse is moved to the desired position, some more processing needs to occur to 
check that the position is the desired emotion face. This is the ideal response path we 
were seeking in our study so as to satisfy the task to respond ‘as quickly as possible’, 
and is shown as Path 1 in Fig. 4. Our current, ongoing analysis suggests that under 
these conditions mouse movement takes a short amount of time with respect to 
processing time, in the order of 5% of the time from hearing to selection. Hence, Fig. 
4 displays the mouse movement box as being considerably narrower than the 
processing box (box width representing approximate, proportional time spent on 
processing and mouse movement).  

It may be that the mouse is moved repeatedly while the listener continues to listen 
but has not made a final decision. This is still represented in Fig. 4 as Path 1, but 
consists of looping around that path, with (usually small) mouse perturbations while 
processing takes place. For example, the listener may move the mouse out of the 
Centre region into the Elsewhere region in preparation for a quick response, but 
without yet having been able to decide on which face to select. This combination of 
indecision and mouse movements we refer to as prevarication, and continues until the 
listener ceases looping around Path 1 (for example, having made a decision about 
which face to select), or takes some other processing path. 

The listener may also be undecided about which emotion face to select, but not 
move the mouse (leave it in the Centre region)—Path 2. This path may loop until the 
listener has made a decision, or commences prevaricating (Path 1).  

In a study by Lucas et al [55] apparently meaningless or aimless (off-task) mouse 
movement were referred to as ‘skywriting’ — though their task required continuous 
response to dimensional emotion rating scales (specifically, valence and arousal), 
rather than discrete emotion faces [See also 56]. We think the differences between 
skywriting and prevarication may be subtly and importantly different—that the 
former does not employ on-task processing, but the effect is the same – systematic 
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selection of an emotion face, is not made. Finally, although the paths shown in Fig. 4 
suggest sequenced processing, the effect can be parallel – where the mouse may be in 
‘no man’s land’ while processing (and decision making) continues.  

 

 

Fig. 4. Proposed cognitive processing paths as listener makes decisions about which face best 
matches the emotion portrayed by the incoming music as quickly as possible. Under ideal 
conditions, fastest response is achieved via Path 1 in a single cycle, with processing required to 
make a decision and check that the action of moving the mouse (small box of left) was 
accurate, However, when the decision is more complex (e.g. ambiguous musical features, 
insufficient data, emotion face expressions inadequate, and changing conditions of music 
input), one of two (non exclusive) possibilities may occur: The participant may take Path 2, 
repeatedly assessing (processing) while music input continues, but without mouse movements, 
or Path 1, where the mouse is moved while continuing to process the music—that is, response 
is uncertain, but mouse is moved in a hesitant, prevaricating way. This prevarication during 
processing continues while a decision is not made (looping around Path 1 continues) or 
switching to another path (or making a final mouse movement then exiting the loop via the 
‘certain’ path). Finally, mouse movements might be made aimlessly without attention to the 
music and without task related processing. This is shown as Path 3, and is referred to as 
skywriting, which continues until the participant returned to more focused, task related 
processing. Width of boxes signifies rough proportion of response time contribution: mouse 
movements take a short time relative to task processing time. 

6 Conclusions 

In this paper we reported the development and testing of a categorical response 
interface consisting of a small number of salient emotional expressions upon which 
participants can rate emotions as a piece of music or other stimulus unfolds. We 
developed a small set of key emotional expression faces found in basic emotion and 
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music research, and arranged them into a circle such that they were meaningfully 
positioned in space, and such that they resembled traditional valence-arousal rating 
scale interfaces (positive emotions toward the right, high arousal emotions toward the 
top). We called the response space an emotion-face clock because the faces 
progressed around a clock in such a way that the expressions changed in a 
semantically related and plausible manner. 

The interface was then tested using particular pieces that expressed the emotions 
intended to represent the emotional expression portrayed by each of the six faces. The 
system was successful in measuring emotional ratings in the manner expected. The 
post-performance ratings used in an earlier study had profile contours that matched 
the profile contours of the accumulated summary of continuous response in the new 
device for all but the Angry stimulus. We took this as evidence for the reliability and 
validity of the emotion-face clock as a self-report continuous measure of emotion. 

Continuous response plots allowed investigation of the ebb and flow of ratings, 
demonstrating that for some pieces two emotions were dominant (the target Angry 
and target Sad excerpts in particular), but that the composition of the emotions 
changed over time, and that the change could be attributed to changes in musical 
features. When no face is selected by a participant while the music is playing we 
conclude that the participant is (A) orienting to the stimulus—usually at the start of 
the piece, (B) actually not identifying any emotion in the music, (C) prevaricating 
(dithering between making a decision while keeping the mouse away from any of the 
faces), which may even continue throughout a piece, as appears to have happened to 
at least one participant for the Scared and Excited stimuli. Hence, the continuous, 
online task is complicated by the constant stream of new musical information that 
may be supporting or contradicting the decision that the listener is trying to make in 
real time. 

When there were different faces selected across participants at a given moment in 
time (more than one emotion face receiving votes), we conclude that (1) More than 
one emotion is identified simultaneously, and as a one-face-at-a-time interface, 
different emotion selection is distributed statistically, (2) An approximate response is 
given because the resolution of the instrument is not sufficient, meaning, as with 
conclusion 1, that different faces are selected by chance, (3) The two (or more) faces 
selected cover a semantically similar region of emotion space that is indicative of the 
emotion expressed by the music, (4) Participants are responding in a staggered 
(lagged) manner, with some reacting quickly to the most recent part of the music, 
possibly even anticipating, others still responding to musical material of the recent 
past, and so forth [4, 53, 57]. Conclusion (3) is related to (2), except that it highlights 
the success of the emotion-face clock being superimposed intuitively on a two-
dimensional emotion space, because the selection of adjacent faces need not be seen 
as errors or confusions, but as occupying a shared region that best describes the 
emotion being portrayed (as do the emotions represented by adjacent faces of Angry 
and Scared, and the adjacent faces represented by Sad and Calm).  

We do not deny the possibility that listeners could hear ‘conflicting’ emotions 
simultaneously. Indeed, recent research has demonstrated how musical features can 
be manipulated to induce a perception of mixed, distant emotions such as sadness and 
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happiness [58, 59]. Research will be required to see how the present instrument might 
explain such conflicting emotions portrayed by music (see Conclusion 1, above, for 
example), and may even help to resolve whether multiple emotion votes at the same 
point in the music are due to the poor resolution of the instrument, or because 
statistically some listeners select one of the two possible emotion faces, while others 
select the other at the same point in time. 

Further analysis will reveal whether musical features can be used to predict 
categorical emotions in the same way that valence/arousal models do (for a review, 
see [4]), or whether six emotion faces is optimal. Given the widespread use of 
categorical emotions in music metadata [60, 61], the categorical, discrete approach to 
measuring continuous emotional response is bound to be a fruitful tool for researchers 
interested in automating emotion in music directly into categorical representations. 
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Abstract. ‘Emotion in Motion’ is an experiment designed to understand the 
emotional responses of people to a variety of musical excerpts, via self-report 
questionnaires and the recording of electrodermal activity (EDA) and heart rate 
(HR) signals. The experiment ran for 3 months as part of a public exhibition in 
Dublin, having nearly 4000 participants and over 12000 listening samples.  
This paper presents the methodology used by the authors to approach this re-
search, as well as preliminary results derived from the self-report data and the 
physiology. 

Keywords: Emotion, Music, Autonomic Nervous System, ANS, Physiological 
Database, Electrodermal Activity, EDR, EDA, POX, Heart Rate, HR,  
Self-Report Questionnaire. 

1 Introduction 

‘Emotion in Motion’ is an experiment designed to understand the emotional responses 
of people during music listening, through self-report questionnaires and the recording 
of physiological data using on-body sensors. Visitors to the Science Gallery, Dublin, 
Ireland were asked to listen to different song excerpts while their heart rate (HR) and 
Electrodermal Activity (EDA) were recorded along with their responses to questions 
about the affective impact of the music. The songs were chosen randomly from a pool 
of 53 songs, which were selected to elicit positive emotions (high valence), negative 
emotions (low valence), high arousal and low arousal. In addition to this, special ef-
fort was made in order to include songs from different genres, styles and eras. At the 
end of each excerpt, subjects were asked to respond to a simple questionnaire regard-
ing their assessment of the song, as well as how it made them feel. 

Initial analysis of the dataset has focused on validation of the different measure-
ments, as well as exploring relationships between the physiology and the self-report 
data, which is presented in this paper. 

Following on from this initial work we intend to look for correlations between 
variables and sonic characteristics of the musical excerpts as well as factors such as 
the effect of song order on participant responses and the usefulness of the Geneva 
Emotional Music Scale [1] in assessing emotional responses to music listening. 
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1.1 Music and Emotion 

Specificity of musical emotions versus ‘basic’ emotions. While the field of emotion 
research is far from new, from Tomkins theory of ‘discrete’ emotions [2] or Ekman’s 
[3] studies on the ‘universality’ of human emotions to the fMRI enabled neuroimag-
ing studies of today [4], there is still debate about the appropriateness of the existing 
‘standard’ emotion models to adequately describe emotions evoked through musical 
or performance related experiences. It has been argued that many of the ‘basic’ emo-
tions introduced by Ekman, such as anger or disgust, are rarely (if ever) evoked by 
music and that terms more evocative of the subtle and complex emotions engendered 
by music listening may be more appropriate [5]. It is also argued that the triggering of 
music-related emotions may be a result of complex interactions between music, cog-
nition, semantics, memory and physiology as opposed to a direct result of audio 
stimulation [6, 7]. For instance a given piece of music may have a particular signifi-
cance for a given listener e.g. it was their ‘wedding song’ or is otherwise associated 
with an emotionally charged memory. 

While there is still widespread disagreement and confusion about the nature and 
causes of musically evoked emotions, recent studies involving real-time observation 
of brain activity seem to show that areas of the brain linked with emotion (as well as 
pleasure and reward) are activated by music listening [8]. Studies such as these would 
seem to indicate that there are undoubtedly changes in physiological state induced by 
music listening, with many of these correlated to changes in emotional state. 

It is also important to differentiate between personal reflection of what emotions 
are expressed in the music, and those emotions actually felt by the listener [9]. In the 
study presented on this paper we specifically asked participants how the music made 
them feel as opposed to any cognitive judgments about the music. 

During the last few decades of emotion research, several models attempting to ex-
plain the structure and causes of human emotion have been proposed. The ‘discrete’ 
model is founded on Ekman’s research into ‘basic’ emotions, a set of discrete emo-
tional states that he proposes are common to all humans; anger, fear, enjoyment, dis-
gust, happiness, sadness, relief, etc. [10]. 

Russell developed this idea with his proposal of an emotional ‘circumplex’, a two 
or three axis space (valence, arousal and, optionally, power), into which emotional 
states may be placed depending on the relative strengths of each of the dimensions, 
i.e. states of positive valence and high arousal would lead to a categorization of ‘joy’. 
This model allows for more subtle categorization of emotional states such as ‘relaxa-
tion’ [11]. 

The Geneva Emotional Music Scales (GEMS) [1] have been developed by Marcel 
Zentner’s team at the University of Zurich to address the perceived issue of emotions 
specifically invoked by music, as opposed to the basic emotion categories found in 
the majority of other emotion research. He argues that musical emotions are usually a 
combination of complex emotions rather than easily characterised basic emotions 
such as happiness or sadness. The full GEMS scale consists of 45 terms chosen for 
their consistency in describing emotional states evoked by music, with shorter 25 
point and 9 point versions of the scale. These emotional states can be condensed into 
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9 categories which in turn group into 3 superfactors: vitality, sublimity and unease. 
Zentner also argues that musically evoked emotions are rare compared to basic/day-
to-day emotions and that a random selection of musical excerpts is unlikely to trigger 
many experiences of strong musically evoked emotions. He believes that musical 
emotions are evoked through a combination of factors which may include the state of 
the listener, the performance of the music, structures within the music, and the listen-
ing experience [5]. 

Lab versus Real World. Many previous studies into musically evoked emotions have 
noted the difficulty in inducing emotions in a lab-type setting [12, 13], far removed 
from any normal music listening environment. This can pose particular problems in 
studies including measurements of physiology as the lab environment itself may skew 
physiological readings [14]. While the public experiment/installation format of our 
experiment may also not be a ‘typical’ listening environment, we believe that it is 
informal, open and of a non-mediated nature, which at the very least provides an in-
teresting counterpoint to lab-based studies, and potentially a more natural set of re-
sponses to the stimuli. 

1.2 Physiology of Emotion 

According to Bradley and Lang, emotion has "almost as many definitions as there are 
investigators", yet "an aspect of emotion upon which most agree, however, is that in 
emotional situations, the body acts. The heart pounds, flutters stops and drops; palms 
sweat; muscles tense and relax; blood foils; faces blush, flush, frown, and smile" [15, 
pp. 581]. A plausible explanation for this lack of agreement among researchers is 
suggested by Cacioppo et al. in [16, pp. 174]. They claim that "...language sometimes 
fails to capture affective experiences - so metaphors become more likely vehicles for 
rendering these conscious states of mind", which is coherent with the etymological 
meaning of the word emotion; it comes from the Latin movere, which means to move, 
as by an external force. 

For more than a century, scientists have been studying the relationship between 
emotion and its physiological manifestation. Analysis and experimentation has given 
birth to systems like the polygraph, yet it has not been until the past two decades, and 
partly due to improvements and reduced costs in physiological sensors, that we have 
seen an increase in emotion recognition research in scientific publications [17]. An 
important factor in this growth has been responsibility of the Affective Computing 
field [18], interested in introducing an emotion channel of communication to human 
computer interaction. 

One of the main problems of emotion recognition experiments using physiology is 
the amount of influencing factors that act on the Autonomic Nervous System (ANS) 
[19]. Physical activity, attention and social interaction are some of the external factors 
that may influence physiological measures. This has led to a multi-modal theory for 
physiological differentiation of emotions, where the detection of an emotional state 
will not depend on a single variable change, but in recognizing patterns among sev-
eral signals. Another issue is the high degree of variation between subjects and low 
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repeatability rates, which means that the same stimulus will create different reactions 
in different people, and furthermore, this physiological response will change over 
time. This suggests that any patterns among these signals will only become noticeable 
when dealing with large sample sizes. 

2 Methodology 

2.1 Experimental Design 

The aim of this study is to determine what (if any) are the relationships between the 
properties of an excerpt of music (dynamics, rhythm, emotional intent, etc.), the self-
reported emotional response, and the ANS response, as measured through features 
extracted from EDA and HR. In order to build a large database of physiological and 
self-report data, an experiment was designed and implemented as a computer work-
station installation to be presented in public venues. The experiment at the Science 
Gallery – Dublin1 lasted for three months (June-August 2010), having nearly 4000 
participants and over 12000 listening samples. The music selection included in its 53 
excerpts contains a wide variety of genres, styles and structures, which, as previously 
mentioned, were selected to have a balanced emotional intent between high and low 
valence and arousal. 

To be part of the experiment, a visitor to the Science Gallery was guided by a me-
diator to one of the four computer workstations, and then the individual followed the 
on-screen instructions to progress through the experiment sections (see Fig. 1 (b)). 
These would first give an introduction to the experiment and explain how to wear the 
EDA and HR sensors. Then, the participant would be asked demographic and back-
ground questions (e.g. age, gender, musical expertise, music preferences, etc.). After 
completing this section, the visitor would be presented with the first song excerpt, 
which was followed by a brief self-report questionnaire. The audio file is selected 
randomly from a pool of songs divided in the four affective categories. This was re-
peated two more times, taking each music piece from a different affective category, so 
each participant had a balanced selection of music. The visitor was then asked to 
choose the most engaging and the most liked song from the excerpts heard. Finally, 
the software presented the participant plots of his or her physiological signals against 
the audio waveform of the selected song excerpts. This was accompanied with a brief 
explanation of what these signals represent. 

Software. A custom Max/MSP2 patch was developed which stepped through the dif-
ferent stages of the experiment (e.g. instructions, questionnaires, song selection, etc.) 
without the need of supervision, although a mediator from the gallery was available in 
case participants had any questions or problems. The software recorded the partici-
pants’ questions and physiological data into files on the computer, as well as some 
extra information about the session (e.g. date and time, selected songs, state of  

                                                           
1 http://www.sciencegallery.com/ 
2 http://cycling74.com/products/max/ 
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physiology by running some cases without any questions, and also collect data for our 
own set of questions. The results presented in this paper are derived from a portion of 
the complete database with consistent experimental design. 

Scales and Measures 

LEMtool. The Layered Emotion Measurement Tool (LEMtool) is a visual measure-
ment instrument designed for use in evaluating emotional responses to/with digital 
media [20]. The full set consists of eight cartoon caricatures of a figure expressing 
different emotional states (Joy/Sadness, Desire/Disgust, Fascination/Boredom, Satis-
faction/Dissatisfaction) through facial expressions and body language. For the pur-
poses of our experiment we used only the Fascination/Boredom images positioned at 
either end of a 5 point Likert item in which participants were asked to rate their levels 
of ‘Engagement’ with each musical excerpt. 

SAM – Self Assessment Mannekin. The SAM is a non-verbal pictorial assessment 
technique, designed to measure the pleasure, arousal and dominance associated with a 
person’s affective response to a wide range of stimuli [21]. Each point on the scale is 
represented by an image of a character with no gender or race characteristics, with 3 
separate scales measuring the 3 major dimensions of affective state; Pleasure, 
Arousal, and Dominance. On the Pleasure scale the character ranges from smiling to 
frowning, on the Arousal scale the figure ranges from excited and wide eyed to a 
relaxed sleepy figure. The Dominance scale shows a figure changing in size to repre-
sent feelings of control over the emotions experienced. 

After initial pilot tests we felt that it was too difficult to adequately explain the 
Dominance dimension to participants without a verbal explanation so we decided to 
use only the Pleasure and Arousal scales. 

Likert Scales. Developed by the psychologist Rensis Likert [22], these are scales in 
which participants must give a score along a range (usually symmetrical with a mid-
point) for a number of items making up a scale investigating a particular phenome-
non. Essentially most of the questions we asked during the experiment were Likert 
items, in which participants were asked to rate the intensity of a particular emotion or 
experience from 1 (none) to 5 (very strong) or bipolar version i.e. 1 (positive) to 5 
(negative). 

GEMS – Geneva Emotional Music Scales. The 9 point GEMS scale [1] was used to 
ask participants to rate any instance of experiencing the following emotions: Wonder, 
Transcendence, Tenderness, Nostalgia, Peacefulness, Energy, Joyful activation, Ten-
sion, and Sadness. Again, they were asked to rate the intensity with which they were 
felt using a 5 point Likert scale. 

Tension Scale. This scale was drafted by Dr. Roddy Cowie of QUB School of Psy-
chology. It is a 5 point Likert scale with pictorial indicators at the Low and High ends 
of the scale depicting a SAM-type mannekin in a ‘Very Relaxed’ or ‘Very Tense’ 
state. 
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Chills Scale. This was adaptation from the SAM and featured a 5 point Likert scale with 
a pictorial representation of a character experiencing Chills / Shivers / Thrills / Goose-
bumps (CSTG), as appropriate, above the scale. The CSTG questions of the first version 
of the experiments were subsequently replaced with a single chills measure/question. 

2.2 Song Selection and Description 

The musical excerpts used in the experiment were chosen by the researchers using 
several criteria: most were selected on the basis of having been used in previous ex-
periments concerning music and emotion, while some were selected by the research-
ers for their perceived emotional content. All excerpts were vetted by the researchers 
for suitability. As far as possible we tried to select excerpts without lyrics, or sections 
in which the lyrical content was minimal.7 

Each musical example was edited down to approximately 90 seconds of audio. As 
much as possible, edits were made at ‘musically sensible’ points i.e. the end of a 
verse/chorus/bar. The excerpts then had their volume adjusted to ensure a consistent 
perceived level across all excerpts. Much of the previous research into music and 
emotion has used excerpts of music of around 30 seconds which may not be long 
enough to definitely attribute physiological changes to the music (as opposed to a 
prior stimulus). We chose 90 seconds duration to maximize the physiological changes 
that might be attributable to the musical excerpt heard. Each excerpt was also proc-
essed to add a short (< 0.5 seconds) fade In/Out to prevent clicks or pops, and 2 sec-
onds of silence added to the start and end of each sound file. We also categorized each 
song according to the most dominant characteristic of its perceived affective content: 
Relaxed = Low Arousal, Tense = High Arousal, Sad=Low Valence, Happy = High 
Valence. Songs were randomly selected from each category pool every time the ex-
periment was run with participants only hearing one song from any given category. 

Acoustic Feature Extraction. In order to analyse the relationship between the sonic 
and structural features of the musical excerpts and the participants experiences whilst 
listening to the excerpts, it was necessary to extract these features from the excerpts, 
preferably via an automatic software based approach in order to ensure consistency 
and repeatability. There are a wide range of potential features that can be extracted 
but for the purposes of this analysis we chose to focus on the musical mode (Ma-
jor/Minor) and dynamic range variability of the excerpts. 

Key and mode information was automatically extracted using the commercial 
‘Mixed in Key’ (MiK) software.8 The outputs from this software were compared with 
information available from online sources to determine the accuracy of the automatic 
extraction and in most cases these matched well. 

Dynamic range values were calculated using the free stand-alone Windows version 
of Algorhythmix TT-Dynamic Range (TT-DR) Meter.9 This software calculates the 

                                                           
7 The full list of songs used in the experiment is available in the Appendix. 
8 www.mixedinkey.com 
9 http://www.pleasurizemusic.com/es/es/download#menu1 
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average loudness of an audio file (RMS, an established loudness measurement stan-
dard) and also calculates a Dynamic Range (DR) value, the difference between the 
peak headroom and the top 20 average RMS measurements, to give an integer value 
representing the overall density, thickness or ‘loudness’ of the audio file analysed. 
With this method lower DR values represent consistently ‘loud’ recordings lacking 
dynamic range. These values were then entered into the database to be incorporated 
into the analysis. 

2.3 Feature Extraction from Physiology and Database Built 

Database Built. Once the signals and answer files were collected from the experi-
ment terminals, the next step was to populate a database with the information of each 
session and listening case. This consisted in several steps, detailed below.  

First, the metadata information was checked against the rest of the files with the 
same session ID number for consistency, dropping any files that had a wrong file-
name or that were corrupted. Subsequently, and because the clocks in each acquisition 
device and the number of samples in each recorded file can have small variations, the 
sample rates (SR) of each signal file were re-calculated. Moreover, some files had 
very different number of samples, which were detected and discarded by this process. 
To calculate the SR of each file, a MATLAB10 script counted the number of samples 
of each file, and obtained the SR using the duration of the song excerpt used in that 
recording. Two conditions were tested: a) that the SR was within an acceptable range 
of the original programmed SR (acquisition device) and b) that the SR did not present 
more than 0.5% variation over time. After this stage, the calculated SR was recorded 
as a separate variable in the database.  

Finally, the data from each song excerpt was separated from its session and copied 
into a new case in the database. This means that each case in the database contains 
variables with background information of the participant, answers to the song ques-
tionnaire, and features extracted from the physiological signals, as well as metadata 
about the session (experiment number, SR, order in which the song was heard, termi-
nal number, date, etc.). 

EDAtool and HRtool. Two tools developed in MATLAB were used to extract fea-
tures from the physiological data: EDAtool and HRtool. Extraction of features in-
cluded detection and removal of artifacts and abnormalities in the data. The output 
from both tools consisted of the processed features vectors and an indication of the 
accuracy of the input signal, which is defined as the percentage of the signal which 
did not present artifacts. This value can be utilized later to remove signals from the 
database that fall below a specified confidence threshold.11 

EDAtool. EDAtool is a function developed to pre-process the EDA signal. Its process-
ing includes the removal of electrical noise and the detection and measurement of 

                                                           
10 www.mathworks.com/products/matlab/ 
11 Latest versions can be found in: 
  http://www.musicsensorsemotion.com/tag/tools/ 
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artifacts. Additionally, it separates the EDA signal into phasic and tonic components 
(please refer to [23] for a detailed description of EDA). Fig. 2 shows an example of 
the different stages of the EDAtool. 

 

 

Fig. 2. Stages of the EDAtool on a Skin Conductance signal. The top plots show the original 
signal and the low-passed filtered signal (dotted), which removes any electrical noise. The next 
plots show the artifact detection method, which identifies abrupt changes in the signal. (a) 
shows a signal above the confidence threshold used in this experiment, while signal in (b) 
would be discarded. The third row from the top shows the filtered signals with the artifacts 
removed. The bottom plots show the phasic and tonic (dotted) components of the signal. 

 

Fig. 3. Stages of the HRtool on an ECG signal. The top plot shows the raw ECG signal. The 
two middle plots show the peak detection stages, with a dynamic threshold. The bottom plot 
shows the final HR vector, with the resulting replacement of values that were outside the speci-
fied ranges (marked as dots in the plot). In this example, accuracy is at 85.9%, which falls 
below the acceptance tolerance for this experiment, and would be discarded as a valid case. 

(a) (b) 
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HRtool. HRtool is a function developed to convert the data from an Electrocardiogram 
(ECG) or Pulse Oximetry (POX) signal into an HR vector. This involves three main 
stages (see Fig. 3), which are the detection of peaks in the signal (which is different 
for a POX or an ECG signal), the measurement of the interval between pulses and the 
calculation of the corresponding HR value. Finally, the algorithm evaluates the HR 
vector replacing any values that are outside the ranges entered by the user (e.g. maxi-
mum and minimum HR values and maximum change ratio between two consequent 
pulses). 

3 Preliminary Analysis 

We are not aware of any similar study with a database of this magnitude, which has 
made it difficult to apply existing methodologies from smaller sized studies [17, 19]. 
Consequently, a large portion of the research presented in this paper has been dedi-
cated to do exploratory analysis on the results; looking to identify relationships be-
tween variables and to evaluate the validity of the questionnaire and physiological 
measurements. 

3.1 Preliminary Results from Questionnaire 

General Demographic Information. After removing all data with artifacts, as de-
scribed previously, an overall sample size of 3343 participants representing 11041 
individual song listens was obtained. The remaining files were checked for consis-
tency and accuracy and no other problems found.  

The mean DOB was 1980 (Std. Dev. 13.147) with the oldest participants born in 
1930 (22 participants, 0.2%). 47% of the participants were Male, 53% Female, with 
62.2% identifying as ‘Irish’, and 37.8% coming from the ‘Rest of the World’. 

In the first version of the experiment participants heard four songs (1012 partici-
pants) with the subsequent versions consisting of three songs (2331 participants). 

Participants were asked if they considered themselves to have a musical back-
ground or specialist musical knowledge, with 60.7% indicating ‘No’ and 39.3% indi-
cating ‘Yes’. Interestingly, despite the majority of participants stating they had no 
specialist musical knowledge, when asked to rate their level of musical expertise from 
‘1= No Musical Expertise’ to ‘5= Professional Musician’ 41.3% rated their level of 
musical expertise as ‘3’. 

Participants were also asked to indicate the styles of music to which they regularly 
listen (by selecting one or more categories from the list below). From a sample of 
N=3343 cases, preferences broke down as follows: Rock 68.1%, Pop 60.3%, Classical 
35%, Jazz 24.9%, Dance 34.2%, Hip Hop 27%, Traditional Irish 17%, World 27.9%, 
and None 1.2%. 

Self-Report Data. An initial analysis was run to determine the song excerpts identi-
fied as most enjoyed and engaging. At the end of each experiment session, partici-
pants were asked which of the 3 or 4 (depending on experiment version) excerpts they 
had heard was the most enjoyable and which they had found most engaging. These 
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questions were asked in all 5 versions of the experiment, making them the only ones 
to appear in all versions (other than the background or demographic questions). 

The excerpts rated as ‘Most Enjoyed’ were James Brown ‘Get Up (I Feel Like be-
ing a) Sex Machine’ and Juan Luis Guerra ‘A Pedir Su Mano’ with these excerpts 
chosen by participants in 55% of the cases where they were one of the excerpts heard. 
At the other end of the scale, the excerpts rated lowest (fewest percentage of ‘Most 
Enjoyed’) were Slayer ‘Raining Blood’ and Dimitri Shostakovich ‘Symphony 11, 0p. 
103 – 2nd Movement’ with these excerpts chosen by participants in 13% of the cases 
where they were one of the songs heard. 

Participants were also asked to rate their ‘Liking’ of each excerpt (in experiment 
versions 1-3). Having analysed the mean values for ‘Liking’ on a per-song basis, the 
songs with the highest means were Jeff Buckley ‘Hallelujah’ (4.07/5) and The Verve 
‘Bittersweet Symphony’ (4.03/5). The songs with the lowest mean values for ‘Liking’ 
were Slayer ‘Raining Blood’ (2.66/5) and Vengaboys ‘We like to party!’ (2.93/5). 

The excerpt rated most often as ‘Most Engaging’ was Clint Mansell’s ‘Requiem 
for a Dream Theme’ with this excerpt chosen by participants in 53% of the cases 
where it was one of the excerpts heard. At the other end of the scale, the excerpt rated 
lowest (fewest percentage of ‘Most Engaging’) was Ceoltóirí Chualann ‘Marbhna 
Luimnigh’ with this excerpt chosen by participants in 11% of the cases where it was 
one of the excerpts heard. 

Interestingly, when the mean values for ‘Engagement’ for each excerpt were calcu-
lated, Clint Mansell’s ‘Requiem for a Dream Theme’ was only rated in 10th place 
(3.74/5), with Nirvana ‘Smells Like Teen Spirit’ rated highest (3.99/5), closely fol-
lowed by The Verve ‘Bittersweet Symphony’ (3.95/5) and Jeff Buckley ‘Hallelujah’ 
(3.94/5). It was observed that while mean values for engagement are all within the 3-4 
point range, there are much more significant differences between songs when partici-
pants were asked to rate the excerpt which they found ‘Most Engaging’, with partici-
pants clearly indicating a preference for one song over another. 

The excerpts with the lowest mean values for ‘Engagement’ were Primal Scream 
‘Higher Than The Sun’ (3.05/5) and Ceoltóirí Chualann ‘Marbhna Luimigh’ (3.09/5). 
The excerpts with the highest mean values for Chills / Shivers / Thrills / Goosebumps 
(CSTG) were Jeff Buckley ‘Hallelujah’ (2.24/5), Mussorgsky ‘A Night on the Bare 
Mountain’ (2.23/5) and G.A. Rossini ‘William Tell Overture’ (2.23/5). The excerpts 
with the lowest mean values for CSTG were Providence ‘J.O. Forbes of Course’ 
(1.4/5), Paul Brady ‘Paddys Green Shamrock Shore’ (1.43/5) and Neil Young ‘Only 
Love Can Break Your Heart’ (1.5/5). 

An analysis was also run to attempt to determine the overall frequency of partici-
pants experiencing the sensation of CSTG. The number of instances where CSTG 
were reported as a 4 or 5 after a musical excerpt was tallied, giving 872 reports of a 4 
or 5 from 9062 listens, meaning that significant CSTGs were experienced in around 
10% of cases. 

A selection of the musical excerpts used (some of which were outliers in the above 
analyses) were mapped on to an emotional circumplex (as per Russell 1980), with 
Arousal and Valence (as measured using the SAM) as the Y and X axes respectively. 
An overall tendency of participants to report positive experiences during music listening 
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was observed, even for songs which might be categorised as ‘Sad’ e.g. Nina Simone. 
Arousal responses were a little more evenly distributed but still with a slight positive 
skew. It seems that while some songs may be perceived as being of negative affect or 
‘sad’, these songs do not in the majority of cases induce feelings of sadness. It may 
therefore be more appropriate to rescale songs to fit the circumplex from ‘saddest’ to 
‘happiest’ (lowest Valence to highest Valence) and ‘most relaxing’ to ‘most exciting’ 
(lowest Arousal to highest Arousal) rather than using the absolute values reported (as 
seen on Fig. 4). This ‘positive’ skew indicating the rewarding nature of music listening 
corroborates previous findings as documented in Juslin and Sloboda 2001 [24]. In future 
versions of this experiment we hope to identify songs that extend this mapping and are 
reported as even ‘sadder’ than Nina Simone. 

 

 

Fig. 4. Circumplex mapping of selected excerpts after a normalisation process to rescale the 
values 0 -1 with the lowest scoring excerpt in each axis as ‘0’ and the highest as ‘1’ 

In addition we mapped all the excerpts on to the circumplex and identified each ac-
cording to which of the initial affective categories the development team had placed 
them in e.g. Happy, Sad, Tense or Relaxed. As seen in Fig. 5 the self-reported Va-
lence and Arousal scores for the Happy and Sad categories were for the most part 
remarkably consistent, clustering in the upper right and lower left quadrants of the 
circumplex respectively (happiness usually being characterised as a state of positive 
valence and medium to high arousal, sadness as negatively valence and with low 
arousal).  Participant responses for the Tense and Relaxed categories were less 
clearly defined yet still tended to group above and below the median line for Arousal 
respectively. This may be due to greater ambiguity as to what defines a ‘tense’ song 
versus a song that induces high arousal and also positive valence, indeed examining 
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Fig. 5 one can see that the excerpts positioned in the extreme of the upper right quad-
rant all belong to the Tense category. Fig. 4 shows the outliers in all categories as well 
as typical examples in each group. 

 

Fig. 5. Circumplex mapping of all normalised excerpts to show position of excerpts from 
Happy/Sad/Tense/Relaxed categories 

MODE. A Mann-Whitney U test was used to examine significant differences between 
songs in Major and Minor modes in how they affected the listeners self-reports of 
Valence (negativity/positivity) and Arousal (drowsy/lively) as measured with the 
SAM. Songs in Major modes (N = 4428, mean rank = 4530.28) were found to score 
significantly higher (U = 10254, 255.00, p <.05) than Minor modes (N = 4501, mean 
rank = 4400.78) in terms of how they affected self-reports of valence. 

This appears to indicate that increased levels of positive affect (as evaluated using 
the SAM) are associated with songs in a Major mode. 

Songs in Major modes (N = 4428, mean rank = 4551.80) were found to score  
significantly higher (U = 10349, 563.00, p < .01) than Minor keys (N = 4501, mean 
rank = 4379.61) in terms of how they affected self-reports of arousal. This appears to 
indicate that increased levels of arousal may be associated with songs in a Major 
mode. 

Songs in Major modes were also found to have a relationship with the listeners en-
gagement with the music (p < .01), indicating that listeners’ were more engaged with 
music in a major mode. 

There did not however appear to be any relationship between listeners’ ‘liking’ of 
the music (as measured with a 5 point Likert item) and whether the music was in a 
major or minor mode. 



32 J. Jaimovich, N. Coghlan, and R. Benjamin Knapp 

Dynamic Range. A Spearman’s rho correlation was used to examine the relationship 
between the participants’ self-reported Valence and Arousal (as measured with the 
SAM) and the Dynamic Range of the excerpt they had listened to (as measured with 
the TT-DR Meter). A significant negative correlation was found between Valence and 
Dynamic Range (r[8927] = - 0.119, p <.01). The negative correlation would appear to 
indicate that excerpts with less variable dynamic range (usually those that have un-
dergone dynamic range compression, an audio production technique) are associated 
with positive valence. 

A significant negative correlation was also found between Arousal and Dynamic 
Range (r[8927] = - 0.211, p <.01). The negative correlation would appear to indicate 
that excerpts with less variable dynamic range are associated with high arousal. 

A Spearman’s rho correlation was used to examine the relationship between the 
participants self-reported Engagement (as measured with the LEMtool) and the Dy-
namic Range of the excerpt they had listened to (as measured with the TT-DR Meter). 
A significant negative correlation was found between Engagement and Dynamic 
Range (r[8927] = - 0.053, p <.01). The negative correlation would appear to indicate 
that excerpts with less variable dynamic range are associated with high Engagement. 

A significant negative correlation was found between Liking and Dynamic Range 
(r[8927] = - 0.029, p <.01). The negative correlation would appear to indicate that ex-
cerpts with less variable dynamic are associated with increased liking of the excerpt. 

3.2 Preliminary Results from Physiology 

Features Extracted from Physiology. Due to the scope and nature of the experi-
ment, the statistical analysis of the physiological signals has been approached as a 
continuous iteration, extracting a few basic features from the physiology, running 
statistical tests and using the results to extract new features. For this reason, the re-
sults from the physiology presented in this paper are still in a preliminary stage. Table 
1 shows the features that have been extracted from the 3 physiological vectors re-
corded in each case of the database (Phasic EDA, Tonic EDA and HR). 
 
Evaluation of Measurements  
Dry Skin Issue. Originally, the accuracy level given by the EDAtool was calculated only 
from the amount of artifacts presented during the duration of the EDA signal, without 
considering the measured samples values’ relationship to the range of the sensor. Pre-
liminary analysis of the features extracted from EDA, filtering for signals that presented 
less than 10% of artifacts, resulted in an overwhelming amount of signals with variances 
close or equal to zero, which did not correlate with any of the variables measured or 
changed during the experiment. At first, these participants were considered to simply 
have a flat EDA response, yet further analysis proved differently. 

In order to analyse the effect that the initial impedance of each subject might have 
on the EDA response, the mean of the first 10 EDA samples was calculated and added 
to the database as a new variable (Init_EDA). Fig. 6 shows the distribution of this 
initial impedance, for EDA signals with confidence levels above 90% (calculated only 
for motion artifacts). 
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The distribution shows a clear predominance of a group of participants that presented 
very high initial impedance (around the 160 mark, with over 1700 participants). Al-
though the origin of this irregularity is not clear, it is equivalent to the measurement of 
the EDA sensor when it has an open circuit (e.g. no skin connection). Due to the deci-
sion to use dry-skin electrodes (avoiding the application of conductive gel prior to the 
experiment), it is possible that this abnormality corresponds to a large group of partici-
pants in which the sensor did not make a good connection with the skin, probably due to 
them having a drier skin than the rest of the participants. It is also interesting to point 
out that there were a few hundred cases in which the sensor failed to work correctly (e.g. 
cases with conductivity near zero). For these reasons, the number of cases used for the 
analysis was filtered by the Init_EDA variable, looking for values that had normal im-
pedance (above open-circuit value and below short-circuit value), at the cost of signifi-
cantly reducing the valid cases in the database by approximately 37%. 

EDA Level Dependence. While doing preliminary analysis on the EiM database, an 
inverse proportional relationship was found between the EDA level and the amplitude 
of changes in the EDA signal. Originally this was thought as being caused by a non-
linearity of the sensor utilised, which was observed and corrected, although the EDA 
level still presented an influence on all features extracted from EDA. Fig. 7 shows an 
example of valid EDA signals for one excerpt, showing the phasic component of 
EDA. When analysing the amplitude of each phasic signal compared to its baseline 
EDL, the inverse relationship is apparent. This relationship is better illustrated in Fig. 
8, by dividing participants in 10 groups of equidistant EDA starting levels against 
their phasic standard deviation. EDA initial level correlation coefficients with EDA 
features range from .35 (mean_EDAP) to .62 (RMS_EDAP), all with p-values < .001.  

 

Fig. 7. Example of the inverse relationship of EDA level on the phasic response variability. 
Excerpt corresponds to Minnie Riperton ‘Reasons’, N=111. 
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component, taking into account that 10% of the participants reported to experience 
CSTG. Nevertheless, it is fascinating to see a relationship between physiological fea-
tures and self-reports such as song likeness, positivity, activity and tension. 

Table 2. Correlation between components from physiology and questionnaire 

 Question Correlation by component (p<.001) 
1 2 3 

Song Engagement -.081 .075 - 
Song Positivity - .097 - 
Song Activity - .110 - 
Song Tension - .044 - 

Song Chills/Shivers/Thrills/Goosebumps - - - 
Song Likeness -.052 .061 - 

Song Familiarity -.060 .083 - 

 
Music Events versus Physiology. Analysis of temporal changes in correlation with the 
excerpt’s musical changes has been explored. Preliminary results show a relationship 
between the three physiological vectors; phasic EDA, tonic EDA and HR, with 
changes in the music content, such as dynamics and structure. Fig. 11 shows two ex-
amples of pieces that present temporal correlation between physiology and music 
dynamic (a clear example is shown Fig. 11 (b) between the phasic EDA and the audio 
waveform after the 60 second mark). 

 

Fig. 11. Plots of changes in Phasic EDA, Tonic EDA, HR and audio waveform (top to bottom) 
during the duration of the song excerpt. Physiological plots show multiple individual responses 
overlapped, with the mean overlaid on top (dotted). (a) plots are for Elgar’s ‘Enigma Varia-
tions’, and plots in (b) are for an excerpt of Jeff Buckley’s ‘Hallelujah’. 

(a) (b) 
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4 Discussion 

Due to the public gallery nature of this study, work has mainly been focused in im-
proving the acquisition of signals, and the algorithms that correctly identify and  
remove noise and artifacts. Any unaccounted variation at this stage can impact the 
validity of the statistical tests that use physiological measurements. It is important to 
point out that with the current sensor design, which requires no assistance and can be 
used by participants briefed with short instructions; we are obtaining approximately 
65% valid signals (with a confidence threshold of 90%). This has to be taken into 
account when calculating group sizes for experiments that require physiological sens-
ing of audiences. 

The analysis of the physiological measures shows high levels of dispersion be-
tween participants for the same feature, which seems to indicate that large sample 
sizes need to be maintained for future experiments. Nonetheless, the preliminary re-
sults presented in this paper are a significant indication of the possible relationships 
that explain the way we react to musical stimuli. Correlations between physiology and 
self-report questionnaire, in groups of this size, are a statement that this relationship 
undoubtedly exists. Our findings relating to the frequency of ‘chill’ responses to mu-
sical excerpts in around 10% of participants are also broadly consistent with the find-
ings of previous studies [40–42]. We are yet to further define the precise musical cues 
and variables that influence changes. 

In examining the relationship between acoustic features and induced affective re-
sponses one must pay particular attention to the complex nature of musical stimuli. 
While there do appear to be relationships between musical/acoustic features such as 
mode and changes in Valence and Arousal, it is more difficult to define a piece of 
music as having a specific affective character based on these features alone. For in-
stance an excerpt may be in a minor key, have a high tempo and little dynamic range 
variation (such as Slayer – Raining Blood) and be associated with tension or negative 
valence, yet another excerpt bearing similar acoustic features (such as Nirvana – 
Smells Like Teen Spirit) may be associated with elation and positive valence (see  
Fig. 4). It is clear that perception of the affective content of a piece of music is more 
than the sum of its acoustic or musical features. 

Next steps in the analysis will be focusing on additional physiological descriptors, 
multimodal analysis of the dataset, looking at temporal changes (versus the current 
whole song approach) and measures of correlation and entrainment with musical fea-
tures. After the implementation in Dublin, ‘Emotion in Motion’ has been installed in 
public spaces in the cities of New York, Genoa and Bergen. Each implementation of 
the experiment has been enhanced and new songs have been added to the pool. We 
believe augmenting the sample size of these kinds of studies is a requirement to start 
elucidating the complex relationship between music and our affective response to it. 
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Appendix: List of Music Pieces in Emotion in Motion (Dublin) 

Artist Title 

Anton Bruckner Te Deum 
Aphex Twin Digeridoo 

Arvo Pärt Spiegel Im Spiegel For Violin And Piano 
Bing Crosby White Christmas 

Black Eyed Peas I gotta Feeling 
Ceoltóirí Chualann Marbhna Luimnigh 
Ceoltóirí Chualann Marcshlua Ui Neill 

Clint Mansell Requiem For A Dream (Theme) 
Dimitri Shostakovich Symphony 11, op. 103, 2nd Movement 

E. W. Elgar Enigma Variations, Nimrod 
G. A. Rossini William Tell Overture 
G. F. Handel The Arrival Of The Queen Of Sheba from 

Solomon 
G. T. Holst Jupiter, the Bringer of Jollity 

Grainne Hambley Eleanor Plunkett 
J. S. Bach Cello Suite No 1 in G major I. Prelude 

James Brown Get Up (I feel like being a) Sex Machine 
Jeff Buckley Hallelujah 
Johan Strauss Chit Chat Polka 

John McSherry An Bhean Chaointe 
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Artist Title 

John Williams Schindlers List 
Journey Dont Stop Believin 

Juan Luis Guerra A Pedir Su Mano 
Louis Armstrong What a wonderful world 
M. P. Mussorgsky A Night On The Bare Mountain 

Max Bruch Kol Nidrei 
Mazzy Star Into Dust 

Minnie Riperton Reasons 
Neil Young Only Love can break your heart 

Nina Simone I get along without you very well 
Nirvana Smells Like Teen Spirit 

Paul Brady Gleantainn Glas Ghaoth Dobhair 
Paul Brady Paddys Green Shamrock Shore 

Planxty Cunla (with lyrics) 
Planxty Cunla (without lyrics) 

Primal Scream Higher Than The Sun 
Providence J. O. Forbes of Corse 

Richard Addinsell Warsaw Concerto 
Saint Saens Carnival of the Animals (Finale) 

Sean O Riada Mise Eire Muscailt 
Sharon Shannon Blackbird 

Shaun Davey Water Under The Keel 
Silvio Rodríguez Coda Te Conozco 
Sinead O Connor Nothing Compares 2 U 

Slayer Raining Blood 
The Beach Boys Good Vibrations 

The Commodores with Lionel Richie Easy like Sunday Morning 
The Ronettes Be My Baby 

The Undertones Teenage Kicks 
The Verve Bittersweet Symphony 

U2 One 
Vengaboys We like to party! 

Vinnie Kilduff Sean Sa Cheo 
W. A. Mozart Eine Kleine Nachtmusik 
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Abstract. This paper examines the induction of emotions while listening to 
Romantic orchestral music. The study seeks to explore the relationship between 
subjective ratings of felt emotion and acoustic and physiological features. We 
employed 75 musical excerpts as stimuli to gather responses of excitement and 
pleasantness from 20 participants. During the experiments, physiological 
responses of the participants were measured, including blood volume pulse 
(BVP), skin conductance (SC), respiration rate (RR) and facial electromyography 
(EMG). A set of acoustic features was derived related to dynamics, harmony, 
timbre and rhythmic properties of the music stimuli. Based on the measured 
physiological signals, a set of physiological features was also extracted. The 
feature extraction process is discussed with particular emphasis on the interaction 
between acoustical and physiological parameters. Statistical relations among 
audio, physiological features and emotional ratings from psychological 
experiments were systematically investigated. Finally, a forward step-wise 
multiple linear regression model (MLR) was employed using the best features, 
and its prediction efficiency was evaluated and discussed. The results indicate that 
merging acoustic and physiological modalities substantially improves prediction 
of participants’ ratings of felt emotion compared to the results using the 
modalities in isolation. 

1 Introduction 

With the recent advances in diverse fields of technology there is an emerging interest 
in recognizing and understanding the emotional content of music. Music emotion 
recognition plays an important role in music retrieval, mood detection, health care, 
and human-machine interfaces. Moreover, the entire body of music collections 
available to humans is increasing rapidly, and there is a need to intelligently classify 
and retrieve music according to the emotions they elicit from listeners. Indeed, 
emotion recognition is considered a key issue in integrating emotional intelligence 
within advanced human-machine interaction. Thus, there is strong motivation for 
developing systems that can recognize music-evoked emotions. In the following, we 
briefly review some of the work related to music emotion recognition based on 
acoustical and physiological features. 
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The emotions elicited during music listening are influenced by a number of 
structural music characteristics, including tempo, mode, timbre, harmony and 
loudness [1, 2]. In a pioneering publication [3], Li and Ogihara used acoustic features 
to classify music into mood categories. They achieved an accuracy of 45% using a 
database of 499 music clips selected from different genres annotated by a subject. 
They used a SVM-based multilabel classification method and determined the 
accuracy of their model using micro and macro-averaged precision. In [4] the authors 
used a similar variety of acoustic features for 800 classical music clips and achieved a 
recognition accuracy of 85%. Within the framework of Music Information Research 
Evaluation eXchange (MIREX), Tzanetakis reported an accuracy of 63.5% using a 
limited number of acoustic features [5]. Within the same framework, Peeters used a 
larger number of acoustic features and reported only a slight improvement [6], 
whereas in the next year Kim et al. proposed a system that reached a recognition 
accuracy of 65.7% [7].  

Music emotion recognition has employed a number of approaches. In [8] the 
automatic detection of emotion in music was modeled as a multi-label classification 
task. A series of multi-label classification algorithms were tested and compared, with 
the predictive power of different audio features reaching an average precision of 81%. 
However, recent research in music emotion recognition from audio has shown that 
regression approaches can outperform existing classification techniques. In [12] the 
effectiveness of emotion prediction using different musical datasets (classical, film 
and popular music) was investigated.  Their model had low generalizability between 
genres for valence (16%) and moderate generalizability between genres for arousal 
(43%), suggesting that valence operates differently depending on the musical genre. 
In [9] the authors used multiple acoustic features to predict pleasure and arousal 
ratings for music excerpts. They found that audio features are better for predicting 
arousal than valence and that the best prediction results are obtained for a 
combination of different features. In [10] a regression approach with combinations of 
audio features was employed in music emotion prediction. They found that the best 
performing features were spectral contrast and Mel-frequency cepstral coefficients 
(MFCC). The best performance, however, was achieved by a combination of features.  
In a recent publication [11], audio-based acoustical features for emotion classification 
were evaluated. A data set of 2090 songs was used, different audio features were 
extracted, and their predictive performance was evaluated. The results suggest that a 
combination of spectral, rhythmic and harmonic features yields the best results. 

Despite the progress achieved on emotion recognition using audio features alone, 
the success of these various models has reached a glass ceiling. In order to improve 
the recognition accuracy of audio-based approaches, many studies have exploited the 
advantages of using additional information from other domains. This approach has led 
to the development of methods combining audio and lyrics [13-16], audio and tags 
[17], and audio and images [18], all of which result in moderate increases in 
recognition accuracy. There is a large body of studies establishing the relationship 
between physiological responses and musical emotions during music listening. 
Several studies have attempted to demonstrate whether the basic emotions induced by 
music are related to specific physiological patterns [19-23]. The relation between 
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discrete emotions and emotion-specific physiological response patterns predicted by 
theorists, however, still remains an open problem.  

Indeed, the attempt to provide robust, incontrovertible evidence of emotional 
induction during music listening remains a tremendous challenge. The adoption of 
psychophysiological measures provides one possible solution, as they offer direct, 
objective evidence of autonomic and somato-visceral activation. Physiological 
responses during music listening include variations in heart rate, respiration 
electrodermal activity, finger temperature, and surface electromyography. Little 
attention, however, has been paid to the effect of physiological signals in music emotion 
recognition. The main problem of using physiological signals is the difficulty of 
mapping physiological patterns to specific emotional states. Furthermore, recording 
physiological signals requires the use of sensors and the analysis of signals that often 
reflect innervation by distinct branches of the autonomic nervous system (ANS). On the 
other hand, physiological signals have certain advantages, as they provide an objective 
measure of the listener’s emotional state without relying on participant self-reports.  

In [24] the authors used movie clips to induce emotions in 29 subjects, and 
combining physiological measures and subjective ratings achieved 83% recognition 
accuracy. In [25] the authors recorded four biosignals from subjects listening to songs 
and reached a recognition accuracy of 92%. Kim [26] used music excerpts to 
spontaneously induce emotions, measured electromyogram, electrocardiogram, skin 
conductivity and respiration changes, and then extracted the best features, achieving a 
classification accuracy of 70% and 90% for subject-independent and subject-dependent 
classification, respectively. Recently, in [27] a multimodal approach was based on 
physiological signals for emotion recognition, using music video clips as stimuli. They 
recorded EEG signals, peripheral physiological signals and frontal video. A variety of 
features was extracted and used for emotion recognition by using different fusion 
techniques. The results, however, demonstrated only a modest increase in recognition 
performance, indicating limited complementarity of the different modalities. 

An important issue in musical emotion recognition is the modeling of perceived 
musical emotions. The two main approaches to modeling emotions in music-related 
studies are the categorical and the dimensional approach. According to the categorical 
approach, emotions are conceptualized as discrete entities, and there are a certain number 
of basic emotions, such as happiness, sadness, anger, fear and disgust, from which all 
subsequent emotional states are ultimately derived [28]. In music-related studies, emotion 
researchers often employ music-specific emotion labels (awe, frisson), or they use 
emotion terms that are more suitable to everyday musical experience (peacefulness, 
tenderness). Whereas the categorical model often employs these apparently distinct 
labels, in the dimensional approach all of the emotions experienced in everyday life are 
characterized (or supported) by two underlying dimensions: valence, which is related to 
pleasure-displeasure, and arousal, which is related to activation-deactivation. Thus, all 
emotions can be characterized in terms of varying degrees of valence and arousal [29, 
30]. Both approaches have been recently investigated in relation to musical emotions 
[31], and their limitations were analyzed and discussed. In our study, the dimensional 
approach was employed because existing research in psychophysiology can find little 
evidence to suggest that there are emotion-specific physiological descriptors [21]. Rather, 
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psychophysiological responses appear to be related to the underlying dimensions of 
arousal and valence [32]. 

To the best of our knowledge, a combination of audio and physiological features 
has not been used in music emotion recognition research. There are, however, studies 
combining speech and physiological features for emotion recognition. In [33] and 
[34] the authors used combined voice data and physiological signals for emotion 
recognition. By fusing the features from both modalities, they achieved higher 
recognition accuracy compared with recognition results using the individual 
modalities. 

The primary aim of the present work is to investigate the acoustic and 
physiological effects on the induction of emotions by combining audio and 
physiological features for music emotion recognition. Following [35] and [36], we 
argue that there is a possible route of emotion elicitation by peripheral feedback, and 
thus, that physiological arousal may influence the intensity and valence of emotions. 
In our study, we want to investigate the possibility of increasing the prediction rate of 
felt emotion through peripheral feedback by using acoustic and physiological features. 
The emotion recognition task is formulated as a regression problem, in which the 
arousal and valence ratings for each musical excerpt are predicted using a forward 
step-wise multiple linear regression model. During the experiment, music excerpts 
were employed as stimuli and the physiological responses of the listeners were 
measured, which included blood volume pulse, respiration rate, skin conductivity, and 
facial electromyographic activity. Both audio and physiological features were 
extracted, and the best features were combined and used for emotion recognition.  

To combine the two modalities, it is important to determine at which stage in the 
model the individual modalities should be combined, or fused. A straightforward 
approach is to simply merge the features from each modality, called feature-level 
fusion. The alternative is to fuse the features at the decision level based on the outputs 
of separate single classifiers, called decision-level fusion. The existing literature on 
bimodal emotion recognition using speech features and physiological changes [34] 
demonstrates that feature-level fusion provides higher recognition accuracies 
compared to decision-level fusion. Therefore, in our study we employed feature-level 
fusion.  

2 Methods 

Participants. Twenty non-musicians (10 females) were recruited as participants 
(mean age = 26 years). The participants reported less than one year of training on an 
instrument over the past five years and less than two years of training in early 
childhood. In addition, all participants reported that they liked listening to Classical 
and Romantic music. The participants also filled out a demographic questionnaire and 
passed an audiometric test in order to verify that their hearing was normal. 
 
Stimuli. Seventy-five music excerpts from the late Romantic period were selected for 
the stimulus set. The excerpts were 35 to 45 seconds in duration and selected by a 
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music theorist from the Romantic, late Romantic, or Neo-classical period (from 1815 
to 1900). These genres were selected under the assumption that music from this time 
period would elicit a variety of emotional reactions along both dimensions of the 
emotion model. Moreover, each excerpt was selected to clearly represent one of the 
four quadrants of the two-dimensional emotion space formed by the dimensions of 
arousal and valence. Ten excerpts were chosen from a previous study [37] and 65 
excerpts from our own personal collection. Aside from the high-arousal/negative-
valence quadrant, which had 18 excerpts, the other three quadrants contained 19 
excerpts each.  
 
Procedure. During the experiment, five physiological signals were measured, 
including facial electromyography (EMG) of the smiling (zygomaticus major) and 
frowning (corrugator supercilii) muscles, skin conductance (SC), respiration rate 
(RR), and blood volume pulse (BVP). EMG measures the muscle activity through 
surface voltages generated when muscles contract. It is often employed to index 
emotional valence [38]. EMG sensors were placed above the zygomaticus major and 
corrugator supercilli muscles. SC is typically employed to index the physiological 
arousal of participants [38]. It measures the skin’s ability to conduct electricity as a 
result of variations in sweat-gland activity. To measure SC, we positioned electrodes 
on the index and ring fingers of the non-dominant hand. RR is one of the 
characteristics of respiration change. A stretch sensor attached around the torso was 
used to record the breathing activity of the listeners. Heart rate variability (HRV) is 
the corresponding characteristic of heart rate activity derived from blood volume 
(BVP) pulse, which is measured with a plethysmograph attached to the middle finger 
of the non-dominant hand. 

During the experiment the participants were asked to sit in a comfortable and 
relaxed position. They were told that it was crucial not to move during the baseline 
recordings and while the excerpts were playing. Following a practice trial to 
familiarize the participants with the experimental task, there was a two-minute 
baseline period in which their physiological measurements were taken. To remove 
inter-individual variability, seven additional one-minute baselines were recorded after 
each block of ten excerpts. Following each excerpt, participants rated their level of 
experienced excitement and pleasantness on 7-point continuous-categorical Likert 
scales.  

3 Audio Feature Extraction 

A theoretical selection of musical features following [12] was made based on musical 
characteristics such as dynamics, timbre, pitch, harmony, rhythm and structure using 
the MIR Toolbox for MATLAB [40]. For all features a series of statistical descriptors 
was computed, such as the mean, the standard deviation and the linear slope of the 
trend across frames. A total of 58 descriptors related to these features was thus 
extracted from the musical excerpts. Table 1 lists the various acoustic features and 
statistical descriptors extracted. 
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Table 1. The acoustic feature set extracted from the audio signals 

Domain No. Name 

Dynamics 1-3 RMS1,2,3  
Timbre 
 
Pitch 
Tonality 

4-18 
 
19-24 
25-36 

Spectral Centroid1,2,3 Spectral Flux1,2,3 Spectral 
Spread1,2,3 Spectral Entropy1,2,3 Roughness1,2,3 

Chromagram1,2,3 Pitch1,2,3 

Key Clarity1,2,3 Key Strength1,2,3 Harmonic Change 
Detection Function1,2,3 Mode1,2,3  

Rhythm 37-49 Fluctuation Pattern1 Attack Times1,2,3 Event Density1,2,3  

Tempo1,2,3 Pulse Clarity1,2,3  

Structure 50-58 Spectral Novelty1,2,3, Rhythmic Novelty1,2,3, Tonal 
Novelty1,2,3 

       
          Mean1 Standard deviation2 Slope3 

3.1 Dynamics 

We computed the RMS amplitude to examine whether the energy is evenly 
distributed throughout the signals, or to determine whether certain frames are more 
contrasted than others. 

3.2 Timbre 

A set of 5 features related to musical timbre were extracted from the Short-term 
Fourier Transform: Spectral Centroid, Spectral Flux, Spectral Spread and Spectral 
Entropy. Spectral Centroid represents the degree of timbre brightness. Spectral Flux is 
related to the degree of temporal evolution of the spectral envelope. Spectral Spread 
indicates the breadth of the spectral envelope. Spectral Entropy is used to capture the 
formants and the “peakedness” of the spectral distribution. Roughness was also 
derived from the peaks in the spectrogram based on the model in [41] and represents 
the sensory dissonance of the sound. 

3.3 Pitch 

Two pitch features were derived. The Chromagram represents the energy distribution of 
the signals wrapped around the 12 pitch classes. The Pitch was also computed using an 
advanced pitch extraction method which divides the audio signal into two channels 
below and above 1000 Hz and computes the autocorrelation of the low channel, the 
envelope of the high channel, and sums the autocorrelation functions [45].  

3.4 Tonality 

The signals were also analyzed according to their harmonic characteristics. A 
Chromagram representing the distribution of pitch-classes is created. Key Strength 
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computes the cross-correlation of the Chromagram with each possible major or minor 
key. The Key Clarity is the Key Strength of the key with the highest Key Strength out 
of all 24 keys [42]. The Harmonic Change Detection Function is a measure of the flux 
of the Tonal Centroid, and it captures the tonal diversity across time [43]. Finally, to 
model the Mode of each piece, a computational model that distinguishes major and 
minor excerpts was employed. It calculates an overall output that continuously ranges 
from zero (minor mode) to one (major mode) [44]. 

3.5 Rhythm 

Fluctuation Pattern represents the rhythmic periodicity along auditory frequency 
channels) [46], and Attack Times refers to the estimation of note onset times. The Event 
Density measures the overall amount of simultaneous events in a musical excerpt. The 
tempo of each excerpt in beats per minute (BPM) was estimated by first computing a 
spectral decomposition of the onset detection curve. Next, the autocorrelation function 
was translated into the frequency domain in order to be compared to the spectrum curve, 
and the two curves were subsequently multiplied. Then a peak-picking algorithm was 
applied to the spectrum representation to select the best candidate tempo. The Pulse 
Clarity, a measure of the rhythmical and repetitive nature of a piece, was finally 
estimated by the autocorrelation of the amplitude envelope.  

3.6 Structure 

A degree of repetition was estimated through the computation of novelty curves [47] 
based on the spectrogram, the autocorrelation function, the key profiles and the 
Chromagram, each representing a different aspect of the novelty or static temporal 
nature of the music, such as Spectral, Rhythmic, and Tonal Novelty. 

4 Physiological Feature Extraction 

From the five psychophysiological signals, we calculated a total of 44 features, 
including conventional statistics in both the time and frequency domains. Table 2 lists 
the various physiological features extracted. 

Table 2. The feature set extracted from the physiological signals 

Domain No Name 

Blood volume pulse 1-6 BVP1,2,3,4,5,6  
Heart-rate 
Respiration-rate  

7-21 
22-26 

Heart-rate1,2,3,4,5,6,7,8,9 SDNN1,2,3,4,5,6  

BRV1,2,3,4,5 

Skin conductivity 
Electromyography 
(Corrugator-Zygomaticus) 

27-32 
33-44 

Skin conductivity1,2,3,4,5,6  

EMGc1,2,3,4,5,6 EMGz1,2,3,4,5,6  

       
      Mean1 Standard deviation2 Median3 Maximum4 Minimum5 Derivative6  SpecVLF7 SpecLF8 SpecHF9 
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4.1 Blood Volume Pulse (BVP) 

First, we normalized the blood volume pulse (BVP) signal by subtracting the 
preceding baseline from the signal. From the normalized BVP we computed time-
series statistics, such as the mean, standard deviation, median, max, min and the 
derivative. To obtain HRV (heart rate variability) from the initial BVP signal, each 
signal was filtered, the QRS complex was detected, and finally the RR intervals (all 
intervals between adjacent R waves) or the normal-to-normal (NN) intervals (all 
intervals between adjacent QRS complexes resulting from sinus node depolarization) 
were determined. In the time-domain representation of the HRV time series, we 
calculated statistical features, including the mean, the standard deviation of all NN 
intervals (SDNN), the standard deviation of the first derivative of the HRV, the 
number of pairs of successive NN intervals differing by greater than 50 ms (NN50), 
and the proportion derived by dividing NN50 by the total number of NN intervals. In 
the frequency-domain representation of the HRV time series, three frequency bands 
are typically of interest: the very-low frequency (VLF) band (0.003-0.04 Hz), the low 
frequency (LF) band (0.04-0.15 Hz), and the high frequency (HF) band (0.15-0.4 Hz) 
[26]. From these sub-band spectra, we computed the dominant frequency and mean 
power of each band by integrating the power spectral densities (PSD) obtained using 
Welch’s algorithm. 

4.2 Respiration Rate  

After detrending with the mean value of the entire signal and low-pass filtering with a 
cut-off frequency of 2.2 Hz, we calculated the Breath Rate Variability (BRV) by 
detecting the peaks in the signal. From the BRV time series, we computed the mean, 
standard deviation, median, max, min and derivative values. 

4.3 Skin Conductivity (SC) 

The mean, median, standard deviation, max, min, and derivative were extracted as 
features from the normalized SC signal and the low-passed SC signal, which used a 
0.3 Hz cut-off frequency. In order to remove DC drift caused by physical processes 
like sweat evaporation off the surface of the skin, the SC signal was detrended by 
removing continuous, piecewise linear trends in the two low-passed signals: the very 
low-passed (VLP) signal was filtered with a 0.08 Hz cutoff frequency, and the low-
passed (LP) signal was filtered with a 0.2 Hz cutoff frequency. 

4.4 Electromyography (EMG) 

From the EMG signals we took a similar approach to the one we employed for the SC 
signal. From the normalized and low-passed signals, the mean, median, max, min, and 
derivative of the signal were extracted as features.  
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5 Results 

For the 75 excerpts a forward step-wise multiple linear regression (MLR) model 
between the acoustical and physiological descriptors and participant ratings was 
computed to gain insight into the importance of features for the arousal and valence 
dimensions of the emotion space. Table 3 provides the regression estimates and 
variance inflation factors (VIF) for each of the excitement and pleasantness ratings. 
The VIF quantifies the severity of multicollinearity in an ordinary least squares 
regression analysis. Table 4 shows the outcome of the corresponding analysis of the 
physiological features.  Finally, Table 5 shows the outcome of the analysis of the 
combined acoustic and physiological features.  

Table 3. Mean audio features and standardized beta weights of the regression analysis for 
excitement and pleasantness  

Excitement    β VIF  Pleasantness           β VIF 
RMS ** .17 2.30 Key Clarity **        .51 1.06 
Spectral Novelty ** -.21 1.56 Pitch **        .32 1.06 
Spectral Spread ** -.41 2.10 Key Mode **        -.30 1.00 
Spectral Entropy ** 
Spectral Centroid ** 
Pulse Clarity ** 

.24 

.25 

.18 

1.15 
1.13 
2.00 

Attack Times *        -.19 1.00 

 
R2 = .84 for Excitement. R2  = .42 for Pleasantness. * p < .05, ** p < .01 

Table 4. Physiological features and standardized beta weights of the regression analysis for 
excitement and pleasantness 

Excitement    β VIF Pleasantness            β VIF 
SDNN1** -.42 1.32  
Bvp3** -.27 1.08 Heart-rate2**        -.37 1.00 
Skin C4** -.31 1.17 EMGc4**        -.28 1.00 
EMGz1** .25 1.11    
Skin C1* 
Heart-rate5* 

.21 

.20 
1.07 
1.08 

   

Mean1 Standard deviation2 Maximum3 Minimum4 SpecHF5 
R2 = .55 for Excitement. R2  = .21 for Pleasantness. * p<.05, ** p<.01 

Shown in Table 3, the regression model provides a good account of excitement  
(R2 = .84) using only acoustic features (means of RMS energy, spectral centroid, 
spread, entropy and pulse clarity). Four features significantly predicted the 
pleasantness ratings (R2 =.42): the means of Key Clarity, Mode, Pitch and Attack 
Times. Thus the results show that features related to characteristics of harmony, pitch, 
and articulation contribute most to pleasantness.  
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Table 5. Combined audio and physiological features and standardized beta weights of the 
regression analysis for excitement and pleasantness 

Excitement   β VIF Pleasantness         β VIF 
RMS1 ** .16 2.28 Key clarity1 **       .46 1.00 
Spectrum Novelty1 ** -.21 1.59 Pitch1 **       .23 1.06 
Spectral Spread1 ** -.34 2.29 Key mode1 **      -.41 1.07 
Spectral Entropy1 ** .23 2.24 EMGZ3 **       .36 1.06 
Spectral Centroid1 ** 
SDNN2** 
Pulse clarity1** 

.26 
-.21 
.19 

1.40 
1.21 
1.57 

Attack Time1** 
Heart-rate4** 

     -.24 
-.22 

1.06 
1.13 

  Mean1 Minimum2 Derivative3 SpecLF4 
  R2 = .87 for Excitement. R2  = .56 for Pleasantness. * p<.05, ** p<.01 

Using only physiological features, the model provides an account of excitement 
with R2 =.55 (see Table 4). The standard deviation of the NN intervals (SDNN) in the 
heart rate signals contributes most to excitement, along with the max value of the 
BVP and the mean and minimum of the skin conductance and EMGz signals. The 
power spectrum of the heart rate in the high frequency band (0.15-0.4 Hz) also 
contributes to this dimension. For the pleasantness dimension the model provides R2 = 
.21 using the standard deviation of the heart rate signals and the minimum of the 
EMGc signals. Finally, using combined acoustical and physiological information 
(means of RMS energy, Spectral Centroid, Spread, Entropy, Pulse Clarity and the 
maximum value of SDNN), the model provides an account of excitement with R2 = 
.87. The corresponding estimates for pleasantness use acoustic features related to Key 
Clarity, Mode, Pitch and the attack slope, and physiological features related to the 
EMGz and heart rate (R2 = .56). 

6 Discussion 

In the present paper, the relationships among acoustic features and physiological 
features in emotional reactions to Romantic music were investigated. Our goal was to 
determine the importance of acoustic features in predicting the global emotional 
experience with music as measured with subjective ratings provided after each 
stimulus, and to explore the extent to which physiological activity may increase the 
prediction rate of emotion felt through peripheral feedback. A regression model based 
on a set of acoustic parameters and physiological features was systematically 
explored. The correlation analysis demonstrates that low- and mid-level acoustic 
features, such as RMS energy, Spectral Centroid, Spectral Spread, Spectral Entropy, 
and Pulse Clarity, significantly predict emotional excitement. The corresponding best 
features for the prediction of pleasantness are Key Clarity, Mode, Pitch and Attack 
Times. This result is in agreement with existing work on acoustic feature selection for 
emotion classification [10]. As far as the physiological features are concerned, the 
results indicate that features obtained from time and frequency analysis of the HRV 
series (SDNN, BVP), along with features of skin conductance, are decisive in the 
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prediction of participant ratings of excitement. Furthermore, features such as heart 
rate and corrugator EMG are important for pleasantness prediction. These findings are 
in agreement with previous research on music emotion recognition using 
physiological signals [26] and also support the findings of previous studies, according 
to which SC is linearly correlated to the intensity of arousal [22]. 

To the best of our knowledge a combination of audio and physiological features has 
not been employed in music emotion recognition tasks, and thus, we cannot compare 
our results with existing studies. There are, however, previous studies combining speech 
features and physiological responses for emotion recognition [33, 34]. The results of 
these studies show that the combination of speech and physiological features results in a 
moderate improvement of 3% for both valence and arousal. In our case the 
corresponding improvements are 3% and 14%, respectively, suggesting that the 
combination of acoustic and physiological features can provide more complementary 
information compared to the combination of speech and physiological features.  

Existing results show that combined acoustic features provide better prediction for 
arousal than for valence [11, 10]. Therefore, the significant increase of pleasantness 
prediction by employing both acoustic and physiological features in our study is 
noteworthy here. It seems that EMG measures and spectral features of HRV play a 
significant role for the correct differentiation of positive and negative valence, and 
thus contribute substantially to improved valence prediction. This result is of 
particular importance, as valence is an otherwise elusive and opaque dimension in 
music emotion research. Moreover, MIR approaches thus far have only considered 
objective acoustical/musical features in an emotion recognition task, thereby failing to 
account for the role of physiological responses in the evocation of subjective feelings.  
Thus, any attempt to model a listener’s affective state must also account for how 
subjective ratings of emotional experience may interact with the internal 
physiological state of the listening individual. Indeed, we hypothesize that our 
autonomic and somato-visceral reactions during music listening may influence the 
intensity and valence of our emotions through a process of peripheral feedback.  

7 Future Work 

There are several aspects in the work presented here that need to be addressed in 
future research. It remains to be investigated whether this particular model can be 
applied to other music-listening populations using other musical styles. Indeed, we 
believe that this approach could lead to fundamental advances in different areas of 
research because it may provide consistent descriptions of the emotional effects of 
particular musical stimuli. This, in turn, will have important implications for a number 
of disciplines, such as psychology and music therapy. In our study, feature-level 
fusion was employed. However, it appears that simply combining modalities with 
equal weighting does not always result in improved recognition accuracy. An 
alternative approach would be to decompose an emotion recognition problem into 
sub-problems, treating valence and arousal separately. For valence recognition, audio 
features could be used, whereas for arousal recognition physiological changes could 
be used.    
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Abstract. This paper presents two novel hybrid spatial audio systems
demonstrated for use in two-dimensional applications with their scala-
bility to three-dimensions. The emphasis of these hybrid systems is to
give further creative freedom to a composer, sound engineer or sound
designer. The systems are principally based on the end result of Am-
bisonics spatial audio reproduction systems. Since Ambisonics systems
are used primarily for temporary sound installations and exhibits, the
use of B-Format can be unnecessary. Therefore these systems revert to
producing channel based content rather than sound field content that
is later separately decoded. The presented systems use the decoder as
a real-time sound manipulation feature on a per sound source basis. A
comparison is drawn between the two systems and each method is de-
scribed as to how it can be used as part of a standard music production
workflow.

Keywords: Ambisonics, variable-order, variable-decoder, polar pattern,
octagon, spatial audio, surround sound, 2D, 3D.

1 Ambsionics Background

The work in this paper is based on Higher Order Ambisonics systems. Michael
Gerzon led the original Ambsionics development team in the 1970s and wrote
papers on the subject throughout his career [11–13]. Further work has been done
to expand Ambisonics into Higher Order Ambisonics [3–5, 15] and to develop
decoders, speaker layouts and evaluation of systems [1, 9, 10, 14, 17, 18, 31].
The basis of Ambisonics is to represent a three-dimensional auditory scene as a
sound field representation that can later be reconstructed for any user speaker
layout. An Ambisonics representation is based on a fixed order that is linked
to the localisation attributes of sound sources. Ambisonics theory is based on
spherical harmonics calculated from legendre polynomials.

Ymn(N2D)(θ, φ) =
√
2P̂mn(sinφ) =

{
cosnθ n ≥ 0
sinnθ n < 0

. (1)

P̂mn(sinφ) =

√
(2− φ0,n)

(m− n)!

(m+ n)!
Pmn(sinφ) . (2)

M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 58–81, 2013.
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Where Ymn is the spherical harmonic, n is the degree, m is the order and P̂mn

the associated Legendre polynomial.
The above equations use the N2D normalisation scheme. Several schemes exist

for Ambisonics and affect the maximum gain of each spherical harmonic. When
these are applied to a monaural sound source a sound field representation is
created and is known as B-Format. The 2D representation is based only on the
angular value θ as φ = 0o. The spherical harmonic expansion of the sound field
is truncated to a finite representation known as the Ambisonic order M and
each prior order m is included, 0 ≤ m ≤ M . For each included order m the
degrees calculated are n = ∓m. The total amount of harmonics in the sound
field representation is 2M + 1.

Once encoded, Ambisonics material can be played back over various speaker
layouts using a suitable decoder. The minimum number of speakers to correctly
reproduce 2D Ambisonics is 2M + 2 [22]. For a regular layout, i.e. one that has
the speakers equally spaced, the angular separation is simply 360o/L where L
is the number of speakers for 2D reproduction. For a regular layout the decoder
matrix can be calculated by using the Moore-Penrose pseudo-inverse matrix of
the spherical harmonics at each speaker position.

⎛
⎜⎝

Y(0,0)(spk1) Y(1,−1)(spk1) Y(1,1)(spk1) . . . Y(M,m)(spk1)
...

...
...

. . .
...

Y(0,0)(spkN) Y(1,−1)(spkN) Y(1,1)(spkN) . . . Y(M,m)(spkN)

⎞
⎟⎠

†

. (3)

Gerzon specified criteria for low and high frequencies reproduction known as
rV and rE vectors [11, 12, 14]. The given pseudo-inverse decoder results in the
standard, rV, decoder matrix. To create a decoder that maximises the rE vector
the decoder is then multiplied with gains grE based on each component’s order
and the system order.

grE = Pm(largest root of PM+1) . (4)

Furthermore the decoding can be changed to what is known as In-Phase de-
coding, using the gIn−Phase coefficients, so that there are no negative gains used
to create the sound’s directionality.

gIn−Phase =
M !

(M +m)!(M −m)!
. (5)

Ambisonics can be seen as creating a polar pattern of M th order in the direc-
tion of the sound source where the polar pattern is sampled by discrete speaker
positions. By increasing the amount of speakers the resolution of the polar pat-
tern is increased. In turn, by increasing the order, the directionality is increased
and by using different decoders as described above, the rear-lobe is altered.
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2 Variable-Order, Variable-Decoder Ambisonics

This section presents the novel idea of Variable-Order, Variable-Decoder Am-
bisonics. The concept allows for varying the reproduced polar pattern, and
therefore the sharpness of localisation, by setting the order used to a non-
integer value. Further to this, the idea of a variable-decoder is discussed that
can alter the amount of rear lobe of the sampled polar pattern. The two vari-
ables are linked but not interchangeable. The order alters the width of the main
lobe, whilst altering the amount and gain of, the rear lobes. The decoder alters
the gain of rear lobes whilst consequently altering the width and gain of the
main lobe.

2.1 Variable-Order

The result of encoding a monaural sound source to Ambisonics B-Format and
then decoding it for a speaker layout is equivalent to applying a gain to the
monaural sound and sending it to each speaker. Therefore in this described
approach, the audio signal is not converted to B-Format. Instead, the gains are
calculated numerically and applied based on the octagonal layout.

The variable-order is created by calculating the decoders of the identical type,
for each order. Since we are dealing with an octagonal layout the orders used
are 0 through 3. The spherical harmonic values are calculated for all included
orders for the sound source location θ and speaker gains obtained. By using
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Fig. 1. The reproduced polar pattern of a sound source at θ = 0o for Ambisonics
orders 1 through 3 are shown in (a). The half orders of 0.5, 1.5 and 2.5 are
shown in (b).
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interpolation the variable-order can be created by a mixture of 0th and 1st,
1st and 2nd, and 2nd and 3rd speaker gains. Figure 1 (a) shows the sampled
polar pattern for the whole orders. Figure 1 (b) shows the half orders using the
variable-order approach. As can be expected, the polar pattern of half orders
are directly between the whole orders. The variable-order approach can be used
to create the polar pattern of any decimal value order representation. For an
Ambisonics representation the gain of all speakers must equal one. This fact is
important so that a sound source does not experience an overall gain boost when
the variable-order is used as a creative feature.

2.2 Variable-Decoder

Three types of Ambisonics decoders have been presented in section 1 where
each is used for a specific purpose. However, these decoders offer an aspect of
creativity in being able to manipulate the rear lobe of the polar pattern, thus
altering the shape of the sound source’s polar pattern.

The variable-decoder can be calculated in the same manner as for the variable-
order concept. By using a weighted ratio that equals 1 of two types of decoder, a
variable pattern can be created. The weightings are calculated between rV and
rE decoders and the rE and In-Phase decoders. This is because the rE polar
pattern lies between the basic and In-Phase patterns.

Figure 3 shows the three decoders for order 1.5 on the left and the decoders
half way between the rV and rE decoders and the rE and In-Phase decoders.
The variable-decoder lies at the given ratio between the standard decoders.
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Fig. 2. The three standard decoder types for order 1.5 are shown in (a) and the
intermediate decoders in (b)
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2.3 Observations

The proposed methodology creates a set of variable-order, variable-decoder
speaker signals for an octagonal arrangement of speakers. The end result is sam-
pling the sound scene at regular intervals of a third order polar pattern [6]. The
resultant gain GL for the speaker at position θL can be calculated by eq. (6).

The sum of the gain of the orders must equal one; that is
∑N

L=1 GL = 1.

GL = a0 + a1 cos(θ + θL) + a2 cos(2(θ + θL)) + a3 cos(3(θ + θL)) . (6)

Therefore the variable-order is equivalent to increasing the next order gain
whilst the ratio of the prior orders’ gains remain the same. The variable-decoder,
is like altering the ratio between the a0 and a1 gain coefficients thus changing
the base polar pattern, as well as altering the ratio between higher orders.

2.4 Test Case

Figure 3 shows the plots for both second and third order using a variable-decoder
of 0.8 rV and 0.2 rE for a sound source at θ = 93o. The lower plot (c) shows
2.2 variable-order. The resultant variable-order has a maximum point between
the two whole orders and the other lobes are smoothed out. The secondary lobes
become more like an In-Phase decoder. The sum of the speakers for the variable-
order, variable-decoder remains 1. Hence no normalisation of the speaker signals
is needed. Due to the changing of the secondary lobe gains, the decoder type
attributes associated to integer orders are lost.

2.5 Calculating in the Decoder

The methodology presented here to calculate the Variable-Order, Variable-
Decoder Ambisonics has been to use a lookup table approach. First, all of the
values between the two decoders for the lower and higher integer order are inter-
polated. Then the resultant variable-decoders for both orders are interpolated to
produce the final signals. This has involved no creation of B-Format due to the
speaker feeds directly being produced by multiplying the sound source by the re-
sultant speaker gains. The same effect can be obtained by means of manipulating
the decoder. To calculate a variable-order decoder directly, the n = ∓m compo-
nents for individual order m = �M� of the variable order need to be multiplied
by a factor, ν as shown in eq. (7), that is chosen by the user.

⎛
⎜⎝

Y(0,0)(spk1) . . . Y(�M�,−�M�)(spk1) Y(�M�,�M�)(spk1)
...

. . .
...

...
Y(0,0)(spkN) . . . Y(�M�,−�M�)(spk1) Y(�M�,�M�)(spkN)

⎞
⎟⎠

†⎛
⎜⎝

1 . . . ν ν
... . . .

. . .
...

1 . . . ν ν

⎞
⎟⎠ .

(7)

The decoder type gains can then be multiplied to eq. (7) by use of a further
matrix. This uses the variable κ as the interpolation factor between the normal
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Fig. 3. The speaker gains of θ = 93o for second (a) and third (b) order and the
gains for 2.2 order (c) using a variable-decoder as presented in section 2.2 with
rV of 0.8 and rE of 0.2.

and grE or grE and gIn−Phase gains as presented in section 1. The matrix to
change the decoder type is given as:

⎛
⎜⎝

1− κ(0,0)(spk1) . . . 1− κ(�M�,−�M�)(spk1) 1− κ(�M�,�M�)(spk1)
...

. . .
...

...
1− κ(0,0)(spkN) . . . 1− κ(�M�,−�M�)(spkN) 1− κ(�M�,�M�)(spkN)

⎞
⎟⎠ . . .

⎛
⎜⎝

κg′(0,0)(spk1) . . . κg′(�M�,−�M�)(spk1) κg′(�M�,�M�)(spk1)
...

. . .
...

...
κg′(0,0)(spkN) . . . κg′(�M�,�M�)(spkN) κg′(�M�,�M�)(spkN)

⎞
⎟⎠ . (8)
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The use of eqs. (7) and (8) are compared to the initial interpolation, or lookup
table method in fig. 4. The original methodology as described in the beginning of
this paper is shown in (a) and the direct manipulation of the decoder approach
in (b). It can be seen that they do in fact result in the same outcome.
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(b) In Decoder Calculation

Fig. 4. This figure shows the identically produced speakers’ gains for a sound
source placed at θ = 0o using both the lookup table approach and calculating
the variable-order and variable-decoder within the decoder.
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2.6 rV, rE, Power and Energy of Variable-Ambisonics

widt To further examine this system’s behaviour as a result of the variable-order
and variabe-decoder, the rV and rE vectors proposed by Gerzon [3, 11, 12, 14, 31]
will be evaluated, as well as the power and energy values upon which those
metrics are based. The results are displayed in fig. 5. Between zeroth and first
order the rV linearly goes between zero and one. This is a somewhat obvious
result as zeroth order has no directionality and first order is the minimum for a
directional response. The power for which is the denominator for calculating rV,
resulting in a constant value of one for each value of θ. This is to be expected
since the speakers are regularly spaced and meet the minimum N criterion of
N > 2M +1. Although an expected result, it does determine that variable-order
is valid for rV cues and that the power is constant irrespective of variable-
order. The rE result however is an interesting one. We can see that the rE is
maximised at approximately m + 0.6 orders, not at the whole integer orders.
This can be attributed to the polar pattern produced becoming more like an rE
decoder polar pattern than an rV decoder. The response of rE is not linear to the
m+0.6 points but curved either side. Conversely the energy is not maximised at
m+0.6 orders. The energy between integer orders shows an exponential growth.
These results indicate that the variable-order effect should be examined for the
variable-decoders.
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Fig. 5. The rV and rE vector, power and energy values for zeroth through to third
order for Variable-Order, Variable-Decoder Ambisonics. The decoder used is the
regular rV decoder from the pseudo-inverse function. The values are independent
of θ since in a regular speaker array the rV, rE, power and energy are constant
for N > 2M + 1.
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Figure 6 shows the rV vector (a), rE vector (b) and energy (c) values for
variable-orders of variable-decoder. The power is not shown in this figure as for all
cases it has a value of one. Thus for power the Variable-Order, Variable-Decoder
Ambisonics satisfies the constant power condition. The rV plot shows that the
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Fig. 6. rV, rE vector (figures a and b) and Energy attributes (figure c) of
Variable-Order, Variable-Decoder Ambisonics. Under various conditions the in-
termediate order values are not linear between the normal integer orders.
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Fig. 6. (Continued)

rV vector is reduced as the variable-decoder increases from zero. For all variable-
decoder values the rV linearly increases between integer order values. For the
same variable-order the rV value is linear between rV and rE decoders, and then
the rE and In-Phase decoders. The rE values show that the curved nature of the
rV decoder for variable-order is smoothed out as the variable-decoder increases
above one. The rE decoder shows a slight curve between the integer orders in
rE value, but for the In-Phase decoder the increase is linear between integer
orders. The results show that for the m+0.6 order the rV decoder now performs
similarly to the In-Phase decoder for rE value. Finally, the energy plot shows the
reduction of the curvature of energy value as the variable-decoder is increased
from zero order. It shows that the energy is always greatest for variable-decoder
of zero, rV decoder, and falls in value as the variable-decoder is increased. The
maximum energy values for a variable-order are for the rV decoder. It can be
determined that the greater energy value does not result in the best rE vector
value.

To conclude, using variable-order can result in a heightened rE vector value for
Variable-Order, Variable-Decoder Ambisonics and is better than the next highest
integer order. This is where the rE value is maximised around the m+0.6 point.

2.7 Composition/Production Tool Implementation

The tool to use the variable-order and variable-decoder methodology has been
implemented in the Max/MSP 5 software environment for Mac OSX. The tool is
designed to receive audio signals from digital audio workstations (DAW), e.g. via
Jack or Soundflower, for a total of 16 monaural and 4 stereo signals. The controls
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Fig. 7. The user interface for the Variable-Order, Variable-Decoder Ambisonics
spatialisation tool

for each channel are sent via midi commands which are stored in a digital audio
workstation project. User Control Panels were built for this function for the
Cubase/Nuendo environment, but VSTs, AUs or other midi capable software
can be used to control the settings for each sound source. The premise for this
is that no extra saved data is needed that cannot be stored in a common DAW
project.

Figure 7 shows the user interface for the tool. The user definable parameters on
the interface are On/Off, midi driver, audio driver and where to save a recorded
file. The interface has eight LED style meters for monitoring the signal level
going to each speaker so that distortion can be avoided. Since users may not
always have an eight speaker layout available, a binaural (over headphones) mix
is simultaneously available.

2.8 Distance

Distance is a user definable parameter and is accomplished by gain attenuation
only. No delay has been included since for music purposes pitch shifting of sound
sources will affect the overall tonal effect and harmonicity of the work, alter the
speed and therefore ensemble timing of the music and finally can include zip-
per noise. The 1/r inverse law is used to implement the gain change at sources
greater than 1.0 where the maximum value is 10. Since the roll off of 1/r sim-
ulates anechoic conditions, the feature is given as a creative and not real-world
application. For sources that are placed inside the speaker layout the distance
calculation changes to 1 + cos(90or) so that infinite gain is not reached. The
maximum gain at the central position is 2.0, or approximately +6dB.

2.9 Inside Panning

Sound sources that have a distance of less than 1.0 are placed inside the speaker
array. This is done by altering the reproduced polar pattern. If the order of re-
production is 1 then this is the same as cancelling out the 1st order spherical
harmonics and doubling the zeroth order spherical harmonics. This methodology
was first presented in [19]. For the case of third order two-dimensional Ambison-
ics, the maximum allowed in this tool, the inside-panning function is expanded.
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Fig. 8. The change in polar pattern exerted by a third order sound source as it
is moved from a distance of 1.0 to 0.0 to be placed in the middle of the speaker
array

The result is that even orders are doubled and odd orders are cancelled out.
This again is all done as numerical and not audio calculations. Figure 8 shows
the polar pattern change going from 1.0 to 0.0. The result is strong lobes from
opposite poles giving the psychoacoustic illusion of the sound source being at
the centre of the array.

2.10 Reverberation

Reverberation is produced in the tool by transforming the sound source into
B-Format and processing it through either the Wigware VST (Virtual Studio
Technology) reverberation plugin [31] based on the freeverb algorithm or by using
a convolution plugin using B-Format impulse responses, such as those available
[20, 30].
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2.11 Original Composition

The authors commissioned a composer to create a multimedia piece that used
the creative aspects of the Variable-Order, Variable-Decoder tool and technology.
The piece was originally written for speakers and video projection. The work has
subsequently been shown at various events and is available as a binaural version
online. The following describes the work in the composer’s words:

The composition was written with the intention of being realised through
the use of the Variable-Order, Variable-Decoder Ambisonics two-
dimensional tool for an octagonal speaker arrangement (ed. as described
in section 2.7). This allowed for a greater creativity in conveying layers
within the musical scene at varying distances, widths and positions across
a horizontal plane. The tool helped create a greater sense of foreground
and background. Placing the ‘mechanical’ elements in the distance and
wide when in city surroundings for example, but brought to the centre
and narrowed when portraying a specific man-made character/element
such as the record player, horse, dog and heart. The cello and violin parts
were generally placed in the stereo field in accordance with their on-screen
presence but the distance feature was employed to convey the strength of
the character’s emotions, getting closer at climax points to create in-
tensity for the listener. The tool was used most creatively in trying to
achieve a sense of movement through swirling musical layers around the
full range of the eight speakers for example in the rapid bustling city and
spiral staircase scene, equally in the slow panning of the opening and pier
scenes.

When working with the composer on the mixing stage of the work, the effect
of the source width could be clearly heard, as well as the distance change. The
aspect of width helped enhance the use of the space surrounding the listener and
the use of distance emphasised the busy nature of the world being portrayed by
objects coming and going. The use of rotating the sound field was successfully
used to indicate character movement and disorientation. The use of the variable-
decoder was sparse, partly due to overlapping of the variable-order control where
both alter the sound source width, but where the variable-order is far more
intuitive to the user, in this case, the composer.

3 Variable-Polar Pattern Reproduction

Since the final output of an Ambisonics reproduction to the speakers is the same
as sampling a polar pattern [3] exhibited by the audio source material, a new
method is created whereby the intermediary B-Format and decoding is omitted.

Eargle [6, 21] gives two formulations for calculating higher order polar pat-
terns. The first is given for calculating cardioid patterns in the form of G =
(0.5+ 0.5 cos(θ))cos(M−1)(θ) for the M th order, which is expanded for any base
polar pattern in eq. (9) below. We define a base polar pattern as that created as
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a mixture of zeroth, A, and first, B, order components to calculate a gain G at
horizontal angular position θ. Where A+B = 1 is constant.

G = (A+B cos (θ)) cos(M−1) (θ) . (9)

The second equation for a higher order pattern is given as the product of two
or more first order microphone patterns:

G = (A1 +B1 cos (θ)) (A2 +B2 cos (θ)) . . . (AM +BM cos (θ)) . (10)

where A1···M and B1···M are the zeroth and first order terms for each order. To
keep controls to a minimum we can limit the possible polar patterns so that
[A1, B1] = [A2, B2] = [AM , BM ]. By using this identity we can use a variable
order for M below:

G =

{
(A+ B cos (θ))M M is odd
−(|A+B cos (θ)|M ) M is even

. (11)

Figure 9 shows the differences for calculating omni-directional, cardioid and
figure-of-eight polar patterns using eq. (9) method and eq. (11) method. It can
be seen for method A that for the omni-directional above first order the pattern
changes to a figure-of-eight pattern of order M − 1. When looking at higher
order cardioid for method A, we see that rear lobes are formed on the cardioid
pattern. Finally the figure-of-eight pattern for method A behaves as expected
and so are not shown; as the order increases the angular distance between the
-3dB points decreases, giving a narrower polar pattern around the maxima and
minima points. In the results of eq. (11) method, the omni-directional pattern
remains omni-directional at all orders. The cardioid pattern for eq. (11) method
does not develop rear lobes, but becomes a beam like pattern. Finally the figure-
of-eight pattern for eq. (11) method behaves like that of method A, as we expect;
a tighter figure-of-eight with greater side rejection. From these findings eq. (11)
method will be used as it produces the most useful higher order polar patterns.

The gain applied to the Lth speaker is given as:

GL =

{
(A+B cos (θ − θL))

M M is odd
−(|A+B cos (θ − θL)|M ) M is even

. (12)

To maintain a constant level whilst varying the order and/or polar pattern,
like in the variable-Ambisonics method, a factor C is needed to scale the speaker
gains:

C =
1

N∑
L=1

GL

. (13)

where the maximum order is based on N number of speakers being used, M =
(N − 2)/2. Note that this will give a variable order and using the �	 function
will give the highest integer order available.
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(c) Equation (9) Method
Cardioid
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Fig. 9. Comparison of pattern methods A from eq. (9) and B from eq. (11) for
omni-directional (a and b) and cardioid (c and d) as discussed in section 3

The produced gains for θ − θL are shown in fig. 10. The sub-cardioid repro-
duction increases directivity with variable-order whilst the rear and side of the
pattern is reduced in gain. The cardioid pattern has a constant zero point at
the anti-pole, where the directivity and gain of the single positive lobe increases



Two-Dimensional Hybrid Spatial Audio Systems 73

−180 −120 −60 0 60 120 180
−0.3

−0.15

0

0.15

0.3

0.45

0.6

θ − θ
L
 (o)

A
m

pl
itu

de

 

 

Variable−Order=1.0
Variable−Order=1.5
Variable−Order=2.0
Variable−Order=2.5
Variable−Order=3.0

(a) Sub-cardioid

−180 −120 −60 0 60 120 180
−0.3

−0.15

0

0.15

0.3

0.45

0.6

θ − θ
L
 (o)

A
m

pl
itu

de

 

 

Variable−Order=1.0
Variable−Order=1.5
Variable−Order=2.0
Variable−Order=2.5
Variable−Order=3.0

(b) Cardioid

−180 −120 −60 0 60 120 180
−0.3

−0.15

0

0.15

0.3

0.45

0.6

θ − θ
L
 (o)

A
m

pl
itu

de

 

 

Variable−Order=1.0
Variable−Order=1.5
Variable−Order=2.0
Variable−Order=2.5
Variable−Order=3.0

(c) Hyper-Cardioid

Fig. 10. Variable orders 1.0 to 3.0 for sub-cardioid (a), cardioid (b) and hyper-
cardioid (c) polar patterns

with order. The hyper-cardioid pattern has a single negative lobe at the anti-
pole of the main positive lobe. With an increase in order the directivity and gain
of the main lobe increases whilst the negative lobe decreases in gain. Since this
method uses a base polar pattern, of which the order can be changed variably,
a user of a system can see the change in polar pattern easily. The figure-of-eight
polar pattern poses a problem. Due to the equal gain of opposite polarities at
anti-poles, the gains tend to infinity because of the cancellation when calculating
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C in eq. (13). This also creates a problem since a speaker signal would have a
maximum above unity gain. For this reason the base polar pattern should be
limited so that 0 ≤ A � 0.75 in eq. (12).

The calculation of speaker gains in this way is similar to 3DVMS [2, 7, 16,
29], three dimensional virtual microphone synthesis, where higher order cardioid
patterns are used. This has been compared to Ambisonics by Manola et. al.
[16], although in their findings there were errors of localisation circa 180o which
questions the methods used and the validity of the results.

3.1 Real-Time Application

A demonstration application was built using Max/MSP that is controlled and
fed audio by a digital audio workstation. Audio is sent from each track using
outputs via Jack OS X audio router as monaural sound sources. Control data is
sent from a VST audio plugin on each audio track using the OSC (Open Sound
Control) protocol [32] using a similar, but reverse, idea to that described in [8].
The audio plug-in does not process the audio in any way as its only use is to
communicate OSC commands in this system environment.

The VST presents controls to the user; Azimuth, Pattern, Order and Speakers.
The Azimuth control is ranged [-180 180]o anti-clockwise. The Pattern control
varies the base polar pattern. The Order control alters the variable order of the
sound source. This control’s range is altered by the Speakers control as described
in section 3. Therefore it can be set as a relative maximum order, especially if the
audio mixture is going to be played back over different speaker configurations.
The Speaker control has the range [4 12] in whole integers to represent the
amount of speakers in the reproduction array. Finally the VST has 20 programs.
These programs are presets to change the audio track that the VST is altering
in the application. When changing program the other controls remain the same.

The Max/MSP application presents the user with minimal controls since they
are for the most part received from the VSTs within the DAW project. The user
can turn audio processing on/off, select the sound source’s graph to be plotted,
view the number of speakers being used and see output meters for the 12 possible
speakers. Of most interest to a user are the graphs that are plotted. This is a
plot of the polar pattern being used by the chosen sound source. The positive
lobe is shown in red and the negative in blue within the applications display
window. This is plotted on top of up to twelve black circles representing the
speaker positions. This gives the user visual feedback of how the controls of the
VST are affecting the sound source reproduction. The graph to make things
clear is normalised, meaning eq. (13) is ignored for plotting purposes to avoid
confusion to the user.

3.2 Vector Driven Variable-Polar Pattern Reproduction

Vector Base Amplitude Panning [23–28] in two dimensions gives the same result
as the cosine/sine power panning law resulting between the two speakers neigh-
bouring the sound source. This fact can be exploited to calculate the highest



Two-Dimensional Hybrid Spatial Audio Systems 75

order reproducible by the neighbouring speakers. If the sound source is assumed
to be directly inbetween the speakers and that the polar pattern reproduced is
that of a cardioid, where the most highly directional sound source is desired, then
the highest order can be calculated. The differing cardioid patterns are shown
for different speaker separation in fig. 11. Equation (14) shows the calculated
highest order, MV , under these assumptions.

MV =
log
(

1√
2

)
log (0.5 + 0.5 cos (θML))

. (14)

Where θML is the angle between the mid-point of the neighbouring speakers
and one of the speakers, or put another way; the angular separation between the
neighbouring speakers divided by two.
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Fig. 11. The cardioid patterns calculated for four different speaker separations;
65.53o, 45o, 30o and 15o. The respectiveMV values are 1.00, 2.19, 5.00 and 20.17.
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This could be expanded for any polar pattern by taking the logarithm of
eq. (11) in the denominator of eq. (14). Caution has to be taken when using
polar patterns with negative lobes. It is not guaranteed, due to the speaker
placement, that the negative gains will be reproduced at all. This could result in
the exhibited polar pattern varying with the source position as MV is changing.

It is, however, not guaranteed that the sound source will be in the middle of
the two neighbouring speakers. When at a speaker’s location the sound source is
only reproduced by that speaker alone and therefore the calculated order would
be infinite as there is no directional truncation. To overcome this problem the two
neighbouring midpoints between the closest three speaker are found. The highest
order of both midpoints is found using eq. (14) and then interpolated based
on the angular distance between the sound source and the speaker midpoints.
Finally the interpolated MV is used in eq. (12) to find the initial speaker gains
and the power kept constant by eq. (13). This procedure is shown in the flow
diagram in fig. 12.

3.3 Expanding to Three-Dimensions

Expansion from the two-dimensional formulae used so far to three-dimensions is
trivial. Expanding this theory to the three-dimensional case requires replacing
the cos (θ) terms to cos (θ) sin (φ) in eqs. (10), (11) and (12). The resulting three-
dimensional polar pattern is thus given as:

GL =

{
(A+B cos (θ − θL) sin (φ− φL))

M
M is odd

− (|A+B cos (θ − θL) sin (φ− φL)|M
)

M is even
. (15)

where φ is the elevation angle of the sound source and φL the elevation angle of
the speaker gain being calculated. The speaker gains will need normalising after
calculation using eq. (13).

4 Comparison

In this section we present a comparison between the Variable-Order, Variable-
Decoder Ambisonics system and the Variable-Polar Pattern Reproduction
system.

It can be seen in the difference between the speaker gains shown in figs. 1,
3 and 10 that the former system gives a higher degree of directionality due to
higher gain at the main lobe position. However, it does also introduce more rear
lobes of both negative and positive gain, whereas the latter system retains the
amount of rear lobes throughout the change of variable-order. The controls of
altering a base polar pattern and variable-order are intuitive to an end user and
have a clear distinction when looking at the plots of altering one or another
of the parameters. With the first system this is not the case and the two vari-
able controls both alter the same attributes of the polar pattern, although in
different ways.
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Calculate VBAP
speaker gains

θ and θL

Find the two closest
speaker midpoints

Calculate θML(1)

Find Mvector(1)

eq. (14)

Calculate θML(2)

Find Mvector(2)

eq. (14)

Interpolate be-
tween Mvector(1)

and Mvector(2)

Calculation of
Variable-Polar

Pattern speaker gains
eq. (12)

Speaker feeds

Vector Calculation

Order Calculation

Variable-Polar Calculation

Fig. 12. Block diagram of the calculation of the Vector Driven Variable-Polar
Pattern Reproduction. The Variable-Polar Pattern block could be exchanged for
Variable-Order, Variable-Decoder Ambisonics or other spatialisation method.

A comparison between the two methods can be drawn using the rV and rE
vectors. Figure 13 shows this comparison using 2.5 order. The left column shows
the results for the Variable-Order, Variable-Decoder Ambisonics system and the
right column the results for the Variable-Polar Pattern Reproduction system.
The In-Phase decoder and cardioid pattern both produce identical polar patterns
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(d) Cardioid Reproduction
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Fig. 13. Comparison of variable-ambisonics and variable source pattern using rV
and rE vectors to represent low and high frequency directional cues presented
in section 4 for order 2.5
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and so have the same rV and rE values. High frequencies are localised better than
lower frequencies. The rV decoder and hyper-cardioid are similar in that they
both have rear negative lobe(s). The hyper-cardioid has an rV above 1.1 which is
unseen in Ambisonics unless the decoding is done for an order that the speakers
cannot be replayed on and in that case is an error. The rV decoder however has
better high frequency localisation than the hyper cardioid. The sub-cardioid, as
one might expect, has poor localisation for both high and low frequencies.

5 Conclusion

Two novel spatial audio systems have been presented and used in real appli-
cations that give end users, such as composers, musicians, sound engineers or
sound designers, further creative freedom of spatial audio reproduction other
than angular position and distance attenuation. The systems have been based
on the theoretical underpinnings of Higher Order Ambisonics, however, by elim-
inating the use of B-Format as a sound scene representation results in a channel
based approach like that of stereo, 5.1 and 7.1. It could be argued that by re-
moving the sound field representation format that it has lost one of the best
traits of Ambisonics, although in many situations such spatial audio systems are
designed for a particular exhibition or speaker reproduction environment where
the B-Format signal is not published or shared.

The first system presented here has been used to produce an animation sound
track exploring the creative use of the system. From this experience and the
composer’s feedback the second system was developed. Overall the second system
offers intuitive user controls and a wider degree of freedom.

Examples of both these systems are available as binaural sound tracks for
playback over headphones and can be seen at:
www.elec.qmul.ac.uk/digitalmusic/audioengineering/spatialaudio/index.html.
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Abstract. The 3D audio coding forms a competitive research area due to the 
standardization of both international standards (i.e. MPEG) and localized stan-
dards (i.e. Audio and Video Coding Standard workgroup of China, AVS). Per-
ception of 3D audio is a key issue for standardization and remains a challenging 
problem. Besides current solutions adopted from traditional audio engineering, 
we are working for an original 3D audio solution for compression. This paper 
represents our initial results about 3D audio perception include directional mea-
surement of Just Noticeable Difference (JND) and Perceptual Entropy (PE). We 
also represent the possible applications of these results in our future researches. 

Keywords: 3D audio, perceptual audio processing, audio compression. 

1 Introduction 

With the current trend of 3D movies and the popularization of 3DTV, 3D audio and 
video technology has become a research topic in multimedia technology. To provide 
the audience with a more immersive and integrated audio-visual experience, audio 
must work collaboratively with 3D video to provide three dimensional sound effects. 
However, existing 3DTV and 3D movie systems usually adopt conventional stereo 
audio and surround sound technology, which only provides very limited sound locali-
zation ability and envelopment in horizontal plane. Although there is not a generally 
acknowledged definition for 3D audio, it is widely accepted that 3D audio must have 
the following characteristics; localization of sound image in arbitrary direction in 3D 
space, realizing the distance perception of sound and giving a improved feeling of 
audio scene. Nowadays two types of technology are able to satisfy the requirement of 
3D audio, one is based on physical principles and aims at reconstructing the original 
sound field, the other is based on principle of human perception and aims at giving 
the listener a virtual sound image. Wave Field Synthesis (WFS), Ambisonics and 22.2 
multichannel systems are three typical 3D audio systems following those principles. 

This paper is arranged as follows. In Sect. 2 an introduction to the three 3D audio 
systems is presented and the existing problems are discussed, where we conclude the 
complexity of the 3D systems and efficiency of the signal compression will be two 
problems for the popularization of 3D audio. In Sect. 3 we present our related work in 
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3D audio technology, including hearing mechanism and signal compression research. 
More specifically, we investigate the JND of the direction perception cues for human 
in horizon plane. This is useful in simplification the 3D audio recording and playback 
systems, and removing the redundant perceptual information in 3D audio signals. In 
Sect. 4 the development trends of 3D audio and our future work are discussed. 

2 Brief View of Typical 3D Audio Systems 

2.1 Wave Field Synthesis (WFS) 

a. The Principle of Wave Field Synthesis 
The concept of WFS was introduced by Berkhout in 1988 [1], its physical theory can 
date back to Huygens principle which suggests that a wave which propagates from a 
given wave front can be considered as emitted either by the original sound source or 
by a secondary source distribution along the wave front [2]. To reconstruct the prima-
ry sound field, the distribution of secondary source can replace primary source. The 
concept was later developed by Kirchhoff and Rayleigh, and the Kirchhoff-Helmholtz 
integral they proposed can be interpreted as follows: if appropriately secondary 
sources are driven by the values of the sound pressure and the directional pressure 
gradient caused by the virtual source on the boundary of a closed area, then the wave 
field within the region is equivalent to the original wave field [3]. By adding a degree 
of freedom to the secondary source distribution, Kirchhoff-Helmholtz generalized 
Huygens principle.  
 
b. Realization of WFS 
According to the above theory, WFS reproduces the primary sound field in time and 
space by making using of small and individually driven loudspeakers array, and can 
recover the spatial image precisely in the half space of receiving end from loudspeak-
er arrays [4]. 

But there is some limit for WFS in application. WFS needs a continuous, closed 
surface and a large number of idealized loudspeakers, but in practice there is only a 
discontinuous loudspeaker array. According to spatial nyquist sampling Theorem, if 
the interval between loudspeakers is less than half the wavelength of a sound wave, 
aliasing will not occur [5]. 

So according to spatial nyquist sampling Theorem, WFS can be realized by limited 
and discrete loudspeakers within a certain frequency range. For example, limited line 
loudspeaker with even intervals can reconstruct sound field in 2D horizontal plane 
[6]. In the recording stage, the listening area is surrounded by a microphone array. 
The microphone array consists of pressure and velocity microphones, which record 
the primary sound field of external sound sources. In the reconstruction stage, the 
microphones will be replaced by the loudspeakers. Each loudspeaker is driven by 
signal recorded by the corresponding microphone. The geometric shape of the micro-
phone array and loudspeaker are the same [7]. 
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2.2 Ambisonics  

a. The Principle of Ambisonics  
Ambisonics emerged in the 1970’s and the main contributor is Gerzon [8]. The prin-
ciples of Ambisonics are as follows. A certain wave (sound field) can be expanded on 
a sphere in sphere coordinate system by spherical harmonic functions. At the opposite 
end, superposition of spherical harmonic functions can rebuild a wave (sound field). 
There are n=2m+1 spherical harmonic functions at every order m of Ambisonics, a 
3D system of M order consists of all spherical harmonic functions at every order m 
(0≤m≤M), total channel number N satisfies N=(M+1)2. 
 
b. Two Simple Format of Ambisonics 
The first format of Ambisonics proposed by Gerzon is B format, which displays an 
omnidirectional sound field by four channels: W, X, Y, Z [9]. Traditional monophony 
and stereophony can be seen as the subsystems of Ambisonics [10]. Sound location in 
horizontal plane is realized using three channels W, X, Y, and the fourth channel Z is 
used for reconstructing height information. Channel W is a pressure signal, and X, Y, 
Z are directional signal. B-format is used in studio and professional application. 

The second format of Ambisonics is UHJ system which can convert directional 
sound into two or more channels and solve the incompatibility problem of four chan-
nels Ambisonics with monophony, stereophony [11, 12]. The coding scheme provided 
by UHJ can be used in broadcasting, digital audio recording [13]. 
 
c. Playback Technology of Ambisonics 
According to the principle of Ambisonics, the decomposition of a sound field requires 
the expansion of infinite order spherical harmonic functions. But in practical applica-
tion, limited order truncation of spherical harmonic functions expansion is necessary. 
B-format is one order expansion. Ambisonics was expanded to high order in the 
1990’s, the sweet point was enlarged to an area. High order Ambisonics promotes 
sound location with the price of more channels and loudspeakers. We can get better 
reconstruction quality using higher order Ambisonics. The encoding process of Ambi-
sonics is to preserve the result of spherical harmonic functions multiplying the signal 
picked up by microphones. The decoding process is to calculate a group of louds-
peaker signals according to the rebuilt sound field that must be equal to the primary 
sound field at listening point. This can be done by solving the inverse matrix  
which consists of spherical harmonic functions that are associated with locations of 
loudspeakers. 

2.3 22.2 Multichannel Sound Systems 

a. Fundamentals of Multichannel Sound Systems 
The research of spatial hearing and sound source localization indicates that there are 
slight time and level differences between two ears when spatial sound signals arrive at 
the ears. For the estimation of direction and distance of sound source, the difference 
between the two ears signals is most relevant. Actually these differences, called  
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binaural cues, are Interaural Time Difference (ITD) and Interaural Level Difference 
(ILD). ILD and ITD indicate the level difference and time difference between left and 
right ears respectively [14]. 
 
b. Stereo, 5.1 Surround Sound and 22.2 Multichannel System  
The binaural localization theory is utilized in stereo system, i.e. time and level differ-
ences between signals from two loudspeakers are utilized in sound reproduction in 
order to reconstruct the spatial perception of the audience.  

Traditional stereo cannot provide the sense of encirclement and immersion because 
the perception of the sound environment mainly relies on the lateral reflected sound. 
Surround sound, which constitutes an extension of stereophony, provides full spatial 
immersion by using reverberation and reflection. The most typical multichannel  
surround systems are the Dolby surround system, DTS Digital Surround.  

Since loudspeakers in Dolby 5.1 are arranged in the same horizontal plane, the  
reproduction sound image cannot be extended to three dimensions. In 2009, Dolby 
laboratory presented ProLogic IIz, which extended Dolby 7.1 with height channels 
(7.1+2). By reproducing early and late reflections and reverberation, ProLogic IIz 
provide a much wider range of spatial sound effects such as spatial depth and spatial 
impression [15]. The ProLogic IIz configuration is showed in Fig. 1. Audyssey  
Dynamic Surround Expansion (DSX) is a scalable technology that expands auditory 
perception by adding height channels, which is in a similar way to Dolby 9.1.  

 

 

Fig. 1. Dolby IIz configuration 

NHK laboratory developed the 22.2 multichannel prototype system in 2003. The 
system consists of three layers of loudspeakers and overcome the lack of height per-
ception with 3D immersion and sound image localization. K. Hiyama and Keiichi 
Kubota evaluated the minimum number of loudspeakers and its arrangement for re-
producing the spatial impression of diffuse sound field respectively [16]. The results 
showed that if the interval between adjacent loudspeakers is 45° in both horizontal 
and vertical plane, there is sufficient horizontal sound envelopment and a good sense 
of spatial impression. Therefore, the 22.2 multichannel system consists of loudspeak-
ers with a middle layer of ten channels, an upper layer of nine channels, and a lower 
layer of three regular channels and two Low Frequency Effects (LFE) channels. Fig. 2 
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The 22.2 multichannel system, which is based on conventional surround systems 
plus high and low channels to produce three dimensional sound images, can be easily 
downmixed for 5.1 system reproduction. It is likely to become a popular 3D system 
since terminals can be set up with little cost using simplified configuration (10.1 and 
8.1 channels), especially when the 5.1 system has already been installed. In 2011, ITU 
(Report BS.2159-2) pointed out that the 22.2 multichannel system has some problems 
to be solved: The method to localize more efficiently by using the upper and lower 
layers and how to reproduce three dimensional sound image movements. In addition, 
although it is not difficult to downmix 22.2 channel signals to 5.1 channel signals, the 
3D spatial audio effects are discarded. Hence, producing three dimensional effects in 
home entertainment environments with limited loudspeakers is a problem. Further-
more, without compression, the data rate of 22.2 system can reach 28Mbps and the 
size of an one-hour audio file is about 100Gb. As a result, it is not possible for  
the current storage device and transmission channel to adapt to this enormous data. 
The application and development of 22.2 multichannel systems are constrained by the 
technology of compression. 

3 Hearing Mechanism and Compression Research in 3D Audio 

3.1 The Research of Hearing Mechanism 

From mono, stereo, surround sound, and then to the 3D audio, the main line of de-
velopment in audio systems is to extend the range of the sound image. Audiences are 
able to locate the sound which is any position around them in order to bring them a 
better sense of encirclement and immersion. The positioning of spatial orientation for 
sound sources is an important content of 3D audio, while the study of perceptual 
characteristics is an important research field of 3D audio. For example, the arrange-
ment position of the 24 speakers in 22.2-channel system is based on the test and 
analysis of the angle resolution of sound in horizontal and vertical plane by human 
ear. In addition, the perceptual research of spatial orientation parameters for  
sound source is also important for the efficient encoding of the multi-channel audio 
signal. Therefore, the perceptual characteristics of sound source localization parame-
ters in the 3D sound field are an important way to solve the problems of 3D audio 
systems. 

The perceptual sensitivity of the sound source in the horizontal plane is significant-
ly better than that of the vertical plane or distance by the human auditory system. In 
the horizontal plane, the positioning of the sound source is dependent on the two bin-
aural cues: ITD and ILD.  The human ear can perceive a change in sound image 
orientation only when the difference of binaural cues reaches a certain threshold val-
ue. This threshold value is known as Just Noticeable Difference (JND). The influen-
cing factors of JND for binaural cues are various, including frequency and orientation 
of the sound source. A wide range of measurements and analysis of these factors has 
been performed. 
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Hershkowitz in 1969 [23] and Mossop in 1998 [24] have been researching the  
influence of sound source position on the perceptual threshold JND of ITD and  
ILD. The results show that the greater the difference of left and right channels in  
intensity and time, the larger the JND value of the human perception. This shows  
that the human ear is less sensitive when the sound source is closer to the left and 
right sides. 

Millers in 1960 measured JNDs of ILD on the midline with pure tones and there 
were 5 Normal-Hearing (NH) subjects took part in the experiment [25]. The result is 
as follows: JNDs were around 1dB for 1000Hz, around 0.5dB for frequencies higher 
than 1000Hz and somewhat smaller than 1dB for frequencies lower than1000Hz. The 
test data showed worse sensitivity of ILD at 1000Hz than at either higher or lower 
frequencies. Larisa in 2011 has been researching the influence of the frequency of the 
signal on the JND of ITD. The results showed that the perceptual threshold of ITD 
has a strong dependence on the frequency [26]. 

The measurement data of JND for binaural cues were fragmented and the conclu-
sions were generally described qualitatively for perceptual threshold of binaural  
cues. It is difficult to perform mathematical analysis and model accurately and cannot 
fully reveal the principal of the perceptual threshold of binaural cues. So the JND 
measurement of binaural cues in all-round, full-band and the mathematical analysis 
are important issues to reveal the perceptual characteristics of binaural cues. In  
order to solve the above problem, we have undertaken the research of perceptual  
characteristics for binaural cues: 

In order to study the impact of the frequency and direction on binaural cues JND, 
our team measured full band JND of binaural cues and analyzed its statistics and  
distribution characteristics.  
 
a. Subjects. 12 NH subjects participated in this study, 7 males and 5 females, all  
subjects were aged between 19 and 25 years. 
 
b. Stimuli. The method in this article used a two-alternative-forced-choice paradigm  
to measure the JND. Both reference and test signals were 250 ms in duration  
including 10 ms raised-cosine onset and offset ramps. They were randomly combined 
into stimulus and separated by 500 ms duration. The stimuli were create by personal 
computer and presented to the subjects over headphones (Sennheiser HDA 215)  
at a level of 70 dB SPL. In order to exclude other factors influence on this experi-
ment, the environment of the entire testing process should be consistent and the  
intensity of test sound must remain around 70 dB SPL. Meanwhile the ITD should be 
zero in the whole experiment in order to remove the effect on the result caused by 
other binaural cues and the sum of energy of left and right channels should remain 
unchanged. 

The reference values of ILD in these experiments were 0, 1, 3, 5, 8 and 12 dB, 
which respond to 6 azimuths (about 0~60°) in the horizontal plane from midline to the 
direction of the left ear. 
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The whole frequency domain was divided into 20 sub-bands, each frequency  
sub-band satisfied the same perceptual characteristics of human ear.  

The stimuli are pure tones whose frequencies are the center frequencies of  
sub-bands, these frequencies are 75, 150, 225, 300, 450, 600, 750, 900, 1200, 1500, 
1800, 2100, 2400, 2700, 3300, 4200, 5400, 6900, 10500, 15500 Hz. 
 
c. Method. Discrimination thresholds were estimated with an adaptive procedure. 
During any given trial, subjects would listen to two stimuli by activating a button on a 
computer screen by mouse-click, with a free number of repeats but the order of two 
stimulus were changed. The subjects should indicate which one was lateralized to the 
left relatively by means of an appropriate radio button response in 1.5 s. 

An adaptive, 1-up-3-down method was also used in this article. The difference of 
ILD in dB was increased in every one wrong or decreased in every three consecutive 
correct judgments. The difference between reference and test signals in first trials was 
the initial variable, which was much larger than the target JND, it was changed by an 
given step according to previous test results.   

The step was changed adaptively, it was adjusted by 50% for the first two rever-
sals, 30% for the next two reversals, then linear changed in a small step size for the 
next three reversals, until the final step size reach the expected accuracy for the last 
three reversals. In a transformed-up-down experiment, the stimulus variable and its 
direction of change depend on the subjects’ responses. The direction alternates back 
and forth between “down” and “up”. Every transform between “down” and “up” was 
defined as a reversal.  

Because of heavy workload of these experiments, adaptive test software was de-
signed to simplify the experiments and the process of data collection and analysis. 
The software automatically generated test sequences and played one after another. 
According to the listener’s choice, the software changed ILD values of test stimulus 
properly, and saved the results to excel sheet until listener hardly distinguished the 
orientation differences between two sequences. And the value of ILD at this time was 
the JND value.  
 
d. Results. After a subjective listening test for half a year, we got 120 groups (six 
azimuths and twenty frequencies) of data, each group containing 12 JNDs corres-
ponding to 12 subjects. For every group, we select the data that has the confidence 
degree of 75% to be JND in that condition. Some JND curves in different reference of 
ILD were plotted in Fig. 3: 
 
• The curves vary with the reference ILD, the larger the reference ILD, the higher 

the corresponding curve. The JND is the most sensitive in the central plane for 
human perception, and the least sensitive at lateral. 

• Human ear is most sensitive to the middle frequency bands except 1000 Hz and 
less sensitive to the high frequency bands and low frequency bands. 
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Fig. 3. JND curve of ILD with different frequencies and reference ILD 

A binaural perceptual model is established and used in quantisation of ILD. It 
solves the problem of the perceptual redundancy removal of spatial parameters. Expe-
rimental results show that this method can reduce the bitrate by about 15% compared 
with parametric stereo, while maintaining the subjective sound quality. 

3.2 Perceptual Information Measurement for Multichannel Audio Signal 

Multimedia contents abound with subjective irrelevancy—objective information we 
cannot sense. For audio signals, this means lossless to the extent that the distortion 
after decompression is imperceptible to normal human ears (usually called transparent 
coding). The bitrate can be much lower than for true lossless coding. Perceptual audio 
coding [27] by removing the irrelevancy greatly reduces communication bandwidth or 
storage space. Psychoacoustics provides a quantitative theory on this irrelevancy: the 
limits of auditory perception, such as the audible frequency range (20–20000 Hz), the 
Absolute Threshold of Hearing (ATH), and masking effect [28]. In state-of-the-art 
perceptual audio coders, such as MPEG-2/4 Advanced Audio Coding (AAC), 64 kbps 
is enough for transparent coding [29]. The Shannon entropy cannot measure the  
perceptible information or give the bitrate bound in this case. 

For perceptual audio coding technology, determining the lower limit bitrate for 
transparent audio coding is an important question. Perceptual Entropy (PE) gives an 
answer to this question [30], which shows that a large amount of audio with CD quali-
ty can be compressed with 2.1 bit per sample. PE indicates the least number of bits for 
quantising mono audio channel without perceptual distortion. This is widely used in 
the design of quantisers and fast bit allocation algorithm.  

Nevertheless, PE has significant limitations when measuring perceptual informa-
tion. This limitation primarily comes from the underlying monaural hearing model. 
Humans have two ears to receive sound waves in a 3D space: not only is the time and 
frequency information perceived— needing just individual ears—but also spatial  
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information or localization information—needing both ears for spatial sampling.  
Due to the unawareness of binaural hearing, PE of multichannel audio signals is  
simplified to the supposition of PE of individual channels. This is significantly larger 
than real quantity of information received because multichannel audio signals usually 
correlate. 

 

 

Fig. 4. Binaural Cue Physiological PerceptionModel (BCPPM) 

Following the concept of PE, we establish a Binaural Cue Physiological Processing 
Model (BCPPM, Fig. 4). Based on MCPPM, we using EBR filter to simulate the  
human cochlea filter effect, and the JND of binaural cues to estimate the absolute 
threshold of spatial cues.  
 
a. SPE Definition. From the information theory viewpoint, we see BCPPM as a 
double-in-multiple-out system (Fig. 4). The double-in is the left ear entrance sound 
and the right ear entrance sound. The multiple-out consists of 75 effective ITDs, 
ILDs, and ICs (25 CBs, each with a tuple of ITD, ILD, and IC). Like in computing 
PE, we view each path that leads to an output as a lossy subchannel. Then there are 75 
such subchannels. Unlike PE, what a subchannel conveys is not a subband spectrum 
but one of ITD, ILD, and IC of the subband corresponding to the sub-channel. In each 
sub-channel, there are intrinsic channel noises (resolution of spatial hearing), and 
among sub-channels, there are interchannel interferences (interaction of binaural 
cues). Then there is an effective noise for each sub-channel. Under this setting, each 
sub-channel will have a channel capacity. We denote SPE(c), SPE(t), and SPE(l)  
for the capacity of IC, ITD, and ILD sub-channels respectively. Then SPE is defined 
as the overall capacity of these sub-channels, or the sum of capacities of all the  
sub-channels: 
 

( ) ( ) ( )
all subbands

SPE SPE c SPE t SPE l= + +                         (1) 
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To derive SPE(c), SPE(t), and SPE(l), we need probability models for IC, ITD, and 
ILD. Although the binaural cues are continuous, the effective noise quantizes them 
into discrete values. Let [L·P], [T·P], and [C·P] denote the discrete ILD, ITD, and IC 
source probability spaces: 
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where li, ti, and ci are the ith discrete values of ILD, ITD, and IC, respectively, and 
P(li), P(ti), and P(ci) the corresponding probabilities. Then we have 
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b. CB Filterbank. We use the same method as that in PE to implement the CB filter-
bank. Audio signals are first transformed to the frequency domain by DFT of 2048 
points with 50% overlap between adjacent transform blocks. Then a DFT spectrum is 
partitioned into 25 CBs. 
 
c. Binaural Cues Computation. ILD, ITD, IC are computed in the DFT domain as 
described in [31]. 
 
d. Effective Spatial Perception Data. The resolutions or quantization steps of the  
binaural cues can be determined by JND experiments. Denote by Δτ, Δλ, and Δη the 
resolutions of ITD, ILD, and IC, respectively. Generally, they are signal dependent 
and frequency dependent. For simplicity, we use constant values: Δτ = 0.02 ms,  
Δλ = 1dB, and Δη = 0.1.  

We ignore the effect of IC on ILD and only consider the effect of IC on ITD for 
SPE computation. Lower IC leads to lower resolution of ITD. This is equivalent to 
higher JND of ITD. Then the effective JND on subband b, denoted as Δτ' (b), can be 
formulated as the following: 

 
( )

'( )
IC( )

b
b

b

ττ ΔΔ =                                 (4) 
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Then we have the following effective perception data qILD(b), qITD(b), and qIC(b) of 
ILD, ITD, and IC, respectively by quantization, where ⋅    represents the round down 

function: 
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Suppose that qILD(b), qITD(b), and qIC(b) are uniformly distributed by (3), the SPE 

are expressed as 
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Fig. 5. Perceptual spatial information of stereo sequences sampled at 44.1 kHz. Four curves are 
speech, simple mixed audio, complex mixed audio and single instrument. 

e. Results. Fig. 5 shows the SPE of four different stereo signals from MPEG test  
sequences. The experiment suggests that SPE of speech signal is very low. This is 
because the human voice is often recorded with fixed position without change. So 
coding this kind of stereo audio signals requires a low bit rate. The average SPE for 
speech signals is 2.75kbps, for simple mixed audio is 3.66kbps, for complex mixed 
audio is 3.49kbps and for a single instrument is 6.90kbps. In other words, to achieve 
transparent stereo effect, audio signals required more than 7kbps, which is close to the 
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bitrate 7.7kbps of PS. So the proposed SPE can reflect the amount of perceptual spa-
tial information that is ignored by PE. Experiments on stereo signals of different types 
have confirmed that SPE is compatible with the spatial parameter bitrate of PS. 

Using PE to evaluate the perceptual information, only interchannel redundancy and 
irrelevancy are exploited; the overall PE is simply the sum of PE of the left and right 
channels. Using SPE based on BCPPM, interchannel redundancy and irrelevancy are 
also exploited; the overall perceptual information is about one normal audio channel 
plus some spatial parameters, which has significantly lower bitrate. For the above 
reason, PE gives much higher bitrate bound than SPE. PE is compatible with the tra-
ditional perceptual coding schemes, such as MP3 and AAC, in which channels are 
basically processed individually (except the mid/side stereo and the intensity stereo). 
So PE gives meaningful bitrate bound for them. But in Spatial Audio Coding (SAC), 
multichannel audio signals are processed as one or two core channels plus spatial 
parameters. SPE is necessary in this case and generally gives much lower bitrate 
bound (~1/2). This agrees to the sharp bitrate reduction of SAC. 

4 Tendency of 3D Audio Technology and Our Future Work 

4.1 Hearing Mechanism Research on 3D Audio 

The spatial orientation cues of sound include three aspects: azimuth angle, elevation 
angle and distance. There are many acoustic factors to perceive the distance of a 
sound source, such as the source of the sound (sound pressure level and spectrum), 
the transmission environment (reflected sound, high-frequency losses and environ-
mental noise) as well as listening factors. So the current research focuses on the ex-
pression and extraction of distance cues. Hence, the perceptual characteristic of the 
3D spatial orientation is an important research direction for 3D audio technology. 

Our future work will focus on the perceptual characteristics of 3D spatial orienta-
tion. The main work will include: design experiments to obtain perceptual threshold 
of 3D spatial position, mathematical analysis to establish representation model of 
perceptual sensitivity in 3D spatial orientation, get the perceptual distortion of sound 
image in the different offset of spatial orientation, obtain the equivalent distortion 
curve of azimuth angle and elevation angle in 3D spatial orientation, and to establish a 
position distortion model of 3D spatial position. Through the above research, we ex-
pect to establish the basic theory of perceptual mechanism for 3D audio systems and 
provide theoretical support for 3D audio collection, processing, reconstruction, play-
back and evaluation.  

4.2 High Efficiency Compression for 3D Audio Signal 

Existing 3D audio compression technology has exploited the perceptual redundancy 
within each individual channel. From the same sound field and same sound source, 
3D audio signals of different channels intrinsically exhibit strong correlation. Parame-
tric coding is able to extract the cues of sound image direction, width and scene  
information to reduce the interchannel redundancy, and achieve high compression 
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efficiency using fewer channels with side information. Parametric coding for 3D au-
dio is able to fulfill the compression requirement of transmission and storage while 
keep 3D effect meantime, so it is a strong direction in 3D audio compression research. 

Since the compression is highly efficient, the reconstructed 3D effect strongly de-
pends on the cues that described corresponding spatial information. The existing 3D 
audio parameter coding quantises those cues uniformly and reconstruction error in 
every direction is the same. However, according to human perceptual characteristic in 
3D space, the JND to sound direction exists and varies widely in all directions. If 
reconstruction error for direction cues exceed corresponding threshold, perceptible 3D 
effect distortion is produced. So how to utilize human perceptual characteristics in 3D 
space for 3D audio parametric coding will be included in our future work. Our goal is 
to develop the 3D spatial perception information measurement and establish a compu-
tational model of 3D audio orientation perception for effective representation of 3D 
audio parameterization 

4.3 The Evaluation of 3D Audio Quality 

Along with the developments of the 3D audio technology, research institutions such 
as NHK [32] and Deutsche Telekom Laboratorie [33], are carrying out the subjective 
evaluation of the 3D audio system. Because the subjective evaluation is based on the 
human who is the main body directly involved in the evaluation, the result is more 
explicit and reasonable in spite of spending a lot of time and manpower during the 
period of the assessments. So, more and more scholars [34-36] are trying to establish 
the objective evaluation model for the 3D audio system, hoping to look for an objec-
tive evaluation model based on the human perception of the audio quality to assess 
the effects of a 3D sound field. The performance of the proposed model is comparable 
with the subjective evaluation method. 

However, the current methods used to establish an objective evaluation model do 
not introduce the spectral cues related to the elevation perception of sound events, the 
envelopment or immersion in diffuse sounds, or the proximity and distance of sound 
events as the acoustic characteristic parameters. Research of the objective evaluation 
methods of the 3D audio is occuring on to investigate the spectral cues of the eleva-
tion, envelopment and distance perception of the 3D sound field. 

In the study of the objective evaluation method of the 3D audio quality, we draw 
up an objective evaluation model, based on the acoustic characteristic parameters of a 
3D audio signal, to predict the perceptual acoustic attributes of the 3D sound field. 
Including the Basic Audio Quality (BAQ), the Timbral Fidelity (TF), the 3D Frontal 
Spatial Fidelity (3DFSF) and the 3D Surround Spatial Fidelity (3DSSF). The study 
includes establishing the acoustic characteristic parameter set related to the 3D per-
ceptual sound field, obtaining a predictable mapping of the perceptual acoustic 
attributes and the acoustic characteristic parameters of a 3D audio quality, and build-
ing up an objective evaluation model of the 3D perceptual sound field by fitting the 
performances of the subjective evaluation and objective evaluation. Because the main 
aim of this study is to express the spectral cues related to the elevation perception of a 
3D sound field, we should try to analyze the duplex spectral effects of the pinna to 
further improve the technology of the 3D audio objective evaluation. 
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5 Conclusion 

The complexity and large capacity limit the promotion and application of 3D audio. 
To solve these problems, the National Natural Science Foundation of China, Tsinghua 
University, Wuhan University and other colleges organized the Second International 
Symposium of 3D video and audio. In the 3D audio workshop, basic theory and  
research on the recording, compression and reconstruction for 3D audio was empha-
sized. We also hope to promote the research work to become part of the next genera-
tion standard for the audio and video coding (AVS2) of China. This paper gives a 
brief introduction on current 3D audio systems. At the same time, our research  
work on the hearing mechanism and compression coding are presented. Finally our 
future work is introduced, which includes the research of perception characteristic, 
compression coding and the quality evaluation. 
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Abstract. This paper presents a rolling sound synthesis model which
can be intuitively controlled. For that purpose, different aspects of the
rolling phenomenon are explored: physical modeling, perceptual studies
and signal morphology. Based on these approaches, we propose a syn-
thesis model that reproduces the main perceptual features responsible
for the evocation of rolling action. Finally, a control strategy based on
ball’s properties (perceived size, asymmetry, speed, trajectory) and the
irregularity of the surface is proposed.

Keywords: Rolling Sounds, Sound Synthesis and Control, Environmen-
tal Sound Synthesis, Sound Invariants, Physically Informed Synthesis,
Rolling ball.

1 Introduction

This study is part of a larger project (MétaSon1) which aim is to build a realtime
sound synthesis platform that offers intuitive controls of sounds to end users. In
fact nowadays almost any everyday sound can be realistically synthesized, but
the question of intuitive control of sound synthesis processes is still a substantial
challenge. For instance, an impact sound can be represented and synthesized
by a sum of exponentially decayed sinusoids [38]. However, obtaining a specific
impact sound reflecting for instance the material, size or shape of the impacted
object by acting directly on the synthesis parameters (amplitudes, frequencies
and damping coefficients of the sinusoidal components) is quite impossible, even
for expert users. To cope with this problem, perceptually relevant signal struc-
tures have to be identified through listening tests to define mapping strategies
that enable such intuitive controls.

One aim of the MétaSon project is to propose a sound synthesizer with associ-
ated high-level (or intuitive) controls. To achieve this, we assume that the sound
(signal) contains so-called sound invariants, i.e. signal morphologies that are re-
sponsible for the recognition of particular sound events [15,27]. These invariants
can be either structural invariants or transformational invariants. Structural in-
variants reflect the intrinsic properties of an object and enable us to recognize
it, whereas transformational invariants are linked to external interactions with

1 http://metason.cnrs-mrs.fr/

M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 99–109, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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this object and enable us to recognize the actions that produced the sound. For
instance a string produces a sound with a particular spectro-temporal structure
that is recognized by the listener, even if it is bowed (violin), plucked (guitar) or
hit (piano). Likewise, it is possible to recognize that a cylinder bounces even if it
is made of glass, wood or metal [25]. Hence, “if an event is something happening
to a thing, the something happening is presumed to be specified by transfor-
mational invariants while the thing that it is happening to is presumed to be
described by structural invariants”[28].

For instance, Warren and Verbrugge studied auditory transformational invari-
ants with recorded bouncing and breaking glass sounds [39]. They first showed
listeners’ ability to differentiate these sounds, then they identified the specific
patterns responsible for the recognition of the interaction and then validated
the identified transformational invariants by synthesis. Concerning the object,
listening tests revealed that the evocation of a specific material is correlated to
the damping of spectral components [37,21,16] and to the roughness [2], while
the hardness of the striking mallet is related to the characteristics of the time
attack [13]. Aramaki et al. used the results of such studies to propose an impact
sound synthesizer with high-level controls [3] that enables the user to directly
control perceived attributes of sound sources such as the object’s material or
size. These previous studies confirm that these invariants are strong enough to
evoke both the object an the interaction with this object.

On the basis of these structural and transformational invariants, we propose
a sound synthesis action/object paradigm in which the sound is defined as the
result of an action on an object. In this paradigm, the object’s properties are sep-
arated from the interactions it is subjected to. From a synthesis point of view, we
used subtractive synthesis models based on a source-filter structure. This kind of
model originally came from speech analysis and synthesis [4], but has also been
studied in the context of musical sounds [31] and in the context of continuous
interaction sound synthesis [38,22]. The source-filter model is an approximation
of physical modeling : it stands that in an interaction, the physical exciter (for
instance the vocal folds in the case of speech production) is decoupled from the
resonator (the vocal tract). In the case of voiced vowel synthesis, the excitation
(source) is a pulse train which is passed through a filter bank that simulates
the vocal tract resonance for a particular vowel. In the case of rubbing sounds
for instance, the interaction (source) can be represented by an adequate excita-
tion signal while the object’s modes (filter) can be represented by an adequate
resonant filter bank [14].

This paper is devoted to a particular type of interaction, the rolling action.
In the next section we will present the literature on rolling sounds, then in the
3 we will propose a sound synthesis model for rolling sounds. Section 4 will be
devoted to the control strategy, and in the last section we will conclude and
propose some perspectives for this work.
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2 Previous Studies on Rolling Sounds

Different approaches to the synthesis of rolling sounds can be found in the liter-
ature. Physical modeling of the phenomenon and the computation of equations
with finite difference scheme has been proposed. Stoelinga et al. derived a phys-
ical model that produces rolling sounds [32] from previous studies on impact
sounds on damped plates [10,23]. This model can reproduce phenomena like the
Doppler effect, which is also found in the measures. However, sound examples
are not fully convincing, i.e. the sounds do not clearly evoke rolling objects. This
can be explained by the lack of amplitude modulation, as the model considers
the rolling object as a perfect sphere (i.e. the mass center is the geometrical cen-
ter), which is never the case in reality. It is important to note that these models
cannot be computed in real time.

Another approach is the physically informed modeling. In [17], Hermes pro-
posed a synthesis model that consisted of simulating the excitation by a series of
impacts following a Poisson law amplitude modulated to account for the asym-
metry of the ball. This pattern was further convolved with the impulse response
of the object (represented by a sum of gamma-tones) on which the ball rolled.
The author justified the shape of the impulse response by the fact that the colli-
sions between the ball and the plate are “softer” than in a classical representation
that uses a sum of exponentially decaying sinusoids. Otherwise, in order to feed
the source-filter model with parameters from real recorded sounds, Lagrange et
al. [22] and Lee et al. [24] proposed an analysis/synthesis scheme. This scheme
consists in extracting the excitation pattern (considered as a series of micro im-
pacts) and the object’s resonances (the resonance of the rolling object and the
surface on which it rolls are not separated). Van den Doel et al. [38] proposed
a model where modal resonators were fed with a noise whose spectral envelope
was defined by

√
1/(ω − ρ)2 + d2 where ρ and d are respectively the frequency

and the damping of the resonance, in order to enhance the resonance near the
rolling object’s modes. The authors also proposed a similar source-filter model
to generate rubbing sounds. In both of these models, the velocity is conveyed by
filtering the signal with a lowpass filter whose cutoff frequency is tuned accord-
ing to the motion’s speed. Rath proposed a model for rolling sounds which is
between physical modeling and physically informed considerations [30]. Based on
a nonlinear contact model for impact sound synthesis [5], Rath added a supple-
mentary physically inspired control layer to produce rolling sounds. More details
concerning this model will be given later (Sect. 3.1).

As far as sound “invariants” related to the evocation of rolling objects are con-
cerned, several studies can be found in the literature. For instance, Houben et al.
studied the auditory ability to distinguish the largest or the fastest ball between
two recorded sounds. They showed that at constant velocity (respectively at con-
stant size) listeners can distinguish the largest (respectively the fastest) rolling
ball with good accuracy. The performance is impaired when the two factors (i.e.
velocity and size) are crossed [19]. They also attempted to identify acoustic cues
that characterize the size and speed of rolling balls, like auditory roughness or
spectral structure. The influence of spectral and temporal properties was studied
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in [20] by crossing the temporal content of a stimulus with the spectral content
of another stimulus and using the obtained sound (the obtained stimulus had
its spectrum very close to one stimulus and its temporal envelope very close
to the other stimulus) in a perceptual experiment. It was shown that only the
spectral structure was used to determine the fastest or largest ball and that re-
sults were better for the size judgement than for the speed judgement. However
only recordings without clear amplitude modulations (due to an unbalanced ball
or a deviation from perfect sphericity) were used in the experiment. This can
explain why no temporal cues were found. The authors further investigated the
influence of this amplitude modulation in [18]. Artificial amplitude modulations
were added to the recordings used in the previous experiments. Perceptual ex-
periments showed that amplitude modulations clearly influence the perceived
size and speed.

Another important perceptual effect is caused by the influence of the modes of
the support on which the ball rolls. These modes are excited differently along the
ball’s trajectory, depending on the excitation point. This effect can be observed
as varying ripples in the time-frequency representation of rolling sounds and is
due to the interference between the sound generated at the point of contact
between the ball and the plate and the sound reflected at the edges of the plate
[33]. Murphy et al. [29] performed a series of perceptual experiments to judge the
quality of the analysis-synthesis algorithm described in [22]. In a first experiment,
the listeners described the rolling sounds as “static”. Then they simulated the
ball’s displacement with a time-varying comb filter, which resulted in rolling
sounds that were perceived as more realistic.

Based on those previous studies on synthesis and perception of rolling sounds,
we will propose a sound synthesis scheme in the next section.

3 Sound Synthesis Model

The proposed synthesis model aims at reproducing the main perceptual features
behind the evocation of rolling actions. For that, we explored different aspects
of the rolling phenomenon (physical, perceptual and signal morphology) and we
concluded on the relevance of the following attributes: the nonlinear interaction
force between the rolling ball and the plate, the amplitude modulation due to the
imperfect sphericity of the ball, the timbre variation induced by the displacement
of the contact point along the trajectory and the timbre variation induced by
the ball’s velocity. In the proposed synthesis scheme, each of these attributes are
reproduced by separate processes. Hence, we here propose a modular approach
to synthesize rolling sounds. Each step of this sound synthesis model will be
detailed in this section.

3.1 Nonlinear Interaction Force

From our point of view, the model proposed by Rath [30] produces the most
convincing sounds. This model consists in transforming a physical model of col-
liding objects into a rolling sounds model. Basically, the model proposed by
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Avanzini et al. [5] allows to produce bouncing sounds. This model couples an
exciter (a hammer or a ball for instance) to a resonant object (which is defined
by its modes, each of them represented by a mass-spring-damper system) with
a nonlinear interaction force that takes into account the compression and the
velocity of compression between the two colliding objects [26] as described in
the equations below: ⎧⎨

⎩
x = xe − xr

ẍr + grẋr + ωrxr = 1
mr

f(x, ẋ)

ẍe = − 1
me

f(x, ẋ) + g
(1)

with

f(x, ẋ) =

{
kxα + λxαẋ , x > 0
0 , x ≤ 0

(2)

The terms labeled with an r stands for the resonant object and those labeled
with an e for the exciter (for further information on the physics or on the im-
plementation, refer to [5,30]). The term x represents the compression between
the two objects, and f is the nonlinear interaction force between the exciter and
the surface that depends on the compression x. By adding a time-varying signal
that captures the fact that a rolling ball “scans” the rough surface on which it
rolls in a particular way to the compression term, this model produces sounds
that clearly evoke a ball rolling on a rough surface. As one can note in Fig. 1,
this interaction force is a series of impacts. Moreover, this force has a particular
structure, i.e. it evolves over time in a particular way and the impacts are related
in a specific manner.

It is possible to synthesize a signal that captures the main characteristics of
this nonlinear interaction force (paper in preparation). Indeed, we can simulate

Fig. 1. Interaction force between the ball and the surface resulting from a simulation
of the synthesis model proposed by [30] (top) and a zoom on this force (bottom)
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the behavior of the two time series by the amplitudes of the impacts (An) and
the intervals between each impact (Δn

T ). Thus, our model allows to reproduce
series of Dirac pulses with specific statistics.

Then, each Dirac pulse is shaped by an impact model. A simple and efficient
impact model is the raised cosine (see [8]). Moreover, as the interaction force
is nonlinear, the impact’s duration varies with its amplitude [9,6]. This effect
is taken into account. The sharpness of the pulses, which affect the sound’s
brightness, can also be controlled by empirically using an additional exponent ξ
in the original raised cosine model. The used pulse model is then :

Fexc(n) =

{
Fmax

2ξ

[
1− cos

(
2πn

Nexc

)]ξ
, n ∈ �0, Nexc�

0 , otherwise
(3)

with Fmax the impact’s amplitude and Nexc the impact duration.
From a perceptual point of view, we observed that it is the nonlinear interac-

tion force between the rolling ball and the plate that carries the main relevant
information that characterizes the action to roll. This force can be considered as
a transformational invariant related to the rolling action and, in the proposed
synthesis paradigm {source/resonance}, as the source signal. Indeed, by con-
volving the computed force resulting from the interaction of a rolling ball and a
rough surface with an impulse response of a resonant object, a realistic rolling
sound is produced.

3.2 Amplitude Modulation

As exposed in Sect. 2, Houben showed that modulating the amplitude of rolling
sounds influence the perceived size and speed [18]. Such an amplitude modulation
can be due to imperfect sphericity of the rolling marble, or to the asymmetry of
its mass center. As proposed by multiple authors [17,18,30], the modulation can
be approximated by a sinusoidal modulation. Thus, the incoming signal f(t) is
modulated as :

y(t) = [1 +m cos (2πνmt)] f(t) (4)

with νm ∝ ẋ/r, ẋ and r are respectively the ball’s velocity and radius.

3.3 Position Dependent Filtering

As previously pointed out, a marble that rolls on a plate excites its modes
differently along its trajectories, depending on its location on the plate. This
effect is due to the interference between the sound generated at the point of
contact between the ball and the plate and the sound reflected at the edges of
the plate [33]. Each reflected source is the delayed version of the sound, and
the delay time of each comb filter can be calculated thanks to an image source
method [1]. Hence, we simulate the reflection of the four first order images for
a square plate, depending on a chosen listening point on the plate, on the ball’s
position and on the first natural frequency of the plate. As already pointed out
by Murphy et al. [29], this effect enhance the sensation of the ball’s displacement.
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3.4 Velocity Dependent Filtering

In the synthesis model for rubbing sounds proposed by Van den Doel et al.
[38], the transversal velocity of the contact point controls the cutoff frequency
of a lowpass filter. This is important for the rendering of the gesture velocity
sensation. As we found that using this lowpass filtering step in the rolling sound
synthesis model also convey information about velocity of the rolling ball, this
effect is added to our rolling model.

The whole synthesis scheme is presented in Fig. 2. The associated controls
will be presented in the next section.

Fig. 2. General framework of the synthesis model to produce rolling sounds. High-level
controls associated with the resonant surface were proposed in [3].
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4 Control Strategy

Intuitive controls that are adapted to non-expert users are displayed in the upper
part of Fig. 2. The proposed controls on the ball’s properties are its perceived
size, asymmetry, speed and trajectory. The irregularity of the surface can also
be controlled. The mapping between high- and low-level controls (i.e. synthesis
parameters defined in Sect. 3) are also presented in Fig. 2.

As one can note, the action is clearly separated from the resonant object (the
surface on which the ball rolls) according to our paradigm. This means that the
source part of the model can be modified to evoke interactions, independently of
the resonant object. Conversely, it is possible to change the perceived properties
of the resonant object while preserving the type of interaction. Concerning the
resonant object, high-level controls associated with the perceived material, size
or shape were previously proposed [3]. Going further, this distinction between
interactions and object should make it possible to propose control strategies
facilitating the creation of sound metaphors, like “bouncing water” or “rolling
wind”.

5 Conclusion

We proposed a rolling sound synthesis model in a source-filter approach. This
model is clearly adapted to our paradigm that separates the action and the
object in the modeling process.

This model is controllable in an intuitive way and a real-time implementation
has been carried out. Thanks to this real-time implementation, parameters like
the velocity of the ball can be directly controlled by the user with a graphical
tablet as input for more interactivity.

Possible improvements could be achieved with the use of inharmonic comb
filters to simulate the ball’s position. In fact in [33], Stoelinga et al. analyzed
the wave dispersion (i.e. the frequency dependent wave velocity) in a plate and
concluded that frequency dependent comb filters added more realism when sim-
ulating a ball approaching the edge of a plate. This was confirmed thanks to
perceptual experiments by Murphy et al. [29].

A generic model that allows continuous transitions between interactions (from
rolling to scratching or from rubbing to squealing) is currently investigated, in
order to propose intuitive navigation through the possible interactions between
solids. Actually, the rolling model is sufficiently generic to synthesize various
interactions such as rubbing and scratching [11,12], and we are currently inves-
tigating the integration of other interactions such as nonlinear friction [7,34].

This synthesizer is a powerful tool, for sound design or sonification, but also
for fundamental research, to investigate auditory perception as it was done for
instance by Thoret et al. who studied the relations between gestures and sounds
[35,36]. In particular, the influence of the velocity profile (profiles of a human
gesture versus the profiles of a rolling ball for instance) on the perceived in-
teraction could be precisely investigated since the velocity is one of the control
parameters of the synthesizer.
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Abstract. This paper describes the creative and technical processes behind 
earGram, an application created with Pure Data for real-time concatenative 
sound synthesis. The system encompasses four generative music strategies that 
automatically rearrange and explore a database of descriptor-analyzed sound 
snippets (corpus) by rules other than their original temporal order into musically 
coherent outputs. Of note are the system’s machine-learning capabilities as well 
as its visualization strategies, which constitute a valuable aid for decision-
making during performance by revealing musical patterns and temporal 
organizations of the corpus.  

Keywords: Concatenative sound synthesis, recombination, and generative 
music. 

1 Introduction 

In electronic music, sampling is the act of taking a portion or sample of a particular 
recording and reusing it in a different piece. Apart from some previous minor and 
isolated experiments, the technique started to be largely explored in the late 1940s, 
namely by the group of composers and researchers working at the home of French 
Radio in Paris. Since then, we have witnessed a proliferation of sampling techniques 
that explore two main lines of research: the use of different musical time scales, 
namely the composition with micro-temporal scales, i.e. micromontage; and the 
development of software and algorithmic strategies that automate components of the 
technique, such as the segmentation and assemblage processes, as explored, for 
instance, in granular synthesis.  

Although many strategies for composing with audio samples towards a higher level 
of automation have been presented in recent decades, the manipulation of such 
musical structures is still a very laborious and time-consuming task. Commonly, it 
demands the use of digital audio workstations to analyze, manipulate and render audio 
data, whose processing paradigm is still highly attached to analog means of working 
with audio. 
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Concatenative sound synthesis (hereafter, CSS) is a technique for synthesizing 
sounds by concatenating short audio segments (called units). It relies on a large 
database of segmented and descriptor-analyzed sound snippets (called corpus) to 
assemble a given target phrase by selecting the units that best match the target 
specification according to a distance measure in the descriptors space. CSS is 
grounded in the sampling techniques mentioned in the previous paragraphs and can be 
seen as an extension of granular synthesis towards a higher level of automation by 
adopting a finer description and representation of the grains, enhancing the selection 
and assemblage processes through audio-content based analysis. The technical basis 
of this synthesis method was devised in the context of speech synthesis in the late-
1980s [1]. CSS began to find its way in musical composition and performance in 2000 
[2, 3]. However, even if the musical community has largely adopted this technique, 
the vast majority of the literature in this domain is mainly focused on solving 
technical problems that enhance the efficiency of these systems, paying very little 
attention to its musical applications. 

The application detailed here, i.e. earGram, is a Pure Data1 (hereafter, PD) patch 
that implements a CSS engine and several exploratory tools for musical creative 
practices. The major motivation behind earGram is to design software that could 
creatively explore a corpus of segmented and descriptor-analyzed units in an 
interactive and intuitive fashion. Four generative music strategies that recombine the 
corpus into musically coherent outputs are detailed here. The recombination strategies 
rely on two different approaches: the first uses the corpus to synthesize targets defined 
by imposed (metric and harmonic) templates selected by the user beforehand, and the 
second creates a novel music output while retaining the time-varying acoustic 
morphologies of the audio source(s). The system encompasses both the analysis and 
synthesis of soundscapes and polyphonic music and targets an audience more 
familiarized with music theory than with music technology. This is particularly 
evident in the devised description scheme used to characterize the units of the corpus, 
which utilizes a terminology derived from musical theory and practice, instead of the 
common low-level audio features. The need to develop this set of descriptors also 
emerged from several collaborations that the first author established with various 
composers, namely because of the difficulties experienced by these last in dealing 
with low-level audio descriptions of the corpus [4]. Similar approaches that devise a 
scheme of descriptors based on theoretical or practical musical knowledge can be 
found in the work of Julian Ricard [5] and Norbert Schnell [6]. 

EarGram not only allows the rapid prototyping of generative music processes (i.e. 
the implementation of unit selection strategies), but also offers several built-in 
algorithms that rearrange the corpus according to simple and intuitive instructions that 
can be manipulated by the user in real time. The recombination strategies 
implemented in earGram result from the adaptation of existing strategies from 
computer algorithmic assisted composition (hereafter, CAAC) to audio content-based 
processing. These strategies are suitable for interactively composing soundscapes, 

                                                           
1  http://puredata.info/ 
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infinitely extending a particular monophonic or polyphonic music sample without 
using mere repetitions, altering the meter of a song, or even synchronizing different 
layers of units. 

Of note is the system’s ability to group units into representative clusters, which, in 
combination with various visualization strategies, provide a valuable and intuitive 
representation of the audio source(s) content. These representations were designed 
with the purpose of being a decisive decision-making aid during performance. 

Our approach to CSS is inspired by Tristan Jehan’s Skeleton [7] and Diemo 
Schwarz’s cataRT [8]. The architecture and the conceptual approach of the two 
systems is our fundamental basis. The analysis-synthesis models presented by Jehan 
[7] and implemented in Skeleton, especially the perceptual and structural modeling of 
the music surface, was of seminal importance for the development of the machine 
listening and learning in earGram. Schwarz’s cataRT was equally important due to the 
similarities of the programing environment used and its real-time capabilities.  

2 System Design 

In this section, we provide an overview of the design scheme of earGram (see Fig. 1), 
which is composed of four modules: (1) machine listening, (2) machine learning, (3) 
database, and (4) composing.  

The first block, machine listening is responsible for segmentation of the audio 
source provided initially by the user into representative units and for providing an 
analysis of the their content by referring to machine listening strategies. 
 

 

Fig. 1. Design scheme of earGram 

The second block of the system covers several machine learning algorithms to: (1) 
cluster the corpus into representative groups of units, (2) provide intuitive and 
interactive visualizations of the corpus, and (3) deduce the meter and build statistical 
models that convey a representation of the temporal evolution of the harmonic, timbre 
and noisiness characteristics of the audio source(s). At this stage, a list of pointers to 
audio segments, their respective feature vector and the harmonic, timbre and metric 
models are stored in a database.  
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While the first two blocks are rather analytical, the last is operational. It 
encompasses four generative music strategies, referred to as recombination methods 
or playing modes. Synthesis, the last operation of the algorithm chain, is not only 
responsible for concatenating selected units from the corpus but also for some signal 
processing techniques. These techniques, which include adaptive filtering, 
reverberation, chorus, and spectral shift, enhance the concatenation quality between 
adjacent units and constitute a mean of artistic expression. Referring to CSS 
terminology, this last block is responsible for defining a target phrase and retrieving 
the best matching units according to the selection procedure. 

3 Initialization of the System and General User Preferences 

Initially, the user must select the type of project he/she wants to create, depending on 
the type of audio source(s) used: (1) single audio track, (2) folder comprising multiple 
audio files, or (3) live signal input. Instead of creating a new project, the user may 
also open a previously saved one. 

During the creation of a new project the user must also feed the system with audio 
data that will serve as a basis to construct the corpus. This data will be commonly 
addressed as audio source(s). The source(s) constitutes the raw material that is 
concatenated during synthesis for creating new sonic structures thereby directly 
affecting the quality of the resulting output. 

As mentioned earlier, earGram targets an audience more familiarized with music 
theory and practice than music technology. It demands very little knowledge of  
MIR-related terminology, which is commonly abundant in CSS software. The system 
design, and especially its interface, conveys a usability that allows the rapid creation 
of consistent musical results. Taking that into consideration, the system assumes by 
default a configuration that needs little or no fine-tuning in order to start generating 
some consistent results. However, expert users can also alter most settings to convey 
their needs via the preferences panel accessible through the main interface. In the 
following sections we will describe the system in detail and point out relevant 
differences between the auto-assigned preferences and the user-definable settings. 

4 Machine Listening 

The machine listening module in earGram is responsible for creating a corpus of 
labeled sound snippets. It encompasses two operations: (1) the segmentation of the 
audio source(s) into units and (2) the creation of a feature vector that characterizes the 
content of each unit. 

4.1 Segmentation 

The current implementation of earGram has three strategies that automatically 
segment the audio source(s) into units: (1) uniform size, (2) onset, and (3) beat. The 
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first mode, uniform size, segments the audio source(s) at regular intervals according 
to a user-defined length. Onset, the second segmentation mode, defines units by 
slicing the audio continuum at the beginning of a musical note or other sound in 
which the amplitude surpasses an assigned threshold (amplitude peaks) or at sudden 
changes in the spectrum. The last segmentation strategy is beat, which defines units at 
the beginning of beats (if a regular pulse is found). The beat-tracker algorithm used in 
earGram is largely based on S. Dixon [9]. 

The system also incorporates an auto-segmentation mode that automatically 
chooses between onset or beat segmentation modes depending on the characteristics 
of the audio signal. This mode is activated by default so that less experienced users 
can utilize it more easily. If a clear pulse is found, the auto-mode segmentation will 
select beat segmentation instead of onset. In order to inspect the presence of a regular 
pulse, the system attempts to find clear peaks with harmonic relationships to the 
spectral flux autocorrelation function. If no such peaks are found, the system will 
segment the audio at each onset. 

4.2 Morphological Analysis of the Units 

The machine listening block comprises a second task: to assign a feature vector to 
each unit. It aims at describing relevant characteristics of the unit’s content, which 
will represent them throughout the system. Each feature vector can be seen as a 
signature of the unit by significantly reducing its digital audio representation to a 
minimal yet meaningful collection of numerical features. Relevant perceptual features 
of the unit’s content are described according to a descriptors scheme presented in 
Table 1. Pierre Schaeffer’s morphological criteria of sound perception [10] and the 
later extensions of his work by Dennis Smalley [11] and Lasse Thoresen [12] inspired 
the construction of the descriptors scheme. 

The top horizontal layer of the descriptor’s scheme relates to two seminal concepts 
from Schaeffer’s morphology: matter and form. Matter corresponds to “what we 
would hear if we could freeze the sound” [10]. Form describes the temporal evolution 
of a particular criterion over the length of the units. 

The criteria under matter are represented by a numerical value on a limited and 
infinite topological space whose limits correspond to typological musical categories. In 
other words, each descriptor or criterion represents a sound feature by a numerical 
value that is meaningful in relation to a finite space whose limits correspond to specific 
types of sound. For example, the noisiness criterion is definable according to a space 
whose limits are 0 and 1, which represent two types of sound (noise and a sinusoid). 
Within these limits, the noisiness of the units is defined by a numerical value. The 
criterion of matter is further divided in two other categories, main and complementary. 
These categories distinguish between descriptors that produce meaningful results for 
the entire database and those that are only valid for a smaller part of it. The criteria 
under the main category encompass the totality of the units of the corpus, while the 
complementary category only considers part of the database of units. 

The criteria under form offer a representation of the temporal evolution of a 
particular audio descriptor. It is represented either by a curve that exposes the 
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descriptors’ evolution or by basic statistical properties of the curve, such as mean or 
the standard deviation. The amplitude envelope curve is a clear example that falls 
under this category.  

Two important properties have guided the implementation of our descriptors 
scheme. The first is to provide a set of descriptors that are definable according to the 
same finite space (whose limits are specific musical types), avoiding and 
consequently, dealing with the normalization of the feature vectors. The second 
property that guided the descriptors scheme’s implementation is the invariability of 
the descriptors in relation to the units’ length. In other words, the set of descriptors 
used in earGram allow meaningful comparisons between units with different lengths. 

Table 1. Description scheme used in earGram to characterize the unit’s content according to 
morphological criteria of sound perception 

 

Matter 

Form 

Main Complementary 

Mass 

Noisiness 

Pitch 

Noisiness 
profile Fundamental bass (root 

relationship) 

  
Spectral 
variability 

Harmonic 
timbre 

Brightness   

Spectral width    

Sensory dissonance 

(roughness) 
  

Dynamic Loudness  
Dynamic 
profile 

 
The following sub-section will inspect all descriptors used and will be organized 

according to the three perceptual criteria (topmost vertical layer of the scheme): (1) 
mass, (2) harmonic timbre, and (3) dynamic, which unfold into twelve descriptors. 
Below we provide a conceptual and technical description of each descriptor. Its 
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computational implementation relies on the use of individual low-level audio features 
or combinations of them. If not specified, William Brent’s library timbreID is used to 
provide the low-level feature extraction in PD [13]. We chose this library for its 
robustness, efficiency, and ability to work in both real time and non-real time. 
 
Criteria of Mass. The criteria of mass encompass four descriptors: (1) noisiness, (2) 
pitch, (3) fundamental bass, and (4) noisiness profile. The first is a main descriptor of 
matter, the middle ones are secondary descriptors of matter, and the last descriptor 
falls under the form category.  

Measures of noisiness estimate the amount of noisy components in the signal as 
opposed to tonal components. Alternatives to this feature are the measure of 
pitchness, tonalness, or harmonicity, which offer a very similar and “inverse” 
description of the noisiness of a sound. Related research presents two common 
approaches to compute such criterion such as the use of low-level descriptors (e.g. 
spectral flatness [14] or zero-crossing rate [1, 15]) or by applying pattern matching 
techniques to compare between the spectral distribution of a sound and the expected 
distribution of partials according to an induced fundamental frequency [5, 6]. While 
the first approach is relatively poor and crude since it does not know any information 
about musical signals with harmonic relations, the last approach is not consistent to 
describe polyphonic audio signals because it is not feasible for a polyphonic signal 
transcription to estimate the fundamental frequencies and environmental sounds since 
it only consistently characterizes pitched sounds. 

We decided to adopt a combination of low-level spectral descriptors to determine 
the noisiness of a sound since earGram deals with both polyphonic audio signals and 
environmental sounds. After several empirical tests we decided to calculate the 
noisiness criterion as the weighted sum of the following four descriptors: (1) spectral 
flatness, (2) spectral kurtosis, (3) spectral skewness, and (4) spectral irregularity. 
Through empirical tests we assigned the following weights to the aforementioned 
descriptors: spectral flatness 0.5, spectral kurtosis 0.2, spectral skewness 0.1, and 
spectral irregularity 0.2. These values make spectral flatness the most significant factor 
with spectral kurtosis, spectral skewness and spectral irregularity being useful to 
primarily balance the descriptor into an even distribution of noisy and pitched sounds. 
These values may also be used to enhance the detail of estimation pitched sounds (i.e., 
spectral kurtosis reveals the “peakedness” of the spectra and spectral irregularity 
enhances the difference between jagged and smooth spectra). The noisiness descriptor 
ranges between 0 and 1 where 0 represents a full saturated (noisy) spectrum and 1 
represents a pure sinusoidal without partials. Within these two extremes we cover the 
totality of audible sounds including instrumental, vocal or environmental sounds. 

Pitch or fundamental frequency is a secondary criterion of mass as it only conveys 
meaningful results for pitched sounds, and thus may reduce the corpus to a smaller 
collection of units. There are several robust algorithms to estimate the fundamental 
frequency of monophonic audio signals, however, algorithms for polyphonic pitch 
detection are not reliable yet. Therefore, this descriptor is confined for the 
characterization of monophonic audio signals. The estimation of the fundamental 
frequency is done by sigmund~ a PD built-in object by M. Puckette. 
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The fundamental bass descriptor reports the root of a chord. Similar to the pitch 
criterion, it is a secondary criterion as it may reduce the corpus to a smaller number of 
units. We implemented this descriptor as a method for overcoming the problem of 
characterizing the pitch content of polyphonic audio signals. The fundamental bass is 
computed by an altered version of a PD object from the Dissonance Model Toolbox 
by Alexandre Porres [16]. 

The temporal evolution of the mass is expressed by two descriptors: (1) noisiness 
profile and (2) spectral variability. The noisiness profile describes the development of 
the noisiness at uniform and overlapping intervals throughout the unit’s length. This is 
expressed in two ways: the first provides a curve of the features evolution and the 
second reduces the evolution to a series of single values that carry substantial 
information concerning its temporal dimension, such as maximum, minimum, mean, 
and standard deviation.  

Spectral variability describes the amount of change in the spectrum of a signal by 
comparing the spectrum of consecutive frames. It is computed by the low-level audio 
descriptor spectral flux and is calculated as the Euclidean distance between two (non-
normalized) spectra or the mean value between various analyzed windows. The use of 
non-normalized spectra not only accounts for spectral differences, but also denotes 
sudden changes in the overall power. The output of this descriptor is twofold: a curve 
denoting the spectral variability of the unit and a single numerical value that expresses 
the overall spectral variability throughout the unit duration. 
 
Criteria of Harmonic Timbre. The perceptual criteria under harmonic timbre 
presented in Schaeffer’s morphology [10] as well as the further reconsiderations by 
Smalley [11] and Thoresen [12] are very misleading, inconsistent, and fail at presenting 
a concise set of descriptors for this category. In order to define a set of systematic  
and computationally reliable descriptors, we base ourselves on psychoacoustic models 
of dissonance, implemented in PD by Alexandre Porres [16], to characterize harmonic 
timbre, namely a set of brightness, spectral width, and sensory dissonance (roughness). 

Brightness, also referred to as sharpness, is an important perceptual attribute of 
sound and closely correlates with the centroid of the spectrum. In linguistics, it 
provides a clear distinction between the sounds of vowels and consonants (e.g. the 
sound ‘i’ is considered brighter than ‘u’ and ‘t’ brighter than ‘d’). In music it helps to 
discern and further categorize the sound (e.g. the spectrum of the various instruments). 
Brightness is computationally expressed by the centroid of the spectra. The resulting 
value is expressed in Hertz and we decided to constrain its range to the human audible 
frequency range which is roughly 20 Hz-20 kHz. This is further scaled between 0 and 
1 to convey the same range as the other descriptors. 

Spectral width expresses the interval between the extremities of the sound spectral 
components and it may help in distinguishing between saturated spectra and sparse 
distributions. For instance if we have a corpus of instrumental samples, we may 
distinguish between chords or tones with many partials and sinusoidal sounds or poor 
spectral distributions. An exact computational model of such criterion poses a few 
issues because we shall consider that the spectral representation of the computed  
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audio signal may encompass noise even if the ideal conditions during recording were 
met. Instead of considering a solution for this problem, which has been subject to many 
publications and research, we adopted a simpler yet effective workaround. In order to 
increase both the robustness and reliability of the value expressed by this descriptor, 
we used a common low-level audio feature, spectral spread, which describes the 
concentration of the power spectrum around the spectral centroid.  

In psychoacoustics, the roughness of a sound is the most relevant perceptual 
phenomenon to characterize sensory dissonance. Roughness depends on the distance 
between the partials measured in critical bandwidths, and it creates an audible 
phenomenon that is normally addressed as “fast beats” (i.e. amplitude fluctuations 
that occur at a rate over 20Hz up to a Critical Bandwidth). 
 
Criteria of Dynamic. The loudness criterion expresses the amplitude of a unit by a 
single value and is defined by the square root of the sum of the squared sample values, 
commonly addressed as root-mean-square (RMS), which provides an approximate idea 
of loudness. If the units have a considerably long duration, the value expressed by the 
loudness criterion may be relatively crude since it is a temporal criterion by nature. 
However, even if the reduction of the loudness criterion to a unitary value may be seen 
as oversimplifying or too loose a description of this perceptual phenomenon, it may 
constitute a reliable source for many applications in comparison with a full detailed 
description of the envelope curve over the length of the event.  

The dynamic profile is a form criterion of dynamic since it represents the evolution 
of the amplitude of the units. It is expressed in two different ways: (1) by the 
amplitude envelope curve or (2) by the characteristics of its shape (maximum, 
minimum, mean, and standard deviation). 

5 Machine Learning 

The second module of the system aims at (1) clustering the collection of units from 
the database, (2) creating visual representations of the corpus, and (3) modeling the 
harmonic, timbre and metric structure of the audio source(s) over time. 

5.1 Clustering 

Clustering intends to group similar segments to form collections of units. It aims at 
revealing musical patterns and particular temporal organizations of the music structure 
that can be applied differently during performance. The current implementation 
comprises three non-hierarchical clustering algorithms: k-means, quality-threshold 
clustering (QT-clustering) [17], and DBSCAN [18].  

Our choice fell on this set of clustering algorithms because they form a good 
collection of tools to explore and automatically organize the corpus into distinctive 
groups. If the user wants to have a concise number of clusters defined a priori and 
consider all units in the corpus in order to create distinct corpus for different layers or 
sections the choice should fall on k-means. On the other hand, if the user wants to 
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define the quality of the clusters based on threshold of similarity or neighborhood 
proximity between units, he/she should choose either QT-clustering or DBSCAN. On 
the last two clustering algorithms the user may also define the minimum number of 
elements per cluster. Another important property of these algorithms in relation to k-
means is their ability to detect outliers that can be treated differently during 
performance namely by excluding them from the corpus as they may require special 
attention. Euclidian distance is the distance metric used to calculate the similarity 
amongst units in all clustering methods. 

K-means partitions the corpus into clusters by allocating each unit to the cluster with 
the nearest centroid. The total number of clusters k needs to be defined a priori. 
However, the k-means implementation in earGram may suggest to the user the optimum 
number of clusters for a particular corpus by applying a technique known as ‘elbow 
method’. Our implementation of the technique follows two steps. First, we calculate the 
distortion (i.e. sum of the squared distances between each unit and its allocated centroid) 
for each different value of k, ranging from 2 to 9 clusters; and subsequently, the 
algorithm assign the parameter k to the number of clusters at the point which a higher 
number of clusters does not offer a much better modeling of the data.  

QT-clustering was developed by L. Heyer, S. Kruglyak, and S. Yooseph [17] to 
cluster gene expression patterns. Quality is defined by the cluster diameter and the 
minimum number of units contained in each cluster. Initially, the user assigns the two 
parameters. However, the user does not need to define the number of clusters a priori. 
All possible clusters are considered and a candidate cluster is generated with respect 
to every unit and tested in order of size against the quality criteria. In addition, it 
identifies outliers that should be treated differently (notably excluded) at runtime.  

DBSCAN defines the clusters based on the neighborhood proximity and the 
density of the units in a cluster. Our implementation follows the algorithm described 
by M. Ester, H. Kriegel, J. Sander, and X. Xu [18]. The user must initially define two 
parameters: (1) the neighborhood proximity threshold and (2) the minimum density 
within the radius of each unit. Similarly to the QT-clustering algorithm, DBSCAN 
avoids defining a priori the number of clusters. However, the algorithm finds 
arbitrarily shaped clusters very diverse from the ones found by the QT-clustering. It 
can even find clusters surrounded by (but not connected to) a different cluster. 

5.2 Visualization 

The visualizations strategies implemented in earGram were designed for three main 
purposes: (1) give the user a better understanding of the corpus and similarity between 
units, (2) allow interactive and guided exploration of the corpus, and (3) assist in the 
decision-making processes during performance. 

The visual representations implemented in earGram can be divided in four groups, 
which depict different hierarchical levels of the music structure: (1) waveform is the 
lowest representation level and one of the most common visualizations of audio data 
(the boundaries of the segments are provided on top of the waveform and below the 
waveform is a representation of the bark spectrum of the units), (2) 2d-plots and star 
coordinates [19], reveals the similarity between units by their representation on a two 
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dimensional plane, (3) similarity matrix and arc diagram [20] aims to present the 
long-term (temporal) structure of the corpus, and (4) parallel coordinates [21] 
examines the high-dimension descriptors space.  

Besides depicting relevant information of the corpus, most visualization strategies 
are interactive and allow the user to define regions of the audio source(s) that may be 
used distinctively during performance.  

The waveform representation (see Fig. 2, Image 1) helps the user to examine the 
segmentation of the audio source(s) and browse the collection of units in their original 
order. 

 

 
(1) 

    
                         (2)                                               (3)                                   (4) 

 
(5) 

Fig. 2. Five visualizations of a corpus comprising a single-track audio source – 4 by Aphex 
Twin. From top to bottom and left to right: (1) waveform representation, (2) main interface of 
earGram that incorporates a 2d-plot representation of the corpus, (3) similarity matrix 
encompassing all available descriptors, (4) similarity matrix that uses the color scheme 
gathered from the cluster representation depicted in 2, and finally (5) visualization of the corpus 
by the arc diagram algorithm. 



 EarGram: An Application for Interactive Exploration of CSS in Pure Data 121 

 

The 2D-plot representation (see Fig. 2, Image 2) is one of the most common 
visualizations of the corpus adopted in CSS software. To each axis is assigned a 
particular feature (from the collection of descriptors available), which causes units 
with similar characteristics to be closely plotted. It is especially suitable for browsing 
and exploring the corpus by navigating its representation. The units’ color offers 
another layer of information. The color of each unit is defined by a list with three 
elements that correspond to the red, green, and blue values of an additive (RGB) color 
model. The R, G, and B values represent audio features from the available set of 
descriptors.  

Star coordinates is a dimensionality reduction algorithm implemented in earGram 
that allows visualization of high-dimensional data on a 2D representation. The 
algorithm was formulated by E. Kandogan [19] and it maps high-dimensional data 
linearly to 2D or 3D using the vector sum. The choice of this algorithm over other 
popular dimensionality reduction algorithms such as multidimensional scaling or 
principal component analysis (PCA) was due to its understandability (each dimension 
still preserves the same meaning). A clear disadvantage of star coordinates is the need 
to explore the representation by weighing the variables and assigning different angles 
to each axis to find interesting patterns. 

By depicting pairwise similarity between the units of the corpus, both self-
similarity matrix and arc diagram reveal analogous patterns of the audio source(s), 
which ultimately expose the long-term structure of the data (see Fig. 2, Images 3, 4, 
and 5). The user can interact with these representations by grouping and selecting 
collections of units that can be addressed differently during performance.  

Parallel coordinates [21] is a known algorithm used to visualize high-dimensional 
data and analyze multivariate data. It indicates the tendencies and the distribution of 
the descriptors. 

5.3 Modeling the Descriptions of the Units over Time 

Machine learning block encompasses a third operation module that is responsible for 
creating probabilistic models that represent the temporal evolution of the harmonic, 
timbre and noisiness content of the audio source(s) after segmentation and induce the 
meter of the audio source(s) if the beat segmentation mode was applied.  

Harmony, timbre, and noisiness are modeled by transition probability tables that 
represent the probability between the different variables of each characteristic (states). 
The set of all states and their transition probabilities characterizes a Markov chain, 
which later allows the generation of new sequences based on stochastic processes.  

In order to create a transition probability table, each feature needs to characterize 
the unit’s content according to a finite number of predefined classes or states. We will 
further detail the used states to represent harmony, timbre, and noisiness, respectively. 
The unit’s harmonic content is characterized by the pitch class profile (0-11) of the 
fundamental bass. Timbre is characterized by a single integer that represents the three 
highest bark spectrum bins out of a total of 24 bins. The compound value is achieved 
by following three operations: (1) the three highest bins numbers are sorted from the 
lowest to the highest and converted into binary representation; then (2) the second and 
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the third bins numbers are shifted to the left by 5 and 10 cases, respectively; and 
finally (3) the three numbers are reconverted to decimal representation and added. 
Noisiness is represented by 10 states that are devised by dividing the descriptor’s 
range in ten equal parts and assigning to each interval a numerical label from 0 to 9. 

Whenever the audio is segmented on a pulse basis (if a regular beat is found), 
earGram attempts to induce the most regular pattern on the autocorrelation function of 
the spectral variability (spectral flux) description of the units in their original temporal 
order (each unit is defined by a single numerical value). It constitutes a naïve meter 
induction algorithm, which provides uniquely the number of pulses per measure. The 
autocorrelation function examines periods from 2 to 12 units, and picks the highest 
value of the autocorrelation function. Even it is a bit inadequate to call the technique 
meter induction, it satisfies our purpose of finding uniform patterns (number of pulses 
that expose regularities over time) on the surface of the unit’s descriptions. 

6 Database 

The database stores most of the data produced in the machine listening and learning 
modules including pointers to the beginning and end of each unit in samples, feature 
vectors, probability transition tables, and various other details concerning the audio 
source(s). 

Particular attention is given to the storage of the feature vectors since they need to 
be easily accessed in real-time. The descriptors (audio features) are implemented in 
PD as a collection of arrays. Each individual array stores the data correspondent to a 
particular feature to allow an effective and rapid search within a particular feature 
without compromising the retrieval of all features that characterize a particular unit. 

The database and several variables used for segmentation, analysis, and audio data 
modeling can be saved in a text file and opened at a later stage. This saves a 
considerable amount of time in future uses of the same sound source(s) since the 
construction of the database is quite time-consuming, especially if we are dealing with 
hundreds or thousands of units. 

7 Composing 

In earGram, the main drive behind the analysis of the audio source(s), covered in the 
machine listening and learning blocks, is primarily synthesis. This section will start by 
detailing four recombination methods that automatically re-arrange the corpus by 
means differing from the units’ original temporal order into musically coherent outputs 
(Sect. 7.1.1–7.1.4) and the synthesis method responsible for concatenating the selected 
units from the corpus (Sect. 7.2). Using CSS terminology, the following recombination 
strategies are used for defining a target phrase and retrieving the units from the corpus 
that best match the target specification, which are further concatenated in the last 
operation of the algorithm chain. 
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The methods for recombination convey the creation of three different musical 
results: (1) sonic textures or soundscapes (spaceMap and soundscapeMode),  
(2) infinitely extending the length of a particular audio sample without recurring to 
simple repetitions of the material (infiniteMode), and (3) defining targets that reflect a 
particular pre-assigned meter (shuffMeter). 

7.1 Recombination Methods 

SpaceMap. This method allows the interactive exploration of the corpus by the 
navigation of a 2D-visual representation. It can be seen as an extended granular 
synthesis engine where grains are organized in a meaningful visual representation. It 
aims at creating sonic textures with controllable nuances. It is a very powerful method 
to use in performance and with improvisation in particular, not only because of the 
automatic and meaningful segmentation that the software produces. Additionally, 
after a segment is defined it is consequently plotted in the interface, creating an 
almost instantaneous representation of the input signal during performance. 

Several parameters, such as gain, density of events, pitch deviations, and stereo 
panning can be changed during performance and can affect each unit separately. All 
parameters can have a certain degree of random variability. The software also allows 
the creation of several bus-channels that may incorporate audio effects. At runtime, 
the representation of the units in the interface can be changed without affecting the 
synthesis, except when dealing with a live input signal. 

SpaceMap has three playing modes: (1) mouseOver – continuously plays units at a 
specified density according to the mouse position on the screen; (2) pointerClick – 
plays units according to the pointer position but uniquely when the mouse button is 
pressed; and (3) colorPicker – same procedure as point 1, but the selection of the 
units is based on their RGB color values that are retrieved from a navigable grid of 
colors. 
 
InfiniteMode. The second recombination method implemented in earGram, aims at 
generating an arbitrarily long musical excerpt, given a relatively short audio source(s) 
by scrambling the units’ original temporal order. The output of this mode never 
repeats, nor loops the synthesized material, yet keeps playing by reconstructing the 
time-varying acoustic morphologies of the audio source(s). It gives better results in 
projects that comprise a corpus assembled from a single audio track and covers the 
generation of both soundscapes and polyphonic music. 

Both the definition of the target and the selection of the unit that best matches the 
target specification are done on a unit basis. The target specification for a new unit is 
defined according to the characteristics of the previously selected and played unit. 
The resulting sequence of concatenated units conveys the metric structure and the 
representation of the models that encapsulate the temporal evolution of the harmonic, 
timbre and noisiness of the audio source(s) (detailed in Sect. 5.3). The user needs to 
select the characteristics that will guide the target definition, because some may not 
apply to the audio source(s) used. The interface of infiniteMode allows the user to 
select up to three of the four available characteristics (meter, harmony, timbre and 
noisiness). On the interface, there are two buttons that automatically assign 
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characteristics for composing soundscapes (timbre and noisiness) and polyphonic 
music (meter, harmony and timbre). 

The following paragraphs will first succinctly describe the characteristics  
used to evolve the generation of new music structures, and then address the algorithm 
design. 

The timbre qualities and noisiness of the units’ spectra, as well as the harmonic 
content (fundamental bass) of the audio source(s) are preserved if the characteristics 
timbre, noisiness and harmony are selected in the interface. Three distinct transition 
probability (previously described in Sect. 5.3) represent the temporal evolution of 
these characteristics. Relying on these tables and the previously selected units, a 
target specification for a future event is defined. 

To preserve the distribution of metrical accents in the audio source(s), the 
algorithm retrieves the units that were previously labeled at each metrical accent. For 
example, all units in the machine learning modules are labeled with their position in 
the metric grid in a sequence that goes from 1 to number of pulses per measure. If the 
meter characteristic is selected at runtime, the algorithm attempts to preserve the 
metrical distribution previously devised by sequencing units with consecutive pulse 
labels. 

The chain of operations of infiniteMode can be described in three steps: (1) define 
a target specification, (2) pick the unit or collection of units that satisfies the target 
specification, and finally, (3) from the collection of units selected in point 2, select the 
unit with the most similar spectra to the previously played unit in order to avoid 
discontinuities between adjacent (concatenated) units. 

The definition of a target specification relies on the characteristics of the 
previously played units. The target covers the characteristics selected by the user in 
the interface according to the abstract models of the characteristics. When a new unit 
is triggered, the algorithm examines all selected characteristics, and defines a group of 
units that match the target for each of them. It then finds the units that are common to 
all groups of characteristics. From the remaining units, it selects the one that 
minimizes the distance on the bark spectrum representation to the previous selected 
unit.  

If the algorithm does not find any unit that satisfies all the assigned characteristics, 
the algorithm will sequentially ignore characteristics until it finds suitable candidates. 
The selected characteristics on the upper slots will have priority over the lower ones. 
If we have three selected characteristics and the algorithm does not find any common 
units for a specific query, it will eliminate the third characteristic and again examine 
the number of units that satisfy the query. If it still cannot retrieve any units it will 
eliminate the second characteristic and so on. 
 
SuffMetter. Clarence Barlow’s metric indispensability principle [22] has been 
successfully applied as a metrical supervision procedure to automatically generate 
drum patterns in a particular style [23], as well as a model for constraining a 
stochastic algorithm that generates rhythmic patterns in a particular time signature 
[24]. Both of the aforementioned generative algorithms operate with symbolic music 
representations. ShuffMeter uses Barlow’s principle to define a template that is 
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translated to a target specification in order to synthesize musical phrases that reflect 
the use of a particular meter that is defined in advance by the user. 

Given the scope of this paper and space restrictions, we cannot detail all the 
implementation of Barlow’s metric indispensability. However, we follow the 
implementation described in [23]. After assigning a meter and a specific metrical 
level, the algorithm defines a template that represents the probabilistic weight each 
accent should have in order to perceive that particular meter, as well as a hierarchical 
organization of the strong and weak beats of the meter. We translate this template 
representation into two audio descriptors: loudness and spectral variability (spectral 
flux), by assuming that spectral and loudness changes are most likely to occur on the 
stronger metrical accents. Also, to simplify the computation we merged both 
descriptors into a single integer per unit by a function that defines each unit by the 
mean of both descriptors values. At each query the algorithm gathers the 
indispensability weight for that specific accent, and retrieves all units from the corpus 
that fall on the range that comprehends the value plus an additional range of 0.1 that is 
subtracted and added to it, respectively. 

We can apply this principle either on the totality of the corpus or on separate 
clusters, allowing as many layers as there are existing clusters. The user can navigate 
in real time on a squared map, which adapts the definition of the targets by regulating 
the indispensability’s weights (see Fig. 3). Two pairs of variables mapped to each of 
the vertices of the square will adapt the configuration of the weights. Rough-smooth, 
will adjust the variability between all accents and loud-soft will scale the weights 
proportionally (Fig. 4 depicts the indispensability weights’ distribution conveying the 
mapping adjustment according to the clusters position in Fig. 3). 

 
 

 

Fig. 3. Interface of shuffMeter 

Each concatenated unit is triggered by a timer assigned to the duration of each 
pulse according to the induced beats per minute (bpm). The user may also alter the 
bpm manually. SchuffMeter adopts a static temporal grid in order to synchronize 
several units that may present slight differences in length. If the units’ length does not 
match the specified duration, they are consequently stretched in time, which changes 
the playing speed of the audio signal without affecting the pitch. 
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Fig. 4. Indispensability weights’ distribution for four pulses of a 4/4 bar given by C. Barlow’s 
formula [22]. The 3 graphs have a color correspondence to the clusters depicted on Fig. 3 and 
each configuration was scaled and conveys a percentage of variance according to their position 
on the navigable map. 

SoundscapeMode. As the name implies, the last recombination mode implemented in 
earGram was designed to synthesize soundscapes in real time. It may be a valuable 
tool in sound design for movies or installations, because it maps segments onto a 
navigable squared space according to perceptual audio qualities. The navigable space 
is divided in four regions arranged in pairs of interconnected variables, similar to the 
interface of shuffMeter (see Fig. 3). The first set of variables controls the density of 
events (dense and sparse) and the second controls the roughness of the events (smooth 
and sharp). 

Density defines the number of units played simultaneously, and ranges from 1 to 5 
events. Smooth-sharp dichotomy, the second set of variables, aims at regulating and 
organizing the corpus in terms of diversity and stability. This last expressive quality is 
assigned to the audio feature given by the spectral variability descriptor (single 
numeric value per unit), which measures how quickly the power spectrum changes 
over time. The choice of this descriptor was due to its strong property for denoting 
onsets and sudden changes in the power spectrum and thus revealing how stable is the 
spectrum of the unit is. It should be noted that the terms used in the interface are not 
fixed sound types; instead, they are highly dependent on the source file(s). For 
instance, if we feed the system with samples with very smooth spectral shapes, the 
difference between smooth and sharp will be almost imperceptible.  

Similarly to infiniteMode, we added a module at the end of the unit selection 
procedure that intends to maintain the best possible continuation between concatenated 
units by avoiding loudness and spectral discontinuities. This is done by gathering all 
candidates for a specific query within a unit and finding the one that minimizes the 
distance to the previously selected unit on the non-normalized bark spectrum. 

7.2 Synthesis 

Synthesis is done by concatenating units with a slight overlap. Each unit is played 
with a with Gaussian amplitude envelope. Most recombination methods incorporate 
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strategies to avoid spectral discontinuities between adjacent units. However, in order 
to improve the concatenation quality, an additional feature is added at the end of the 
algorithm chain as a means to filter remaining transition discontinuities in the audio 
flow. This is done by smoothing the unit’s transitions by spectral interpolation with 
the help of an object from the Soundhack plugins bundle [25] named 
+spectralcompand~, which is a spectral version of the standard expander/compressor, 
commonly known as compander. It divides the spectrum in 513 bands and processes 
each of them individually. The algorithm computes an average of the spectrum over 
the last 50 ms iteratively and applies it as a mask during synthesis.  

8 Musical Applications 

Four recombination algorithms that synthesize a novel music output based on given 
audio examples were detailed in this paper. These algorithms are suitable for a variety 
of music situations spanning from installations to concert music. The design of the 
system does not reflect any particular musical style. Our main purpose was to design 
an agnostic music system that could learn from the music it draws its database from 
and define coherent target phrases to be synthesized. Thus, the music output is highly 
dependent on the sound source(s) assigned by the user. Also, some guidance must be 
expected from the user to select certain recombination methods over others given the 
nature of the sound source(s). In other words, if we fill the database with polyphonic 
music signals segmented on a beat basis, it will be highly implausible that this 
collection of units will produce a consistent result when using soundscapeMode, 
which is mainly intended for synthesizing soundscapes.  

The system is easily adjustable to the context of interactive performance. All 
recombination methods have some degree of variability that can be easily controlled 
on the GUI by a computer operator in real time or mapped to data extracted in real 
time such as motion or audio characteristics. The interface of all recombination 
methods is intuitive and built as navigable maps that are almost self-explainable. 

The main purpose behind the machine listening and learning techniques 
implemented in earGram is to drive synthesis. However, the software may be useful 
for other application domains outside this realm. The machine listening and learning 
blocks combined with the visualization strategies of the corpus may constitute a 
valuable resource for the purpose of analyzing music in various fields such as 
computational musicology and cognitive musicology. 

9 Conclusions and Discussion 

This paper presented earGram, a novel CSS application built in Pure Data that 
comprises four generative strategies for interactive music contexts focusing on 
usability problems of CSS and filling the gap between computer algorithmic assisted 
composition strategies and audio content-based processing strategies.  

Major differences from similar software include the focus on data-driven or rule-
based generative music strategies that re-assign the original temporal order of the 
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units into targets that: (1) arbitrarily extend a particular audio excerpt while retaining 
the source morphology (like being on hold), (2) dynamically change the meter of the 
audio source(s), and (3) organize the raw material into interactive, navigable maps 
suitable for creating soundscapes and/or browsing and exploring the corpus. 

A particular concern that guided system implementation was to avoid the need for 
the user to deal with MIR-related terminology, particularly by devising a description 
scheme for the characterization of the units based on theoretical and practical musical 
knowledge.  

The use of Barlow’s indispensability algorithm proved to be an efficient method 
for assuring metrical coherence in the recombination process as well as the Markov 
chain algorithm for modeling the time varying morphologies of the audio source(s). 

The machine learning strategies used, notably the clustering algorithms, enhance 
most of the visualizations revealing more clearly the long-term structure of the piece.  

Both the software, several sound examples for all playing modes described in  
this paper, and the project template used to create each example are available at: 
https://sites.google.com/site/eargram/.  

10 Future Work 

A better understanding of the nature of the audio source(s) is seminal for refining 
many features of the system and providing increased usability. CSS is highly 
dependent on the quality of the database from which it draws its units. By recognizing 
in more detail particular qualities of the audio source(s), we could constrain a 
particular corpus to specific applications or playing modes thereby avoiding 
incoherent musical results.  

Sequencing various playing modes in the same performance or using concurrent 
and synchronous recombination methods at runtime is still a very arduous process in 
the current software implementation. However, a set of objects that allows a more 
flexible use of the corpus adapted for the easy implementation of concurrent or 
sequenced playing modes is under development.  
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Abstract. Even though we generally don’t pay attention to the fric-
tion sounds produced when we are writing or drawing, these sounds
are recordable, and can even evoke the underlying gesture. In this pa-
per, auditory perception of such sounds, and the internal representations
they evoke when we listen to them, is considered from the sensorimotor
learning point of view. The use of synthesis processes of friction sounds
makes it possible to investigate the perceptual influence of each gestures
parameter separately. Here, the influence of the velocity profile on the
mental representation of the gesture induced by a friction sound was
investigated through 3 experiments. The results reveal the perceptual
relevance of this parameter, and particularly a specific morphology cor-
responding to biological movements, the so-called 1/3-power law. The
experiments are discussed according to the sensorimotor theory and the
invariant taxonomy of the ecological approach.

Keywords: Sensorimotor Approach of Auditory Perception, Friction
Sounds, 1/3 power law, Biological Movement.

1 Introduction

The relation between sound and movement is a very wide field of research. In
this article we will focus on a particular topic related to this field namely the
relation between a sound and a specific movement: the human drawing move-
ment. Evoking a movement with a monophonic source only by acting on timbre
variations of the sound is a process often used by electroacoustic musicians and
sound engineers. Musicology analyses proposed semiotic descriptions of perceived
movements in musical pieces [10]. Moreover, the general relations between in-
trinsic sound properties and movements have been tackled in previous studies by
Adrien Merer in [27] and [28]. The motions evoked by monophonic sounds were
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investigated from two angles, first by using a free categorization task, with so-
called abstract sounds, that is, sounds which source was not easily identifiable.
And secondly with a perceptual characterization of these evoked motions by
studying the drawings produced by a group of subjects using a purpose graphi-
cal user interface. These studies had a very interesting approach which enabled
to extract relevant perceptual features of relations between timbre variations of
a sound and the evoked movements, and led to a sound synthesizer of evoked
movements based on semantic and graphics controls.

Different psychological studies tackled the problem of sound event recogni-
tion. They principally based on the ecological approach of visual perception in-
troduced by Gibson [15] which supports the idea that perception emerges from
the extraction of invariant features in a sensory flow, and moreover from the
organization of the perceptual system itself. This approach has been formalized
for the auditory perception in different studies [46,12,13]. Opposed to this view,
the information theory proposed that the perception is the result of a process
with multiple steps which enables the association between a memorized abstract
representation, and its identity and signification. In [29], McAdams has an in-
termediate position, he proposed to adopt the point of view of the information
theory, and the notion of auditory representation, but keeping the terminology
of invariants features which comes from ecological approach. It is well adapted to
the description of the material world, and particularly in highlighting that some
properties are perceived as invariant when others can change without changing
the perception and signification of the stimulus. Moreover, we can argue that as
it essentially concerns the recognition of sound events, it is adapted to adopt a
representationalist view with this terminology to describe the information which
is used to compare a representation of a stimulus with memorized representa-
tions. It is therefore proposed that the acoustic properties that carry information
that enables the recognition of a sound event can be defined as structural and
transformational invariants. The information that enables to identify the na-
ture of the sound source was defined as a structural invariant. For instance, it
has been shown that impact sounds contain sufficient information to enable the
discrimination between the materials of impacted objects [47,18,2]. The informa-
tion that specifies the type of change is known as a transformational invariant.
For instance, a study revealed that the rhythm of a series of impacts enables to
predict if a glass will break or bounce [46].

In the following study, we will focus on a particular type of sound event,
the sound produced by the friction between a pen and a paper when we are
drawing. This sound is audible but we did not necessary pay attention to it.
The timbre variations contained in it may enable to imagine a movement and
therefore a gesture. Are we able to recognize the gesture from the friction sound?
If yes, can we imagine the shape which has been drawn? A graphical gesture can
be mainly defined as a couple of velocity and pressure profiles which induce
changes in the produced friction sound. In the following we will focus on the
velocity profile of the gestures. We will investigate whether this information is
sufficient to recognize a gesture and if it can be considered as a transformational
invariant concerning human graphical gestures.
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The relation between sound and gesture can be approached regarding a general
theory at the edge between philosophy and cognitive sciences, called enaction,
which was introduced by Francisco J. Varela [37,38]. This theory proposed a new
approach of cognition distinct from the classical top down and bottom up models
coming from cognitivist and connectionist approaches. He reintroduced actions
and intentions at the center of our conception of cognitive processes involved
in the perception of a stimulus. Varela defined the notion of incarned/embodied
actions which can be summed up by the main idea that our perceptual pro-
cesses are modeled by our actions and intentions, and that actions are central
and cannot be separated from perception. Regarding the invariant taxonomy, it
can be hypothesized that invariants which are used by the perceptual processes
to identify a sound event refer to embodied properties of these actions [37]. As
mentioned before, it should still be noted that invariant taxonomy comes from
the ecological approach which is not consistent in many points with the enactive
theory, but in this study, we will consider the notion of invariant as the infor-
mation used by perceptual processes to identify and to recognize an event. The
low level coding of embodied action has been supported by functional imagery
observations in monkeys which revealed the existence of specific neurons in the
ventral premotor cortex, the so-called mirror neurons, which fired either when
the monkeys make an action or when they just observe it [32,11]. These obser-
vations have also been done in monkeys in the case of the auditory modality
[19]. Finally, other electrophysiological and anatomical observations have been
done with musicians whose brain area involved in the practice of their instru-
ment was activated when they just listened to the instrument. Moreover, it has
been shown that the intensity of activation is higher according to the musician’s
degree of expertise [3]. These last observations highlighted the importance of the
perception–action coupling, also called the sensorimotor loop, in the perceptual
processes and particularly in the case of auditory perception.

In this paper, we will investigate the relation between a friction sound pro-
duced by someones drawing and the evoked movement with the previous embod-
ied action approach. It enables to make strong hypothesis about the dynamic
features which can be imagined from a friction sound. We will aim at highlight-
ing which parameters of the gesture can be evoked through a friction sound.
Here we focus on the velocity profile, to set up experiments which investigate
this question, we need friction sounds produced by a specific velocity profile.
A graphic tablet and a microphone can be used for this purpose. This solution
enables the analysis of the sound regarding the gesture properties but doesn’t
provide the possibility to control precisely the velocity of the writer. For control
purposes, it would be more interesting to create synthetic friction sounds from
given velocity profiles. A synthesis process of friction sounds which enables to
synthesize such friction sounds will be present in a following section.

Finally, we will investigate the representation of a gesture from a friction sound
in three experiments in which both recorded and synthesized friction sounds are
used. In the first two, friction sounds produced when a writer draws different
shapes will have to be associated to static visual shapes to identify if friction



Reenacting Sensorimotor Features of Drawing Movements 133

sounds can evoke a specific gesture, and furthermore a geometric shape. A third
experiment investigates the relevance of a biological relation which links the
velocity of a human gesture to the curvature of the trajectory from the auditory
point of view. The results of these experiments will be discussed according to
the sensorimotor theoretical background finally.

2 A Synthesis Model of Friction Sounds

In the three experiments which will be presented, a part of the stimuli will be
generated with a sound synthesis process. The main goal will be to evaluate the
relevance of the velocity profile in the representation of a gesture underlying
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Fig. 1. Panel A: Physically Informed Friction Sound Synthesis Model - The friction
sound is assumed as a series of impact of a plectrum, in our study the pen, on the asper-
ities of a modal resonator – Panel B: Implementation of the phenomenological model
with a source-filter approach that enables to separate the action, here the gesture, the
object, here a paper on a table. The different levels of control are presented. The high
level one corresponds to the intuitive control proposed to a user which enables to define
an object from a semantical control of its perceived material and shape, while the low
level corresponds to the synthesis parameters.
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a friction sound: Are we able to imagine the gesture made only by listening
the friction sound? Can we even recognized the shape which is drawn from
the sound? And at last, is there morphologies, so-called invariants, linked to
the velocity profile which enable the recognition of a human gesture from an
auditory point of view?

From a synthesis point of view, a paradigm well adapted to the invariant’s
taxonomy is the action/object paradigm. It consists in defining the sound as the
result of an action on an object (e.g. “rubbing on a metal plate”). A natural
way to implement the action/object paradigm is to use subtractive synthesis,
also called a source filter approach. This method enables to separate synthesis
of the action, the exciter, e.g. the transformational invariant, and the object,
the resonator, e.g. the structural invariant. To synthesize friction sounds with
this approach, we used physically informed model, also called, phenomenological
model presented by Gaver in [12] and improved by Van den Doel in [36]. It aims
at reproducing the perceptual effect rather than the real physical behavior.

This approach considers a friction sound as the result of a series of impacts
produced by the interaction between the pencil mine and the asperities of the
surface, see Fig. 1. With a source-resonator model, it is possible to synthesize
friction sounds by reading a noise wavetable with a velocity linked to the velocity
of the gesture and filtered by a resonant filter bank adjusted to model the char-
acteristics of the object which is rubbed or scratched (see Fig. 1) [7,8]. The noise
wavetable represents the profile of the surface which is rubbed. Resonant filter
bank simulates the resonances of the rubbed object and is characterized by a
set of frequency and bandwidth values [1,2]. This synthesis model is particularly
well tuned for our study, it indeed enables to generate a synthetic friction sound
which varies only according to the velocity of the gesture.

3 A Relevant Acoustical Information: The Timbre
Variations due to the Velocity of the Pen

Graphical tablets henceforth allowed to accurately record dynamical information
like velocity and pressure, and to use it for comparing two shapes according to
the kinematics which have produced them. As evoked before, many studies have
highlighted the importance of the velocity profile in the production of a move-
ment, and in particular, of graphical movements. Moreover, the friction sound
synthesis previously presented enables to synthesize the friction sounds produced
when someone is drawing based on the velocity profile only. As mentioned in the
introduction, the velocity profile is a very important characteristic of a gesture,
which may be involved at different levels of perception of a biological movement
both in the visual system [41,43] and in the kinesthetic one [45]. Here we aim at
investigating if this parameter is also a relevant cue to identify a drawn shape
from a friction sound.

Recording Session. We asked someone to draw six different shapes on a paper,
see Figure 3. While the velocity profile of the drawing movement was recorded
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Fig. 2. Experimental recording set-up

thanks to a graphic tablet1, the friction sound produced by the pen on the
paper was also recorded with a microphone, see Fig. 2 for the experimental
set up. The writer was asked to draw each shape as fluidly and as naturally
as possible. Empirical observations were made just by listening to the recorded
friction sounds. The circle seems to be a very particular shape. It indeed has a
very uniform friction sound, with little timbre variations, while the ellipse, arches,
line and loops have more important ones. The lemniscate seems intermediate
between the other shapes, it indeed has a sound which contains more variations
than the circle, but less than the loops, the arches and the line. Among the shapes
which have a lot of timbre variations like ellipse, loops, line and arches, it should
be noted that the line and the arches are distinct from the loops and the ellipse
actually. They contain cusps, which imply silences in the friction sounds which
are very audible and provide important perceptual cues linked to the geometry
of the drawn shape.

Dealing with these empirical considerations, we chose to establish two corpuses
of four shapes, one composed of shapes that are a priori distinct, the ellipse,
the circle, the line and the arches. The second one of shapes which are a priori
closer, i.e. the ellipse, the loops, the lemniscate and the circle. In particular, the
first one has shapes which contain cusps: line and arches. A period of the velocity
profile for each shape is presented in Fig. 4, for the arches and the loops, only one
period of the four shapes is presented. The circle has a specific velocity profile

1 Wacom Intuos 3.
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Fig. 3. The six shapes chosen for the experiments
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Fig. 4. Periods of the velocity profiles normalized and resampled on 512 samples used
to compute the clustering

with a velocity almost constant during the whole drawing process. Otherwise, the
durations of one period vary considerably according to the different shapes. To
avoid this problem, the stimuli which have been chosen in the following contained
four periods for the ellipse, the lemniscate and the line (one could say four round
trips for this one). For the circle, only two periods were chosen, since the global
duration for one period was indeed longer than for the other shapes. The whole
durations of the chosen stimuli are summarized in Table 1.

A way to formally compare shapes of the two corpuses according to a dynam-
ical dimension is to compare the proximity of the recorded velocity profiles with

Table 1. Durations of the Performances Chosen for the Recorded Velocity Profiles and
Friction Sounds (in Seconds)

Circle Ellipse Arches Line Lemniscate Loops

5.2 5.8 5.1 5.2 5.6 5.4
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a metric. Thus, in a second time, to set up listening tests with friction sounds as
stimuli to establish a perceptual distance between pairs of shapes. At last, the
classifications computed from these mathematical and perceptual distances can
be compared to evaluate if the velocity profile provides a relevant information
from an auditory point of view.

3.1 Clustering of Geometrical Shapes from the Velocity Profile

Practically, recorded velocity profiles correspond to series of N measurements vi
at the sample frequency of the graphic tablet (here 200 Hz). A velocity profile is
then defined as an array of N points according to the duration of the drawing.
Finally, to compare two velocity profiles v and w it is necessary to be able to
compare two vectors of different lengths. The durations of two drawings is indeed
most of the time different for different shapes.

Euclidean Distance between Two Velocity Profiles. A common mathe-
matical tool used to compare two vectors is the inner scaler product that enables
to define a distance according to a metric. The choice of the metric is crucial.
It indeed defines the way the distance between shapes will be calculated, and it
defines an objective measure between two shapes in terms of velocity profiles.
The most classical metric is the euclidean one which corresponds to the following
inner product between two vectors vi and wi, of the same length:

〈v|w〉 =
N∑

k=1

vkwk (1)

The distance between two velocity profiles can then be obtained from the Eu-
clidean distance, d(v, w) = ‖v − w‖ =

√〈v − w|v − w〉, which is minimal when
v = w and increases as the difference between v and w increases. In the case
of velocity profiles, since arrays are of different lengths. It has been chosen to
resample each velocity profile in 512 samples and to normalize them according
to their mean value. The rationale is that the recordings are about the same
duration, see Table 1. Thus, this normalization does not introduce a bias in the
calculus of the distance. More complex algorithms exist to compute a distance
between two arrays of different lengths, such as Dynamic Time Warping [20].
This last one is effective but very expensive in computing time and provide no
significant advantages here from the resampling.

Dissimilarity Matrix and Clustering. The Euclidean distance enables to
compute a distance between each pair of shape for each corpus (6 pairs for
each corpus). And moreover, to create a dissimilarity matrix D in which each
cell represents the distance between the two velocity profiles associated to two
shapes. The diagonal values of this matrix are equal to 0, indeed the distance
between two equal velocity profiles is null. Two hierarchical clustering analysis of
D, with complete linkage, were then effectuated from the dissimilarity matrices
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Fig. 5. Panel A and B: Ascending hierarchical clustering computed from the dissimi-
larity matrices computed from the corpus 1 and 2 respectively

of each corpus. The dendrograms corresponding to this matrices are presented
in Fig. 5. A dendrogram corresponds to a hierarchical tree which represents a
classification of different objects, here the velocity profiles. The height of each
U-shape represents the distance between two objects or two clusters. For the
two corpuses, the clusterings confirm the empirical observations, the circle is the
shape that is most different from the others in the two sets of shapes. This could
be explained by its velocity profile that is almost constant. In the first corpus,
it is noticeable that the arches seem to be about equally distant from the ellipse
and the line. In the second corpus, as expected, the ellipse and the loops are
very close while the lemniscate is intermediate between the circle and the other
two shapes. In order to determine if the previous classification obtained from
the velocity profiles is relevant from an auditory perceptual point of view, two
listening tests have been set up.

3.2 Clustering of Geometrical Shapes from Perceptual Comparisons
of Friction Sounds

The previous mathematical clustering based on the velocity of the gesture made
to draw the shapes enables to evaluate the proximity between the shapes of
the two corpuses from an objective point of view. Our aim is to evaluate if the
velocity profile is also a relevant information to compare two shapes from the
perception of friction sounds. In other words, to investigate if the velocity profile
conveys information about a gesture from the auditory point of view.

In the following, two listening tests with recorded and synthesized sounds
produced during the drawing that were to be associated to the four shapes of each
corpus are presented. Clusterings can then be obtained from the results of the
listening tests and compared with the mathematical ones obtained previously.
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In order to establish a perceptual clustering of the shapes, the two listening tests
consist in a association test where subjects have to associate the friction sounds
to the correct shapes.

Experiment 1 – Distinct Shapes

Subjects. Twenty participants took part in the experiment: 9 women and 11
men. The average age was 30.65 years (SD=13.11). None of the subjects were
familiar with the topic of the study before the test.

Stimuli. The first listening test deals with the shapes of the corpus 1 which
contains the most distinct shapes with regard to the velocity profile. The auditory
stimuli are composed of eight friction sounds, four recorded and four synthesized,
obtained from the shapes of corpus 1 collected during the recording sessions
presented previously. The synthesized sounds were generated with the friction
sound synthesis model previously presented.

Task. The subjects were asked to univocally associate four friction sounds –
among the four available – to the four shapes. The test was composed by eight
trials: 2 types of sound x 4 repetitions.

Results and Short Discussion. For each subject and each type of sound – synthe-
sized vs. recorded – sixteen scores of association between a sound and a shape
were averaged across the four trials. All the results were stored in confusion ma-
trices. The global averaged scores of success of the four shapes for recorded and
synthesized stimuli are presented in Table 2. The results are clear, each friction
sound has been properly associated to the corresponding shape above a random
level2. Moreover the synthesized stimuli provide results which are not signifi-
cantly different from the recorded ones which confirms the hypothesis about the
perceptual relevance of the velocity profile.

Table 2. Scores of success for recorded and synthesized stimuli of corpus 1 aver-
aged across subjects – Mean and Standard Error in Percentages – Scores higher than
statistical chance are bolded

Circle Ellipse Arches Line

Recorded 98.75 81.25 80. 87.5
1.25 6.25 6.44 1.72

Synthesized 98.75 87.5 82.5 97.5
1.25 4.97 5.76 3.08

2 The random level is defined at a 25% sound to shape association rate.



140 E. Thoret et al.

Experiment 2 – Close Shapes

Subjects. Eighteen participants took part in the experiment, 8 women and 10
men. Their average age was 31.56 years (SD=13.73). None of the subjects were
familiar with the topic of the study prior to the test.

Stimuli. The second listening test deals with the shapes of corpus 2 which have
shapes with closer geometries. Auditory stimuli are composed by eight friction
sounds obtained from the shapes of corpus 2, four recorded and four synthesized,
collected during the recording sessions presented previously. As for the experi-
ment 1, the synthesized stimuli are generated with the friction sound synthesis
model presented previously.

Task. The task was the same as in Experiment 1.

Results and Short Discussion. The data analysis is the same as in the previ-
ous experiment. The results reveal that, except for the loops, each sound was
associated with the correct shape with a success rate above random level. Only
the recorded loops were not recognized above chance. The scores of success are
summarized in Table 3. Confusions appear between the ellipse and the loops,
the score of association between these two shapes is not significantly different
which means that they were confounded, see Table 3.

Clustering Analysis. The two previous listening tests revealed that when
shapes are sufficiently different, it is possible to discriminate them simply from
friction sounds. To valid entirely this statement, an additional analysis is nec-
essary. A perceptual distance matrix between shapes was therefore computed
from the confusion matrices obtained in the two experiments. They were firstly
symmetrized, to implicitly merge the rate of association of sound i to shape j
with the rate of association of sound j to shape i into one value representing the
perceptual distance between the two shapes. The symmetrized confusion matrix
C̃ is obtained by:

C̃ =
C + Ct

2
(2)

with Ct the transposed version of matrix C. Then a discrimination matrix D̃
was obtained by D̃ = 1 − C̃. At last a pairwise distance matrix D is computed
with the Euclidean metric.

For each corpus, two discrimination matrices are computed: one for the
recorded sounds, and one for the synthesized one. Like for the mathematical
dissimilarity matrix, an ascending hierarchical clustering are computed from
these discrimination matrices and provide dendrograms. Four clusterings are
made from the whole results, see Fig. 5 and 7. A global observation of the
dendrograms lead us to hypothesize that, for the two corpuses, the two per-
ceptual shapes classifications, synthesized vs. recorded, are equivalent. Indeed,
in each case, the relative rank of proximity between whole shapes are the same.
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Table 3. Scores of success for recorded and synthesized stimuli of corpus 2 (A) —
Scores of association between loops and ellipse for recorded and synthesized stimuli
(B). All the scores are averaged across the subjects. Mean and standard error are
presented in percentages. Scores higher than statistical chance are bolded.

(A)

Circle Ellipse Lemniscate Loops

Recorded 97.22 41.67 68.06 29.17
2.78 7.29 8.04 7.36

Synthesized 100. 50. 81.94 43.06
0. 4.52 6.00 6.00

(B)

Ellipse Sound ↔ Loops Sound Loops Sound ↔ Ellipse Sound

Recorded 51.39 45.83
6.22 7.89

Synthesized 45.83 43.06
5.05 4.87

To statistically validate this, it is necessary to introduce the notion of cophenetic
distances.

The problem of comparing two dendrograms has already been studied in phy-
logenetics. One goal of this field of biology is to understand the evolution of
living beings according to molecular sequencing and morphological data which
are collected into dissimilarity matrices and presented with dendrograms. Thus,
the comparison of dendrograms has been tackled to compare morphological and
molecular observations. As previously presented, a dendrogram is a representa-
tion of distances between different objects, and the composition of the clusters
of the dendrogram is made according to a specific metric. A dendrogram is then
characterized by distances between clusters, in which a specific distance has been
defined and is called the cophenetic distance3 [35].

3 According to the help of the function cophenet in Matlab c©, the cophenetic distance
can be defined as:

The [...] distance between two observations is represented in a dendrogram
by the height of the link at which those two observations are first joined. That
height is the distance between the two subclusters that are merged by that link.

.
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Fig. 6. An example of dendrogram and the associated cophenetic distances ci,j between
the different objects – The cophenetic distances are summed up in an array: C =
[c1,2, c1,3, c1,4, c2,3, c2,4, c3,4] – and can be compared with cophenetic distances of others
dendrograms with Pearson’s and Spearman’s correlation coefficients

An example of dendrogram and the associated cophenetic distances are pre-
sented in Fig. 6. The cophenetic distances are sorted in an array for each den-
drogram. To determine whether two dendrograms are statistically equivalent, it
has been proposed to compute the Pearson’s and Spearman’s correlation coeffi-
cients between the two arrays of cophenetic distances. The Pearson’s correlation
coefficient r corresponds to a quantitative comparison of the linear correlation
between shapes. And the Spearman’s correlation coefficient ρ, corresponds to a
qualitative comparison of the clusterings which takes into account of the ranks
of the cophenetic distances between shapes.

We wanted to compare the two dendrograms obtained in each listening test.
With the statistical method presented here, no significant differences are ob-
served both for the experiment 1 and 2. The correlation coefficients are presented
in Fig. 7.

3.3 Comparison between Clusterings

Previous comparisons revealed that from a perceptual point of view, the syn-
thesized friction sounds generated from recorded velocity profiles contained the
same relevant information than the recorded ones, which seems to confirm that
the velocity profile is the information which is perceptually relevant to recover a
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Fig. 7. Panel A: Ascending hierarchical clustering computed from the confusion ma-
trices of the experiment 1 - Significant correlations were found between cophenetic
distances of the two clusterings (r = .89 and ρ = 1.) — Panel B: Ascending hierarchi-
cal clustering computed from the confusion matrices of the experiment 2 - Significant
correlations were found between cophenetic distances of the two clusterings (r = .94
and ρ = 1.) — All correlation coefficients are significant

gesture through a friction sound. To completely validate this initial hypothesis,
the perceptual and the mathematical dendrograms have been compared using
the statistical method of cophenetic distances presented in the previous para-
graph. The comparison reveals that for each corpus, except for the Pearson’s
correlation coefficient obtained for the recorded sounds of the experiment 1, the
comparisons between the perceptual clusterings are not significantly different
from the mathematical ones (see Table 4 for the Pearson’s and Spearman’s cor-
relation coefficient). This result reinforces the importance of the velocity profile
in the perceptual process underlying the sound to shape association task, which
was already suggested with the correlation between the perceptual dendrograms
obtained from the listening tests.
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Table 4. Pearson’s and Spearman’s correlations, respectively noted r and ρ, between
the cophenetic distances obtained from the perceptual and the mathematical cluster-
ings of the two experiments — Significant comparisons are bolded

Experiment 1 Experiment 2

r ρ r ρ

Recorded .58 .93 .98 .93

Synthesized .89 .93 .94 .93

3.4 Discussion

The clusterings reported here highlight the perceptual relevance of the velocity
profile to evoke a graphical human movement. We firstly established an objective
classification of shapes of two corpuses from the velocity recorded on a person
drawing them. Shapes expected to have a close geometries are also close accord-
ing to this metric like the ellipse and the loops for instance.

Our interest dealt with the auditory perception of gestural movements, and
particularly to determine if the velocity of a gesture is perceptually relevant to
characterize a gesture. We therefore compared the mathematical classification
with perceptual ones thanks to the results of two listening tests, one for each
corpus. The tests were composed of friction sounds recorded when the same per-
son draws the shapes. Synthetic sounds generated only from the velocity were
also used, which made it possible to investigate the perceptual relevance of the
velocity. The variation of timbre involved in the recorded and in the synthe-
sized sounds enabled the shape recognition. Finally, the comparisons between
the perceptual and the mathematical classifications confirmed that the velocity
profile of a gesture contains relevant information about the gesture underlying
a friction sound. In particular that a sound can evoke a gesture. And even, to
evoke a geometrical shape although the relation between a velocity profile and
a shape is not bijective, i.e. one velocity profile can be the cause of the drawing
movement of several geometrical shapes.

Henceforth we know that the velocity profile transmits sufficient information
about the gesture, sufficient, to a certain extent, to discriminate different shapes
from sounds. This implies that the kinematics of the gesture and the geometrical
characteristics of the drawn shape are correlated and gives an invariant informa-
tion which enables subjects to extract a common representation of the gesture
evoked by the sound, a so-called transformational invariant.
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4 An Acoustical Characterization of a Human Gesture

When someone draws a shape on a paper, the final trace is static and all the
dynamic information is lost a priori. The previous experiments pointed out that
from an acoustical point of view, the velocity profile of a gesture was a relevant
information to recognize a gesture from the friction sound produced when some-
one is drawing. It indeed enabled the discrimination of shapes when they were
distinct. Conversely, when the shapes had close geometries, perceptual confusions
between sounds (both for recorded and synthesized ones) appeared in particular
for the ellipse and the loops. This result reveals that the gesture made to draw
a shape is closely linked to its geometry and particularly to its kinematics.

4.1 The 1/3-Power Law

Many studies have already focused on this relation between the kinematics of a
movement and the geometry of a trajectory. In particular, studies led by Paolo
Viviani and his colleagues since the eighties highlighted that a biomechanics
constraint implies the velocity of a gesture to depend on the curvature of the
traveled trajectory [39]. Besides, they proposed a power law relation between the
angular velocity of the pen and the curvature of the drawn trajectory [22,40]. In
terms of tangential velocity vt and curvature C, it can be written:

vt(s) = KC(s)β (3)

K is called the velocity gain factor and is almost constant during a movement. s
is the curvilinear abscissa. The exponent β is close to 1/3 for adults’ drawing [42]
and the law has therefore been called the 1/3-power law. Possible description of
this relation is that when we draw a shape, we accelerate in the flattest parts
and we slow down in the most curved ones. This general principle constrains the
production of biological movements but has also consequences in other sensori-
motor modalities. Visual experiments revealed that a dot moving along a curved
shape was perceived as the most constant when the relation between its velocity
and the curvature of the traveled trajectory followed the 1/3-power law, even
when the velocity variations exceeded 200% [43]. The relevance of this law has
also been studied in the kinesthetic modality and revealed the same perceptual
constraint [45].

This law can partly explain why the ellipse and the loops from the previous
experiment were confounded. As their geometries were close, the velocities were
also close, and as the produced friction sounds mainly depend on the velocity,
they were not different enough to be distinguishable from an acoustical point of
view. This law has therefore audible consequences, and it is legitimate to wonder
if this biological invariant can be calibrated in the auditory modality.

4.2 Auditory Calibration

We adapted the protocol of visual calibration of the power law proposed in [43]
to investigate the auditory perception of biological motion.
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Subjects. Twenty participants took part in this experiment. Their average age
was 29.42 years (SD=12.54).

Stimuli. While in the visual case studied in [43] the stimuli which were adjusted
by subjects were moving visual dots, in the acoustical case, they were friction
sounds. The previous synthesis model of friction sounds was used to generate a
sound only from the kinematics (i.e. the velocity profile). These velocity profiles
were computed by using the β-power law with a fixed mean velocity K. To
avoid evoking specific known shapes, the curvature profiles were computed from
pseudo-random shapes, see Fig. 8 for an example.

Fig. 8. An Example of Pseudo-Random Shape

Task. Each subject effectuated 6 trials and a pseudo-random shape was gener-
ated for each trial. The subjects listened to the corresponding friction sound and
were asked to adjust the sound until they perceived a sound which evoked the
most fluid/natural movement. They could act on the timbre variations with two
buttons which modified the β value. The subjects were unaware of the param-
eter on which they were acting. The initial value of β was randomized at each
trial and the shape was not shown to the subjects to make them focus on the
sound only.

Results and Short Discussion. The subjects adjusted the exponent value with
a mean value of β=0.36 (SD=0.08), it is therefore not significantly different
from the 1/3-power law (p=0.10). This indicates that to produce a sound which
evoked a fluid and natural gesture, the velocity profiles from which a friction
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sound is generated should follow the 1/3-power law. This result reinforces the
importance of kinematics in the perception and representation of gestures from
a cognitive viewpoint. The sensorimotor relations between auditory and other
modalities have more or less been investigated regarding the mental representa-
tion of gestures.

To conclude, one of our motivations was to control a friction sound synthesis
model with intuitive controls. The research perspectives that we can expect made
it possible to imagine a sound synthesis platform which enables to synthesize
sounds from intuitive controls based on the 1/3-power law. The scope of such a
platform is presented in Fig. 9. An interesting perspective of experiment 3 would
be to ask the subject to adjust the sound (implicitly the exponent of the power
law) evoking an aggressive and jerky gesture, or conversely the sound evoking
a sweet caress, which are two gestures evoking different intentions. Intentions
are closely linked to emotions and could be classified according to the classic
valence-arousal scale [5]. Intuitively, the high parameter values of the power law
would correspond to an aggressive and jerky gesture, i.e. to strong accelerations
and strong decelerations at a high velocity. And conversely, for the caress, which
involves a priori a slower and smoother gesture, the power law corresponding
values would be small. Not especially null for the exponent, which corresponds to
a uniform and constant movement and which has therefore no audible variations,
but for values high enough to perceive a smooth and sweet gesture.
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Fig. 9. Architecture of the friction sound synthesis platform with intuitive controls
of the evocation. The controls discussed in the conclusion such as, aggressiveness and
gentleness, have been proposed. A formal calibration of the velocity gain factor and
the exponent with respect to the gestural and emotional descriptors will be conducted
in future works.
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5 General Discussion

The starting point of this study was to investigate the relation between sounds
and gestures, more specifically to understand whether a sound can evoked a
gesture, and which characteristics could be conveyed by sound. In a general
context, in the previous studies by Adrien Merer [27,28], concerning the relation
between an abstract sound and the evoked movements, the following questions
were evoked: Why a sound evoke a specific movement? For instance, why does a
sound evoke something oscillating or rotating? We therefore found it interesting
to tackle this question in the case of human drawing movement regarding the
sensorimotor considerations presented before.

By adopting the invariant’s taxonomy, the results of the three previous exper-
iments gave important cues about one transformational invariant which charac-
terizes a gesture: its kinematic. Henceforth we know that the velocity transmits
relevant information about the gesture, which moreover can be associated to a
geometric shape to a certain extent. At last, the third experiment brings to light
the relevance of a biological relation between the velocity and the curvature from
the auditory point of view, which has never been investigated before. This last
experiment also showed the interesting result that, to evoke a fluid and natural
gesture through a friction sound, the velocity profile should follow the 1/3-power
law, which means that friction sounds could directly informed about the natu-
ralness and the fluidity of a gesture. This point has to be discussed because it
opens the possibility to recognize qualities of a human gesture through sounds,
which provides new perspectives in the understanding of auditory perception
and its relation with other modalities.

Going back to the task of the experiment 3, it is interesting to ask ourself
what it involves to ask someone to adjust a friction sound to obtain the most
fluid and natural sound according to a human gesture? In a representationalist
view, it firstly means that our perceptual system has to extract an information
from the timbre variations – mainly the brightness in the case of friction sounds
– which is then abstracted and internalized as the velocity. And secondly, to
compare it with an internal representation of fluidity to decide if this veloc-
ity corresponds to a fluid gesture, and eventually to change a parameter of the
sound and to start the process again. This view is not trivial and supposes that
we have internal representations of gestures – and moreover fluid gesture – which
can be compared with the one computed from an incoming auditory stimulus.
In the case of experiment 1 and 2, we are even able to associate this dynamic
representation of the gesture to a geometrical one, the static visual shape. The
problem of representations in perception has been widely discussed in the visual
modality to understand how a physical system, such as the brain, can makes the
feeling of seeing, which is not a priori a physical state. The enactive approach
of Varela presented in the introduction placed the action in the center of the
perceptual processes. The sensorimotor theory of perception of Kevin O’Regan
[31] proposed an interesting approach of this assumption. It is argued that see-
ing is not making an internal representation of the outside world from the visual
input, in other words to make a mirror in the brain of the world from a visual
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stimulus. It is proposed that seeing is knowing about things to do with the out-
side world, i.e. knowing the actions you can make with the outside world and
their consequences on your sensory input. For instance, seeing a wine glass is
not having a picture of it in the head, but it is projecting what you can do with
it, filling it or drinking it for example. Based on behavioral and neurophysio-
logical observations, Marc Jeannerod and Alain Berthoz respectively introduced
the notion of Simulated Action – the perception is a simulated action, [16,4,17].
It sums up the idea that perceiving, whatever the modality, is extracting the
relevant information to interact with the objects of perception, e.g. grasping the
glass to drink it. It is therefore making hypothesis about what and how I can
interact with it according to my motor competences. For example, when we see
a tea cup on a table, we are able to say which hand is the most adapted to grasp
it according to the position of the handle, the right hand if the handle turn to
right and conversely. Simulated action seems to involve the same processes as
the one proposed in the sensorimotor theory of O’Regan.

If we apply the sensorimotor approach to the auditory perception in the case
of the sounds produced by drawing movements, the same distinction as in the
visual case can be made. Listening to the friction sounds produced by someone
who is drawing is not making an internal representation of the sound produced
by the gesture, but it is imagining executing the corresponding gesture to which
the acoustical consequences are the perceived sound with the same timbre vari-
ations. All the action planning is involved in this task, from the intention to the
proactive simulation of the execution of the movement. Finally, according to the
sensorimotor paradigm, to perceive a friction sound it is almost already doing the
gesture which has produced the sound. This distinction is interesting because it
gives a relevant approach to make hypothesis about the invariant features which
enable the auditory recognition of acoustical events. Regarding the previous def-
inition of a simulated action, the third experiment reinforces this notion from
the auditory point of view. The subjects have been able to take the place of the
writer and to adjust the sound by mentally simulating the gesture they would
have executed and to compare it with the internal reference of fluid gestures. Un-
derstanding the behavior of human beings involves understanding their actions,
intentions, and even emotions, to react and to behave appropriately. The main
difference between humans and animals is definitely the existence of a highly
developed language, which enables sharing of actions, intentions and emotions
through a common channel of communication among individuals. An hypothesis
widely accepted now is that our verbal language derived from a gestural one,
in which actual words were screams and contortions [33]. Nowadays, the abil-
ity of humans to speak articulately enables to use quasi exclusively the vocal
channel rather than the gestural one. But we have not completely abandoned
the gestures, and it is commonly observed that when we speak, we make a lot of
gestures with a very important signification according to the context to supply
our speech [30]. Another observation about gestural language and more generally
about corporeal language, is related to the postural communication in animals.
Darwin studied the dog postures and their significations, and remarked that
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posture can either evoke hostile intents or humble and affectionate mood [9].
Hence gestures and more generally corporeal articulations have a lot of percep-
tual significations, in line with the third experiment previously presented from
the auditory modality which will be discussed.

In experiment 3, we proposed a perspective of intuitive controls based on emo-
tional and gestural descriptions. The close relation between intention, emotion
and gesture was addressed in a musical context, this question has been addressed
by Marc Leman [23], a proposition to explain interpretations and emotions in-
volved by musical and aesthetic experiences by considering the corporeal en-
gagement, and the corporeal resonances, which are non linguistic descriptions of
music and involved emotions. Such corporeal engagement has been suggest in the
case of the emotions we feel when we see a painting. It could be due to the fact
that we try to imagine the gestures, and therefore the underlying intentions of
the artist. This question has been already discussed in [26] regarding functional
imagery studies which revealed that our motor areas involved in drawing were
also activated when we see passively a letter we are able to trace [24,25]. These
results suggest that the visual perception of a stimulus involved all the processes
implied in the motor planning, and could be the basis of emotions engaged when
we perceive an artistic performance. Jeannerod suggests it in the case of the
perception of a dance performance [17]. He proposed that we may perceptually
take the place of the dancer in order to feel his sensorial state, so the emotions
we can feel from a dance performance could be explained by such a perceptual
process coupling perception to simulated action. By analogies with such pro-
cesses involved in vision and according to the results of the experiment 3, we
could imagine that such simulated actions should also be involved in the case
of the perception of a musical piece, but more experiments, either behavioral or
from functional imagery should be done to confirm such a strong hypothesis.

Finally, the enactive theory and the notion simulated action are a well adapted
framework for studying the perception of auditory objects which involved a hu-
man action like the friction sounds produced when someone is drawing. More-
over, the invariant taxonomy seems also well adapted to this. But to extend
these approaches to environmental sounds. which do not necessary involved an
embodied action, we have to define a general concept of action and to take into
account our interaction with the surrounding world with an holistic point of
view. For instance, the sound of a river flowing does not involve a human action,
in the sense of producing a motor act such as drawing or making a movement.
And finally, what is simulated when we listen such sound? It is maybe more
generally linked to experience rather than a simulated motor action. And maybe
it would be interesting to define a notion which could be named a simulated
situation, which englobes embodied active actions but also contains more gen-
eral experiences. This point will not be discussed here but have to be clarified
to establish a general ontology of sound perception based on the sensorimotor
and phenomenal contingencies. It would also be interesting to discuss and to
contextualize the invariants taxonomy regarding this more general framework.
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Abstract. An important question for both signal processing and audi-
tory science is to understand which features of a sound carry the most
important information for the listener. Here we approach the issue by
introducing the idea of “auditory sketches”: sparse representations of
sounds, severely impoverished compared to the original, which neverthe-
less afford good performance on a given perceptual task. Starting from
biologically-grounded representations (auditory models), a sketch is ob-
tained by reconstructing a highly under-sampled selection of elementary
atoms. Then, the sketch is evaluated with a psychophysical experiment
involving human listeners. The process can be repeated iteratively. As a
proof of concept, we present data for an emotion recognition task with
short non-verbal sounds. We investigate 1/ the type of auditory repre-
sentation that can be used for sketches 2/ the selection procedure to
sparsify such representations 3/ the smallest number of atoms that can
be kept 4/ the robustness to noise. Results indicate that it is possible
to produce recognizable sketches with a very small number of atoms
per second. Furthermore, at least in our experimental setup, a simple
and fast under-sampling method based on selecting local maxima of the
representation seems to perform as well or better than a more tradi-
tional algorithm aimed at minimizing the reconstruction error. Thus,
auditory sketches may be a useful tool for choosing sparse dictionaries,
and also for identifying the minimal set of features required in a specific
perceptual task.

1 Introduction

Sound signals are one-dimensional time series, reflecting the variation of acoustic
pressure in the air. There is a variety of ways to represent such time-series,
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starting with Fourier transforms or wavelet analyses [1]. Each representation
is defined in a set of basis functions on which the time-series are projected:
complex exponentials for the Fourier analysis, or dilated and translated versions
of a mother wavelet for wavelets. In an “atomistic” view of this analysis process
[2], the set of basis functions is often called the “dictionary”, and its elements
the “atoms”. Desirable properties for a dictionary may be the orthogonality
between elements, or its completeness and invertibility (i.e., it is possible to
represent any signal and transform it back without any loss of information).
More recently, for applications such as source separation or denoising, further
properties have been shown to be useful, such as sparsity (see [3] for a review),
where only a few non-zeros coefficients can be used to represent a signal. In
practice, exact sparsity is never achieved for sound signals, but still most of
them can be well approximated by sparse representations (the approximation
error decays quickly as the number of terms increases), a property often referred
to as compressibility. Such sparse representations are usually computed through
some non-linear algorithms, optimizing a balance between sparsity and data
fidelity [4].

The size and nature of the (possibly over-complete) dictionary must be care-
fully chosen, as larger dictionaries tend to provide sparser representations, but
the computational cost of the associated estimation algorithms may become
prohibitive, and high coherence in the dictionary elements may result in identifi-
ability issues. The choice of the dictionary elements, or “atoms”, is also of prime
importance, as these must be designed to fit local features of the signals under
study ; they can be chosen a priori or learnt on the data itself [5].

In this paper, we outline an original method for investigating sparse repre-
sentations of sound signals, based on perceptual considerations. The underlying
idea is simple: sounds are not just any time-series, they are time-series that are
being perceived by listeners. As a consequence, not all information in sound is
relevant for a given listening task. For instance, speech content is remarkably
resilient to large acoustic distortions [6], showing that a massive information-
loss can be tolerated for tasks like speech intelligibility in quiet. The key is that
the distortion should preserve a small but sufficient set of features for the task.
Here we introduce the metaphor of an “auditory sketch”: a sketch is a signal
that has been severely impoverished compared to the original sound, and thus
is clearly distinguishable from it, but that still retains enough of the original
critical features to afford good performance on a target task.

A schematic of the work flow we suggest to obtain auditory sketches is pre-
sented on Fig. 1. The method is iterative, and places the listener at the centre of
the design loop. The first proposal is to use auditory models. Auditory models re-
fer to a class of signal-processing algorithms trying to mimick the way the acous-
tic signal is transformed along the human auditory pathways. For instance, the
cochlea performs a time-frequency decomposition, which can be approximated
to a first degree by a bank of overlapping band-pass filters [7]. The resulting
representation is often termed an “auditory spectrogram”. Subsequent stages of
processing in the auditory pathways display more complex processes, which are
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Fig. 1. Overview of the sketch design method. An auditory representation of a natural
sound is generated (in this example, an auditory spectrogram) and only a few features
are retained. The auditory model is then inverted for re-synthesis of the candidate
sketch. Psychophysical experiments involving human listeners are then used to evaluate
the efficiency of the selected features. The process is repeated iteratively to discover a
sparse set of features that afford good performance with sound class and task at hand.

currently only poorly understood. For instance, neurons in the primary audi-
tory cortex exhibit a variety of selectivity to spectro-temporal features such as
spectral, temporal, or joint-spectral temporal modulations. Models nevertheless
exist to idealise such a processing as a bank of 2-D wavelets operating on the
auditory spectrogram [8]. Such schematic “cortical” representations have been
shown, for instance, to be sufficiently rich to be an efficient front-end for timbre
classification [9].

It is hoped that, because they are inspired by the physiology of the human
ear, such auditory representations will contain the features that are relevant to
perception. However, these representations are massively over-complete, so it is
not obvious to assess which part of the representation is relevant for a given task.
This is where we use a second step in the sketches method: the representations
are sparsified by keeping only a small set of non-zero coefficients. A variety of
selection algorithms can be envisioned, as discussed below.

Finally, to check that the relevant features have been preserved, we invert the
sparse representations back into sound signals. The resulting sounds are then
used in psychophysical tests with human listeners. The process should be re-
peated iteratively until the selection of sparse features affords good performance
on the target perceptual task.

In this paper, we present preliminary data as a proof of concept for the
sketches process. We compare two different auditory models, aimed at represent-
ing two distinct stages of auditory processing: the auditory spectrogram and the
cortical representation [8]. The selection of non-zero coefficients from the models
is obviously a central issue, and here we compare two potential candidates: a sim-
ple peak-picking algorithm, and an analysis-based iterative thresholding method
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[10]. Finally, the psychophysical task chosen is that of recognition of emotion in
short sound snippets. Sounds are extracted from a calibrated database of nat-
ural emotional signals [11], transformed as sketches, and then listeners have to
identify the original emotion in a forced-choice task (happiness, anger, sadness,
disgust). Only the first iteration in the method is tested.

2 Sparse Representations of Sounds: Dictionaries and
Algorithms

The “sketching” problem we are interested in can be formalized as follows. We
look for the sketch x ∈ RN , representation of the audio signal y such as

y = x+ ε, (1)

where ε stands for the difference between the original audio signal y and its
sketch x. Within our study, the sketch x is then assumed to have a sparse
representation in a given dictionary.

Traditionally, the quality of the sparse representation is measured both in
terms of sparsity and approximation (i.e., the fidelity to the original signal). It
depends on the dictionary in which the decomposition is performed, and the pro-
cedure for the selection of sparse features (and the corresponding algorithms).
Here, an additional stage is considered. Following the algorithmic procedure im-
plementing the sparse decomposition, the appropriateness of the resulting sketch
to the target task is further tested through a psychophysical evaluation (see
Fig. 1). Ideally, the whole procedure is then iterated to refine both the dictio-
nary and the procedure for the selection of sparse features (in terms of objective
functions, sparsity levels and algorithms). In this section, we discuss a priori
choices for the dictionary, in Subsect. 2.1, and the decomposition procedures,
in Subsect. 2.2. These can be thought of as reasonable initial conditions for the
sketches process. In the context of this paper, they also serve to illustrate the
potential of the method.

2.1 Auditory-Motivated Dictionaries

The choice of the dictionary is deeply related to the targeted application. In
denoising tasks, for example, emphasis may be put on the match to the charac-
teristics of the signal itself. Here, we will favour biologically-inspired dictionaries
that take into account the ear physiology. The underlying hypothesis is that per-
ception is shaped by the neural processing of sound. For instance, the frequency
selectivity observed in auditory masking (which part of the sound will effectively
be detected by a listener) is thought to be linked to frequency selectivity on the
cochlea.

We chose to use the auditory model described by Chi et al. [8] and freely
available as the “NSL toolbox”1. As mentioned in the introduction, the model

1 http://www.isr.umd.edu/Labs/NSL/Software.htm

http://www.isr.umd.edu/Labs/NSL/Software.htm
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includes both an auditory spectrogram and a “cortical” spectro-temporal anal-
ysis of the spectrogram. It has proved successful for several signal-processing
applications, such speech intelligibility assessment [12], or computational mod-
eling of timbre perception [9].

The model consists of two major auditory transformations:

i) The early stage transforms the one-dimensional acoustic waveform to a two-
dimensional pattern obtained with a bank of constant-Q filters, followed by
spectral sharpening (lateral inhibition) and compression. Fig. 2 illustrates
the result of such a transformation, producing what is termed an auditory
spectrogram.
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Fig. 2. Example of an auditory spectrogram (AU: arbitrary units, log scale). The sound
analyzed is a short affect burst expressing anger [11]. The voiced quality of the sound
is visible in the harmonic structure of the frequency components, which are themselves
shaped by the vocal formants. A continuous glide of the fundamental frequency (up
then down) is also salient.

ii) The cortical stage implements then a more complex spectrotemporal analy-
sis, presumed to take place in the mammalian primary auditory cortex. The
transformation relies on a bank of filters, selective to different spectrotem-
poral modulation parameters which range from slow to fast rates temporally
and from narrow to broad scales spectrally. It results in a four-dimensional,
time-frequency-scale-rate representation, referred to as the cortical represen-
tation of the signal. A detailed description of such a representation is beyond
the scope of the paper, the reader is refered to [8]. Fig. 3 nevertheless illus-
trates some features of the cortical representation.
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Fig. 3. Example of a cortical representation (AU: arbitrary units). The sound is the
same as in Fig. 2. We only illustrate the projection of the 4-D cortical representation
on the “rate” and “scale” dimensions (the cortical representation was averaged over
time and over frequency channels). The pattern of rate and scale coefficients describe
the spectro-temporal evolution of the sound. For instance, because the fundamental
frequency glide induces temporal amplitude modulations in many frequency channels,
there is a range of non-zero modulation rates in the representation. The left and right
panels are for upward and downward spectro-temporal modulations, respectively (see
[8] for details).

Because our method relies on a listening test, an important issue is the in-
vertibility of the representations used. If phases are preserved, the (standard or
auditory) spectrograms are easily invertible, akin to the overlap-add resynthesis
procedure of the standard spectrogram. However, if non-linear processing makes
phase information meaningless, as is the case here (lateral inhibition, threshold-
ing, compression), perfect reconstruction cannot be achieved.

In order to obtain time-domain signals that are compatible with the spectro-
gram, one can resort to phase estimation algorithms that exploit the intrinsic
redundancy of the transforms, such as the Griffin and Lim [13] phase recon-
struction iterative procedure, or improvements thereof (see [14] for a review).
It should be noted that this algorithm reconstructs a set of phases that are
consistent, but that may be completely different from the original phases, thus
precluding any time-domain sample-by-sample comparison. Here, we use the
method of [15], developed for auditory spectrograms and which provides recon-
structions that are highly perceptually similar to the original signal, whenever
the auditory spectrogram is not modified.

The parameters chosen for the model of [8] were as follows. The audio sig-
nals were sampled at 16kHz. The auditory spectrogram was obtained with a
bank of 128 bandpass filters and 8-ms time windows. The cortical stage had 5
rate channels for temporal modulations (from 1 to 32Hz) and 6 scale channels
for spectral modulation (from 0.5 to 8 cycles/octave), resulting in a redundant
representation 60-times larger than the original signal.
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2.2 Sparsification of Auditory Models

The next step in the design of sketches is the choice of a selection procedure
for the features. Here again many choices are possible. Note that the iterative
method of Fig. 1 is conceived precisely as a way to refine the selection process.
As a first step, to gain some insight into the kind of methods that could serve
as initial choices in the iterative process, we compare two selection procedures
contrasting two different approaches:

– Algorithm IHT (iterative hard thresholding), based on a sparse analysis
scheme

– Algorithm PP (peak-picking), based on peak-picking of local maxima

It is important to stress that, as we shall discuss, these two procedures are not
just different from an algorithmic point of view. More importantly, one of them
aims at optimizing the quadratic reconstruction error (IHT), while the other
(PP) is purely feedforward and does not include any optimization step. In both
cases, the ultimate success of the selection or otherwise is estimated by means
of the perceptual task.

Algorithm IHT: Sparse Analysis by Iterative Hard Thresholding. Two
mathematical sparsity formalisms are possible, according to the adopted –
analysis or synthesis – approach. On the one hand, from the analysis point
of view and within our sketching problem, the sketch x is assumed to produce a
sparse output, which can be expressed under a matrix formulation as

z = Ax, (2)

where z ∈ RM is sparse, i.e., contains few non-zero elements, andA is a (M×N)-
matrix with M ≥ N representing the analysis operator. On the other hand, from
the synthesis point of view, the sketch x is seen as the sparse combination of
atoms, namely

x = Dz, (3)

where D is a (N ×M)-matrix with M ≥ N representing the dictionary, and z
is sparse.

Within the sparse-representation framework, the synthesis approach consti-
tutes the most common formalism, being the subject of numerous contributions
(see e.g., [16] for a review of the algorithms dealing with synthesis sparsity).
However, as described above, the representations we chose rely on a sequence
of filters applied to the signal and analyzing their outputs, which tends to favor
the analysis point of view.

Furthermore, the sparsity constraint in which we are interested in is not taken
into account in the same way within both formalisms. The synthesis formulation,
by its generative nature, leads potentially to a greater compactness of the signal.
But, with this formulation, the choice of the atoms to represent the signal has
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huge implications: a wrong decision may cause the selection of additional wrong
atoms as compensation. This is not the case with the analysis formulation, where
all atoms contribute equally to the representation of the signal [17]. We will thus
adopt the analysis point of view in the remain of the paper. Hence, depending
on the processing level, a sketch x of the audio signal y is built from a sparse
auditory spectrogram or a sparse cortical representation of the signal y.

Considering the analysis formulation (2), the estimation of the sketch x can
then be expressed as

x� = argmin
x

||y − x||22 subject to ||Ax||0 ≤ L, (4)

where ‖.‖0 denotes the �0 pseudo-norm, counting the number of non-zero
elements, and L is a parameter specifying the maximum number of non-zero
elements in z.

Finding the exact solution of (4) is an NP-hard problem, i.e., it generally
requires a combinatorial search over the entire solution space. Here, we use a
suboptimal (but tractable) algorithm based on the iterative hard thresholding
procedure introduced in [10]. This algorithm presents indeed several desirable
properties:

i) Its implementation is very simple, in accordance with a filter-bank procedure,
as considered within our model (see Subsect. 2.1).

ii) Its complexity is low, in O(N logN), N being the number of iterations.
This property is very valuable since the considered biologically inspired
model involves complex mathematical computations, requiring thus a light
integration procedure.

Note that the analysis-based IHT algorithm is different from the most standard
synthesis-based iterative hard thresholding algorithms in the literature [18], often
used in the framework of compressed sensing.

Algorithm PP: Peak-Picking of Local Maxima. The second algorithm
considered in this paper is based on a simple local maxima detection.

The procedure, with variants already used in the literature (see e.g., [19,20]),
is based on a local gradient evaluation. In our case, the peak-picking was done
on either the auditory spectrogram (finding 2-D local maxima) or the cortical
representation (finding 4-D local maxima). The algorithm proceeds as follows :
first, all local maxima (on the magnitude of the coefficients) are selected. Then,
they are sorted by decreasing order and only the L largest are kept, L being
related to the desired degree of sparsity. Note that this algorithm is not iterative,
without any optimization procedure, and therefore is very fast.

It should also be noted that, as opposed to the vast majority of sparse de-
composition/analysis algorithms, such as IHT described above, the goal of this
analysis scheme is not to achieve the best approximation (in a least-squares
sense) of the signal for a given number of coefficients. Instead, the rationale
is that, if the representation itself is efficient, the selection mechanism can be
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rather crude: within a zone of the parameters space, local maxima should express
salient features.

3 Psychophysical Experiments

The core idea of the sketches process is to put the listener at the centre of
the design procedure. Thus, as candidate sketches are obtained, they are used
in a perceptual task where a performance measure can be obtained. If a high
performance is observed, then this indicates that the set of features that have
been selected in the sparsification process is sufficient for the task, even though
the sketch itself may sound very different from the original signal.

We now report two experiments using a perceptual task of emotion recogni-
tion. We asked listeners to report whether a short vocal sound expressed happi-
ness, sadness, anger, or disgust. Each emotion was represented by several sound
samples, selected from a calibrated database [11]. The main aim was to provide
a first test of the sketches approach: could listeners perform the task on sounds
that were severely impoverished compared to the original? More precise ques-
tions as to the nature of the sketching process were asked in each experiment.

3.1 Experiment 1: Comparison of Two Auditory Representations

Rationale. Here we wanted to investigate the influence of the basic representa-
tion used to produce sketches. We used auditory models, but contrasted auditory
spectrograms with spectro-temporal “cortical” representations. The robustness
of sketches to the presence or absence of noise was also tested. Indeed, if we as-
sume that the goal of the sketches is to identify perceptually-important features
of sounds, a certain robustness to noise is desirable. Robustness to noise is thus
one indication that the representation is well-suited to the sound class of inter-
est. Finally, the sparsity that can be achieved with the method was evaluated:
a better representation should produce a sparser code.

Material and Methods

Participants. There were 10 participants (6 men and 4 women), aged between 19
and 39 years (M = 25.8 years). All listeners had self-reported normal-hearing.
They all provided informed consent to participate in the study, which was con-
ducted in accordance with the guidelines of the declaration of Helsinki.

Stimuli. All sounds were derived from the Montreal Affective Voices database
[11]. They consisted of recorded nonverbal emotional interjections (on the French
vowel /a/). Among the available stimuli, we selected four emotions that were
easily recognized (see [11]): anger, disgust, happiness, and sadness. Each emo-
tional interjection was uttered by 10 different actors (5 male and 5 female). The
original sounds had very different durations (from 0.4 s to 1.2 s), so we short-
ened some of the stimuli (happiness and sadness, mainly) to avoid recognition
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cues linked to duration. The modified versions of the sounds were still easily rec-
ognized, as confirmed by an informal experiment. The modified sounds had an
average duration of 0.99 s (std= 0.2). A repeated-measures ANOVA performed
on the 40 sounds (4 emotions for the 10 speakers) revealed no significant dif-
ferences between the mean duration of each emotion [F (3, 27) = 0.95; p = 0.4].
These 40 sounds constituted the baseline stimuli.

For the “noise” conditions, pink noise was added to the original sounds, with
a signal-to-noise ratio of -6 dB.

The sketch process was performed either on the original sound or on the noise
version of the sound. In this first experiment, it was only performed using the
PP algorithm. Two auditory representations were compared: the auditory spec-
trogram and the cortical representation (see above). Three degrees of sparsity
were also compared: 10, 100, and 1000 features/second were retained from the
auditory representations. The measure of features/second, which we refer to as
the degree of sketch, is only indirectly related to the quantity of information
retained from the original signal (as for instance it ignores the size and nature
of the dictionnary). However, it serves here as a first approximation of sparsity.

Apparatus. Stimuli were presented through an RME Fireface digital-to-analog
converter at a 16-bit resolution and a 44.1 kHz sample-rate. They were presented
to both ears simultaneously through Sennheiser HD 250 Linear II headphones.
Presentation level was at 70 dB(A), as calibrated with a Bruel & Kjaer (2250)
sound level meter and ear simulator (B&K 4153). Listeners were tested individ-
ually in a double-walled Industrial Acoustics (IAC) sound booth.

Procedure. A 4-AFC (Alternative Forced Choice) paradigm was used. In each
trial, participants heard a single sound, which could be one of the 4 target
emotions. They had to indicate whether the sound they just heard was a repre-
sentative sound of happiness, sadness, anger, and disgust. Visual feedback was
provided after each response.

14 conditions were presented in a randomized fashion to each participant,
for a total of 1120 stimuli in total: original sounds vs. sketches and no noise
vs. noise. For the sketches, we compared the auditory spectrogram vs. cortical
representation and the degree of sketch (10, 100, or 1000 feat/s). The experiment
lasted approximately 1 hour. The experiment was divided into small blocks, to
allow time for breaks.

Results. Results are illustrated on Fig. 4. A first important observation is the
overall good performance, well above the chance level (i.e. 25%), with a mean
percent correct of 93% for the original sounds, and of 55% for the sketches
sounds. A second key result rests upon the comparison of the two auditory mod-
els used to create the sketches: overall, the auditory spectrogram outperformed
the cortical representation. Data were analyzed with a repeated-measures anal-
ysis of variance (ANOVA). We first evaluated the overall difference between
the original sounds and the sketches, in the two noise conditions. A repeated-
measure ANOVA revealed main significant effects for the type of sound (original
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Fig. 4. Results for Experiment 1. Recognition performance of the sketches sounds cor-
responding to two different auditory models (aud spec for the auditory spectrogram,
and cortical model), without (left panel) and with (right panel) noise. Error bars cor-
respond to the standard error of the mean. Performance was overall higher for the au-
ditory spectrogram than for the cortical model. These recognition data for the sketches
sounds are compared to an upper baseline : the average recognition performance for
the original sounds (black line). They are also compared to a lower baseline: the chance
level, i.e. 25% here (dotted gray line).

vs. sketch) [F (1, 8) = 1172.55; p < 0.0001] and for the noise condition (silence
vs. noise) [F (1, 8) = 441.81; p < 0.0001], as well as a significant interaction be-
tween these two variables [F (1, 8) = 21.66; p < 0.005]. These results show that
the overall recognition performance was better for the original sounds than for
the sketches, and that, as expected, noise had a detrimental effect on perfor-
mance; the influence of noise was more pronounced for the sketches than for the
original sounds.

We then analyzed in more details data for the sketches sounds only. We
performed a repeated-measure ANOVA with noise (silence vs. noise), model
(auditory spectrogram vs. cortical), and features (10, 100, and 1000 feat/s) as
within-subjects variables. It revealed main significant effects of noise
[F (1, 8) = 582, 23; p < 0.0001], model [F (1, 8) = 101, 44; p < 0.0001], and features
[F (2, 16) = 138, 01; p < 0.0001]. It also revealed significant interaction between
features and model [F (2, 16) = 89, 80; p < 0.0001], features and noise
[F (1, 8) = 21, 09; p < 0.0001], as well as a significant third-order interaction be-
tween features, model, and noise [F (1, 8) = 37, 81; p < 0.0001]. These results
highlight that: performance was better in silence than in noise; performance
increased as the number of features per second increased; the auditory spectro-
gram model led to better performance than the cortical model (with one notable
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exception, that was responsible for the significant third-order interaction: in the
noise condition, for 1000 feat/s, the cortical model led to better performances
than the auditory spectrogram model).

3.2 Experiment 2: Comparison of Two Sparsification Algorithms

Rationale. Experiment 1 served as a first proof of concept of the sketches pro-
cess: the overall recognition performance for sketches sounds was good (55%, i.e.
well above the chance level). This was the case even though the selection algo-
rithm, PP, was extremely crude and did not contain any optimization. Here, we
compare the PP algorithm with a more traditional signal-processing approach,
the IHT algorithm, that minimizes the reconstruction error (see Sect. 2.2).

Material and Methods

Participants. There were 10 participants (5 men and 5 women), aged between
19 and 34 years (M = 23.2 years). All listeners had self-reported normal-hearing.
They all provided informed consent to participate in the study, which was con-
ducted in accordance with the guidelines of the declaration of Helsinki.

Stimuli. Stimuli were very similar to Experiment 1, the only differences here
being that: (i) only the auditory spectrogram was used as an auditory repre-
sentation for the computation of the sketches; (ii) two sparsification algorithms
were used to produce the sketches: IHT and PP (see Subsect. 2.2 for details).

Apparatus and Procedure. The apparatus was the same as in Experiment 1. The
procedure was also very similar. Here, the 12 conditions that were presented in a
randomized fashion to the participant were a combination of 3 parameters: type
of algorithm (IHT vs. PP), noise (with or without), and degree of sketch (10,
100, and 1000 feature/second).

Results. Results of this second experiment are illustrated on Fig. 5. This second
experiment confirms and reproduces some important results of Experiment 1: an
overall good recognition performance, with a mean percent correct of 93% for
the original sounds, and of 60% for the sketches sounds. It also shows that the
PP algorithm generally outperformed the IHT algorithm. Similar analyses as
for the Experiment 1 were conducted. Firstly, the overall ANOVA reproduced
results of Experiment 1: performance was better for the original sounds than
for the sketches [F (1, 9) = 708.77; p < 0.0001]; performance was also better in
silence that in the noise [F (1, 9) = 119.44; p < 0.0001]. For this experiment as
well, the detrimental effect of the noise was more pronounced for the sketches
than for the original sounds [significant interaction between the type of sound
and the noise condition: [F (1, 9) = 12 : 90; p < 0 : 006].
Secondly, a detailed repeated-measures ANOVA on the sketches only re-
vealed that: as expected, performance was better in silence than in noise
[F (1, 9) = 148.98; p < 0.0001]; performance increased as the number of features
per second increased [F (2, 18) = 283.89; p < 0.0001].
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Fig. 5. Results for Experiment 2. Recognition performance of the sketches sounds
corresponding to two different sparsifying algorithms (PP for peak-picking, and IHT
for iterative hard thresholding), without (left panel) and with (right panel) noise. Error
bars correspond to the standard error of the mean. Performance was overall higher for
the PP than for the IHT algorithm. These recognition data for the sketches sounds are
compared to an upper baseline: the average recognition performance for the original
sounds (black line). They are also compared to a lower baseline: the chance level, i.e.
25% here (dotted gray line).

It also showed that performance was overall better for the PP algorithm than
for the IHT algorithm [F (1, 9) = 54.72; p < 0.0001]. All second-order interactions
were also significant:
[features× algorithm : F (2, 18) = 85.92; p < 0.0001.
features× noise : F (2, 18) = 32.39; p < 0.0001.
algorithm× noise : F (1, 9) = 49.46; p < 0.0001]. Finally, the third-order inter-
action was also significant [F (1, 9) = 28.07; p < 0.0001], and highlighted that the
only exception for which the IHT algorithm outperformed the PP algorithm was
in the noise condition, with 1000 feat/s.

4 Discussion

The main aim of this study was to investigate the feasibility of the auditory
sketches idea. From the results, it seems that the sketches design method out-
lined in Fig. 1 has some potential. In the experiments, even though the vast
majority of the parameters was omitted, the perceptual task (emotion recog-
nition for nonverbal interjections) was performed well above chance: sketches
retained some of the relevant information with as little as 10 features/seconds.
More information-theoritic work remains to be done on quantifying the sparsity
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that was actually achieved, because features/second is an imperfect measure, but
the results nevertheless strongly suggest that sparse representations of sounds
based on biologically-motivated models produce perceptually relevant results.

Further observations can be made by comparing the variants we tested for the
sketches process. Perhaps surprisingly, a state-of-the-art sparse decomposition
algorithm minimizing reconstruction error (IHT) did not lead to better results
than a simple peak-picking and thresholding (PP) without any optimization. In
fact, in general, the reverse was true, and PP largely outperformed IHT. These
preliminary results need to be extended with a larger variety of stimuli and per-
ceptual tasks, but still, we can speculate on such an outcome. Because auditory
models are inspired by the physiology of the human hearing system, they may
be particularly relevant as an auditory representation. A simple algorithm like
PP, although not optimal (in the least-square sense for the approximation), may
be enough to capture important features by sampling some of the important
landmarks of the representations.

Fig. 6 illustrates this point, by highlighting an important difference between
the two selection algorithms. The PP algorithm tends to select relatively distant
atoms (see Fig. 6(a)) as an extended high-energy patch in the representation can
be summarized with a single peak. In contrast, the IHT algorithm will attempt
to capture accurately such high-energy patches and will use several atoms to
do so (see Fig. 6(c)). These opposite behaviors lead to different reconstructions:
whereas IHT achieves a highly precise reconstruction of some particular parts of
the original spectrogram (see Fig. 2 and Fig. 6(d)), this is done at the expense
of smaller coverage of the whole parameter space.

However, we should point out that it is probably too early to generalize the
superiority of a local maxima detection over a least-squares approach. The IHT
algorithm constitutes one possible way to solve problem (4) amongst a large
number of possibilities. We chose IHT for implementation and complexity rea-
sons (see Subsect. 2.2) but other algorithms could potentially improve the results
(see e.g., approaches based on a problem relaxation [21,22], or greedy algorithms
[23]). The sparsity-at-analysis point of view can also be questioned, and could be
compared to more standard synthesis approaches. Further experiments could fi-
nally investigate some other sparsifying procedures, intermediate between peak-
picking and energy-maximizing, for instance iterative procedures based on a
time-frequency masking model [24].

Another surprising result is the overall better performance for the auditory
spectrogram representation compared to the cortical one. One of the limitations
of the sounds we used was their short duration (around 1s). The cortical model
contains filters tuned to longer modulations, so it is possible that any potential
benefit of the spectro-temporal analysis only becomes apparent for longer sounds.

Finally, we found that the recognition of sketches was robust to a moderate
amount of noise, but less so than for the original signal. This is in line with many
psychophysical observations showing that degraded signals are more susceptible
to noise. Nevertheless, one hypothesis for the sketches was that sparsification
would lead to some denoising. Our results suggest that either the representations
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Fig. 6. Sparse auditory spectrograms obtained by means of the PP algorithm ((a) and
(b)) and the IHT algorithm ((c) and (d)), directly after the decomposition ((a) and
(c)) and after resynthesis of the audio signal ((b) and (d)). Here, we keep 100 feat./s.
AU: arbitrary units, log scale.

failed at this goal, or that, more likely, the selection procedure could be improved.
Such an approach has proven successful for denoising of speech signals, with the
cortical model [25]: by increasing the dimensionality of the representation, noise
and signal get mapped into different parts of the parameter space.

5 Perspectives

This preliminary study already shows that only a few features extracted from an
auditory-based representation can produce a sound with recognizable perceptual
traits. Even though the resulting sketch may be highly distorted compared to
the original, under certain constraints, the selected features can be sufficient for
recognition of complex properties such as emotional content. Obviously, more
work remains to be done on each stage of the sketching process, and in particular,
the iterative nature of the algorithm needs to be put to the test.

In addition, a few ideas emerge on how sound features should be combined in
order to build recognizable auditory sketches. For a task of sound recognition,
it seems that it is more important to have some cues on how energy is spread in
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the time-frequency plane, rather than a precise description of the most energetic
components. Interestingly, this is similar to what is being done in state-of-the-
art audio fingerprinting techniques, that choose salient points as local maxima
in large blocks on the time-frequency plane. More precisely, it seems that the
right way to select atoms is not purely based on energy criteria, but also their
information content: we need to select a set of atoms that carry energy but also
whose mutual information is minimal. In other words, we shift from the standard
paradigm of sparsity justified by Occam’s razor (amongst 2 explanations, prefer
the one that is simplest) to an “informed” version (amongst 2 explanations,
prefer the one that brings you more information on top of a prior model). This
brings us close to the original sketches metaphor: to sketch a visual object, an
artist will usually not attempt photographic realism. Rather, in a few pencil
lines, an attempt will be made to capture what makes this object unique. It is
our hypothesis that such an approach may have interesting implications for signal
processing, but also for understanding how human listeners perform recognition
tasks (see e.g. [26]).
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Abstract. Music is widely perceived as expressive of emotion. However,
there is no consensus on which factors in music contribute to the expres-
sion of emotions, making it difficult to find robust objective predictors
for music emotion recognition (MER). Currently, MER systems use su-
pervised learning to map non time-varying feature vectors into regions of
an emotion space guided by human annotations. In this work, we argue
that time is neglected in MER even though musical experience is intrinsi-
cally temporal. We advance that the temporal variation of music features
rather than feature values should be used as predictors in MER because
the temporal evolution of musical sounds lies at the core of the cognitive
processes that regulate the emotional response to music. We criticize the
traditional machine learning approach to MER, then we review recent
proposals to exploit the temporal variation of music features to predict
time-varying ratings of emotions over the course of the music. Finally,
we discuss the representation of musical time as the flow of musical in-
formation rather than clock time. Musical time is experienced through
auditory memory, so music emotion recognition should exploit cognitive
properties of music listening such as repetitions and expectations.

Keywords: Music, Time, Emotions, Mood, Automatic Mood Classifi-
cation, Music Emotion Recognition.

1 Introduction

One of the recurring themes in treatises of music is that music both evokes
emotions in listeners (emotion induction) and expresses emotions that listeners
perceive, recognize, or are moved by, without necessarily feeling the emotion
(emotion perception) [14]. The emotional impact of music on people and the as-
sociation of music with particular emotions or ‘moods’ have been used in certain
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contexts to convey meaning, such as in movies, musicals, advertising, games,
music recommendation systems, and even music therapy, music education, and
music composition, among others. Empirical research on emotional expression
started about one hundred years ago, mainly from a music psychology perspec-
tive [9], and has successively increased in scope up to today’s computational
models. Research on music and emotions usually investigates listeners’ response
to music by associating certain emotions to particular pieces, genres, styles,
performances, among many others.

The mechanisms whereby music elicits emotions in listeners are not well un-
derstood. A central question in the study of music and emotions is “Which
attributes or musical qualities, if any, elicit emotional reactions in listeners?
[14,31]” At first, we should identify factors in the listener, in the music, and in
the context that influence musical emotions (i.e., emotional reactions to music).
Only then can we proceed to develop a theory about specific mechanisms that
mediate among musical events and experienced emotions.

Among the causal factors that potentially affect listeners’ emotional response
to music are personal, situational, and musical. Personal factors include age,
gender, personality, musical training, music preference, and current mood. Situ-
ational factors can be physical such as acoustic and visual conditions, time and
place, or social such as type of audience, and occasion. Musical factors include
genre, style, key, tuning, orchestration, among many others.

Juslin and Västfjäll [14] sustain that there is evidence of emotional reac-
tions to music in terms of various subcomponents, such as subjective feeling,
psychophysiology, brain activation, emotional expression, action tendency, emo-
tion regulation and these, in turn, feature different psychological mechanisms
like brain stem reflexes, evaluative conditioning, emotional contagion, visual im-
agery, episodic memory, rhythmic entrainment, and musical expectancy. They
state that “none of the mechanisms evolved for the sake of music, but they
may all be recruited in interesting (and unique) ways by musical events. Each
mechanism is responsive to its own combination of information in the music, the
listener, and the situation.”

The literature on the emotional effects of music [15,9] has accumulated evi-
dence that listeners often agree about the emotions expressed (or elicited) by a
particular piece, suggesting that there are aspects in music that can be associated
with similar emotional responses across cultures, personal bias or preferences.
Several researchers imply that there is a causal relationship between music fea-
tures and emotional response [9], giving evidence that certain music dimensions
and qualities communicate similar affective experiences to many listeners.

An emerging field is the automatic recognition of emotions (or ‘mood’) in
music, also called music emotion recognition (MER) [17]. The aim of MER is to
design systems to automatically estimate listeners’ emotional reactions to mu-
sic. A typical approach to MER categorizes emotions into a number of classes
and applies machine learning techniques to train a classifier and compare the re-
sults against human annotations [17,49,23]. The ‘automatic mood classification’
task in MIREX epitomizes the machine learning approach to MER, presenting
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systems whose performance range from 22 to 65 percent [11]. Some researchers
speculate that musical sounds can effectively cause emotional reactions (via brain
stem reflex, for example). Researchers are currently investigating [12,17] how to
improve the performance of MER systems. Interestingly, the role of time in the
automatic recognition of emotions in music is seldom discussed in MER research.

Musical experience is inherently tied to time. Studies [19,24,13,36] suggest
that the temporal evolution of the musical features is intrinsically linked to
listeners’ emotional response to music, that is, emotions expressed or aroused
by music. Among the cognitive processes involved in listening to music, memory
and expectations play a major role. In this article, we argue that time lies at the
core of the complex link between music and emotions, and should be brought to
the foreground of MER systems.

The next section presents a brief review of the classic machine learning ap-
proach to MER. We present the traditional representation of musical features
and the model of emotions to motivate the incorporation of temporal information
in the next section. Then, we discuss an important drawback of this approach,
the lack of temporal information. The main contribution of this work is the
detailed presentation of models that exploit temporal representations of music
and emotions. We also discuss modeling the relationship between the temporal
evolution of musical features and emotional changes. Finally, we speculate on
different representations of time that better capture the experience of musical
time before presenting the conclusions and discussing future perspectives.

2 Machine Learning and Music Emotion Recognition

Traditionally, computational systems that automatically estimate the listener’s
emotional response to music use supervised learning to train the system to map
a feature space representing the music onto a model of emotion according to
annotated examples [17,49,23,11]. The system can perform classification [21] or
regression [48], depending on the nature of the representation of emotions (see
Sec. 2.2). After training, the system can be used to predict listeners’ emotional
responses to music that was not present in the training phase, assuming that
it belongs to the same data set and therefore can be classified under the same
underlying rules. System performance is measured comparing the output of the
system with the annotation for the track.

Independently of the specific algorithm used, the investigator that chooses
this approach must decide how to represent the two spaces, the music features
and the emotions. On the one hand, we should choose music features that cap-
ture information about the expression of emotions. Some features such as tempo
and loudness have been shown to bear a close relationship with the perception
of emotions in music [38]. On the other hand, the model of emotion should
reflect listeners’ emotional response because emotions are very subjective and
may change according to musical genre, cultural background, musical training
and exposure, mood, physiological state, personal disposition and taste [9]. We
argue that the current approach misrepresents both music and listeners’ emo-
tional experience by neglecting the role of time. In this article, we advance that
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(a) Bag-of-Features (b) Time Series

Fig. 1. Illustration of feature extraction. Part a) shows the bag-of-features approach,
where the music piece is represented by a non time-varying vector of features Φi aver-
aged from successive frames. Notice that there is only one global emotion Ψi associated
with the entire piece as well. In part b), Both music features Φ and emotion annotations
Ψ are kept as a time series.

the temporal variation of music features rather than the feature values should
be used as predictors of musical emotions.

2.1 Music Features

Typically, MER systems represent music with a vector of features. The features
can be extracted from different representations of music, such as the audio, lyrics,
the score, social tags, among others [17]. Most machine learning methods de-
scribed in the literature use the audio to extract the music features [17,49,23,11].
Music features such as root mean square (RMS) energy, mel frequency cepstral
coefficients (MFCCs), attack time, spectral centroid, spectral rolloff, fundamen-
tal frequency, and chromagram, among many others, are calculated from the
audio by means of signal processing algorithms [27,12,48]. The number and type
of features dictates the dimensionality of the input space (some features such
as MFCCs are multidimensional). Therefore, there usually is a feature selection
or dimensionality reduction step to determine a set of uncorrelated features.
A common choice for dimensionality reduction is principal component analysis
(PCA)[26,12,21]. Huq et al [12] investigate four different feature selection algo-
rithms and their effect on the performance of a traditional MER system. Kim et
al [17] presented a thorough state-of-the-art review of MER in 2010, exploring a
wide range of research in MER systems, particularly focusing on methods that
use textual information (e.g., websites, tags, and lyrics) and content-based ap-
proaches, as well as systems combining multiple feature domains (e.g., features
plus text). Their review is evidence that MER systems rarely exploit temporal
information.

The term ‘semantic gap’ has been coined to refer to perceived musical infor-
mation that does not seem to be contained in the acoustic patterns present in
the audio, even though listeners agree about its existence [47]. Music happens
essentially in the brain, so we need to take the cognitive mechanisms involved in
processing musical information into account if we want to be able to model peo-
ple’s emotional response to music. Low-level audio features give rise to high-level
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musical features in the brain, and these, in turn, influence emotion recognition
(and experience). This is where we argue that time has a major role, still ne-
glected in most approaches found in the literature. However, only very recently
have researchers started to investigate the role of time in MER. On the one
hand, the different time scales in musical experience should be respected [42].
On the other hand, the temporal changes of some features are more relevant
than feature values isolated from the musical context [3].

Usually, MER systems use a “bag of features” approach, where all the features
are stacked together [12]. However, these features are associated with different
levels of music experience, namely, the perceptual, the rhythmic, and the for-
mal levels. These levels, in turn, are associated with different time scales [42].
Music features such as pitch, loudness, and duration are extracted early in the
processing chain that converts sound waves reaching the ear into sound percep-
tion in the brain. Rhythm and melody depend hierarchically on the features
from the previous level. For example, melody depends on temporal variations of
pitch. Subsequently, the formal level is comprised of structural blocks from the
melodic and harmonic level.

Fig. 1 illustrates the music feature extraction step in MER. Typically, these
features are calculated from successive frames taken from excerpts of the audio
that last a few seconds [17,49,23,11,12] and then averaged like seen in part a)
of Fig. 1, losing the temporal correlation [23]. Consequently, the whole piece (or
track) is represented by a static (non time-varying) vector, intrinsically assuming
that musical experience is static and that the listener’s emotional response can
be estimated from the audio alone. Notice that, typically, each music piece (or
excerpt) is associated with only one emotion, represented by Ψi in Fig. 1. The
next section explores the representation of emotions in more detail.

2.2 Representation of Emotions

The classification paradigm of MER research uses categorical descriptions of
emotions where the investigator selects a set of “emotional labels” (usually mu-
tually exclusive). Part a) of Fig. 2 illustrates these emotional labels (Hevner’s
adjective circle [10]) clustered in eight classes. The annotation task typically con-
sists of asking listeners to choose a label from one of the classes for each track.
The choice of the emotional labels is important and might even affect the results.
For example, the terms associated with music usually depend on genre (pop mu-
sic is much more likely than classical music to be described as “cool”). As Yang
[49] points out, the categorical representation of emotions faces a granularity
issue because the number of classes might be too small to span the rich range of
emotions perceived by humans. Increasing the number of classes does not nec-
essarily solve the problem because the language used to categorize emotions is
ambiguous and subjective [9]. Therefore, some authors [17,49] have proposed to
adopt a parametric model from psychology research [30] known as the circum-
plex model of affect (CMA). The CMA consists of two independent dimensions
whose axes represent continuous values of valence (positive or negative semantic
meaning) and arousal (activity or excitation). Part b) of Fig. 2 shows the CMA
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Fig. 2. Examples of models of emotion. The left-hand side shows Hevner’s adjective
circle [10], a categorical description. On the right, we see the circumplex model of affect
[30], a parametric model.

and the position of some adjectives used to describe emotions associated with
music in the plane. An interesting aspect of parametric representations such as
the CMA lies in the continuous nature of the model and the possibility to pin-
point where specific emotions are located. Systems based on this approach train
a model to compute the valence and arousal values and represent each music
piece as a point in the two-dimensional emotion space [49].

One common criticism of the CMA is that the representation does not seem to
be metric. That is, emotions that are very different in terms of semantic mean-
ing (and psychological and cognitive mechanisms involved) can be close in the
plane. In this article, we argue that the lack of temporal information is a much
bigger problem because music happens over time and the way listeners associate
emotions with music is intrinsically linked to the temporal evolution of the mu-
sical features. Also, emotions are dynamic and have distinctive temporal profiles
(boredom is very different from astonishment in this respect, for example).

2.3 Mathematical Notation

In mathematical terms, the traditional approach to MERmodels the relationship
between music Φ and emotions Ψ according to the following

Ψ = f (Φ, A, ε) (2.1)

where Ψ represents the emotion space, Φ represents the music, f models the
functional relationship between Φ and Ψ parameterized by A with error ε.
Therefore, in this approach, MER becomes finding the values for the parameters
A = {a0, a1, ..., aN} that minimize the error {ε} and correctly map each Φi ∈ Φ
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(a) Classification (b) Regression

Fig. 3. Simple examples of machine learning applied to music emotion recognition.
Part a) shows an example of classification. In part b), we see an example of regression.

onto their corresponding Ψi ∈ Ψ. Notice that subscript i means an instance of
the pair {Ψ, Φ} (an annotated music track). Here, Φi = [φ1, φ2, ..., φN ] is an N
dimensional vector of music features and Ψi can be a semantic label represent-
ing an emotion for the classification case or continuous values of psychological
models such as a valence/arousal pair Ψi = {υ, α}.

Fig. 3 shows a simple example of classification and regression to illustrate
Eq. (2.1). Part a) illustrates linear classification into two classes, while part b)
shows linear regression. In part a), the black dots represent instances of the first
class, while the white dots represent the other class. The dashed line is the linear
classifier (i.e., the MER system) that separates the input parameter space Φ =
{φ1, φ2} into two regions that correspond to the classes Ψ = {black, white}. For
example, a MER system that takes chords as input and outputs the label happy
for major chords and sad for minor chords. In this case, Φ is major or minor and
could be encoded as φ1 the first interval and φ2 the second interval in cents, f
is a binary classifier (such as a straight line with parameters A = {a0, a1}), and
Ψ = {happy, sad}. The error ε would be associated with misclassification, that
is, points associated with one class by the system but labeled with the other.
The system could be then used to classify inputs (music) that were not a part of
the training data into “happy” or “sad” depending on which category (region)
it falls into.

Part b) shows Ψ as a linear function of a single variable φ as Ψ = a0+ a1φ. In
this case, the dots are values of the independent variable or predictor φ associ-
ated with Ψ . For instance, φ represents loudness values positively correlated with
arousal, represented by Ψ . Notice that both φ and Ψ are real-valued, and the
MER system f modeling the relationship between them is the straight dashed
line with parameters A = {a0, a1} obtained by regression (expectation maxi-
mization or least-squares). The modeling error ε being minimized is the differ-
ence between the measures (the dots in the figure) and the model (the dashed
line). The MER system can estimate arousal for new music tracks solely based
on loudness values.
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A more general MER system following the same approach would model Ψ as
a linear combination of predictors Φ using multiple regression as follows

Ψi = a0 + a1φi,1 + ...+ aNφi,N + ...+ ε (2.2)

where Ψi is the representation of emotion and Φi = {φi,n} are the music
features. This model assumes that emotions can be estimated as a linear com-
bination of the music features, such as Φi = {loud, fast} music is considered
Ψ = {upbeat}. Generally, the errors ε are supposed uncorrelated with one an-
other (additive error) and with Φ, whose underlying probability distribution has
a major influence on the parameters A. Naturally, fitting a straight line to the
data is not the only option. Sophisticated machine learning algorithms are usu-
ally applied to MER, such as support vector machines [12,17]. However, these
algorithms are seldom appropriate to deal with the temporal nature of music
and the subjective nature of musical emotions.

2.4 Where Does the Traditional Approach Fail?

The traditional machine learning approach to MER assumes that the music
features are good predictors of musical emotions due to a causal relationship
between Φ and Ψ. The map from feature space to emotion space is assumed to
implicitly capture the underlying psychological mechanisms leading to an emo-
tional response in the form of a one-to-one relationship. However, psychological
mechanisms of emotional reactions to music are usually regarded as information
processing devices at various levels of the brain, using distinctive types of in-
formation to guide future behavior. Therefore, even when the map f explains
most of the correlation between between Φ and Ψ, it does not necessarily mean
that it captures the underlying psychological mechanism responsible for the emo-
tional reaction (i.e., correlation does not imply causation). In other words, while
Eq. (2.1) can be used to model the relationship between music features and
emotional response, it does not imply the existence of causal relations between
them.

Eq. (2.1) models the relationship between music features and emotional re-
sponse from a behavioral viewpoint, supposing that the emotional response is
consistent across listeners, irrespective of cultural and personal context. Cur-
rently, MER systems rely on self-reported annotations of emotions using a model
such as Hevner’s adjective circle or the CMA. On the one hand, this approach
supposes that the model of emotion allows the expression of a broad palette of
musical emotions. On the other hand, it supposes that self-reports are enough to
describe the outcome of several different psychological mechanisms responsible
for musical emotions [14]. Finally, the listener’s input is only provided in the
form of annotations and only used when comparing these annotations to the
emotional labels output by the system, neglecting personal and situational fac-
tors. The terms ‘semantic gap’ [47,4] and ‘glass ceiling’ [1] have been coined to
refer to perceived musical information that does not seem to be contained in the
audio even though listeners agree about its existence. MER research needs to
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bridge the gap between the purely acoustic patterns of musical sounds and the
emotional impact they have on listeners by modeling the generation of musical
meaning [15]. Musical experience is greater than auditory impression [22]. The
so called ‘semantic gap’ is a mere reflection of how the current typical approach
misrepresents both the listener and musical experience.

Here we argue that the current approach misrepresents both music and lis-
teners’ emotional experience by neglecting the role of time. Currently, MER
research ignores evidence [19,24,13,14] suggesting the existence of complex re-
lationships between the dynamics of musical emotions and the response to how
musical structure unfolds in time. The examples given in Fig. 3 illustrate this
point (although in a very simplified way). Neither system uses temporal infor-
mation at all. In part a), the input music is classified as “happy” or “sad” based
solely on whether it uses major or minor chords, ignoring chord progression, in-
versions, etc. Part b) supposes a rigid association between loudness and arousal
(loud music is arousing), ignoring temporal variations (like sudden changes from
soft to loud).

Krumhansl [20] suggests that music is an important part of the link between
emotions and cognition. More specifically, Krumhansl investigated how the dy-
namic aspect of musical emotion relates to the cognition of musical structure.
According to Krumhansl, musical emotions change over time in intensity and
quality, and these emotional changes covary with changes in psycho-physiological
measures [20]. Musical meaning and emotion depend on how the actual events
in the music play against this background of expectations. David Huron [13]
wrote that humans use a general principle in the cognitive system that regu-
lates our expectations to make predictions. According to Huron, music (among
other stimuli) influences this principle, modulating our emotions. Time is a very
important aspect of musical cognitive processes. Music is intrinsically temporal
and we need to take into account the role of human memory when experienc-
ing music. In other words, musical experience is learned. As the music unfolds,
the learned model is used to generate expectations, which are implicated in the
experience of listening to music. Meyer [25,24] proposed that expectations play
the central psychological role in musical emotions.

3 Time and Music Emotion Recognition

We can incorporate temporal information into the representation of the music
features and into the emotional response. In the first case we calculate the music
features sequentially as a time-series, while the last case consists of recording
listeners’ annotations of emotional responses over time and keeping the infor-
mation as a time-series. Fig. 1(b) illustrates the music features and emotions
associated with music (represented by the score) over time. Thus φ (t) is the
current value of a music feature, and φ (t+ 1) is the subsequent value. Similarly,
Ψ (t) and Ψ (t+ 1) follow each other.

There are several ways of exploiting the information from the temporal vari-
ation of music features and emotions. A very straightforward way would be to
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use time-series analysis and prediction techniques, such as using previous values
to predict future values of the series. In this case, the investigator could use past
values of a series of valence/arousal {υ, α} annotations over time to predict the
next {υ, α} value. A somewhat more complex approach is to use the temporal
behavior of one time series as predictors of the next value of another series. In
this case, the temporal variation of the music features would be used as pre-
dictors in regression. Thus variations in loudness rather than loudness values
are used to predict the arousal associated. Several techniques can be employed,
such as regression analysis, dynamical system theory, as well as machine learn-
ing algorithms developed to model the dynamic behavior of time series. Thus
the next section reviews approaches to MER that use the temporal variation of
music features as predictors of musical emotions.

3.1 Time Series and Prediction

The feature vector should be calculated for every frame of the audio signal and
kept as a time series as shown in Fig. 1(b). In other words, the music features
Φi are now represented by a time-varying vector Φi (t) = {φi (t) , φi (t− 1) ,
φi (t− 2) , ..., φi (t−N)}. The temporal correlation of the features must be ex-
ploited and fed into the model of emotions to estimate listeners’ response to the
repetitions and the degree of “surprise” that certain elements might have [38].
The simplest way to incorporate temporal information from the music features is
to include time differences, such as loudness values and also loudness variations
(from the previous value). This MER system uses information about how loud
a certain passage sounds and also if the music is getting louder (building up
tension, for example), using previous values of features to predict the next (is
loudness going to increase or decrease?) and compare these predictions against
how the same features are unfolding in the music as follows

φi (t+ 1) = a1φi (t) + a2φi (t− 1) + a3φi (t− 2) + ...+ ε (3.1)

where φi (t+ 1) represents the next value for the feature φi, φi(t) the present
value, φi (t− 1) the previous, and so forth. The predictions φi (t+ 1) can be used
to estimate listeners’ emotional responses. Listeners have expectations about how
the music is unfolding in time. For instance, expectations about the next term in
a sequence (the next chord in chord progression or the next pitch in melodic con-
tour) or expectations about continuous parameters (become louder or brighter).
Whenever listeners’ expectations are correct it is rewarding (fulfillment) and
when they are not it is unrewarding (tension).

3.2 Emotional Trajectories

A very simple way of recording information about the temporal variation of
emotional perception of music would be to ask listeners to write down the emo-
tional label and a time stamp as the music unfolds. The result is illustrated in
Fig. 4(a). However, this approach suffers from the granularity and ambiguity



Modeling Musical Emotions from Time-Varying Music Features 181

(a) Categorical (b) Continuous

Fig. 4. Temporal variation of emotions. The left-hand side shows emotional labels
recorded over time. On the right, we see a continuous conceptual emotional space with
an emotional trajectory (time is represented by the arrow).

issues inherent of using a categorical description of emotions. Ideally, we would
like to have an estimate of how much a certain emotion is present at a particular
time. Krumhansl [19] proposes to collect listener’s responses continuously while
the music is played, recognizing that retrospective judgments are not sensitive
to unfolding processes. However, in this study [19], listeners assessed only one
emotional dimension at a time. Each listener was instructed to adjust the posi-
tion of a computer indicator to reflect how the amount of a specific emotion (for
example, sadness) they perceived changed over time while listening to excerpts
of pieces chosen to represent the emotions [19].

Recently, there have been proposals to collect self-report of emotional
reactions to music [39], including software such as EmotionSpace Lab [35],
EmuJoy [28], and MoodSwings [16]. EmotionSpace Lab [35] allows listeners
to continuously rate emotions while listening to music as points on the {υ, α}
(valence-arousal) plane (CMA), giving rise to an emotional trajectory on a two-
dimensional model of emotion like the one shown in Fig. 4(b) (time is represented
by the arrow). Use of the CMA accommodates a wide range of emotional states
in a compact representation. Similarly, EmuJoy[28] allows continuous self-report
of emotions over time in two-dimensional space (CMA). MoodSwings [16] is an
online collaborative game designed to collect second-by-second labels for music
using the CMA as model of emotion. The game was designed to capture {υ, α}
pairs dynamically (over time) to reflect emotion changes in synchrony with mu-
sic and also to collect a distribution of labels across multiple players for a given
song or even a moment within a song. Kim et al. state that the method provides
quantitative labels that are well-suited to computational methods for parameter
estimation.
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A straightforward way of using information from the sequence of emotional
labels Ψi (t) to predict future values would be to use the underlying dynamics of
the temporal variation of the sequence itself, like expressed below

Ψi (t+ 1) = a0 + a1Ψi (t) + a2Ψi (t− 1) + a3Ψi (t− 2) + ...+ ε. (3.2)

Notice that Eq. (3.2) fits a linear prediction model to the time series of emo-
tional labels Ψi (t) under the assumption that the previous values in the series
can be used to predict future values, indicating trends and modeling the inertia
of the system. In other words, the model assumes that increasing values of Ψi (t)
indicate that the next value will continue to increase by a rate estimated from
previous rates of growth, for example.

3.3 Modeling Musical Emotions from Time-Varying Music Features

Finally, we should investigate the relationship between the temporal variation
of musical features and the emotional trajectories. MER systems should include
information about the rate of temporal change of musical features. For example,
we should investigate how changes in loudness correlate with the expression
of emotions. Early studies used time series analysis techniques to investigate
musical structure. Vos et al [46] tested the structural and perceptual validity
of notated meter applying autocorrelation to to the flow of melodic internals
between notes from thirty fragments of compositions for solo instruments by
J. S. Bach.

Recently, researchers started exploring the temporal evolution of music by
treating the sequence of music features as a time series modeled by ordinary
least squares [36,38], linear dynamical systems such as Kalman filters [32,33,34],
dynamic texture mixtures (DTM) [8,44], auto-regressive models (linear predic-
tion) [18], neural networks [5,6,7,45], among others. Notice that these techniques
are intimately related. For example, the Kalman filter is based on linear dynam-
ical systems discretized in the time domain and modeled as a Markov chain,
whereas the hidden Markov model can be viewed as a specific instance of the
state space model in which the latent variables are discrete.

First of all, it is important to distinguish between stationary and nonstation-
ary sequential distributions. In the stationary case, the data evolves in time,
but the distribution from which it is generated remains the same. For the more
complex nonstationary situation, the generative distribution itself is evolving in
time.

Ordinary Least Squares. Schubert [36,38] studied the relationship between
music features and perceived emotion using continuous response methodology
and time-series analysis. In these studies, both the music features Φn (t) and
the emotional responses Ψm (t) are multidimensional time series. For example,

Φ1 (t) =
[
φ1 (t) φ1 (t− 1) . . . φ1 (t−N)

]T
are loudness values over time and

Ψα (t) =
[
α (t) α (t− 1) . . . α (t−N)

]T
are arousal ratings annotated over time.
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Schubert [36,38] proposes to model each component of Ψ (t) as a linear combi-
nation of features Φ (t) plus a residual error ε (t) as follows⎡
⎢⎢⎢⎣

υ (t)
υ (t− 1)

...
υ (t−M)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

φ1 (t) φ2 (t) . . . φN (t)
φ1 (t− 1) φ2 (t− 1) . . . φN (t− 1)

...
...

φ1 (t−M) φ2 (t−M) . . . φN (t−M)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
a1
a2
...

aN

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

ε (t)
ε (t− 1)

...
ε (t−N)

⎤
⎥⎥⎥⎦ (3.3)

where the model parameters A = {aj} are fit so as to best explain variability
in Ψ (t). The error term ε (t) is included to account for discrepancies between
the deterministic component of the equation and the actual data value. Two
fundamental premises of this model are that the error term be reasonably small
and that it fluctuate randomly. Notice that the error term ε (t) is simply

ε (t) = Ψ (t)−AΦ (t) . (3.4)

Thus the coefficients A = {ai} can be estimated using standard squared-
error minimization techniques, such as ordinary least squares (OLS). OLS can
be interpreted as the decomposition of Ψ (t) onto the subspace spanned by Φi (t).

Notice that Eq. (3.3) considers the music features and the emotions as non-
causal time series because information about the past (previous times) and about
the future (all succeeding times) is used. Eq. (3.3) simply models Ψ (t) as a
linear combination of a set of feature vectors Φ (t) where time is treated as
vector dimensions. Mathematically, Ψ (t) is projected onto the subspace that
Φ (t) spans, which is usually not orthogonal. This means that the music features
used might be linearly dependent. In other words, if one of the features can
be expressed as a linear combination of the others, then it is redundant in the
feature set because it is correlated (colinear) with the other features.

More importantly, information about the rate of change of musical features is
not exploited. The temporal correlation between successive values of features also
plays an important role in listeners’ emotional experience. The model in Eq. (3.3)
supposes that listeners’ emotional responses over time depend on loudness values
over time, but not on loudness “variations”. A straightforward way to consider
variations in time series is to create a new sequence of values with the first order
differences as follows

ΔΨ (t) = AΔΦ (t) + ...+ ε (3.5)

where Δ is the first order difference operator ΔΨ (t) = Ψ (t) − Ψ (t− 1).
Difference time series answer questions like “how much does Ψ change when
Φ changes”? [36].

Schubert [36] proposed to use music features (loudness, tempo, melodic con-
tour, texture, and spectral centroid) as predictors in linear regression models
of valence and arousal. This study found that changes in loudness and tempo
were associated positively with changes in arousal, and melodic contour varied
positively with valence. When Schubert [38] discussed modeling emotion as a
continuous, statistical function of musical parameters, he argued that the statis-
tical modeling of memory is a significant step forward in understanding aesthetic
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responses to music. In simple terms, the current system output depends on its
previous values. Another interpretation is that the system exhibits “inertia”, i.e.,
no sudden changes occur. Naturally, the input variables (music features) are also
likely to exhibit autocorrelation.

Finally, Schubert [37] studied the causal connections between resting points
and emotional responses using interrupted time series analysis. This study is
related to a hypothesis proposed by Leonard Meyer [25] that “arousal of affect”
results from musical expectations being temporarily suspended. Meyer suggests
that there is a relationship between musical expectations, tension, and arousal.
Schubert concluded that resting points are associated with increased valence.

The approach proposed by Schubert implicitly assumes that the relationship
between the temporal evolution of music features and the emotional trajectories
is linear and mutually independent, discarding interactions between music fea-
tures. The interactions between musical variables are a prominent factor in music
perception and call for joint estimation of coupled music features and modeling
of said interactions. Finally, Schubert’s approach does not generalize, applying
to each piece analyzed.

Linear Dynamical System. A linear system models a process where the out-
put can be described as a linear combination of the inputs as in Eq. (2.2). When
the input is a stationary signal corrupted by noise, a Wiener filter can be used
to filter out the noise that has corrupted the signal. The Wiener filter uses the
autocorrelation of input signal and crosscorrelation between input and output to
estimate the filter, which can be later used to predict future values of the input.

Linear dynamical systems also model the behavior of the input variable Φ (t),
usually from its past values. The Kalman Filter gives the solution to generic
linear state space models of the form

Φ (t) = AΦ (t− 1) + q (t) (3.6)

Ψ (t) = HΦ (t) + r (t) (3.7)

where vector Φ (t) is the state and Ψ (t) is the measurement. In other words, the
Kalman filter extends the Wiener filter to nonstationary processes, where the
adaptive coefficients of the filter are iteratively (recursively) estimated.

Schmidt and Kim [32,33,34] have worked on the prediction of time-varying
arousal-valence pairs as probability distributions using multiple linear regression,
conditional random fields, and Kalman filtering. Each music track is described
by a time-varying probability distribution from a corpus of annotations they
have collected with an online collaborative game [16] from several users. Their
first effort [33] to predict the emotion distribution over time simply uses multiple
linear regression (MLR) to regress multiple feature windows to these annotations
collected at different times without exploiting the time order or the temporal
correlation of the features or the emotions.

Then, Schmidt and Kim [32] modeled the temporal evolution of the music
features and the emotions as a linear dynamical system (LDS) such as Eq. (3.6).
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The model considers the labels Ψ (t) as noisy observations of the observed music
features Φ (t) and uses a Kalman filter approach to fit the parameters. They com-
pare the results against their previous MLR approach, which considers that each
pair feature Φi annotation Ψi is statistically independent and therefore neglects
the time-varying nature of music and emotions. Interestingly, they conclude that
a single Kalman filter models well the temporal dependence in music emotion
prediction for each music track. However, a mixture of Kalman filters must be
employed to represent the dynamics of a music collection.

Later, Schmidt and Kim [34] propose to apply conditional random fields
(CRF) to investigate how the relationship between music features and emotions
evolve in time. They state that CRF models both the relationships between
acoustic data (the music features) and emotion space parameters and also how
those relationships evolve over time. CRF is a fully connected graphical model
of the transition probabilities from each class to all others, thus representing
the link between music features and the annotated labels as a set of transition
probabilities, similarly to hidden Markov models (HMM). An interesting find-
ing of this work is that the best performing feature for CRF prediction was
MFCC rather than spectral contrast as reported earlier [32]. Schmidt and Kim
conclude by speculating that this might be an indication that MFCC provides
more information than spectral contrast when modeling the temporal evolution
of emotion.

Dynamic Texture Mixture. A dynamic texture (DT) is a generative model
that takes into account both the instantaneous acoustics and the temporal dy-
namics of audio sequences [8]. The texture is assumed to be a stationary second-
order process with arbitrary covariance driven by white Gaussian noise (i.e.,
a first-order ARMA model). The model consists of two random variables, an
observed variable Ψ (t) that encodes the musical emotions, and a hidden state
variable Φ (t) that encodes the dynamics (temporal evolution) of the music fea-
tures. The two variables are modeled as a linear dynamical system.

Φ (t) = AΦ (t− 1) + v (t) (3.8)

Ψ (t) = CΦ (t) + w (t) (3.9)

While the DT in Eq. (3.8) models a single observed sequence, a mixture of dy-
namic textures (DTM) models a collection of sequences such as different musical
features. DTM has been applied in automatic segmentation [2] and annotation
[8] of music, as well as MER [44].

Vaizman et al [44] propose to use dynamic texture mixtures (DTM) to “in-
vestigate how informative the dynamics of the audio is for emotional content”.
They created a data set of 76 recordings of piano and vocal performances where
“the performer was instructed to improvise a short musical segment that will
convey to listeners in a clear manner a single emotion, one from the set of
{happy, sad, angry, fearful} [44].” These instructions were then used as ground
truth labels. Vaizman et al claim that they “obtained a relatively wide variety of
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acoustic manifestations for each emotional category, which presumably capture
the various strategies and aspects of how these specific emotions can be conveyed
in Western music.” Finally, they model the dynamics of acoustic properties of
the music applying DTM to a temporal sequence of MFCCs extracted from their
recordings. A different DTM model must be trained for each class (emotional
label) using an iterative expectation maximization (EM) algorithm. After train-
ing, we can calculate the likelihood that a new music track was “generated” by
a given DTM (i.e., the track belongs to that class). Notice that the model in
Eq. (3.8) is equivalent to a first-order state space model.

Auto Regressive Model. Korhonen et al. [18] assume that, since music
changes over time, musical emotions can also change dynamically. Therefore,
they propose to measure emotion as a function of time over the course of a piece
and subsequently model the time-varying emotional trajectory as a function of
music features. More specifically, their model assumes that musical emotions de-
pend on present and past feature values, including information about the rate of
change or dynamics of the features. Mathematically, the model has the general
form

Ψi (t, A) = f [Φi (t) , Φi (t− 1) , ..., εi (t) , εi (t− 1)] (3.10)

where Ψi (t, A) represents the emotions as a function of time t, A are the param-
eters of the function f that maps the music features Φi (t) and its past values
Φi (t− 1) , ... with approximation error ε (t). Notice that the model does not
include dependence on past values of Ψi (t, A).

In this work, Korhonen et al. [18] adopt linear models, assuming that f can
be estimated as a linear combination of current and past music features Φ given
an estimation error ε to be minimized via least-squares and validated by K-fold
cross-validation and statistical properties of the residual error ε [18]. The mod-
els they consider are the auto-regressive with exogenous inputs (ARX) shown
in Eq. (3.11) and a state-space representation shown in Eq. (3.12) and (3.13)
following.

Ψ (t) +A1 (θ)Ψ (t− 1) + ...+Am (θ)Ψ (t−m) =

B0 (θ)Φ (t) + ...+Bn (θ)Φ (t− n) + e (t)
(3.11)

where Φ (t) is the N -dimensional music feature vector (N is the number of fea-
tures), Ψ (t) is an M -dimensional musical emotion vector (M is the dimension
of the emotion representation), Ak is a matrix of coefficients (zeros) and Bk is
the matrix of coefficients (poles).

Φ (t+ 1) = A (θ)Φ (t) +B (θ)u (t) +K (θ) ε (t) (3.12)

Ψ (t) = C (θ)Φ (t) +D (θ)u (t) + ε (t) (3.13)

where Φ (t) is the N -dimensional music feature vector (N is the number of fea-
tures), A (θ) is a matrix representing the dynamics of the state vector, B (θ) is
a matrix describing how the inputs (music features) affect the state variables Φ,
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C (θ) is a matrix describing how the state variables Φ affect the outputs (emo-
tion), D (θ) is a matrix describing how the current inputs (music features) affect
the current outputs, and K (θ) is a matrix that models the noise in the state
vector Φ. They used a dataset of 6 pieces “to limit the scope,” while the to-
tal duration was 20 min. They report that the best model structure was ARX
using 16 music features and 38 parameters, whose performance was 21.9% for
valence and 78.4% for arousal. An interesting conclusion is that previous valence
appraisals can be used to estimate arousal, but not the other way around.

Artificial Neural Networks. Coutinho and Cangelosi [5,6,7] propose to use
recurrent neural networks to model continuous measurements of emotional re-
sponse to music. Their approach assumes “that the spatio-temporal patterns of
sound convey information about the nature of human affective experience with
music” [6]. The temporal dimension accounts for the dynamics of music features
and emotional trajectories and the spatial component accounts for the parallel
contribution of various musical and psycho-acoustic factors to model continuous
measurements of musical emotions.

Artificial neural networks (ANN) are nonlinear adaptive systems consisting of
interconnected groups of “artificial neurons” that model complex relationships
between inputs and outputs. ANNs can be viewed as nonlinear connectionist ap-
proaches to machine learning, implementing both supervised and unsupervised
learning. Generally, each “artificial neuron” implements a nonlinear mathemat-
ical function Ψ = f (Φ), such that the output of each neuron is represented as a
function of the weighted sum of the inputs as follows

Ψi = f

⎡
⎣ N∑

j

wijg (Φj)

⎤
⎦ (3.14)

where Ψi is the ith output,Φj is the jth input, f is the map between input and
output, and g is called activation function, usually nonlinear.

There are feed-forward and recurrent networks. Feed-forward networks only
use information from the inputs to “learn” the implicit relationship between
input and output in the form of connection weights, which act as long-term
memory because once the feed-forward network has been trained, the map re-
mains fixed. Recurrent networks use information from past outputs and from
the present inputs in a feedback loop. Therefore, recurrent networks can process
patterns that vary across time and space, where the feedback connections act as
short-term memory (or memory of the immediate past)[3,6].

Coutinho and Cangelosi [5,6,7] sustain that the structure of emotion elicited
by music is largely dependent on dynamic temporal patterns in low-level music
structural parameters. Therefore, they propose to use the Elman neural net-
work (ENN), an extension of feed-forward networks (such as the multi-layer
perceptron) that include “context” units to remember past activity by storing
and using past computations of the network to influence the present processing.
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Mathematically,

Φ (t) = fi [Φ (t− 1) , u (t)] = f

⎡
⎣∑

j

wi,jΦj (t− 1) +
∑
j

wi,juj (t)

⎤
⎦ (3.15)

Ψ (t) = hi [Φ (t)] = h

⎡
⎣∑

j

wi,jΦj (t)

⎤
⎦ (3.16)

where Eq. (3.15) is the next state function and Eq. (3.16) is the output function.
In these equations, Φ is the musical features, Ψ is the emotion pair {υ, α}, w are
the connection weights (the network long-term memory), and u are the internal
states of the network that encode the temporal properties of the sequential input
at different levels. The recursive nature of the representation endows the network
with the capability of detecting temporal relationships of sequences of features
and combinations of features at different time lags [6].

This study used the dataset from Korhonen et al. [18]. They concluded that
the spatio-temporal relationships learned fro the training set were successfully
applied to a new set if stimuli and interpret this as long-term memory, as op-
posed to the dynamics of the system (associated with short-term memory). The
result of canonical correlation analysis revealed that loudness is positively cor-
related with arousal and negatively with valence, spectral centroid is positively
correlated with both arousal and valence, spectral flux correlated positively with
arousal, sharpness correlated positively with both arousal and valence, tempo
is correlated with high arousal and positive valence, and finally texture is pos-
itively correlated with arousal. Later, Vempala and Russo [45] compared the
performance of a feed-forward network and an Elman network for predicting
{υ, α} ratings of listeners recorded over time for musical excerpts. They found
similar correlations between music features and {υ, α} values.

3.4 Overview

This section presents a brief overview of the techniques discussed previously.
Table 1 summarizes features of the models for each approach, providing com-
ments on aspects such as limitations and applicability.

4 Discussion

Most approaches that treat emotional responses to music as a time-varying func-
tion of the temporal variation of music features implicitly assume that time
presents certain deterministic properties. In the models discussed above, time is
modeled as clock time. However, musical time can be very subjective as music is
experienced by the listener. Naturally, listeners’ emotional reactions to music are
closely related to the subjective experience of time rather than objective clock
time. An interesting analogy is perception of frequencies and the Mel scale [43].



Modeling Musical Emotions from Time-Varying Music Features 189

Table 1. Overview of the proposals to model musical emotions from time-varying
music features. The table briefly summarizes model features with general comments
for each of the approaches reviewed in Sec. 3.3.

Approach Model Features Comments

Ordinary
Least

Squares

• Linear
• Stationary
• Noncausal
• Independent estimation
• Memoryless

• Does not model temporal system
dynamics

• Does not model interactions be-
tween music features

• Models arousal and valence sepa-
rately

• Models each piece separately
• Least-squares error minimization

Linear
Dynamical
System

• Linear
• Stationary (Wiener, CRF)
• Nonstationary (Kalman)
• Causal
• Independent estimation

(Wiener, Kalman)
• Joint estimation (CRF)
• Memoryless

• Models temporal system dynamics
• Does not model interactions be-

tween music features (Wiener,
Kalman)

• Models each piece separately
• Least-squares error minimization
• Underlying filtering model is hard-

ly musical

Dynamic
Texture
Mixture

• Linear
• Stationary
• Causal
• Independent estimation
• memoryless

• Models temporal system dynamics
• Does not model interactions be-

tween music features
• Borrowed from video
• Models each piece separately
• Expectation maximization param-

eter fit

Auto
Regressive
Model

• Linear
• Stationary
• Causal
• Independent estimation
• Memoryless

• Models temporal system dynamics
• Does not model interactions be-

tween music features
• Borrowed from statistics
• Models each piece separately
• Least-squares error minimization

Artificial
Neural
Network

• Nonlinear
• Nonstationary
• Causal
• Joint estimation
• Memory

• Models temporal system dynamics
• Models interactions between music

features
• Many parameters
• Difficult interpretation
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Human auditory perception of frequencies is closer to logarithmic rather than lin-
ear, thus linear frequency representations such as the Fourier transform present
a distorted picture of the information that is used to interpret the sounds that
reach the ear. Therefore, in what follows, this article discusses modeling time in
MER as subjective musical time rather than objective clock time.

Time. Conceptually, time can be seen from an objective or subjective point of
view. Clocks are evidence of the objective interpretation of time as independent
of anyone to experience it. Subjectively, the notion of time comes from the ex-
perience of change, sensory or otherwise [29]. Pressing [29] states that “Time
is not a stimulus but a construction, an inference.” Scientifically, the concept
of time can be incorporated into measurements of physical quantities. In this
case, time is a measure of change that involves expenditure of energy and there-
fore increase in entropy. Thus physical time is directly linked to the tendency
of macroscopic physical systems to disorder. As a consequence, physical time
involves irreversibility on macroscopic scales.

However, musical time differs from scientific time in many respects. Possible
procedures to establish the nature of musical time are mathematical formalism
and cognitive psychology. Mathematical formalism usually addresses objective
clock time, which may be used to model the temporal processes used by com-
posers. Cognitive psychology is concerned with subjective time, studying the
mental representation of time.

Newton constructed a deterministic set of mathematical relations that allowed
prediction of the future behavior of moving objects and allowed deduction of the
past behavior of the moving objects. All that one needed in order to do this
was data in the present regarding these moving objects. Isaac Newton believed
in absolute space and absolute time. According to the Newtonian view, time
is a dimension in which events and objects “move through” or an entity that
“flows”. Gottfried Leibniz and Immanuel Kant, among others, believed that time
and space “do not exist in and of themselves, but ... are the product of the way
we represent things”, because we can know objects only as they appear to us.

Scientific Properties of Time. Usually, objective time presents some
properties as follows [29]

1. Time provides an ordering for events. In classical physics and ordinary expe-
rience, this ordering is unique for any given set of events and chosen observer.

2. This ordering has a unique direction. This unique direction gives rise to the
irreversibility of some macroscopic phenomena and is related to the rise in
entropy (or disorder) of isolated systems.

3. Time separates events into three distinct categories: past, present, future.
4. Time is measurable. The existence of clocks that agree to high accuracy (in

non-relativistic surroundings) provides the utility of this notion. Clock time
is virtually synonymous with scientific time. Time’s measurability means
that in mathematical terms it acts as a metric space, i.e. a space with a
function that defines distance.
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5. Time is continuous (but also discrete). In classical physics, time is continu-
ous. Quantum mechanics provides a discrete interpretation of time based on
the principle of uncertainty.

Musical Properties of Time. The properties of scientific time have paral-
lels in music [29]. For example, the musical events have a unique time ordering
and the unique direction of time is usually “accepted.” Also, past, present, and
future remain useful concepts, and all musical events are subject to clock measur-
ability. Finally, the continuity or arbitrary divisibility of time applies to sound
perception. Most of these properties are associated with objective clock time,
such as measured by a metronome or marked on scores. However, when it comes
to listening to music, musical time has a subjective, experienced, psychological
component. The composer Dennis Smalley [40,41] wrote that “spectrum is per-
ceived through time and time is perceived as spectral motion”, suggesting that
sound perception is inherently linked to the auditory perception of change.

Some properties of objective time listed above are modified in musical time.
The most affected are 1, 2, and 4. Musically, time is inferred from ordered events.
Thus time perception can only be approximately modeled as clock time because
we ignore timing differences (and even tempo differences) to a substantial de-
gree. The directionality of time is first of all a property of short-term memory.
As for long-term memory, we have a memory of duration, but our memory of
time order is rather imprecise once things are in the past. Redundancy is in an
interesting way related to the temporal order of musical events and directional-
ity of musical time. Recycling a theme is not just a way of improving long-term
memory storage, it is also a musical way of making the time order less important.

The dichotomy between clock (objective) time and experienced (subjective)
time has been the subject of considerable debate in music [29]. Snyder [42] views
time as linked to the rate of change of incoming information. In this discussion,
Snyder wrote that information refers to novelty and the removal of uncertainty.
Habituation occurs at many levels of consciousness, cognitive as well as percep-
tual, and on many different time scales, from seconds to years. Thus we may not
notice or remember experiences that keep repeating. However, the limitation of
the capacity of memory is a limitation on how much novelty (i.e., information)
it can handle. To be coherent and memorable, a message must have a certain
amount of non-informative repetition or redundancy, which produces a certain
amount of invariance or regularity. The redundancy in messages acts as a kind
of implicit memory rehearsal, allowing us to have certain expectations about the
messages we perceive and making them predictable to some extent.

In relation to music, we can find redundancy at different levels of music expe-
rience. Repetition of similar waveforms create pitch perception. The concepts of
rhythm, tempo, and meter rely on repetition. The constraints of tuning systems
and scales limit the number of elements used in a melody, creating redundancy
in melodic patterns. At the formal level, redundancy includes symmetries and
repetition of entire sections. Snyder suggests that this repetition, in addition
to being a memory retrieval cue, is a metaphor for the process of remembering
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itself. When a pattern that appeared earlier in a piece of music reappears, it
is like a recollection - an image of the past reappearing in the present, and its
familiarity gives stability. Therefore, Snyder proposes that these associative rep-
etitions are a factor in establishing closure, and points that introduce new and
unfamiliar material (higher information content), such as transitions, are less
stable and have a higher tension value. Snyder concludes that information can
be related to tension in music. Musical tension, in turn, is associated with emo-
tional experience. As stated before, the patterns of repetition and expectations
in music are directly related to listeners’ emotional reactions. One could argue
that information measures over time are more suitable to bear a causal relation
with arousal/valence ratings than music features. But what is the link between
the flow of information in music and the perception of time?

Time is often thought of as existing independently of human experience. This
objective notion of time is closely related to scientific concept of irreversibility of
certain phenomena. Another possible interpretation is that time is an abstract
construction of the human mind based on certain aspects of memory. The sub-
jective notion of time is constructed from our perceptions of objects and events,
and its qualities at a given moment depend on the relationships between these
perceptions. In this sense, what we perceive in a given amount of time to some
extent determines our sense of the length of that time. In other words, subjective
time perception is a measure of the flow of information.

The concepts of information and redundancy are intrinsically related to mu-
sical form especially because they have a profound effect on our perception and
memory of lengths of time. Our judgment of the length of a time period longer
than the limits of short-term memory depends on the nature of the events that
“fill” it. At first, it might seem reasonable to assume that how long a length
of time appears to take depends on how many events happen within it, but
in reality it seems to depend also on how much information we process from
those events. Thus a time period filled with novel and unexpected events will be
remembered as longer than an identical (in clock time) period filled with redun-
dant or expected events. This implies that our expectations affect our sense of
duration. Novel events take up more memory space and are usually remembered
as having taken longer. On the other hand, ordinary events,which fit comfort-
ably within our predefined schemas and require little attention and processing,
are described as taking up little memory space and in retrospect seem to have
taken less time to happen.

Note, however, that the above are descriptions of duration as remembered,
not as experienced. Indeed, duration as experienced tend to be the opposite of
duration remembered. “Boring” time periods with little information are experi-
enced as being long, but remembered as shorter. Conversely, time periods filled
with unusual, informative sequences of events, can seem to flow very rapidly
while occurring, but are remembered as longer. Thus a musical passage filled
with repetitive events can seem, in retrospect, shorter than one filled with un-
predictable events. In other words, proportional relations of clock time do not
necessarily establish similar relations of proportional experienced time or re-
membered time lengths. However, this effect seems to diminish with repeated
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listening. In addition, regular pulse and metrical frameworks seem to make it
easier to get a more accurate sense of larger durational proportions.

Musical time is designed by composer and articulated by performer, shaping
the perceptual processes of the listener. Systematic repetition of patterns can
dull time perception, stretch or even eliminate the parallels between objective
and subjective time. Continuity can be undermined by many traditional musi-
cal procedures, such as staccato. The hierarchical nature of time is intrinsically
related to the three levels of time perception, such that “horizontal” aspects
of time focus on on succession of events whereas “vertical” aspects focus on
coordination between parts, synchrony, overlay, among others.

5 Conclusions

Research on automatic recognition of emotion in music, still in its infancy, has
focused on comparing “emotional labels” automatically calculated from differ-
ent representations of music with those of human annotators. MER systems
commonly use supervised learning techniques to map non time-varying music
feature vectors into regions of the emotion space. The music features are typi-
cally extracted from short audio clips and the system associates one emotion to
each piece. The performance of MER systems using machine learning has been
stagnant. Studies in music psychology suggest that time is essential in emotional
expression. In this article, we argue that MER has neglected the temporal nature
of music. We advocate the incorporation of time in both the representation of
musical features and the model of emotions. This article reviews recent proposals
in the literature to model musical emotions from time-varying music features. Fi-
nally, we discussed the representation of musical time as subjective time, rather
than clock time.

The drawbacks of applying supervised learning to non time-varying repre-
sentations of music and emotions are widely recognized by MER researchers.
However, there is no standard way of representing temporal information in MER.
This article urges MER researchers to model musical emotions from time-varying
music features. The main point we make is that the temporal dynamics of music
features are better predictors of musical emotions than feature values. However,
we argue that currently, the models that take temporal dynamics into consid-
eration are not appropriate to deal with music because they were originally
developed for other purposes. Currently, we have the means to model the rel-
evant features over scientific (clock) time. However, musical time is not in the
equation.

Future perspectives include the development of computational models that ex-
ploit the temporal dynamics of music features as predictors of musical emotions.
Only by including temporal information in automatic recognition of emotions
can we advance MER systems to cope with the complexity of human emotions
in one of its canonical means of expression, music.
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Abstract. We present a system for representing the musical content of
short pieces of audio using a novel chroma-based representation known
as the ‘intervalgram’, which is a summary of the local pattern of musical
intervals in a segment of music. The intervalgram is based on a chroma
representation derived from the temporal profile of the stabilized audi-
tory image [10] and is made locally pitch invariant by means of a ‘soft’
pitch transposition to a local reference. Intervalgrams are generated for a
piece of music using multiple overlapping windows. These sets of interval-
grams are used as the basis of a system for detection of identical melodic
and harmonic progressions in a database of music. Using a dynamic-
programming approach for comparisons between a reference and the song
database, performance is evaluated on the ‘covers80’ dataset [4]. A first
test of an intervalgram-based system on this dataset yields a precision at
top-1 of 53.8%, with an ROC curve that shows very high precision up to
moderate recall, suggesting that the intervalgram is adept at identifying
the easier-to-match cover songs in the dataset with high robustness. The
intervalgram is designed to support locality-sensitive hashing, such that
an index lookup from each single intervalgram feature has a moderate
probability of retrieving a match, with few false matches. With this in-
dexing approach, a large reference database can be quickly pruned before
more detailed matching, as in previous content-identification systems.

Keywords: Cover Song Recognition, Auditory Image Model, Machine
Hearing.

1 Introduction

We are interested in solving the problem of cover song detection at very large
scale. In particular, given a piece of audio, we wish to identify another piece
of audio representing the same underlying composition, from a potentially very
large reference set. Though our approach aims at the large-scale problem, the
representation developed is compared in this paper on a small-scale problem for
which other results are available.

There can be many differences between performances with identical melodies.
The performer may sing or play at a different speed, in a different key or on a
different instrument. However, these changes in performance do not, in general,
prevent a human from identifying the same melody, or pattern of notes. Thus,
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given a performance of a piece of music, we wish to find a representation that is
to the largest extent possible invariant to such changes in instrumentation, key,
and tempo.

Serra [12] gives a thorough overview of the existing work in the field of melody
identification, and breaks down the problem of creating a system for identifying
versions of a musical composition into a number of discrete steps. To go from
audio signals for pieces of music to a similarity measure, the proposed process
is:

– Feature extraction
– Key invariance (invariance to transposition)
– Tempo invariance (invariance to a faster or slower performance)
– Structure invariance (invariance to changes in long-term structure of a piece

of music)
– Similarity computation

In this study, we concentrate on the first three of these steps: the extraction
of an audio feature for a signal, the problem of invariance to pitch shift (both
locally and globally) and the problem of invariance to changes in tempo be-
tween performances of a piece of music. For the first stage, we present a system
for generating a pitch representation from an audio signal, using the stabilized
auditory image (SAI) [10] as an alternative to standard spectrogram-based ap-
proaches. Key invariance is achieved locally (per feature), rather than globally
(per song). Individual intervalgrams are key normalized relative to a reference
chroma vector, but no guarantees are made that the reference chroma vector will
be identical across consecutive features. This local pitch invariance allows for a
feature that can track poor-quality performances in which, for example, a singer
changes key gradually over the course of a song. It also allows the feature to be
calculated in a streaming fashion, without having to wait to process all the audio
for a song before making a decision on transposition. Other approaches to this
problem have included shift-invariant transforms [9], the use of all possible trans-
positions [5] or finding the best transposition as a function of time in a symbolic
system [13]. Finally, tempo invariance is achieved by the use of variable-length
time bins to summarize both local and longer-term structure. This approach is
in contrast to other systems [5,9] which use explicit beat tracking to achieve
tempo invariance.

While the features are designed for use in a large-scale retrieval system when
coupled with a hashing technique [1], in this study we test the baseline per-
formance of the features by using a Euclidean distance measure. A dynamic-
programming alignment is performed to find the smallest-cost path through the
map of distances between a probe song and a reference song; partial costs, av-
eraged over good paths of reasonable duration, are used to compute a similarity
score for a each probe-reference pair.

We evaluate performance of the intervalgam (using both SAI-based chroma
and spectrogram-based chroma) using the ‘covers80’ dataset [4]. This is a set
of 160 songs, in 80 pairs that share an underlying composition. There is no ex-
plicit notion of a ‘cover’ versus an ‘original’ in this set, just an ‘A’ version and
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a ‘B’ version of a given composition, randomly selected. While it is a small cor-
pus, several researchers have made use of this dataset for development of audio
features, and report results on it. Ellis [5] reports performance in terms of ab-
solute classification accuracy for the LabRosa 2006 and 2007 music information
retrieval evaluation exchange (MIREX) competition, and these results are ex-
tended by, amongst others, Ravuri and Ellis [11], who present detection error
tradeoff curves for a number of systems.

Since we are ultimately interested in the use of the intervalgram in a large-scale
system, it is worth briefly considering the requirements of such a system. In order
to perform completely automated detection of cover songs from a large reference
collection, it is necessary to tune a system to have extremely low false hit rate
on each reference. For such a system, we are interested less in high absolute
recall and more in finding the best possible recall given a very low threshold
for false positives. Such systems have previously been reported for nearly-exact-
match content identification [1]. The intervalgram has been developed for and
tested with a similar large-scale back end based on indexing, but there is no large
accessible data set on which performance can be reported. It is hard to estimate
recall on such undocumented data sets, but the system identifies a large number
of covers even when tuned for less than 1% false matches.

2 Algorithm

2.1 The Stabilized Auditory Image

The stabilized auditory image (SAI) is a correlogram-like representation of the
output of an auditory filterbank. In this implementation, a 64-channel pole-zero
filter cascade [8] is used. The output of the filterbank is half-wave rectified and
a process of ‘strobe detection’ is carried out. In this process, large peaks in the
waveform in each channel are identified. The original waveform is then cross-
correlated with a sparsified version of itself which is zero everywhere apart from
at the identified strobe points. This process of ‘strobed temporal integration’
[10,14] is very similar to performing autocorrelation in each channel, but is con-
siderably cheaper to compute due to the sparsity of points in the strobe signal.
The upper panels of Fig. 1 show a waveform (upper panel) and stabilized au-
ditory image (middle panel) for a sung note. The pitch of the voice is visible
as a series of vertical ridges at lags corresponding to multiples of the repetition
period of the waveform, and the formant structure is visible in the pattern of
horizontal resonances following each large pulse.

2.2 Chroma from the Auditory Image

To generate a chroma representation from the SAI, the ‘temporal profile’ is first
computed by summing over the frequency dimension; this gives a single vector
of values which correspond to the strength of temporally-repeating patterns in
the waveform at different lags. The temporal profile gives a representation of
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Fig. 1. Waveform (top panel), stabilized auditory image (SAI) (middle panel) and SAI
temporal profile (bottom panel) for a human voice singing a note

the time intervals associated with strong temporal repetition rates, or possible
pitches, in the incoming waveform. This SAI temporal profile closely models
human pitch perception [6]; for example, in the case of stimuli with a missing
fundamental, there may be no energy in the spectrogram at the frequency of the
pitch perceived by a human, but the temporal profile will show a peak at the
time interval associated with the missing fundamental.

The lower panel of Fig. 1 shows the temporal profile of the stabilized auditory
image for a sung vowel. The pitch is visible as a set of strong peaks at lags
corresponding to integer multiples of the pulse rate of the waveform. Fig. 2 shows
a series of temporal profiles stacked in time, a ‘pitch-o-gram’, for a piece of music
with a strong singing voice in the foreground. The dark areas correspond to lags
associated with strong repetition rates in the signal, and the evolving melody is
visible as a sequence of horizontal stripes corresponding to notes; for example
in the first second of the clip there are four strong notes, followed by a break of
around 1 second during which there are some weaker note onsets.

The temporal profile is then processed to map lag values to pitch chromas in
a set of discrete bins, to yield a representation as chroma vectors, also known as
‘pitch class profiles’ (PCPs) [12]. In our standard implementation, we use 32 pitch
bins per octave. Having more bins than the standard 12 semitones in the Western
scale allows the final feature to accurately track the pitch in recordings where
the performer is either mistuned or changes key gradually over the course of
the performance; it also enables more accurate tracking of pitch sweeps, vibrato,
and other non-quantized changes in pitch. Additionally, using an integer power
of two for the dimensions of the final representation lends itself to easy use of
a wavelet decomposition for hashing, which is discussed below. The chroma bin
assignment is done using a weighting matrix, by which the temporal profile is
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multiplied to map individual samples from the lag dimension of the temporal
profile into chroma bins. The weighting matrix is designed to map the linear
time-interval axis to a wrapped logarithmic note pitch axis, and to provide a
smooth transition between chroma bins. An example weighting matrix is shown
in Fig. 3. The chroma vectors for the same piece of music as in Fig. 2 are shown
in Fig. 4.
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Fig. 2. A ‘pitch-o-gram’ created by stacking a number of SAI temporal profiles in time.
The lag dimension of the auditory image is now on the vertical axis. Dark ridges are
associated with strong repetition rates in the signal.

2.3 Chroma from the Spectrogram

In addition to the SAI-based chroma representation described above, a more
standard spectrogram-based chroma representation was tested as the basis
for the intervalgram. In this case, chroma vectors were generated using the
chromagram E function distributed with the covers80 [4] dataset, with a modi-
fied step size to generate chroma vectors at the rate of 50 per second, and 32
pitch bins per octave for compatibility with the SAI-based features above. This
function uses a Gaussian weighting function to map FFT bins to chroma, and
weights the entire spectrum with a Gaussian weighting function to emphasize
octaves in the middle of the range of musical pitches.

2.4 Intervalgram Generation

A stream of chroma vectors is generated at a rate of 50 per second. From this
chromagram, a stream of ‘intervalgrams’ is constructed at the rate of around
4 per second. The intervalgram is a matrix with dimensions of chroma and
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Fig. 3. Weighting matrix to map from the time-lag axis of the SAI to chroma bins
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Fig. 4. Chroma vectors generated from the pitch-o-gram vectors shown in Fig. 2
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time offset; however, depending on the exact design the time-offset axis may be
nonlinear.

For each time-offset bin in the intervalgram, a sequence of individual chroma
vectors are averaged together to summarize the chroma in some time window,
before or after a central reference time. It takes several contiguous notes to ef-
fectively discern the structure of a melody, and for any given melody the stream
of notes may be played a range of speeds. In order to take into account both
short- and longer-term structure in the melody, a variable-length time-averaging
process is used to provide a fine-grained view of the local structure, and simul-
taneously give a coarser view of longer timescales, to accommodate a moderate
amount of tempo variation; that is, small absolute time offsets use narrow time
bin widths, while larger absolute offsets use larger bin widths. Fig. 5 shows
how chroma vectors are averaged together to make the intervalgram. In the
examples below, the widths of the bins increase from the center of the inter-
valgram, and are proportional to the sum of a forward and reverse exponential

wb = f
(
wp

f + w−p
f

)
, where p is an integer between 0 and 15 (for the positive

bins) and between 0 and -15 (for the negative bins), f is the central bin width,
and wf is the width factor which determines the speed with which the bin width
increases as a function of distance from the center of the intervalgram.

In the best-performing implementation, the temporal axis of the intervalgram
is 32 bins wide and spans a total time window of around 30 seconds. The central
two slices along the time axis of the intervalgram are the average of 18 chroma
vectors each (360ms each), moving away from the centre of the intervalgram, the
outer temporal bins summarize longer time-scales before and after the central
time. The number of chroma vectors averaged in each bin increases up to 99
(1.98s) in the outermost bins leading to a total temporal span of 26 seconds for
each intervalgram.

A ‘reference’ chroma vector is also generated from the stream of incoming
chroma vectors at the same rate as the intervalgrams. The reference chroma
vector is computed by averaging together nine adjacent chroma vectors using a
triangular window. The temporal center of the reference chroma vector corre-
sponds to the temporal center of the intervalgram. In order to achieve local pitch
invariance, this reference vector is then circularly cross-correlated with each of
the surrounding intervalgram bins. This cross-correlation process implements a
‘soft’ normalization of the surrounding chroma vectors to a prominent pitch or
pitches in the reference chroma vector. Given a single pitch peak in the refer-
ence chroma vector, the process corresponds exactly to a simple transposition
of all chroma vectors to be relative to the single pitch peak. In the case where
there are multiple strong peaks in the reference chroma vector, the process cor-
responds to a simultaneous shifting to multiple reference pitches, followed by a
weighted average based on the individual pitch strengths. This process leads to a
blurry and more ambiguous interval representation but, crucially, never leads to
a hard decision being made about the ‘correct’ pitch at any point. Making only
‘soft’ decisions at each stage means that there is less need for either heuristics
or tuning of parameters in building the system. With standard parameters the
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intervalgram is a 32 by 32 pixel feature vector generated at the rate of one every
240ms and spanning a 26 second window. Since there are many overlapping in-
tervalgrams generated, there are many different pitch reference slices used, some
making crisp intervalgrams, and some making fuzzy intervalgrams.

Fig. 5. The intervalgram is generated from the chromagram using variable-width time
bins and cross-correlation with a reference chroma vector to normalize chroma within
the individual intervalgram

2.5 Similarity Scoring

Dynamic programming is a standard approach for aligning two audio representa-
tions, and has been used for version identification by many authors (for example
[16]; Serra [12] provides a representative list of example implementations). To
compare sets of features from two recordings, each feature vector from the probe
recording is compared to each feature vector from the reference recording, using
some distance measure, for example Euclidean distance, correlation, or Hamming
distance over a locality-sensitive hash of the feature. This comparison yields a
distance matrix with samples from the probe on one axis and samples from the
reference on the other. We then find a minimum-cost path through this matrix
using a dynamic programming algorithm that is configured to allow jumping
over poorly-matching pairs. Starting at the corner corresponding to the begin-
ning of the two recordings the path can continue by jumping forward a certain
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number of pixels in both the horizontal and vertical dimensions. The total cost
for any particular jump is a function of the similarity of the two samples to be
jumped to, the cost of the jump direction and the cost of the jump distance. If
two versions are exactly time-aligned, we would expect that the minimum-cost
path through the distance matrix would be a straight line along the leading di-
agonal. Since we expect the probe and reference to be roughly aligned, the cost
of a diagonal jump is set to be smaller than the cost of an off-diagonal jump.

The minimum and maximum allowed jump lengths in samples can be selected
to allow the algorithm to find similar intervalgrams that are more sparsely dis-
tributed, interleaved with poorly matching ones, and to constrain the maximum
and minimum deviation from the leading diagonal. Values that work well are a
minimum jump of 3 and maximum of 4, with a cost factor equal to the longer
of the jump dimensions (so a move of 3 steps in the reference and 4 in the probe
costs as much as 4,4 even though it uses up less reference time, while jumps of
3,3 and 4,4 along the diagonal can be freely intermixed without affecting the
score as long as enough good matching pairs are found to jump between). These
lengths, along with the cost penalty for an off-diagonal jump and the difference
in cost for long jumps over short jumps, are parameters of the algorithm. Fig. 6
shows a distance matrix for a probe and reference pair.

In the following section we test the performance of the raw intervalgrams,
combined with the dynamic programming approach described above, in finding
similarity between cover songs.

3 Experiments

3.1 Intervalgram Similarity

We tested performance of the similarity-scoring system based on the interval-
gram, as described above, using the standard paradigm for the covers80 dataset,
which is to compute a distance matrix for all query songs against all reference
songs, and report the percentage of query songs for which the correct reference
song has the highest similarity score.

Intervalgrams were computed from the SAI using the parameters outlined in
Table 1, and scoring of probe-reference pairs was performed using the dynamic
programming approach described above. Fig. 7 shows the matrix of scores for
the comparison of each probe with all reference tracks. Darker pixels denote
lower score, and lighter pixels denote higher scores. The white crosses show
the highest-scoring reference for a given probe. 43 of the 80 probe tracks in
the covers80 dataset were correctly matched to their associated reference track
leading to a score of 53.8% on the dataset. For comparison, Ellis [5] reports a
score of 42.5% for his MIREX2006 entry, and 67.5% for his MIREX2007 entry
(the latter had the advantage of using covers80 as a development set, so is less
directly comparable).

In addition to the SAI-based chroma features, standard spectrogram-based
chroma features were computed from all tracks in the ‘covers80’ dataset. These
features used 32 chroma bins, and were computed at 50 frames per second, to
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Fig. 6. Example distance matrix for a pair of songs which share an underlying compo-
sition. The lighter pixels show the regions where the intervalgrams match closely.

Table 1. Parameters used for intervalgram computation

Parameter Value

Chromagram step size (ms) 20

Chroma bins per octave 32

Total intervalgram width (s) 26.04

Intervalgram step size (ms) 240

Reference chroma vector width (chroma vectors) 4
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Fig. 7. Scores matrix for comparing all probes and references in the ‘covers80’ dataset.
Lighter pixels denote higher scores, indicating a more likely match. White crosses
denote the best-matching reference for each probe.

provide a drop-in replacement for the SAI-based features. Intervalgrams were
computed from these features using the parameters in Table 1.

In order to generate detection error tradeoff curves for the dataset, the scores
matrix from Fig. 7 was dynamically thresholded to determine the number of true
and false positives for a given threshold level. The results were compared against
the reference system supplied with the covers80 dataset, which is essentially the
same as the system entered by LabRosa for the 2006 MIREX competition, as
documented by Ellis [5]. Fig. 8 shows ROC curves the Elllis MIREX’06 entry and
for the intervalgram-based system, both with SAI chroma features and spectro-
gram chroma features. Re-plotting the ROC curve as a DET curve to compare
results with Ravuri and Ellis [11], performance of the intervalgram-based fea-
tures is seen to consistently lie between that of the LabRosa MIREX 2006 entry
and their 2007 entry.

Of particular interest is the performance of the features at high precision.
The SAI-based intervalgram can achieve 47.5% recall at 99% precision, whereas
the Ellis MIREX ‘06 system achieves 35% recall at 99% precision. These early
results suggest that the intervalgram shows good robustness to interference. The
intervalgram also stands up well to testing on larger, internal, datasets in com-
bination with hashing techniques, as discussed below.
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Fig. 8. ROC curves for the intervalgram-based system described in this paper and the
LabROSA MIREX 2006 entry [5]

3.2 Scaling-Up with Hashing

In order to perform cover version detection on a large database of content, it
is necessary to find a cheaper and more efficient way of matching a probe song
against many references. The brute-force approach of computing a full distance
map for the probe against every possible reference scales as the product of the
number of probes and the number of references; thus a system which makes
it cheap to find a set of matching segments in all references for a given probe
would be of great value. Bertin-Mahieux and Ellis [2] presented a system us-
ing hashed chroma landmarks as keys for a linear-time database lookup. Their
system showed promise, and demonstrated a possible approach to large-scale
cover-song detection but the reported performance numbers would not make
for a practically-viable system. While landmark or ‘interest point’ detection has
been extremely successful in the context of exact audio matching in noise [15]
its effectiveness in such applications is largely due to the absolute invariance in
the location of strong peaks in the spectrogram. For cover version identification
the variability in performances, both in timing and in pitch, means that descrip-
tors summarizing small constellations of interest points will necessarily be less
discriminative than descriptors summarizing more complete features over a long
time span. With this in mind, we explore some options for generating compact
hashes of full intervalgrams for indexing and retrieval purposes.

Hashing Techniques. Using the process outlined above, 32×32 pixel interval-
grams are generated from a signal at the rate of one per 240ms. To effectively
find alternative performances of a piece of music in a large-scale database, it
must be possible to do efficient lookup to find sequences of potentially match-
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ing intervalgrams. The use of locality-sensitive-hashing (LSH) techniques over
long-timescale features for music information retrieval has previously been inves-
tigated and found to be useful for large datasets [3]. Various techniques based on
locality-sensitive hashing (LSH) may be employed to generate a set of compact
hashes which summarize the intervalgram, and which can be used as keys to
look up likely matches in a key-value lookup system.

An effective technique for summarizing small images with a combination of
wavelet analysis and Min-Hash was presented by Baluja and Covell [1] in the
context of hashing spectrograms for exact audio matching. A similar system of
wavelet decomposition was previously applied to image analysis [7].

Hashing of the Intervalgram. In order to test the effectiveness of such tech-
niques on intervalgrams, the system described in [1] was adapted to produce a
compact locality-sensitive hash of the intervalgram features and tested at small
scale using the framework and dataset above. To generate hashes, four consecu-
tive 32×32 intervalgram frames are temporally averaged using a moving window,
and the resulting summary intervalgram is decomposed into a set of wavelet co-
efficients using a Haar kernel. The top t% of the wavelet coefficients with the
highest magnitude values are retained, and are represented by the sign of their
value. In this way, a sparse bit-vector can be produced, with two bits per wavelet
coefficient. The bit pattern 00 is used to represent an unused wavelet coefficient,
and the patterns 10 and 01 are used to represent a retained positive and negative
coefficient respectively. This sparse bit-vector is then hashed using the min-hash
techniques described in [1].

A search of the parameter space over a large internal dataset led to the op-
timal values for the wavelet decomposition and min-hash as detailed in Table
2. In addition the choice of random permutations was optimised using the same
dataset.

Table 2. Optimal parameters for the wavelet decomposition and min-hash

Parameter Value

Top-wavelets used (%) 5

Hash bands 100

Number of permutations 255

In this way, a 1024 element floating-point intervalgram matrix, costing 4096
bytes in storage, can be compactly summarised by a 100 byte min-hash rep-
resentation. This reduction by a factor of 40 in the size of the representation
comes with a cost in matching ability, which can be quantified using the same
framework as was used above for intervalgram matching. To compare hashes,
similarity matrices were generated for each pair of songs in the covers80 dataset,
as above but this time using the bytewise Hamming similarity between hashes.
The dynamic programming technique described above was again employed to
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Fig. 9. Scores matrix for comparing all probes and references in the ‘covers80’ dataset
using Hamming similarity over min-hashes. Lighter pixels denote higher scores, indi-
cating a more likely match. White crosses denote the best-matching reference for each
probe.

find the best path through the similarity matrix, and to provide a direct com-
parison with the raw intervalgram representation.

Fig. 9 shows the overall scores matrix for the covers80 dataset computed using
the hashes. Fig. 10 shows the ROC curve computed from hashed intervalgrams.
Performance is reduced from the full intervalgram case, and the ROC curve shows
faster fall-off in precision with increasing recall, but recall at 99% precision is
around 37.5%, reduced from 47.5% with full intervalgrams. Since this is the
area of the curve which we wish to focus on for large-scale applications, it is
gratifying to note that the massive decrease in fingerprint size does not lead to
a correspondingly massive fall in achievable recall at high precision. In fact the
recall at 99% precision is still higher after hashing than that of the unmodified
Ellis MIREX 2006 features where recall was 35%.

4 Discussion

We have introduced a new chroma-based feature for summarizing musical melo-
dies, which does not require either beat tracking or exhaustive search for trans-
position invariance, and have demonstrated a good baseline performance on a
standard dataset. However, we developed the intervalgram representation to be
a suitable candidate for large-scale, highly robust cover-song detection. In the
following sections we discuss some approaches to the application of the interval-
gram in such a system.
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Fig. 10. ROC curves as in 8 with the addition of a curve for the hashed intervalgrams

4.1 SAI and Spectrogram-Based Chroma

There was no great difference in performance between intervalgrams gener-
ated using the temporal profile of the SAI and intervalgrams generated using
a spectrogram-based chroma feature. However, there are some small differences
in different regions of the ROC curve. Recall at high precision is very similar
for both forms of chroma features; as precision is allowed to fall, the SAI-based
features lead to slightly higher recall for a given precision, but the trend is re-
versed in the lower-precision end of the curve. This may suggest that there would
be a benefit in combining both SAI-based and spectrogram-based chroma into a
feature which makes use of both. There is some evidence to suggest that the tem-
poral profile of the SAI may be robust to stimuli in which the pitch is ambiguous
[6], but this result may be less relevant in the context of music.

4.2 Hashing Results

Compared to exact-match audio identification, this system is much more chal-
lenging, since the individual hash codes are noisier and less discriminative. The
indexing stage necessarily has many false hits when it is tuned to get any rea-
sonable recall, so there are still many (at least thousands out of a reference set
of millions) of potential matches to score in detail before deciding whether there
is a match. However, experiments with this small test set show that existing
hashing techniques can be extremely effective at retaining the important detail
in the full feature representation.
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While the bytewise Hamming similarity is a reasonable measure for comparing
fingerprints in the evaluation scheme described in this paper, it would not scale
to very large libraries of reference content. In such a larger-scale system the
matching could be implemented by grouping multiple bytes of the fingerprint
and using these groups of bytes as keys into a lookup table storing candidate
chunks of reference content which match the given key. A full discussion of such
a system is beyond the scope of this paper, but this is the intended application
of the hashing techniques describe here.

5 Conclusions

The intervalgram is a pitch-shift-independent feature for musical version recogni-
tion tasks. Like other features for such tasks, it is based on chroma features, but
we have demonstrated that a chroma representation derived from the temporal
profile of a stabilized auditory image gives comparable results to features derived
from a spectrogram, and may provide complementary information. To achieve
pitch-shift invariance, individual intervalgrams are shifted relative to a reference
chroma vector, but no global shift invariance is used. Finally, to achieve some
degree of tempo-invariance, variable-width time-offset bins are used to capture
both local and longer-term features.

In this study, the performance of the intervalgram was tested by using dynam-
ic-programming techniques to find the cheapest path through similarity matrices
comparing a cover song to all references in the ‘covers80’ dataset. Intervalgrams,
followed by dynamic-programming alignment and scoring, gave a precision at
top-1 of 53.8%. This performance value, and the associated ROC curve, lies
between the performance of the Ellis 2006 and Ellis 2007 MIREX entries (the
latter of which was developed using the covers80 dataset).

The intervalgram has shown itself to be a promising feature for musical version
recognition. It has good performance characteristics for high-precision matching
with a low false-positive rate. Furthermore the algorithm is fairly simple and fully
‘feed-forward’, with no need for beat tracking or computation of global statistics.
This means that it can be run in a streaming fashion, requiring only buffering of
enough data to produce the first intervalgram before a stream of intervalgrams
can be generated. This feature could make it suitable for applications like query-
by-example in which absolute latency is an important factor.

In this study, we have also reported results which suggest that the interval-
gram representation will lend itself well to large scale application when coupled
with locality-sensitive hashing techniques such as wavelet-decomposition fol-
lowed by minhash. The high precision at moderate recall which can be achieved
with such techniques would allow for querying of a large database with a low
false-positive rate, and our preliminary experiments have shown promise in this
area.
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Abstract. This study applied a multi-dimensional scaling approach to
isolating a number of perceptual dimensions from a dataset of human
similarity judgements for short excerpts of recorded popular music (800-
ms). Two dimensions were well identified by two of the twelve timbral
coefficients from the Echo Nest’s Analyze service. One of these was also
identified by MFCC features from the Queen Mary Vamp plugin set,
however a third dimension could not be mapped by either feature set
and may represent a musical feature other than timbre. Implications are
discussed within the context of existing research into music cognition
and suggestions for further research regarding individual differences in
sound perception are given.

Keywords: Timbre perception, short audio clips, similarity perception,
sorting paradigm, MDS.

1 Introduction

Many application systems in music information retrieval rely on some kind of
timbral representation of music [2, 26]. Timbre, or the surface quality of sound,
seems to be a core aspect of computational systems which compare, classify,
organise, search, and retrieve music. This dominance of timbre and sound rep-
resentations in modern user-targeted audio application systems might be partly
explained by the importance of the perceptual qualities of sound in popular
music; writing about pop music in 1987, sociomusicologist Simon Frith already
noted that “The interest today (...) is in constantly dealing with new textures” [8].
Whilst musical textures can contain a lot of musical structure, they also depend
on surface features separate from any musical syntax or structure. These include
the harmonicity of sound, the timbral and acoustical qualities of instruments
and spaces, and changes introduced by various recording or post-production
techniques. The precision with which many features of sound can be defined
and implemented through modern signal processing has surely also contributed
to their popularity in the music information retrieval community. Acoustic and
timbral features have been defined as part of the MPEG4 and MPEG7 stan-
dards and are easily implemented where not already available from one of many
software libraries.

M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 214–227, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Timbral features are popular in research and commercial music information
retrieval applications, yet there is surprisingly little rigorous research into per-
ceptual principles explaining how certain timbral features can deliver results
which are largely compatible with human music processing. The psychological
and perceptual discourse around auditory processing often seems to be out of
touch with parts of the audio engineering community. For example, an often-
cited validation of mel-frequency cepstral coefficients (MFCCs) as correspond-
ing to human perceptual processing of sound is a brief engineering paper, rather
than a psychological or psycho-acoustical study [20]. Conversely, some studies
of human timbre perception (e.g. [33]) may have been unfairly overlooked by
the psychological music research community due to their use of ’artificial’ stim-
uli. Also, psychological studies of musical timbre have traditionally focused on
the acoustics of musical instruments, or timbral qualities imparted by individual
performers (e.g. vibrato, alteration of instrumental attack and decay). These are
often studied in isolation and usually with reference to styles of Western art mu-
sic (e.g. [3]; see [23] for an overview). Thus there is something of a discrepancy
between the scope of psychological inquiries and the broader, data-driven goals
of music information retrieval (MIR) as applied to finished recordings of popular
music. This may exacerbate the relative ignorance between both fields.

The current study aims to bridge this gap, at least to some extent, by pre-
senting data from a psychological experiment on human perception of timbral
similarity, using short excerpts of Western commercial pop music as stimuli. In
addition, this study also tries to identify the perceptual dimensions that West-
ern listeners use when making similarity judgements based on timbre cues and
to relate these to sets of timbral features that are well known to both music
information researchers and software engineers: firstly, the 12 timbre feature co-
efficients provided through the Echo Nest Analyze API1, and also a set of both
standard and customised MFCC and other spectral coefficients implemented by
the Queen Mary Vamp plugin set. As the first set of features involve considerable
auditory modeling and dimensional reduction motivated to approximate human
perception [15], we assume that in this case the human and machine feature
extractors under comparison are at least notionally parallel processes.

In this study, participants listen to very short excerpts of recorded commercial
popular music and sort them into homogeneous groups. The paradigm is inspired
by recent studies on genre [10] and song identification [17], which demonstrated
that listeners are able to perform highly demanding tasks on the basis of musi-
cal information that is present in sub-second audio clips. Gjerdingen and Per-
rott found that 44% of participants’ genre classifications of 250ms excerpts of
commercially available music agreed with classifications they made of the same
extracts when they were played for 3 seconds [10]. Krumhansl found that listen-
ers could even identify the artists and titles of 25% of a series of 400ms clips
of popular music spanning four decades [17]. At this timescale there are few,
if any discernible melodic, rhythmic, harmonic or metric relationships to base
judgements on. However, timbral information can be high even in perceptual

1 http://developer.echonest.com/

http://developer.echonest.com/
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situations where musical-structural information is minimal. It is also worth not-
ing that task performance increased monotonically with longer exposures in both
of the aforementioned studies, probably indicating that timbral information pro-
cessing is complemented by other types of musical information as they become
available in longer excerpts.

Many kinds of timbral information can be extracted from musical excerpts.
The presence of typical instrumental sounds can undoubtedly help to identify
a particular genre [10] and perception of key spectral and dynamic features is
robust even for incomplete instrumental tones [14]. However, if timbre is defined
more broadly as the spectro-temporal quality of sound, many surface features
of polyphonic music could potentially be seen as coefficients in a timbre space.
Indeed, the expression of musical emotion can be ascertained from 250ms of
exposure, and familiarity with a piece from 500ms [6]. Spectral coefficients also
join metric cues as predictors of surface judgements of musical complexity [30].
Different recording and production techniques can give rise to a plethora of
perceptual timbral dimensions [16, 22].

The aim of the present research is to establish how non-expert listeners make
use of musical surface features in a similarity sorting task, by applying multi-
dimensional scaling (MDS) to extract a small number of perceptual dimensions,
and then relating these to coefficients in a timbre space. The timbral coefficients
returned by the Echo Nest’s Analyze service were chosen as the initial pool,
as they have been usefully applied in a number of real-world applications (e.g.
autotagging and machine storage of music information [4, 34], creative musical
re-editing [19]). The same procedure was then applied with MFCCs and other
spectral coefficients from the Queen Mary Vamp Plugin set [1]. This research
paradigm of identifying acoustic features to match data from perceptual ex-
periments has a precedent in classic studies on timbral perceptual dimensions
for instrumental tones [11, 35], and is sensitive to subtle processing differences
not picked up by traditional discrimination paradigms [29]. The study was also
motivated by a wider effort to rigorously test and understand human musical
ability: the Goldsmiths Musical Sophistication Index. The procedure reported
here forms a part of a test battery which is freely available and includes the
musical excerpts used in this study. The project is documented and hosted at
http://www.gold.ac.uk/music-mind-brain/gold-msi.

2 Method

131 participants (59 male, with a mean age of 30.8, SD=11.8) sorted 16 ran-
domly ordered excerpt test-items into four equally sized bins by dragging and
dropping visually identical icons representing each item via a computer inter-
face. Sorts were unconstrained (other than the need for solutions to have exactly
four items per bin) and participants could audition items repeatedly at will and
with no time constraints. The set contained four items from each of four gen-
res (jazz, rock, pop and hip-hop), taken from 16 different songs identified on
the http://www.allmusic.com website as being genre-typical but not univer-
sally known (i.e. through not having achieved the highest pop chart ratings).

http://www.gold.ac.uk/music-mind-brain/gold-msi
http://www.allmusic.com
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Genres were chosen on the basis of Rentfrow and Gosling’s high-level categories
of musical genre: reflective/complex (jazz), energetic/rhythmic (hip-hop), up-
beat/conventional (pop), and intense/aggressive (rock) [27]. Genre-category rat-
ings for these are stable over time and appear to correlate somewhat with stable
personality traits [28]. It was therefore assumed that participants should be able
to solve the task implicitly (by perceived similarity) even if they possessed no
genre-specific knowledge. By focusing on these categories, we also avoided the
inherent instability and fluidity of industry genre boundaries. Gjerdingen and
Perrott also found that the presence of vocals in extracts reduced genre rating
performance [10]. Although vocal features are important for recognising musical
styles (and this is reflected in the technologies used in MIR) we chose stimuli
without vocals to avoid making the already short excerpts too difficult to clas-
sify. Excerpts were chosen to be as representative of the typical instrumentation
of the song as possible. 400ms and 800ms excerpts were taken at each of two
different locations within each song, creating four sets of 16 extracts (see Ap-
pendix A for details of the source songs and extract beginning times), however
results from only one of the 800ms item-sets are analysed here, following piloting
which suggested this set to have desirable psychometric properties. A floor effect
on test scores observed for 400ms stimuli was absent for 800ms stimuli from this
particular set (identified in Appendix A as “B”). Per-item mean correct pairing
scores (from 0 to 3 possible correct pairings) for this set were well distributed
in a pilot dataset with 117 participants (800ms per-item successful pairs out
of a maximum of 3: M=1.22, SD=0.44; 400ms: M=1.05, SD=0.37; t (31)=4.87,
p<.001). Vectors of timbral features for the same items were extracted through
the Echo Nest’s Analyze service and the Queen Mary Vamp plugin set for use
as predictors of item-placement on perceptual dimensions arising from analysis
of participants’ sorting solutions.

3 Analyses and Results

The score for each bin of four clips could range from 0 correct pairs (each clip
belonging to a different genre) to 6 correct pairs (each clip belonging to the same
genre), giving a score from 0 to 24 for the whole solution (some scores in this
range are not observed due to the fact that scores in any given bin were not
orthogonal to scores in other bins). Scores for participants’ grouping solutions
suggested that they had some difficulty with correctly completing the task. Mean
total scores were 10.145 (42.3% of 24), with 5.3% of participants below chance
level (4.799 out of 24) and 1.5% of participants at ceiling.

Each possible pair of clips in the whole dataset received a score based on
the number of participants assigning both clips in the pair to the same group.
Complete linkage agglomerative hierarchical clustering was carried out on the
resulting similarity matrix. A four-cluster solution generated the initial genre
classification that was used for selecting the clips perfectly (see Fig. 1). Thus,
despite a wide range of deviant sorting solutions at the level of individual
participants, the result of the cluster analysis demonstrates that the general
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Fig. 1. Complete linkage agglomerative hierarchical clustering of pairwise similarity
scores

sorting tendency of 131 participants agrees with the experimenter-chosen
similarity groupings by genre category.

A distance matrix was derived from the same pairwise similarity values and
taken as an input to the non-metric multi-dimensional scaling procedure as im-
plemented in the R-function isoMDS (from package MASS). Computing a 2- as
well as a 3-dimensional solution we obtained stress values of 12.05 and 6.52 re-
spectively, indicating a much better fit of the 3-dimensional solution to the data,
with the 3-dimensional solution also satisfying the elbow criterion in a stress
plot (not reproduced here). As a rule of thumb, Kruskal considers MDS solu-
tions with a stress of 5 or lower a good fit while solutions with a stress value of
10 are still fair [18]. Thus, it seems that 3 dimensions are sufficient to describe
the participants’ perceptual judgements. The 3-dimensional solution is shown in
Fig. 2. Clustering of clips by genre in the MDS space is clearly visible.

As a subsequent step we tried to identify the 3 perceptual dimensions iden-
tified by MDS with any of the Echo Nest’s 12 timbre coefficients. The Echo
Nest Analyze service divides audio into segments with stable tonal content, i.e.
roughly per note or chord. For each audio clip we obtained 2 to 5 segments with
12 timbre coefficients each. In order to obtain a homogeneous set of timbral fea-
tures to compare to the 3 MDS dimensions we used a simple first-order linear
model of the time series values of each coefficient for each clip. From each linear
model we used the intercept (mean value) and the variance across the number
of segments as an indicator of variability of the coefficient in the given clip.
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Perceptual dimensions for short clip similarity

−0.8 −0.6 −0.4 −0.2  0.0  0.2  0.4

−
0
.4

−
0
.3

−
0
.2

−
0
.1

 0
.0

 0
.1

 0
.2

 0
.3

 0
.4

−0.6

−0.4

−0.2

 0.0

 0.2

 0.4

 0.6

Dim. 1

D
im

. 
2

D
im

. 
3

●

●

●

●

●●
●

●

●

●

jazz
rock
pop
hiphop

Fig. 2. The 3-dimensional solution of pairwise item distances. Points are differentiated
by genre.

In addition, we used the number of segments per coefficient and clip as another
indicator of tonal variability.

Inspecting the bivariate distributions and correlations between each MDS-
dimension and the means and variances of the 12 coefficients suggested that
the relationships between the perceptual dimensions and the timbral coefficients
are mainly non-linear and distributions are far from normal. We therefore chose
a random forest as an analysis technique (for a discussion of this technique,
see [5]), as it is able to model non-linear relationships and can additionally deal
with a relatively high number of predictors (means and variances for each of the
12 coefficients plus the number of segments resulted in 25 predictor variables)
compared to the low number of observations (16 audio clips; for a discussion of
random forests as a classification and regression technique see chapter 15 in [12]).
More specifically, we chose the conditional random forest model as implemented
in the R package party [13], which is assumed to deliver more reliable estimates of
variable importance when predictors are highly correlated and represent different
measurement levels [32].

Fitting a random forest model yielded a list of variable-importance values
based on the usefulness of individual predictors for accurately predicting the so-
called ’out-of-the-bag’ (i.e. cross-validation) sample. The intercept (i.e. the mean)
of the Echo Nest’s timbral coefficient 5 was found to be of high importance as
a predictor of perceptual dimension 1 (see Fig. 3). A similarly clear picture was
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Fig. 3. Predictor importance for perceptual similarity dimension 1. The tall bar is the
intercept of Echo Nest Analyze service timbre coefficient 5.

found for the intercept of coefficient 9, being highly important as a predictor
of perceptual dimension 2 (see Fig. 4). However, the picture was less clear for
perceptual dimension 3, where all importance values for all variables remained
within the margin of error around 0, indicating that perceptual dimension 3
cannot be closely associated with any (studied) timbral coefficient (see Fig. 5).

A further analysis was undertaken to determine whether any of the three
perceptual dimensions would be predicted by 51 spectral feature coefficients
provided by the Queen Mary Vamp plugin set, including two sets of MFCC
coefficients as well as spectral centroid, spectral irregularity, spectral spread,
amongst others. Partial least squares regression (PLSR) was used to regress
separately the values of the three perceptual dimensions of each clip onto the
spectral feature coefficients. PLSR was chosen for its suitability in situations
where the number of predictors is greater than the number of observations (the
k > n problem; see [36]). The PLSR model explained 27% of variance in dimen-
sion 1 after cross-validation. However, the proportion of variance explained by
PLSR models for the two other perceptual dimensions was minimal. Predicted
versus observed values for perceptual dimension 1 are plotted against each other
in Fig. 6 .
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Fig. 4. Predictor importance for perceptual similarity dimension 2. The tallest bar is
the intercept of Echo Nest Analyze service timbre coefficient 9.

4 Discussion

Three perceptual dimensions derived from multi-dimensional scaling were suf-
ficient to explain listeners’ similarity judgements of short musical clips. Two of
these dimensions were predicted by distinct surface features from the first set
which was tested (Echo Nest Analyze service). Mean values but not variances of
coefficients were selected as important predictors, which is interesting because
the excerpts were long enough to contain some note- and beat-like temporal vari-
ations, which we anticipated would be reflected in the time-series variation of
the returned timbre vector. Unfortunately, only a few timbral features returned
by the Echo Nest are publicly documented, so it is difficult to ascertain what
the features correspond to. A scale-less spectrogram in the existing documenta-
tion2 suggests that coefficient 5, which was important for predicting the coordi-
nates of the 16 clips in perceptual dimension 1, might be a kind of mid-range
filter. This would not be surprising, as spectral and dynamic effects are used
to add low-end power and high-end presence to recordings. This could reduce
the amount of useful information contained in those frequency bands, whilst
the mid-range could become the most informative for clip discrimination and
2 See http://developer.echonest.com/docs/v4/_static/
AnalyzeDocumentation.pdf

http://developer.echonest.com/docs/v4/_static/AnalyzeDocumentation.pdf
http://developer.echonest.com/docs/v4/_static/AnalyzeDocumentation.pdf
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Fig. 5. Predictor importance for perceptual similarity dimension 3. Note that values
which do not escape the trend of both positive and negative values around zero are
generally not considered to be informative in this kind of analysis. Hence this plot
suggests that no variable is important in predicting dimension 3.

classification. Indeed, the most distant cluster on this dimension was jazz, which
tends towards mid-range mastering and emphasises distinctive instrumental tim-
bres. The distribution of clips along perceptual dimension 2, as well as incomplete
information from the Echo Nest documentation for coefficient 9, suggested that
this dimension may represent a similar filtering function to coefficient 5, albeit
shifted higher or polarised more strongly to high and low frequency bands. De-
spite this evidence for possible commonality between the human and machine
feature extractors under study, dimension 3 is not predicted by any of the 12
Echo Nest timbral coefficients.

Applying the same procedure with a set of MFCC and other spectral feature
coefficients was also deemed to be useful, partly because these features do not
suffer from the same lack of documentation as those considered above. More im-
portantly, despite the sparseness of evidence linking MFCCs directly to human
music perception, MFCCs are commonly used to carry out machine-based tasks
with results which are compatible with those yielded by human perceptual pro-
cesses (e.g. indexing of similar music [7, 21], recognition of vocal emotion [25]).
It was somewhat surprising that only one human perceptual dimension invoked
by this task was predicted by the feature set, giving some grounds to question
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Fig. 6. Predicted versus observed values for perceptual dimension 1, from a partial
least squares regression model with 51 acoustic feature coefficient predictors

the initial assumption that timbral information itself is sufficient for solving the
task. However, the partial least squares regression analysis does not account for
possible interactions between feature coefficients. Moreover, the latter analysis
did not benefit from the pre-processing stage of the Echo Nest analysis, which
arguably models the response and limitations of the human auditory system
more extensively and could have a decisive effect over the short timescale of the
stimulus clips.

At 800ms, the stimuli we used contain rudimentary information about tempo,
chord changes, rhythm, and instrumentation. It is possible that dimension 3
represents the influence of such abstracted structures. The results obtained from
studies with shorter stimuli might not suggest the presence of these particu-
lar perceptual dimensions, or may indicate reliance on more than these timbral
features if they were masked by the availability of musical structure informa-
tion in the current stimuli. Additionally, the discrete sorting groups could invite
top-down strategies based on retrieving explicit genre information from memory,
and open subjective experience responses should be taken in future studies to
establish whether such information is cued by the clips. Nevertheless, the task
is known to yield useful similarity data in a shorter and more easily adminis-
tered experiment than would be possible with the more conventional pairwise
similarity rating paradigm [24].

Scheirer and colleagues proposed that listeners may differ in the weight they
give to a common set of perceived sound features when judging surface musical
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sound, or that different listeners may choose different features altogether [30].
Although they lacked enough data to explore these hypotheses, they were able to
conclude that individual (participant) models explained complexity rating data
better than a common model. Therefore, whilst we found some evidence of com-
mon feature-based perceptual dimensions, it is possible that further study with
this paradigm will uncover individual strategy differences for this task. The IND-
SCAL variant of MDS may be helpful in exploring this hypothesis. The reverse
is also possible, given that we used far shorter stimuli (800ms versus Scheirer et
al.’s 5000) and may have measured a more constrained phenomenon. Individual
differences are nonetheless plausible, as task-based measures of timbral percep-
tion can be improved by training [9,31]. Indeed, because timbral perception does
not require formalised musical knowledge, individuals could be expected to vary
in terms of the the information they can access for this task purely on the basis
of what they have previously listened to, and to what extent.
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A Appendix: Stimulus Clip Attributes

Table 1. Source files and starting positions of “A” and “B” version stimulus clips

No. Genre Song Artist Album “A” “B”
min.sec.ms min.sec.ms

1 Jazz Work Song Nat Adderley Work
Song/Movin’
Along

3.38.005 4.02.855

2 Jazz Speak No Evil Wayne Shorter Speak No Evil 0.05.505 7.06.700
3 Jazz Azucar Eddie Palmieri Azucar Pa’ Ti

(Sugar For You)
1.13.500 5.32.500

4 Jazz Evolution Roy Ayers Mystic Voyage 1.44.880 1.49.975
5 Rock Oh Atlanta Little Feat Feats’ Don’t

Fail Me Now
3.07.045 4.03.645

6 Rock Talk To Ya
Later

The Tubes The Comple-
tion Backward
Principle

2.17.220 3.16.470

7 Rock Crazy On You Heart Dreamboat An-
nie

0.55.000 3.48.900

8 Rock Rock & Roll
Fantasy

Bad Company Desolation An-
gels

1.23.100 2.23.310

9 Pop I Wanna Love
You Forever

Jessica Simpson I Wanna Love
You Forever

0.04.620 3.40.500

10 Pop So Real Mandy Moore So Real 1.42.480 2.04.150
11 Pop Carnival The Cardigans Life 3.06.200 3.10.385
12 Pop The Sign Ace of Base The Sign 2.11.365 0.29.145
13 Hip-hop Still Not A

Player
Big Punisher Capital Punish-

ment
2.41.900 3.08.300

14 Hip-hop I Ain’t Goin’
Out Like That

Cypress Hill Black Sunday 3.45.000 3.56.670

15 Hip-hop Who’s That
Girl

Eve Scorpion 0.10.720 4.10.310

16 Hip-hop By The Time I
Get To Arizona

Public Enemy Apocalypse 91:
The Enemy
Strikes Black

2.49.340 4.20.150
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Abstract. The striking ability of music to elicit emotions assures its
prominent status in human culture and every day life. Music is often
enjoyed and sought for its ability to induce or convey emotions, which
may manifest in anything from a slight variation in mood, to changes
in our physical condition and actions. Consequently, research on how we
might associate musical pieces with emotions and, more generally, how
music brings about an emotional response is attracting ever increasing
attention. First, this paper provides a thorough review of studies on
the relation of music and emotions from different disciplines. We then
propose new insights to enhance automated music emotion recognition
models using recent results from psychology, musicology, affective com-
puting, semantic technologies and music information retrieval.
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1 Introduction

Since the first empirical works on the relationships between music and emo-
tions [25,46] a large body of research studies has given strong evidence to-
wards the fact that - depending on contextual information - music can either (i)
elicit/induce/evoke emotions in listeners (felt emotions), or (ii) express/suggest
emotions to listeners (perceived emotions) [71]. As pointed out by Krumhansl
[33], the distinction between felt and perceived emotions is important both from
the theoretical and methodological points of views since the models of repre-
sentations may differ. Felt emotions relate to the observation that listeners may
experience an emotional response to music, whereas perceived emotions relate
to the fact that music can communicate qualities associated with emotions [73].
[91] devised a scale to analyse music-induced emotions - the Geneva emotional
music scale (GEMS) - and showed that the underlying taxonomic model of emo-
tions differed from the models which were devised in studies investigating the
representations of perceived music emotions (e.g. [25]). One may argue whether
music can communicate and trigger emotions in listeners and this has been the
subject of numerous debates [46]. However a demonstration of the latter does not
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require a controlled laboratory setting and can be undertaken while watching
films. In the documentary about film score composer Bernard Hermann [79], the
motion picture editor Paul Hirsch (e.g. Star Wars, Carrie) discusses the effect
of music in a scene from Alfred Hitchcock’s well-known horror movie Psycho,
the soundtrack of which was composed by Hermann: “I was home one night and
Psycho was on and I saw a scene in which Janet Lee had stolen some money.
[...] The scene consisted of three very simple shots, there was a close up of her
driving, there was a point of view of the road in front of her and there was a
point of view of the police car behind her that was reflected in the rear mirror.
The material was so simple and yet the scene was absolutely gripping. And I
reached over and I turned off the sound to the television set and I realised that
the extreme emotional duress I was experiencing was due almost entirely to the
music.”. Such effect is in line with Chion’s theory that music, by “adding value”
to the image, causes the filmgoer to construe the image differently [11]1.

With regard to music retrieval, several studies on music information needs
and user behaviors have highlighted an interest in developing models for the
automatic classification of music pieces according to the emotions or mood they
suggest2. In [37], the responses of 427 participants to the question “When you
search for music or music information, how likely are you to use the following
search/browse options?” showed that, where possible, emotional/mood states
would be used in every third song query. The importance of musical mood
metadata was further confirmed in the investigations by [39] which give high
importance to affective/emotive descriptors and indicate that users enjoy discov-
ering new music by entering mood-based queries, as well as those by [8] which
showed that 15% of the song queries on the web music service Last.fm were
made using mood tags. As part of our project Making Musical Mood Metadata
(M4) - in partnership with the BBC and I Like Music - the present study aims
to (i) review the current trends in music emotion recognition (MER) and (ii)
provide insights to improve MER models. The analysis of human annotations
of music emotions on editorial resources such as AllMusicGuide.com (AMG)
showed that emotion recognition can be viewed as a multi-class (different classes
of emotions) and multi-label (different mood tags for each track) classification
or regression problem in which a music piece is associated with a set of emotions
[31] (e.g. a track can be described as being “soft”, “tender” and “peaceful”). In a
generic way, music emotion recognition models can be described as the combina-
tion of two components: a detection component (feature extraction and feature
selection), and an inference component (machine learning, fusion of results). If
MER studies were still sparse in 2006 [43], MER has since become a burgeoning

1 The analysis of the effects of music on emotion perceived in film goes beyond the
scope of this article, and we refer the reader to [12] and [53] for thoughtful discussions
and investigations on this subject.

2 We will employ the words music emotion and mood interchangeably since their dis-
tinctions are out of the scope of this article. If not specified otherwise, they will refer
to emotions suggested by music, rather than felt emotions. We refer the reader to the
work of Meyer [46] for a discussion on the differences between emotion (“temporary
and evanescent”) and mood (“relatively permanent and stable”).

AllMusicGuide.com
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field, as highlighted by the growing number of publications on this topic within
the music information retrieval community (see Sect. 3). In parallel to MIR re-
search, psychologists improved emotion/mood representation models, as well as
measurement techniques (see Sect. 2). The two main types of computational
models in MIR (content- and context-based) are closely linked with the distinc-
tions of music meaning formulated by Meyer [46]. On one hand, content-based
approaches may be associated with the “absolutist” point of view which sees
“the meaning of music as being essentially intramusical (non-referential)” [46],
a facet coined as intrinsic sources of emotions by Sloboda and Juslin [71]. On
the other hand, context-based approaches may be associated with the “referen-
tialist” point of view which contends that “music also communicates meanings
which in some way refer to the extramusical world of concepts, actions, emo-
tional states, and character”, facet later coined as extrinsic sources of emotions
in [71]. Meyer also put forward that absolute and referential meanings are not
mutually exclusive and “can and do coexist in one and the same piece of music”.
This point of view corresponds well with the paradigm underlying hybrid ap-
proaches to the MER problem which combine content- and context-based mod-
els and are by essence multi-modal (mixing together audio, symbolic notations,
lyrics, social tags, etc.). The annual evaluation campaign Music Information Re-
trieval Evaluation eXchange (MIREX) collocated with the International Society
for Music Information Retrieval (ISMIR) conference launched a task on audio
mood classification (AMC) in 2007. The reported F-measures of MIREX state-
of-the arts’ MER models rose from 62% in 2007 to 66% in 2009. Although great
improvements have been made in pattern recognition systems, the analysis of
the 2007-2009 MIREX results and that of studies published between 2009 and
2011, reviewed in Sect. 3, suggest the existence of a “glass ceiling” for MER
at F-measure around 65%. Such bottleneck for MIR machine learning models
was highlighted by the systematic evaluations performed in the experiments
from [4], in the context of music similarity measures. In order to overcome these
limitations, hybrid and multi-modal approaches have been proposed, by taking
advantage of social metadata, web-mined tags, semantic reasoning [6,80], mu-
sic symbolic notations [92], and/or lyrics [35]. The recent developments of such
multi-modal MER approaches are not unrelated to the ever growing amount of
music resources on the web, data management infrastructures and application
programming interfaces (APIs), as well as the advances in the closely related
field of social media retrieval. As argued in [80] “combining information from
sources like web-based, text and other sorts of multi-modal information with
content-based features in an efficient way could be one of the solutions to break
the bottleneck of pure content-based method”.

The remainder of this article is organised as follows. In Sect. 2, we present the
three main types of (music) emotion representations (categorical, dimensional
and appraisal), before discussing aspects related to taxonomy and ontology. In
Sect. 3, we review MER studies by focusing on those published between 2009
and 2011, and discuss aspects linked with databases, features, feature selection
frameworks, and emotion variation across time. Sect. 4 presents state of the art
machine learning techniques for MER. Throughout the article and in Sect. 5,
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Table 1. Categorical and dimensional models of music emotions used in MER

Notation Description Approach Ref.

UHM9 Update of Hevner’s adjective Model (UHM) in nine categories Cat. [68]

AMC5C
5 MIREX audio mood classification (AMC) clusters Cat. [27] [14] [9]

[75] [80]
(“Passionate”,“Rollicking”, “Literate”, “Humorous”, “Aggressive”)

5BE
5 basic emotions Cat. [18] [58]
(“Happy”, “Sad”, “Tender”, “Scary”, “Angry”)

AV4Q
4 quadrants of the Thayer-Russell AV space Cat. [9] [81]
(“Exuberance”, “Anxious/Frantic”, “Depression”, “Contentment”)

AV11C 11 subdivision categories of the Thayer-Russell AV space Cat. [24]

AMG12C 12 clusters based on AMG tags Cat. [42]

72TCAL500 72 tags from the CAL-500 dataset (genres, instruments, emotions, etc.) Cat. [6]

AV4Q-UHM9 Categorisation of UHM9 in Thayer-Russell’s quadrants (AV4Q) Cat. [49]

AV8C 8 subdivision categories of the Thayer-Russell AV space Cat. [29]

4BE
4 basic emotions Cat. [77]
(“Happy”, “Sad”, “Angry”, “Fearful”)

4BE-AV
4 basic emotions based on the AV space Cat. [81]
(“Happy”, “Sad”, “Angry”, “Relaxing”)

9AD Nine affective dimensions from Asmus Dim. [3]

AV Arousal/Valence (Thayer-Russell model) Dim. [24]

EPA Evaluation, potency, and activity (Osgood model) Dim.

6D-EPA 6 dim. correlates with the EPA model Dim. [44]

AVT Arousal, valence, and tension Dim. [18]

we discuss some of the findings in MER and highlight the main implications to
improve content- and context-based MER models.

2 Representation of Emotions

Table 1 presents the main categorical and dimensional emotion models employed
in the MER studies reviewed in Sect. 3 and 4, and gives the associated notations
used throughout the article.

2.1 Categorical Model

According to the categorial approach, emotions can be represented as a set of
categories that are distinct from each others. Ekman’s categorical emotion theory
[19] was formulated a century after that proposed by Darwin [15], centred on ba-
sic or universal emotions that are expected to have prototypical facial expressions
and emotion-specific physiological signatures. Ekman developed the facial action
coding system (FACS), a system to taxonomize human facial expressions. The
facial action coding system affect interpretation dictionary (FACSAID) relates
an emotion category (e.g. happy) to action units (AU), coding the contraction
or relaxation of one or more muscles (e.g. 6+12).

The scientific study of emotions in music has often been conducted in con-
junction with the analysis of musical expression [25]. In order to secure the
responses of individual listeners to music in a simple and objective way while
leaving them enough freedom not to force their judgements, Hevner devised
a list of 66 emotion-related adjectives, arranged in 14 groups. Listeners were
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asked to check all the adjectives they found appropriate to describe the mu-
sic [26]. The meanings or affective characteristics of music pieces were further
ascertained by comparing the numbers of votes for different adjectives. Hevner
proposed an arrangement of eight adjective groups organised around a circle in
order to simplify the selection task, so that “any two adjacent groups should
have some characteristics in common, and that the groups at the extremities of
any diameter of the circle should be as unlike each other as possible”. This study
was seminal since it highlighted (i) the bipolar nature of music emotions (e.g.
happy/sad), (ii) a possible way of representing them spatially across a circle (on
which Thayer-Russell’s model is based [57]; see Sect. 2.2), as well as (iii) the
multi-class and multi-label nature of music emotion classification. Schubert pro-
posed a new taxonomy, the updated Hevner model (UHM) [68], which refined
the set of adjectives proposed by Hevner, based on a survey conducted by 133
musically experienced participants. Based on Hevner’s list, Russell’s circumplex
of emotion [57], and Whissell’s dictionary of affect [83], the UHM consists in 46
words grouped into nine clusters.

Some categorical approaches have emerged from dimensional approaches based
on the organisation of the Thayer-Russell Arousal/Valence (AV) space (see
Sect. 2.2) into a set of “landmark” or “family” areas. This procedure has been
followed for instance in [9] and [81] where the Thayer/Russel space was divided
into four quadrants (AV4Q). [9] considered the following four quadrants (Q):
Q1 - high energy/high stress (“anxious, frantic”), Q2 - high energy/low stress
(“exuberance”), Q3 - low energy/low stress (“contentment”), and Q4 - low en-
ergy/high stress (“depression”). Similarly, [81] proposed: Q1 - high energy/low
stress (“happy, exciting”), Q2 - high energy/high stress (“angry, anxious”), Q3
- low energy/high stress (“sad, bored”), and Q4 - low energy/low stress (“relax-
ing, serene”). The results from [9] report classification confusions between the
quadrants 1 and 4 which, according to the authors, come from the fact that both
quadrants are associated with emotional states involving high stress (negative
valence), and that the arousal dimension did not ease the differentiation between
them. [24] proposed subdivisions of the four AV space quadrants into a larger
set composed of 11 categories (AV11C: “pleased”, “happy”, “excited”, “angry”,
“nervous”, “bored”, “sad”, “sleepy”, “peaceful”, “relaxed”, and “calm”) asso-
ciated with the middle of the space. Their model, assessed on a prototypical
database, led to high MER performance (see Table 3).

[27] and [42] proposed mood taxonomies based on the (semi-)automatic analy-
sis of mood tags with clustering techniques. In a study exploring the relationships
between mood, genre, artist, and usage metadata, [27] applied an agglomerative
hierarchical clustering procedure (Ward’s criterion) on similarity data between
mood labels mined from the AllMusicGuide.com (AMG) website presenting an-
notations made by professional editors. The procedure led to a set of five clusters
which further served as a mood representation model (denoted AMC5C, here)
in the MIREX audio mood classification task and has been widely used since
(e.g. in [27,14,9], and [80]). In this model, the similarity between emotion la-
bels is computed based on the frequency of their co-occurence in the dataset.
Consequently some of the mood tag clusters may comprise tags which suggest

AllMusicGuide.com
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different emotions: e.g. “literate” and “bittersweet” in cluster 3, “witty”, “hu-
morous”, and “whimsical” in cluster 4. In contrast, some of the terms belong-
ing to different clusters present close semantic associations: e.g. “literate” and
“witty” (cluster 3 and 4, respectively). Training MER models on these clusters
may be misleading for inference systems, as shown in [9] where prominent con-
fusion patterns between clusters were reported (between clusters 1 and 2, as well
as between clusters 4 and 3).

By combining findings from categorical and dimensional approaches, [49] pro-
posed a mood taxonomy model by grouping the eight clusters associated with
Schubert’s UHM across the four quadrants (Q) of the AV space: Q1 (UHM
groups I, II, IX: “exuberance”), Q2 (UHM group VIII: “anxious”), Q3 (UHM
groups V, VII: “depression”), and Q4 (UHM groups III, IV, and VI: “content-
ment”). However, the resulting classification accuracies have shown to be good
only for the first quadrant (68% of correct classifications). [29] proposed a new
categorical model by collecting 4460 mood tags and AV values from 10 music clip
annotators and by further grouping them relying on unsupervised classification
techniques. The collected mood tags were processed to get rid of synonymous
and ambiguous terms. Based on the frequency distribution of the 115 remaining
mood tags, the 32 most frequently used tags were retained. The AV values as-
sociated with the tags were processed using K-means clustering which led to a
configuration of eight clusters (AV8C). The results show that some regions can be
identified by the same representative mood tags as in previous models, but that
some of the mood tags present overlap between regions. Categorical approaches
have been criticized for their restrictions due to the discretization of the problem
into a set of “families” [48], or “landmarks” [13], which prevent consideration of
emotions which differ from these landmarks. However, for music retrieval appli-
cations based on language queries, such landmarks (keywords/tags) have shown
to be useful.

2.2 Dimensional Model

In contrast with the categorical approach, the dimensional approach to emo-
tion representation consists in characterising emotions based on a small number
of dimensions intended to correspond to the internal human representation of
emotions.

The psychologist Osgood [52] devised a technique for measuring the conno-
tative meaning of concepts, called the semantic differential technique (SDT).
It involves the rating of words on a set of bipolar adjectives (e.g. happy/sad).
Experiments were conducted with 200 undergraduate students who were asked
to rate 20 concepts using 50 descriptive scales (7-point Likert scales whose poles
were bipolar adjectives) [52]. Factor analyses accounted for almost 70% of the
common variance in a three-dimensional configuration (50% of the total variance
remained unexplained). The first factor was clearly identifiable as evaluative, for
instance representing adjective pairs such as good/bad, beautiful/ugly (dimen-
sion also called valence), the second factor identified fairly well as potency, for
instance related to bipolar adjectives like large/small, strong/weak, heavy/light
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(dimension also called dominance), and the third factor appeared to be mainly an
activity variable, related to adjectives such as fast/slow, active/passive, hot/cold
(dimension also called arousal). The SDT was later applied by Osgood [51]
in thirty different cultures for 620 concepts validating the evaluation, potency,
activity (EPA) model of representation of emotions, and the results were formu-
lated in an Atlas of affective meaning. Osgood’s EPA model was used for instance
in the study [16] investigating how well music (theme tune) can aid automatic
classification of TV programmes from BBC Information & Archives. A slight
variation of the EPA model was used in [17] with the potency dimension being
replaced by one related to tension. Although Osgood’s model has been shown
to be relevant to classify affective concepts, its adaptability to music emotions
is not straightforward. In other words, it is reasonable to make the assumption
that music emotions may be represented by a different set of dimensions than
that uncovered for affective concepts, in general. Asmus [3] replicated Osgood’s
semantic differential technique in the context of music emotions classification.
Measures were developed from 2057 participants on 99 affect terms in response
to musical excerpts and then factor analysed. Nine affective dimensions (9AD)
were found to best represent the measures, two of which (potency and activity)
were found to be common to the EPA model: “evil”, “sensual”, “potency”, “hu-
mor”, “pastoral”, “longing”, “depression”, “sedative”, and “activity”. Probably
because it is harder to visually represent nine dimensions, and because it com-
plicates the classification problem, this model has not been used yet in the MIR
domain, to our knowledge.

The works that have had the most influence on the choice of emotion rep-
resentations in MER so far are those of Russell [57] and Thayer [72]. Russell
devised a circumplex model of affect which consists of a two-dimensional, circu-
lar structure involving the dimensions of arousal and valence (denoted AV and
called the core affect dimensions following Russell’s terminology). As in Hevner’s
circular representation of emotion-related adjectives, and Schlosberg’s proposal
that emotions are organised in a circular arrangement [62], within the AV model,
emotions that are across a circle from one another correlate inversely (e.g. sad-
ness/happiness). This characteristic is also in line with the semantic differential
approach and the bipolar adjectives proposed by Osgood. Thayer’s findings con-
firmed the relevance of the AV model in the musical domain where emotion
classes can be defined in terms of arousal or energy (how exciting/calming musi-
cal pieces are) and valence or stress (how positive/negative musical pieces are).
Schubert [67] developed a measurement interface called the “two-dimensional
emotional space” (2DES) using Russell’s core affect dimensions and proved the
validity of the methodology, experimentally. However, results obtained in [90]
suggest that arousal and valence are not fully independent, even though they
are two axes in the 2D Thayer-Russell space.

While the AV space stood out amongst other models for its simplicity and
robustness, higher dimensionality has shown to be needed when seeking com-
pleteness. The potency or dominance dimension related to power and control
proposed by Osgood is necessary to make important distinctions between fear
and anger, for instance, which are both active and negative states. Fontaine
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et al. [22] advocated the use of a fourth dimension related to the expected-
ness or unexpectedness of events, which to our knowledge has not been used in
the MIR domain so far. It is worth mentioning that none of these dimensions
can represent more complex and subtle emotional states such as pride/shame
or shy/extroverted in a straightforward manner. As to whether such emotional
states can be musically-induced requires investigation. Following the dimensional
approach to emotion representation, several teams have focused on obtaining
continuous representations of emotions from human labelers across time, both
in the domains of affective computing for audiovisual recordings (e.g. FEELtrace
[13]), and music (e.g. 2DES [67], MoodSwings [63]).

2.3 Comparison between Categorical and Dimensional Models

A comparison between the categorical, or discrete, and dimensional models has
been conducted in [17]. Linear mapping techniques revealed a high correspon-
dence along the core affect dimensions (arousal and valence), and the three
obtained dimensions could be reduced to two without significantly reducing the
goodness of fit. The major difference between the discrete and categorical models
concerned the poorer resolution of the discrete model in characterizing emotion-
ally ambiguous examples. [78] compared the applicability of music-specific and
general emotion models, the Geneva emotional music scale (GEMS), and the dis-
crete and dimensional AV emotion models, in the assessment of music-induced
emotions. The AV model outperformed the other two models in the discrimina-
tion of music excerpts, and principal component analysis revealed that 89.9%
of the variance in the mean ratings of all the scales (in all three models) was
accounted for by two principal components that could be labelled as valence and
arousal. The results also revealed that personality-related differences were the
most pronounced in the case of the discrete emotion model, an aspect which
seems to contradict the findings obtained in [17].

2.4 Appraisal Model

As described in [48], “appraisal models are a third alternative perspective on
emotion: they combine elements of dimensional models - emotions as emergent
results of underlying dimensions - with elements of discrete theories - emotions
have different subjective qualities - and add a definition of the cognitive mech-
anisms at the basis of emotions”. The appraisal approach was first advocated
by Arnold [2] who defined appraisal as a cognitive evaluation able to distinguish
qualitatively among different emotions. The theory of appraisal therefore ac-
counts for individual differences and variations to responses across time [56], as
well as for some cultural differences [60]. Appraisal models attempt to explain the
differentiation of emotional states with different configurations of the underlying
appraisal dimensions which are then mapped to emotion labels. The component
process appraisal model (CPM) [61] describes an emotion as a process involving
five functional components: cognitive, peripheral efference, motivational, motor
expression, and subjective feeling. Banse and Scherer [5] proved the relevance
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of CPM predictions based on acoustical features of vocal expressions of emo-
tions. The acoustic features characterising 100 vocal affect bursts, representing
five emotions, were successfully related to the power and control parts of the
appraisal component of coping potential. Significant correlations between ap-
praisals and acoustic features were also reported in [34] showing that inferred
appraisals were in line with the theoretical predictions.

Mortillaro et al. [48] advocate that the appraisal framework would help to
address the following concerns in automatic emotion recognition: (i) how to es-
tablish a link between models of emotion recognition and emotion production?
(ii) how to add contextual information to systems of emotion recognition? (iii)
how to increase the sensitivity with which weak, subtle, or complex emotion
states can be detected? All these points are highly significant for MER whereas
appraisal models such as the CPM have not yet been applied in the MIR field,
to our knowledge. The appraisal framework is especially promising for the devel-
opment of context-sensitive automatic emotion recognition systems taking into
account the environment (e.g. work, or home), the situation (relaxing, perform-
ing a task), or the subject (personality traits), for instance [48]. This comes from
the fact that appraisals themselves represent abstractions of contextual informa-
tion. By inferring appraisals (e.g. obstruction) from behaviors (e.g. frowning),
information about the causes of emotions (e.g. anger) can be uncovered [10].

2.5 Ontology

Despite the promising applications of semantic web ontologies in the field of
MIR (see e.g. [32]), the ontology approach has been scarcely used in MER. [80]
proposed a music-mood specific ontology grounded in the Music Ontology (see
[54,55]), in order to develop a multi-modal MER model relying on audio content
extraction and semantic association reasoning. Such an approach is promising
since the system from [80] achieved a performance increase of approximately
20% points (60.6%) in comparison with the system by Feng, Cheng and Yang
(FCY1), proposed at MIREX 2009 [47].

3 Acoustical and Contextual Analysis of Emotions

3.1 Databases

Several music emotion annotation databases produced by the MIR research com-
munity have been made publicly available to facilitate the training, assessment
and systematic comparison of music emotion recognition models. Developing mu-
sical mood annotation databases is a challenge for several reasons: as discussed
in the previous section, the choice of emotion representation is not obvious, the
task can be very time-consuming, ground truth annotations remain subjective,
and often several labelers are required to reach for consistency. The CAL500
dataset comprises emotion labels for 500 songs by 500 unique artists [76]. Each
song was annotated by three (non expert) reviewers using a set of 174 music
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tags, from which 18 were mood tags. The labellers annotated songs as a whole,
rather than over time, a choice justified by the fact that mood is believed to be
less prone to changes over time in popular music as opposed to classical music.
The popular online music streaming service Last.fm has built up a “folksonomy”
of 960 000 tags [31] (analytics from 2007) from which between 13% [80] and 20%
[9], depending on the set of considered songs/artists, have been estimated to
be related to mood. [80] published a dataset of 1804 tracks covering about 21
genres, with labels from the AMC5C mood tag clusters, derived from the AMG
classification. [30] devised an online collaborative music mood annotation game,
MoodSwings, where players annotate 30s-long music clips from the uspop2002
database [7], across time in the AV space. [70] built the “Now That’s What I
Call Music!” (NTWICM) database containing 2648 tracks from over five differ-
ent genres (e.g. pop, rock, rap, R&B, electronic). Arousal and valence emotion
annotations were conducted on 5-point Likert scales by four labelers. Eerola et
al. [18,17] established a set of stimuli for the study of music-mediated emotions.
A large pilot study established a set of 110 film music excerpts, half of which
were moderately and highly representative examples of five discrete emotions
(“anger”, “fear”, “sadness”, “happiness”, and “tenderness”), and the other half
were moderate and high examples of the six extremes of three bipolar dimensions
(valence, energy arousal and tension arousal).

3.2 Content- and Context-Based Features

Finding the acoustical clues predicting music emotions is one of the most challeng-
ing aspect in the development of music emotion recognition systems. Studies in
music psychology [71], musicology [23] and music information retrieval [31] have
shown thatmusic emotions were related to differentmusical variables. Table 2 lists
the content- and context-based features used in the studies reviewed hereby, while
Tables 3 and 4 present the architectures of the associated content-based andmulti-
modalMERmodels, respectively. Various acoustical correlates of articulation, dy-
namics, harmony, instrumentation, key,mode, pitch, register, rhythm, tempo,mu-
sical structure and timbre have beenused inMERmodels. It canbe seen fromTable
2 that timbre features are the most commonly used in MER models. This is due
to the fact that they have shown to provide the best performance in MER systems
when used as individual features [66,93]. Indeed, Schmidt et al. investigated the
use of multiple audio content-based features both individually and in combination
in a feature fusion system [66,63]. They tested timbre descriptors (mel frequency
cepstral coefficients, spectral centroid, spectral rolloff, spectral flux, octave-based
spectral contrast, modeling peaks and gaps between harmonics), and chroma de-
scriptors. The best individual features were octave-based spectral contrast and
MFCCs. However, the best overall results were achieved using a combination of
features, as in [93] (combination of rhythm, timbre and pitch features). Eerola et al.
[18] extracted features representing six different musical variables (dynamics, tim-
bre, harmony, register, rhythmandarticulation) to further apply statistical feature
selection (FS) methods: multiple linear regression (MLR) with a stepwise FS prin-
ciple, principal component analysis (PCA) followed by the selection of an optimal
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Table 2. Content (audio and lyrics) and context-based features used in MER (studies
between 2009 and 2011)

Type Notation Description References

Content-based features

Articulation EVENTD Event density [18]
Articulation/Timbre ATTACS Attack slope [18]
Articulation/Timbre ATTACT Attack time [18]

Dynamics AVGENER Average energy [24]
Dynamics INT Intensity [49]
Dynamics INTR Intensity ratio [49]
Dynamics DYN Dynamics features [58]
Dynamics RMS Root mean square energy [18] [44] [58]
Dynamics LOWENER Low energy [44]
Dynamics ENER Energy features [45]

Harmony OSPECENT Octave spectrum entropy [18]
Harmony HARMC Harmonic change [18]
Harmony CHROM Chroma features [66]
Harmony HARMF Harmony features [58]
Harmony RCHORDF Relative chord frequency [70]
Harmony WCHORDD Weighted chord differential [44]

Instrum./Rhythm PERCTO Percussion template occurrence [75]
Instrumentation BASSTD Bass-line template distance [75]

Key/Mode KEY Key [24]
Key/Mode KEYC Key clarity [18]
Key/Mode MAJ Majorness [18]
Key/Mode SPITCH Salient pitch [18]
Key/Mode WTON Weighted tonality [44]
Key/Mode WTOND Weighted tonality differential [44]

Pitch/Melody PITCHMIDI Pitch MIDI features [93]
Pitch/Melody MELOMIDI Melody MIDI features [93]
Pitch/Melody PITCH Pitch features [58]
Pitch/Timbre ZCR Zero-crossing rate [93] [92]

Register CHROMD Chromagram deviation [18]
Register CHROMC Chromagram centroid [18]

Rhythm/Tempo BEATINT Beat interval [24]
Rhythm/Tempo SPECFLUCT Spectrum fluctuation [18]
Rhythm/Tempo TEMP Tempo [18]
Rhythm/Tempo PULSC Pulse clarity [18]
Rhythm/Tempo RHYCONT Rhythm content features [93]
Rhythm/Tempo RHYSTR Rhythm strength [49]
Rhythm/Tempo CORRPEA Correlation peak [49]
Rhythm/Tempo ONSF Onset frequency [49]
Rhythm/Tempo RHYT Rhythm features [58]
Rhythm/Tempo SCHERHYT Scheirer rhythm features [70]
Rhythm/Tempo PERCF Percussive features [45]

Structure MSTRUCT Multidimensional structure features [18]
Structure STRUCT Structure features [58]

Timbre HARMSTR Harmonic strength [24]
Timbre MFCC Mel frequency cepstral coefficient [9] [6] [75] [93] [80] [58] [66] [63] [92]

[77] [65] [58]
Timbre SPECC Spectral centroid [9] [18] [93] [92] [64] [66] [49] [44] [70]
Timbre SPECS Spectral spread [18]
Timbre SPECENT Spectral entropy [18]
Timbre SPECR Spectral rolloff [18] [93] [92] [64] [66] [49] [70]
Timbre SF Spectral flux [93] [92] [64] [66] [49] [70]
Timbre OBSC Octave-based spectral contrast [64] [66] [63] [65] [49] [38]
Timbre RPEAKVAL Ratio between average peak and valley strength [49]
Timbre ROUG Roughness [18]
Timbre TIM Timbre features [58]
Timbre SPEC Spectral features [45]
Timbre ECNTT Echo Nest timbre features [65] [45]

Lyrics SENTIWORDOccurence of sentiment word [14]
Lyrics NEG-

SENTIW
Occurrence of sentiment word with negation [14]

Lyrics MOD-
SENTIW

Occurrence of sentiment word with modifier [14]

Lyrics WORDW Word weight [14]
Lyrics LYRIC Lyrics feature [93]
Lyrics RSTEMFR Relative stem frequency [70]
Lyrics TF-IDF Term frequency - Inverse document frequency [14] [45]
Lyrics RHYME Rhyme feature [81]

Context-based features

Social tags TAGS Tag relevance score [6]
Web-mined tags DOCRS Document relevance score [6]
Metadata ARTISTW Artist weight [14]
Metadata META Metadata features (e.g. artist’s name, title) [70]
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number of components, and partial least square regression (PLSR)with aBayesian
information criterion (BIC) to select the optimal number of features. PCA showed
to be too sensitive to the covariance between the features and the predicted data.
In contrast, PLSR simultaneously allowed to reduce the data while maximising
the covariance between the features and the predicted data, providing the high-
est prediction rate (r2=.7) with only two components. However, feature selection
frameworks operating by considering all the emotion categories or dimensions at
the same time may not be optimal; for instance, features explaining why a song
expresses “anger” or why another sounds “innocent” may not be the same. Pair-
wise classification strategies have been successfully applied to musical instrument
recognition [20] showing the interest of adapting the feature sets to discriminate
two specific instruments. It would be worth investigating if music emotion recog-
nition could benefit from pairwise feature selection strategies as well.

In addition to audio content features, lyrics have also been used in MER, either
individually, or in combination with features belonging to different domains (see
multi-modal approaches in Sect. 4.6). Lyrics can indeed be semantically rich and
expressive and have been shown to impact the way we perceive music [1]. Access
to lyrics has been facilitated by the emergence of lyrics databases on the web (e.g.
lyricwiki.org, musixmatch.com), some of them providing APIs to retrieve the
data. Lyrics can be analysed using natural language processing (NLP) techniques.
A standard way to represent text is to use a bag-of-words approach which charac-
terises documents as vectors of words. To characterise the importance of a given
word in a song given the corpus it belongs to, authors have used term frequency -
inverse document frequency (TF-IDF) measure [14,45]. Methods to analyse emo-
tions in lyrics have beendevelopedusing lexical resources for opinion and sentiment
mining such as SentiWordNet (measures of positivity, negativity, objectivity) [14]
and the affective norm for English words (measures of arousal, valence, and dom-
inance) [45]. Since meaning emerges from subtle word combinations and sentence
structure, research is still needed to develop new features characterising emotional
meanings in lyrics. [81] proposed a feature to characterise rhymes whose patterns
are relevant to emotion expression, as poems exemplify.

To attempt to improve the performance of MER systems only relying on
content-based features, and in order to bridge the semantic gap between the
raw data (signals) and high-level semantics (meanings), several studies intro-
duced context-based features. [14,9,6,80] used music tags mined from websites
known to have good quality information about songs, albums or artists (e.g.
bbc.co.uk, rollingstone.com), social music platform (e.g. last.fm), or web
blogs (e.g. livejournal.com). Social tags are generally fused with audio features
to improve overall performance of the classication task [9,6,80].

3.3 Temporal Aspects

MER models are also influenced by the duration of the audio segments cho-
sen to make the classification decisions. Research on music emotions has shown
that the fastest emotion-related responses take less than a second [13]. In [69],
the author recommends a sampling rate of at least 2 Hz when collecting trace

lyricwiki.org
musixmatch.com
bbc.co.uk
rollingstone.com
last.fm
livejournal.com
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measurements. However, it is not clear yet to what extent such results depend
on the material and dimension which are traced since some visual stimuli have
been shown to evoke fear-related responses in the amygdala in about 12 ms [36].
However, most MER models rely on long term decision horizon (e.g. whole track
[42,24,14,75,80,93,44,77,58,81,70,45], or 30-s long segment [9,6,93]). Algorithms
identifying emotions on long term decision horizons are not bound to predict only
a single emotion category per song since they may be associated with multi-label
classification schemes, i.e. several emotion labels per decision (see Sect. 4). Other
MER models use short-term decision horizons (e.g. 1 s [63,64,65,66]), in order to
take into account the effects of music across time. Such an approach led to the
development of methods for music emotion variation detection (see Sect. 4.5).

4 Machine Learning for Music Emotion Recognition

In most music information systems, emotion is seen as a high-level semantic
feature. Thus the first step in utilising emotion-related information is devising
a method that associates features from one or more of the above sources with
mood categories or alternatively an emotion state in a continuous space. Ma-
chine learning techniques have become predominant for bridging this semantic
gap. Initial approaches in MER were grounded on emotion recognition techniques
developed for speech, or previous work within the MIR community on genre clas-
sification. Noting the similarity in architectural requirements, the first methods
include the works of Feng et al. [21] and Li et al. [40]. Subsequently developed
techniques can be characterised by their training method and expected outputs
as follows: multi-class single-label classification (training samples are assigned a
discrete emotion category, and the best estimate is chosen as output), multi-label
classification (estimate multiple emotion categories simultaneously), fuzzy clas-
sification (probability estimates in each possible category), and regression (an
estimate of emotion state in a continuous space).

From a high-level perspective, the first three approaches rely on a categorical
model (Sect. 2.1) while regression relies on a dimensional model (Sect. 2.2). Given
articles already covering early approaches to MER in detail (e.g. [31,50,86]), more
emphasis is placed on state of the art and recent regression-based techniques in
the following review.

4.1 Early Categorical Approaches

Associating music with discrete emotion categories was demonstrated by the first
works that used an audio-based approach. Li et al. [40] used a song database hand-
labelled with adjectives belonging to one of 13 categories and trained Support Vec-
tor Machines (SVM) on timbral, rhythmic and pitch features. The authors report
large variation in the accuracy of estimating the differentmood categorieswith the
overall accuracy (F-score) remaining below 50%. Feng et al. [21] used a Backprop-
agation Neural Network (BPNN) to recognise to which extent music pieces belong
to four emotion categories (“happiness”, “sadness”, “anger”, and “fear”). They
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used features related to tempo (fast-slow) and articulation (staccato-legato), and
report 66% and 67% precision and recall, respectively. However, the actual accu-
racy of detecting each emotion fluctuated considerably.

4.2 Multi-label Classification

Early approaches demonstrate that content-based models of musical emotion are
feasible. However, the ambiguity in the results can be attributed to the difficulty
in assigning music pieces to any single category and the ambiguity of mood
adjectives themselves. For these reasons subsequent research have moved on to
use multi-label, fuzzy or continuous (dimensional) emotion models.

Inmulti-label classification, training examples are assignedmultiple labels from
a set of disjoint categories.MERwas first formulated as a multi-label classification
problem by Wieczorkowska et al. [84] applying a classifier specifically adopted to
this task. The first systematic evaluation comparing several multi-label classifi-
cation algorithms including Binary Relevance (BR), Label Powerset (LP), Ran-
dom k-label sets (RAkEL) and Multi-Label k-Nearest Neighbours (MLkNN) was
performed by Trohidis et al. [74], with RAkEL reaching 79% average precision
using a dataset of 593 songs and simple rhythm and timbre features. In a recent
study, Sanden and Zhang [59] examined multi-label classification in the general
music tagging context (emotion labelling is seen as a subset of this task). Two
datasets, the CAL500 and approximately 21,000 clips from Magnatune (each as-
sociated with one or more of 188 different tags) were used in the experiments. The
clips were modeled using statistical distributions of spectral, timbral and beat fea-
tures. Besides the above algorithms, the authors tested Calibrated Label Ranking
(CLR), Backpropagation forMulti-Label Learning (BPMLL), Hierarchy ofMulti-
Label Classifiers (HOMER), Instance-Based Logistic Regression (IBLR) and Bi-
nary Relevance kNN (BRkNN) models, and two separate evaluations were per-
formed using the two datasets. In both cases, the CLR classifier using a Support
Vector Machine (CLRSV M ) outperformed all other approaches (peak F1 score
of 0.497 and 0.642 precision on CAL500). However, CLR with Decision Trees,
BPMLL, and MLkNN also performed competitively.

4.3 Fuzzy Classification

Irrespective of considering induced or attributed emotion, people do not generally
feel or perceive the same emotions. Several studies conclude that accommodating
subjectivity is among the primary challenges in categorical emotion recognition
models, while this was also demonstrated in a systematic evaluation using a non-
categoricalmodel [28]. A possible approach to account for subjectivity is the use of
fuzzy classification incorporating fuzzy logic into conventional classification strate-
gies. The work of Yang et al. [89] was the first to take this route. As opposed to as-
sociating pieces with a single or a discrete set of emotions, fuzzy classification uses
fuzzy vectors whose elements represent the likelihood of a piece belonging to each
respective emotion category in a particular model. In [89], two classifiers, Fuzzy
k-NN (FkNN) and Fuzzy Nearest Mean (FNM), were tested using a database of
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243 popular songs and 15 acoustic features. The authors performed 10-fold cross
validation and reported 68.22% and 70.88% mean accuracy for the two classifiers
respectively. After applying stepwise backward feature selection, the results im-
proved to 70.88% and 78.33%. In some sense fuzzy classification may be seen as
a special case of multi-label classification, but it is also a step towards continuous
non-categorical models of emotion discussed in the next section.

4.4 Emotion Regression

The techniques mentioned so far rely on the idea that emotions may be organ-
ised in a simple taxonomy consisting of a small set of universal emotions (e.g.
happy or sad) and more subtle differences within these categories. Limitations of
this model include (i) the fixed set of classes considered, (ii) the ambiguity in the
meaning of adjectives associated with emotion categories, and (iii) the potential
heterogeneity in the taxonomical organisation. The use of a continuous emotion
space such as Thayer-Russell’s Arousal-Valence (AV) space and corresponding
dimensional models is a solution to these problems. In the first study that ad-
dresses these issues [88], MER was formulated as a regression problem to map
high-dimensional features extracted from audio to the two-dimensional AV space
directly. AV values for induced emotion were collected from 253 subjects for 195
popular recordings. A 114-dimensional feature space was constructed including
spectral contrast features, wavelet coefficient histograms, as well as spectral (e.g.
spectral centroid) and musicological (e.g. chords) features. After basic dimension-
ality reduction, three regressors were trained and tested: Multiple Linear Regres-
sion (MLR) as baseline, Support Vector Regression (SVR) and Adaboost.RT, a
regression tree ensemble. The authors reported coefficient of determination statis-
tics (R2) with peak performance of 58.3% for arousal, and 28.1% for valence using
SVR. These results were then improved using feature selection.

Han et al. [24] used SVR for training distinct regressors to predict arousal and
valence both in terms of Cartesian and polar coordinates of the AV space. A pol-
icy for partitioning the AV space and mapping coordinates to discrete emotions
was used, and an increase in accuracy from 63.03% to 94.55% was obtained
when polar coordinates were used in this process. Notably Gaussian Mixture
Model (GMM) classifiers performed competitively in this study. Schmidt et al.
[66] show that multi-level least-squares regression (MLSR) performs comparably
to SVR at a lower computational cost. An interesting observation is that com-
bining multiple feature sets does not necessarily improve regressor performance,
probably due to the curse of dimensionality. The solution was seen in the use of
different fusion topologies, i.e. using separate regressors for each feature set.

Huq et al. [28] performed a systematic evaluation of content-based emotion
recognition to identify a potential “glass ceiling” in the use of regression. 160
audio features were tested in four categories, timbral, loudness, harmonic, and
rhythmic (with or without feature selection), as well as different regressors in
three categories, Linear Regression, variants of regression trees and SVRs with
Radial Basis Function (RBF) kernel (with or without parameter optimisation).
Ground truth data was collected to indicate induced emotion, as in [88], by
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averaging arousal and valence scores from 50 subjects for 288 music pieces. Con-
firming earlier findings that arousal is easier to predict than valence, peak R2 of
69.7% (arousal) and 25.8% (valence) were obtained using SVR-RBF. However,
none of the variations in the experimental setup led to substantial improvement.
The authors concluded that small database size presents a major problem, while
the wide distribution of individual responses to a song spreading in the AV
space was seen as another limitation. In order to overcome the subjectivity and
potential nonlinearity of AV coordinates collected from users, and to ease the
cognitive load during data collection, Yang et al. proposed a method to auto-
matically determine the AV coordinates of songs using pair-wise comparison of
relative emotion differences between songs using a ranking algorithm [85]. They
demonstrated that the increased reliability of ground truth pays off when dif-
ferent learning algorithms are compared. In [87], the authors modeled emotions
as probability distributions in the AV space as opposed to discrete coordinates.
They developed a method to predict these distributions using regression fusion
and reported a weighted R2 score of 54.39%.

4.5 Methods for Music Emotion Variation Detection

The techniques discussed so far focus on detecting emotions from songs or short
clips in a static manner. It can easily be argued however that emotions are not
necessarily constant during the course of a piece of music, especially in classical
recordings. The problem of Music Emotion Variation Detection (MEVD) can
be approached from two perspectives: the detection of time-varying emotion
as a continuous trajectory in the AV space, or finding music segments that are
correlated with well defined emotions. The task of dividing the music into several
segments which contain homogeneous emotion expression was first proposed by
Lu et al. [43]. In [89], the authors also proposed MEVD but by classifying features
resulting from 10-s segments with 33.3% overlap using a fuzzy approach, and
then computing arousal and valence values from the fuzzy output vectors.

Building on earlier studies, Schmidt et al. [64] demonstrated that emotion
distributions may be modeled as two-dimensional Gaussian distributions in the
AV space, and then approached the problem of time-varying emotion tracking in
two successive publications. In [64], they employed Kalman filtering in a linear
dynamical system to capture the dynamics of emotions across time. While this
method provided smoothed estimates over time, the authors concluded that the
wide variance in emotion space dynamics could not be accommodated by the
initial model, and subsequently moved on to use Conditional Random Fields
(CRF), a probabilistic graphical model to approach the same problem [65]. In
modeling complex emotion-space distributions as AV heatmaps, CRF outper-
formed the prediction of 2D Gaussians using MLR. However, the CRF model
has higher computational cost.

4.6 Multi-modal Approaches and Fusion Policies

When trying to account for the subjectivity of music related emotions, sev-
eral factors other than audio may also be taken into account. Some of these
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factors, such as the acculturation of the listener, are extra-musical, or present
in other modalities like lyrics. The combination of multiple feature domains has
become dominant in recent MER systems and a comprehensive overview of com-
bining acoustic features with lyrics, social tags and images (e.g. album covers)
is presented in [31]. In most works, the previously discussed machine learning
techniques still prevail. However, different feature fusion policies may be ap-
plied ranging from concatenating normalised feature vectors (early fusion) to
boosting, or ensemble methods combining the outputs of classifiers or regressors
trained on different feature sets independently (late fusion). Late fusion is be-
coming dominant since it solves the issues related to tractability, and the curse
of dimensionality affecting early fusion.

Despite the need for a complex architecture, combining multiple modalities
pays off well since different feature domains are often complementary. Bischoff
et al. [9] showed that classification performance can be improved by exploiting
both audio features and collaborative user annotations. In this study, SVMs with
RBF kernel outperformed logistic regression, random forest, GMM, K-NN, and
decision trees in the case of audio features, while the Naive Bayes Multinomial
classifier produced the best results in the case of tag features. An experimentally
defined linear combination of the results then outperformed classifiers using in-
dividual feature domains. In a more recent study, Lin et al. [41] demonstrated
that genre-based grouping complements the use of tags in a two-stage multi-label
emotion classification system reporting an improvement of 55% when genre infor-
mation is used. Finally, Schuller et al. [70] combined audio features with meta-
data and Web-mined lyrics. They used a stemmed bag-of-words approach to
represent lyrics and editorial metadata, and also extracted mood concepts from
lyrics using natural language processing. Ensembles of REPTrees (a variant of
Decision Trees) are used in a set of regression experiments. When the domains
were considered in isolation, the best performance was achieved using audio fea-
tures (chords, rhythm, timbre), but taking all modalities into account improved
the results. However, they were not equally reliable, which promoted late fusion
with a weighted combination of unimodal predictions. The decision between late
and early fusion was not always clear cut however, since finding fusion weights
was subject to overfitting.

5 Discussion and Conclusions

Although approaches relying on web social data and web documents are promis-
ing, they target commercial popular music repertoires for which web resources
(e.g. blogs) are available and can be mined. Such approaches can’t be applied
straightforwardly to production music (music used in film, television, radio and
other media, and often referred to as “mood music”) which don’t benefit from
the same media exposure as commercial music. The semantic analysis of lyrics
offers promising perspectives, however it can’t be applied to instrumental music,
which represents a large corpus of classical and jazz music, alternative and pro-
gressive rock, and the most part of production music catalogues, for instance.
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For such reasons, there is still a need to refine purely content-based methods,
in addition to continuing development of hybrid approaches. [75] put forward
the dominance of timbral features in music emotion recognition over pitch, and
rhythmic features, for instance. As showed in Sect. 3, a large part of MER
models rely on spectral timbre descriptors, such as the mel frequency cepstral
coefficients, MFCCs, used in more than half of the studies reviewed hereby, as
well as the octave-based spectral contrast (OBSC) and spectral descriptors, used
in a third of the reviewed studies. This is related to the fact that spectral timbre
descriptors have shown to provide the best correct classification rates when they
were coupled with state of the art machine learning techniques in MER (see
Table 3), audio music similarity (AMS) [4], as well as audio genre classification
(AGC). However, as stated above, the results obtained by audio content-based
systems are likely to be prone to a “glass ceiling” effect. In a recent study [58],
high-level features (mode “majorness” and key “clarity”) have shown to enhance
emotion recognition in a more robust way than low-level features. In line with
these results, we claim that in order to improve MER models, there is a need for
new mid or high-level descriptors characterising musical clues, more adapted to
explain our conditioning to musical emotions than low-level descriptors. Some
of the findings in music perception and cognition [71], psycho-musicology [23],
and affective computing [48] have not yet been exploited or adapted to their
full potential for music information retrieval. Most of the current approaches
to emotion recognition articulate on black-box models which model the relation
between features and emotion components as accurately as possible without
taking into account the interpretability of the relationships, which is a disadvan-
tage when trying to understand the underlying mechanisms [82]. Other emotion
representation models - the appraisal models [48] - support the development of
process models (see Sect. 2.4) which attempt to predict the association between
appraisal and emotion components making it possible to interpret relationships.

With regard to machine learning techniques used in MER, the relatively low
performance of classification approaches was commonly attributed to the weak-
nesses of the categorical emotion model discussed in Sect. 2.1 and 4.4. As a result,
recent research focuses on the use of regression and attempt to estimate contin-
uous valued coordinates in some emotion space, which may then be mapped to
an emotion label or a broader category. Although these approaches seem to solve
some of the problems related to classification, the decision between regression
and classification is not yet straightforward, as both categorical and dimensional
emotion models have strengths and weaknesses with regard to specific applica-
tions. Moreover, retrieving labels or categories given the estimated coordinates
is often necessary, and requires a mapping between the dimensional and cate-
gorical models. This however may not be available for a given model, may not
be psychologically validated in a given application, and may also be dependent
on extra-musical circumstances. With regard to the use of multiple modalities,
most studies to date confirm that the strongest factors enabling emotion recog-
nition are indeed related to the audio content, however a “glass ceiling” seems
to exist which can only be vanquished if both contextual features and features
from different musical modalities are also considered.
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Abstract. We introduce a two-alternative forced-choice (2AFC) exper-
imental paradigm to quantify expressed emotions in music using the
arousal and valence (AV) dimensions. A wide range of well-known audio
features are investigated for predicting the expressed emotions in music
using learning curves and essential baselines. We furthermore investigate
the scalability issues of using 2AFC in quantifying emotions expressed
in music on large-scale music databases. The possibility of dividing the
annotation task between multiple individuals, while pooling individuals’
comparisons is investigated by looking at the subjective differences of
ranking emotion in the AV space. We find this to be problematic due
to the large variation in subjects’ rankings of excerpts. Finally, solving
scalability issues by reducing the number of pairwise comparisons is ana-
lyzed. We compare two active learning schemes to selecting comparisons
at random by using learning curves. We show that a suitable predictive
model of expressed valence in music can be achieved from only 15% of
the total number of comparisons when using the Expected Value of In-
formation (EVOI) active learning scheme. For the arousal dimension we
require 9% of the total number of comparisons.

Keywords: expressed emotion, pairwise comparison, Gaussian process,
active learning.

1 Introduction

With the ever growing availability of music through streaming services, and
with access to large music collections becoming the norm, the ability to easy-to-
navigate-and-explore music databases has become increasingly pertinent. This
problem has created the need to use alternative methods to organize and re-
trieve musical tracks, one being cognitive aspects such as emotions. The reason-
ing behind using emotions dates back to Darwin, who argued that music was a
predecessor to speech in communicating emotions or intents [6]. This alternative
seems appealing and a natural way of thinking about music, since most people
can relate to happy or sad music, for example. The aspects about music that
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express or induce emotions have been studied extensively by music psychologists
[13]. The Music Information Retrieval (MIR) community has been building on
their work with the aim to create automatic systems for recognition of emotions
and organization of music based on emotion. The approach by music psychol-
ogists have been to exhaustively make experiments with human subjects/users
to quantify emotions and analyze this data. To annotate the massive collections
of music using a fully manual approach is not feasible and has resulted in the
increased attention on automatic Music Emotion Recognition (MER).

The approach to automatically predict the expressed emotion in music has
typically relied on describing music by structural information such as audio
features and/or lyrics features. Controlled experiments have been conducted
to obtain data describing the emotions expressed or induced in music. Machine
learning methods have subsequently been applied to create predictive models
of emotion, from the structural information describing music, predicting the
emotional descriptors [1]. The reasoning behind using the emotions expressed in
music and not induced (which describes how the subject feels as a result of the
musical stimuli) has mainly been due to the availability of data. The mechanisms
that are involved in the induction of emotions by music [12] are daunting. To
potentially model this highly subjective aspect, a great deal of additional data
about the user and context should be available in order to recognize the user’s
general state of mind. We see that to solve the MER, three main topics should
be investigated: namely how to represent the audio using feature extraction; the
machine learning methods to predict annotations, evaluations, rankings, ratings,
etc.; and the method of quantifying and representing the emotions expressed in
music. In the present work we want to look more closely into the aspect of
quantifying the emotions expressed in music using an alternative experimental
paradigm to gather more accurate ground truth data.

Music psychologists have offered different models to represent emotions in
music, e.g., categorical [8] or dimensional [25], and depending on these, various
approaches have been taken to gather emotional ground truth data [14]. When
using dimensional models such as the well established arousal and valence (AV)
model [25] the majority of approaches are based on different variations of self-
report listening experiments using direct scaling [26].

Direct-scaling methods are fast ways of obtaining a large amount of data.
However, they are susceptible to drift, inconsistency and potential saturation of
the scales. Some of these issues could potentially be remedied by introducing an-
chors or reference points; hence, implicitly using relative rating aspects. However,
anchors are problematic due to the inherent subjective nature of the quantifi-
cation of emotion expressed in music, which makes them difficult to define, and
the use of them will be inappropriate due to risks of unexpected communica-
tion biases [31]. Relative experiments, such as pairwise comparisons, eliminate
the need for an absolute reference anchor, due to the embedded relative nature
of pairwise comparisons, which persists the relation to previous comparisons.
However, pairwise experiments scale badly with the number of musical excerpts.
This was accommodated in [30] by a tournament-based approach that limits the
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number of comparisons. Furthermore they introduce chaining, that is, inserting
additional comparisons based on subjects’ judgments and disregarding potential
noise on the subjects’ decisions. Multiple participants’ judgments are pooled to
form a large data set that is transformed into rankings which are then used to
model emotions expressed in music.

However, the connection between the artist expressing emotions through mu-
sic and how each individual experiences it will inherently vary. This experience
is to be captured using a model of emotions using an experiment. The setup of
this experiment alone gives rise to subjective differences such as interpretation
and understanding of the experimental instruction, understanding and use of the
scales, and projection of the emotional experience into the cognitive AV represen-
tation. Besides this, a multitude of aspects and biases can effect the judgments
by participants [31]. Most of these effects are almost impossible to eliminate,
but are rarely modeled directly. The issue is typically addressed through outlier
removal or simply by averaging ratings for each excerpt across users [11], thus
neglecting individual user interpretation and user behavior in the assessment
of expressed emotion in music. For pairwise comparisons this approach is also
very difficult. In previous work [20] we showed the potentially great subjective
difference in the ranking of emotions, both in valence and arousal, which is due
to the inherently different subjective judgments by participants.

The main objective in this work is to propose and evaluate a robust and
scalable predictive model of valence and arousal, despite the adverse noise and
inconsistencies committed by the participants. Our solution to this challenge is
based on a two-alternative forced-choice (2AFC) approach, with the responses
modeled in a Thurstonian framework with a principled noise model and a flexible
non-parametric Bayesian modeling approach. This provides a supervised model,
which has previously been applied in [20,21] for analyzing the ranking of excerpts
in the AV space. In this work, we do not focus on the ranking, but the predictive
properties of the approach, i.e., whether the model can predict the pairwise
relations for new unseen excerpts.

Firstly, the predictive setting requires structural information describing the
audio excerpt, so-called features (or covariates) from which new unseen compar-
isons can be predicted based on observed audio excerpts. Audio features and
the representation of audio excerpts are still an open question in many audio
modeling domains and particularly in emotion recognition. In this work we in-
vestigate the effect of various common audio features in a single mean/variance
representation, given the proposed predictive approach.

Secondly, to model and understand the complex aspects of emotion requires
extensive and costly experimentation. In the 2AFC paradigm the number of
comparisons scales quadratically with the number of excerpts. This is not a
favorable property of the current methodology. Given the best set of features
(selected from the feature set investigation) we investigate two solutions to this
problem: we consider the common approach of dividing the rating task between
multiple individuals and/or pooling individuals’ ratings [30]. Based on the rank-
ings, we show that such an approach is not recommendable in the predictive
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case, due to large subject variability. This is in line with previous work [20] on
ranking. We furthermore propose and evaluate an alternative approach, namely
sequential experimental design (or active learning) for reducing the number of
comparisons required. In the Bayesian modeling approach deployed, this is an
easy extension of the methodology. We show that faster learning rates can be
obtained by applying a principled Bayesian optimal sequential design approach.

The investigation of the outlined aspects requires that all possible unique
comparisons are made on both valence and arousal dimensions. Furthermore,
to show variation across users, it is required to test on a reasonable number
of subjects. Compared to previous work [20,21], the experimental part in this
work is based on an extended data set using the 2AFC experimental paradigm
quantifying the expressed emotion in music on the dimensions of valence and
arousal. Finally, we discuss various extensions and open issues, outlining future
research directions and possibilities.

Outline. In Sect. 2 the general methodology for examining the outlined aspects
is introduced. This includes a relatively technical presentation of the modeling
framework. The underlying experiment and data is described in Sect. 3, and
Sect. 4 contains the experimental results including a description of the most im-
portant aspects. The results are discussed in Sect. 5, and finally Sect. 6 concludes
the paper.

2 Methodology

Cognitive aspects, such as emotion, can be elicited in a number of ways which can
be divided into self-report, observational indirect behavioral measures [29], psy-
chophysiological [9] and functional neuroimaging [15]. Self-reporting approaches
rely on human test subjects to actually be able to express the directed as-
pects, albeit using some experimental paradigm. This work focuses on self-report
methods, thus asking direct questions to the user in order to elicit his or her
understanding and representation of the cognitive aspect under investigation.
This requires careful consideration regarding the experimental paradigm and
subsequent analysis/modeling aspects.

When quantifying a cognitive aspect using either unipolar or bipolar scales,
assuming that one can arrange the cognitive aspect in such a manner that we
can ask the question if one element is more or less than the other. In this case
we can use relative quantification methods to obtain a ranking of objects in that
dimension. How the objects are arranged in the internal representation of the
cognitive aspect is not being asked directly but acquired indirectly, i.e., indirect
scaling. The question to the subject is not to place the object for evaluation on
the scale, but cognitively a much simpler question, namely to compare objects.
The argument is that simple questions about cognitive aspects provide a robust
approach in obtaining information. The simplest of such indirectly scaling meth-
ods is the two-alternative forced-choice model (2AFC). Participants are simply
asked which of the two objects presented has the most/highest (or least/lowest)
of a given cognitive aspect, which is the approach we use in this work.
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In the present setting, we look into the cognitive aspect of expressed emotion
in music. To quantify this we use an experimental paradigm relying on the two-
dimensional valence and arousal model, which consist of two bipolar dimensions,
namely valence, ranging from happy to sad, and arousal ranging from excited
to sleepy [25]. This dimensional approach naturally allows us to use the robust
relative paradigm.

With this in mind, the general framework for the proposed 2AFC for eliciting
and modeling general cognitive aspects is outlined in Fig. 1. Here we aim to
elicit and model the users’ cognitive representation of emotion, thus we present
the user with a general set of instructions regarding the task and intent of the
experiment. There are obvious elements of bias that can be introduced here and
care has to be taken to ensure that the underlying idea of the experiment is
understood to reduce bias.

The Thurstonian based paradigm in essence starts with step A in Fig. 1,
where an experimental design mechanism will select two musical excerpts, in-
dexed u and v, out of total of N . These two excerpts constitute a paired set for
comparison indexed by k and denoted εk, out of K possible comparisons.

In step B, excerpts uk and vk are presented to the user through a user in-
terface (UI), which provides instructions, asking the user to compare the two
excerpts either on the valence or arousal dimension. Understanding and inter-
pretation of the UI and the instructions given can vary between subjects and
bias and variance can be introduced at this stage.

User

Decision

User Interface

Audio Feature Extraction

(Sequential)
Experimental Design

A: The experimental
design selects an
comparison, εk, with
two music excerpts uk
and vk, for presentation

B: Present two
different excerpts
(and instructions)

C: The user selects
the excerpt which
is either the most

D: Update model
based on the users
reponse to
comparison k .

Music Database

Cognitive
representation
of emotion
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M
o
d
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”Model of the Cognitive

Representation”
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Fig. 1. Overview of the methodology from a system perspective



258 J. Madsen, B.S. Jensen, and J. Larsen

Table 1. Notation overview

System Element Description Notation

Music Database Excerpt index u, v, r, s ∈ [1 : N ]
Number of excerpts N

Audio Features Audio feature representation x ∈ R
D

of excerpt (model input) e.g. xu,xv

A test input (to model) x∗
A set of inputs (to model) X = {xi|i = 1..N}

User Comparison with two inputs ε̂k = {uk, vk}
Response to a comparison yk ∈ {−1,+1}
Number of comparisons K

Internal ’value’ of an object f̂(x)
in respect to a given
cognitive aspect.
Internal noise (independent e ∼ N (0, σ)
of other inputs)

Internal basis for decision making f̂(x) + e

Model Comparison εk = {xuk ,xvk}
(non-parametric) A set of K comparisons E = {εi|i = 1..K}

A set of responses Y = {(yk; εk)|k = 1..K}
Hyperparameters in the model θ = {θGP ,θL}

R
es
p
o
n
se Likelihood p(yk|f(xuk), f(xvk ),θL) =

. . .of observing a particular p(yk|fk,θL)
response given the function.

F
u
n
ct
io
n

Function f : RD → R

i.e. x �→ f(x)
Single value (a random variable) f(x)

Multiple values (L random variables) f = [f(x1), f(x2), ..., f(xL)]
�

. . .for a particular comparison fk = [f(xuk), f(xvk )]
�

In step C users convert their internal cognitive representation of the musical
excerpts into a representation that can be used to compare the two based on
the instructions given, which in our case comprise questions representing valence
and arousal. Our assumption is that humans have an internal value f̂(xi) + ei
representing the valence or arousal value of a given excerpt xi indexed by i.
Given the great number of uncertainties involved in the self-report, we reasonably
assume there is uncertainty on f̂(x) which is denoted e ∼ N (0, σ). Prior to step

C the user decides which of the two excerpts f̂(xu) + eu and f̂(xv) + ev is the
largest given the cognitive dimension, and makes a decision which modelled by
additive noise denoted yk ∈ {−1,+1}, where the subject’s selection is illustrated
by step C in Figure 1.

In step D the analysis and modeling of the user’s response takes place. With
the aim of a predictive model, i.e., predicting the pairwise responses for unseen
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music excerpts, this calls for a special modeling approach. The method applies a
principled statistical modeling approach, relying on a choice model taking into
account the noise, e, on the (assumed) internal representation. Secondly, the
modeling approach places this choice model (likelihood function) in a Bayesian
modeling framework, allowing for predictive capabilities. This results in a math-
ematical representation of the assumed internal representation of emotion, de-
noted f(x), for a given excerpt. This representation like the internal, only makes
sense when compared to the representation of other excerpts. The technical as-
pect of the modeling approach is described in the following sub-sections.

2.1 Likelihood

The decision process underlying 2AFC was considered in the seminal paper of
Thurstone [27]. The main assumption is that the choice between two excerpts is
based on the internal ’value’ for each object which has a particular additive noise
element. The decision is then based on the probability of the noisy internal ’value’
of u or v being larger. If the additive noise is assumed to be distributed according
to a Normal distribution, and independent from object to object, then the well-
know probit choice model is obtained [28]. The probit choice model defines the
likelihood of observing a particular response yk ∈ {−1,+1} as

p
(
yk|f

(
xuk

)
, f
(
xvk

)
, θL

)
= Φ

(
yk

f
(
xuk

)− f
(
xvk

)
√
2σ

)
(1)

where Φ(·) denotes the cumulative Normal distribution. The function values
f(xu) and f(xv) are the model variables representing the assumed internal rep-
resentation. However, the likelihood is seen to be dependent on the difference
between the two (assumed) internal representations, in effect this means that
the function itself has no absolute meaning and decisions are only based on dif-
ferences. The noise variance on the (assumed) internal representation is denoted
σ and provides a simple model of the internal noise process.

2.2 Latent Function

Given the response and likelihood function defined in Equ. (1), the remain-
ing question relates to the latent function f : X → R defining the function
values,f(x), for each input, x ∈ X .

In this work we propose a non-parametric approach, in essence directly es-
timating values for individual f(x)’s, i.e., not through a parametric function
(e.g. f(x) = w	x). This is mainly motivated by the fact that the complexity of
the underlying representation is virtually unknown, i.e., whether the problem is
linear or non-linear is an open question which is best evaluated by allowing for
very flexible function classes.

The non-parametric approach provides extreme flexibility, and we consider
this in a Bayesian setting where we first assume that the likelihood factorizes,
i.e., p (Y|f) = ∏K

k=1 p (yk|fk, θL). This in effect means that, given the cognitive
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representation, represented by f(·), we assume that there are no dependencies
between the responses to the different comparisons. Thus, it is essential that the
experimental procedure does not introduce a particular order of comparisons
which may cause dependencies and systematic errors.

Given the factorized likelihood and placing a prior on the individual function
values, p(f |X ), the Bayesian approach directly provides the inference schema via
Bayes relation. I.e. when keeping the hyperparameters, θ, constant, the posterior
is directly given by

p(f |X ,Y, θ) =
p(f |X , θGP )

K∏
k=1

p (yk|fk, θL)

p(Y|X , θ)
(2)

The natural prior for the individual function values is a Gaussian Process (GP)
[24]. This was first considered with the pairwise probit likelihood in [4]. A GP
is defined as “a collection of random variables, any finite number of which have
a joint Gaussian distribution” [24]. The GP provides a mean for each individual
f(x), and correlates the functional values through a correlation function which
implies some notion of smoothness; the only constraint on the function. With a
zero-mean function, such a GP is denoted by f (x) ∼ GP (0, k (x,x′)) with co-
variance function k(x,x′). The fundamental consequence is that the GP can be
considered a distribution over functions, which is denoted as p (f |X ) = N (0,K)
for any finite set of N function values f = [f(x1), ..., f(xN )]	, where [K]i,j =
k(xi,xj). This means that the correlation between a function value is defined
by the input x, for example audio features. The correlation function allows pre-
diction by calculating the correlation between a new input and already observed
inputs in terms of their audio features.

A common covariance function is the so-called squared exponential (SE) co-

variance function defined as k (x,x′) = σ2
f exp

(
−‖x− x′‖22

/
σ2
l ), where σf is

a variance term and σl is the length scale, in effect, defining the scale of the
correlation in the input space. This means that σ	 defines how correlated two
excerpts are in terms of their features. A special case arises when σl → 0 which
implies that the function values of two inputs are uncorrelated. In this case,
knowing the functional of one input cannot be used to predict the function value
of another due to the lack of correlation. On the other hand when σl → ∞ the
functional values are fully correlated i.e., the same.

For robustness, we provide a simple extension to the original model proposed
in [4] by placing hyperpriors on the likelihood and covariance parameters, which
act as simple regularization during model estimation. The posterior then yields
p(f |X ,Y, θ) ∝ p (θL|·) p (θGP |·) p(f |X , θGP)p (Y|f ), where p(θ|·) is a fixed prior
distribution on the hyperparameters and a half student-t is selected in this work.

Inference. Given the particular likelihood, the posterior is not analytically
tractable. We therefore resort to approximation and in particular the relatively
simple Laplace approximation [24], which provides a multivariate Gaussian ap-
proximation to the posterior.
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The hyperparameters in the likelihood and covariance functions are point es-
timates (i.e., not distributions) and are estimated by maximizing the model evi-
dence defined as the denominator in Equ. 2. The evidence provides a principled
approach to select the values of θ which provides the model that (approximately)
is better at explaining the observed data (see e.g. [2,24]). The maximization is
performed using standard gradient methods.

Predictions. To predict the pairwise choice y∗ on an unseen comparison be-
tween excerpts r and s, where xr ,xs ∈ X , we first consider the predictive dis-
tribution of f(xr) and f(xs). Given the GP, we can write the joint distribution

between f ∼ p (f |Y,X ) and the test variables f∗ = [f (xr) , f (xs)]
T
as

[
f

f∗

]
= N

([
0

0

]
,

[
K k∗
kT
∗ K∗

])
, (3)

where k∗ is a matrix with elements [k∗]i,2 = k(xi,xs) and [k∗]i,1 = k(xi,xr)
with xi being a training input.

The conditional p (f∗|f) is directly available from Equ. (3) as a Gaussian
too. The predictive distribution is given as p (f∗|Y,X ) =

∫
p (f∗|f) p (f |Y,X ) df ,

and with the posterior approximated with the Gaussian from the Laplace ap-
proximation then p (f∗|Y,X ) will also be Gaussian given by N (f∗|μ∗,K∗) with
μ∗ = kT

∗ K
−1f̂ and K∗ = K∗ − kT

∗ (I+WK)−1W k∗, where f̂ and W are
obtained from the Laplace approximation (see [24]). In this paper, are often in-
terested in the binary choice y∗, which is simply determined by which of f(xr)
or f(xs) is the largest.

2.3 Sequential Experimental Design

The acquisition of pairwise observations can be a daunting and costly task if the
database contains many excerpts due to the quadratic scaling of the number of
possible comparisons. An obvious way to reduce the number of comparisons is
only to conduct a fixed subset of the possible comparisons in line with classical
experimental design. In this work we propose to obtain the most relevant exper-
iments by sequential experimental design, also known as active learning in the
machine learning community. In this case comparisons (each with two inputs)
are selected in a sequential manner based on the information provided when
conducting the particular comparison. The information considered here is based
on the entropy of the predictive distribution or change in the entropy.

We consider the set of comparisons conducted so far, Ea, which gives rise to
a set of unique inputs Xa and a response set Ya which are all denoted as active
set(s). Secondly, we consider a set of candidate comparisons, Ec, , which gives
rise to a set of unique inputs Xc and an unknown response set Yc. The task is to
select the next comparison ε∗ = {xu∗ ,xv∗} from Ec. The following three cases is
considered for solving this task:
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Random: The next pairwise comparison is selected at random from the set of
candidate comparisons.

VOI (Value of Information): Selection of the next comparison with the max-
imum entropy (i.e., uncertainty) of the predictive distribution of the model1,
S (f∗|ε∗, Ea,Ya, θ).

The next comparison is simply selected by argmax
ε∗∈Ec

S (f∗|ε∗, Ea,Ya, θ).

The predictive distribution is a bivariate normal distribution which has the

entropy [5], S (f∗|ε∗, Ea,Ya, θ) = 1
2 log

(
(2 · π · e)D|K∗|

)
. Where |K∗| de-

notes the determinant of the (predictive) covariance matrix.
EVOI (Expected Value of Information): In the Bayesian framework it is

possible to evaluate the expected entropy change of the posterior which was
suggested in the work of Lindley [18]. Hence, the information of conducting
a particular comparison is the change in entropy of the posterior i.e.,

ΔS (f) = S (f |y∗, ε∗,Xa,Ya, θ)− S (f |Xa,Ya, θ)

The expectation in regards to y can be shown to yield [19]

EVOI (ε∗) =
∑

y∈{−1,1}
p (y∗|ε∗,Xa,Ya, θ)ΔS (f |y∗, ε∗,Xa,Ya, θ) (4)

=
∑

y∈{−1,1}

∫
p (y∗|f∗,Xa,Ya, θ) p (f∗|ε∗,Xa,Ya, θ) log p (y∗|f∗,Xa,Ya, θ) df∗

−
∑

y∈{−1,1}
p (y∗|ε∗,Xa,Ya, θ) log p (y∗|ε∗,Xa,Ya, θ)

(5)

Thus, the next comparison is chosen as argmax
ε∗∈Ec

EVOI (ε∗). The (inner) inte-

gral is analytical intractable and requires numerical methods. This is feasibly
only due to the low dimensionality (which is effectively only one, since con-
sidering the difference distribution). An analytical approximation has been
proposed for standard classification [10]; however, here we rely on numerical
integration based on adaptive Gauss-Kronrod quadrature.

2.4 Evaluation

In order to evaluate the performance of the proposed modeling approach, we
use a specific Cross Validation (CV) approach and baselines for verification and
significance testing. When dealing with pairwise comparisons the way the cross
validation is set up is a key issue.

1 Alternatively we may consider the predictive uncertainty on the response, y∗. See
e.g. [3] for a general discussion of various information criterion.
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Cross Validation
In previous work [21] we evaluated the ability of the GP framework to rank ex-
cerpts on the dimensions of valence and arousal using learning curves. To obtain
the learning curves, Leave-One-Out CV was used and in each fold a fraction
of comparisons was left out. These comparisons are potentially connected and
thus, to evaluate the ability of the model to predict an unseen excerpts rank, all
comparisons with an excerpt must be left out in each fold. Thus in the present
work we use a Leave-One-Excerpt-Out (LOEO) method. Learning curves are
computed as a function of the fraction of all available comparisons, evaluating
the question of how many pairwise comparisons are needed to obtain a com-
petitive predictive model. Each point on the learning curves is computed as an
average of 50 randomly chosen equally-sized subsets from the complete training
set. The reasoning behind this is that testing all unique possible combinations of
e.g. choosing 8 out of 15 excerpts is exhausting, so random repetitions are used
to obtain robust learning curves.

Baselines
Three basic baselines are introduced that consider the distribution of the pair-
wise comparisons, namely a random baseline (Basernd) and two that only predict
one class (Base+1 and Base−1), i.e., excerpt u always greater than excerpt v, or
vice versa. This takes into account that the data set is not balanced between the
two outcomes of +1 and −1. An additional baseline (Baseupper) is introduced.
Given a model type, a baseline model of same type is trained on both training
and test data and evaluated on the test data for that given CV fold. This pro-
vides an upper limit of how well it is possible for that given model and features
can perform. Furthermore, a baseline model Baselow is introduced that only
uses information from the comparisons available in each CV fold (not the audio
features). The model ranks excerpts using a tournament approach, counting the
number of times a specific excerpt has been ranked greater than another. The
number of wins is assigned to each excerpt’s f value. All excerpts that have no f
assignment are given the average f value of all available f values. To predict the
test data in each CV fold, the assigned f values are used, and for f values that
are equal a random choice is made with equal probability of either class. This
naive baseline model serves as a lower limit, which all models have to perform
better than.

Significance Testing
To ensure that each of the trained models perform better than Baselow we use
the McNemar paired test with the Null hypothesis that two models are the
same, if p < 0.05 then the models can be rejected as equal on a 5% significance
level.

AV-Space Visualization
In the principled probabilistic GP framework the latent function f(·) is directly
available to compare rankings between models. However for visualization to
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compare the rankings we use a reference numerical space. The ranking of ex-
cerpts, given by f(·), is assigned the same functional value as the reference
space, preserving the ranking of excerpts, but losing the relative distance given
by f(·). This allows us to average rankings across users, folds and repetitions.

3 Experiment and Data

3.1 Experiment

A listening experiment was conducted to obtain pairwise comparisons of ex-
pressed emotion in music using the 2AFC experimental paradigm. A total of 20
different 15 second excerpts were chosen, in the middle of each track, from the
USPOP20022 data set as shown in Table 2. The 20 excerpts were chosen such
that a linear regression model developed in previous work [19] maps 5 excerpts
into each quadrant of the two-dimensional AV space. A subjective evaluation
was performed to verify that the emotional expression throughout each excerpt
was considered constant. This fact, and using short 15 second excerpts, should
reduce any temporal change in the expressed emotion thus making post-ratings
applicable. A sound booth provided neutral surroundings for the experiment to

Table 2. Excerpts used in experiment

No. Song name

1 311 - T and p combo
2 A-Ha - Living a boys adventure
3 Abba - Thats me
4 Acdc - What do you do for money honey
5 Aaliyah - The one I gave my heart to
6 Aerosmith - Mother popcorn
7 Alanis Morissette - These R the thoughts
8 Alice Cooper - I’m your gun
9 Alice in Chains - Killer is me
10 Aretha Franklin - A change
11 Moby - Everloving
12 Rammstein - Feuer frei
13 Santana - Maria caracoles
14 Stevie Wonder - Another star
15 Tool - Hooker with a pen..
16 Toto - We made it
17 Tricky - Your name
18 U2 - Babyface
19 Ub40 - Version girl
20 Zz top - Hot blue and righteous

2 http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html

http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
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reduce any potential bias of induced emotions. The excerpts were played back
using closed headphones to the 13 participants (3 female, 10 male) age 16-29,
average 20.4 years old, recruited from a local high school and university. Par-
ticipants had a musical training of 0-15 years, on average 2 years, and listened
to 0-15 hours of music every day, on average 3.5 hours. Written and verbal in-
structions were given prior to each session to ensure that subjects understood
the purpose of the experiment and were familiar with the two emotional di-
mensions of valence and arousal. Furthermore instructions were given ensuring
that participants focused on the expressed emotions of the musical excerpts.
Each participant compared all 190 possible unique combinations. To reduce any
systematic connection between comparisons, each comparison was chosen ran-
domly. For the arousal dimension, participants were asked the question Which
sound clip was the most exciting, active, awake?. For the valence dimension the
question was Which sound clip was the most positive, glad, happy?. The reason-
ing behind these question lies in the communication of the dimensions of valence
and arousal, pilot experiments showed a lack of understanding when fewer words
were used. The two dimensions were evaluated independently and which of the
two dimensions should be evaluated first was chosen randomly. The total time
for the experiment was 4 hours, each session taking 1 hour in order to reduce
any fatigue. After the experiments, participants rated their understanding of the
experiment, the results can be seen in Table 3.

The understanding of the experiment and the scales was generally high, and it
was noted that people rated the audio higher than the lyrics as a source of their
judgments of the emotions expressed in music. The experiment had two atypical
participants, one had low overall understanding of the experiment because he did
not find the scales appropriate, and the other did understand the experiment,
but did not understand the scales or found them inappropriate.

Table 3. Results of post-experiment questions to the 13 participants. All ratings were
performed on a continuous scale, here normalized to 0-1. Results are presented as:
minimum-maximum (average).

Question Rating

General understanding 0.36-0.99 (0.70)
Understanding of scales 0.34-1.00 (0.84)
Appropriateness of scales 0.36-0.99 (0.78)
Lyrics, source of expressed emotion 0.00-0.74 (0.43)
Audio, source of expressed emotion 0.18-1.00 (0.69)

3.2 Audio Features

In order to represent the 15 second musical excerpts in later mathematical mod-
els, each excerpt is represented by audio features. These are extracted using four
standard feature-extraction toolboxes, the MIR[17], CT[23], YAAFE[22], and
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MA3 toolboxes, and furthermore the Echonest API4. An overview is given in
Table 4 of the features used from these toolboxes.

Due to the vast number of features used in MIR, the main standard features
are grouped. In addition, the Echonest timbre and pitch features have been
extracted, resulting in a total of 18 groups of features. The audio features have
been extracted on different time scales, e.g., MFCCs result in 1292 samples for 15
seconds of audio data, whereas pitch produce 301 samples. Often the approach
to integrate the feature time series over time is to assume that the distribution
of feature samples is Gaussian and subsequently the mean and variance are
used to represent the entire feature time series. In the present work, Gaussian
distributions are fitted where appropriate and beta distributions are fitted where
the distribution has a high skewness. The entire time series is represented by the
mean and standard deviation of the fitted distributions.

4 Experimental Results

In this section we evaluate the ability of the proposed framework to capture
the underlying structure of expressed emotions based on pairwise comparisons
directly. We apply the GP model using the squared exponential (SE) kernel
described in Sect. 2 with the inputs based on the groups of audio features de-
scribed in Sect. 3.2 extracted from the 20 excerpts. The kernel was initialized
with σl = 1 and σf = 2, furthermore the half student-t [7] hyperprior is initial-
ized with df = 4 and scale = 6. We present three different investigations into the
modeling of expressed emotions using the 2AFC paradigm. First a performance
evaluation of the 18 groups of features is performed finding the best combination
of features. These features are used in all subsequent results. Second, to investi-
gate the scaling issues of 2AFC, the subjective variation in the model’s predictive
performance is investigated, along with a visualization of the subjective variation
in rankings. Third, the question of how many pairwise comparisons are needed
to obtain a predictive model of expressed emotions in music is investigated. This
is evaluated using three different methods of selecting pairwise comparisons in
an experimental setup, namely using the EVOI or VOI active learning methods
or choosing comparisons randomly.

4.1 Performance of Features

The performance of the GP framework using the 18 different feature groupings
is evaluated using LOEO learning curves. The predictive performance for the va-
lence dimension is shown in Table 5. The single best performing feature, modeling
the valence dimension is the Fluctuations feature resulting in a classification er-
ror of 0.2389 using the entire training set. For valence the Echonest pitch feature
perform worse than Chroma and Pitch features from the CT toolbox although
the timbre features perform slightly better than the MFCC features which are

3 http://www.pampalk.at/ma/
4 http://the.echonest.com/

http://www.pampalk.at/ma/
http://the.echonest.com/
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Table 4. Acoustic features used for emotion prediction

Feature Description Dimension(s)

Mel-frequency
cepstral coeffi-
cients (MFCCs)1

The discrete cosine transform of the log-transformed
short-time power spectrum on the logarithmic mel-
scale.

20

Envelope (En)
Statistics computed on the distribution of the ex-
tracted temporal envelope.

7

Chromagram
CENS, CRP [23]

The short-time energy spectrum is computed and
summed appropriately to form each pitch class. Fur-
thermore statistical derivatives are computed to dis-
card timbre-related information.

12
12
12

Sonogram (Sono)

Short-time spectrum filtered using an outer-ear model
and scaled using the critical-band rate scale. An
inner-ear model is applied to compute cochlea spec-
tral masking.

23

Pulse clarity [16]
Ease of the perception by listeners of the underlying
rhythmic or metrical pulsation in music.

7

Loudness [22] Loudness is the energy in each critical band. 24

Spectral descrip-
tors (sd) [22] (sd2)
[17]

Short-time spectrum is described by statistical mea-
sures e.g., flux, roll-off, slope, variation, etc.

9
15

Mode, key, key
strength [17]

Major vs. Minor, tonal centroid and tonal clarity.
10

Tempo [17]
The tempo is estimated by detecting periodicities on
the onset detection curve.

2

Fluctuation Pat-
tern [17]

Models the perceived fluctuation of amplitude-
modulated tones.

15

Pitch [23]
Audio signal decomposed into 88 frequency bands
with center frequencies corresponding to the pitches
A0 to C8 using an elliptic multirate filterbank.

88

Roughness [17] Roughness or dissonance, averaging the dissonance
between all possible pairs of peaks in the spectrum.

2

Spectral Crest fac-
tor [22]

Spectral crest factor per log-spaced band of 1/4 oc-
tave.

23

Echonest Timbre Proprietary features to describe timbre. 12

Echonest Pitch
[17]

Proprietary chroma-like features.
12
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Table 5. Valence: Classification error learning curves as an average of 50 repetitions
and 13 individual user models, using both mean and standard deviation of the features.
McNemar test between all points on the learning curve andBaselow resulted in p < 0.05
for all models except results marked with *, with a sample size of 12.350.

Training size 5% 7% 10% 20% 40% 60% 80% 100%

MFCC 0.4904 0.4354 0.3726 0.3143 0.2856 0.2770 0.2719 0.2650
Envelope 0.3733 0.3545 0.3336 0.3104 0.2920 0.2842 0.2810 0.2755
Chroma 0.4114* 0.3966* 0.3740 0.3262 0.2862 0.2748 0.2695 0.2658
CENS 0.4353 0.4139 0.3881 0.3471 0.3065 0.2948 0.2901* 0.2824
CRP 0.4466 0.4310 0.4111 0.3656 0.3066 0.2925 0.2876 0.2826
Sonogram 0.4954 0.4360 0.3749 0.3163 0.2884 0.2787 0.2747 0.2704
Pulse clarity 0.4866 0.4357 0.3856 0.3336 0.3026 0.2930 0.2879 0.2810
Loudness 0.4898 0.4310 0.3684 0.3117 0.2854 0.2768 0.2712 0.2664
Spec. disc. 0.4443 0.4151 0.3753 0.3263 0.2939 0.2857 0.2827 0.2794
Spec. disc. 2 0.4516 0.4084 0.3668 0.3209 0.2916 0.2830 0.2781 0.2751
Key 0.5303 0.4752 0.4104 0.3370 0.2998 0.2918 0.2879 0.2830*
Tempo 0.4440 0.4244 0.3956 0.3559* 0.3158 0.2985 0.2933 0.2883
Fluctuations 0.4015 0.3584 0.3141 0.2730 0.2507 0.2433 0.2386 0.2340
Pitch 0.4022 0.3844 0.3602 0.3204 0.2926 0.2831 0.2786 0.2737
Roughness 0.4078 0.3974 0.3783 0.3313 0.2832 0.2695 0.2660 0.2605
Spec. crest 0.4829 0.4289 0.3764 0.3227 0.2994 0.2942 0.2933 0.2923
Echo. timbre 0.4859 0.4297 0.3692 0.3127 0.2859 0.2767 0.2732 0.2672
Echo. pitch 0.5244 0.4643 0.3991* 0.3275 0.2942 0.2841 0.2790 0.2743
Baselow 0.4096 0.3951 0.3987 0.3552 0.3184 0.2969 0.2893 0.2850

said to describe timbre. Including both mean and variance of the features showed
different performance for the different features, therefore the best performing for
valence and arousal was chosen resulting in both mean and variance for valence
and only mean for arousal.

The learning curves showing the predictive performance on unseen compar-
isons on the arousal dimension are shown in Table 6. The single best performing
feature, using the entire training set is Loudness resulting in an error rate of
0.1862. Here a picture of pitch and timbre related features seem to show a good
level of performance.

Using a simple forward feature selection method. the best performing combi-
nation of features for valence are fluctuation pattern, spectral crest flatness per
band, envelope statistics, roughness, CRP and Chroma resulting in an error of
0.1960 using the mean of the features. It should be noted that using only the
4 first produces an error of 0.1980. For arousal the best performing combina-
tion was Spectral descriptors, CRP, Chroma, Pitch, Roughness and Envelope
statistics using mean and standard deviation of the features results in an error
of 0.1688. All models trained for predicting valence and arousal are tested with
McNemar’s paired test against the Baselow, with the Null hypothesis that two
models are the same, all resulted in p < 0.05 rejecting the Null hypothesis of
being equal at a 5% significance level.
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Table 6. Arousal: Classification error learning curves as an average of 50 repetitions
and 13 individual user models, using only the mean of the features. McNemar test
between all points on the learning curve and Baselow resulted in p < 0.05 for all
models except results marked with *, with a sample size of 12.350.

Training size 5% 7% 10% 20% 40% 60% 80% 100%

MFCC 0.3402 0.2860 0.2455 0.2243 0.2092 0.2030 0.1990 0.1949
Envelope 0.4110* 0.4032 0.3911 0.3745 0.3183 0.2847 0.2780 0.2761
Chroma 0.3598 0.3460 0.3227 0.2832 0.2510 0.2403 0.2360 0.2346
CENS 0.3942 0.3735 0.3422 0.2994 0.2760 0.2676 0.2640 0.2621
CRP 0.4475 0.4336 0.4115 0.3581 0.2997 0.2790 0.2735 0.2729
Sonogram 0.3325 0.2824 0.2476 0.2244 0.2118 0.2061 0.2033 0.2026
Pulse clarity 0.4620 0.4129 0.3698 0.3281 0.2964 0.2831 0.2767* 0.2725
Loudness 0.3261 0.2708 0.2334 0.2118 0.1996 0.1944 0.1907 0.1862
Spec. disc. 0.2909 0.2684 0.2476 0.2261 0.2033 0.1948 0.1931 0.1951
Spec. disc. 2 0.3566 0.3223 0.2928 0.2593 0.2313 0.2212 0.2172 0.2138
Key 0.5078 0.4557 0.4059 0.3450 0.3073* 0.2959 0.2926 0.2953
Tempo 0.4416 0.4286 0.4159 0.3804 0.3270 0.3043 0.2953 0.2955
Fluctuations 0.4750 0.4247 0.3688 0.3117 0.2835 0.2731 0.2672 0.2644*
Pitch 0.3173 0.2950 0.2668 0.2453 0.2301 0.2254 0.2230 0.2202
Roughness 0.2541 0.2444 0.2367 0.2304 0.2236 0.2190 0.2168 0.2170
Spectral crest 0.4645 0.4165 0.3717 0.3285 0.2979 0.2866* 0.2828 0.2838
Echo. timbre 0.3726 0.3203 0.2797 0.2524 0.2366 0.2292 0.2258 0.2219
Echo. pitch 0.3776 0.3264 0.2822 0.2492 0.2249 0.2151 0.2089 0.2059
Baselow 0.4122 0.3954 0.3956 0.3517 0.3087 0.2879 0.2768 0.2702

4.2 Subjective Variation

By letting multiple test participants rate the same musical excerpts and model
these responses individually we can explore the subjective differences in greater
detail.

Learning Curves
To evaluate the differences between subjects in how well the model predicts their
pairwise comparisons, the LOEO learning curves for each individual are shown
in Fig. 2. The Baselow and Baseupper described in Sect. 2.4 are shown, which
indicate the window in which the proposed model is expected to perform. In
Fig. 2(b) the individual learning curves are shown, computed by using the best
performing combination of features as mentioned in Sect. 4.1. The difference in
performance between the average of all individual models and the Baseupper is
0.0919. Compared to the Baselow we see a difference of 0.0982, showing a large
improvement. The models trained in the data for participants 6 and 7 results
in a classification error of 0.2553 and 0.2526 respectively, compared with the
average of 0.1688 for the arousal dimension. Post-experiment ratings show that
participant 6 rated a low rating of understanding and appropriateness of the
scales of 0.3033 and 0.3172 respectively, although participant 7 rated a high un-
derstanding. In Fig. 2(a) the individual learning curves for the valence dimension
are shown. Participants 1 and 5 have an error rate when using the whole training
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Fig. 2. Individual classification error learning curves; Dashed black lines: individually
trained models, Bold black crosses: average across individual models

set of 0.2421 and 0.2447 respectively compared to the average of 0.2257. Partici-
pant 5 rated in the post questionnaire a lack of understanding of the scales used
in the experiment and furthermore did not find them appropriate. Participant 1
on the other hand did not rate any such lack of understanding. To investigate if
there is an underlying linear connection between the models’ classification error
and the participants’ post-questionnaire ratings, simple correlation analysis was
made for all questions, a correlation of 0.13 for the appropriateness of the scales
and the arousal was found and even less for the other questions, so no significant
correlation was found. Comparing the average performance of the individual
models and Baseupper , the difference in performance is 0.1109 using the whole
training set. Furthermore comparing it to Baselow the difference in performance
is 0.0887, showing an improvement of using audio features compared to only
using comparisons.

AV Space
The Gaussian Process framework can, given the features, predict the pairwise
comparisons given by each participant on unseen excerpts. This on the other
hand does not necessarily mean that participants’ rankings of excerpts on the
dimensions of valence and arousal are the same, which was investigated in pre-
vious work [20]. These variations in rankings of excerpts between subjects are
visualized in the AV space on Fig. 3 using the method mentioned in Sect. 2.4. Ex-
cerpts 5, 2, 7, 9 and 20 in the low-valence low-arousal quadrant of the AV space
show a relatively low variation in ranking, both in the dimension of valence and
arousal, whereas the excerpts in the low-valence high-arousal quadrant, namely
excerpts 12 and 15, have a high variation in both dimensions. It is evident that
participants agree on the ranking of some excerpts and fundamentally disagree
on some.
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Fig. 3. Variation in ranking of excerpts in the valence and arousal space. Solid lines:
5% percentile, dashed line 50% percentile. Number refers to Table 2.

4.3 Reducing the Number of Required Comparisons

In this section we investigate how the model performs using only a fraction
of available comparisons in predicting comparisons for unseen excerpts and to
visualize the subsequent change in ranking of excerpts in the AV space.

Learning Curves
We investigate howmany comparisons are needed to obtain a predictive model us-
ing LOEO learning curves. The traditional method of selecting a comparison in an
experimental setup is simply to choose one at random fromthe comparisonsdefined
by the experiment. This was the procedure in the listening experiment described in
Sect. 3. But on the other hand this might not be the optimal way of choosing what
comparisons should be judged by participants. Thereforewe simulate if these com-
parisons can be chosen in alternative ways that can potentially improve the per-
formance and decrease the number of comparisons needed to obtain a predictive
model. As described in Sect. 2.3 we compare the procedure of using random se-
lection of comparisons and the EVOI and VOI model. On Fig. 4 we see the three
methods in detailed learning curveswith aMcNemar paired test between themodel
selecting comparisons at random and the EVOI and VOI models. The largest per-
formance gains using the sequential design method EVOI are seen on the valence
dimension using 4% of the training data, improving 0.105 and for arousal at 2.5%
improving 0.106. Visually it is apparent that the EVOImodel produces the largest
improvement compared to selecting comparisons randomly. The difference after
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Fig. 4.Classification error learning curves comparing the EVOI, VOI and Rand models.
The secondary graph below the learning curves shows filled squares when p > 0.05 and
white when p < 0.05 using the McNemar’s paired test. The test is performed between
the the Rand model and the two EVOI and VOI.

10% of the training data is 0.041 decreasing to 0.015 at 20% with the same perfor-
mance gain until 40%and gain in performance is obtained until all comparisons are
judged for the valence dimension. On the arousal dimension the improvement after
4 comparisons is 0.104 and from 10% to 50% an improvement is achieved around
0.015 and 0.010. For arousal the VOImodel improves the performance around 0.08
in the beginning of the learning curve at around2-3%.Using 20%of the training set
and above, selecting comparisons at random results in a better performance than
selecting with the VOI model for arousal.

To evaluate the number of comparisons needed to obtain a predictive model we
set a 95% performance threshold, using the entire training set. The EVOI model
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Fig. 5. AV space visualizing the change in ranking of the models trained on a fraction
of available comparisons. EVOI model trained on 15.20% and 8.77% of the training set,
VOI model trained on 21.64% and 14.04% and model selecting comparisons randomly
(Rand) on 23.39% and 15.79% for valence and arousal respectively. Numbers refer to
Table 2. Method of visualization in the AV space is described in Sect. 2.4.

achieves this performance corresponding to 0.2362 using only 15.2%of the training
set, whereas the VOImodel reaches this level using 21.64% andwith random selec-
tion at 23.39% for the valence dimension. On the arousal dimension, the threshold
performance corresponds to an error rate of 0.2104, choosing comparisons at ran-
dom the model reaches this 95% performance level at 15.79% of the comparisons
in the training set, the VOI model at 14.04% and the EVOI at 8.77%.

AV Space
Using a threshold we ensure that we reach a certain predictive performance,
the consequence this has on the ranking of the excerpts in the AV space on the
other hand could potentially be dramatic. Therefore we visualize the ranking of
excerpts using the threshold discussed in the last section. The reference point
to compare the change in rankings is the model trained on all comparisons for
each subject individually. The rankings are visualized in the AV space on Fig. 5.
Judging by the position of the excerpts in the AV space, the change in ranking
is relative small, although on some excerpts the ranking does change, using the
95% performance threshold ensures that we have a good predictive performance
and still reach the final ranking.
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5 Discussion

The results clearly indicate that it is possible to model expressed emotions in
music by directly modeling pairwise comparisons in the proposed Gaussian pro-
cess framework. How to represent music using structural information is a key
issue in MIR and the field of MER. In this work we use audio features and the
optimal combination is found using learning curves and forward-feature selec-
tion. On the data set deployed, we find the gain of using audio features to predict
pairwise comparisons on the dimensions of valence and arousal is 0.09 and 0.10,
respectively. To make this comparison it is essential to have a proper baseline
model which we introduce using the novel baseline Baselow. The baseline makes
predictions solely by looking at the comparisons, and by disregarding any other
information. The baseline performs similarly to a model with σl → 0, resulting in
no correlation between any excerpts as mentioned in Sect. 2.2. We can therefore
ensure that we do capture some underlying structure represented in the music
excerpts that describes aspects related to the expressed emotions in music.

Furthermore we observe a small gain in performance on the learning curves
when including more comparisons for prediction. One aspect could be attributed
to the pairwise comparisons, but the Baseupper shows a very high performance,
and given the flexibility of the GP model, it is plausible that this lower perfor-
mance can be attributed to the audio feature representation.

The issue of scalability is addressed in the present work by investigating the
possibility of using multiple participants to make judgments on subsets of a
larger data set, and subsequently pooling this data to obtain one large data set.
This is investigated by having 13 subjects make comparisons on the same data
set and training individual models on their comparisons. The GP framework
can model each individual well, although a few models show a relatively higher
error rate than others. These can be attributed to lack of understanding of the
experiment, scales and appropriateness of scales. Although no clear connection
can be attributed solely to the post-questionnaire answers by participants as
investigated by using simple correlation analysis. Either they reported incorrectly
or the model and features do not capture their interpretation of the experiment.
If one used comparisons from these subjects it could increase the noise in the
larger data set. When visualizing the ranking in the AV space, as investigated in
previous work, we furthermore see a large subjective difference in both valence
and arousal for some excerpts. Even though individual models are trained, the
difference in rankings would make the solution to the scalability of the 2AFC by
pooling subsets of data sets problematic at best.

An alternative method in making 2AFC scalable for evaluating large music
collections is to reduce the number of pairwise comparisons, which we investi-
gate by detailed learning curves. The full Bayesian active-learning method EVOI
shows the ability of potentially substantially reducing the required number of
comparisons needed to obtain a predictive model down to only 15.2% of the
comparisons for valence, resulting in 1.3 comparisons per excerpt, and 8.77%,
resulting in 0.75 comparisons per excerpt. Although this result is obtained by
sampling from the experimental data, the results are promising. Future work can
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look into the performance achieved by following the active learning principle ap-
plied in the experimental design. In addition, more efficient methods of relative
experimental designs should be investigated to obtain multiple pairwise compar-
isons and still preserving the robustness that the 2AFC provides. Furthermore,
based on the findings in present work, more extensive work should be done to
find features or representations of features that describe and capture the aspects
that express emotions in music.

6 Conclusion

We introduced a two-alternative forced-choice experimental paradigm for quan-
tifying expressed emotions in music along the well-accepted arousal and valance
(AV) dimensions. We proposed a flexible probabilistic Gaussian process frame-
work to model the latent AV dimensions directly from the pairwise comparisons.
The framework was evaluated on a novel data set and resulted in promising
predictive error rates. Comparing the performance of 18 different selections of
features, the best performing combination was used to evaluate scalability issues
related to the 2AFC experimental paradigm. The possibility of using multiple
subjects to evaluate subsets of data, pooled to create a large data set was shown
to potentially be problematic due to large individual differences in ranking ex-
cerpts on the valence and arousal dimensions. Furthermore, the scalability of the
2AFC and the possibility of using only a fraction of all potential pairwise com-
parisons was investigated. By applying the active learning method, Expected
Value of Information, we showed that a suitable predictive model for arousal
and valence can be obtained using as little as 9% and 15% of the total number
of possible comparisons, respectively.
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Abstract. While the organization of music in terms of emotional affect
is a natural process for humans, quantifying it empirically proves to be
a very difficult task. Consequently, no acoustic feature (or combination
thereof) has emerged as the optimal representation for musical emo-
tion recognition. Due to the subjective nature of emotion, determining
whether an acoustic feature domain is informative requires evaluation
by human subjects. In this work, we seek to perceptually evaluate two
of the most commonly used features in music information retrieval: mel-
frequency cepstral coefficients and chroma. Furthermore, to identify
emotion-informative feature domains, we explore which musical features
are most relevant in determining emotion perceptually, and which acous-
tic feature domains are most variant or invariant to those changes. Finally,
given our collected perceptual data, we conduct an extensive computa-
tional experiment for emotion prediction accuracy on a large number of
acoustic feature domains, investigating pairwise prediction both in the
context of a general corpus as well as in the context of a corpus that is
constrained to contain only specific musical feature transformations.

Keywords: emotion, music emotion recognition, features, acoustic
features, machine learning, invariance.

1 Introduction

The development of methods for automatic recognition of emotion in music
is a topic of growing attention within the music information retrieval (Music-
IR) research community [12,1]. While there has been much progress in machine
learning systems for estimating human emotional response to music, very little
progress has been made in terms of compact or intuitive feature representa-
tions. Current methods generally focus on combining several feature domains
(e.g., loudness, timbre, harmony, rhythm), in some cases as many as possible,
and performing dimensionality reduction techniques such as principal component
analysis (PCA). Overall, these methods have not sufficiently improved perfor-
mance and have done little to advance the field.
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In previous work, we looked closely at two of the most commonly used features
in Music-IR: mel-frequency cepstral coefficients (MFCCs) and chroma [20]. The
perceptual salience (or informativeness) of the two features was investigated us-
ing Amazon’s Mechanical Turk1 (MTurk) to analyze the relative emotion of two
song clips, comparing human ratings of both the original audio and audio recon-
structions from these features. By analyzing these reconstructions, we sought to
directly assess how much information about musical emotion is retained in these
features. Reasonably high agreement was found between original audio and re-
construction pairs, indicating emotional salience does exist to some degree within
those domains. However, these types of experiments are limited to feature do-
mains that allow reconstruction, and most do not. To address those challenges,
we proposed identifying musical parameter invariances (e.g., key, mode, tempo)
and relating them to feature space invariances. To this end, we ranked features in
terms of their variance with respect to musical parameter shifts based on audio
rendered from MIDI transformations of key, mode and tempo.

This new work expands on the previous experiments in several new directions.
First, we employ a new metric for comparing the relative tempi of different
pieces of music and create a new pair dataset that ensures an even distribution
of musical parameters (e.g., key, mode, tempo) with a significantly increased
number of pairs. We also analyze these results in terms of a variety of categorical
and demographic types: gender, age, musical training, music listening habits and
country.

Investigating invariance to musical parameters, we introduce a new perceptual
evaluation asking human listeners to rate pairwise shifts of musical parameters on
the same song. These experiments serve two main purposes. First, they provide
the ability to more closely evaluate the perceptual weight of musical parameters
by analyzing the relative ranking of MIDI generated audio. Second, we use the
rankings to see if the relative changes are present in the feature domains as well.

Given our collected data on the weight of musical parameters in determining
musical emotion, we seek to develop computational methods for selecting fea-
tures. In order to properly assess a large variety of features, we investigate the
features used in our perceptual study reconstructions, features used in our prior
work [21,18,17,19] and 14 additional features from the MIRtoolbox 2. These ex-
periments are supported by a supervised machine learning task using a ranking
based support vector machine classifier. In this problem, we predict the relative
emotion between clips that were annotated in the first experiment.

In investigating feature salience, we seek to provide further insight into how
to properly validate the feature domains used in music emotion recognition. By
analyzing invariances, we hope to inform approaches that develop feature repre-
sentations specifically optimized for the prediction of emotion. Combining these
results, we provide a more grounded approach to feature selection in general.

1 http://mturk.com
2 http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/

mirtoolbox

http://mturk.com
http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
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2 Background

This background section is dedicated to prior work on the relationships between
musical parameters and emotion and to the use of Amazon’s Mechanical Turk
for human data collection. For an in-depth review on music emotion recognition
the interested reader is referred to [12,1].

2.1 Perception of Emotion and Music Theory

A musical piece is made up of a combination of different attributes such as key,
mode, tempo and instrumentation. While no single attribute fully describes a
piece, each contributes to the listener’s perception of the music. While these
compositional parameters alone are not the sole contributors to the emotion
in music (others include expression, performance style, etc.), they are easy to
both measure and control when using symbolic data. The ability to measure and
control these parameters facilitates more grounded studies of human judgments
of emotional affect in music which are very subjective in nature [11].

Several independent experiments in psychology have looked at users’ responses
as they relate to musical attributes [7,16,26]. When discussing emotion, happy
versus sad temperament is referred to as valence and higher versus lower intensity
is referred to as arousal [25]. Mode and tempo have been shown to consistently
elicit a change in perceived emotion. Mode is the selection of notes (scale) that
form the basic tonal substance of a composition, and tempo is the speed of a
composition [15]. Research shows that major modes tend to elicit happier emo-
tional responses, while the inverse is true for minor modes [26,5,3,6]. Tempo also
determines a user’s perception of music, with higher tempi generally inducing
stronger positive valence and arousal responses [16,26,5,3,4].

2.2 Mechanical Turk

Mechanical Turk (MTurk) is a service provided by Amazon to hire people to
perform tasks online. Using MTurk’s Human Intelligence Tasks (HITs), it is
possible to obtain human judgements on almost any task for a small fee. These
tasks are open to anyone on the web and therefore provide the ability to collect
large amounts of data over a short period of time.

MTurk Workers
A recent study on the demographics of MTurk workers (Turkers) has indicated
that respondents tend to be reasonably well-educated and most frequently lo-
cated in the United States [8]. The study found that 62.8% of respondents had
attained at least a four year college degree. Respondents were located in 66 coun-
tries, with the highest percentages in the US at 46.8% and India at 34%. Among
US respondents, the majority were women (70%), and 65% had a household
income below $60,000.
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MTurk in Music-IR
The natural language processing (NLP) [22] and machine vision [27,23] commu-
nities have utilized MTurk extensively, but machine listening and Music-IR have
just started to adopt its use. Lee found crowdsourcing music similarity judg-
ments on MTurk to be less time-consuming than collecting data from experts in
the research community [13]. Their experiment cost $130.90 and produced 6,732
similarity judgements, less than $0.02 per rating. HITs were rejected if work-
ers rated songs too quickly or failed to assign high similarity to identical songs.
While nearly half of all HITs were rejected, the dataset was obtained an order of
magnitude more quickly than their previous attempts. Comparing the datasets
yields a Pearson’s correlation coefficient of 0.495, consistent with previous NLP
work involving MTurk [22]. As the previous data collection was assembled for
MIREX, Lee returned the submitted systems using MTurk data as ground truth
and found no significant alterations to the outcome, scoring a 5.7% difference on
the Friedman test.

Mandel et al. employed MTurk for collecting free form tags to study rela-
tionships between audio tags and content [14]. The group collected 2,100 unique
tags across 925 clips, for a reported cost of approximately $100. To ensure data
quality, they rejected a HIT if any tag had more than 25 characters, if less than
5 tags were provided or if less than half of tags were contained in a dictionary of
commonly applied tags (Last.fm). All HITs by a particular worker were rejected
if the worker used too small a vocabulary, if they used more than 15% “stop
words” (e.g., “music” or “nice”) or if half of their individual HITs were rejected
for other reasons. The authors then trained a support vector machine (SVM)
classifier for content-based autotagging. With smoothed labels, the MTurk ver-
sion increased performance to 63.4% versus 63.09% with MajorMiner.

3 Constructing an Annotation Task for Perceptual
Evaluation of Acoustic Features

MFCCs have been shown in previous work to be one of the most informative
feature domains for music emotion recognition [21,18,17,19], but as MFCCs were
originally designed for speech recognition, it is unclear why they perform well
or how much information about emotion they actually contain. To evaluate the
efficacy of common Music-IR features for modeling and predicting emotion in
music, we present an annotation task where users rank short audio clips in
terms of valence and arousal. The participant is presented with a web page that
contains four clip pairs with one such pair depicted in Fig. 1. The user must
select which song is ‘happier’ and which song is ‘more intense’ for the given pair.
They are presented with a total of five clips per page and can listen to each
clip as many times as they wish. The participants can also change their answers
as many times as they choose prior to submission. Once they leave the page,
they cannot return to change their annotations. Upon submission, the user is
presented with a new page containing a different version of the same clip pairs.
There are three pages, one for each set of audio types. The presentation of the
clip pairs is listed in Table 1.
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Song A Song B

Song A is happier

Song A is more intense

Song B is happier

Song B is more intense

Fig. 1. An example of a single comparison in the annotation task

Table 1. Mechanical Turk HIT page ordering for clip pair presentation

Feature Type Presentation Order

MFCC Reconstruction First
Chroma Reconstruction Second
Original Audio Last

The participants are always comparing chroma reconstructions to chroma re-
constructions, MFCC reconstructions to MFCC reconstructions or original audio
to original audio. Subjects never compare a reconstruction to the original audio.
The participants are presented with MFCCs first and original audio last since
it is possible to discern what song the reconstruction is after listening to the
original audio. We do not want people’s familiarity with the original audio to
influence their rating of the reconstruction clips. This is important due to the
level of awareness many people have with our corpus, which consists of songs
chosen from the Beatles catalog (see Sect. 3.1).

3.1 Dataset

Since we are studying changes in the acoustic feature domain, we require samples
that can be easily manipulated in terms of key, mode and tempo. These trans-
formations are most easily performed using symbolic MIDI data, which can be
rendered using an instrument library to create audio files. Our dataset consists
of 59 Beatles MIDI files obtained from EarlyBeatles3, spanning 9 albums from
the Beatles discography. There are 23 minor key songs and 36 key major songs
in the dataset, and the tempi range from 75 bpm to 224 bpm.

The MIDI files contain arrangements for many instruments including voice,
piano, guitar, bass, drums and percussion. In order to normalize instrumen-
tation, the unpitched instruments (drums and percussion) are removed. All of
the remaining voices are rendered to audio using the grand piano included in
the Garritan Personal Orchestra4 sample library. Chroma features are extracted
and reconstructed using Dan Ellis’ chroma features analysis and synthesis code5,

3 http://earlybeatles.com/
4 http://www.garritan.com/
5 http://www.ee.columbia.edu/~dpwe/resources/matlab/chroma-ansyn/

http://earlybeatles.com/
http://www.garritan.com/
http://www.ee.columbia.edu/~dpwe/resources/matlab/chroma-ansyn/
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and MFCCs using his rastamat6 library. The MFCC reconstructions sound like
a pitched noise source, and the chroma reconstructions have an ethereal ‘warbly’
quality to them but sound more like the original audio than the MFCC recon-
structions (examples are available online7). For each song, we select a 15 second
clip that does not exhibit any significant change between the start and end of
the clip.

3.2 Song Pair Selection Based on Musical Attributes

An important factor in the design of our experiment is the inclusion of control
groups for the parameters that we wish to evaluate, namely tempo and mode.
We generate 250 pairings broken up into five groups (50 pairs each), as shown
in Table 2.

Table 2. The five possible combinations of mode and tempo are shown. Note there
are no Major/Minor pairings of different tempi.

Pair Song A Song B Tempo Number of
Class Mode Mode Similarity Pairs

1 Major Major Different 50
2 Major Major Similar 50
3 Minor Minor Different 50
4 Minor Minor Similar 50
5 Major Minor Similar 50

In each of the categories, one compositional attribute (tempo/mode) is varied
over the set, while the other remains constant. For the major-minor pairs, we
require songs to have similar tempi, and we do not create pairs that differ in
mode and tempo simultaneously. For like-mode comparisons (major-major and
minor-minor), the pairs are separated into two groups by tempo. Additionally,
we constrain the pairings to be approximately uniformly distributed over the
available number of songs. The number of major and minor songs in the dataset,
as well as the unequal distribution of tempo across all of the song clips, results
in some songs occurring in more pairs than others.

Average Inter-Onset-Interval (AIOI) Constraint
Two songs can be perceived as having different rhythmic pulses even if they are
at the same tempo. A song played at a faster tempo with longer note values can
feel slower than a song played at a slower tempo with shorter note values. This
concept is illustrated in Fig. 2, where the tempo and average inter-onset-interval
are both shown.

6 http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/
7 http://music.ece.drexel.edu/research/emotion/invariance

http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/
http://music.ece.drexel.edu/research/emotion/invariance
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Fig. 2. Example of average inter-onset-interval calculations for two sequences. The top
example has a slower tempo (120 bpm) but sounds faster due to the prominence of
shorter note values. A lower average inter-onset-interval means the clip sounds faster.

The AIOI is computed for all clips in the dataset and used to inform pair
selection according to the five groups outlined at the beginning of the section.
For a given seed clip, k, we compute the absolute difference between the AIOI
of the seed clip and the AIOI of all other clips. If we treat the set of distances
between the seed clip and all other clips asN (μk, σ

2
k), we describe all clips within

μk ± 3
8σk as similar and all clips beyond the range μk ± 7

4σk as different. The
coefficients for the standard deviation were found empirically by adjusting the
parameters to avoid having songs over-represented in the dataset. From the pool
of possible pairs, we select clips to avoid over-representation in the dataset as
much as possible. Due to the distribution of AIOI in the dataset, some song
clips have very few pair candidates. For instance, a very fast song will have few
candidate songs that are also very fast, limiting the number of possible pairs.
This difficulty is compounded by the restriction of pairing by major/minor mode
as well. We set a hard maximum of 15 occurrences for a clip appearing in one of
the five pair types. A histogram showing the number of times each song is used
in a pair is shown in Fig. 3.

4 Mechanical Turk Annotation Task

To annotate our clip pairs, we use the Mechanical Turk online crowd-sourcing
engine to gain input from a wide variety of subjects [24]. In our Human Intel-
ligence Task (HIT), we ask participants to listen to four clip pairs. For each
pair, they are required to label which song clip exhibits more positive emotion
and which song clip is more intense. The three categories of audio sources are
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Fig. 3. Number of times each song clip is used in the dataset (250 pairs total)

presented on three separate pages, with MFCC reconstructions first, chroma re-
constructions next and the original audio pairs last. Subjects never compare a
reconstruction to the original audio.

In addition to the valence and arousal labels, we collect demographic infor-
mation from the participants as well as details about their listening habits and
musical training. The demographic and categorical fields are listed below:

– Age
– Gender
– Country

– Musical Training
– Listening Time

Although Mechanical Turk provides a platform to gather a large amount of
data rather quickly and in a scalable manner, there are inherent difficulties in
verifying whether a subject fully understands the task. We therefore employ a
set of rejection criteria for the trials completed by each user, as well as some
restrictions in the functionality of the task itself.

The first constraint is the time it takes a participant to complete the task.
There are ten 15-second clips per page for a total of 150 seconds, and we require
a participant to spend at least 90 seconds on the page or else they are pre-
vented from completing the task. This ensures that the participant has listened
to enough of each clip to make a rating of valence and arousal.

For each HIT, we randomly select a clip to repeat as a means of verification. If
a user labels the duplicated verification clip differently during the round with the
original audio, their data is removed from the dataset. We experimented with
rejecting the user if they labeled any of the verification (MFCC and chroma
reconstructions included) clips differently, but this constraint proved to be too
stringent. This is due to the ambiguous nature of the reconstructed clips. Par-
ticipants are allowed to complete many HITs with each HIT containing pairs
randomly selected from the database. If we reject more than 5 of a user’s at-
tempts at a HIT, we reject all of that user’s HITs.
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5 Perceptual Evaluation of Acoustic Features

In this first experiment, we evaluate the information retained in the most ubiq-
uitous features used throughout the Music-IR community, MFCCs and chroma.
A participant labels the same clip pair three times, once for the MFCC recon-
struction, once for the chroma reconstruction and once for the original MIDI
rendering. After applying the rejection criteria outlined above, we reject 6,294 of
14,850 labels, yielding a total of 11.41±3.39 labels per clip pair with a maximum
of 22 labels and a minimum of 7 labels per pair.

In [20], we calculated the normalized difference error between the original
audio and each feature reconstruction. For each pair and for each audio type, we
compute the ratio of subjects that rated clip A as more positive (valence) and
the ratio that labeled clip A as more intense (arousal),

ρvalence =
1

N

N∑
n=1

�{An = HigherValence}, (1)

ρarousal =
1

N

N∑
n=1

�{An = HigherArousal}, (2)

where N is the total number of annotations for a given pair, ρvalence is the
ratio of annotators that labeled clip A as higher valence, and ρarousal is the
ratio of annotators that labeled clip A as higher arousal. We then compute the
absolute difference between ρvalence for the original clips and ρvalence for the
reconstructions and similarly for arousal. The mean absolute difference error
across all songs for the data in [20] and the new dataset is shown in Table 3.

Table 3. Normalized difference error between the valence/arousal ratings for the
reconstructions versus the originals

Normalized Difference Error
Experiment Audio Source Valence Arousal

Past [20]
MFCC Reconstructions 0.133 ± 0.094 0.104 ± 0.080
Chroma Reconstructions 0.120 ± 0.095 0.121 ± 0.082

Current
MFCC Reconstructions 0.189 ± 0.155 0.190 ± 0.138
Chroma Reconstructions 0.160 ± 0.144 0.162 ± 0.124

Previously, we used each song only once in the pair generation process and
did not enforce tempo constraints on the clip pairs. In this experiment, we have
control groups for both tempo and mode and allowed each song to be used
multiple times in order to create the control groups. We collect data in a pairwise
fashion, where each participant labels the same clip pair for both reconstruction
types as well as the original audio. We can now directly compute the difference in



Analyzing the Perceptual Salience of Audio Features 287

Table 4. Ratio of labels that were maintained between listening to the original audio
and the reconstructed feature audio

Valence Arousal
Audio Type Agreement Agreement

Original → Chroma 0.625 0.567
Original → MFCC 0.599 0.563

valence and arousal labels between the original audio and reconstructed feature
audio. In Table 4, we show the results of this analysis where we compute,

αvalence =
1

L

L∑
l=1

�{V (original)
l = V

(reconstruction)
l }, (3)

αarousal =
1

L

L∑
l=1

�{A(original)
l = A

(reconstruction)
l }, (4)

where L is the total number of pairwise annotations in the dataset and V and
A represent valance and arousal respectively. We notice a significant decrease in
the rating consistency between the original audio and reconstructed audio. This
is due to the fact that modeling the difference as in Equation 1, the participants
who change their label from song A to song B and those who change from song
B to song A would cancel out.

5.1 Information Retained in Reconstructions

In Table 4, we observe that more people maintain their valence ratings for the
chroma reconstructions than for the MFCC reconstructions. Listening to the
audio clips, it is evident that there is more tonal information in the chroma
reconstructions than in the MFCC reconstructions. This is the most likely rea-
son that there is more correlation with the chroma reconstructions than the
MFCCs. However, the ratios are rather close and overall fairly low, indicating
that rhythmic information, which is still perceptible in the MFCC and chroma
reconstructions, may be more important than tonal information.

We do not have any measurements of rhythmic information beyond tempo
or AIOI as it is very difficult to quantify the rhythmic feel of a piece. Accents,
syncopation and other attributes of rhythm are still somewhat present in both
reconstruction types. This suggests that features that represent higher level char-
acteristics like groove or feel, rather than the speed or rate at which a piece is
played, would be informative about emotional affect. These ideas are further
explored in Sect. 7.

5.2 Demographic and Musical Categories

We also analyze the retention of the labels based on demographic information
and musical experience (Table 5). It is first important to note that the data
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Table 5. Ratio of labels that were maintained between listening to the original au-
dio and the reconstructed feature audio broken down by demographic and musical
categories

Valence Arousal

Category Range People Chroma MFCC Chroma MFCC

Gender
Male 140 0.627 0.556 0.598 0.573
Female 148 0.614 0.571 0.585 0.547

18-25 90 0.592 0.551 0.566 0.536

Age
(Years)

26-35 118 0.600 0.561 0.569 0.561
36-45 47 0.679 0.574 0.643 0.548
46-55 32 0.680 0.607 0.657 0.610
over 55 12 0.680 0.600 0.620 0.660

Musical Training
(Years)

None 87 0.641 0.597 0.595 0.583
Less than 5 143 0.576 0.551 0.568 0.563
More than 5 27 0.707 0.570 0.693 0.543

Listening Time
(Hours)

Less than 1 74 0.642 0.550 0.616 0.571
1-2 123 0.620 0.569 0.581 0.543
More than 2 89 0.616 0.583 0.591 0.596

Country
India 184 0.593 0.534 0.561 0.542
USA 62 0.682 0.584 0.682 0.591

collected from Mechanical Turk is noisy, even after applying the constraints
detailed in Sect. 4. There are some participants that have multiple demographic
values associated with their unique identifier. In computing the values in Table
5, we remove any users who are not consistent in their responses for any of the
attributes in the category column.

The trend of more ratings being maintained between chroma/original ratings
than MFCC/original ratings for valence remains true over almost all categories.
The tendency to retain the same valence rating between original and recon-
structed clips increases with age for both chroma and MFCCs. While there is
not a definite trend in respondents’ level of musical training, one result does
stand out. Those who have more than five years of training are more consistent
in rating the chroma reconstructed clips than any others. Here, they may be
latching on to harmonic and melodic cues that are present, but very distorted,
in the chroma reconstructions.

Participants were asked to provide their country of residence, with most par-
ticipants being from India or the United States. Other countries are not listed
due to the limited number of participants residing in those nations. The ratio
of people who changed their ratings for chroma/original pairs is significantly
higher for those from the United States than those from India, while the ratings
on MFCC reconstructions are very similar. This may be due to the difference
in tonal organization between non-Western and Western music, especially since
chroma provides an intuitive representation designed for Western music.
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5.3 Comparison With Previous Experiments

In prior work, we observed that major songs were labeled more often as having
higher valence (approximately 67 percent of the time) and higher arousal (57
percent of the time) [20]. The correlation between tempo and A/V was signif-
icantly weaker. We observe similar results regarding the relationships between
arousal, valence, tempo and mode in the results presented in Table 6.

The correlation between positive valence and the major mode is weaker in
this experiment, but the relationship between mode and arousal is stronger,
with the major song being labeled as higher arousal only 38.9% of the time. An
important distinction between the experiment in [20] and this trial is the pair
selection process. In the previous experiment, we did not restrict major/minor
pairs to contain similar tempos, which could have a significant impact on the
correlation between mode and arousal. We also observe the difference in ratings
based on AIOI or tempo. The correlation between speed and valence is stronger
when measured by AIOI rather than tempo, but remains similar when analyzing
the arousal dimension.

Table 6. Ratio of participants labeling a clip as higher arousal or valence according
to musical parameters of AIOI, tempo and mode

Higher Higher
Musical Relationship Valence Arousal

Faster AIOI 0.631 0.482
Faster Tempo 0.588 0.493
Major (vs minor) Song 0.606 0.389

6 The Effect of Musical Transformations on
Emotional Affect

In previous work, we explored the concept of evaluating features by the amount
they change in response to altering various musical parameters [20]. By changing
the tempo, key and scale degrees of the MIDI data, we generated audio examples
of the same clip varied by key, tempo and ‘mode’. We ranked the features in
terms of how much they changed in response to the various alterations of the
musical parameters. In this study, we perform an additional labeling task in
which participants listen to pairs of the same song varied by key and tempo.

6.1 Musical Transformation Labeling Task

The experimental setup for this labeling task is identical to the one outlined in
Sect. 4. In this case, the pairs consist of a clip paired with a version of the same
clip altered by key or tempo. A description of the pair types and the number of



290 E.M. Schmidt et al.

Table 7. The transformations performed for each clip and the total number of pairs
for each transformation

Pair Number of
Class SongA SongB Pairs

1 Original Tempo Up 59
2 Original Tempo Down 59
3 Original Key Up 59
4 Original Key Down 59

each pair type in the dataset is detailed in Table 7. For the tempo-up and tempo-
down pairs, the tempo of the original clip is multiplied by 4

3 or 3
4 respectively. For

the key-up and key-down transformations, the key of the piece is transposed up a
perfect fifth or down a perfect fifth respectively. We choose these transformations
to be of fairly high perceptual magnitude so we can observe trends in the data.
Small trends in perceptual ratings may not be evident in the data collected from
Mechanical Turk.

As an example, the song While My Guitar Gently Weeps is in A minor and is
played at 120 beats per minute (bpm). We pair this song with versions at tempi
of 160 bpm and 90 bpm. It is also paired with versions in E minor (5th above)
and D minor (5th below). For each clip, we compute chroma and MFCCs and
reconstruct audio from the features. These clips and pairs are used within the
same pairwise comparison framework as Sect. 4.

6.2 Valence and Arousal Ratings for Transformations
of Key and Tempo

This labeling task is also completed via Mechanical Turk, using the same criteria
as the previous data collection round. We rejected 9405 of 17205 labels for a total
of 9.01± 5.31 labels per pair over 236 total pairs.

Table 8 shows the arousal and valence labels for the clip pairs containing
variations on key and tempo. These numbers are compiled from ratings of the
original audio only; no feature reconstructions are included in this table. We
observe a significant number of respondents labeling the clip that is transposed
down a fifth as lower valence. There is also a strong correlation between the
slower tempo clips and lower ratings of valence. It is surprising to see less cor-
relation between lower arousal and slower tempo, given the results of previous
experiments.

6.3 Information Retained in Feature Reconstructions
with Transformations

Table 9 presents the ratio of participants whose labels for the original and recon-
structed audio are in agreement. We observe similar results compared to Table 4
in terms of the ratio of people that maintain the same rating from chroma/MFCC
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Table 8. Ratio of participants labeling a clip as higher arousal or valence according
to musical parameters of key and tempo. This includes the original audio clips only.

Higher Higher
Musical Relationship Valence Arousal

Key Up 0.574 0.430
Key Down 0.313 0.591
Faster 0.581 0.528
Slower 0.288 0.553

Table 9. Ratio of labels that were maintained between listening to the original audio
and the reconstructed feature audio averaged over all transformations

Valence Arousal
Audio Type Agreement Agreement

Original → Chroma 0.635 0.590
Original → MFCC 0.612 0.580

reconstructions to the original audio. Comparing the values in Table 4 to Table 9,
each category differs by an average of 0.0158. One interpretation of this result is
that users are able to latch onto tonal and rhythmic queues that remain in the
reconstructed audio regardless of whether the piece is different or not.

Table 10 provides the results for the overall agreement of valence/arousal
ratings between reconstructions by key and tempo transformations. Here, we
note that when the tempo is decreased, participants are more likely to maintain
their ratings than with other transformations.

Table 10. Agreement ratio of participants labeling the pair as higher arousal or valence
according to transformations of key and tempo

Chroma MFCC
Transformation Valence Arousal Valence Arousal

Tempo Up 0.690 0.680 0.583 0.610
Tempo Down 0.702 0.663 0.665 0.639
Key Up 0.546 0.527 0.542 0.530
Key Down 0.613 0.586 0.578 0.551

7 Computational Evaluation of Acoustic Features

In this section, we seek to identify salient acoustic feature domains for the pre-
diction of musical emotion through computational experiments. In the first set
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of experiments, we try to find appropriate variances and invariances as they re-
late to a musical quality. For example, if emotion is invariant to key, and the
key changes, the features should also be invariant to that key change. We desire
correlation in variance as well. If the emotion of the audio changes, we want the
features that describe it to change correspondingly. In order to investigate these
variances and invariances, we use the transformed audio pairs from Sect. 6, as
well as feature sets from prior work [21,18] and from the MIRtoolbox. A full list
of audio features used in these experiments and their descriptions is available in
Table 11.

In the later experiments, we seek to further validate features computation-
ally, employing the pairwise collected data from Sect. 5 and 6. By analyzing
the original pairs from Sect. 5, we investigate the salience of each feature in
ranking emotion on pairwise data from different songs. In addition, we also look
at the transformed pairs from Sect. 6 where participants compared versions of
the same song that had modified musical attributes (e.g. key, tempo). In those
experiments, we rank features based on performance in a supervised machine
learning task and compare the results to the ranking based on feature change
(Fc) in Equation 7. This correlates performance in a computational task with
feature variance observed by changing tempo or key.

In all machine learning experiments, we employ a ranking support vector
machine (SVM) [10,2] to learn a model for automatically ranking acoustic data
in terms of emotion parameters. It is important to note that these SVMs are
specifically designed for ranking problems (as opposed to binary classification),
as it is possible that one song could be the higher valence song in one pair in
which it is included, and the lower valence song in another.

Table 11. Acoustic feature collection

Short Feature Feature Feature
Name Class Origin Description

RMS Dynamics MIRtoolbox mirrms Root-mean-square energy
Fluctuation Rhythm MIRtoolbox mirfluctuation Spectrum summary showing rhythmic periodicities
Beat Spec. Rhythm MIRtoolbox mirbeatspectrum Self-similarity as a function of time lag
Onsets Rhythm MIRtoolbox mironsets Estimated position of notes in time
SSD Statistics Schmidt SSD [21] Statistics of the spectrum related to timbral texture
MFCC Timbre Rastamat melfcc Mel-frequency cepstral coefficients
Contrast Timbre Jiang spectral contrast [9] Strength of peaks and valleys in spectral sub-bands
Attack Time Timbre MIRtoolbox mirattacktime Temporal duration of the attacks
Attack Slope Timbre MIRtoolbox mirattackslope Average slope of the attacks
Zerocross Timbre MIRtoolbox mirzerocross Number of times the signal changes sign
Brightness Timbre MIRtoolbox mirbrightness Measures the amount of energy above a cutoff frequency
Roughness Timbre MIRtoolbox mirroughness Estimation of the sensory dissonance
Regularity Timbre MIRtoolbox mirregularity Degree of variation of the successive peaks of the spectrum
Chroma Tonality Ellis chromagram IF Projection of spectrum into 12 semitone bins
xChroma Tonality Autocorrelation of chroma [18] Autocorrelation of chroma in frequency
Key Tonality MIRtoolbox mirkey Estimation of tonal center positions and their respective clarity
Mode Tonality MIRtoolbox mirmode Estimate of major vs. minor
Tonal Cent. Tonality MIRtoolbox mirtonalcentroid Projection along circles of fifths, minor thirds, and major thirds
HCDF Tonality MIRtoolbox mirHCDF Harmonic change detection function, the flux of the tonal centroid
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7.1 Relating Musical Parameter Invariances to Feature Space
Invariances

Using the Beatles’ transformation pairs from Sect. 6 we analyze feature space
invariances for each of the features described in Table 11. Because the features
contain different dimensions and have different ranges, looking at changes in
their direct results does not allow for proper comparison between them. In order
to draw proper comparisons, the features are normalized over dimension and
range.

Given two feature vectors over time F1 ∈ R
N×M1 and F2 ∈ R

N×M2 , we
normalize the content over the vectors’ shared range:

F ′
1 =

F1 −min(F1 ∪ F2)

max(F1 ∪ F2 −min(F1 ∪ F2))
, (5)

F ′
2 =

F2 −min(F1 ∪ F2)

max(F1 ∪ F2 −min(F1 ∪ F2))
. (6)

This operation scales the feature vectors to be in the range [0, 1]. The mean for
each dimension is calculated, creating mean vectors μ1 ∈ R

N×1 and μ2 ∈ R
N×1.

The average change across all feature dimensions is then computed,

Fc =
1

N

N∑
n=1

|μ1(n)− μ2(n)|. (7)

If this Fc value is low, it means that the feature is potentially invariant to the mu-
sical change being presented. In Table 12, we observe that features that exhibit
higher variance to the specified change (i.e., tempo up/down, key up/down) may
be more effective in computational models that are sensitive to these parame-
ters. Several intuitive features, including onsets, RMS energy and beat spectrum,
emerge as the most variant features to tempo. Conversely, it is intuitive that fea-
tures like mode and tonal center do not vary much with tempo.

7.2 SVM-Based Ranking of Musical Emotion

To further validate our features for music emotion recognition, we develop an
SVM based system for ranking the pairs of songs collected in Sect. 5. Pairwise
ground truth annotations are generated by aggregating Mechanical Turk worker
labels over each song. These pairs are selected because they contain different
songs as opposed to transforms, and we desire to identify features which gener-
alize to rank the emotional quality of different songs.

For each feature domain, we train a ranking SVM using the pysvmlight8

Python binding for the SVM-Light9 library [10]. Due to the limited size of the

8 https://bitbucket.org/wcauchois/pysvmlight
9 http://svmlight.joachims.org/

https://bitbucket.org/wcauchois/pysvmlight
http://svmlight.joachims.org/
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Table 12. Normalized feature change with respect to musical mode and tempo
alterations

Tempo Up Tempo Down Key Up Key Down

Feature Feature Feature Feature Feature Feature Feature Feature
Domain Change Domain Change Domain Change Domain Change

Onsets 0.134 Beat Spec. 0.141 Beat Spec. 0.173 Beat Spec. 0.168
Beat Spec. 0.129 Onsets 0.131 Key 0.132 Tonal Cent. 0.110
RMS 0.067 RMS 0.053 Tonal Cent. 0.114 Key 0.085
xChroma 0.030 xChroma 0.025 MFCC 0.083 MFCC 0.074
HCDF 0.028 Roughness 0.021 Zerocross 0.064 Chroma 0.062
Zerocross 0.028 HCDF 0.021 Chroma 0.062 Regularity 0.061
Fluctuation 0.026 Fluctuation 0.021 RMS 0.060 xChroma 0.048
Roughness 0.025 SSD 0.019 S. Contrast 0.048 Brightness 0.048
MFCC 0.023 MFCC 0.018 SSD 0.047 Mode 0.044
SSD 0.022 Brightness 0.017 Brightness 0.047 S. Contrast 0.042
Brightness 0.021 Chroma 0.015 Regularity 0.037 Zerocross 0.040
Regularity 0.019 Regularity 0.014 Mode 0.037 SSD 0.036
Chroma 0.019 Zerocross 0.014 xChroma 0.032 RMS 0.033
S. Contrast 0.017 Key 0.013 Roughness 0.026 HCDF 0.022
Key 0.013 S. Contrast 0.011 Onsets 0.026 Roughness 0.021
Tonal Cent. 0.013 Mode 0.010 Attack Time 0.025 Onsets 0.021
Mode 0.010 Tonal Cent. 0.010 Fluctuation 0.017 Fluctuation 0.018
Attack Time 0.009 Attack Time 0.007 HCDF 0.017 Attack Time 0.018
Attack Slope 0.006 Attack Slope 0.005 Attack Slope 0.009 Attack Slope 0.008

dataset (250 song pairs) and the necessity to ensure the training and testing sets
have a good sample of the musical differences in the dataset (see Table 2), we
choose to do leave-one-out training. That is, we hold out testing pairs one at a
time and train on the remaining data. During training, we employ a radial basis
function (RBF) kernel and a grid search algorithm using 5-fold cross-validation
to parameterize the kernel width γ and regularization parameter C. For each
fold, we train an SVM on 10 logarithmically spaced values of γ ranging from
10−1 to 103, and 10 logarithmically spaced values of the regularization param-
eter C from 10−2 to 103. Given the parameter combination that performs best
on average across all folds, we train the final SVM on all training data.

The results for SVM ranking are shown in Table 13. Tonal centroid and onsets
tend to perform very well, showing results as good (or better) than MFCC and
spectral contrast. In addition, an interesting result is that performance for the
valence dimension is generally much higher than arousal. This is consistent with
the perceptual results shown in Table 4.
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Table 13. Results for SVM ranking

Feature Valence Feature Arousal
Domain Accuracy Domain Accuracy

Tonal Centroid 0.824 S. Contrast 0.676
Onsets 0.820 Fluctuation 0.652
MFCC 0.820 Onsets 0.636
Fluctuation 0.816 Tonal Centroid 0.632
Zerocross 0.812 Zerocross 0.628
Chroma 0.804 SSD 0.628
S. Contrast 0.792 Chroma 0.624
Key 0.788 Beat Spec. 0.624
Attack Slope 0.784 Attack Slope 0.620
Regularity 0.784 MFCC 0.612
SSD 0.780 Key 0.612
Roughness 0.776 HCDF 0.592
Mode 0.708 Mode 0.588
xChroma 0.676 RMS 0.588
Brightness 0.676 Roughness 0.584
HCDF 0.672 xChroma 0.560
Beat Spec. 0.648 Regularity 0.544
Attack Time 0.620 Attack Time 0.532
RMS 0.612 Brightness 0.520

7.3 SVM-Based Ranking of Transform Pairs

In these experiments, we employ the audio pairs from Sect. 6, where pairs were
generated by modifying musical parameters. Refer to Table 7 for a full descrip-
tion of the transformed pairs. In each experiment, we train a ranking SVM on
the dataset for a specific transform type (e.g., key up, tempo down). The goal of
this experiment is to see if the SVM can perform as well as humans can, and also
to look for relationships between the features that perform well and the musical
parameters that may be responsible for the emotion shifts. For each transform
type, we have a total of 59 pairs, so once again leave-one-out training is used
following the identical training procedure as Sect. 7.2.

Shown in Table 14 are the results for the dataset containing pairs of the
same songs at different tempi. In general, the system is better at predicting the
correct label for the valence dimension for tempo down pairs, which is consis-
tent with what was found with humans in Table 8. An interesting result is the
relatively low performance of MFCCs on the valence dimension for the tempo
up transformed set (0.610) versus the tempo down transformed set, where they
performed among the best (0.881). These discrepancies are perhaps attributed
the ambiguity imposed by the perceptual labeling (Table 8), where decreasing
tempo seemed to be induce valence changes, but the effects of increasing tempo
were less clear. However, a similar trend for MFCCs is seen when looking at
the arousal dimension. In the tempo up pairs, MFCCs are the worst performing
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Table 14. SVM ranking performance for tempo transformed pairs

Tempo Up Tempo Down

Feature Valence Feature Arousal Feature Valence Feature Arousal
Domain Accuracy Domain Accuracy Domain Accuracy Domain Accuracy

Roughness 0.797 Zerocross 0.729 Fluctuation 0.898 MFCC 0.695
xChroma 0.763 Regularity 0.661 HCDF 0.881 HCDF 0.678
SSD 0.763 Attackslope 0.661 Attackslope 0.881 Brightness 0.627
RMS 0.763 Mode 0.644 Onsets 0.881 RMS 0.627
Attackslope 0.746 Fluctuation 0.644 MFCC 0.881 Zerocross 0.593
HCDF 0.729 Beat Spec. 0.644 Zerocross 0.864 S. Contrast 0.593
Fluctuation 0.729 xChroma 0.644 SSD 0.847 Attackslope 0.576
Chroma 0.712 SSD 0.644 RMS 0.847 Key 0.559
Onsets 0.678 Key 0.627 Roughness 0.831 Regularity 0.559
Key 0.661 Roughness 0.627 xChroma 0.831 Mode 0.559
S. Contrast 0.644 RMS 0.627 Chroma 0.814 Beat Spec. 0.559
Brightness 0.610 HCDF 0.610 Brightness 0.797 Chroma 0.559
MFCC 0.610 Onsets 0.610 S. Contrast 0.797 Tonal Cent. 0.525
Tonal Cent. 0.559 S. Contrast 0.610 Tonal Cent. 0.763 Roughness 0.525
Zerocross 0.542 Tonal Cent. 0.593 Regularity 0.695 Fluctuation 0.525
Attacktime 0.542 Chroma 0.576 Attacktime 0.678 SSD 0.525
Beat Spec. 0.542 Brightness 0.525 Beat Spec. 0.610 Attacktime 0.508
Mode 0.525 Attacktime 0.508 Key 0.576 Onsets 0.508
Regularity 0.525 MFCC 0.508 Mode 0.508 xChroma 0.508

feature (0.508), performing essentially at chance, but in the tempo down category
they are the highest performing feature (0.695).

Table 15 shows the ranking performance for pairs of the same song in different
musical keys. Just as with tempo, the system is much better at predicting emo-
tion changes on pairs where the key has been modified down as opposed to up.
This is also consistent with Table 8, where it was found that humans much more
commonly rated the key down as being related to an emotion change as opposed
to key up. Another interesting result with MFCCs is that they perform among
the best features for key down (0.949) on the valence dimension, but signifi-
cantly lower for key up (0.627). Also, in nearly all columns the MIRtoolbox key
feature performs in the bottom half and is the lowest performing feature on the
valence dimension for key down, while human subjects reported high correlation
between valence and key down (Table 8).

8 Discussion and Future Work

In this work, we have extended the scope of a set of experiments carried out in
[20]. The size of the dataset was improved, as well as the pairwise distribution
over the musical parameters we were evaluating. Differences between tempo and
mode in each song were constrained to allow for more detailed analyses of the
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Table 15. SVM ranking performance for key transformed pairs

Key Up Key Down

Feature Valence Feature Arousal Feature Valence Feature Arousal
Domain Accuracy Domain Accuracy Domain Accuracy Domain Accuracy

S. Contrast 0.797 RMS 0.763 Attackslope 0.949 S. Contrast 0.695
Attackslope 0.712 Roughness 0.729 Fluctuation 0.949 Attackslope 0.678
Fluctuation 0.712 Brightness 0.729 MFCC 0.949 Fluctuation 0.661
SSD 0.712 SSD 0.712 Zerocross 0.915 SSD 0.661
Attacktime 0.695 Tonal Cent. 0.678 SSD 0.915 Zerocross 0.644
xChroma 0.678 Attackslope 0.678 Tonal Cent. 0.847 xChroma 0.610
RMS 0.644 Fluctuation 0.678 xChroma 0.831 Chroma 0.610
Tonal Cent. 0.627 Zerocross 0.661 S. Contrast 0.831 HCDF 0.593
HCDF 0.627 xChroma 0.661 Chroma 0.831 Roughness 0.593
MFCC 0.627 MFCC 0.644 HCDF 0.797 Regularity 0.593
Roughness 0.610 Key 0.610 Regularity 0.712 Key 0.576
Key 0.593 Chroma 0.610 Mode 0.678 RMS 0.576
Brightness 0.593 S. Contrast 0.593 Attacktime 0.678 Attacktime 0.559
Mode 0.576 Onsets 0.576 Beat Spec. 0.593 Brightness 0.559
Onsets 0.576 HCDF 0.559 Roughness 0.576 Onsets 0.559
Chroma 0.559 Beat Spec. 0.542 RMS 0.576 Beat Spec. 0.559
Beat Spec. 0.559 Attacktime 0.525 Brightness 0.559 Mode 0.559
Regularity 0.542 Mode 0.508 Key 0.525 MFCC 0.525
Zerocross 0.508 Regularity 0.508 Onsets 0.525 Tonal Cent. 0.508

relationships in the data. The labels collected from Mechanical Turk showed
significant correlation with the data we previously collected and provided more
insight into the relationship between acoustic features and emotional content.

In Sect. 5, we built on the experiments from prior work, performing a pair-
wise analysis that showed a more mild correlation between participants’ emo-
tional ratings of original audio and feature reconstructions. We used the extended
dataset to analyze the effect that various demographic categories and levels of
musical experience have on a participant’s ability to extract emotional informa-
tion from audio. People with a significant amount of musical training were able
to more consistently choose the same ratings for chroma reconstructed audio,
which contains more harmonic information than MFCC reconstructed audio. We
also note that there was an increased ambiguity with arousal labeling in general.
This could be related to the demographics of the Turkers, which we believe to
be highly non-stationary given the comparison between those of our dataset (see
Table 5) and those found by others in previous work [8].

We also observed in Sect. 6 that an individual participant’s valence and arousal
agreement on the transformation clips was very similar to the clip pairs contain-
ing different songs, suggesting that features able to capture these phenomena
would be useful for music emotion recognition. While some agreement does ex-
ist, it is not overwhelming, making it clear that simple musical parameter changes
do not tell the whole story about musical emotion.
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In Sect. 7, we analyzed the relative contribution of musical parameter mod-
ification to feature space invariance. We evaluated each feature domain in the
context of a supervised machine learning problem for automatically ranking song
pairs. In the experiments using the original pair dataset (Sect. 5), we find that
features such as MFCC and spectral contrast perform the best. Additionally,
tonal centroid, onsets and rhythm fluctuation, which generally receive much less
attention, also performed well. Because these additional features are of different
classes (e.g. timbre, rhythm), their use in combination may improve performance
by incorporating information from multiple domains. In looking at the predic-
tions of the transformed pairs (Sect. 6), there are very interesting changes in
terms of the ranking of relative feature performance between tempo up and
tempo down, as well as key up and key down. It was identified in Sect. 6 that
the magnitude of emotion changes is significantly different for key up versus key
down and tempo up versus tempo down, but the change in relative ranking is
not necessarily expected.

Overall this work presents a comprehensive study of the relationships between
musical parameters, the emotional responses they induce and the responses
within acoustic feature domain. It provides a more grounded approach to fea-
ture selection and design than previous work, and has demonstrated that there is
perceptual salience of musical emotion in many common Music-IR features. We
see this work as providing grounding for those investigating them in future work,
but maintain that they do not tell the whole story. There are correlations be-
tween musical parameter changes (e.g. key, tempo) and human emotion, but the
relationships are complex and do not offer a simple answer to feature selection.
Additionally, there is more to emotion in music than just these compositional
building blocks. The individual expressions and articulations of a performance
may also play a very large roll. In continuing to bring this complex picture into
focus, future work may want to consider taking these relationships into account
as well.
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Abstract. Sampling is a creative tool in composition that is widespread
in popular music production and composition since the 1980’s. However,
the concept of sampling has for a long time been unaddressed in Music
Information Retrieval. We argue that information on the origin of sam-
ples has a great musicological value and can be used to organise and
disclose large music collections. In this paper we introduce the problem
of automatic sample identification and present a first approach for the
case of hip hop music. In particular, we modify and optimize an existing
fingerprinting approach to meet the necessary requirements of a real-
world sample identification task. The obtained results show the viability
of such an approach, and open new avenues for research, especially with
regard to inferring artist influences and detecting musical reuse.

Keywords: Digital Sampling, Sample Recognition, Musical Influence,
Content-based Music Retrieval.

1 Introduction

Digital sampling is a creative tool in composition and music production. It can
be defined as the use of a fragment of another artist’s recording in a new work.
The practice of digital sampling has been ongoing for well over two decades. It
has become widespread amongst mainstream artists and genres, including hip
hop, electronic, dance, pop, and rock [20]. Information on the origin of samples
holds valuable insights into the inspirations and musical resources of an artist.
Furthermore, such information could be used to enrich music collections, e.g.
for music recommendation purposes. However, in the context of music process-
ing and retrieval, the topic of automatic sample identification has been largely
unaddressed [8,21].

In this contribution we introduce automatic sample identification as a new line
of research in Music Information Retrieval (MIR), and present a first approach
to detecting whether a query song samples another song inside a given music
collection. The next section of this article will state some of the motivations
for developing a sample identification system and lists the requirements that
such a system should meet, in relation to existing research in content-based

M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 301–312, 2013.
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music retrieval. Audio fingerprinting techniques are shown to be a good basis
for experiments. In the third and fourth sections, experiments are presented and
discussed.

1.1 Sampling in Popular Music

The Oxford Music Dictionary defines sampling as “the process in which a sound
is taken directly from a recorded medium and transposed onto a new record-
ing” [14]. As a tool for composition, it first appeared when musique concrète
artists such as Pierre Schaeffer started assembling tapes of found field-recordings
and in musical collages. Examples of the use of previously released music record-
ings are James Tenney’s repurposing of Elvis Presley’s Blue Suede Shoes in
Collage #1 (1961), and the Terry Riley composition Bird of Paradise (1965),
which uses the song Shotgun by Junior Walker and his All-Stars as direct source
material [15,16].

The phenomenon of sampling reappeared in the 1970’s when New York DJs
such as Kool DJ Herc started using their vinyl players to repeat and mix parts
of popular recordings, to provide a continuous stream of music for the danc-
ing crowd. The breakthrough of sampling followed the invention of the digital
sampler around 1980. It allowed producers to isolate, manipulate, and combine
portions of others’ recordings to obtain entirely new sonic creations [10,23]. The
possibilities that the sampler brought to the studio have played a role in the
appearance of several new genres in electronic music, including hip hop, house
music (from which a large part of electronic dance music originates), jungle (a
precursor of drum&bass music), dub, and trip hop [22]. The first famous sample-
based single was Sugarhill Gang’s Rapper’s Delight (1979), containing a looped
sample taken from Good Times by Chic (1979) [14]. A famous example of sam-
pling in rock music is the song Bittersweet Symphony by The Verve (1997), which
looped a pattern sampled from a 1966 instrumental string arrangement of The
Rolling Stones’ The Last Time (1965) [14].

1.2 Motivations for Computational Research on Sampling

A first motivation to undertake the automatic identification of samples originates
in the belief that the musicological study of popular music would be incomplete
without the study of samples and their origins. Knowledge on the origin of sam-
ples provides a direct insight into the inspirations and musical resources of an
artist, and reveals some details about his or her composition methods and pro-
duction choices. At the level of popular music history, there has been an emerging
interest to study how some of the particular musical properties of contemporary
popular music may be traced back to the influence of the technology that has
been used to produce it, such as song structures, groove (the activating quality
of music), and rhythm [5,9,18]1. To our knowledge, an extensive study of how

1 Talking Heads singer David Byrne also devotes two insightful chapters of his recent
book How Music Works (2012) to the influences of technology on the artistic process.
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harmony, timbre, rhythm, groove and other qualities of sampled music may have
descended from past cultural activity has yet to be performed.

Samples also hold valuable information on the level of genres and communi-
ties, revealing cultural influences and dependence. Many researchers have stud-
ied the way that hip hop has often sampled 60’s and 70’s African-American
artists [10,18] and, more recently, Bryan and Wang [4] analysed musical influ-
ence networks in sample-based music, inferred from a unique dataset provided
by the WhoSampled web project2. Such annotated collections exist, but they
are assembled through hours of manual introduction in a collaborative effort of
amateur enthusiasts. It is clear that an automated approach could both widen
and deepen the body of information on sample networks, while at the same time
bringing the freedom to individuals to perform their own analysis, so that they
do not need to rely on the collaborative efforts of others, or the platforms that
store them.

Equally interesting opportunities lie alongside recent advances in folk song [27]
and version identification [25] research, where sample identification research can
be applied within a larger effort to trace specific musical ideas and observe
musical reuse in the recorded history of the last century.

As the amount of accessible multimedia and the size of personal collections
continue to grow, sample identification from raw audio also provides a new way
to bring structure to the organisation of large music databases, complementing
a great amount of existing research in this direction [8,21]. Finally, sample iden-
tification could serve legal purposes. Copyright considerations have always been
an important motivation to understand sampling as a cultural phenomenon; a
large part of the academic research on sampling is focused on copyright and
law [20].

1.3 Requirements for a Sample Identification System

The challenges of automatic sample recognition can be directly related to the
way samples have been manipulated by producers. Typical parameters control-
ling playback in popular hardware and software samplers (e.g. AKAI, Yamaha,
Ableton, Native Instruments) include filtering parameters, playback speed, and
level envelope controls (attack, sustain, decay, release). Filtering can be used
by producers to maintain only the most interesting part of a sample. Playback
speed may be changed to optimise the tempo (time-stretching), pitch (transpo-
sition), and mood of samples. Naturally, each of these operations complicates
the automatic recognition of affected samples. In addition, samples may be as
short as one second or less, and do not necessarily contain tonal information, i.e.
they may consist of only percussive sounds. Finally, given that it is not unusual
for two or more samples to appear at the same time in a mix, the sample’s en-
ergy may be low compared to that of the musical elements that obscure it. This
further complicates recognition.

2 www.whosampled.com

www.whosampled.com
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In the light of these observations, three important requirements for any sample
recognition system should be that:

1. The system is able to identify heavily manipulated query audio in a given mu-
sic collection. This includes samples that are filtered, time-stretched, trans-
posed, very short, tonal and non-tonal, processed with audio effects, and/or
appear underneath a thick layer of other musical elements.

2. The system is able to perform this task for large collections.
3. The system is able to perform the task in a reasonable amount of time.

These requirements allow us to introduce and situate the problem of sample
identification in the field of content-based music retrieval. Like in other fields
of information retrieval, performance in music retrieval is typically expressed in
terms of precision (how good the retrieved results are) and recall (how many good
results are retrieved). It should be noted that, in the context of the applications
proposed above, a good recall is the more important requirement: a musicologist
trying to identify source material in a composition can assess system output
fairly easily. Regardless, we argue that the unseen difficulty of facing these three
challenges at once is in itself an excellent motivation for the proposed research.

1.4 Content-Based Music Retrieval

Research in content-based music retrieval can be characterised in terms of the
specificity [8] and granularity [17] of the task. Specificity refers to the degree
of similarity between query and match. Tasks with a high specificity intend to
retrieve almost identical documents; low specificity tasks look for more loosely
associated matches that are similar with respect to some musical properties.
Granularity refers to the difference between fragment-level and document-level
retrieval: audio fingerprinting is an example of a fragment-level (low granularity)
task, while version detection requires a more document-level (high granularity)
approach. Automatic sample recognition has mid-specificity and very low granu-
larity (i.e. very short-time matches that are similar with respect to some musical
properties). Given these characteristics, it relates to audio fingerprinting.

Audio fingerprinting systems attempt to identify unlabeled audio by matching
a compact, content-based representation of it, the fingerprint, against a database
of labeled fingerprints [6]. Just like fingerprinting systems, sample recognition
systems should be designed to be robust to additive noise and several transfor-
mations. However, the deliberate transformations possible in sample-based music
production, especially changes in pitch and tempo, suggest that the problem of
sample recognition is in fact a significantly more challenging task.

Audio matching and version identification systems are typical mid-specificity
problems [17]. Version identification systems assess if two complete musical
recordings are different renditions of the same musical piece, usually taking
changes in key, tempo and structure into account [25]. Audio matching works on
a more granular level and includes remix recognition, amongst other tasks [7,17].
Many of these systems use chroma features [8,21]. These descriptions of the pitch
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content of audio require the audio to be tonal and are generally not robust with
respect to changes in tonality, as may occur with the addition of other musical
layers. This may be problematic in the case of sampling. We therefore claim that
sample recognition should be cast as a new problem with unique requirements,
for which the right tools are still to be made.

Potential sample identification tools have been proposed by a small number
of authors. A system capable of fingerprinting pitch-shifted audio is described
by Fenet [13]. The system relies on an existing fingerprinting technique and,
as we propose in [26], uses a logaritmic frequency representation to facilitate
the search for pitch-shifted audio. It performs well on the recognition of radio
broadcast audio, as intended in its design. As a result however, it does not provide
robustness to time-stretching or to pitch shifts up to a semitone and more.
More recently, Dittmar et. al. [11] explicitely addressed sample recognition in the
context of plagiarism assessment. Two approaches are proposed: a brute-force
comparison of spectrograms (again with logaritmically spaced frequencies), and
a method based on non-negative matrix factorization (NMF). The techniques
are claimed to be robust against time-stretching and pitch-shifting respectively,
but have not been formally evaluated yet.

2 Experiments

2.1 Evaluation Methodology

We now present our first approach to the automatic identification of samples [26].
Given a query song in raw audio format, the experiments aim to retrieve a ranked
list of candidate files with the sampled songs first. To narrow down the scope
of experiments, only samples used in hip hop music were considered, as hip hop
is the first and most widely known genre to be built on samples [10]. Regarding
the origins of samples, there were no genre restrictions.

An evaluation collection was established using data from specialized inter-
net sites3. The set consists of 76 query tracks and 68 sampled tracks [26]. It
includes 104 sample relations (expert-confirmed cases of sampling). Addition-
ally, 320 ‘noise’ files, very similar to the candidates in genre and length, were
added to challenge the system as suggested in [24]. This makes a total of 388
candidates. All examples are real-world cases of sampling. Aiming at represen-
tativeness, the ground truth was chosen to include both short and long samples,
tonal and percussive samples, and isolated samples (the only layer in the mix)
as well as background samples. So-called ‘interpolations’, i.e. samples that have
been re-recorded in the studio, were not included, nor were non-musical samples
(e.g. film dialogue).

Figure 1 shows a visualisation of sample relations between the artists appear-
ing in the music collection established for the evaluation of our experiments.
The orange nodes represent sampled artists, the blue nodes represent the artists

3 WhoSampled (www.whosampled.com), accessed 02/2011 and Hip Hop is Read
(www.hiphopisread.com, accessed 02/2011).

www.whosampled.com
www.hiphopisread.com
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Fig. 1. Network visualisation of the connections between some of the artists in the
music collection established for the evaluation of experiments. The light nodes (orange)
represent sampled artists, the dark nodes (blue) represent the artists that sampled
them.

Table 1. Example: two audio tracks and a sample relation as they are represented
in the ground truth dataset. The sample relation S019 is identified by the associated
query Q, the candidate C, and the times TC and TQ at which the sample occurs the
first time. N counts the number of times the sample occurs in Q.

Artist Title Year Genre

T034 Pete Rock & C.L. Smooth Straighten it Out 1992 Hip-hop
T035 Ernie Hines Our Generation 1972 R&B/Soul

C Q TC TQ N Comments

S019 T035 T034 0:40 0:10 48 Vocals

that sampled them. The diagram shows how the emerging links between artists
quickly give rise to a complex network of influence relations.

The mean average precision (MAP) was chosen as the experiment’s evaluation
metric [19]. The MAP is a common measure in information retrieval and has
been used in several related tasks [12]. With the collection used in this study, a
random baseline of 0.017 was found over 100 iterations, with a standard deviation
of 0.007.

2.2 Optimisation of a State-of-the-Art Audio Fingerprinting System

In a first experiment, a state-of-the-art fingerprinting system was optimised to
perform our task. We chose to work with the spectral peak-based audio fin-
gerprinting system designed by Wang [28]. A fingerprinting system was chosen
because of the chroma argument in Section 1.4. The landmark-based system was
chosen because of its robustness to noise and distortions and the alleged ‘trans-
parency’ of the spectral peak-based representation: Wang reports that, even with
a large database, the system is able to correctly identify each of several tracks
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Table 2. Strengths and weaknesses of spectral peak-based fingerprints in the context
of sample identification

Strengths Weaknesses

– High proven robustness to noise
and distortions.

– Ability to identify music from only
a very short audio segment.

– ‘Transparent’ fingerprints: ability
to identify multiple fragments
played at once.

– Does not explicitly require tonal
content.

– Not designed for transposed or
time-stretched audio.

– Designed to identify tonal content
in a noisy context, fingerprinting
drum samples requires the oppo-
site.

– Percussive recordings may not be
representable using spectral peak
locations only.

mixed together. The same system was used by Fenet et al. [13] and has previ-
ously also been adapted for use in version recognition [1]. Table 2 lists some of
the system’s strengths and weaknesses with respect to the current task.

As in most other fingerprinting systems, the landmark-based system consists
of an extraction and a matching component [28]. Briefly summarized, the extrac-
tion component takes the short time Fourier transform (STFT) of audio segments
and selects from the obtained spectrogram a uniform constellation of prominent
spectral peaks. The time-frequency tuples with peak locations are paired in 4-
dimensional ‘landmarks’, which are then indexed as a start time stored under a
certain hash code for efficient lookup by the matching component. The matching
component retrieves for all candidate files the landmarks that are identical to
those extracted from the query. Query and candidate audio segments match if
these corresponding landmarks show consistent start times [28].

An implementation of this algorithm was made available by Ellis4. It works
by the same principles as [28], and features a range of parameters to control the
implementation-level operation of the system. Important STFT parameters are
the audio sample rate and the FFT size, determining the frequency and time
resolution of the spectral analysis. Another important quantity is the number of
spectral peaks to consider. It is governed by the Peak Density parameter (con-
trolling the density of peaks in the time domain) and a Peak Spacing parameter
(in the frequency domain). The number of resulting landmarks is governed by
three more parameters: the peak pairing horizons in the frequency and time
domain, and the maximum number of formed pairs per spectral peak.

A wrapper was written to slice the query audio into short fixed-length chunks,
overlapping with a hop size of 1s and a length around the expected length of the
longest samples. The same wrapper then feeds these chunks to the fingerprinting
system as implemented by Ellis, and uses a distance function to sort the results

4 http://labrosa.ee.columbia.edu/matlab/fingerprint/

http://labrosa.ee.columbia.edu/matlab/fingerprint/
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into a ranked list. The distance that was used is

da =
1

m+ 1
(1)

a function of the number of matching landmarks m.
As a complete optimisation of the system would have been too time-consuming,

we have performed a large number of tests to optimise the most influential pa-
rameters. Table 3 summarizes the optimisation process, of which more details
can be found in [26]. The resulting MAP was 0.218. Interestingly, better perfor-
mance was achieved for lower sample rates. The optimal density of peaks and
number of pairs per peak are also significantly larger than required in a standard
fingerprinting context, resulting in many more extracted landmarks per second.
This requires more computation time for both extraction and matching, and
requires for a higher number of extracted landmarks to be stored in the system’s
memory.

The MAP of around 0.23 is low for a retrieval task but promising as a first
result: it is well beyond the random baseline and the system retrieves a correct
best match (top 1) for around 15 of the 76 queries. These matches include both
percussive and tonal samples. However, due to the lowering of the sample rate,
some frequency resolution is lost, and much of the spectral information remains
unused. This may affect the scalability of the system: a sufficient number of fre-
quency bins is needed to ensure that the landmarks allow differentiation between
a high number of almost identical spectra.

Table 3. Some of the intermediate results in the optimisation of the audio fingerprint-
ing system by Wang as implemented by Ellis [26]. The first row shows default settings
with its resulting performance.

pairs/pk pk density pk spacing sample rate FFT size MAP
(s−1) (bins) (Hz) (ms)

3 10 30 8,000 64 0.114
10 10 30 8,000 64 0.117
10 36 30 8,000 64 0.118
10 36 30 4,000 64 0.193
10 36 30 2,000 64 0.176
10 36 30 2,000 128 0.228
10 36 30 2,000 256 0.144

2.3 Constant Q Fingerprints

As a second experiment, we did a number of tests using a constant Q transform
(CQT) [2] instead of a Fourier transform (FT). We would like to consider all
frequencies up to the default 8,000 Hz but make the lower frequencies more
important, as they contributed more to the best performance so far. The constant
Q representation, in which frequency bins are logarithmically spaced, allows us
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to do so. The CQT also suits the logarithmic representation of frequency in the
human auditory system.

We integrated the fingerprinting system with Ellis’ implementation5 of
Brown’s fast algorithm to compute the CQT [3]. A brief optimisation of the
new parameters returns an optimal MAP of 0.21 at a sample rate of 8,000 Hz,
showing that similar precision as before can be obtained. With this sample rate
and with an optimised resolution of 32 bins per octave, the information in the
frequency domain is now restored: at 8000 Hz sample rate and 32 bins per oc-
tave, the CQT spans 224 bins, whereas a 128ms FT at 2000 Hz results in only
128. The use of the constant Q will also prove convenient for reasons explained
in the next section.

2.4 Repitching Fingerprints

In a third and last experiment, a first attempt was made to deal with repitched
samples. As laid out in section 1.3, artists often time-stretch and pitch-shift
samples. This is typically done by changing the samples’ playback speed. As a
result, the samples’ pitch and tempo rescale with the same factor. Algorithms
for independent pitch-shifting and time-stretching without audible artifacts have
only been around for less than a decade, after phase coherence and transient
processing problems were overcome. Even now, repitching is still popular practice
amongst producers, as inspection of the used music collection confirms.

The most straightforward, brute-force method to deal with repitching is to
repitch query audio several times and perform a search for each of the copies.
Alternatively, however, the extracted landmarks themselves can also be repitched
through the appropriate scaling of time and frequency components. This way the
extraction needs to be done only once. We have performed three tests in which
both methods are combined: all query audio is resampled several times, to obtain
N copies, all pitched ΔR semitones apart. For each copy of the query audio,
landmarks are then extracted, duplicated and rescaled to include all possible
landmarks repitched between r = 0.5 semitones up and down. This is feasible
because of the CQT’s finite resolution in time and frequency. Note that the use
of the constant Q transform also provides us with a convenient advantage at
this point: the difference between two peaks’ logaritmic frequency is invariant to
pitch-shifting. In more detail: one of the landmark’s dimensions is rewritten as
the logaritmic frequency difference between the peaks to exploit this property.
The invariance of this component reduces the amount of landmarks needed to
cover a range of repitch values.

The results for repitching experiments are shown in Table 4. We have obtained
a best performance of MAP equal to 0.390 for the experiment with N = 9
repitched queries, all ΔR = 0.5 semitones apart. This results in a total searched
pitch range of 2.5 semitones up and down. A MAP of 0.390 is rather low, yet
it is in the range of some early version identification systems, or even slightly

5 See http://www.ee.columbia.edu/~dpwe/resources/matlab/sgram/ and
http://labrosa.ee.columbia.edu/matlab/sgram/logfsgram.m

http://www.ee.columbia.edu/~dpwe/resources/matlab/sgram/
http://labrosa.ee.columbia.edu/matlab/sgram/logfsgram.m
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Table 4. Results of experiments using repitching of both the query audio and its
extracted landmarks to search for repitched samples

sample rate bins/octave min. freq. N ΔR r MAP
(Hz) (st) (st)

8000 32 32 1 - 0.0 0.228
8000 32 32 1 - 0.5 0.288
8000 32 32 5 1.0 0.5 0.334
8000 32 32 9 5.0 0.5 0.390

better [24]. A total of 29 out of 76 queries now retrieve a correct song as their
best match, examples now including several repitched samples, both percussive
and tonal.

3 Discussion

We have introduced and detailed the first research to fully address the problem
of automatic sample identification. The problem has been defined and situated in
the broader context of sampling as a musical phenomenon and the requirements
that a sample identification system should meet have been listed. A state-of-the-
art fingerprinting system has been adapted, optimised, and modified to address
the task. Many challenges have to be dealt with and not all of them have been
met, but the obtained performance of MAP = 0.39 is promising and unmis-
takably better than the performance obtained without taking repitching into
account. Overall, our approach is a substantial first step in the considered task.

A more detailed characterisation of the unrecognised samples is rather time-
consuming but will make a very informative next step in future work. Further-
more, we suggest performing tests with a more extensively annotated dataset, in
order to assess what types of samples aremost challenging to identify, and perhaps
a larger number of ground truth relations. This will allow us to relate performance
and the established requirements more closely and lead to better results.

Advances in the presented research will eventually pave the road for reliable
fingerprinting of percussive audio, sample recognition based on perceptual mod-
els, or the analysis of typical features of sampled audio. These can in turn sup-
port many of the proposed applications presented in this contribution, such as
musicological research, music understanding and recommendation and perhaps
even tools for providing musicians with new and inspiring resources. All this will
hopefully allow a greater understanding of sampling as an artistic phenomenon
and help musicologists make sense of the popular music of today.
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Abstract. This chapter describes two different approaches using
the variogram in the context of Mel Frequency Cepstral Coefficients
(MFCCs) and the evaluation of music similarity. The first approach is
referred to as the full variogram approach; in this case, all the lags of the
variogram of the second coefficient of the MFCC are employed. The sec-
ond choice is referred to as the reduced variogram approach; in this case,
a subset of the lags of the variogram of the MFCC matrix is considered.
Thus, the usage of the variogram is proposed as a tool to synthesize the
timbre information contained in the MFCCs.

Also, four different weighting functions are tested for the calculation
of the distance measure between songs. The performance of the meth-
ods proposed is evaluated by applying the pseudo-objective evaluation
scheme of the MIREX AMS task. The results are compared against the
scores obtained by other methods submitted to the MIREX AMS 2011.

Keywords: Music Similarity, Variogram, MFCCs, MIREX AMS task.

1 Introduction

The rapid evolution of the technology during the last years has allowed the
creation of tons of new digital multimedia content. This fact has made the re-
quirements for the distribution of music content grow. But also, proper storage
schemes are necessary, together with the development of labelling and indexation
techniques of the material in order to provide efficient access to the content.

In this context, a growing number of tasks concerning the Music Information
Retrieval (MIR) community have been proposed over the years. Among them,
one of the fields to which the MIR community is currently devoting resources
is focused on the development of content-based music recommendation systems.
Briefly, these systems are based on the calculation of a number of descriptors of
the songs, extracted from the time and/or frequency domain, and the derivation
of some kind of representative patterns based on those features that are used
to create signatures of the songs. Then, these signatures must be compared to
obtain measures of music similarity.

M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 313–332, 2013.
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So, a key concept of content-based music recommendation systems is the
extraction of significant features from the songs to create meaningful signatures
for each of the pieces that must be considered.

Some commonly used descriptors are based on the rhythm pattern of the song.
Gouyon [9] demonstrated how using only the main tempo of the song, a music
genre classification scheme attains an accuracy of 80%.

Melody extraction is the basis of other sets of algorithms aimed to exploit
the tonal content of the song for music characterization and indexation. Gómez,
in [8], described how the melody pattern (often symbolically represented using
MIDI [20]) can be successfully employed for music recommendation.

Timbre is another important feature. Timbre is widely defined as the ‘quality
of sound’. It is a perceivable characteristic of the sound that cannot be rigorously
described by a unique numeric descriptor. Conversely, it is rather qualitatively
described as the sensation transmitted by the sound [2]. Although the nature
of timbre is typically qualitative, a number of descriptors have been defined in
an attempt to numerically resume some spectral features of the audio excerpts
strictly related to the sensation transmitted to the listener [4].

Together with the musical features described above, a brief description of
some of the most popular computational ‘low-level features’ follows:

– Spectral centroid - The spectral centroid [24] is defined as the centre of mass
of the spectrum. It is related to the ‘brightness’ of the timbre.

– Spectral flatness - The spectral flatness defines the shape of the spectrum
or, more specifically, how much the spectrum resembles a tonal or a noisy
signal [13].

– Spectral flux - Tzanetakis [26] defines the spectral flux as a measure of the
evolution of the spectrum over the time. Thus, this descriptor reveals the
rate of musical variation along the time of the song.

– Spectral Rolloff - The spectral rolloff measures the accumulation of the en-
ergy of sound in the lower parts of the spectrum [10].

These and other low-level descriptors are rarely used individually but together
to give rise to vectors of descriptors.

On the other hand, the whole spectrum is not actually considered as a de-
scriptor itself. Hence, a simplified version of the spectrum, revealing most of the
information on the distribution of the amplitude of the sinusoidal components,
is widely employed in MIR. Such a descriptor is, in fact, a vector of components
known as the Mel Frequency Cepstral Coefficients (MFCC). We will pay atten-
tion to this descriptor and the utilization of the variogram in the context of the
application of MFCCs to define music similarity.

This chapter is organized as follows: a brief introduction to MFCCs will be
given in the next section. In Section 3, the variogram will be presented. Then, in
Section 4, the usage of the variogram in the contexts of MFCCs will be described.
Distance measures for the evaluation of music similarity will be presented in
Section 5. The results of the evaluation of the methods proposed will be presented
in Section 6 and, finally, some conclusions will be drawn in Section 7.



Music Similarity Evaluation Using the Variogram for MFCC Modelling 315

2 Mel Frequency Cepstral Coefficients

One of the most successfully used features to describe the spectral content of an
audio signal are the Mel Frequency Cepstral Coefficients (MFCC) [22]. These
are short-time spectrum-based features often employed to summarize the timbre
content of the songs. Thus, MFCCs are involved in many known algorithms for
music similarity evaluation.

The MFCCs are calculated according to a known procedure [21] (although
sometimes modifications are introduced):

1. The short-time spectrogram is obtained.
2. The spectrogram is mapped onto the Mel scale using (see Figure 1):

M = 1127.01048 · loge(1 + f/700) (1)

where f represents the frequency in Hz that will be converted into Mel
units.
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Fig. 1. The Mel scale. The reference value of 1000 Mel is highlighted.

To this end, a Mel filter bank (Figure 2) is applied.
3. The filtered spectrum is expressed in decibels.
4. The resulting data are compressed using the Discrete Cosine Transform

(DCT).

A flow chart of the entire process is shown in Figure 3.
The entire process implies a lossy compression of the original spectrum. The

descriptor obtained is a matrix with a size depending both on the number of
coefficients (fixed a priori) and the set of chunks the song has been divided into
during the windowing of the spectrogram.

Logan and Salomon [18], employed the popular K-means algorithm to cluster
the MFCCs and then used the means and covariance matrices of the centroids
to define the song signature that would be used to measure music similarity. A
simple flowchart of a music similarity estimation process in shown in Figure 4.
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Fig. 2. The Mel filter bank

Pampalk [21] proposed the use of the Gaussian Mixture Models (GMMs) and
the Expectation-Maximization (EM) approach [6] in this context, modelling the
probability distribution functions of the vectors of coefficients. Aucouturier and
Pachet [3] employed a Monte Carlo approach as clustering technique. Mandel
and Ellis [19] used only one cluster from a GMM whereas Tzanetakis and Cook
[26] simply extracted the mean and variance from each vector of Mel coefficients.

In this chapter, a discussion on the use of the variogram for MFCC modelling,
proposed in [23], will be provided.

3 The Variogram

The variogram is a popular tool in Geostatistics. It is widely employed to model
the spatial continuity of environmental variables. In this sense, Isaaks and Sri-
vastava [12] affirm that ‘Two data close to each other are more likely to have
similar values than two data that are far apart’. This characteristic is quantita-
tively defined as spatial continuity, making reference to the spatial correlation
of spatial variables.

Let zx, with x = 1, . . . , n represent a set of n sampled observations of certain
spatial phenomenon. The index x stands for the vector of coordinates of the
samples, generally unidimensional in the case of temporal variables, but two- or
three- dimensional in the case of spatial phenomena.

One way to measure the spatial continuity of the values of the samples is to
observe their behaviour when considered in pairs related by their distance or
separation. The h-scatter plot performs this task. It represents the scatter plot
of samples paired by a specific value of distance h [12] (see Figure 5).
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We can draw two important considerations:

– The h-scatter plot of the paired samples at h = 0 (Figure 5(a)) is simply the
comparison of each sample with itself. Thus, it will always be a straight line
with slope 1.

– The widening of the cloud of samples in the h-scatter plot as h grows (Figure
5(b-d)), reveals the decrease of their pairwise correlation with the distance.
The larger the distance, the lesser the degree of similarity between them.
This makes the scatter cloud wider and more diffuse [12] with growing h.

Now, we need a quantitative measure of the spread of the cloud, and of its
dependence on h. One popular measure of the spread of a scatter plot is the
correlation coefficient.

The general definition of the correlation coefficient follows:

ρx,y =
Cx,y

σx · σy
(2)

where σx and σy are the standard deviations of x and y, respectively, and Cx,y is
the covariance of the variables x and y: (E[x−E[x]])(E[y −E[y]]). The sample
covariance is defined as follows:

Cx,y =
1

n− 1

n∑
i=1

(xi − x̄) · (yi − ȳ) (3)

where x̄ and ȳ are the sample mean values of the variables x and y, respectively.
It is possible to find the sample correlation coefficient of the two subsets of the
variable z separated h, generally z(x) and z(x+ h), for each value of h.
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The relationship between the correlation coefficient and the distance h is
defined as the correlation function, or correlogram (ρ(h)) [12]:

ρ(h) =
Cz(x),z(x+h)

σz(x) · σz(x+h)
(4)

As has been shown, the degree of correlation of the paired samples typically
decreases with the magnitude of h. This behaviour results in a rather clear
asymptotic behaviour of the function as h grows. This is a crucial feature in
geostatistics and can be easily related to the geometrical meaning of the h-
scatter plot itself. In Figure 5, the cloud of the h-scatter plots spreads more
and more with the magnitude of h. The spread can grow up to a certain limit,
given by the meaning and the geometric extent of the h-scatter plot itself. This
fact is related to the meaning of the correlation coefficient. When the samples
are widely scattered on the plane, they reveal independence between the paired
variables. Thus, when the plane tends to be uniformly filled, their correlation
coefficient tends to zero. This asymptotic behaviour is properly reflected by the
shape of the correlogram.

An alternative measure for the spatial continuity is the covariance of the paired
variables. The sample covariance of the paired variables is defined as follows:

C(h) =
1

n(h)− 1

n(h)∑
i=1

(zi(x)− z̄(x)) · (zi(x+ h)− z̄(x+ h)) (5)
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Fig. 5. h-scatter plots of a set of regularly separated spatial samples. The first plot
resembles a straight line with slope 1. Note that h = 0 implies the comparison of each
sample with itself. In the plots, the increase of the spread of the cloud of samples with
h is evident. In each plot, a small graph showing the pairing of the first sample is
shown. The analysed data are a subset of topography data, freely provided by the US
National Geophysical Data Center (NOAA).

As seen in equations (4) and (5), the two functions refer to two closely related
statistics

Another value for the measure of the spread of the h-scatter plot cloud is
the moment of inertia. If the cloud of samples of Figure 5 is considered as a
molecular mass spinning around its central axis (the geometrical locus of the
paired samples at h = 0), then it is possible to measure the spread of the cloud
as the moment of inertia of the mass. This parameter can be estimated as follows:

T =
1

2 · n ·
n∑

i=1

(xi − yi)
2 (6)

The moment of inertia is a measure of the drift of the samples around the
diagonal. As with the case of the correlogram and the covariance function, the
moment of inertia can be related to the distance h. In this case, the function is
referred to as semivariogram, or simply variogram.
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The variogram of a pair of variables (z(x) and z(x + h) separated by the
distance h is obtained as follows:

γ(h) =
1

2 · n(h) ·
n(h)∑
i=1

(z(xi)− z(xi + h))2 (7)

where the number of pairs n is represented as a function of h, because the number
of pairs available changes with the distance h. The term h is usually referred to
as the lag.

A typical variogram curve reflects the empirical assumption made for the h-
scatter plot. It is zero at the origin, it grows with the lag distance and starts
to flatten around a certain value of variance. In Figure 6, a typical empirical
variogram is shown, together with the covariance function.
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Fig. 6. A sample of an empirical variogram and its corresponding covariance function

The approximation of the law of spatial continuity for all the lags is often de-
manded. Then, some theoretical analytic models are often fitted to the empirical
variogram.

In order to infer the theoretical behaviour of the experimental variogram, the
samples of the spatial variable are considered realizations of a random variable,
and a series of assumptions are applied. In particular, stationarity is assumed.

Under the hypothesis of second order stationarity [27], the empirical variogram
can be conveniently approximated by a family of functions (bounded authorized
models) that allow us to infer the information on the spatial continuity over the
entire range. Two of the most popular models used to fit the sample variogram
function are the exponential and the spherical models [12].

The fit of the sample variogram function with analytic models allows us to
define simple parameters to characterize the behaviour of the variogram. The
main features typically used to describe the shape of the variogram are:
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– The sill : the asymptotic value that the variance curve tends to.
– The range: the lag value after which the sill is considered to be reached.
– The nugget effect : as already indicated, the theoretical value of the vari-

ogram at h = 0 is zero. However, in a practical experimental framework,
a significant discontinuity in the sample variogram curve can be observed.
This is called the nugget effect and this phenomenon is referred to as the
small scale variability [16]. So, the model of the nugget effect is employed to
take into account this observation to properly fit the theoretical models to
the variogram curve by summing a certain offset to the main model. Thus,
the first lag of the model is pushed to a level of variance larger than zero to
cope with the small scale variability.

In Figure 7, a commonly used theoretical model (a spherical model) fitted to
a real variogram curve is shown together with the main parameters described.
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Fig. 7. An empirical variogram and the corresponding analytical spherical model fitted.
Main variogram parameters are indicated.

Despite the fact that variogram was originally devised in a spatial statistics
framework, it can be conveniently applied to time series. Many authors [15,11,14]
have used the variogram, together with classic signal processing techniques, as a
tool for the study of the periodicity of signals and for general time series analysis.

In the case of temporal signals, the distance parameter h becomes unidimen-
sional and it simply represents the time lag between the samples.

The number of pairs available is a linearly decreasing function with its maxi-
mum at lag h = 1. For this reason, the reliability of the sample variogram values
decreases with the lag. The variogram values estimated for the first lags are more
reliable than the ones estimated for further lags. Fortunately, the most revealing
part of the behaviour of a variogram is at the small scale, where it evolves faster,
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whereas a less interesting and rather constant behaviour is found at larger scales.
In Figure 8, a typical temporal variogram that illustrates these observations is
shown.
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Fig. 8. A temporal variogram. An exponential model is fitted to the experimental data.

Finally, when applied to audio signals, the variogram curve typically shows
a periodical behaviour. In fact, the squared difference among the samples is
affected by the periodicity of the signal itself and it is faithfully reflected by the
variogram.

4 The Variogram for MFCC Modelling

In this work, the temporal variogram is calculated on the MFCCs and is thereby
used as a tool to model the variation of the cepstral descriptors over the time
fragments. A modification of the variogram proposed in [23] and a series of
choices for the calculation of the distance are tested.

For the calculation of the MFCC, the input signal is split into a series of
non-overlapping chunks with 1024 samples each. A hamming function is applied
to each chunk. The number of Mel filters employed (the triangular filter bank)
is 40 and the number of DCT coefficients stored is 13. Thus, using this set of
parameters, one minute of an audio signal is represented by an MFCC matrix
of 13× 2583 samples.

When the variogram is applied to the MFCCs, the lag values correspond to
a temporal distance in terms of the number of chunks into which the song had
been split. In order to define a standard measure for the quantitative compar-
ison between the songs, each variogram is normalized by the global variance
of the MFCC analysed. The result is an empirical variogram with asymptotic
tendency towards a reference variance of one. This is called the standardized
variogram [23].
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The variogram approach is applied to the 2004 Audio Description Contest
(pre-MIREX) database for genre classification. This is a set of about 700 songs,
whose duration is between 5 seconds and 5 minutes.

For the analysis, two different options related to the usage of the variogram
are considered: the full variogram and the reduced variogram.

4.1 The Full Variogram

The so-called full variogram is the variogram of the second MFCC, calculated
from lag 1 to 200. That is, the temporal separation between the pairs of sam-
pled considered ranges from 1 chunk (1024 samples, about 23 ms) to 200 chunks
(about 4.6 seconds). The resulting unidimensional vector of 200 elements corre-
sponds to the song signature.

This approach implies a compression rate, regarding the data employed for
the evaluation of music similarity, of about 93% in the case of the shortest audio
fragment (5 seconds): the process converts about 2800 samples of the original
MFCC matrix (with size 215× 13) into 200 samples of the variogram vector. In
the case of the largest audio fragment (with a maximum duration of 5 minutes),
the compression rate is about 99.8%: 168000 samples from the original MFCC
matrix (with size 12919×13) are converted into the 200 samples of the variogram
vector.

In Figure 9, two examples of the full variogram are shown, calculated on the
second MFCC of two different songs from the sets of songs corresponding to the
classical and electronic genres. The large differences expected when comparing
these two songs of very different genres are reflected by the variogram functions
obtained.

The second MFCC of the two songs is rather different: that of the classical
piece shows a more structured and smoother variability than that of the elec-
tronic piece. Also, the classical piece shows few high-frequency components and
a hidden (or missing) periodicity, unlike the electronic piece. On the other hand,
the variogram function obtained for the electronic piece looks much fuzzier and
with a larger contribution of high frequencies than the classical one. Also, a clear
periodical behaviour is found for the electronic piece.

Furthermore, the variogram function obtained for the classical piece reveals
a high pairwise continuity at the small scale (the nugget effect is null) and a
smoothly increasing variance with a clear asymptotic trend towards the range.
Conversely, the variogram of the electronic piece is much more unstructured, with
continuous periodic oscillations coupled with a weak asymptotic trend. Also, the
nugget effect in this latter case is large.

4.2 The Reduced Variogram

The reduced variogram is calculated using 12 MFCCs (from the second MFCC
to the last one), on a reduced bunch of lags.

A total amount of 20 lags are sampled with a logarithmically varying density,
from 1 to 200. Thus, the number of lags considered is concentrated at the small
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Fig. 9. Two examples of the full standardized variogram function obtained for the
second MFCC of two different songs of the classical (top) and electronic (bottom)
genres (respectively). The excerpts analysed have a duration of 1 minute.

scale, where most of the relevant information should be found (see Figure 10).
The signature matrix found is of dimensions 12× 20.

In Figure 11, the reduced versions of the full variogram of Figure 9 are shown.
The conclusions drawn for the reduced variograms are the same as the ones

found for the full variogram. The classical piece shows a smoother variogram, a
more structured variability and a higher small-scale pairwise continuity than the
electronic piece. Conversely, the electronic track reveals a larger variability of its
structure and a marked periodical behaviour. In both cases, the reduction of the
number of lags does not substantially affect the representation of the original
full variogram.

5 Distance Measures

In order to obtain an estimation of the degree of similarity between songs, the
signatures extracted from them have to be quantitatively compared. To this
end, a distance or separation measure must be defined. In this work, a weighted
Euclidean distance is used.
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Fig. 10. The reduced variogram function (solid line) for the classical piece of Figure
9(b) obtained by the logarithmic lag subsampling process. The samples employed to
define the reduced variogram are marked by stems.

The distance is calculated as follows:

Di,j =

√√√√ n∑
k=1

((Vi(k)− Vj(k)) · ω(k))2 (8)

where Vi(k) and Vj(k) are the values of the k-th lag of the variograms of the
songs i and j. ω(k) is the weight of the k-th lag. The maximum number of lags
n is 240 for a bi-dimensional reduced variogram and 200 for a full unidimen-
sional variogram. Note that the bi-dimensional variogram is reordered into a
unidimensional vector to simplify the calculations.

As previously observed, the variogram stores most of its information (in terms
of quality and reliability) at the small scale. The most meaningful measures come
from the first lags, until the range is reached. Remember that beyond the range,
the values of the variogram function loose significance. For this reason, three
different sets of weights are proposed: a set of exponentially decreasing weights,
a set of logarithmically decreasing weights and, finally, a set of linearly decreasing
weights. Additionally, the Euclidean distance (unweighted) is also considered.

In Figure 12, the three sets of weights selected are compared. Note that the
vectors of weights represented correspond to the stacked vectors obtained when
the reduced variogram (20 lags) is considered. In all cases, the weights are nor-
malized so that their sum is 1.

6 Evaluation of the Performance of the Algorithms

Using each of the two options described for the usage of the variogram in the con-
text of MFCCs and music similarity evaluation, a set of four different weighting
configurations for the definition of the weighted Euclidean distance have been
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Fig. 11. The matrices of the standardized reduced variogram of the whole MFCC
matrices for two different songs. The songs correspond to the classical and electronic
genre, at the top and the bottom of the figure, respectively. The excerpts analysed have
a duration of 1 minute.

defined, as previously stated: the three weighting vectors previously defined and
a fourth one, corresponding to the unweighted configuration.

The evaluation of the performance of the methods is done on the basis of the
genre classification music database of the 2004 Audio Description Contest of the
ISMIR2004 conference [5]. Undoubtedly, ISMIR is, nowadays, a reference in this
context.

The only real freely available music collection for these purposes is limited to
the Magnatune dataset released in 2004 in the first (pre-) MIREX contest on
audio description. This database is under Creative Commons license and it is
currently freely downloadable from the MIREX website. The collection is part
of the whole database employed in the task devoted to the classification of mu-
sic genres during the ISMIR2004 conference. It consists of a series of more than
700 pieces unequally grouped into six music genres: classical, electronic,
jazz/blues, metal/punk, rock/pop and world. The audio waveforms are sampled
at 44100 Hz.
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Fig. 12. The three vectors of weights employed for the calculation of the distance mea-
sure: exponentially decreasing weights, logarithmically decreasing weights and linearly
decreasing weights. Note that the observed shape of the linear weights is due to the
fact that the lag axis is logarithmic.

The pseudo-objective evaluation [7], currently employed in the MIREX music
similarity tasks, is performed. The matching rates of artist, album and (artist-
filtered) genre for the first 5, 10, 20 and 50 songs are calculated. The matching
values are expressed as a function of the number of available pieces per artist,
album and genre. In this way, the unequal distribution of pieces in the database
is taken into account.

In Table 1, the matching scores of the music similarity evaluation scheme for
the two different strategies of utilization of the variogram described are shown.

The performance obtained using the reduced variogram is globally better than
the one attained using the full variogram, for any kind of weighting configuration.
Remember that although the full variogram contains a more complete informa-
tion of the second (and most representative) MFCC than the reduced model,
the reduced model is calculated on a smaller but more reliable (globally) bunch
of lags. Apparently, the loss of information due to the reduction of the lags con-
sidered is compensated more than necessary by the improvement derived from
the utilization of the more reliable samples.

Different trends of the variation of the scores for the three different categories
(artist, album and genre) are observed. In particular, the artist- and album-
based scores increase with the number of items considered; however, the genre
scores evolve with opposite tendency.

The best results found using the full variogram (e.g. 43.62%, obtained for the
genre coincidence of the first 5 items of the list) have been obtained with the set
of exponentially decreasing weights. Using this set of weights, the contribution of
the first lags to the distance measure is more important than in the other cases.
Surprisingly, the result found when the reduced variogram is used is different: the
best scores obtained correspond to the utilization of the raw Euclidean distance.
However, in this latter case, the trend is not as clear as in the former one.
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Table 1. Pseudo-objective evaluation of the music similarity estimation strategy pro-
posed using both the full variogram and the reduced variogram. Note that the genre
scores are calculated on the artist-filtered subset.

Full variogram Reduced variogram
Euclidean distance

Artist 4.50 5.47 8.40 16.43 15.23 16.32 21.59 32.38
Album 3.42 5.65 9.23 17.97 13.03 17.55 25.23 36.07
Genre 38.19 38.08 37.63 37.25 48.48 47.68 46.18 43.70

Exponential weights
Artist 7.24 9.12 13.01 23.63 16.99 18.47 23.11 34.26
Album 5.29 8.52 14.23 26.20 13.25 19.14 26.30 37.69
Genre 43.62 42.46 41.85 40.16 46.43 45.29 44.17 43.23

Logarithmic weights
Artist 5.20 5.94 9.37 18.05 15.81 16.70 21.88 32.86
Album 3.86 5.70 10.43 19.40 12.62 17.83 25.72 37.03
Genre 38.72 38.48 38.41 37.65 48.07 46.66 45.51 42.84

Linear weights
Artist 5.14 5.81 8.90 18.45 16.51 17.70 22.40 33.77
Album 3.79 5.47 9.64 19.44 12.93 19.15 26.74 38.68
Genre 39.25 38.44 38.40 37.79 47.84 46.94 44.81 42.73

First 5 First 10 First 20 First 50 First 5 First 10 First 20 First 50

The scores obtained by the two possibilities of the utilization of the vari-
ogram described, for the different genres, show a non-uniform behaviour for
both choices. See Figure 13.

It is important to observe the correlation of this set of scores with the unequal
number of songs available per genre in the database employed in the experiments
(see Table 2). This seems to be a further confirmation of the necessity of a more
representative database whose structure does not influence the results.

In this analysis, it can be observed that the distribution of scores is not equal
for the two methods. The method that uses the reduced variogram seems to
perform rather better than the one that uses the full variogram on the genres
with the largest number of pieces available. On the other hand, the usage of the
reduced variogram seems to lead to worse performance than the full variogram

Table 2. Percentages of the number of songs available per genre in the database

Genre Songs available per genre (%)

Classical 43.9
Electronic 15.8
Jazz/Blues 3.6
Metal/Punk 6.2
Rock/Pop 13.8
World 16.7
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Fig. 13. The artist-filtered genre scores for the first 5 items, calculated for the two
best configurations of the two variogram-based approaches: the exponentially weighted
distance measure for the full variogram and the Euclidean distance for the reduced
variogram

Table 3. Average artist-filtered genre scores of the algorithms proposed for the MIREX
2011 contest [1]. The method acronyms correspond to the standard coding employed
in the MIREX contest.

Method First 5 First 10 First 20 First 50

STBD1 24.19 23.34 22.14 20.57
STBD2 23.55 22.56 21.61 19.98
STBD3 23.07 22.55 21.78 20.47
DM2 46.02 44.14 42.22 39.28
DM3 46.08 44.20 42.33 39.37
GKC1 23.45 22.55 21.57 20.01
HKHLL1 34.91 33.81 32.72 31.39
ML1 41.77 39.86 38.09 35.53
ML2 40.19 38.45 36.28 33.62
ML3 41.06 38.99 36.80 33.85
PS1 54.11 52.17 50.13 46.74
SSKS3 54.65 53.15 51.52 48.98
SSPK2 54.24 52.75 51.19 48.56
YL1 37.40 35.43 33.01 29.54

on the two genres with the smaller number of songs: the Jazz/blues and the
Metal/punk genres. In these two genres, the full variogram attains better results.

For comparison purposes, the results of the pseudo-objective evaluation of the
algorithms proposed for the Audio Music Similarity contest of the MIREX 2011
[1] are reported in Table 3 (only artist-filtered genre scores).

As shown, the scores obtained for the variogram-based approaches are in the
same range as the references found in the results of the MIREX Audio Music
Similarity task.
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7 Conclusions and Discussion

In this chapter, the utilization of an analysis technique from the spatial statis-
tics field has been proposed for the development of music similarity evaluation
algorithms.

The variogram represents the most popular tool for the analysis of spatial
variables in geostatistics, and is commonly employed to model the structured
variability for spatial prediction utilities. The usage of the temporal variogram
has been proposed in this work, as a tool to model the temporal variability of
the Mel Frequency Cepstral Coefficients in the context of the evaluation of music
similarity.

A brief description of the theory of variogram analysis has been given. The
idea for the adaptation of the variogram to a temporal framework has also been
presented. Then, two different alternatives for the calculation of the variogram
to define song signatures have been proposed: the full variogram and the reduced
variogram. Four related distance measurement functions for the calculation of
the distance between the song signatures have been evaluated.

The two approaches developed have been tested on a reference database of
songs divided into six different genres. A pseudo-objective analysis has been
computed in order to achieve a quantitative evaluation of the performance of the
methods. Also, a comparison with a known reference, in terms of the evaluation
of algorithms for the measurement of music similarity, has been shown.

The reduced variogram obtained better scores than the full variant. The
method does not seem to be actually influenced by the kind of weighting function
used for the calculation of the distance between signatures. The results attained
by the approaches proposed are in the range of the reference scores found in the
Audio Music Similarity contest of the MIREX 2011.

All the variograms analysed are obtained by the application of the estima-
tion equation (7). In the future developments, the theoretical models to fit the
variogram can be employed to model the variogram function with a series of pa-
rameters. In particular, the nugget effect, the range and the sill of the theoretical
models could be employed as low-level descriptors for classification purposes.

In order to test this concept, a simple approach has been evaluated. A least
square fit algorithm for the exponential model has been implemented. It has
been applied to the variograms of the songs of the collection used in this chap-
ter in order to produce an initial estimation of the nugget effect. Then, it has
been employed as a low-level descriptor, together with other popular MIR de-
scriptors [25], and evaluated in a music genre classifier. The classifier employed
was a simple knn-classifier, with k = 5. The results are rather encouraging. The
performance of the usage of the nugget effect is similar to that of other popular
features or better in some specific cases as in the genre world.

The process of fitting models to the empirical variograms is actually a matter
of discussion and the issue is far from being solved [17]. However, these prelimi-
nary results encourage to focus on the development of automatic fitting processes
for the variogram models in order to obtain robust descriptors for MIR tasks.
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Abstract. In this paper, we present a machine learning-based approach
to automatically estimate the fretboard position (string number and fret
number) from recordings of the bass guitar and the electric guitar. We
perform different experiments to evaluate the classification performance
on isolated note recordings. First, we analyze how the separation of
training and test data in terms of instrument, playing-style, and pick-up
setting affects the algorithm’s performance. Second, we investigate how
the performance can be improved by rejecting implausible classification
results and by aggregating the classification results over multiple time
frames. The algorithm showed highest string classification f-measure val-
ues of F = .93 for the bass guitar (4 classes) and F = .90 for the electric
guitar (6 classes). A listening test with 9 participants with classifica-
tion scores of F = .26 and F = .16 for bass guitar and electric guitar
confirmed that the given tasks are very challenging to human listen-
ers. Finally, we discuss further research directions with special focus on
the application of automatic string detection in music education and
software.

Keywords: string classification, fretboard position, fingering, bass
guitar, electric guitar, inharmonicity coefficient.

1 Introduction

On string instruments such as the bass guitar or the guitar, most notes within the
instrument’s pitch range can be played at multiple positions on the instrument
fretboard. The fretboard position of a note is defined by the string number ns

and the fret number nf . Common music notation such as the score does not
provide any information about the fretboard positions to be applied. Instead,
musicians often have to choose appropriate fretboard positions based on their
musical experience and stylistic preferences. The tablature notation, on the other
hand, is specialized for the geometry of fretted string instruments such as the
guitar or the bass guitar. It specifies the string and fret number for each note and
thus resolves the ambiguity between note pitch and fretboard position. Figure 1
shows a bass-line both as score and tablature notation.

M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 333–352, 2013.
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Fig. 1. Score and tablature notation of a bass-line. The four horizontal lines in the
tablature notation correspond to the four strings with the tuning E1, A2, D2, and G2
(from bottom to top). The numbers correspond to the fret numbers on the strings that
are to be played.

Conventional automatic music transcription algorithms only extract score-
related note parameters such as pitch, onset, and duration. In order to analyze
recordings of string instruments, the string and fret number need to be estimated
as additional instrument-related note parameters. Algorithms for automatic tab-
lature generation from an audio recordings can be applied in music assistance and
music education software. Tablature notations are especially helpful to novices
who are not familiar with reading musical scores.

As will be discussed in Section 3, various methods for estimating the fretboard
position were proposed in the literature so far, ranging from pure audio-based
methods to methods that exploit the visual modality or methods that use at-
tached sensors on the instrument. However, the exclusive focus on audio analysis
methods for this purpose bears several advantages: in music performance sce-
narios involving a bass guitar or an electric guitar, the instrument signals are
directly accessible from the instrument’s output jack. In contrast, video record-
ings of performing musicians and the instrument neck are often limited in quality
due to movement, shading, and varying lighting conditions on stage. Additional
sensors or cameras that need to be attached to the instrument are often obtru-
sive to the musicians and affect their musical performance. Therefore, we focus
on audio-based analysis in this paper.

This paper is structured as follows: In Section 2, we outline the goals and
challenges of this work. In Section 3, we discuss existing methods for estimat-
ing the fretboard position from string instrument recordings. We introduce a
novel audio-based approach in Section 4, starting with the spectral modeling of
recorded bass and guitar notes in Section 4.1. Based on the audio features ex-
plained in Section 4.2, we illustrate how the fretboard position is automatically
estimated in Section 4.3. In Section 5, we present several experiments to evalu-
ate the algorithm’s performance and discuss the obtained results. This section
also includes the results of a listening test with human participants for the task
of string classification. Finally, we conclude our work in Section 6 and give an
outlook in Section 7 on future research.
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2 Goals and Challenges

In this paper, we aim to estimate the string number ns from notes recorded
with bass guitars and electric guitars. Based on the note (MIDI) pitch P and
the string number, we can apply knowledge on the instrument tuning to derive
the fret number nf . In the evaluation experiments described in Section 5, we
investigate how the classification results are affected by separating the training
and test data according to different criteria such as the instruments, the pick-
up (PU) settings, and the applied playing techniques. Furthermore, we analyze
if a majority voting scheme that combines multiple string classification results
for each note can improve the classification performance. Finally, the obtained
results are compared to the human performance for the same task.

The main challenge of this work is to identify suitable audio features that
allow to discriminate between notes that, on the one hand, have the same fun-
damental frequency f0 but, on the other hand, are played on different strings.
The automatic classification of the played string is difficult since the change of
fingering alters the sonic properties of the recorded music signal only subtly.
This was confirmed in the human listening test presented in Section 5.2.

Classic non-parametric spectral estimation techniques such as the Short-time
Fourier Transform (STFT) are affected by the spectral leakage effect: the Fourier
Transform of the applied window function limits the achievable frequency resolu-
tion to resolve the exact frequency position of spectral peaks. In order to achieve
a sufficiently high frequency resolution for estimating the harmonic frequencies
of a note, rather larger time frames are necessary. The decreased time resolu-
tion is disadvantageous if notes are played with frequency modulation techniques
such as bending or vibrato, which cause short-term fluctuations of the harmonic
frequencies [1]. This problem is especially impeding in lower frequency bands.

Thus, a system based on non-parametric spectral estimation techniques is only
applicable to analyze notes with no or only slow pitch variation. This can be a
severe limitation for a real-world application scenario such as music education
software. Since we focus on the bass guitar and the electric guitar, frequencies be-
tween 41.2 Hz and 659.3 Hz need to be investigated as potential f0-candidates1.

3 Related Work

In this section, we discuss previous work on the estimation of the played string
and the fretboard position from bass and guitar recordings. First, we review
methods that solely focus on analyzing the audio signal. Special focus is given to
the analysis of inharmonicity. Then, we compare different hybrid methods that
incorporate computer vision techniques, instrument enhancements, and sensors.

1 This corresponds to the most commonly used bass guitar string tunings E2 to G3
and electric guitar string tuning E3 to E5, respectively, and a fret range up to the
12th fret position.
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3.1 Audio Analysis

Penttinen et al. estimated the plucking point on a string by analyzing the delay
times of the two waves on the string, which travel in opposite directions after the
string is plucked [22]. This approach solely focuses on a time-domain analysis
and is limited to monophonic signals.

In [3], Barbancho et al. presented an algorithm to estimate the string number
from isolated guitar note recordings. The instrument samples used for evaluation
were recorded using different playing techniques, different dynamic levels, and
guitars with different string material. After the signal envelope is detected in
the time-domain, spectral analysis based on STFT is applied to extract the
spectral peaks. Then, various audio features related to the timbre of the notes
are extracted such as the spectral centroid, the relative harmonic amplitudes
of the first four harmonics, and the inharmonicity coefficient (see also Section
3.1). Furthermore, the temporal evolution of the partial amplitudes is captured
by fitting an exponentially decaying envelope function. Consequently, only one
feature vector can be extracted for each note. As will be shown in Section 4.2, the
presented approach in this paper allows us to extract a single feature vectors for
each time frame. This allows us to accumulate classification results from multiple
feature vectors that were obtained from the same note recording to improve the
classification performance (compare Section 4.3). The authors of [3] reported
diverse results from the classification experiments. However, they did not provide
an overall performance measure to compare against. The performance of the
applied classification algorithm strongly varied for different note pitch values as
well as for different compilations of the training set in their experiments.

In [2], Barbancho et al. presented a system for polyphonic transcription of
guitar chords, which also allows estimation of the fingering of the chord on the
guitar. The authors investigated 330 different fingering configurations for the
most common three-voiced and four-voiced guitar chords. A Hidden Markov
Model (HMM) is used to model all fingering configurations as individual hidden
states. Based on an existing multi-pitch estimation algorithm, harmonic saliency
values are computed for all possible pitch values within the pitch range of the
guitar. Then, these saliency values are used as observations for the HMM. The
transitions between different hidden states are furthermore constrained by two
models—a musicological model, which captures the likelihood of different chord
changes, and an acoustic model, which measures the physical difficulty of chang-
ing the chord fingerings. The authors emphasized that the presented algorithm
is limited to the analysis of solo guitar recordings. However, in that scenario,
the algorithm clearly outperformed a state-of-the-art chord transcription sys-
tem. The applied dataset contained instrument samples of electric guitar and
acoustic guitar.

Maezawa et al. proposed a system for automatic string detection from isolated
bowed violin note recordings in [17]. Similar to the bass guitar, the violin has 4
different strings, but within a higher pitch range. The authors analyzed mono-
phonic violin recordings of various classical pieces with given score information.
First, the audio signal is temporally aligned to the musical score. For the string
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classification, filterbank energies are used as audio features and a Gaussian mix-
ture model (GMM) is applied as classifier. The authors proposed two additional
steps to increase the robustness of the classification. First, feature averaging and
feature normalization are used. Then, a context-dependent error correction is
applied, which is based on empirically observed rules describing how musicians
choose the string number. The authors investigated how training and testing
with the same and different instruments and string types affect the classification
scores (similar to Section 5). The highest F-measure value that was achieved for
the string classification with 4 classes is F = .86.

In [4], Barbancho et al. presented an algorithm for automatic tablature genera-
tion from audio recordings of guitar. First, one or multiple fundamental frequen-
cies are detected by investigating the most prominent peaks as f0-candidates.
Each candidate is rated based on the fitness of the corresponding partial peaks
to a given model that incorporates inharmonicity. The string and fret number
of the detected notes are taken from the best fitting model parameters. Multiple
notes are obtained by iteratively removing detected fundamental frequency and
harmonic components from the spectrum. For the analysis of guitar chords, the
authors focus on two scenarios: guitar chords of arbitrary shape with up to 4
chord notes, and guitar chords with a known (template) shape such as barré
chords with up to 6 chord notes. The authors also use constraints to avoid note
combinations that exceed the hand span of a musician and thus cannot be played
on the guitar neck. The presented algorithm performed well for the fretboard
detection of single notes with error rates between 0 and 0.11 for instrument
samples of the RWC database and samples recorded by the authors themselves.

Inharmonicity. For musical instruments such as the piano, the guitar, or the
bass guitar, the equation describing the vibration of an ideal flexible string is
extended by a restoring force caused by the string stiffness [8]. Due to dispersive
wave propagation within the vibrating string, the effect of inharmonicity occurs,
i.e., the purely harmonic frequency relationship of an ideal string is distorted
and the harmonic frequencies are stretched towards higher values as

fk = kf0
√
1 + βk2; k ≥ 1 (1)

with k being the harmonic index of each overtone and f0 being the fundamen-
tal frequency. The inharmonicity coefficient β depends on different properties
of the vibrating string such as Young’s Modulus E, the radius of gyration K,
the string tension T , the cross-sectional area S, as well as the string length L.
With the string length being approximately constant for all strings of the bass
guitar and the electric guitar, the string diameter usually varies from 0.45 mm
to 1.05 mm for electric bass and from 0.1 mm to 0.41 mm for electric guitar2.
The string tension T is proportional to the square of the fundamental frequency
of the vibrating string. Järveläinen et al. performed different listening tests to
investigate the audibility of inharmonicity towards humans [13]. They found
2 These values correspond to commonly used string gauges.



338 J. Abeßer

that the human audibility threshold for inharmonicity increases with increasing
fundamental frequency.

Hodgekinson et al. observed a systematic time-dependence of the inharmonic-
ity coefficient if the string is plucked hard [11]. The authors found that β does
not remain constant but increases over time for an acoustic guitar note. In con-
trast, for a piano note, no such behavior was observed. In this paper, we aim to
estimate β within single spectral frames and therefore do not take the temporal
evolution of β into account.

Different methods have been applied in the literature to extract the inhar-
monicity coefficient such as the cepstral analysis, the harmonic product spec-
trum [9], or inharmonic comb-filter [10]. For the purpose of sound synthesis,
especially for physical modeling of string instruments, inharmonicity is often
included into the synthesis models in order to achieve a more natural sound [25].

3.2 Hybrid Approaches and Visual Approaches

Different methods for estimating the fretboard position from guitar recordings
have been presented in the literature including analysis methods from computer
vision as a multi-modal extension of audio-based analysis.

A combined audio and video analysis was proposed by Hybryk and Kim to
estimate the fretboard position of chords that were played on an acoustic guitar
[12]. The goal of this paper was to first identify a played chord on the guitar in
terms of its chord style, i.e., root note and musical mode such as minor or major.
For this purpose, the Specmurt [23] algorithm was used for spectral analysis
in order to estimate a set of fundamental frequency candidates that can be
associated with different note pitches. Based on the computed chord style (e.g.,
E minor), the chord voicing was estimated by tracking the spatial position of the
hand on the instrument neck. The chord voicing is similar to the chord fingering
as described in [2].

Another multi-modal approach for transcribing acoustic guitar performances
was presented by Paleari et al. in [20]. In addition to audio analysis, the vi-
sual modality was analyzed to track the hand of the guitar players during their
performance to estimate the fretboard position. The performing musicians were
recorded using both two microphones and a digital video camera. The fretboard
was first detected and then spatially tracked over time.

Other approaches solely used computer vision techniques for spatial transcrip-
tion. Burns and Wanderley presented an algorithm for real-time finger-tracking
in [5]. They used attached cameras on the guitar in order to get video recordings
of the playing hand on the instrument neck. Kerdvibulvech and Saito used a
stereo-camera setup to record a guitar player in [14]. Their system for finger-
tracking requires the musician to wear colored fingertips. The main disadvantage
of all these approaches is that both the attached cameras as well as the colored
fingertips are unnatural for the guitar player. Therefore, they likely limit and
impede the musician’s expressive gestures and playing style.

Enhanced music instruments are equipped with additional sensors and con-
trollers in order to directly measure the desired parameters instead of estimating
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Fig. 2. Algorithm overview

them from the audio or video signal. On the one hand, these approaches lead
to a high detection accuracy. On the other hand, these instrument extensions
are obstructive to the musicians and can affect their performance on the in-
strument [12]. In contrast to regular electric guitar pickups, hexaphonic pickups
separately capture each vibrating string. In this way, spectral overlap between
the string signals is avoided, which allows a fast and robust pitch detection with
very low latency and very high accuracy, as shown for instance by O’Grady and
Rickard in [19].

4 Proposed System

Figure 2 provides an overview over the string classification algorithm proposed
in this paper. All processing steps are detailed in the next sections.

4.1 Spectral Modeling

Non-parametric spectral estimation methods such as the Periodogram make no
explicit assumption on the type of signal that is analyzed. In order to obtain a
high frequency resolution for precise f0-detection, relatively large time frames
of data samples are necessary in order to compensate the spectral leakage ef-
fect, which is introduced by windowing the signal into frames. In contrast to the
percussive nature of its short attack part (between approx. 20 ms and 40 ms),
the decay part of a plucked string note can be modeled by a sum of decaying
sinusoidal components. Their frequencies have a nearly perfectly harmonic rela-
tionship. Since the strings of the bass guitar and the electric guitar have a certain
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amount of stiffness, the known phenomenon of inharmonicity appears (compare
Section 3.1).

Parametric spectral estimation techniques can be applied if the analyzed signal
can be assumed to be generated by a known model. In our case, the power
spectral density (PSD) Φ(ω) can be modeled by an auto-regressive (AR) filter
such as

Φ(ω) ≈ ΦAR(ω) = σ2

∣∣∣∣ 1

1 +
∑p

l=1 ale
−jlω

∣∣∣∣
2

(2)

with σ2 denoting the process variance, p denoting the model order, and
{al} ∈ R

p+1 being the filter coefficients. Since auto-regressive processes are
closely related to linear prediction (LP), both a forward prediction error and
a backward prediction error can be defined to measure the predictive quality of
the AR filter. We use the least-squares method (also known as modified covari-
ance method) for spectral estimation. It is based on a simultaneous least-squares
minimization of both prediction errors with respect to all filter coefficients {al}.
This method has been shown to outperform related algorithms such as the Yule-
Walker method, the Burg algorithm, and the covariance method (See [18] for
more details). The size of the time frames N is only restricted by the model
order as p ≤ 2N/3.

First, we down-sample the signals to fs = 5.5 kHz for the bass guitar samples
and fs = 10.1 kHz for the electric guitar samples. This way, we can detect the
first 15 harmonics of each note within the instrument pitch ranges, which is
necessary for the subsequent feature extraction as explained in Section 4.2. In
Figure 3, the estimated AR power spectral density for a bass guitar sample (E1)
as well as the estimated partials are illustrated. Within this paper, we compute
the fundamental frequency f0 from the known fretboard position of all notes in
the dataset. The separate evaluation of fundamental frequency estimation is not
within the scope of this paper.

By using overlapping time frames with a block-size of N = 256 and a hop-size
of H = 64, we apply the spectral estimation algorithm to compute frame-wise
estimates of the filter coefficients {al(n)} in the frames that are selected for
analysis (compare Section 4.2). In order to estimate the harmonic frequencies
{fk}, we first compute the pole frequencies of the AR filter by computing the
roots of the numerator in Equation (2). Then, we assign one pole frequency to
each harmonic according to the highest proximity to its theoretical frequency
value as computed using Equation (1).

4.2 Feature Extraction

Note Detection. In Section 4.1, we discussed that notes played on the bass
guitar and the guitar follow a signal model of decaying sinusoidal components,
i.e., the partials. In this section, we discuss how we extract audio features that
capture the amplitude and frequency characteristics. We first detect the first
frame shortly after the note attack part of the note is finished and the harmonic
decay part begins. As mentioned in Section 4.1, signal frames with a percussive



Automatic String Detection for Bass Guitar and Electric Guitar 341

200 400 600 800 1000 1200 1400
−120

−100

−80

−60

−40

−20

f [Hz]

|Φ
A

R
(e

−
j 2

 π
 f )|

 [d
B

]

Fig. 3. Estimated AR power spectral density for the bass guitar sample with pitch E1
(f0 = 44.1Hz). The estimated first 15 partials are indicated with red crosses.

characteristic are indicated by high values of the process variance σ2(n) obtained
the AR spectral estimation. We found that time frames after

n� = argmax
n

σ2(n) (3)

are suitable for feature extraction. If the aggregation of multiple frame-wise
results is used, we extract features in the first 5 frames after n�. If the aggregation
is not applied, one feature vector is computed for each note in the first frame
after n�.

Inharmonicity Estimation. In each analyzed frame, we estimate the discrete
frequencies fk of the first 15 partials. Then, we estimate the inharmonicity co-
efficient βk as follows. From Equation (1), we obtain

(fk/f0)
2 = k2 + βk4 (4)

We use polynomial curve fitting to approximate the left-hand side of Equation
(4) by a polynomial function of order 4 as

(fk/f0)
2 ≈

4∑
i=0

pik
i (5)

and use the coefficient p4 as an estimate of the inharmonicity coefficient β:

β̂ ≈ p4 (6)

Partial-BasedFeatures. In addition to the inharmonicity coefficientβ, we com-
pute various audio features that capture the amplitude and frequency character-
istics of the first 15 partials of a note. First, we compute the relative amplitudes

{âr,k} = {ak/a0} (7)

of the first 15 partials related to the amplitude of the fundamental frequency.
Then, we approximate the relative partial amplitude values {âr,k} as a linear
function over k as

âr,k ≈ p1k + p0 (8)
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Table 1. Overview of all applied audio features

Feature Number of dimensions

Inharmonicity coefficient β̂ 1
Relative partial amplitudes {âr,k} 15
Statistics over {âr,k} 8
Normalized partial frequency deviations {Δf̂norm,k} 15
Statistics over {Δf̂norm,k} 8
Partial amplitude slope ŝa 1

All features
∑

= 48

by using linear regression. We use the feature ŝa = p1 as estimate of the spectral
slope towards higher partial frequencies.

Based on the estimated inharmonicity coefficient β̂ and the fundamental fre-
quency f0, we compute the theoretical partial frequency values {fk,theo} of the
first 15 partials based on Equation (1) as

fk,theo = kf0

√
1 + β̂k2. (9)

Then, we compute the deviation between the theoretical and estimated partial
frequency values and normalize this difference value as

Δf̂norm,k =
fk,theo − f̂k

f̂k
. (10)

Again, we compute {Δf̂norm,k} for the first 15 partials and use them as features.
In addition, we compute the statistical descriptors: maximum value, minimum
value, mean, median, mode (most frequent sample), variance, skewness, and
kurtosis over both {âr,k} and {Δf̂norm,k}. Table 1 provides an overview over all
features and their dimensionality.

4.3 Estimation Of the Fretboard Position

String Classification. In order to automatically estimate the fretboard po-
sition from a note recording, we first aim to estimate the string number ns.
Therefore, we compute the 48-dimensional feature vector {xi} as described in
the previous section. We use Linear Discriminant Analysis (LDA) to reduce the
dimensionality of the feature space to Nd = 3 dimensions for bass guitar (4
string classes) and to Nd = 5 dimensions for guitar (6 string classes)3, respec-
tively. Then we train a Support Vector Machine (SVM) classifier using a Radial
Basis Function (RBF) kernel with the classes defined by notes played on each
string. SVM is a binary discriminative classifier that attempts to find an optimal
3 The number of dimensions Nd is chosen as Nd = Nstrings − 1.
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decision plane between feature vectors of the different training classes [26]. The
two kernel parameters C and γ are optimized based on a three-fold grid search.
We use the LIBSVM library for our experiments [6].

The SVM returns the posterior probability {p} for each string class. We esti-
mate the string number n̂s by maximizing pi as

n̂s = argmax
i

pi. (11)

We derive the fret number n̂f from the estimated string number n̂s by using
knowledge of the instrument tuning as follows. The common tuning of the bass
is E1, A2, D2, and G2; the tuning of the guitar is E2, A2, D3, G3, B3, and
E4. The string tunings can be directly translated into a vector of corresponding
MIDI pitch values as {PS} = [28, 33, 38, 43] and {PS} = [40, 45, 50, 55, 59, 64],
respectively.

In order to derive the fret number n̂s, we first obtain the MIDI pitch value P
that corresponds to the fundamental frequency f̂0 as

P̂ = �12 log2(f̂0/440)− 69	 (12)

Given the estimated string number n̂s, the fret number can be computed as

n̂f = P̂ − PS(n̂s). (13)

A fret number of n̂f = 0 indicates that a note was played by plucking an open
string.

Plausibility Filter. As mentioned earlier, most note pitches within the fre-
quency range of both the bass guitar and the guitar can be played on either one,
two, or three different fret positions on the instrument neck. The total instru-
ment pitch range is E2 to G3 for the bass guitar and E3 to E5 for the electric
guitar4. Based on knowledge about the instrument string tunings, we can derive
a set of MIDI pitch values that can be played on each string. Therefore, for each
estimated MIDI pitch value P̂ , we can derive a list of strings on which this note
can theoretically be played. If the plausibility filter is used, before estimating
the string number as shown in Equation (11), we set the probability values in
{pi} to zero for all strings, on which this note can not be played on.

Aggregation of Multiple Classification Results. If the result aggregation is
used, all class probability values {p} are summed up over 5 adjacent time frames
and then again normalized to unit sum. The string number is then estimated by
applying Equation (11) on the accumulated probability values.

4 Here, a limited fret range up to the 12th fret position is considered in the database.
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5 Evaluation and Results

5.1 Dataset

For the evaluation experiments, a dataset of 1034 audio samples was used. These
samples are isolated note recordings, which were taken from the dataset previ-
ously published in [24].5 The samples were recorded using two different bass
guitars and two different electric guitars, each played with two different pluck-
ing styles (plucked with a plectrum and plucked with the fingers) and recorded
with two different pick-up settings (either neck pick-up or body pick-up).

5.2 Experiments and Results

Experiment 1: Feature Selection for String Classification. In the first ex-
periment, we aim to identify the most discriminatory features for the automatic
string classification task as discussed in Section 4.3. For this purpose, the feature
selection algorithm Inertia Ratio Maximization using Feature Space Projection
(IRMFSP) [16, 21] was applied to all feature vectors and their corresponding
class labels. This experiment was performed separately for both instruments.
Table 2 lists the five most discriminatory features that were first selected by the
IRMFSP algorithm for the bass guitar and the electric guitar.

The features Δf̂norm, β̂, and âr,k as well as the derived statistic measures were
selected consistently for both instruments. These features measure frequency and
amplitude characteristics of the partials and show high discriminative power
between notes played on different strings independently of the applied instru-
ment. The boxplots of the two most discriminative features Δfnorm,9 for bass
and Δfnorm,15 for guitar are illustrated separately for each instrument string in
Figure 4.

Since the deviation of the estimated harmonic frequencies from their theoret-
ical values seems to carry distinctive information to discern between notes on
different instrument strings, future work should investigate whether Equation
(1) could be extended by higher order polynomial terms in order to better fit to
the estimated harmonic frequency values.

Experiment 2: String Classification in Different Conditions. In this
experiment, we aim to investigate the influence of

– the separation of the training and test set according to the applied instru-
ment, playing technique, and pick-up setting,

– the instrument / the number of string classes,
– the use of a plausibility filter (compare Section 4.3),
– and the use of a aggregation of multiple classification results for each sample

(compare Section 4.3).

on the performance of the automatic string classification algorithm.
5 This dataset contains isolated notes from bass guitar and electric guitar processed

with various audio effects. In this work, only the non-processed note recordings were
used.
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Table 2. Most discriminative audio features for the string classification task as dis-
cussed in Section 5.2. Features are given in order as selected by the IRMFSP algorithm.

Rank Bass Guitar Electric Guitar

1 Δf̂norm,9 Δf̂norm,15

2 β̂ mean{âr,k}
3 Δf̂norm,3 var{Δf̂norm,k}
4 var{Δf̂norm,k} max{âr,k}
5 âr,4 skew{Δf̂norm,k}
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(a) Boxplot of feature Δfnorm,9 for
bass.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E A D G B e
String

(b) Boxplot of feature Δfnorm,15 for
guitar.

Fig. 4. Boxplots of the two most discriminative features for bass guitar and electric
guitar

The different experiment conditions are illustrated in Table 3 for the bass
guitar and in Table 4 for the electric guitar. The colums “Separated instruments”,
“Separated playing techniques”, and “Separated pick-up setting” indicate which
criteria were applied to separate the samples from training and test set in each
configuration. The fifth and sixth columns indicate whether the plausibility filter
(compare Section 4.3) and the frame result aggregation (compare Section 4.3)
were applied. In the seventh column, the number of folds for the configuration
1.6 and 2.6 and the number of permutations for the remaining configurations
are given. The evaluation measures precision, recall, and F-measure were always
averaged over all permutations and all folds, respectively.

After the training set and the test set were separated, the columns of the
training feature matrix were first normalized to zero mean and unit variance.
The mean vector and the variance vector were kept for later normalization of
the test data. Subsequently, the normalized training feature matrix was used to
derive the transformation matrix via LDA. The SVM model was then trained
using the projected training feature matrix and a two-dimensional grid search
is performed to determine the optimal parameters C and γ as explained in 4.3.
For the configurations 1.6 and 2.6, none of the criteria to separate the training
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Table 3. Mean Precision P̄ , mean Recall R̄, and mean F-Measure F̄ for different
evaluation conditions (compare Section 5.2) for the bass guitar

E
xp

er
im

en
t

S
ep

ar
at

ed
in

st
ru

m
en

ts

S
ep

ar
at

ed
p
la

yi
n
g

te
ch

n
iq

u
es

S
ep

ar
at

ed
p
ic

k-
u
p

se
tt

in
gs

P
la

u
si

b
il
it
y

fi
lt

er
(s

ee
S
ec

ti
on

4.
3)

R
es

u
lt

ag
gr

eg
at

io
n

ov
er

5
fr

am
es

(s
ee

S
ec

ti
on

4.
3)

N
o.

of
P
er

m
u
ta

ti
on

s�
/

N
o.

of
C

V
fo

ld
s�

P
re

ci
si

on
P̄

R
ec

al
l
R̄

F
-M

ea
su

re
F̄

1.1.a x 2� .85 .85 .85
1.1.b x x 2� .87 .87 .87
1.1.c x x x 2� .78 .78 .78

1.2.a x x 8� .86 .86 .86
1.2.b x x x 8� .87 .87 .87
1.2.c x x x x 8� .88 .88 .88

1.3.a x x 8� .57 .50 .49
1.3.b x x x 8� .71 .69 .69
1.3.c x x x x 8� .88 .88 .88

1.4.a x 8� .60 .54 .54
1.4.b x x 8� .73 .71 .72
1.4.c x x x 8� .93 .93 .93

1.5.a x 8� .62 .55 .54
1.5.b x x 8� .74 .71 .71
1.5.c x x x 8� .92 .92 .92

1.6.a 10� .92 .92 .92
1.6.b x 10� .93 .93 .93
1.6.c x x 10� .93 .93 .93

and the test set was applied. Instead, here we used a 10-fold cross-validation and
averaged the precision, recall, and F-measure over all folds.

The results shown in Table 3 and Table 4 clearly show that both the plau-
sibility filter as well as the result aggregation step significantly improved the
classification results in most of the investigated configurations. Furthermore, it
can be seen that the separation of training and test samples according to in-
strument, playing technique, and pick-up setting has a strong influence on the
achievable classification performance. In general, the results obtained for the
bass guitar and the electric guitar show the same trends. We obtain the highest
classification scores—F̄ = .93 for the bass guitar (4 classes) and F̄ = .90 for
the electric guitar (6 classes)—for the configurations 1.6 and 2.6. These results
indicate that the presented method can be successfully applied in different ap-
plication tasks that require an automatic estimation of the played instrument
string. In contrast to [17], we did not make use of any knowledge about the
musical context such as that which may be derived from a musical score.

Experiment 3: Baseline Experiment Using MFCC Featues. We per-
formed a baseline experiment separately for both instruments using Mel Fre-
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Table 4. Mean Precision P̄ , mean Recall R̄, and mean F-Measure F̄ for different
evaluation conditions (compare Section 5.2) for the electric guitar
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quency Cepstral Coefficients (MFCC) as features. Again, LDA and SVM were
applied for feature space transformation and classification respectively, as ex-
plained in Section 4.3. The same experimental conditions as in configuration 1.6.
and 2.6. (see 5.2) were used. The classification results were performed and eval-
uated on a frame level. A 10-fold stratified cross-validation was applied and the
results were averaged over all folds. We achieved classification scores of F̄ = .46
for the bass guitar and F̄ = .37 for the electric guitar.

Experiment 4: Human Performance on String Classification. In the
final experiment, we aim to investigate the performance of human listeners for
the given task of classifying the string number based on isolated bass guitar and
electric guitar notes. The study comprised 9 participants, most of them being
semi-professional guitar or bass players. To allow for a comparison between the
algorithm performance and the human performance, similar test conditions must
be guaranteed. Based on the results shown in Table 3 and Table 4, the conditions
of Experiments 1.6.c and 2.6.c are used for the listening test. The samples are
randomly assigned to training and test set—no separation based on playing
technique, pick-up setting, or instrument is performed.
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During the training phase, the participants could listen to as many notes from
the training set for each string class as they wanted to. Afterwards, they were
asked to assign randomly selected samples from the test set to one of the 4 or
6 string classes, respectively. Overall, 578 guitar notes and 522 bass notes were
annotated with a string number.
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Fig. 5. Confusion matrix from human performance for string classification. All values
are given in percent.
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As it can be seen in the two confusion matrices in Figure 5, human listeners
tend to confuse notes between adjacent strings on the instrument. In total, clas-
sification scores of F̄ = .27 for the bass guitar and F̄ = .16 for the electric guitar
were achieved.

6 Conclusions

In this paper, we performed several experiments geared towards the automatic
classification of the string number from given isolated note recordings. We pre-
sented a selection of audio features that can be extracted on a frame-level. In
order to improve the classification results, we first applied a plausibility filter
to avoid non-meaningful classification results. Then, we used an aggregation of
multiple classification results obtained from adjacent frames of the same note.
Highest string classification scores of F̄ = .93 for the bass guitar (4 string classes)
and F̄ = .90 for the electric guitar (6 string classes) were achieved. As shown
in a baseline experiment, classification systems based on commonly-used audio
features such as MFCC were clearly outperformed for the given task. The task of
automatic string detection is very challenging for human listeners as the results
of a listening tests confirmed: F-measure values of only F̄ = .27 and F̄ = .16
could be achieved for the bass guitar and the electric guitar, respectively.

7 Outlook

7.1 String Detection for Melodies and Chords

As mentioned in Section 2, guitar players and bass players usually choose the
fingering to play a given music score in such a way that the overall physical
strain is minimized. One major characteristic of this behavior is the preference
of vertical play over horizontal play on the instrument neck: instead of playing
melodies only on one or two adjacent strings with a strong vertical hand move-
ment over the instrument neck, musicians prefer to stay in a fixed fretboard
position as long as possible and try to use the whole possible pitch range, avail-
able there. This knowledge could be used to implement a temporal modeling of
fretboard position changes over time using a Hidden-Markov Model (HMM) or
a comparable method.

Secondly, polyphonic music signals such as chords played on a guitar were not
covered in this paper. Multi-pitch estimation is still one of the most challenging
tasks in Music Information Retrieval [7,15]. In order to apply the feature-based
approach for string detection as presented in this paper, several challenges need
to be overcome. Guitar chords often contain up to 6 simultaneous sounding
notes and furthermore include many octave intervals. As a consequence, many
of the harmonics overlap in the frequency domain. This impedes the precise
estimation of the harmonic frequency values and the computation of meaningful
audio features (compare 4.2). Fortunately, all notes in guitar chords are always
played within a fixed fret range on the instrument neck due to the limited span
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of the human hand. Thus, even if the string classification results are erroneous
for some notes of a chord, the use of a majority voting scheme could be applied
over all single string classification results to get a robust estimate of the overall
fretboard position of an analyzed chord.

7.2 Application of String Classification for Music Education
Software

In the context of music education software, the main application of string classifi-
cation is to automatically evaluate how well a musician follows a given tablature.
String classification can therefore be interpreted as an extension to conventional
music transcription systems that is tailored for the analysis of string instrument
performances. Assuming that the system can initially be trained with a dataset
comparable to the one used in this paper, the system performance on notes from
a different instrument6 will likely be as in Experiment 1.1. or 2.1. since in these
experiments, different instruments are used for training and testing.

In order to improve classification results, the online learning paradigm can
be applied here: by using the software with his or her instrument, the user will
continuously provide new training data to the system. The program can adapt to
the timbre of the applied instrument by taking a selection of the recorded instru-
ment notes. The class label of each new note can be taken from the corresponding
playing instruction in the program. After adapting to the new instrument, the
classification results will likely achieve values comparable to Experiment 1.6. or
2.6. In the context of a music learning application, no strict separation between
training and test data is necessary, and “overfitting” to the player’s instrument
is reasonable and beneficial for the system’s overall performance. However, occa-
sional playing errors that involve playing on the wrong string could lead to the
selection of training samples with erroneous string class labels. Those training
samples could corrupt the improvements gained from using online learning.

Another challenge that was not covered in this paper is that in practice,
strings with different material and gauges are used for different music styles.
The string gauge directly affects the string inharmonicity coefficient and thus
the features used for string classification. If the training samples for each string
class are recorded with instruments having too many different string gauges, the
class distributions in the feature space will overlap more and the classification
performance is expected to decrease.
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Thuringian Ministry of Economy, Employment and Technology supported this
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Abstract. One approach to Automatic Music Transcription (AMT) is
to decompose a spectrogram with a dictionary matrix that contains a
pitch-labelled note spectrum atom in each column. AMT performance
is typically measured using frame-based comparison, while an alterna-
tive perspective is to use an event-based analysis. We have previously
proposed an AMT system, based on the use of structured sparse repre-
sentations. The method is described and experimental results are given,
which are seen to be promising. An inspection of the graphical AMT out-
put known as a piano roll may lead one to think that the performance
may be slightly better than is suggested by the AMT metrics used. This
leads us to perform an oracle analysis of the AMT system, with some in-
teresting outcomes which may have implications for decomposition based
AMT in general.

Keywords: Automatic Music Transcription, Sparse representations,
Oracle analysis.

1 Introduction

In Automatic Music Transcription (AMT) a machine understanding of a musical
piece is sought. While many different methods have been proposed for AMT,
the most popular methods in current AMT research are based on spectrogram
decompositions, where the non-negative magnitude spectrogram S ∈ �M×N is
decomposed such that

S ≈ DT (1)

where D ∈ �M×K is a dictionary matrix containing a note spectrum in each
column and T ∈ �K×N is a coefficient matrix containing, in each row, the
activations of a corresponding dictionary atom. Often a data-driven approach
is taken, where the dictionary and the activation matrix are learnt together
using algorithms such as Non-negative Matrix Factorisation (NMF) [6] or sparse
dictionary learning [8]. Alternatively a dictionary may be learnt offline, with each
atom learnt from a relevant signal containing an isolated note. In this case the
decomposition can be performed using methods like P-LCA [9], sparse coding
[4], or using the coefficient update from the NMF algorithm [15].
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While a complete transcription system would produce a musical score from
an input musical signal, the output from AMT systems is usually communicated
through a graphical representation known as a piano roll. A piano roll is a pitch-
time representation showing the activations of each pitched note in time, and
possibly other information such as the onsets and offsets of note events. AMT
performance is measured by comparing a ground truth against the output piano
roll, and different metrics have been proposed for this purpose. Regardless of
the metric, two modes of evaluation are seen to be common in AMT research.
The most prevalent of these is a frame-based approach, where the ground truth
and computed piano rolls are compared at each pitch-time point, with true pos-
itives, true negatives and false positives being denoted, before metrics which
exploit these annotations are calculated. While frame-based detection can give
a reasonable indication of the performance of an AMT system, it may be more
relevant, in some cases, to use an event-based analysis [5], whereby the compar-
ison between ground truth and computed transcription is expressed in terms of
correctly-pitched detections, with onsets aligned to the ground truth within a
time-based tolerance.

Previously, we proposed an AMT system using a NMF-based decomposition,
followed by a thresholding and subsequent clustering into molecules of adjacent
pitch-time points seen to be still active after the thresholding. Following this
clustering a greedy method, based on the Orthogonal Matching Pursuit (OMP)
[11] performed a second decomposition, by iteratively selecting molecules from
this set of clusters. The proposed method was seen to be competitive with other
state-of-the-art AMT methods based on spectrogram decompositions, both in
frame- and event- based transcription performance analysis. Visual inspection of
the coefficient matrices confirmed that the transcription performed well, however
limitations were noted. While early energetic parts of notes were captured well,
sustained elements of notes often remained undetected. A simple threshold-based
onset detection system, common to other decomposition based AMT methods,
was used. However, visually some common errors were noticeable in the onset
detection. While missing sustained elements of notes of longer duration may be
an inevitable limitation of simple decomposition based AMT systems, or a side
effect of spectral leakage in the Short-Time Fourier Transform (STFT), it may
be questionable how much a transcription might suffer due to the omission of
these low energy elements. Furthermore, undetected or incorrectly detected note
onsets may have a large effect on the quality of a transcription, particularly if the
end goal of the AMT system is the resynthesis of a musical piece. From a visual
point of view, as seen in Figure 1, it seems that while many notes would seem to
be correctly detected, the onset detection used in the event based analysis did
not appear to reflect this accurately. These observations led us to perform an
oracle analysis, simply effected as a ground truth was available for the dataset
used for these transcription experiments.

In the rest of this paper, we first revisit the methods proposed in [7], be-
fore introducing the oracle transcription and its analysis of the oracle. We then
conclude with some suggestions to future work.
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Fig. 1. Oracle coefficient matrix (left) compared with AMT output using M-NN-NS-
OMP algorithm (right)

2 Transcription Using Structured Sparse Representations

Given a signal s, and a dictionary matrix D, a sparse approximation method
seeks a coefficient vector t such that s ≈ Dt with the constraint that t contains
few non-zero coefficients. Many algorithms have been proposed for performing
sparse approximation, with greedy and convex optimisation-based methods be-
ing the most popular. Greedy methods, such as Orthogonal Matching Pursuit
(OMP) [11], outlined in Algorithm 1, build up a representation by iteratively
selecting the atom that is most correlated with the residual error, r. This atom
is added to the sparse support, the collection of currently selected atoms, and
these supported atoms are backprojected onto the initial signal, giving interim
coefficients and a new residual. The algorithm stops when a predefined stopping
condition is met, which may be based on the number of atoms to be selected or
the size of the error relative to the signal.

Another approach to sparse approximation is Basis Pursuit [12], an optimi-
sation problem for which many algorithms can be used. Basis Pursuit seeks to
solve

min ‖t‖1 s.t s = Dt (2)

and a variant of this problem, used when there is noise in the signal is known as
Basis Pursuit Denoising:

min
t

‖s−Dt‖22 + λ‖t‖1 (3)

which is seen to be a Least Squares solution with a sparsity promoting penalty
applied where λ is a parameter used to control the sparsity level.

Several variants on the sparse approximation problem exist and our proposed
method uses non-negative sparse representations, as we seek to decompose a
magnitude spectrogram, and structured sparse representations, which allow the
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Algorithm 1 Orthogonal Matching Pursuit [11]

Input
D ∈ �M×N

+ ; s ∈ �M
+

Initialise
i = 0; r0 = s; t0 = 0; Γ 0 = {};

repeat
i = i+ 1
n̂ = argmaxn |〈dn , r

i−1〉|
Γ i = Γ i−1 ∪ n̂
ti = D†

Γ is

ri = s − DΓ iti

until stopping condition met

incorporation of prior knowledge. In particular two forms of structured sparsity
are exploited. In group sparsity, the assumption is made that certain groups
of atoms tend to be active simultaneously, a fact that can be used in AMT
[7], affording the representation of a note with a subspace rather than a single
atom. Using a subspace rather than one atom to represent a note may reduce
the modelling error in the spectrogram decomposition by better capturing the
dynamics in the spectral shape of a note.

In this work each block of atoms, or subspace, used to represent a note was
made of a fixed number, P , of atoms which were placed adjacent in the dictio-
nary D ∈ �M×K . Here K = L × P where L is the number of groups, thereby
allowing us to define a set of indices G for the group-based dictionary:

G = {Gl | Gl = {P × (l − 1) + 1, ..., P × l}} ∀l ∈ {1, ...., L}.
A variant of the Non-Negative Basis Pursuit (NN-BP) algorithm [1] was pro-
posed in [7] which we called NN-BP(GC) and is outlined in Algorithm 2. The
algorithm uses the multiplicative update from the Non-Negative Sparse Coding
(NNSC) algorithm [14], which incorporates a sparse penalisation term λ into the
multiplicative update of the NMF [15] algorithm. This variant differs from the
NN-BP algorithm only through the calculation of a group coefficient, GC, on
which the thresholding step is performed. Transcriptions using this method had
high recall at the threshold used, as many true positives were recovered, while
displaying low precision as many false positives were also found, though many
of the false positives were seen to be of low energy. While better transcription
results may be derived from this method by using a higher threshold, it is noted
that using group sparsity in this way did not improve AMT performance, as the
groups are not penalised. In [16] a similar algorithm called Group Non-Negative
Basis Pursuit (G-NN-BP) was proposed which differed in using a group sparse
penalty in the multiplicative update

tk ,n ←− tk ,n
[DTS]k ,n

[DTDT]k ,n + λΨk ,n
(4)
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where Ψk,n is the gradient information for the group sparse penalty. G-NN-BP
was shown to afford better AMT performance than NN-BP(GC). However, for
the purpose of providing an initial estimate in order to supply an input for the
molecular clustering step, little or no improvement was found in comparison to
the NN-BP(GC), which suffices for this purpose, while remaining more compu-
tationally attractive.

A greedy method was also proposed; a non-negative group variant of OMP,
referred to as Non-Negative Nearest Subspace OMP (NN-NS-OMP). The NN-
NS-OMP functions in a similar manner to the OMP algorithm. However, at each
iteration, the nearest subspace (in a non-negative sense) is selected rather than
the nearest neighbour, as in OMP, and all atoms from the selected group are
added to the sparse support. While results showed that using group sparsity
captured the structure of the musical signal better than using sparsity alone,
harmonic jumping was still seen to have a negative effect on time continuity
in note events in the piano roll, and a difficulty in selecting low-energy signal
elements was noted. As the method is iterative, a stopping condition needs to be
selected, and it was found that selection of an apt stopping condition was tricky.
The algorithm was also computationally expensive; however a fast version was
proposed in [17], in which it was also shown that the use of alternative transforms
to the STFT could drastically improve the AMT results using this method.

Algorithm 2 NN-BP(GC)

Input
D∈ �M×K

+ , S∈ �M×N
+ , δ, T0 = DTS, Γ = 1L×N

repeat

tk,n ←− tk,n
[DTS]k,n

[DTDT]k,n + λ
until a fixed number of iterations

GCl,n =
∑

TGl ,n ∀(l, n)
GCl′,n′ = 0 ; Γl′,n′ = 0 ∀{l′, n′} s.t. GCl′,n′ < δ × maxGC

Often in musical signal processing applications, it is desirable to exploit the
structure found in the spectrogram. One such structure is the time-persistence
seen in frequency elements belonging to a note. Another form of structured
sparsity, known as molecular sparsity, can be used to extract these structured
elements simultaneously. Molecular sparsity [2] is an extension of greedy sparse
methods, allowing several atoms to be selected together. Unlike the group sparse
assumption, the grouping of atoms is performed on the fly, according to some ex-
pected outcome. An example of this approach is the Molecular Matching Pursuit
(MMP) [2], in which a molecule of time-persisting tonal elements is extracted
from the spectrogram at each iteration. An initial atom is selected, as in typi-
cal Matching Pursuit algorithms, and tracking in a narrow frequency window is
performed in both directions until the onset and offset of the tonal element were
found, with all interim atoms forming a molecule which is added to the sparse
support.
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Initially, we proposed to construct a molecular AMT system built on the
same tracking concept. However, these efforts were found to fail as early molec-
ular extractions were seen to significantly overestimate the length of notes, as
high projection values were often seen to be present beyond the onset and off-
set points of a note, particularly when similarly-pitched or harmonically-related
notes were active there. Hence, a two-step approach was developed. As high recall
and reasonable time continuity were observed in the NN-BP(GC) transcriptions,
it was proposed to first decompose the spectrogram using the NN-BP(GC), and
for the molecule supports to be estimated simultaneously from the output pi-
ano roll, after a thresholding step. All time-continuous pitch supports in the
piano roll, Γ, were clustered into one molecule, and the molecules were input
to a greedy method called Molecular Non-Negative Nearest Subspace OMP (M-
NN-NS-OMP), outlined in Algorithm 3, which selects at each iteration one of
these predetermined molecules. As time continuity was found to be reasonable
using the NN-BP(GC), it was possible to use a threshold lower than optimal for
AMT. This was possible as it was expected that spurious elements exceeding
the threshold would be omitted from the final piano roll, as they were less likely
to form a molecule with large energy. In this way the M-NN-NS-OMP affords
higher recall values than other decomposition based AMT methods.

2.1 Experiments

Transcription experiments were run using the molecular approach on a set of
pieces played on a Disklavier piano from the MAPS [3] database which includes
a MIDI-aligned ground truth. A subdictionary was learnt for each MIDI note in
the range 21−108 from isolated notes also included in the MAPS database, andD
was formed by concatenating these subdictionaries. Transcription was performed
using the two-step NN-BP(GC) followed by the M-NN-NS-OMP approach.

The M-NN-NS-OMP algorithm returns a sparse group coefficient matrix, T,
and the transcription performance using this approach was measured with both
frame-based and onset-based analysis. The frame-based analysis is performed
by comparing a ground truth and the derived transcription. Each frame which
is found to be active in both the ground truth and the transcription denotes a
true positive - tp while frames which are active only in the ground truth and
transcription denote false negatives - fn and false positives - fp, respectively.

For event-based analysis, onset detection was performed on T. A simple
threshold-based onset detector was used, based upon the one used in [10] which
registered a note onset when a threshold value was surpassed and subsequently
sustained for a given number of successive frames for a note in the coefficient
matrix T. A tp was registered when the onset was detected within one time
bin of a similarly-pitched onset in the ground truth. Similar to the frame-based
analysis, an onset found only in the ground truth registered a fn, and an onset
found only in the transcription registered a fp.
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Algorithm 3 M-NN-NS-OMP

Input
D ∈ �M×K

+ , S ∈ �M×N
+ , Γ ∈ {0, 1}L×N , G, α

Initialise
i = 0; Φ = 0L×N ; B = {βn|βn = {}∀n ∈ {1, .., N}}
repeat

i = i+ 1
Get group coefs Θ and smoothed coefs Θ̄
xGl ,n = argminx ‖rin − DGlx‖22 s.t. x ≥ 0 ∀l ∈ Γn

Θl,n = ‖xGl ,n‖1 ; Θ̄l,n =

n+α−1∑

n′=n

Θl,n′/α

Select initial atom and grow molecule
{l̂, n̂} = argmaxl,n Θ̄l,n

nmin = min n̄ s.t. Γl̂,Ξ = 1, Ξ = {n̄, ..., n̂}
nmax = max n̄ s.t. Γl̂,Ξ = 1, Ξ = {n̂, ..., n̄}
βn = βn ∪ l̂ ∀n ∈ Ξ = {nmin, ..., nmax}
Calculate current coefficients and residual
tGβn ,n = mint ‖sn − DGβn

t‖22 ∀n ∈ Ξ

ri+1
n = sn − DGβn

tGβn
∀n ∈ Ξ

until stopping condition met

Using these markers the following metrics are defined for both frame- and
event-based transcription;

P =
#tp

#tp+#fp
(5)

relates the precision of the system in finding correct frames; the recall

R =
#tp

#tp+#fn
(6)

defines the performance in terms of the amount of correct frames found relative
to the number of active frames in the ground truth, and the F -measure

F = 2× P ×R
P +R (7)

defines overall performance, considering both the precision and recall in the
measure.

The results for the transcriptions are given in Table 1 where it is seen that the
performance for both onset-based and frame-based metrics improves as the group
size P increases, thereby validating the use of group sparse representations for
AMT. A deterioration in performance was seen in further experiments with larger
group sizes, which was considered an overfitting phenomenon. The experiments
were run with a common value used as the stopping condition for all group sizes.
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Table 1. Frame-based and onset-based transcription results for the proposed molecular
approach, relative to the block size, P

Onset-based Frame-based

P P R F P R F
1 78.3 74.3 76.3 69.1 73.6 71.3

2 78.8 76.2 77.5 69.0 76.4 72.5

3 77.6 77.1 77.4 69.5 78.7 73.8

4 78.8 77.3 78.1 71.8 79.3 75.3

5 78.6 77.8 78.2 72.9 80.0 76.3

3 Transcription Oracle for Sparse Methods

While the results shown in the last section show that this transcription method
performs well, observation of the output coefficient matrix would indicate that,
in an event based analysis, the true performance could actually be higher. This
observation is not isolated to our proposed method and may also be extended
to other decomposition based AMT methods. Hence, an oracle for transcription
performance was proposed in order to ascertain the source of these errors.

As the MAPS [3] database comes with a standardised ground truth, it is easy
to produce an oracle transcription for a given dictionary. At each time bin the
Non-Negative Least Squares projection was calculated using only the groups of
atoms Goracle

n , known from the ground truth to be active at the time bin n.

tGoracle
n

= min
t

‖sn −DGoracle
n

t‖22 s .t . t > 0 ∀n ∈ {1 , ...N } (8)

The oracle group coefficient matrix E is formed by calculating the total energy
in the coefficients of the individual group members

El,n = ‖DGl
tGl,n‖2 (9)

4 Oracle Analysis

Using an oracle affords a hypothetical transcription and as this is a best case
transcription, it is easy to observe deficiencies in an AMT system using this tool.
It is possible that these problems are innate to using decomposition methods for
AMT. In particular two noted observations were made, both of which are relevant
to decomposition-based AMT in general; firstly there is often very low energy
in supported atoms in E, which may explain how the thresholding in the NN-
BP(GC) effected the possible recall rate; secondly, using the oracle transcription
provides an insight into the effectiveness of the onset detection system used.
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Table 2. Analysis of effect of δ on precision and recall of NN-BP(GC) and the recall
of the oracle

STFT ERB

δ P R Roracle P R Roracle

0.1 88.6 38.2 44.1 84.4 37.3 44.6

0.01 38.5 84.6 90.7 36.4 85.0 90.6

0.001 19.2 92.8 96.5 17.7 93.5 96.4

0.0001 12.7 95.2 97.1 12.2 95.6 97.0

4.1 Energy-Based Thresholding

A thresholding factor δ is used in the NN-BP(GC) algorithm, which is multiplied
by the maximum value of the group sparse coefficients GC. This is a common
step in AMT, and other research [13] has suggested an optimum value of c.27dB
for this threshold. For the experiments in [7], a value of δ = 0.01 was used,
which allows a greater recall to be extracted, while it is hoped that the molecular
method will omit many of the false elements detected at this level. A recall rate
of 87% was observed using this value of δ for the NN-BP(GC) algorithm in these
experiments. This recovery rate effectively sets an upper bound on the possible
recall rate of the M-NN-NS-OMP. A closer analysis afforded the observation
that the false negatives tended to exist at the tail of sustained notes, where
it is expected that low energy is displayed. Indeed it is a relevant question to
AMT as to what can be extracted, and possibly more importantly, what needs
to be extracted to elicit a good transcription. Indeed, the definition of a good
transcription may actually be dependent on the subsequent application of the
transcription. For instance, if one is using a transcription in order to ascertain
the key that a piece is set in, extraction of reliable high energy signal elements
may suffice. If the transcription is being used as part of a source separation
system, neglect of low energy elements may lead to artefacts being introduced.

The oracle energy matrix E was calculated for each piece from the MAPS
dataset used in the transcription experiments [7]. Both Equivalent Rectangular
Bandwidth (ERB) and STFT spectrograms were decomposed, using dictionaries
learnt from the same dataset of isolated notes in MAPS. The signals were under-
sampled to 22.05 kHz, and the ERB spectrogram used 250 frequency bin scale
with a 23 ms time window. The STFT used a 1024 frequency bin spectrogram,
with a a 75% overlap, in order to use the same time resolution as the ERB. The
NN-BP(GC) was also run for both transforms to compare the effects of the δ
thresholding.

The results are displayed in Table 2. Here it is seen that the recall of the oracle,
Roracle, is similar across transforms, at all values of delta A similar pattern is
also seen for the recall rate, R, of the NN-BP(GC), which is slightly smaller
than Roracle, but again is similar in both transforms. This similarity across
transforms suggests, as might be expected, that the problem here is related to
the signal itself, rather than the approach taken or the dictionary used, being
energy related. However, any temptation to use a smaller threshold is easily
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Fig. 2. Oracle recall based on varying values of thresholding parameter δ

tempered by the observation that as δ decreases and the recall of NN-BP(GC)
increases, the precision is greatly reduced. If a piano roll of lower precision is
input to the molecular approach, this may effect the transcription performance
by introducing oversized molecules. The oracle recall relative to δ is shown in
Figure 2. It is worth noting that, even at 80 dB, perfect recall is not achievable.

4.2 Onset Analysis

In the prior work, a simple threshold-based onset detection system was used,
which triggered an onset when a threshold value was surpassed and sustained
for a minimum length of time. A true positive was flagged when this trigger
happened within one time frame of a ground truth onset of the same note.
Using the optimal transcription E we can test the effectiveness of this onset
detection system. Experiments were run using the same parameters as in [7] and
the results are presented in Table 3.

Table 3. Onset analysis of oracle transcription E for different values of P

P 1 2 3 4 5

R 76.2 78.5 79.5 80.1 80.1

P 86.4 87.1 87.0 87.3 86.8

The results are not promising given that an oracle transcription is given to
the onset detector. Closer inspection of the individual results reveal systematic
flaws in the onset detection. False positives are often found when a sustained
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note is retriggered by oscillation around the threshold value, behaviour which
is often found in the presence of other note onsets and may be due to transient
signal elements effecting the smoothness of the decomposition across time. Sev-
eral common types of false negative were found. It is found that a note replayed
with minimal time between the offset of the original event and the onset of the
following event may produce a false negative where the observed coefficient has
not already fallen below the threshold value. When several notes onset simulta-
neously, onsets may not be detected for all of these notes. A tendency for lower
pitched notes not to trigger an onset event in the detection system is also no-
ticed. Further to this we find some timing errors, where a false negative and a
false positive are closely spaced.

5 Conclusion

We have previously proposed an AMT system based on group sparse represen-
tations which is relatively fast and shows promising results. An oracle transcrip-
tion has been presented here, which gives some insight into some weaknesses in
the AMT system, as currently exists. While it would seem difficult to capture
very low-energy elements from a musical signal, it is questionable how impor-
tant capturing these elements might be to a transcription. However, other au-
thors have proposed post-processing a decomposition based AMT with Hidden
Markov Models in order to better ascertain the offsets of given notes [9]. It is
also possible that the use of other tools may help to alleviate this problem. The
spectrogram itself may be a blunt tool when presented with different signal el-
ements, particularly in the presence of harmonic overlaps which are a common
feature of musical signals, and possessing largely varying amplitudes.

In terms of onset detection, it would appear that the onset detection system
used here is not sophisticated enough in order to capture many note events in
the signal, even when an oracle analysis is used. However, it may be impor-
tant to consider this further, as it is possible that simple decomposition-based
methods themselves may not be able to capture the onset information clearly.
Decomposition-based methods assume a certain level of linearity in the spectro-
gram in relationship to the dictionary. Whilst this is convenient and may work
sufficiently well when the spectrogram is dominated by tonal elements, the onset
of a piano note is known to have a percussive, transient element, displaying a
more broadband spectrum. Coupled with this reaction of the piano body, the
spectrogram itself is seen to react to the larger energy levels, with broader side-
lobes on spectral peaks. These two facts may lead to errors in the decomposition,
as many notes are often seen to become active on the occasion of an onset. While
the molecular method presented is capable of erasing many of these false detec-
tions around note onsets, the energy in the spectrogram when shared between
several simultaneous note onsets may be unevenly distributed or even insuffi-
cient to trigger the correct number of note events, as the energy transferred to
the piano body may not differ much relative to whether two notes or five notes
are played synchronously, thereby making it more difficult to capture the onsets
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in the case of many notes. Most of the other types of onset errors described in
the last section also occur in the vicinity of other onsets, and can be hypothe-
sised to happen as a result of these inaccuracies in the linear assumption, and
spectrogram leakage.

Further work will need to incorporate a parallel onset detection system in
order to improve on these results. Methods which seek to perform AMT on an
onset-only basis have been proposed, such as that of Bock [18] which uses neural
networks to classify onsets. Indeed, with an accurate onset detection system, it
may be possible to improve the frame-based transcription metrics as well through
incorporation as a discriminative event detector.
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Abstract. From a cognitive standpoint, the analysis of music in audiovisual 
contexts presents a helpful field in which to explore the links between musical 
structure and emotional response. 

This work emerges from an empirical study that shows strong evidence in 
support of the effect of tonal dissonance level on interpretations regarding the 
emotional content of visual information.  

From this starting point the article progresses toward the design of interac-
tive multimedia tools aimed at investigating the various ways in which music 
may shape the semantic processing of visual contexts. A pilot experiment (work 
in progress) using these tools to study the emotional effects of sensory disson-
ance is briefly described.  

Keywords: Music, emotions, film-music, interactive multimedia, algorithmic 
composition, dissonance, tonal tension, interval vector, Max/MSP/Jitter. 

1 Introduction and Background 

Although research in music cognition has been growing steadily during the past four 
decades, we still lack a significant body of empirical studies concerning the higher 
levels of musical response, including the emotional and aesthetic aspects. From a 
cognitive standpoint, the analysis of music in audiovisual contexts presents a helpful 
field in which to explore the affective and connotative aspects of musical information 
[1-3]. The purpose of my research is to investigate the effects of music upon the emo-
tional processing of visual information. This work is directed towards understanding 
the influence of music in film and other electronic multimedia from a cogni-
tive/neuroscientific perspective. In particular, my research is focused on analysing 
how alterations of specific aspects within the musical structure may influence the 
emotional interpretation of visual scenarios. 

This paper describes a work in progress to investigate the influence of tonal dis-
sonance on the emotional interpretation of visual information.  
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The objectives of this paper are: 

• To report the results of an experiment showing the effect of tonal dissonance on 
interpretations of the emotional content of an animated short film (Section 2). 

• To describe a series of interactive multimedia tools designed to investigate the 
various ways in which music may shape the semantic processing of visual contexts 
(Section 3).  

• To show an example of how these tools could be used in experimental cognition 
research. In this example, I employ stochastically generated music to empirically 
study the links between sensory dissonance and emotional responses to music in a 
strictly controlled audiovisual setting (Section 3.2). 

Consonance and dissonance refer to specific qualities that a musical interval can 
posses [4]. Tonal and sensory dissonance are sometimes used as equivalent concepts. 
However, as Krumhansl [5] has suggested, these two notions have different shades of 
meaning. Sensory dissonance designates, first of all, a psychoacoustic sensory proper-
ty associated with the presence/absence of interaction between the harmonic spectra 
of two pitches [6]. Tonal dissonance generally includes sensory dissonance but it also 
captures a more cognitive or conceptual meaning beyond psychoacoustic effects that 
is typically expressed with terms such as tension or instability. The term “tonal dis-
sonance”, as employed here, refers both to sensory and cognitive dissonance.  

Meyer [7] proposed that the confirmation, violation or suspension of musical ex-
pectations elicits emotions in the listener. Following this theory, researchers found 
associations between specific musical structures, precise neural mechanisms and cer-
tain neurophysiological reactions that are strongly connected with emotions [29-33]. 
In addition, studies focusing on the perception of tonal dissonance have shown that 
unexpected chords and increments in dissonance have strong effects on perceived 
tension [5, 8-10], which has been linked to emotional experience during music  
listening [11]. 

Tonal dissonance can be described by a number of variables [9], which have al-
ready been the subject of much historical study by music theorists and scientists:  
the tonal function of chords in a musical context [12-16], their acoustic or sensory 
consonance [6, 17], and melodic organization, usually referred to as “horizontal  
motion” [18]. 

Cognitive approaches usually emphasize the importance of melodic organization 
and tonal function while sensory-perceptual theories tend to focus on psycho-
acoustical aspects. In this paper, I use the term “tonal dissonance” as a synonym for 
“tonal tension”, to refer to the effects of tonal function, sensory dissonance and hori-
zontal motion on perceived musical tension.  

2 Experimental Investigation 

This paper emerges from an experiment entitled “The influence of tonal dissonance 
on emotional responses to film” [19]. The main experimental hypothesis predicted 
that, for the same film sequence (visual context), musical settings incorporating  
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different levels of tonal dissonance would systematically elicit different interpreta-
tions of and expectations about the emotional content of the same movie scene.  

2.1 Experimental Design 

This experiment was aimed at addressing the particular emotional effect of tonal dis-
sonance induced by chord changes, controlling for other elements within musical 
structure such as tempo, intensity, rhythm, timbre (instrumentation), etc. This was 
achieved by working with a precise experimental design similar to that used by Blood 
et al. in their neuroscientific research (which investigated the cerebral activations 
elicited by tonal dissonance) [20]. It is important to note that this study excludes other 
kinds of musical tension. Empirical evidence has shown that musical tension can be 
induced by many factors, such as rhythm, dynamics, tempo, gesture, textural density 
and tone timbre [25, 26, 27]. This work focuses on musical tension induced by tonal 
dissonance in the specific sense of tension created by melodic and harmonic motion.  

A choral piece, specifically composed for the experiment, was made to sound more 
or less consonant or dissonant by modifying its harmonic structure, producing two 
otherwise-identical versions of the same music passage. These two contrasting condi-
tions, in terms of tonal dissonance, were used as background music for the same  
passage of an animated short film (“Man with pendulous arms” - 1997, directed by 
Laurent Gorgiard). 

 

Fig. 1. A frame from “Man with pendulous arms” – 1997, directed by Laurent Gorgiard 

A total of 120 healthy volunteers with normal hearing took part in this experiment. 
The participants were randomly sampled from students at Argentine Catholic Univer-
sity. Two independent samples were used (60 participants each). The subjects were 
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randomly assigned to two groups, one of which saw an animated short film with the 
“consonant music” condition and the other saw the same film with the “dissonant 
music” condition. At the end participants were asked to answer a survey about their 
associations and expectations towards the main character and the overall story of the 
film. The survey used 9 single-selection questions, asking participants to choose only 
one item from two items given. Table 1 shows participants’ answers within each mu-
sic condition.  

Table 1. Cross-classification of music condition and response variable (number of participants 
and percentage of participants within condition) 

The character… feels confident is scared 
consonant 37 61.7% 23 38.3% 
dissonant 25 41.7% 35 58.3% 
The mood of the story is… nostalgic sinister
consonant 58 96.7% 2 3.3% 
dissonant 26 43.3% 34 56.7% 
The character is trying… to create something to destroy something 
consonant 45 75% 15 25% 
dissonant 27 45% 33 55% 
The character… is a fantasy character is monstrous 
consonant 53 88.3% 7 11.7% 
dissonant 39 65% 21 35% 
Genre of the short film… Drama Horror
consonant 59 98.3% 1 1.7% 
dissonant 42 70% 18 30% 
The character… is alienated is sad
consonant 11 18.3% 49 81.7% 
dissonant 35 58.3% 25 41.7% 
Character’s actions… directed by his own will directed by external influence 
consonant 50 83.3% 10 16.7% 
dissonant 35 58.3% 25 41.7% 
The end of the short film…  will probably be hopeful will probably be tragic 
consonant 41 68.3% 19 31.7% 
dissonant 29 48.3% 31 51.7% 
The character is trying… to protect himself to search for something 
consonant 47 78.3% 13 21.7% 
dissonant 44 73.3% 16 26.7% 

2.2 Experimental Results 

Eight out of nine response variables were found to be associated with the explanatory 
variable (tonal dissonance level). The variable related to the character’s objective  
(at the bottom of Table 1) was the only variable that did not reach significant associa-
tion with tonal dissonance level.  
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For the eight response variables where an association was found, two ways to 
summarize the strength of the association are presented: the difference of proportions, 
forming confidence intervals to measure the strength of the association in the popula-
tion, and the odds ratio (Table 2). 

When measuring the strength of the association, variables related to the mood in 
the story, the emotional state of the character and the interpreted genre of the short 
film were found to have the strongest association with dissonance level in background 
music (see grey cells in Table 2). 

Table 2. χ2, Difference of proportions and Odds Ratio 

  
 

Differ. of proportions 
Odds 
Ratio Odds  

Variable χ2(p value) p1-p2 95% CI OR Con Dis 

Intentions (create/destroy) 11.2(<.01) 0.3 [.133, .467] 3.667 3 0.8 

Feeling (confident/scared) 4.80(<.05) 0.2 [.025, .035] 2.252 1.6 0.7 

Mood (nostalgic/sinister) 40.6(<.01) 0.53 [.401, .667] 37.92 29 0.7 

Emot. state (sad/alienated) 20.3(<.01) 0.4 [.241, .559] 6.236 4.4 0.7 

Actions (own will/external) 9.07(<.01) 0.25 [.094, .406] 3.571 5 1.4 

Class (fantasy/monstruous) 9.13(<.01) 0.23 [.087, .379] 4.077 7.5 1.8 

Genre (drama/horror) 18.0(<.01) 0.28 [.163, .403] 25.28 59 2.3 

Ending (hopeful/tragic) 4.93(<.05) 0.2 [.027, .373] 2.307 2.1 0.9 

For example, Table 2 shows that there was a rise of 0.4 in the proportion that inter-
preted the emotional state of the character as sad among participants who saw the film 
with consonant music. Also, we may infer, with 95% confidence, that p1 (the propor-
tion of people seeing the film with consonant music and interpreting the character’s 
emotional state as sad) may be as much as between [0.241, 0.559] larger than p2 (the 
proportion of people seeing the film with dissonant music and interpreting the charac-
ter’s emotional state as sad). 

In addition, from Tables 1 and 2, we observe that for the consonant music condi-
tion the proportion of people who interpreted the character’s emotional state as sad 
equals 49 / 11 = 4.4545. The value of 4.45 means that, for participants who saw the 
film with consonant music, there were 4.45 participants who interpreted the charac-
ter’s emotional state as sad for every 1 person in the dissonant condition. On the other 
hand, for the dissonant music condition the proportion of people who interpreted  
the character’s emotional state as sad equals 25 / 35 = 0.7143. Equivalently, since 35 / 
25 = 1 / 0.7143 = 1.4, this means that there were 1.4 participants in the dissonant con-
dition who interpreted the character’s emotional state as alienated for every 1 person 
in the consonant condition. For the consonant music condition, the odds of interpret-
ing the character’s emotional state as sad were about 6.2 times the odds of the same 
interpretation for the dissonant music condition. 
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The results of this experiment offer strong evidence in support of the effect of tonal 
dissonance level (in film music) on interpretations regarding the emotional content of 
visual information.  

2.3 Discussion of Experimental Results 

The empirical research described here supports and confirms previous research on 
mood congruency effects [1], and can be interpreted within Annabel Cohen’s Con-
gruence-Associationist framework of the mental representation of multimedia [2, 3].  

In this work, tonal dissonance level was experimentally isolated in order to analyze 
a particular feature within the overall musical structure that may elicit musical emo-
tions. As noted in section 2.1, this study was focused on musical tension induced by 
chord changes. Other important factors that contribute to the building and release of 
musical tension, such as timbre, dynamics, textural density, etc., which were con-
trolled in the experiment, are not addressed here. 

Results revealed that the background music significantly biased the affective im-
pact of the short film. Generally, the consonant music condition guided participants 
toward positive emotional judgments, while dissonant music guided participants to-
ward negative judgments. In addition, the dissonant background music seems to have 
rendered the interpretation more ambiguous when compared to the higher percentages 
of positive judgments in the consonant condition. However, additional research is 
needed to further examine this hypothesis since the present experiment did not in-
clude a visual-alone condition, which would be necessary to control for the effects of 
visual content by itself.  

Music theory provides technical descriptions of how styles organize musical sounds 
and offers insights about musical structures that might underlie listeners’ interpretations. 
Within the general perspective of post-tonal music theory, Allen Forte has introduced 
the notion of interval-class content [21]. This concept, widely used in the analysis of 
atonal twentieth-century music, offers an interesting approach to qualifying sonorities. 
A pitch interval is simply the distance between two pitches, measured by the number of 
semitones. The ordered pitch intervals (ascending or descending) focus attention on the 
contour of the line. The unordered pitch intervals ignore direction of motion and con-
centrate entirely on the spaces between the pitches. An unordered pitch-class interval is 
the distance between two pitch classes, and is also called interval class [28]. Because of 
octave equivalence, compound intervals (intervals larger than an octave) are considered 
equivalent to their complements in mod 12. In addition, pitch-class intervals larger than 
six are considered equivalent to their complements in mod 12. The number of interval 
classes a sonority contains depends on the number of distinct pitch classes in the sonori-
ty. For any given sonority, we can summarize the interval content in scoreboard fashion 
by indicating, in the appropriate column, the number of occurrences of each of the six 
interval classes (occurrences of interval class 0, which will always be equal to the num-
ber of pitch classes in the sonority, are not included). Such a scoreboard conveys the 
essential sound of a sonority. 
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interval content as background music (interval set: 5-7-12, all perfect consonances), 
and a third group sees the same animation with a dissonant interval content (1-2-6, all 
dissonances). Immediately after viewing the clip, participants are asked to complete a 
series of bipolar adjective ratings representing the three connotative dimensions: ac-
tivity, potency and valence.  

The question posed in this study is whether two contrasting examples of back-
ground music, solely in terms of interval content, can selectively bias observers’ emo-
tional interpretation of visual information. People who have internalized the Western 
tonal music conventions normally respond to certain sonorities in a specific manner. 
The main experimental hypothesis predicts that, in particular, the valence dimension 
should differ significantly under these two conditions. Positive results would confirm 
mood congruency effects induced exclusively by interval content (surface or sensory 
consonance). 

4 Conclusions  

The empirical research included in this paper supports and confirms previous studies 
that have examined, from a cognitive perspective, the role of music on the interpreta-
tion of a film or a video presentation [1-3]. The results offer strong evidence in sup-
port of the effect of tonal dissonance level on interpretations regarding the emotional 
content of visual information. Moreover, it gives insights to the richness and poten-
tiality of the aural “palette”, since extensive effects on the emotional interpretation of 
visual contexts may be achieved by the manipulation of a single musical structure 
feature (tonal dissonance).  

Studies such as this demonstrate associations between aspects of musical structure 
and musical meaning, which then becomes automatically attached to the visual con-
tent or implied narrative that is in the focus of the spectator’s attention. 

The positive results of this study indicate that further research that systematically 
examines the multiple and subtle ways in which music performs elaborative functions 
in the comprehension of visual contexts should be pursued. The interactive multime-
dia tools introduced in section 3 are aimed at exploring this path. These tools incorpo-
rate a variety of potential variables in both musical sound and transformations of the 
visual stimuli for experimental purposes, providing a foundation on which future 
research could build. 
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Abstract. Auditory-visual looming (the presentation of objects moving
in depth towards the viewer) is a technique used in film (particularly
those in 3D) to assist in drawing the viewer into the created world. The
capacity of a viewer to perceptually immerse within the multidimensional
world and interact with moving objects can be affected by the sounds
(audio cues) that accompany these looming objects. However the extent
to which sound parameters should be manipulated remains unclear. For
example, the amplitude, spectral components, reverb and spatialisation
can all be altered, but the degree of their alteration and the resulting
perception generated need greater investigation. Building on a previous
study analysing the physical properties of the sounds, we analyse people’s
responses to the complex sounds which use multiple audio cues for film
looming scenes, reporting which conditions elicited a faster response to
contact time, causing the greatest amount of underestimation.

Keywords: Auditory-Visual Looming, Sound Design, Psychoacoustics.

1 Introduction

A feature of film and gaming is interacting with objects that move in space,
particularly objects that move in depth towards the viewer. Examples can be seen
in 3-D presentations where objects appear to leap out of the screen towards the
viewer; and in gaming where judgements are made to avoid or attack approaching
objects.

The sound that accompanies these looming objects can affect the extent to
which a viewer can perceptually immerse within the multidimensional world and
interact with the moving objects. To accurately generate a dynamic and rich
perception of the looming objects, the design of such complex sounds should be
based on a firm scientific foundation that encompasses what we know about how
we visually and aurally perceive events and interactions.

2 Previous Research and Practice

Previous research on auditory looming has revealed that people associate an
approaching object with at least three attributes of sound, including interaural
temporal differences, frequency change, and amplitude change [1].
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In addition to finding that all three attributes of sound were associated with
a looming object, they found that the change in amplitude elicited the fastest
response to contact time, at the point in which the object passed, whilst the
change in frequency prompted a response before the object had passed [1]. This
underestimation of the contact time of a looming object implies that the object
is approaching at a faster rate and is anticipated to contact sooner.

Later studies on auditory looming showed that people overestimate the mag-
nitude of intensity when presented with increasing stimuli [2,3]. This implies
that the increasing intensity of the approaching object is more dramatic than
the extent of its physical approach.

In an evolutionary context for both the physical and virtual worlds, these
overestimations of magnitude and underestimation of contact time provide an
advantage to the observer, giving them more time to prepare (an increased safety
margin) for the object’s arrival, and to initiate the appropriate response (being
fight or flight), therefore increasing the chance of survival.

However, many of these previous auditory looming perception experiments
[1,2,3,4] have been conducted in extremely controlled conditions, with the aural
stimuli consisting of simple tones (often a sine or triangle wave at 400 - 1000 Hz),
and sound parameter manipulations such as an amplitude increase (between 10
- 30 dB), frequency change (using 804 Hz - 764.6 Hz, and 602.9 Hz - 572 Hz,
which in musical terms equates to the tone and deviation of G5 ± 43 cents,
and D5 ± 45 cents), and interaural temporal differences (a delay between the
channels from 0.557 ms to 0.00 ms).

Limiting these variables used in experimental conditions compromises the
ecological validity of the results, sound parameters manipulated, and real world
application.

In contrast however, the film and gaming industries require sound designers to
manipulate complex sounds, with the purpose of maximising the viewers’ expe-
rience, immersiveness, responsiveness to onscreen action, and overall perception
of the virtual environment.

Examination of the sound manipulation techniques that sound designers and
post-production technicians use as cues for an approaching object in looming
scenes provides a basis for a broader range of variables that can then be used in
psychological studies on the perception of approaching objects.

Building upon our previous research [5] that examined the audio cues and
techniques that sound designers use to generate the perception of an object
moving in depth (looming), this research examines the percepts generated by
complex sounds.

3 Feature Analysis Studies

A feature analysis study was previously conducted on the audio track of the 27
film looming scene samples used in this study, to understand which features the
sound designers and post-production technicians were using as cues for auditory
looming, how the features were manipulated, and the degree of the manipula-
tion. Features that were analysed include: amplitude change; amplitude levels;



380 S. Wilkie and T. Stockman

amplitude slope; interaural amplitude differences; pan position; spectral cen-
troid; spectral spread; spectral flux; roll-off; and image motion tracking of the
object.

In summary, our findings showed a number of similar techniques existed be-
tween the variety of samples. This includes:

– An average amplitude increase of 62.68 dB (SD = 15.49) on a linear / near-
linear slope.

– The pan position centrally placed, and close to the image position, however
fluctuates more than the image position. This fluctuation emphasises the
spatial movement without having to hard pan to a single channel.

– An average spectral centroid increase of 1673.36 Hz.
– An average spectral flux increase of 167.0 Hz (with an average amount of

flux of 13.8 Hz at the start of the sample, and 180.8 Hz at the peak).

In contrast to the previous auditory looming studies, the feature analysis of the
film samples showed that they have:

– A greater range of variables used simultaneously to form complex looming
stimuli (compared to the simple waves in the psychoacoustic studies).

– A greater increase in the levels that the variables were manipulated (i.e.
62.68 dB amplitude increase in the film samples, versus 10 - 30 dB in the
psychoacoustic studies).

4 An Investigation of Responses to Complex Looming
Sounds

This study is an extension of our previous research which examined the sound
features in the looming samples, and will examine subjects’ responses to the
looming stimuli that uses complex sounds produced by the sound designers and
technicians.

4.1 Aim

The aim of this study is to determine if a subject’s response to a looming object
differs with the inclusion of complex designed sounds that use multiple audio
cues, as opposed to looming scenes with no sound.

4.2 Hypothesis

It is hypothesised that the combination of the multimodal (auditory-visual) pre-
sentation (with the greater number of cues used, and the greater amount of
stimuli change) will cause people to underestimate the contact time of the ap-
proaching object, thereby eliciting a faster response time than the looming scenes
with no sound.



The Perception of Auditory-Visual Looming in Film 381

4.3 Method

Participants. A sample of 15 participants oblivious to the study purpose were
recruited. They were Ph.D students and Postdoc. researchers from Queen Mary,
University of London aged between 20 and 36 years (μ = 27.07 years, SD = 4.70),
with more male participants than female participants (11 males, 4 females).

Stimuli. The stimuli consisted of 27 scenes that presented objects moving to-
wards the viewer, and comprised both auditory and visual components. The
scenes used are listed in Table 1. They were presented via computer with the
visual stimulus presented on the monitor, and the auditory stimulus output
through a pair of headphones.

The 27 scenes were presented in each of the three conditions - the multimodal
(sound and image) condition, and the two unimodal conditions (sound only or
image only). Each trial condition was presented once only (totaling 81 trial
presentations) and in a randomised order.

Apparatus. Participants were located at a computer workstation with their
head distanced approximately 40 cm from the computer monitor and eyes level
with the centre of the monitor. A Mac Pro 1.1 with a NECMultiSync EA221WM
(LCD) monitor was used. The screen size was 22 inches with the resolution set to
1680 x 1050 pixels and the display was calibrated to a refresh rate of 60 Hz. The
auditory stimulus was presented through Sennheiser HD515 headphones. The
program MAX / MSP / Jitter version 4.6 was used to construct the software
application that presented the auditory and visual stimuli, presented the trials
in a randomised and collected order, timed the participants’ responses using the
computer’s internal clock, and collected the participant responses in a text file.

Procedure. Participants sat at the computer workstation and were informed of
the experiment procedure. They were given an information sheet summarising
both the procedure and the ethics approval, signed a consent form, and com-
pleted a background questionnaire asking questions on gender, age, and whether
they have had corrections made to their vision or hearing.

Before commencing the experiment, the participants completed a practise test
using 6 looming scenes (that were not additionally presented in the experiment).
It was conducted as a supervised learning procedure to enable the participants to
comprehend the experiment, the procedure, the micro time scale of the stimulus,
and how to complete the task.

Participants were then instructed to start the experiment when ready. The
task required participants to watch and/or listen to the scene of an approach-
ing object, and to press the keyboard ‘space bar’ when they thought the object
was closest to them. Each trial lasted for a total duration of 0.5 - 3.0 seconds
(depending on the looming scene presented) and a 6 second break was given be-
tween each trial. With a total of 81 trial presentations, the experiment lasted for
approximately 25 minutes. Participants were not given any information implying
there might be correct, incorrect or preferred responses.
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Table 1. List of film scenes that were used in the experiment

# Title Year Chapter, Time (min : sec)

1 The Matrix 1999 Chapter 1, 1:22 - 1:25

2 Star Wars (Return of the Jedi) 1983 Chapter 3, 0:20 - 0:24

3 Star Wars (Revenge of the Sith) 2005 Chapter 31, 3:08 - 3:09

4 X-men (The Last Stand) 2006 Chapter 15, 0:35 - 0:36

5 The Day After Tomorrow 2004 Chapter 12, 2:29 - 2:33

6 King Arthur 2004 Chapter 7, 10:46 - 10:48

7 Sherlock Holmes 2009 Chapter 22, 4:36 - 4:38

8 Van Helsing 2004 Chapter 17, 1:52 - 1:54

9 I Am Legend 2007 Chapter 17, 0:00 - 0:03

10 Troy 2007 Chapter 27, 2:22 - 2:24

11 Beowulf 2007 Chapter 2, 4:03 - 4:05

12 The Bourne Identity 2002 Chapter 12, 2:10 - 2:12

13 Charlie & the Chocolate Factory 2005 Chapter 15, 1:24 - 1:26

14 Mr and Mrs Smith 2005 Chapter 20, 0:40 - 0:44

15 Sin City 2005 Chapter 18, 1:06 - 1:07

16 28 Days Later 2002 Chapter 11, 0:01 - 0:04

17 Gattaca 1997 Chapter 21, 2:39 - 2:40

18 Alice in Wonderland 2010 Chapter 15, 0:19 - 0:20

19 Avatar 2009 Chapter 22, 1:42 - 1:45

20 Clash of the Titans 2010 Chapter 13, 4:11 - 4:13

21 Despicable Me 2010 Chapter 18, 2:23 - 2:24

22 Kill Bill vol2 2004 Chapter 6, 0:03 - 0:06

23 Mission Impossible 3 2006 Chapter 4, 1:06 - 1:08

24 Yogi Bear 2010 Chapter 1, 1:25 - 1:27

25 Final Destination 2009 Chapter 15, 0:06 - 0:07

26 Salt 2010 Chapter 9, 3:13 - 3:14

27 Saving Private Ryan 1998 Chapter 19, 3:17 - 3:21

4.4 Results

Image motion tracking was previously performed on each scene to determine the
approaching object’s position, size, and area, over time. For the purpose of this
study, the time (of the frame) in which the object encompassed the greatest area
was considered the contact point and is called the ‘peak’.

Participants’ responses to the stimuli (by pressing the keyboard ‘space bar’
when they thought the object was closest) was timed. This time was subtracted
from the ‘peak’ time, to give the amount of time that was underestimated or
overestimated, and for the purpose of this study is called the ‘time to contact’.

Presentation Condition × Time to Contact. The time to contact was
averaged across all of the participants responses, for each sample presentation
condition, and is plotted in Figure 1.
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Looking at the spread of the data, the majority of the trials caused partici-
pants to underestimate the contact time, rather than overestimate it, with the
conditions that contained sound (being the sound only condition and the sound
+ image condition) having a greater underestimation than the condition with
no sound (the image only condition).

Fig. 1. Time to Contact × Sample × Presentation Condition The time to
contact for each sample condition was averaged across all of the participants, and
is plotted. The contact time occurs at 0ms, with any underestimation shown in the
positive range of the scale, and overestimation shown in the negative range.

The time to contact was then averaged across all of the participants and
samples, for each presentation condition, and is plotted in Figure 2.

The condition which generated the least ‘time to contact’ (least amount of
underestimation, and was closest to the ‘peak’ time), was the image only condi-
tion (M = 302.16 ms, SE = 100.62), followed by the sound + image condition
(M = 534.75 ms, SE = 59.81); and the sound only condition (M = 591.74 ms,
SE = 81.62).

Clustered Results. Because certain samples caused people to overestimate
the contact time, which could affect the analyses, the results were separated into
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Fig. 2. Presentation × Time to Contact The results are plotted for each presen-
tation condition (sound only, image only, sound + image) were averaged across all of
the all of the samples and participants. The error bars indicate the standard error for
each condition.

two clusters - those samples which caused an underestimation, and those which
caused an overestimation.

This separation will allow us to obtain the average time to contact per con-
dition, based on the samples which prompted people to underestimate or over-
estimate the contact time.

No trials had an average contact time during the image ‘peak’ (which had a
duration of 41.67 ms, or one frame at 24 fps), with no individual participants
indicating contact during this time.

Presentation Condition × Time to Contact (underestimation cluster).
The condition that had the most number of trials in which the ‘time to contact’
was before the ‘peak’ time (therefore underestimating the contact time) was the
sound only condition (with all 27 trials, totaling 100.00% of the trials presented
for that condition; weighted mean = 591.74 ms, weighted standard deviation =
424.11); and the sound + image condition, (with 26 trials, totaling 96.30% of
the trials presented for that condition; weighted mean = 537.91 ms, weighted
standard deviation = 279.86); followed by the image only condition (with 23
trials, totaling 85.19% of the trials presented for that condition; weighted mean
= 375.06ms, weighted standard deviation = 241.36).
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Presentation Condition × Time to Contact (overestimation cluster).
The condition that had the most number of trials in which the ‘time to contact’
was after the ‘peak’ time (therefore overestimating the contact time) was the
image only condition (with 4 trials, totaling 14.81% of the trials presented for
that condition; weighted mean = -72.90 ms, weighted standard deviation =
131.94); followed by the sound + image condition (with 1 trial, totaling 3.70%
of the trials presented for that condition; weighted mean = -3.16 ms); the sound
only condition, when averaged across all of the participants, did not have any
trials after the image peak.

4.5 Discussion

The results indicate that the image only condition had the slowest response to
the contact time both before and after the peak time, with the least amount of
underestimation before the ‘peak’ time and greatest amount of overestimation
after the ‘peak’.

In contrast, the sound only condition, which still only provided unimodal
information about the approaching object, prompted participants to have the
greatest amount of underestimation of the contact time, and furthermore, all
of the samples generated an underestimation in the contact time (and none
generating an overestimation).

This suggests that the addition of sound and looming audio cues (in both
the sound only condition and the sound + image condition) prompted people
to underestimate the contact time more often, and with a greater time frame,
than the scenes that had no sound.

5 Conclusion

Although the individual sound parameters that act as the audio cues for an
approaching object were not controlled and varied in this study, this investigation
of the complex sounds in their original form as recorded or created by the sound
designers has shown that the addition of sound, and the multiple techniques
used to create audio cues, cause people to underestimate the contact time of an
approaching object. This result suggests that further investigation is warranted,
with future research on the complex stimuli’s individual sound parameters, as
independent variables, and the perception generated as a result.
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Abstract. In musical performances with expressive tempo modulation,
the tempo variation can be modelled as a sequence of tempo arcs. Pre-
vious authors have used this idea to estimate series of piecewise arc
segments from data. In this paper we describe a probabilistic model for
a time-series process of this nature, and use this to perform inference of
single- and multi-level arc processes from data. We describe an efficient
Viterbi-like process for MAP inference of arcs. Our approach is score-
agnostic, and together with efficient inference allows for online analysis
of performances including improvisations, and can predict immediate
future tempo trajectories.

Keywords: tempo, expression, Viterbi, time series.

1 Introduction

In various types of musical performance, one component of the musical expression
is conveyed in the short-term manipulation of tempo, with tempo modulation
reflecting musical phrase structure [7,9]. This has motivated various authors to
construct automatic analyses of the arc-shaped tempo modulations in recorded
musical performances, with or without score-derived information to supplement
the analysis [7,9,5]. (See also [6] who fit piecewise linear arcs to rock and jazz
data, applying similar techniques but to genres in which the underlying tempo
is held more fixed.)

Machine understanding of tempo, including its variability, can be useful in live
human-machine interaction [1,8]. However most current online tempo-tracking
systems converge to an estimate of the current tempo, modelling expressive vari-
ations as deviations rather than as components of an unfolding tempo expression.
In this paper we work towards the understanding of tempo arcs in a real-time
system, paving the way for automatic accompaniment systems which follow the
expressive tempo modulation of players in a more natural way.

We also consider tempo arcs within a probabilistic framework. Previous au-
thors have approached piecewise arc estimation using Dynamic Programming
(DP) with cost functions based on squared error [5,6]. These are useful and can
provide efficient estimation, but by setting the problem in a probabilistic frame-
work (and providing the corresponding Viterbi-like DP estimator), we gain some
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advantages: prior beliefs about the length and shape of arcs can be expressed co-
herently as prior distributions; measurement noise is explicitly modelled; and the
goodness-of-fit of models is represented meaningfully as posterior probabilities,
which allows for model comparison as well as integration with other workflow
components which can make use of estimates annotated with probability values.
Note that while we describe a fully probabilistic model, for efficient inference we
will develop a Maximum A Posteriori (MAP) estimator, which returns only the
maximum probability parameter settings given the priors and the data.

In the following we will describe our model of arcs in time-series data, and de-
velop an efficient MAP estimation technique based on least-squares optimisation
and Viterbi-like DP. The approach requires some kind of unsmoothed instanta-
neous tempo estimate as its input, which may come from a tempo tracker or
from a simple measurement such as inter-onset interval (IOI). We will then dis-
cuss how the estimator can be used for immediate-future tempo prediction, and
how it can be applied to multiple levels simultaneously. Finally we will apply
the technique to tempo data from three professional piano performances, and
discuss what the analysis reflects in the performances.

2 Modelling and Estimation

For our basic model, we consider tempo to evolve as a function of metrical
position (beat number) x in a musical piece as a series of connected arcs, where
each arc’s duration, curvature and slope are independently drawn from prior
distributions (to be described shortly). Our model is deliberately simple, and
agnostic of any score information that might be available. To sample from this
model, we pick an initial tempo at the starting time, then define a single upwards
tempo arc which starts from that point, and the tempo trajectory (speeding up
and then slowing down) over a number of measures. Any tempo data which may
be measured during this interval is modelled as being drawn from the arc plus
some amount of gaussian noise. Once the ending breakpoint of this arc is reached,
the next arc is sampled from the same priors, using the ending tempo as the new
starting tempo. Hence each tempo arc is conditionally independent of all previous
observations once the starting tempo is determined, i.e. once the previous arc’s
parameters are fixed. This assumption of conditional independence is slightly
unrealistic, since it ignores long-range relationships between tempo arcs, but it
accounts for the most important interactions and makes inference tractable.

Our basic model is also only single-level, assuming that a single arc contributes
to the current tempo at any moment, rather than considering for example con-
tributions from multiple timescales such as piece-level, movement-level, phrase-
level and bar-level combined. In Section 2.4 we will consider a simple multi-scale
extension of our technique, which we will apply in our analysis of piano perfor-
mance data. (For an alternative approach in which various components can be
simultaneously active see [7].)
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2.1 Fitting a Single Arc

To fit a single arc shape to data, one can use standard quadratic regression,
fitting a function of the form

f(x) = a+ bx+ cx2, (1)

and minimising the L2 prediction error over the supplied data for y ≈ f(x). In
the Bayesian context, we wish to incorporate our prior beliefs about the regres-
sion parameters (here a, b and c), which is related to the optimisation concept
of regularisation, the class of techniques which aims to prevent overfitting by
favouring certain parameter settings. In fact, a gaussian prior on a regression
parameter can be shown to be equivalent to the conventional L2-norm regulari-
sation of the parameters [2, p. 153], summarised as:

regularisation coefficient =
variance of gaussian noise

variance of gaussian prior
. (2)

This equivalence is useful because it allows us to use common convex optimisa-
tion algorithms to perform the equivalent regularised least squares optimisation,
and they will yield the MAP estimate for the probabilistic model.

However, in this context a standard gaussian prior is not exactly what we
require, since we are expecting upwards arcs and not troughs – we are expecting
c in Equation 1 to be negative. A more appropriate choice of prior might be a
negative log-gaussian distribution, which allows us to specify a “centre of mass”
for the arc shapes (expressed through the log-mean and log-standard-deviation
parameters), yet better represents our expectation that tempo arcs will always
have negative curvature, (almost) flat and extremely strongly curved arcs being
equally rare.

The unconventional choice of prior might seem to remove the equivalence of
the MAP regression technique with standard regularised least squres. Yet if we
rewrite our function to be

f(x) = a+ bx− ecx2, (3)

then our prior belief about this modified parameter c becomes a gaussian, yield-
ing a negative-log-gaussian in combination with our function. In addition, we
will use a standard gaussian prior on b. We could do the same for a but instead
we will use an improper uniform prior, for reasons which will be described in
Section 2.2. Therefore, our priors for Equation 3 will be gaussian priors on b and
c, which can easily be converted to the equivalent L2-regularisation terms for
optimisation.

The strength of the regularisation (the value of the regularisation coefficient)
reflects the specificity of our priors versus our data – specifically, the regularisa-
tion parameter is given by the noise variance divided by the prior variance [2, p.
153]. Again, we see how the probabilistic setting helps to ground our problem,
connecting the strength of the regularisation directly to our prior beliefs about
the model and the data rather than manually-tuned parameters.
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Fig. 1. A selection of piecewise arc fits performed on a synthetic dataset. For illustra-
tion purposes, we have manually specified a sequence of possible breakpoint locations,
and then performed a single-arc fit within each subsection. The “logMAP” (log of MAP
probability) values quoted with each plot indicate the relative likelihood assigned to
the depicted fit, given the prior parameters chosen. Prior parameters are the same for
each of these plots. The best-fitting plots have correspondingly higher (less negative)
logMAP values.

2.2 Fitting Multiple Arcs

If a time-series is composed of multiple arcs and the breakpoints are known,
then fitting multiple arcs is as simple as performing the above single-arc fit for
each subsection of the time series (as in Figure 1). Additionally, one should take
care of the arc’s dependence upon its predecessor (to enforce that they meet
up), which is not shown in these plots. In our case, we want to estimate the
breakpoint locations as well as the arc shapes between those breakpoints. This
can be performed by iterating over all possible combinations of one breakpoint,
two breakpoints, three (. . . ) for the dataset, and choosing the result with the
lowest cost (the highest posterior likelihood).

The Bayesian setting makes it possible to compare these different alternatives
(e.g. one single arc vs. one arc for every datapoint) without having to add arbi-
trary terms to counter overfitting; instead, we specify a prior distribution over
the arc durations, which in combination with the other priors and data likeli-
hoods yields a MAP probability for any proposed set of arcs. In this paper we
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choose a log-normal prior distribution over arc durations. See Figure 1 for some
examples of different sets of arcs fitting to a synthetic dataset, and the posterior
(log-)probabilities associated.

In order for only a single tempo value to exist at each breakpoint (and not
a discontinuous leap from one tempo to another), we fit each arc under the
constraint that its starting value equals the ending value of the previous arc. This
removes one degree of freedom from the function to be fit (Equation 3) which
otherwise has three free parameters.We implement this by constraining the value
of a in the optimisation so that the function evaluates to the predetermined
value at the appropriate time-point. The least-squares optimisation therefore
only operates on b and c.

2.3 Viterbi-Like Algorithm

The number of possible combinations of arcs for even a small time-series (such as
Figure 1) grows quickly very large, and so it is impractical to iterate all combina-
tions. This is where Dynamic Programming (DP) can help. Here we describe our
DP algorithm, which, like the well-known Viterbi algorithm, maintains a record
of the most likely route that leads to each of a set of possible states. Rather
than applying it to the states of a Hidden Markov Model, we apply it to the
possibility that each incoming datum represents a breakpoint.

Assume that the first incoming datum is a breakpoint. (This assumption can
be relaxed, in a similar way to the treatment of the final datum which we consider
later.) Then, for each incoming datum (xn, yn), we find what would be the most
likely path if it were certainly a breakpoint. We do this by finding the most
appropriate past datum (xn−k, yn−k) which could begin an arc to the current
datum – where the appropriateness is judged from the MAP probability of said
arc, combined with the MAP probability of the whole multiple-arc history that
leads up to that past datum (recursively defined).

With our lognormal prior on the arc lengths (and with many common choices
of prior), the probability mass is concentrated at an expected time-scale, and
very long arcs are highly improbable a priori. Hence in practice we truncate the
search over potential previous arc points to some maximum limit K (i.e. k ≤ K).

Thus, for every incoming data point we perform no more than K single-
arc fits, then store the details of the chosen arc, the MAP probability so far,
and a pointer back to the datapoint at the start of the chosen single arc. The
simplest way to choose the overall MAP estimate is then to pick another definite
breakpoint (for example, the last datum if the performance has finished) and
backtrack from there to recover the MAP arc path.

Complexity. The time complexity of the algorithm depends strongly on that
of the convex optimisation used to perform a single-arc fit. Assume that the
complexity of a single-arc fit is proportional to the number of data points k
included in the fit, where k ≤ K. Then for each incoming data point a search
is performed for one subset each of 2, 3, . . . K data points, which essentially
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yields an order O(K2) process. For online processing this is manageable if K is
not too large. Analysing a whole dataset of M points then has time complexity
O(K2M). (Compare this to the broadly similar complexity analysis of [6].) The
space complexity is simply O(M), or O(K) if the full arc history since the very
beginning does not need to be stored. This is because a small fixed amount of
data is stored per datapoint.

Predicting Immediate Future Arcs. As discussed, if we know the perfor-
mance has finished then we can find the Viterbi path leading to a breakpoint
at the final data point received. However, we would also like to determine the
most likely set of arcs in cases where the performance might not have finished
(e.g. for real-time interactive systems), and thus where we do not wish to assert
that the latest datum is a breakpoint. We wish to be able to estimate an arc
which may still be in progress. If we can, this has a specific benefit of predicting
the immediate future evolution of the tempo modulations (until the end of the
present arc), which may be particularly useful for real-time interaction.

We can carry this out in our current approach as follows. Since an arc’s du-
ration (as well as the curve-fit) affects its MAP probability, in the case where
the latest arc may or may not be terminating we must iterate over the arc’s
possible durations and pick the most likely. To do this we choose a set of fu-
ture time-points as candidate breakpoints, xn+1 . . .xn+J (e.g. an evenly-spaced
tatum grid of J = K future points). Then we supply these data to the Viterbi
update process exactly as is done with actual data, but with no associated y
values. These “hypothetical” Viterbi updates will use these time-points to de-
termine the arc-lengths being estimated, and in normalising the data subset, but
will not include them in the arc-fitting process. It will therefore yield a MAP
probability estimate for each of the time-points as if an arc extended from the
real data as far as this hypothetical breakpoint. Out of these possibilities, the
one with the highest MAP probability is the MAP estimate for an arc which in-
cludes the latest real datum and some portion of the hypothetical future points.
(The hypothetical Viterbi updates are not preserved: if more data comes in, it
is appended to the Viterbi storage corresponding only to the actual data.)

2.4 Multi-scale Estimation

The model we describe operates at one level, with expected arc durations given
by the corresponding prior. Our model is adaptable to any time-scale by simply
adapting the prior. It does not however automatically lend itself to simultaneous
consideration of multiple active timescales.

Multi-scale analysis can be carried out by analysing a dataset with one
timescale, then analysing the residual at a second timescale. This residual-based
decomposition has been used previously in the literature (e.g. [9]); it requires
a strong hierarchical assumption that the arcs at the first timescale do not
depend at all on those at the second timescale, while the second is subordi-
nate to the first. We consider this to be unrealistic, since there may well be
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interactions between the different timescales on which a performer’s expression
evolves. However this assumption leads to a tractable analysis.

Note also that this approach to multi-scale estimation requires the first anal-
ysis to be completed (so that the residual is known) before the second scale can
be analysed. Some DP approach may be possible to enable both to be calcu-
lated online, but we have not developed that here. For the present work, the
single-scale Viterbi tracking is applicable and useful for online tracking, while
multi-scale analysis is an offline process, which we will next apply to modelling
of pre-recorded tempo data.

3 Analysis of Expressive Piano Performance

We applied our analysis to an existing set of annotations of three performances of
Beethoven’s Moonlight Sonata. The annotations by Elaine Chew have previously
been analysed by Chew with reference to observations noted by Jeanne Bam-
berger [4]. For each of three well-known performances of the piece—by Daniel
Barenboim (1987), Maurizio Pollini (1992) and Artur Schnabel (2009)—the first
15 bars have been annotated with note onset times, which correspond to regular
triplet eighth-note timings.

We implemented the algorithm in Python, using the scipy.optimize.fmin

optimiser to solve individual regressions. Source code is available.1 (Note that
this development implementation is not generally fast enough for real-time use.)

Instantaneous tempo was derived from these inter-onset intervals, then anal-
ysed using a two-pass version of our algorithm: first the data was analysed using
an arc-duration prior centred on four bars; then the residual was analysed us-
ing an arc-duration prior centred on one bar. This choice of timescales is a
relatively generic choice which might reasonably be considered to reflect a per-
former’s short-term and medium-term state; however it might also be said to be
a form of basic contextual information about the relevant timescales in the cur-
rent piece. For the current study, we confine ourselves to priors with log-normal
shapes, though an explicitly score-derived or corpus-derived prior could have a
more tailored and perhaps multimodal shape.

Figure 2 shows a set of manual annotations of hierarchically embedded phra-
ses, and Figure 3 shows the automatically computed results. The automatic
analyses show some notable similarities with the manual one at the shorter
time scale, and significant differences at the longer time scale. The difficulty of
the longer time scale analysis may be explained by Figure 5, which shows one
plausible set of phrase groupings for this excerpt; the overlapping {5,5,7} bar
phrases do not fit easily into a four-bar duration framework.

Nevertheless, the longer time scale analysis (centred on four bars) highlights
differences between the performances: Pollini’s performance appears to contain
relatively little variation on this level, as the fit yields long and shallow arcs, with
breakpoints near positions 48, 96 and 168 (structurally important positions; 96

1 https://code.soundsoftware.ac.uk/projects/arcsml

https://code.soundsoftware.ac.uk/projects/arcsml
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Fig. 2. Manual analyses of performances by each of three pianists (Barenboim, Pollini,
Schnabel). Two to three levels of arcs are drawn by visual inspection for each tempo
time series. No higher level arcs are drawn when it is uncertain that one exists.
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Fig. 3. Two-level analysis of performances by each of three pianists (Barenboim,
Pollini, Schnabel). In each plot, the first long-scale fit (centred on the four-bar
timescale) is depicted in red, and the second shorter-scale fit (centred on the one-
bar timescale) is given in blue. The second fit is pre-offset by the first, meaning the
blue arcs display the combined model produced by both timescales combined. Anno-
tated data finish at tatum 180; where the MAP choice extends beyond that, we show
the predicted immediate future arc.
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Two-level: Schnabel (logMAPs: -672.86, -654.782)

Fig. 4. As Figure 3 but with the standard deviation of the noise prior set at 4.0 rather
than 3.0
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Fig. 5. Possible set of overlapping phrases in the first 15 bars of the Moonlight Sonata

is where the key-change occurs). On the other hand, both Barenboim and Schn-
abel’s tempo curves exhibit fairly deep and varied arcs. Schnabel’s performance
exhibits the most dramatic variation in the first four bars until around measure
48: this first four-bar section corresponds to the opening statement of the basic
progression, before the melody enters in the fifth bar (and the underlying pro-
gression repeats). Bamberger described Schnabel as performing them “as if in
one long breath” (quoted in [4]), not quite reflected in our automatic analysis.

On the shorter time scale, the analysis tends to group phrases into one-bar or
two-bar arcs. Aspects of the musical structure are reflected in the arcs observed.
Sections of the melody which lend themselves to two-bar phrasing (e.g. 72–96)
are generally reflected in longer arcs crossing bar lines. Conversely, in the region
96–132 the change to the new key unfolds as each new chord enters at the start
of a bar, and the tempo curves for all three performers reflect an expressive focus
on this feature, with one-bar arcs which are more closely locked to the bar-lines
than elsewhere. Note that in this section Schnabel matches Pollini in exhibiting
a long and shallow arc on the slow timescale, with all the expressive variation
concentrated on the one-bar arcs.

Over the excerpt generally, the breakpoints for Schnabel are further away from
the barline than the others, as was observed in Chew’s manual analysis. We can
quantify this by measuring the mean deviances of arc endpoints from the barlines
in each performance. The resulting mean deviances confirm our observations
(Table 1).

We have extended the plots slightly beyond the 180 annotated data points,
to illustrate the immediate-future predictions made by the model. (This is done
for both timescales, though only the longer timescale (in red) shows noticeable
extended arcs.) All the performers, and especially Schnabel, exhibit an accel-
eration towards the end of the annotated data, reflected in the predictions of
an upward arc followed by a gradual slowing over the next bar. This type of
prediction is plausible for such expressively-timed music.
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Table 1. Mean deviance from the barlines of the arc endpoints inferred for each
performance, averaged over the short-timescale arcs in each case

Performer Mean deviance (bars)

Barenboim 13.9%
Pollini 8.3%
Schnabel 15.5%

To illustrate the effect that the prior parameters have upon the regression,
Figure 4 shows the same analysis as Figure 3 but with the standard deviation
of the noise prior set at 4.0 rather than 3.0. The increase in the assumed noise
variance leads the algorithm to “trust” the data less and the prior slightly more
(cf. Equation 2). In our example, some of the breakpoints for the long-term
arcs (in red) have changed, losing some detail, though most of the detail of the
second-level analysis (in blue) is consistent.

4 Conclusions

We have described a model with similarities to some previous piecewise-arc mod-
els of musical expression, but with a Bayesian formulation which facilitates model
comparison and the principled incorporation of prior beliefs. We have also de-
scribed an efficient Viterbi-like Dynamic Programming approach to estimation
of the model from data. The approach provides scope to apply the model to real-
time score-free performance tracking, including prediction of immediate future
tempo modulation. Source code for the algorithm (in Python) is available.

We have applied the model in a two-level analysis to data from expressive
piano performance, illustrating the algorithm’s capacity to operate at different
time-scales, and to recover expressive arc information that corresponds with
some musicological observations regarding phrasing and timing.

Further research would be needed to develop a model of multiple simulta-
neously-active levels of expression which can be applied online as with our
single-level Viterbi-like algorithm. Similar arcs have been observed and anal-
ysed in loudness information extracted from performances [3]. It would also be
useful to combine loudness information with tempo information in this model.
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Abstract. The time-span tree is a dependable representation of musical struc-
ture since most experienced listeners deliver the same one, almost independently
of context and subjectivity. In this paper, we pay attention to the reduction hy-
pothesis of the tree structure, and introduce a notion of distance as a promising
candidate of stable and consistent metric of similarity. First, we design a fea-
ture structure to represent a time-span tree. Next, we regard that when a branch
is removed from the tree, that is, its corresponding pitch event is reduced, the
amount of information comparable to its time-span is lost. Then, we suggest that
the sum of the length of those removed spans is the distance between two trees.
We will show mathematical properties of the distance, including that the distance
becomes unique in multiple shortest paths. Thereafter, we illustrate how the dis-
tance works in a set of reductions. We consider a metric of similarity both from
human cognition and from set operation, and discuss the relation of distance and
similarity. Also, we discuss such other related issues as flexible tree matching and
music rendering.

Keywords: Similarity, time-span reduction, feature structure, join, meet.

1 Introduction

As is remarked in [26], an ability to assess similarity lies close to the core of cognition.
Music similarity is multi-faceted as well [16], and inevitably raises a context-dependent,
subjective behavior [15]. As to context dependency, similarity cannot be perceived in
isolation from the musical context in which it occurs. Volk stated in [23]: Depending
on the context, similarity can be described using very different features. For instance,
the impact of cultural knowledge may degrade a stable similarity assessment. As to
subjectivity, similarity is perceived differently from person to person, even within a
person, depending on listening style, preference, and so on.

Thus far, many research initiatives have explored stable and consistent similarity
metrics as a central topic in music modelling and music information retrieval [9,4].
Some of them are motivated by engineering demands such as music retrieval, clas-
sification, and recommendation [16,7,20], and others are by modelling the cognitive
processes as reported in the Discussion Forum on music similarity [5,6]. In this paper,
we also seek for a stable and consistent similarity, avoiding context-dependency and
subjectivity. We regard that similarity is stable in the sense that similarity assessment
is performed only on a score of music, disregarding such context-dependent factors as

M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 400–421, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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timber, artist, subject matter of lyrics, and cultural factors. Also, we regard that simi-
larity assessment is consistent in the sense that most experienced listeners can deliver
same results, as long as the western-tonal-classical music is targeted. To propose a sta-
ble and consistent similarity, we rely on the assumption that the cognitive reality or the
perceptual universality reside in music. As addressed in [24], systems which aim to en-
code musical similarity must do so in a human-like way. Our approach is parallel to this
research direction. Note that such cognitive reality may depend on a category of music
that each music theory targets, which is prescribed by a genre, style, and other features.

Now, we take the stance that tree structure underlies such cognitive reality. Bod
claimed in his DOP model [1] that there lies cognitive plausibility in combining a rule-
based system with a fragment memory when a listener parses music and produces a
relevant tree structure, like a linguistic model. Lerdahl and Jackendoff presumed that
perceived musical structure is internally represented in the form of hierarchies, which
means time-span tree and strong reduction hypothesis in the Generative Theory of Tonal
Music (GTTM, hereafter) [13, p.2, pp.105-112, p.332]. Dibben argued that the experi-
mental results show that pitch events in tonal music are heard in a strictly hierarchical
manner and provide evidence for the internal cognitive representation of time-span tree
of GTTM [3]. Wiggins et al. deployed discussions on the tree structures and argued that
they are more about semantic grouping than about syntactic grouping [25]. We basi-
cally follow their views, under which we assume the time-span tree of a music piece
represents its meaning. Here, we need to admit that GTTM has its inherent problem,
that is, those ambiguous preference rules may result in multiple time-span analyses;
however, we have solved this issue, assigning a parametric weight to each rule, and
have implemented an automatic tree analyzer [8].

Among the properties of time-span tree, in particular, we consider the concept of
reduction essential, when a time-span tree subsumes a reduced one. Selfridge-Field also
claimed that a relevant way of taking deep structures (meaning) into account is to adopt
the concept of reduction [21]. The subsumption relation between time-span trees is
defined as a partial order, and this fact implies that we can treat time-span trees (i.e., the
meaning of a music piece) as mathematical entities. Our objective is to derive a notion
of distance from the reduction and the subsumption relation, to employ it as a metric of
similarity. In this paper, we attempt to formally design the similarity based on the time-
span reduction. At this stage, our attitude toward the design is strictly computational;
that is, there must lie a reliable logical and algebraic structure so that we will be able to
implement the similarity onto computers.

In effect, tree representation has contributed to the study on similarity. Here, we
briefly summarize the related works concerning the tree representation of music struc-
tures. Marsden proposed a representational framework for polyphony, employing not
only ternary but also n-ary (n ≥ 4) relations in pitch events [14]. Marsden began
with conventional tree representations and allowed joining of branches in the limited
circumstances with the directed acyclic graph (DAG) to express information depen-
dency [14]. As a result, high expressiveness was achieved, though it was difficult to
define consistent similarity between music pieces. Rizo Valero proposed a representa-
tion method dedicated to a similarity comparison task, called metrical tree [18]. He used
a binary tree representing the metrical hierarchy of music and avoided the necessity of
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explicitly encoding onsets and duration; only pitches were needed to be encoded. For
ease of a similarity comparison, he also gave several procedures concerning propagat-
ing pitch labels from the leaves upward to those at the internal nodes in a metrical tree.
As a measure to compare metrical trees, he adopted the tree edit distance with many pa-
rameters, such as the cost for each edit operation, for the label-propagation procedure,
and for the pruning level to control the metrical resolution. Metrical tree was intuitive,
easy to automatize, and had a wide range of applicability. The parameter setup, how-
ever, was justified by the best performance in experiments, not by the theoretical point
of view.

In the following Section 2, we translate a time-span tree into a feature structure, care-
fully preventing the other factors from slipping into the structure, to guarantee stability.
In Section 3, we define a notion of distance between time-span trees and then show
that the notion enjoys several desirable mathematical properties, including the triangle
inequality. In Section 4, we illustrate our analysis. Then, we try to position our distance
in other criteria in Section 5. In Section 6 we discuss open problems concerning how
we can apply our notion of distance to music similarity, and in Section 7 we summarize
our contribution.

2 Time-Span Tree in Feature Structure

In this section, we develop the representation method for time-span tree in [11,10], in
terms of feature structure. First we introduce the general notion of feature structure,
and then we propose a set of necessary features to represent a time-span tree. The set
of feature structures are partially ordered, and thus we define such algebraic operations
as meet and join and show that the set becomes a lattice. Since this section and the fol-
lowing section include mathematical foundation, those who would like to see examples
first may jump to Section 4 and come back to technical details afterward.

2.1 Time-Span Tree and Reduction

A music piece is considered to be a sequence of pitch events, i.e., notes or chords, in
a temporal order. Time-span reduction [13] assigns structural importance to each pitch
events in the hierarchical way. The structural importance is derived from the grouping
analysis, in which multiple notes compose a short phrase called a group, and from the
metrical analysis, where strong and weak beats are properly assigned on each pitch
event. As a result, a time-span tree becomes a binary tree constructed in a bottom-up
manner by comparison between the structural importance of adjacent pitch events at
different hierarchical levels.

Fig. 1 shows an excerpt from [13] demonstrating the concept of reduction. In the
sequence of reductions, each level should sound like a natural simplification of the
previous level.1 In other words, the more reductions proceed, each sounds dissimilar

1 Once a music piece is reduced, each note with onset and duration properties becomes a virtual
note that is just a pitch event being salient during the corresponding time-span, omitting onset
and duration. Therefore, to listen to a reduced melody, we assume that it needs to be rendered
by regarding a time-span as a real note with such onset timing and duration.
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Fig. 1. Time-span reduction in GTTM (Lerdahl and Jackendoff [13, page 115])

to the original. Reduction can be regarded as abstraction, but if we could find a proper
way of reduction, we can retrieve a basic melody line of the original music piece. The
key idea of our framework is that reduction is identified with the subsumption relation,
which is one of the most fundamental relations in knowledge representation.

2.2 Feature Structure and Subsumption Relation

Feature structure (f-structure, hereafter) [2] has been mainly studied for applications to
linguistic formalism based on unification and constraint, such as Head-driven Phrase
Structure Grammar (HPSG) [19]. An f-structure is a list of feature-value pairs where
a value may be replaced by another f-structure recursively. Below is an f-structure in
attribute-value matrix (AVM) notation where σ is a structure, the label headed by ‘˜ ’
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(tilde) is the type of the whole structure, and fi’s are feature labels and vi’s are their
values:

σ =

[
t̃ype
f1 v1
f2 v2

]
.

Each type requires its indispensable features. When all these intrinsic features are
properly valued, the f-structure is said to be full-fledged.

Now we define the notion of subsumption. Let σ1 and σ2 be f-structures. σ2 sub-
sumes σ1, that is, σ1 � σ2 if and only if for any (f v) ∈ σ1 there exists (f v) ∈ σ2.
Here ‘�’ corresponds to the so-called Hoare order of sets (e.g., {b, d} � {a, b, c, d}).2

For example, σ1 below is subsumed by the following σ2 but not by σ3 unless v1 is
another f-structure such that v1 � [f3 v3].

σ1 =

[
t̃ype1
f1 v1

]
, σ2 =

[
t̃ype1
f1 v1
f2 v2

]
, σ3 =

[
t̃ype1

f1

[
t̃ype2
f3 v3

]]
.

Since there is no direct subsumption relation between σ2 and σ3, ordering ‘�’ is a
partial order, not a total order like integers and real numbers. Equivalence a = b is
defined as a � b ∧ b � a.

To denote value v of feature f in structureσ, we write σ.f = v. Thus, σ1.f1 = v1 and
σ1.f2 is undefined while σ3.f1.f3 = v3. We call a sequence of features f1.f2. · · · .fn
a feature path. Structure sharing is indicated by boxed tags such as i or j . The set

value {x, y} means the choice either of x or y, and ⊥ means that the value is empty.
Even for ⊥, any feature fi is accessible though ⊥.fi = ⊥.

2.3 Time-Span Trees in F-Structures

We defin type t̃ree of an f-structure, to represent a time-span tree.

Definition 1 (Tree Type F-structure). A full-fledged t̃ree f-structure possesses the
following features.

– head represents the most salient pitch event in the tree.
– span represents the length of the time-span of the whole tree, measured by the

number of quarter notes.
– dtrs (daughters) are subtrees, whose left and right are recursively t̃ree. This dtrs

feature is characterized by the following two conditions.
• The value of span must be the addition of two spans of the daughters.
• The value of head is chosen from either that of left or of right daughter.

If head = dtrs .left .head , it is right-branching, while if head = dtrs .right .head , left-
branching. If dtrs = ⊥ then the tree consists of a single branch with a single pitch event
at its leaf.

2 When a subsumption relation is also defined in atomic values, e.g., v1 � v2, σ1 � σ2 if and
only if for any (f v1) ∈ σ1 there exists (f v2) ∈ σ2.
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Fig. 2 shows the examples. Such bold-face letters as C4, E4 and G4 are trees for
pitch events, in which the value of head feature is occupied by ẽvent f-structure with
pitch, onset, and duration features, where duration of ẽvent coincides with that of
span in its upper t̃ree.

C4 G4

qq
Œ

(a)

σA

C4 E4 G4

qq e
‰

(b)

σB

(c)

⎡
⎢⎢⎢⎢⎢⎣

t̃ree

head j .head

span 3

dtrs

[
left j C4

right G4

]

⎤
⎥⎥⎥⎥⎥⎦ (d)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t̃ree

head i .head
span 3

dtrs

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
left

⎡
⎢⎢⎢⎢⎣

t̃ree

head i .head
span 2

dtrs

[
left i C4
right E4

]
⎤
⎥⎥⎥⎥⎦

right G4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2. Melodies (a) and (b) and their f-structures (c) and (d), respectively

The value of head feature is occupied by ẽvent f-structure; a full-fledged one should
include pitch, onset, and duration features. For example,

C4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

t̃ree

head

⎡
⎢⎢⎣

ẽvent
pitch C4
onset . . .
duration 1

⎤
⎥⎥⎦

span . . .
dtrs ⊥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

2.4 Unification, Join and Meet

We introduce the set notation of an f-structure using the set of feature-path-value pairs:
{(f11. · · · .f1n v1), (f21. · · · .f2m v2), · · · }. Unification is the consistent union of f-
structures in the set notation, results in another f-structure. Unification fails only if there
exists an inconsistency in any feature-path-value pair.

Now, when we compare two f-structures for unification, if there is a missing feature
fi on one f-structure let us complement it with (fi ⊥). For example, we identify

σ4 =

[
t̃ype1
f1 v1

]
and σ5 =

[
t̃ype1
f2 v2

]
,

with [
t̃ype1
f1 v1
f2 ⊥

]
and

[
t̃ype1
f1 ⊥
f2 v2

]
,
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respectively. Here, we extend the definition of unification in two different ways. If the
unification of two values of vi and ⊥ is redefined as vi, we call join operation; if the
same two becomes ⊥, we call meet operation. Then,

join(σ4, σ5) =

⎡
⎣ t̃ype1
f1 v1
f2 v2

⎤
⎦ .

while meet(σ4, σ5) = ⊥.
The join tree is composed by Algorithm 1, that is, when a subtree matches with a

single branch with a single pitch event, the subtree would be chosen (see lines 4–7).
The meet of two time-span trees is composed by Algorithm 2, that is, when a subtree

matches with a single branch with a single pitch event, the single branch would be
chosen (see lines 4–7).

Input: two time span trees σ1, σ2

Output: σ1 � σ2 = join(σ1, σ2)
if σ1.{head , span} = σ2.{head , span} then1

if σ1 = σ2 then2

return σ1;3

else if σ1.dtrs = ⊥ then4

return σ2;5

else if σ2.dtrs = ⊥ then6

return σ1;7

else8

return

⎡
⎢⎢⎢⎢⎣

t̃ree
head σ1.head
span σ1.span

dtrs

[
left join(σ1.dtrs .left , σ2.dtrs .left)
right join(σ1.dtrs .right , σ2.dtrs .right)

]
⎤
⎥⎥⎥⎥⎦;

9

else10

⊥;11

Algorithm 1. join algorithm

Because there is no alternative action in composing f-structures by recursive func-
tions in Algorithm 1 and Algorithm 2, σ1 � σ2 and σ1 � σ2 exist uniquely. Thus, the
partially ordered set of time-span trees becomes a lattice.

Although we have given procedures of join/meet, we should emphasize their intrin-
sic property in the lattice. Here, we redefine join and meet operations in terms of the
subsumption relation in f-structures.
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Input: two time span trees σ1, σ2

Output: σ1 � σ2 = meet(σ1, σ2)
if σ1.{head , span} = σ2.{head , span} then1

if σ1 = σ2 then2

return σ1;3

else if σ1.dtrs = ⊥ then4

return σ1;5

else if σ2.dtrs = ⊥ then6

return σ2;7

else8

return

⎡
⎢⎢⎢⎢⎣

t̃ree
head σ1.head
span σ1.span

dtrs

[
left meet(σ1.dtrs .left , σ2.dtrs .left)
right meet(σ1.dtrs .right , σ2.dtrs .right)

]
⎤
⎥⎥⎥⎥⎦;

9

else10

return ⊥;11

Algorithm 2. meet algorithm

Definition 2 (Join). Let σA and σB be full-fledged f-structures representing the time-
span trees of melodies A and B, respectively. If we can fix the least upper bound of σA

and σB , that is, the least y such that σA � y and σB � y is unique, we call such y the
join of σA and σB , denoted as σA � σB .

Carpenter [2] provides that the unification of f-structures A and B is the least upper
bound of A and B, which is equivalent to join in this paper. Similarly, we regard the
intersection of the unifiable f-structures as meet.

Definition 3 (Meet). Let σA and σB be full-fledged f-structures representing the time-
span trees of melodies A and B, respectively. If we can fix the greatest lower bound of
σA and σB , that is, the greatest x such that x � σA and x � σB is unique, we call such
x the meet of σA and σB , denoted as σA � σB .

Obviously from Definitions 2 and 3, we obtain the absorption laws: σA � x = σA

and σA � x = x if x � σA. Moreover, if σA � σB , for any x x � σA � x � σB and
x � σA � x � σB .

We show a music example in Fig. 3. The ‘�’ (join) operation takes quavers in the
scores to fill dtrs value, so that missing note in one side is complemented. On the other
hand, the ‘�’ (meet) operation takes ⊥ for mismatching features, and thus only the
common notes appear as a result.

Since time-span tree T is rigidly corresponds to f-structure σ, we identify T with σ
and may call σ a tree in the following sections as long as no confusion.
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Fig. 3. Join and Meet operations of time-span trees

3 Strict Distance in Time-Span Reduction

In this section, we introduce the notion of distance between two time-span trees. We
propose that:

If a branch with a single pitch event is reduced, the amount of information
corresponding to the length of its time-span is lost.

Thus, we regard the accumulation of such lost time-spans as the distance of two trees in
the sequence of reductions, called reduction path. Thereafter, we generalize the notion
to be feasible, not only in a reduction path but in any direction in the lattice. Finally in
this section, we show the distance suffices the triangle inequality. Again as this section
includes technical details, those who would like to see examples earlier may skip this
section and can come back later.

We presuppose that branches are reduced only one by one, for the convenience to
sum up distances. A branch is reducible only in the bottom-up way, i.e., a reducible
branch possesses no other sub-branches except a single pitch event at its leaf. In the
similar way, we call the reverse operation elaboration; we can attach a new sub-branch
when the original branch consists only of a single event.

The head pitch event of a tree structure is the most salient event of the whole tree,
and the temporal duration of the tree appears at span feature. Though the event itself
retains its original duration, we may regard its saliency is extended to the whole tree.
The situation is the same as each subtree. Thus, we consider that each pitch event has
the maximal length of saliency.

Definition 4 (Maximal Time-span). Each pitch event has the maximal time-span
within which the event becomes most salient, and outside the time-span the salience
is lost.

The head pitch event of a tree structure is the most salient event of the whole tree,
and the temporal duration of the tree appears at span feature. Though the event itself
retains its original duration, we may regard its saliency is extended to the whole tree.
The situation is the same as each subtree. Thus, we consider that each pitch event has
the maximal length of saliency.
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Definition 5 (Maximal Time-span). Each pitch event has the maximal time-span
within which the event becomes most salient, and outside the time-span the salience
is lost.

Fig. 4. Reduction by maximal time-spans; gray thick lines denote maximal time-spans while thin
ones pitch durations

In Fig. 4, a reducible branch on pitch event e2 has the time-span s2. After e2 is
reduced, branch on e1 becomes reducible and the connected span s1 + s2 becomes e1’s
maximal time-span, though its original duration was s1. Finally, after e1 is reduced, e3
dominates the length of s1 + s2 + s3.

Prior to join /meet operations, if either two heads or their time-spans of time-span
trees are different, the comparison itself is futile. Therefore, we impose Head/Span
Equality Condition (HSEC, hereafter):

σA.head = σB .head & σA.span = σB .span.

on the operations. Note that if σ.dtrs = ⊥, i.e., the tree consists of a single pitch event,
we do not need to care this head/span equality, as σ �⊥ = σ and σ �⊥ = ⊥. We have
included this restriction in the following algorithm, so as to avoid any futile comparison;
if the identity of two heads and their time-spans is disregarded, the distance between
them is meaningless.

Let ς(σ) be a set of pitch events in σ, �ς(σ) be its cardinality, and se be the maximal
time-span of event e. Since reduction is made by one reducible branch at a time, a
reduction path σB = σn, σn−1, . . . , σ2, σ1, σ0 = σA suffices �ς(σi+1) = �ς(σi) + 1.
For each reduction step, when a reducible branch on event e disappears, its maximal
time-span se is accumulated as distance.

Definition 6 (Reduction Distance). The distance d� of two time-span trees such that
σA � σB in a reduction path is defined by

d�(σA, σB) =
∑

e∈ς(σB)\ς(σA) se.

For example in Fig. 4, when e2 and e1 are reduced in this order, the distance between
σA and σC becomes s2 + (s1 + s2), since the reduction of e2 yields s1 and e1 yields
(s1 + s2). Although the distance is a simple summation of maximal time-spans at a
glance, there is a latent order in the addition, for reducible branches are different in
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each reduction step. In order to give a constructive procedure on this summation, we
introduce the notion of total sum of maximal time-spans.

Input: two time span trees σ1, σ2 such that σ1 � σ2

Output: d�(σ1, σ2)
if σ1 = σ2 then1

return 0;2

else if σ1 = ⊥ then3

if σ2.dtrs = ⊥ then4

return σ2.span ;5

else6

return d�(⊥, σ2.dtrs .left) + d�(⊥, σ2.dtrs .right);7

else if σ1.head = σ2.head & σ1.span = σ2.span then8

if σ1.dtrs = ⊥ then9

case σ1.head = σ2.dtrs .left .head10

return d�(⊥, σ2.dtrs .right);11

case σ1.head = σ2.dtrs .right .head12

return d�(⊥, σ2.dtrs .left);13

else14

return15

d�(σ1.dtrs .left , σ2.dtrs .left) + d�(σ1.dtrs.right , σ2.dtrs.right);

else return ∞;16

Algorithm 3. Distance in reduction path

Definition 7 (Total Maximal Time-span). Given t̃ree f-structure σ,

tms(σ) =
∑

e∈ς(σ) se.

We present tms(σ) as a recursive function in Algorithm 4.

Input: a t̃ree f-structure σ
Output: tms(σ)
if σ = ⊥ then1

return 0;2

else if σ.dtrs = ⊥ then3

return σ.span ;4

else5

case σ.head = σ.dtrs .left .head6

return tms(σ.dtrs .left) + tms(σ.dtrs .right) + σ.dtrs .right .span;7

case σ.head = σ.dtrs .right .head8

return tms(σ.dtrs .left) + tms(σ.dtrs .right) + σ.dtrs .left .span;9

Algorithm 4. Total Maximal Time-span
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In Algorithm 4, Lines 1–2 are the terminal condition. Lines 3–4 treat the case that a
tree consists of a single branch. In Lines 6–7, when the right subtree surrender to the
left, the left extends the domination rightward by σ.dtrs .right .span . Ditto for the case
the right-hand side overcomes the left, as Lines 8–9.

When σA � σB , from Definition 6 and 7,

d�(σA, σB) =
∑

e∈ς(σB)\ς(σA) se =
∑

e∈ς(σB) se −
∑

e∈ς(σA) se

= tms(σB)− tms(σA).

As a special case of the above, d�(⊥, σ) = tms(σ).
Next, we consider the notion of distance that can be applicable to two trees reside in

different paths.

Lemma 1. For any reduction path from σA � σB to σA � σB , d�(σA � σB, σA � σB)
is unique.

Proof: As there is a reduction path between σA�σB and σA�σB , and σA�σB � σA�
σB , d�(σA � σB, σA � σB) is computed by the difference of total maximal time-span
in Algorithm 4. Because the algorithm returns a unique value, the distance is unique.

Theorem 1 (Uniqueness of Reduction Distance). If there exist reduction paths from
σA to σB , d�(σA, σB) is unique.

Lemma 2. d�(σA, σA � σB) = d�(σA � σB , σB) and d�(σB , σA � σB) = d�(σA �
σB, σA).

Proof: From set-theoretical calculus, ς(σA � σB) \ ς(σA) = ς(σA)∪ ς(σB) \ ς(σA) =
ς(σB)\ς(σA)∩ς(σB) = ς(σB)\ς(σA�σB). Then, by Definition 6, d�(σA, σA�σB) =∑

e∈ς(σA�σB)\ς(σA) se =
∑

e∈ς(σB)\ς(σAσB) se = d�(σA � σB , σB).

Definition 8 (Meet and Join Distances).

– d(σA, σB) = d�(σA � σB, σA) + d�(σA � σB, σB) (meet distance)
– d�(σA, σB) = d�(σA, σA � σB) + d�(σB , σA � σB) (join distance)

Lemma 3. d�(σA, σB) = d(σA, σB).

Proof: Immediately from Lemma 2.

Lemma 4. For any σ′, σ′′ such that σA � σ′ � σA � σB , σB � σ′′ � σA �
σB, d�(σA, σ

′)+d(σ′, σ′′)+d�(σ′′, σB) = d�(σA, σB). Ditto for the meet distance.

Now the notion of distance, which was initially defined in the reduction path as d� is
now generalized to d{,�}, and in addition we have shown they have the same values.
From now on, we omit {�,�} from d{,�}, simply denoting ‘d’.

Theorem 2 (Uniqueness of Distance). d(σA, σB) is unique among shortest paths be-
tween σA and σB .

Note that shortest paths can be found in ordinary graph-search methods, such as
branch and bound, Dijkstra’s algorithm, best-first search, and so on.
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Corollary 1. d(σA, σB) = d(σA � σB, σA � σB).

Proof: From Lemma 2 and Lemma 3.

Theorem 3 (Triangle Inequality). For any σA, σB and σC , d(σA, σB)+d(σB , σC) ≥
d(σA, σC).

Proof: From Corollary 1 and by definition,

d(σi, σj) = d(σi � σj , σi � σj) =
∑

e∈ς(σi�σj)\ς(σiσj)
se.

Since we employ the set-notation of f-structure (cf. Sec-
tion 2.4), the relationship between σ{A,B,C} can be de-
picted in Venn diagram. Then, d(σA, σB) + d(σB , σC)
becomes the sum of maximal time-spans in ς(σA �σB)\
ς(σA�σB) plus those in ς(σB�σC)\ς(σB�σC), which
corresponds to (f + g + b + c) + (a + c + d + f) =
a + b + 2c + 2f + d + g in the diagram. On the con-
trary, d(σA, σC) becomes the sum of a+ b+d+ g. Since
(a+b+2c+2f+d+g)−(a+b+d+g) = 2c+2f ≥ 0,
we obtain the result.

In the above proof, c and f are counted twice because branches in these areas are
once reduced and later added, or once added and later reduced. This implies that these
reduction/addition can be skipped and there exists a short cut between σA and σC with-
out visiting σB .

In Fig. 5, we have laid out various reductions originated from a piece. As we can find
three reducible branches in A we possess three different reductions: B, C, and D. In
the figure, C (shown diluted) lies behind the lattice where three back-side edges meet.

The distances, represented by the length of edges, from A to B, D to F , C to E,
and G to H are same, since the reduced branch is common. Namely, the reduction
lattice becomes parallelepiped,3 and the distances from A to H becomes uniquely 2 +
2 + 2 = 6, which we have shown as Theorem 1. We exemplify the triangle inequality
(Theorem 3); from A through B to F , the distance becomes 2 + 2 = 4, and that from
F through D to G is 2 + 2 = 4, thus the total path length becomes 4 + 4 = 8. But,
we can find a shorter path from A to G via either C or D, in which case the distance
becomes 2 + 2 = 4. Notice that the lattice represents the operations of join and meet;
e.g., F = B �D, D = F �G, H = E �F , and so on. In addition, the lattice is locally
Boolean, being A and H regarded to be � and ⊥, respectively. That is, there exists a
complement,4 and Ec = D, Cc = F , Bc = G, and so on.

Finally in this section, we suggest that the distance can be a metric of similarity
between two music pieces. As long as we stay in the lattice of reductions under HSEC,
the distance exactly reflects the similarity. However, even though heads and spans are
different in two pieces of music, we can calculate the similarity with our notion of
distance. We show such examples in Section 4.

3 In the case of Fig. 5, as all the edges have the length of 2, the lattice becomes equilateral.
4 For any member X of a set, there exists Xc and X 
Xc = � and X �Xc = ⊥.
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Fig. 5. Reduction lattice

4 Examples

In this section, we illustrate our analyses. The first example is Mozart’s K265, Ah!
vous dirais-je, maman, equivalent to Twinkle, Twinkle, Little Star. The melody in the
left-hand side of Fig. 6 is the theme, while those in the right-hand side are the third
variation and its reduced melodies in downward order. The horizontal lines below each
score are the maximal time-spans of pitch events though we omit explicit connection
between events and lines in the figure. The lines drawn at the bottom level in each
score correspond to reducible branches (i.e., reducible pitch events) at that step. For
example, from Level c in the right-hand side of Fig. 6 to Level b, eight maximal time-
spans of 1/3-long disappear by reduction, thus, according to Algorithm 4 the distance
is 1/3× 8 = 8/3. The configuration of maximal time-spans at Level a in the right-hand
of Fig. 6 quite resembles that in the left-hand side, which is the theme of the variation.
Actually, since the difference between (1) and Level a is the rightmost quarter note in
the 4-th measure, the distance between these two is so close as just 1. This implies that
we can retrieve the theme by reducing the variation.

In the next example, we compare two time-span trees in reduction. The left-hand side
in Fig. 7 is Massa’s in De Cold Ground (Stephen Collins Foster, 1852) and the right-
hand side is Londonderry Air (transposed to C major). The vertical distance is strictly
computable in each reduction, but in addition, we may notice that these two pieces are
quite near in their skeletons in the abstract levels. Especially, we should compare the
configurations of maximal time-spans in the bottom three levels and find them topolog-
ically equal to each other. Note, however, that we cannot calculate the distance between
two arbitrary music pieces yet under the strict HSEC. Thus, the demonstrated compari-
son in this section is approximate and/or intuitive in some sense.
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Fig. 6. Reduction of Mozart: Ah! vous dirais-je, maman

Fig. 7. Reduction processes of Massa’s in De Cold Ground and Londonderry Air

5 Similarity Revisited

In Section 1, we have mentioned that similarity plays an intrinsic role in human recog-
nition of music. Thereafter in Section 3, we have defined the distance in time-span
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trees. In this section, we look back on the general criteria of similarity both from the
viewpoint of equivalence relation and from that of set.

5.1 From Equivalence Relation to Similarity

The prime objective to model our cognition is to model the real world, to give an ab-
stract representation of them. Here, we argue that the representation methods should
properly segment the target domain by equivalence relations. In human recognition,
however, the equivalence relations do not appear directly; instead, they are perceived
as similarity indirectly. According to the MIT Encyclopedia of the Cognitive Sciences
[26], various approaches to modeling similarity can be employed, such as geometric,
featural, alignment-based, and transformational ones. What we would emphasize here
is the fact that every approach to similarity is underlain by the equivalence relations.
That is, whatever similarity we think of, it is determined by the extent to which the
equivalence relations hold recursively for substructures of music. In other words, we
think that a consistent and stable equivalence relation yields a consistent and stable
similarity.

Now the question is how we can obtain such a similarity, or an appropriate
equivalence relation, in the representation of musical objects. Marsden [14] addresses
the requirements of a representation system: musical objects must be well-defined and
be all grounded to relevant ones in the real world. We think these requirements play an
important role in mechanizing music theory. Note that these requirements are almost
parallel to formalizing intelligence and representing knowledge. Since a music piece
contains notes, passages, chords, rhythms, and so on, we can consider various kinds
of equivalence relations between them. We show examples of equivalence relations be-
tween the two melodies in Fig.8, which shows (a) the incipit of Bach’s Invention No.1
and (b) its fake that is transposed a perfect fifth above and notes B are lowered by a semi-
tone. If (a) and (b) are compared on the note-wise basis in the literal representation, they

& 4

2

j

œ
œ

œ
œ

œ
œ

œ

& 4

2
j

œ
œ

œb
œ

œ
œb

œ

Fig. 8. Three Equivalence Relations of Melodies

are not equal to each other at all. Next, we consider the pitch-interval representations of
(a) and (b); for (a) we have +2,+2,+1,−3,+2,−4 and (b) +2,+1,+2,−3,+1,−3
(unit: semitone). Thus, we find the two elements out of six are identical (the first +2
and the fourth -3). Furthermore, when we employ the Parsons code [17], where up (u)
if a note is higher than the previous note, down (d) if lower, and repeat (r) if the same,
then we get u, u, u, d, u, d for both (a) and (b). The difference in resolution among
these equivalence relations are determined by an interpretation of musical phenomena
or practical requirements.

We have employed tree representation in this paper, and its hierarchical structure is
considered to reflect such segmentation. Namely, in a lower level of hierarchy a music
piece is segmented minutely while in a upper level the piece is seen as a sequence of
groups. Therefore, we contend that the assessment of similarity by tree structure should
correctly show our intuition on resemblance.
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5.2 Similarity of Set

The similarity measures widely used in data mining and information retrieval include
Jaccard index, Simpson index, Dice’s coefficient, and Point-wise mutual information
(PMI) [22]. For instance, the Jaccard index (also known as Jaccard similarity coeffi-
cient) is defined as

sim(A,B) =
|A ∩B|
|A ∪B|

for set A and B; the similarity value lies between 0.0 to 1.0. If we apply the index to
our f-structure,

sim(σA, σB) =
|σA � σB |
|σA � σB | ,

where we may naı̈vely interpret ‘|σ|’ as the number of pitch events in the tree as ‘�ς(σ)’.
However, the number of notes does not fully reflect the internal structure. Then, it may
be appropriate to weight an individual note by its time-span, and the content of a struc-
ture hence amounts to the total maximal time-span tms(σ) in Definition 7, as

sim(σA, σB) =
tms(σA � σB)

tms(σA � σB)
.

Since the value of tms(σ) represents the complexity of the whole structure, we can
also consider the density of notes in the music piece. Similarly, we may make use of
Simpson index with tms as follows:

sim(σA, σB) =
tms(σA � σB)

min(tms(σA), tms(σB))
.

However, we need to scrutinize the general tendency of these similarities with the larger
database including more complicated examples.

We have treated the maximal time-spans evenly, independent of their lengths and
levels at which they occur. However, suppose we listen to two melodies of the same
length; one is with full of short notes while the other with a few long notes, then the
psychological lengths of these two melodies may be different. This effect is actually
well known as the Weber-Fechner law; the relationship between stimulus and percep-
tion is logarithmic in auditory and visual psychology. Since our initial purpose of this
paper has been to present a stable and consistent similarity, we could not reflect such
perceptional aspects, which should be considered in our future research.

6 Discussion

In this section, we discuss several open problems.

6.1 Why Time-Span Tree?

In GTTM, prolongational tree has been introduced as well as time-span tree, and we
understand that there are researchers paying more attention to prolongational tree rather
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than time-span tree. However, a prolongational tree is composed from a time-span tree,
and thus inherits the problems that the time-span tree has. The resultant time-span re-
duction may not be always reliable because the contradiction between multiple prefer-
ence rules may obstruct a deterministic proper reduction. Thus, utilizing the prolonga-
tional tree does not seem to improve the situation.

In this work, we prefer time-span tree to prolongational tree, since the former is
the raw objective structure retrieved from original music data while the latter in-
cludes human perception/interpretation of music. Our attitude in this paper is to avoid
context-dependency and subjectivity, and thus we adopted the time-span tree. In future,
however, as long as the reduction process is formally defined, we can treat prolonga-
tional trees in the similar way to time-span trees.

6.2 Flexible Matching

In Section 2, we have introduced the representation of time-span tree in f-structure and
join and meet operations, which however only work properly under HSEC. From a prac-
tical point of view, this condition is too restrictive. We found that Massa’s in De Cold

Fig. 9. flexible matching

Ground and Londonderry Air do not share strictly common time-span trees, but are
somewhat similar as a result of reduction as in Fig. 7. Since we actually recognize a fla-
vor of similarity in them, we have a good reason to seek for a more flexible mechanism
to map heads and spans as in Fig. 9 in join and meet computation. The situation is same
for the comparison of pitch events residing at head feature. For the purpose, we have to
provide the subsumption relations in time-spans and in pitch events, grounded to cog-
nitive reality; if these partial orders truly coincide with our intuition or perception, we
can tolerate the condition of unification.

6.3 Melodic Rendering

As was mentioned in Footnote 1, after several reductions from the time-span tree of
an original music piece, we obtain a reduced time-span tree together with remaining
pitch events. As a result of reduction, pitch events becomes sparse in general. Since
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those remaining pitch events through join and meet operations possess only the original
durations/locations, we need to fill the gaps. Namely, to obtain a properly rendered
music score, we have to insert extra rests, shift their durations, or lengthen them. We
call such a transformation from a tree to an audible music melodic rendering.

Here, according to the hypothesis introduced in Section 3 (the information that a
time-span possesses is proportional to its length), a possible way of melodic rendering
would be:

(i) In join, the duration of the rendered pitch event is the maximal temporal union of
the durations of the head pitch events in two input time-spans, if they have common
time (overlap). But, the rendered head should not trespass into the maximal time-
spans of the secondary branches.

(ii) In meet, the duration of the rendered pitch event is the minimal temporal intersec-
tion of the durations.

Following the above idea, Fig. 10 exemplifies melodic rendering of the results of
join/meet operations. In the figure, gray thick lines denote maximal time-spans in the
piano roll manner, while black line segments the durations of head pitch events. As
depicted, the duration occurs anywhere in the maximal time-span. The left-hand side

T1

T2

T1⊓T2

T1⊔T2

n1

n2

na

nb n4

T3

T4

n3

Fig. 10. Sample melodic rendering of the results of join/meet operations

of Fig. 10 shows that join/meet operations take T1 and T2 and generate T1 � T2 and
T1 �T2, respectively. Since original heads n1 and n2 overlap, for the result of meet, we
obtain na. On the other hand, for join, nb because the duration of the head of T1 � T2

cannot extend into the maximal time-span of the right branch of T1. In the right-hand
side of Fig. 10, since heads n3 and n4 do not have common time in their durations, the
result of melodic rendering is null duration, although join/meet can generate time-spans
themselves from T3 and T4 like T1 and T2. We inductively apply this way of melodic
rendering to a time-span tree as long as HSEC holds.

Note that the rendering strategy may include multiple options; in the above, we have
shown only one possible consistent way to render each maximal time span to audible
note.
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6.4 Application to Melodic Morphing Algorithm

We have presented the melodic morphing algorithm, using join/meet operations, in a
formal way [11]. However, as we have introduced a more rigid f-structure to represent
a time-span tree in this paper, and in addition, we have given the actual procedures for
join/meet operations in Section 2.4, we can define the morphing algorithm in a more
rigorous style, as follows:

Definition 9 (Melodic Morphing Algorithm). The algorithm consists of the following
steps (Fig. 11):

Step 1: Calculate TA � TB (meet).
Step 2: Select melody TC on the reduction path from TA to TA � TB , and

select TD on the reduction path from TB to TA � TB .
Step 3: Calculate TC � TD (join), and the result is morphing melody μ.

Fig. 11. Melodic morphing algorithm

Now we have obtained the morphing as a genuine mathematical operation, which is
composed by join and meet, and thus we can locate the algorithm within our algebraic
framework.

Besides this morphing algorithm, we are now considering multiple application sys-
tems with our join/meet methodology, together with various rendering strategies. In
future, we would evaluate the feasibility of our distance with such actual applications.

7 Conclusions

In this paper, we relied on the strong reduction hypothesis of the tree structure in GTTM,
and presented a notion of distance in music pieces. In order to do that, we first designed
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an f-structure to represent a time-span tree, and we showed that its head feature and
span feature properly reflected the original structure proposed in GTTM. Thereafter,
we regarded that a reduction was the loss of information, and the loss was quantified
by the length of time-span of a reduced event. We defined the distance by the lost time-
span. We have shown several mathematical properties concerning the metric, including
uniqueness of distance in any shortest paths as well as the triangle inequality. Further-
more, we have discussed a possibility for the distance to be a metric of similarity.

At present, we have the following five open problems entangled each other. First,
(i) if we are to apply our unification mechanism such as join and meet operations to
practical problems, e.g., melodic morphing, we need to ease HSEC. For example, if we
apply our methodology to morphing algorithm to produce a new melody, taking two
music pieces, we are obliged to loosen the time-span matching. Also, (ii) we need more
statistical witness in comparison of such existing metrics as Jaccard/Simpson indices,
referring to a large-scale music database. As was mentioned in Section 6, (iii) we have
treated the maximal time-spans evenly, disregarding the psychological length of music.
Since we have postponed such subjective and context-dependent metric, we are obliged
to face this aspect from now. Incidentally, (iv) we still have various alternatives to ren-
der each remaining pitch event in a reduction tree on actual staff. As we have mentioned
this in the footnote 1 and in Section 6.3, we need to develop the strategy furthermore.
Finally, (v) the more fundamental problem is the reliability of the time-span tree. We
admit that some processes in the time-span reduction is still non-deterministic and the
validity of reduction is not promised yet. Thus far we have tackled the automatic reduc-
tion system, and even from now on we need to improve the system performance. All in
all, to apply such an objective metric to practical cases we need further consideration,
which would be our future works.
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Abstract. Fugue analysis is a challenging problem. We propose an al-
gorithm that detects subjects and counter-subjects in a symbolic score
where all the voices are separated, determining the precise ends and the
occurrence positions of these patterns. The algorithm is based on a di-
atonic similarity between pitch intervals combined with a strict length
matching for all notes, except for the first and the last one. On the 24
fugues of the first book of Bach’s Well-Tempered Clavier, the algorithm
predicts 66% of the subjects with a musically relevant end, and finally
retrieves 85% of the subject occurrences, with almost no false positive.

Keywords: symbolic music analysis, contrapuntal music, fugue analysis,
repeating patterns.

1 Introduction

Contrapuntal music is a polyphonic music where each individual line bears inter-
est in its own. Bach fugues are a particularly consistent model of contrapuntal
music. The fugues of Bach’s Well-Tempered Clavier are composed of two to
five voices, appearing successively, each of these voices sharing the same initial
melodic material: a subject and, in most cases, a counter-subject. These pat-
terns, played completely during the exposition, are then repeated all along the
piece, either in their initial form or more often altered or transposed, building a
complex harmonic network. We focus here on the 24 fugues of the first book of
Bach’s Well-Tempered Clavier. Musical analysis of this corpus can be found in
many sources [27,3].

To analyze symbolic scores with contrapuntal music, one can use generic tools
detecting repeating patterns or themes, possibly with approximate occurrences.
Similarity between a pattern and several parts of a piece may be computed
by the Mongeau-Sankoff algorithm [23] and its extensions or by other methods
for approximate string matching [9,10], allowing a given number of restricted
mismatches. Several studies focus on finding maximal repeating patterns, limiting
the search to non-trivial repeating patterns, that is discarding patterns that are a
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sub-pattern of a larger one with the same frequency [16,17,19,20]. Other studies
try to find musically significant themes, with algorithms considering the number
of occurrences [29], but also the melodic contour or other features [21].

Some MIR studies already focused on contrapuntal music. The study [30]
builds a tool to decide if a piece is a fugue or not, but no details are given
on the algorithm. The bachelor thesis [2] contains a first approach to analyze
fugues, including voice separation. For sequence analysis, it proposes several
heuristics to help the selection of repeating patterns inside the algorithms of [16]
which maximizes the number of occurrences. The website [13] also produces an
analysis of fugues, extracting sequences of some repeating patterns, but without
precise formal analysis nor precise bounds. Finally, we proposed in [12] a study
on episodes focusing on harmonic sequences.

One can take advantage of the apparently simple structure of a fugue: as
the main theme – the subject – always begins at only one voice, this helps
the analysis. But a good understanding of the fugue requires to find where the
subject exactly ends. In this work, we start from a symbolic score which is already
voice-separated, and we propose an algorithm to sketch the plan of the fugue.
The algorithm tries to retrieve the subjects and the counter-subjects, precisely
determining the ends of such patterns. We tested several substitution functions
to have a sensible and specific approximate matching. Our best results use a
simple diatonic similarity between pitch intervals [5] combined with a strict
length matching for all notes, except for the first and the last one.

The paper is organized as follows. Section 2 gives definitions and some back-
ground on fugues, Section 3 details the problem of the bounds of such patterns,
Section 4 presents our algorithm, and Section 5 details the results on the 24
fugues of the first book of Bach’s Well-Tempered Clavier, as well as first results
on Shostakovitch fugues (op. 87). The results on Bach fugues were evaluated
against a reference musicological book [3]. The algorithm predicts two thirds
of the subjects with a musically relevant end, and finally retrieves 85% of the
subject occurrences, with almost no false positives.

2 Preliminaries

A note x is described by a triplet (p, o, ), where p is the pitch, o the onset,
and  the length. The pitches can describe diatonic (based on note names) or
semitone information. We consider ordered sequence of notes x1 . . . xm, that is
x1 = (p1, o1, 1), . . . , xm = (pm, om, m), where 0 ≤ o1 ≤ o2 ≤ . . . ≤ om (see
Fig. 1). The sequence is monophonic if there are never two notes sounding at
the same onset, that is, for every i with 1 ≤ i < m, oi + i ≤ oi+1. In such a
sequence, there is a rest between two notes xi and xi+1 if oi+ i < oi+1, and the
length of this rest is oi+1 − (oi + i). To be able to match transposed patterns,
we consider relative pitches, also called intervals: the interval sequence is defined
as Δx2 . . .

Δxm, where Δxi = (Δpi, oi, i) and
Δpi = pi − pi−1.

We now introduce some notions about fugue analysis (see for example [3,27] for
a complete musicological analysis). These concepts are illustrated by an example
on Fugue #2, which has a very regular construction.
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Fig. 1. A monophonic sequence of notes (start of Fugue #2, see Fig. 2), with the
corresponding values of p, Δp, p and �. In this example, onsets and lengths are counted
in sixteenths, and pitches and intervals are counted in semitones through the MIDI
standard.

A fugue is given by a set of voices, where each voice is a monophonic sequence
of notes. In Bach’s Well-Tempered Clavier, the fugues have between 2 and 5
voices, and Fugue #2 is made of 3 voices.

The fugue is built on a theme called subject (S). The first three occurrences of
the subject in Fugue #2 are detailed in Fig. 2: the subject is exposed at one voice
(the alto), beginning by a C, until the second voice enters (the soprano, mea-
sure 3). The subject is then exposed at the second voice, but is now transposed
to G. Meanwhile, the first voice continues with the first counter-subject (CS) that
combines with the subject. Fig. 3 shows a sketch of the entire fugue. The fugue
alternates between other instances of the subject together with counter-subjects
(8 instances of S, 6 instances of CS, and 5 instances of the second counter-subject
CS2) and development on these same patterns called episodes (E).

All these instances are not exact ones – the patterns can be transposed or al-
tered in various ways. As an example, Fig. 4 shows the five complete occurrences
of CS. For these occurrences, the patterns can be (diatonically) transposed, and
the lengths are conserved except for the first and last note.

3 Where Does the Subject End?

A fundamental question concerns the precise length of the subject and of any
other interesting pattern. The subject is heard alone at the beginning of the first
voice, until the second voice enters. However, this end is generally not exactly
at the start of the second voice.

Formally, let us suppose that the first voice is x1, x2, ..., and the second one
is y1, y2, ..., with xi = (pi, oi, i) and yj = (p′j , o

′
j , 

′
j). Let xz be the last note

of the first voice heard before or at the start of the second voice, that is z =
max{i | oi ≤ o′1}. The end of the subject is roughly at xz.

For example, in the Fugue #2, the soprano voice starts at note x22 of the alto
voice, thus z = 22. However, the actual subject has 20 notes, ending on alto note
x20 (the first sixteenth of the third measure, E�, first circled note on Fig. 2), that
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Fig. 2. Start of Fugue #2 in C minor (BWV 847) indicating subjects, counter-subjects
and numbers of notes

is 2 notes before the start of the soprano voice. This can be deduced from many
observations:

– metrically, the phrase ends on a strong beat;
– harmonically, the five preceding notes “F G A� G F” suggest a 9th dominant

chord, which resolves on the E� suggesting the C minor tonic;
– moreover, the subject ends with a succession of sixteenths with small inter-

vals, whereas the following note x21 (C) belongs to CS with the line of falling
sixteenths.

Let gs be the integer such that the true subject ends at xz+gs : for Fugue #2,
we have gs = −2. Thus gs is the relative position of the true subject compared
to the beginning of the second voice: it is negative if the subject ends before the
start of the second voice, and positive otherwise. Table 1 lists the values of gs
in the 24 fugues of the first book of Bach’s Well-Tempered Clavier: gs is always
between −8 and +6, and, in the majority of cases, between −4 and +1.

Determining the precise end of the subject is thus an essential step in the
analysis of the fugue: it will help to localize the counter-subject and build the
structure with all occurrences of these patterns, but also to understand the
rhythm, the harmony and the phraseology of the whole piece.

We could use generic algorithms to predict the subject end. For example,
the “stream segment detection” described in [28] considers melody, pitch and
rhythm information. Many different features are also discussed in [21] for theme
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Table 1. Results of the proposed algorithm on the 24 fugues of the first book of
Bach’s Well-Tempered Clavier. We take as a truth the analysis of [3], keeping here only
the complete occurrence of each pattern. The values s and cs indicate the index of the
note ending the true subject and the counter-subject, whereas s′ and cs′ are the values
predicted by the algorithm. See Section 3 and Section 4 for a definition of gs and gcs.

The columns “occ” lists the number of occurrences of Subjects and Counter-Subjects
found by our method compared to the number of occurrences in the ground truth. All
false positives (FP) are counted in the remarks.

S CS
# BWV tonality voices s gs s′ occ. cs gcs cs′ occ. remarks

1 846 C major 4 14 −2 14 21/23

2 847 C minor 3 20 −2 20 8/8 40 0 40 5/6

3 848 C# major 3 17 −5 17 12/12 44 0 42 7/11 wrong CS

4 849 C# minor 5 5 0 5 14/29 19 +4 19 2/2

5 850 D major 4 13 −2 9 35/11 19 0 15 8/9 wrong S, S: 24 FP
wrong CS, CS: 4 FP

6 851 D minor 3 12 0 12 11/11 29 0 33 2/3 wrong CS
3i/5i

7 852 Eb major 3 16 −8 16 9/9 40 0 0/6 no CS found

8 853 D# minor 3 13 0 9 18/19 wrong S
7i/7i (+ 2i)

3a/3a

9 854 E major 3 6 −6 18 10/12 22 0 0/� wrong S

10 855 E minor 2 26 +1 26 8/8 36 −2 0/7 no CS found

11 856 F major 3 15 −4 15 10/14 34 0 34 3/5 CS: 1 FP

12 857 F minor 4 11 −3 10 10/10 37 0 37 4/8 wrong S, good CS end

13 858 F# major 3 16 −1 16 7/8 41 0 41 2/4

14 859 F# minor 4 18 0 18 6/7 44 0 38 5/6 wrong CS
2i/2i

15 860 G major 3 31 0 31 4/10 65 0 0/1 no CS found
2i/3i

16 861 G minor 4 11 0 11 14/16 22 0 22 3/10

17 862 Ab major 4 7 0 7 15/15 23 3/0 wrong CS, CS: 3 FP

18 863 G# minor 4 15 −2 15 12/12 30 0 30 5/7

19 864 A major 3 13 +6 11 12/8 21 0 0/2 wrong S, S: 5 FP

20 865 A minor 4 31 0 31 14/14 44 −12 0/3 no CS found
5i/14i

21 866 Bb major 3 38 0 38 8/8 65 0 65 7/7

22 867 Bb minor 5 6 0 10 11/21 16 2/0 wrong S
wrong CS, CS: 2 FP

23 868 B major 4 14 0 13 10/10 34 +1 31 3/4 wrong S, wrong CS
2i/2i

24 869 B minor 4 21 0 19 11/13 45 0 0/3 wrong S, no CS found

288/306 61/104
(29 FP) (10 FP)

(85% occ.) (49% occ.)
23i/33i

3a/3a

i : inverted subject – a : augmented subject
#8: Two incomplete inverted subjects (also noted in [3]) are detected on measure 54.

#9: The values for CS (�) are not counted in the total, as the CS is presented in a segmented form
in almost all measures of the fugue [3].

#14: The first true CS exactly finishes on note 38, but the following occurrences correspond to

note 44.
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1 2 3 4 5 6 7 8 9 10 1 2 3 4

soprano S17----- C19----- S19-----

alto S19-----CS19----

tenor S19----- C19-----

I V I III

5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1

CS18---- S19----- S19-----

S17----- CS19----

S19-----

V I I I

Fig. 3. Analysis of Fugue #2 in C minor (BWV 847). Top: diagram summarizing the
analysis by S. Bruhn, used with permission [3], [4, p. 80]. Bottom: output of the pro-
posed algorithm, retrieving all occurrences of S (and their degrees in roman numbers)
and all but one occurrences of CS. The numbers indicate the pitch intervals exactly
matching (in a diatonic way) those of the patterns (out of 19 for S). The two S17

occurrences correspond thus to approximate matches of the subject (tonal answers).

extraction. However, in the following, we will show that a simple algorithm, only
based on similarities, is able to detect precisely most of the subject ends.

4 Algorithm

Starting from voice-separated data, we propose here to detect the subject as
a repeating pattern finishing approximatively at the start of the second voice,
under a substitution function considering a diatonic similarity for pitch intervals,
and enforcing length equalities of all notes except the first one and the last one.

The similarity score between a pattern and the rest of the fugue piece can
be computed via dynamic programming by the Mongeau-Sankoff equation [23].
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Fig. 4. The 5 complete occurrences of the first counter-subject into Fugue #2 in C mi-
nor (BWV 847). (Note that this counter-subject actually has a latter occurrence, split
between two voices.) In these occurrences, all notes – except the first and the last ones
– have exactly the same length. The values in the occurrences indicate the intervals,
in number of semitones, inside the counter-subject. Only occurrences #2 and #5 have
exactly the same intervals. The occurrence #4 is almost identical to occurrence #1,
except that it lacks the octave jump (+3 instead of +15). Between groups {#1, #4},
{#2, #5}, and {#3}, the intervals are not exactly the same. However, all these in-
tervals (except the lack of the octave jump in #4) are equal when one considers only
diatonic information (bottom small staff): clef, key and alterations are here deliberately
omitted, as semitone information is not considered.

The alignment can then be retrieved through backtracking in the dynamic pro-
gramming table.

As almost all the content of a fugue is somewhat derived from a subject or
some counter-subject, any part will match a part of the subject or of another base
pattern within a given threshold. Here, we will use very conservative settings –
only substitution errors, and strict length requirements – to have as few false
positives as possible, still keeping a high recognition rate.

Subject Identification. To precisely find the end of the subject, we want to test
patterns finishing at notes xz+g , where g ∈ [gmin

s , gmax
s ] = [−8,+6]. Each of

these candidates is matched against all the voices. In this process, we use a
substitution cost function able to match the first and the last notes of the subject
independently of their lengths.

Let S(a, b) be the best number of matched intervals when aligning the start of
a given pattern x1 . . . xa (the subject) against a part of a given voice y finishing
at b, and let Sf (a, b) be the best number of matched intervals when aligning the
complete pattern x1 . . . xa (the complete candidate subject) against the same
part. These tables S and Sf may be computed by the following dynamic pro-
gramming equation:



Subject and Counter-Subject Detection for Analysis of the WTC Fugues 429

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S(1, b) = 0

∀a ≥ 2, S(a, b) = S(a− 1, b− 1) + δ(Δxa,
Δyb) (match, substitution)

∀a ≥ 2, Sf(a, b) = S(a− 1, b− 1) + δf (
Δxa,

Δyb) (finishing)

where the substitution functions δ and δf are the following:

δ((Δp, o, ), (Δp′, o′, ′)) =

⎧⎨
⎩

+1 if Δp ≈ Δp′ and  = ′

0 if Δp �≈ Δp′ and  = ′

−∞ otherwise

δf ((
Δp, o, ), (Δp′, o′, ′)) =

{
+1 if Δp ≈ Δp′

0 otherwise

Notice that δ checks pitch intervals and lengths, whereas δf only considers
pitch intervals. The relation ≈ is a similarity relation on pitch intervals (see
below for some similarity models). The actual comparison of length ( = ′) also
checks the equality of the rests that may be immediately before the compared
notes. Neither of the lengths of the first notes (x1 and y1) is checked, as the
algorithm actually compares Δx2 . . .

Δxa against Δy2 . . .
Δyb. Finally, notice that

these equations only use substitution operations, but can be extended to consider
other edit operations.

As in [16], we compute each table only once (for a given voice), then we scan
the table Sf to find the occurrences: given a sequence x and a threshold τ , the
candidate finishing at xz+g occurs in the sequence y if for some position i in the
text, Sf (z + g, i) ≥ τ . The best candidate g′s is selected on the total number
of matched intervals in all occurrences. The algorithm outputs thus the pattern
x1...xs′ as a subject, where s′ = z+ g′s. The whole algorithm is in O(mn), where
m = z + gmax

s .
For example, on the Fugue #2, the algorithm correctly selects the note x20

as the end of the subject (see Table 2).

Table 2. Occurrences and scores when matching all candidate subjects in Fugue #2.
The score is the sum of the Sf (z+g, i) values at least equal to τ : it is the total number
of intervals exactly matched on all occurrences. Here this end corresponds to the “non-
trivial maximal-length repeating pattern” for most occurrences, but it is not always
the case.

z + g 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

g −8 −7 −6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6

occ. 8 8 8 8 8 8 8 3 3 3 3 2 2 2 2

score 100 108 116 124 132 140 148 59 61 63 65 48 50 52 54

Interval Similarities and Diatonic Matching. The preceding equations need to
have a similarity relation ≈ on pitch intervals. Fig. 5 depicts some similarity
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models. Between a strict pitch equality and very relaxed “up/down” classes
defining the contour of some melody [11], some intermediary interval classes
may be defined as “step/leap intervals” [6] or “quantized partially overlapping
intervals” (QPI) [18].

We use here a similarity on diatonic pitches. Such a pitch representation is
often mentioned [24,25] and was studied in [5,7,15]. A diatonic model is very
relevant for tonal music: it is sensible enough to allow mode changes, while
remaining specific enough – a scale will always match only a scale. For example,
with diatonic similarity, all occurrences but one of the counter-subject on the
Fig. 4 can be retrieved exactly, and the occurrence #4 with only one substitution.

secondfourthsixthoctave second fourth octavesixth

−1−2−3−4−5−6−7−8−9−10−11−12 0 4 5 6 7 8 9 10 11 121 2 3

unison up

down/up
down

unison

step step

step/leap

leapleap

unisonmedium medium

short short largelarge

QPI

third fifth

strict

diatonic

+/−1 semitone

seventhfifth thirdseventh unison

Fig. 5. Interval similarity models, from the most stringent one (strict equality, top) to
the most relaxed one (down/up, bottom). When one starts from semitone information
(as MIDI pitches), some interval classes may be overlapping in some models. However,
in a pure diatonic similarity model, the interval classes are not overlapping: C – G# is
an (augmented) fifth and C – A� is a (minor) sixth, both of them having +8 semitones.
The Base40 encoding [14] enables to encode such enharmonically different pitches and
intervals in a pleasant arithmetic way. (Note that intervals for diatonic can be even
larger, if one considers some less frequent diminished or augmented intervals.)

Counter-subjects Identification. The same method as for subject identification is
used to retrieve the first counter-subject, which starts right after the subject1.
Usually, this counter-subject has roughly the same length than the subject: we
thus have a rough end of the counter-subject at xw, the last note of the first
voice heard before or at the end of the true subject on the second voice.

Let gcs be the integer such that the true counter-subject ends at xw+gcs . This
value is negative if the counter-subject ends before the end of the second occur-
rence of the subject, and positive otherwise. For Fugue #2, we have gcs = 0,

1 Very unfrequentky, there can be additional notes between the end of S and the
beginning of CS, such as in the Fugue #16. We do not handle these cases.
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Fig. 6. Some subject occurrences in Fugue #8 in D# minor. The occurrence #1 is
the first one, and is similar to 16 occurrences, sometimes with diatonic transpositions.
In the occurrence #2, the last but one note of the subject (circled E) has not the
same length than in the other occurrences (and this is forbidden by our substitution
function δ). In the occurrence #3, a supplementary note (circled G) is inserted before
the end of the subject, again preventing the detection if the true length of the subject
is considered. Moreover, the occurrences #3, #4 and #5 are truncated to the head of
the subject, and lead to a false detection of subject length.

as the counter-subject exactly ends at the end of the second occurrence of the
subject (the first quarter of the fifth measure, G, circled on Fig. 2). It reinforces
the perception of closure of the S/CS couple (and helps to mark transition be-
tween exposition and episodic material). The same gcs = 0 value can be found in
the majority of the 24 fugues of the first book of Bach’s Well-Tempered Clavier,
and, more generally, we have gcs ∈ [−12,+4] (see Table 1).

Hence, to precisely find the end of the counter-subject, we test patterns start-
ing at note xs′+1 and finishing at notes xw+g , where g ∈ [−12,+4], and select
the best candidate g′cs. The algorithm outputs thus the pattern xs′+1...xcs′ as
a counter-subject, where cs′ = w + g′cs. Note that we start from our detected
end of subject (s′) which can differ from the actual value (s) in some cases.
To prevent detection of non-relevant patterns, the counter-subject is marked as
not detected if the above procedure leads to more occurrences than the subject
occurrences.

5 Results and Discussion

We tested the algorithm of the previous section on the 24 fugues of the first book
of Bach’s Well-Tempered Clavier, starting from Humdrum files where the voices
are separated, available for academic purposes at http://kern.humdrum.org/.
The pitches were encoded according to two frameworks: MIDI encoding, and
Base40 encoding [14]. While the first one only counts semitones, the second one
allows to discriminate enharmonic pitches, thus allowing a precise diatonic match
as described in the previous section.

http://kern.humdrum.org/
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Table 3. Comparison between several interval similarity models on the recognition
of Subjects and Counter-subjects. The last two columns show the total number of
occurrences on the 24 fugues. The strict equality does not allow to match for transposed
occurrences. More relaxed models allow to find more occurrences, but may generate
also more false positives.

interval subject occurences of S total S total CS
similarity lengths #2 #17 #21 /306 /104

strict 16/24 7/8 9/15 6/8 220 59
± 1 semitone 16/24 8/8 15/15 8/8 291 67
diatonic [5] 16/24 8/8 15/15 8/8 288 61
QPI [18] 15/24 8/8 16/15 8/8 292 68

step/leap [6] 15/24 8/8 24/15 8/8 300 69
down/up [11] 16/24 8/8 31/15 8/8 404 97

We ran the algorithm on the 24 fugues2, and manually checked all results
and occurrences. Results (with diatonic similarity) are summarized on Table 1.
We fixed a minimum threshold of τ = 0.9z − 3, where z is the number of notes
defined in Section 3.

Subject lengths. We searched for end of subjects in the range [gmin
s , gmax

s ] =
[−8,+6], that are the observed values. In 16 of the 24 fugues, the algorithm
retrieves precisely the ends of the subjects. To our knowledge, this is the first
algorithm able to correctly detect the ends of most subjects: In [2], the subjects
found are said to be “missing or including an extra 1 to 4 notes”, and the ends
of the subjects on [13] are also very approximate.

Fugue #8 shows why the proposed algorithm does not always find the correct
length of the subject. In this fugue, a subject of length 9 notes is found instead
of 13 notes: there are several truncated occurrences of the subject, and the
algorithm chooses the end that provides the best match throughout the piece
(Fig. 6).

The algorithm already considers the last note in a special way (and the former
notes can be handled through substitution errors in the pitch intervals). It is
possible to adapt the matching to be even more relaxed towards the end of the
pattern, but we did not see a global improvement in the detection of subject
lengths.

False Positives. There are very few false positives among the subjects found
(specificity of 90%), even when the length of the subject is badly predicted. The
false positives appear in only two fugues:

– in Fugue #19, the 5 false positives correspond to 4 extended subjects [3], and
one almost complete subject. There are no differences at the beginning of
these pattern, so that these occurrences are considered as normal subjects.

2 A part of the output of the algorithm is shown at the bottom of Fig. 3,
and the full output on all the fugues used in this paper is available at
http://www.algomus.fr/fugues.

http://www.algomus.fr/fugues
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Table 4. Results of the proposed algorithm on the 24 fugues of Shostakovitch Op.
87. We take here as a truth the analysis of the website [1] for the length of subjects
and counter-subjects. The values s and cs indicate the index of the note ending the
true subject and the counter-subject, whereas s′ and cs′ are the values predicted by
the algorithm. See Section 3 and Section 4 for a definition of gs and gcs.

The columns “occ” lists the number of occurrences of Subjects and Counter-Subjects.
found by our method, but we have no ground truth information to evaluate this num-
ber of occurrences. The analysis of [1] also gives a “number of occurrences” of these
patterns, but without precise position nor completeness information.

S CS
# tonality voices s gs s′ occ. occ. [1] cs gcs cs′ occ.

1 C major 4 14 0 14 11 13 39 +3 38 7

2 A minor 3 20 0 17 9 10 36 +9

3 G major 3 26 +2 21 9 15 48 +2 44 4

4 E minor 4 12 0 6 9 15 27 +3

5 D major 3 24 −1 24 9 17 36 0 34 8

6 B minor 4 8 −18 – – 23 36

7 A major 3 23 −1 24 9 15 39 0 39 7

8 F# minor 3 39 −1 34 10 14 66 +6 64 2

9 E major 2 22 −3 22 11 15 51 +3 52 4

10 C# minor 4 13 0 13 21 22 23 0 23 1

11 B major 3 23 −3 18 14 14 76 +4

12 G# minor 4 22 −3 17 23 15 43 +3

13 F# major 5 7 0 5 23 26 17 +1 16 4

14 Eb minor 3 22 −2 22 11 10 55 +2 57 2

15 Db major 4 21 −1 21 15 22 34 +1 33 5

16 Bb minor 3 56 0 60 7 12 98 0 98 5

17 Ab major 4 37 −1 37 12 15 88 +2 88 9

18 F minor 4 13 0 13 16 20 31 +3 31 4

19 Eb major 3 14 0 14 10 13 22 0 20 6

20 C minor 4 12 −1 12 16 17 21 0 21 8

21 Bb major 3 23 −1 – – 18 46 0

22 G minor 4 13 −1 13 11 17 37 +1 38 2

23 F major 3 20 −3 20 14 15 72 +5 71 4

24 D minor 4 14 −1 14 16 20 27 0 27 4

#6: The first exposition of S is doubled in octave, so our algorithm fails to detect him.
#12: The CS ends at +3 even if the first occurrence of the CS is not the one kept by [1]. This first

occurrence is altered (by consolidations) but the length is the same as the other occurrences.

– in Fugue #5, the length of the subject is selected to the first 9 notes (8 first
thirty-second notes and a final note), and this head of the subject matches the
11 true occurrences, but also 24 false positives compared to the analysis of [3].
Nevertheless, this shorter subject exactly corresponds to the one choosen by
the analysis of [8].

False Negatives. The algorithm correctly retrieves about 85% of the subject
occurrences. The false negatives are occurrences that are too much altered: in-
sertions, deletions, or too many substitutions compared to the threshold.
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Inverted and Augmented Subjects. In some fugues, the subject appears upside
down (all its intervals are reversed) or augmented (all lengths are doubled). Once
the subject is known, the same matching algorithm can thus be applied to the
inversion or the augmentation of the subject. This method never produced a
false positive, and was able to recover 72% (26/36) of the complete inverted and
augmented subjects reported in [3].
Counter-subjects.Counter-subjects were detected with the same algorithmwithin
the range [gmin

cs , gmax
cs ] = [−2,+4]. In 40% of the fugues, the algorithm correctly

detects the exact length of the CS or the absence of a CS.
In 9 fugues, the algorithm predicts the absence of CS. This was expected for

Fugues #1, #8 (no CS), #15 (the CS occurs completely only once) #19 (late
exposition of CS) and #20 (there is no real “characteristic and independent
counter-subject” according to [3]). As in the case of the subjects, there are false
negatives due to the bad recognition of altered patterns. Moreover, when the
subject is badly detected, the detection of the counter-subject end fails in the
majority of the cases.

The algorithm retrieves correctly about the half of the CS occurrences, with
more than 80% specificity.

Pitch Interval Similarities. Table 3 compares different interval similarity models.
We compared the diatonic matching against a strict matching on MIDI semi-
tones, possibly adapting the error threshold. As expected, diatonic similarity
has a better performance, because such a relaxed similarity is able to match
approximate occurrences as the counter-subjects shown on Fig. 4.

Starting from MIDI pitches, an idea could be thus to use pitch spelling meth-
ods as [22]: such methods are almost perfect and provide the diatonic spelling
of some pitches. However, we also tested a pseudo-diatonic matching on semi-
tone information – considering as similar the intervals that differ from at most
1 semitone. The results are very similar to those with true diatonic matching.

Other Edit Operations. Finally, we also tested other edit operations. The equa-
tions of Section 4 consider only substitutions, and can be simply extended to
include the full Mongeau-Sankoff edit operations [23]. For instance, using in-
sertions and allowing rhythm substitutions will, starting from the true subject,
retrieve the occurrences #2 and #3 in Fig. 6. However, in the general case, in-
sertions or deletions destroy the measure, leading to bad results on the predicted
subject lengths.

More musical operations (fragmentation, consolidation), with fine-tuned costs,
give a slight advantage in some of the 24 fugues, but this has not been reported
here to keep the simplicity of the algorithm.
Results on Other Fugues. Shostakovitch’s 24 Preludes and Fugues (Op. 87),
though written more than 200 years later than Bach’sWell-Tempered Clavier, are
clearly inspired from Bach’s work. Shostakovitch even cites some of his themes.
We tested our algorithm on Shostakovitch fugues. As we started from MIDI files,
we used a pitch equivalence of ±1 semitone. The algorithm found 13 correct
lengths of subjects out of 24, using [1] as a ground truth (Table 4). Concerning
the numbers of occurrences, it is now difficult to estimate the real accuracy of our
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Fig. 7. Subjects of the Fugues #1 to #12 of the first book of Bach’s Well-Tempered
Clavier. Circled notes show the end of subject, as reported in [3], with gs as defined in
Section 3. Boxed notes shows the ends found by the proposed method. On Fugues #9
and #10, there are several possible ends depending on the source consulted [3,27].
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Fig. 8. Subjects of the Fugues #13 to #24 of the first book of Bach’s Well-Tempered
Clavier. On Fugue #19, there are several possible ends depending on the source con-
sulted [3,27].

algorithm on this corpus, since this reference only gives a number of occurrences
without their precise positions. Among other references on these fugues, there
is one systematic study on their interpretation [26], but we found no detailed
ground truth with positions of S/CS.
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6 Conclusions

A complete fugue analysis tool should use any available information, including
pattern repetition, harmonic analysis and phrasing considerations. In this work,
we focused only on pattern repetition. Our simple algorithm, based on the total
number of matched intervals in all occurrences of patterns, allows to find precise
ends of subjects and first counter-subjects in the majority of cases. This model
considers a unique substitution operation with a diatonic similarity, enforcing
the equality of lengths for all notes except the first and the last ones.

Extensions could include a study on the second counter-subject and on other
inferred patterns. Combined with other techniques, this algorithm could lead to
a more robust and complete automatic fugue analysis tool.

The current algorithm works on voice-separated data. Starting from plain
MIDI files, we could use voice separating algorithms. Although it would be a
challenging problem to adapt our algorithm to directly treat standard poly-
phonic MIDI files, we first want to improve the current approach to complete
our comprehension of any fugue.

Finally, it could be interesting to continue the analysis on Shostakovitch
fugues, and as well to study the efficiency of our algorithm on other baroque
or classical fugues, keeping in mind some practical limitations (availability of
voice-separated files, ground truth). As far as the fugues keep the strict struc-
ture with a clear subject exposition, we are confident that our algorithm should
give good results.
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12. Giraud, M., Groult, R., Levé, F.: Detecting Episodes with Harmonic Sequences
for Fugue Analysis. In: Int. Symp. for Music Information Retrieval, ISMIR 2012
(2012)

13. Hakenberg, J.: The Pirate Fugues, http://www.hakenberg.de/music/music.htm
14. Hewlett, W.B.: A base-40 number-line representation of musical pitch notation.

Musikometrika 4(1-14) (1992)
15. Hiraga, Y.: Structural recognition of music by pattern matching. In: Int. Computer

Music Conference (ICMC 1997), pp. 426–429 (1997)
16. Hsu, J.L., Liu, C.C., Chen, A.: Efficient repeating pattern finding in music

databases. In: Int. Conference on Information and Knowledge Management, CIKM
1998 (1998)

17. Karydis, I., Nanopoulos, A., Manolopoulos, Y.: Finding maximum-length repeating
patterns in music databases. Multimedia Tools Appl. 32, 49–71 (2007)

18. Lemström, K., Laine, P.: Musical information retrieval using musical parameters.
In: Int. Computer Music Conference (ICMC 1998), pp. 341–348 (1998)

19. Liu, C.C., Hsu, J.L., Chen, A.L.: Efficient theme and non-trivial repeating pattern
discovering in music databases. In: Int. Conf. on Data Engineering (ICDE 1999),
pp. 14–21 (1999)

20. Lung Lo, Y., Yu Chen, C.: Fault tolerant non-trivial repeating pattern discovering
for music data. In: Int. Workshop on Component-Based Software Engineering,
Software Architecture and Reuse (ICIS-COMSAR 2006), pp. 130–135 (2006)

21. Meek, C., Birmingham, W.P.: Automatic thematic extractor. Journal of Intelligent
Information Systems 21(1), 9–33 (2003)

22. Meredith, D.: Pitch spelling algorithms. In: 5th Triennal ESOM Conference, pp.
204–207 (2003)

23. Mongeau, M., Sankoff, D.: Comparaison of musical sequences. Computer and the
Humanities 24, 161–175 (1990)

24. Orpen, K.S., Huron, D.: Measurement of similarity in music: A quantitative ap-
proach for non-parametric representations. Computers in Music Research 4, 1–44
(1992)

25. Perttu, S.: Combinatorial pattern matching in musical sequences. Master Thesis,
University of Helsinki (2000)

26. Plutalov, D.V.: Dmitry Shostakovich’s Twenty-Four Preludes and Fugues op. 87:
An Analysis and Critical Evaluation of the Printed Edition Based on the Com-
poser’s Recorded Performance. Ph.D. thesis, University of Nebraska (2010)

27. Prout, E.: Analysis of J.S. Bach’s forty-eight fugues (Das Wohltemperierte Clavier).
E. Ashdown, London (1910)

28. Rafailidis, D., Nanopoulos, A., Manolopoulos, Y., Cambouropoulos, E.: Detection
of stream segments in symbolic musical data. In: Int. Society for Music Information
Retrieval Conf. (ISMIR 2008), pp. 83–88 (2008)

29. Smith, L., Medina, R.: Discovering themes by exact pattern matching. In: Int.
Symp. for Music Information Retrieval (ISMIR 2001), pp. 31–32 (2001)

30. Weng, P.H., Chen, A.L.P.: Automatic musical form analysis. In: Int. Conference
on Digital Archive Technologies, ICDAT 2005 (2005)

http://www.hakenberg.de/music/music.htm


Market-Based Control

in Interactive Music Environments

Arjun Chandra1, Kristian Nymoen1, Arve Voldsund1,2,
Alexander Refsum Jensenius2, Kyrre Glette1, and Jim Torresen1

1 fourMs, Department of Informatics, University of Oslo, Norway
{chandra,krisny,kyrrehg,jimtoer}@ifi.uio.no

2 fourMs, Department of Musicology, University of Oslo, Norway
{ arve.voldsund,a.r.jensenius}@imv.uio.no

Abstract. The paper presents the interactive music system SoloJam,
which allows a group of participants with little or no musical training to
effectively play together in a “band-like” setting. It allows the partici-
pants to take turns playing solos made up of rhythmic pattern sequences.
We specify the issue at hand for enabling such participation as being the
requirement of decentralised coherent circulation of playing solos. Satis-
fying this requirement necessitates some form of intelligence within the
devices used for participation, with each participant being associated
with their respective enabling device. Markets consist of buyers and sell-
ers, which interact with each other in order to trade commodities. Based
on this idea, we let devices enable buying and selling, more precisely bid-
ding and auctioneering, and assist participants trade in musical terms.
Consequentially, the intelligence in the devices is modelled as their ability
to help participants trade solo playing responsibilities with each other.
This requires them to possess the capability of assessing the utility of the
associated participant’s deservedness of being the soloist, the capability
of holding auctions on behalf of the participant, and of enabling the
participant bid within these auctions. We show that holding auctions
and helping bid within them enables decentralisation of co-ordinating
solo circulation, and a properly designed utility function enables coher-
ence in the musical output. The market-based approach helps achieve
decentralised coherent circulation with artificial agents simulating hu-
man participants. The effectiveness of the approach is further supported
when human users participate. As a result, the approach is shown to
be effective at enabling participants with little or no musical training to
play together in SoloJam.

Keywords: active music, collaborative performance, conflict resolution,
market-based control, decentralised control, algorithmic auctions.

1 Introduction

In many musical cultures and genres there is often a large gap between those
who perform and those who perceive music. In such ecosystems, the performers
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(musicians) create the music, while the perceivers (audience) receive the music
[14]. Even though perceivers may have some control of the music creation in
a concert situation, by means of cheering, shouting, etc., this only indirectly
changes the musical output. The divide between performer and perceiver is even
larger in the context of recorded music, which is typically mediated through
some kind of playback device (CD, MP3 file, etc.). Here the perceiver has very
limited possibilities in controlling the musical content besides starting/stopping
the playback and adjusting the volume of the musical sound.

The last decades have seen a growing interest in trying to bridge the gap
between the performance and the perception of music [8]. Examples of this can
be seen as interactive art/museum installations, music games (e.g. Guitar Hero)
[9], keyboards with built-in accompaniment functionality [2], “band-in-a-box”
types of software, mash-up initiatives of popular artists [13], sonic interaction
designs in everyday devices [11], mobile music instruments [4], active listening
devices [6,10], etc. An aim of all such active music systems is to give the end
user control of the sonic/musical output to a greater or lesser extent, and to
allow people with little or no training in traditional musicianship or composition
to experience the sensation of “playing” music themselves [7].

There are numerous challenges involved in creating such active music experi-
ences: everything from low-level microsonic control (timbre, texture), mid-level
organisation (tones, phrases, melodies) to large-scale compositional strategies
(form). In addition comes all the challenges related to how one or more par-
ticipants can control all of these sonic/musical possibilities through mappings
from various types of human input devices. In this paper we will mainly focus
on creating a system that is flexible enough for the participants’ interaction, yet
bound by an underlying compositional idea.

Our approach in SoloJam is to allow for a group of participants with little or no
musical training to come together and behave as a “band” of musicians, wherein,
they play their respective solos in turn. Thus, the responsibility of playing solos
circulates around the band and continues to do so until an indefinite period.
To solve the problem of co-ordinating the circulation of responsibility of playing
these solos autonomously and effectively, we propose an approach inspired by the
economic sciences, in particular markets. Specifically, we borrow the concepts of
auctions and utility to address the problem. Our investigation shows that trading
the responsibility of being the soloist via auctions does indeed help decentralised,
thus autonomous, circulation of solos within the group. In addition, a careful
consideration of the utility function helps participants produce coherent musical
output.

We start by introducing the interactive musical scenario that we refer to as
SoloJam in Section 2, specifying the issue with enabling participation within
it. We then describe our proposed market-based approach to tackling the issue,
and the implementation details for the same, in Section 3. Section 4 then looks
at the application of the approach within SoloJam, investigating the approach
for its effectiveness in enabling participation by artificial agents (who simulate
participants with little or no musical training) and human users. This section also
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discusses typical modes of communication in bands in relation to SoloJam. This
is followed by a discussion on the flexibility offered by SoloJam. We conclude in
Section 5.

2 The Musical Scenario

In our current context we are interested in creating a system that allows for a
group of participants with little or no musical training to get the feeling of being
involved with creating music, yet defined in such a way that a certain level of
musicality is ensured in the final sounding result. The participants are to play
music using a device that assists them for the same. Such a device, together with
the participant using it, is what we call a node in this paper. The participant
may either be a human user using the device, or an artificial agent behaving in a
specified manner simulating a user, and as such associated with the device. Mul-
tiple participants would thus aim at controlling various musical features within
the composition. As such, we will need the devices to help co-ordinate the par-
ticipants’ intentions. Situations might arise where multiple participants intend
on controlling the same musical feature, giving rise to a conflict with regards to
who might eventually control. This would be more prevalent when participants
have little or no musical training, as they are not likely to be conversant with
the typical modes of communication that trained musicians use when facing this
problem. Thus, the devices will have to resolve these conflicts. For such interac-
tive compositions, conflict resolution should be a necessary constituent part of
the system, but indeed, not necessarily the only thing.

In this paper, we focus our attention on this conflict resolution aspect of
compositions. As such, we imagine a band of musicians who want to play their
respective solos pertaining to the same musical feature. Only one musician ever
plays their respective solo at a time. We call this musician the soloist. How-
ever, over time, the playing of solos circulates across the band, as and when
other musicians become soloists. The control of circulation of solos happens in
a decentralised manner.

The musical space within the system considered in this paper is made up of
rhythmic patterns. A sequence of rhythmic patterns when played by one node,
is viewed as a solo in the context of this paper, until another node commences
playing rhythmic patterns. Each rhythmic pattern has a specified number of
beats, which we consider as one bar. Thus the musical output is supposed to be
a series of rhythmic patterns, one in each bar. Each bar in a sequence can either
be a repetition of the rhythmic pattern in the previous bar or not, specifically
when played by one node as a solo. And, the next solo, which would be played
by another node, should start with a rhythmic pattern that is not exactly the
same as, and ideally only slightly different to, the one played by the soloist in
the previous bar. The composition is specified by the aforementioned elements,
which also describe the boundaries or constraints to which the musical output
should adhere to.

As such, SoloJam can be seen as a compositional idea, or musical scenario,
where a group of nodes acting in a decentralised fashion come together and
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take turns in playing a piece based on rhythmic solos. Though nodes act in
a decentralised fashion, they must also be able to produce a coherent musical
result.

2.1 The Issue with Enabling Participation

Given the scenario mentioned above, if a group of participants are to play music,
the devices that they use for this participation cannot be traditional instruments.
Instead, the devices need to possess some form of artificial intelligence which
might allow the group to produce a coherent musical output, and help the par-
ticipants do so via decentralised interactions with other participants, i.e. without
requiring an expert to direct their interactions. Devices helping with coherence
are required due to the assumption that the participants do not possess sufficient
musical knowledge to produce a satisfactory result on their own. As such, what
gets played should be influenced by the devices to some extent, whilst making
sure that the participants are still able to explore the musical space themselves.
Devices helping with decentralised interaction are required in order to adhere
to the vision of a “band” where members organise themselves into taking turns
playing solos, without a central authority directing them. Moreover, participants
not possessing sufficient musical knowledge also renders them to be unfamiliar
with the modes of communication used by trained musicians to a large extent.
Thus, deciding who plays the solo next should be dealt with by the devices
interacting intelligently with each other on behalf of the participants. Such in-
telligence in the devices forms the crux of the issue with making participants
play together effectively within our musical scenario.

We define decentralised coherent circulation as giving us a yardstick against
which to evaluate the effectiveness of the solution to the issue of allowing partic-
ipants to effectively play together in SoloJam. Decentralisation means that there
is no central control over the circulation of playing of solos by participants. Co-
herence in our case means for nodes to be playing slight variations of each others
rhythmic patterns over time as and when they become soloists, such that the
next soloist plays a slight variation of the rhythmic pattern played by the cur-
rent soloist. Thus, our goal is to design an intelligent system that allows for both
decentralised control and coherent musical output. It should enable participants
who do not possess much musical knowledge to play together without requiring
an expert to direct their interaction with other participants.

3 Market-Based Approach for Enabling Participation

In recent years, there has been a surge of ideas being borrowed from the economic
sciences for designing systems with interacting autonomous components. In the
context of our work, a node can be seen as an autonomous component interact-
ing with other nodes. A family of such ideas, known as market-based control, is
aimed at applying economic principles to tackling resource allocation problems
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in distributed computing systems [3]. One of the key characteristics that mar-
kets possess, which market-based systems benefit from, is that of rendering the
interacting components as being part of a decentralised system.

A typical market-based system consists of software agents representing com-
ponents of the system, where each component has its own task to perform. These
agents act and make decisions autonomously on behalf of the components, yet
interact with each other based on a defined market mechanism, e.g. auctions
or bargaining. Taking on roles of buyers and sellers of resources as and when
needed, or indeed bidders for and auctioneers of such resources, they are able
to engage in trades. Such resources may be needed by them in order for the
components they represent be able to perform their respective tasks. Typically,
virtual money is introduced in the system to facilitate exchanges as the agents
interact in accordance with the market mechanism. As they interact with each
other to trade, they attempt at maximising their utility function, which is usu-
ally derived from task requirements, the higher the utility, the better they enable
performing individual tasks. With buyers paying more for resources they value
more, and sellers charging what they are able to get away with, resources tend
to go to components that value them most, all in a decentralised way.

A wide range of application domains have applied this concept since its in-
ception [3]. We envisage software agents, as described above, as modelling the
intelligence in the devices which form part of a node in our context. Thus, we
take this concept into the domain of music in order to tackle the issue described
in Section 2.1. A detailed specification of the market-based approach now follows.

3.1 Specification of the Approach

One can see the problem of decentralised control of circulation of solos as a
resource allocation problem, where the resource can be viewed as a metaphor
for having the responsibility of playing a solo. This responsibility is what needs
to be continuously allocated to the node who may be most deserving of being
the soloist within SoloJam at any point in time.

The concept of auctions has a long standing history in human society, where
the idea is to have a mechanism in place that allows for the allocation of re-
sources/goods/services via the exchange of these resources/goods/services with
other resources/goods/services, or indeed some currency. Anything that may be
exchanged has some value for the parties between which the exchange happens.
This is where the concept of utility comes in. Utility [5,15], as a concept, has a
long history in the economic sciences as being an idea that allows for expressing
the value of a choice or decision that one needs to make. For example, how much
may one be willing to spend on buying a type of guitar amongst other choices, is
the value of the guitar for the individual. This value can, with certain assump-
tions about the preferences of the individual with respect to making choices, be
quantified in the form of a mathematical function. Such numerical expression of
value makes exchanging resources/goods/services practical.

Assuming that it may be possible to compute the deservedness of being the
soloist, at every time step, whilst the soloist is playing its solo, we make it also
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hold (broadcast) an auction, in which all other nodes can bid in order to become
the next soloist. We thus design the node such that every node can evaluate
the deservedness of itself being the soloist. This is computed as the viability, or
in economic terms, utility of its current rhythmic pattern being played in the
next bar. The utility values derived from their respective rhythmic patterns are
what the nodes use as their respective bids. As such, at any given time, the node
with the highest utility must be the soloist, provided this value is computed
truthfully (or honestly). At every time step, a bidder node can also change its
respective rhythmic pattern, in order to come up with a new rhythmic pattern
from which a higher utility may be derived, as compared to the utility derived
from its current rhythmic pattern. The transfer of responsibility happens when a
bidder node wins the auction held by the soloist. This necessitates a gain for the
soloist, i.e. the auction can only be won if the soloist gains from handing over the
responsibility to the highest bidder. This implies that the utility derived from
the rhythmic pattern that the soloist is currently playing, must, at the time of
the transfer, be lower than the highest bid it receives. We now detail the auction
mechanism used for node interaction, helping achieve decentralised circulation
of responsibility, and elaborate on the computation of utility which quantifies
deservedness and helps garner coherence in the musical output.

Auction Mechanism. The soloist takes the role of an auctioneer and holds
a second-price sealed-bid auction, in particular, the Vickrey auction [16] in ev-
ery bar. This is done in order that the soloist receive bids from the bidders,
which then are used to decide whether or not there is a winner to whom the
responsibility of playing the solo would pass in the next bar. The reason for this
design choice is that Vickrey auctions deem truthful bidding to be the domi-
nant bidding strategy. In our case, this means that a bidder can do no better
than bidding with the true utility value derived from its rhythmic pattern. The
second-price nature of the auction suggests for the winner of the auction to make
a payment equal to the value of the second highest bid to the soloist. The sec-
ond price aspect of this auction mechanism makes truthful bidding a dominant
bidding strategy. However, in the current setup we do not exchange money1 (in
the form of such payments by bidders to the soloist). This means that, although
the transfer of responsibility necessitates a gain for the soloist, as mentioned
above, the soloist only ever compares the received bids and the current utility
derived from its own rhythmic pattern, in order to ascertain whether or not it
should hand over the responsibility to the highest bidder. Ties in bids, when the
bids are higher than the soloist’s rhythmic pattern utility, are broken randomly.
The sealed-bid nature of the auction requires that the bids are not public and
only known to the bidder and soloist. We leave the consideration of exchange of
money and other possibilities offered by this auction mechanism to the future,
when dealing with more complex variants of SoloJam.

1 The auction and bidding setup in SoloJam allow for money (or virtual money), in
the form of bid values to be exchanged. But, we only consider monitoring the utilities
for now.
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Utility. To participate in the auction effectively, each node must have a way
of evaluating and communicating a value that it considers playing its current
rhythmic pattern in the next bar to be worth. A rhythmic pattern in SoloJam
is represented as a bit string parsed from left to right, whereby, a 1 indicates
‘triggering a beat’ and a 0 represents ‘not triggering a beat’. For each node, we
define a utility function which the node uses to evaluate the value its current
rhythmic pattern can yield, both in relation to itself and to the soloist, knowing
its role as either a bidder or the auctioneering soloist. The following equation
specifies part of this utility function:

ui =
c

(1 + aDl)(1 + bTl)
(1)

Here, Dl is the hamming distance of a node’s current rhythmic pattern with
respect to the soloist’s current rhythmic pattern, Tl is the length of time a node
has been playing the solo, i.e. the number of bars a node has played rhythmic
patterns as a soloist, the coefficient a is the importance (in terms of a weighting)
given to Dl, the coefficient b is the importance (in terms of a weighting) given
to Tl, and c is a normalisation constant. In addition to this, two more conditions
completely specify the utility function. These clauses being:

1. The utility is zero for a bidder node if Dl goes below ελ, where ε is a small
percentage of the length of the rhythmic pattern (λ).

2. The utility is zero for a bidder node if the node has handed over control to
a new soloist node in the previous time step.

According to the utility function above, the longer (in terms of bars) a node is
the soloist, the lesser it values its current rhythmic pattern, indicating boredom
or fatigue, of which the node is made aware via the utility function. The node
also possesses knowledge about the hamming distance between its own and the
soloist’s respective rhythmic patterns. This knowledge can be used by the node
to come up with rhythmic patterns that yield higher value, given the soloist’s
rhythmic pattern. The closer a node can match its rhythmic pattern against
the soloist’s pattern, the more is the value it can derive from its pattern. This
remains true as long as the match does not get closer than or equal to ελ,
allowing for the node to stir clear of intending to play a rhythmic pattern that
may be very similar to or exactly the same as that of the soloist (as per the first
clause above). Additionally, we can see that this specification of utility, taking
the soloist’s rhythmic pattern into consideration, also provides the node with a
gradient (i.e. the closer the rhythmic pattern to that of the soloist, the higher
the value it yields), which it may make available to the participant in order for
them to come up with rhythmic patterns which are slight variations (at least ελ
different) of the soloist’s rhythmic pattern. As such, in addition to computing
deservedness, we see the utility function as a means of instilling coherence in
the musical output from SoloJam. Note that Dl forms the main link between
nodes (the node in question and the current soloist node), and the coefficient
a associated with Dl emphasises or otherwise, the strength of this link. We
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will put this coefficient to use for the investigation carried out in this paper
in Section 4. The clauses above further indicate a way of carefully considering
designing the utility function in order for a globally coherent piece of music to
result from decentralised interactions within SoloJam. The first clause suggests
for there not to be a perpetual repetition of the same rhythmic pattern by all
the nodes of SoloJam, which would be monotonous. The second clause allows
for a node to not take over the responsibility soon after it released it, which may
happen otherwise, since the node’s rhythmic pattern would already be a slight
variation of the new soloist that took over the responsibility from this node. Not
considering this clause may thus reduce the variations that may occur in the
music performance in the global sense.

3.2 Implementation

Fig. 1 shows the building blocks of the implementation of SoloJam. Fig. 1(a)
outlines the schematic of the implementation of SoloJam. The current SoloJam
scenario has been implemented on a Macintosh computer, in conjunction with
iOS devices for human interaction within the scenario. The setup can be broken
down into 4 modules: the Computation module, the Interaction module, the
Sound interfacing module, and the Sound synthesis module.

The Computation module is implemented in Python and simulates our market-
based approach for effective participation described in Section 3.1, with a thread
representing each node. These threads interface with the Interaction module as
well as the Sound interfacing module. The Interaction module can function in
two ways. If an artificial agent is to be part of the node, the thread in the Com-
putation module representing this node is made to implement the functionality
of the agent in terms of the manner in which this agent comes up with rhythmic
patterns. If a human user is to be part of the nodes, iOS devices (specifically iPod
Touch) are used for sensing the shaking of the device (using the built-in inertial
sensors). The signals from shaking are sent as Open Sound Control (OSC) [17]
messages to a thread in the Computation module associated with the device,
which are then converted into rhythmic patterns within this thread. The bit
strings representing rhythmic patterns are further sent as OSC messages to the
Sound interfacing module, together with the utilities/bids (computed within the
Computation module) that the soloist/bidder nodes derive from their respective
rhythmic patterns in every bar.

The Sound interfacing module is implemented as a Max/MSP patch. It serves
as a control module for the SoloJam scenario, accepting strings of rhythmic
patterns, synchronising and converting them to control signals for the Sound
synthesis module. The audio streams from the Sound synthesis module are chan-
neled back to the Sound interfacing module for mixing and effects processing.
The Sound interfacing module also performs a visualisation of various aspects
of the system, such as node utilities. The Sound synthesis module is currently
instantiated as a virtual sound module rack in Reason. A drum kit synthesiser
module is used for each node. Reason is controlled by the Sound interfacing
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(b) Illustration.

Fig. 1. Building blocks of the implementation of SoloJam showing (a) a schematic of
the implementation of SoloJam, and (b) an illustration of the SoloJam scenario within
the context of this implementation

module through ReWire. MIDI signals are sent to the synthesisers, and the au-
dio streams are sent back to the Sound interfacing module.

Fig. 1(b) illustrates the SoloJam scenario within the context of the aforemen-
tioned implementation. It shows 3 agents or human users participating in the
scenario. The rhythmic patterns associated with each participant at various bars
are shown. These rhythmic patterns are fed in to our market-based approach for
effective participation simulated by the Computation module. As per the rhyth-
mic patterns shown, one possibility for the transfers of responsibility of playing
solos is indicated in the figure.

4 SoloJam with Participants

We now look at how the market-based approach proposed in this paper, con-
sisting of auctions and a properly designed utility function, enables effective
participation within the composition. We primarily look at the case where artifi-
cial agents are considered as simulating the behaviour of participants with little
or no musical training, and act within SoloJam as participants. The case where
SoloJam involves human participants is also discussed.

4.1 SoloJam with Artificial Agents: Enabling Participation

Although SoloJam involves human interaction, in order for behavioural equiva-
lence across the participants, we consider experimenting with artificial agents in
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this section. Moreover, an artificial agent can be designed to behave as a partici-
pant with little or no musical training with little effort. As such, we get artificial
participants behaving in a specified manner operating the respective nodes sim-
ilarly. This allows for evaluating a base line system, which is a system that must
work when all the nodes are operated by participants with little or no musical
training. Otherwise, one could argue that a human operator may influence the
system towards having the requisite functionality, even if the system did not
work. Thus, artificial agents allow for controlling the nature of the interaction
of the operator, removing human induced functionality into the circulation of
solos, which may be hard to account for.

We primarily investigated the effects of the utility function specification within
SoloJam, considering the manner in which knowledge about the soloist node
affects the circulation of solos within the group of participating nodes. Since
we are only interested in the effect of the utility function on the circulation,
fixing other factors which may influence the circulation, makes a plausible case
for using artificial agents with a fixed behaviour. In this study, these artificial
agents use the notion of mutation to generate the bit strings that represent
rhythmic patterns. This mutation is such that the agents can flip each bit in
their bit string with a probability 1/λ, where λ is the length of the rhythmic
pattern. In so doing, the agent generates a new rhythmic pattern, which is a
mutation of its old rhythmic pattern. This mutation based rhythmic pattern
generation process is essentially used by bidder nodes in every bar they have to
bid in, as they search for slight variations of the soloist’s rhythmic pattern. We
limit our study with agents to the case where, once the soloist starts playing
their solo, they do not change their rhythmic pattern for the duration of the solo
(which should be some bars long), i.e. a solo is made up of repetitions of the
same rhythmic pattern. This limitation allows us to clearly observe if the bidder
nodes are indeed able to search for slight variations of the soloist’s rhythmic
pattern, which, upon winning the auction, they eventually play.

Note that the coefficient a, within Equation 1, signifies the importance (in
terms of a weighting) that a node gives to the distance Dl between its current
rhythmic pattern and the soloist’s current pattern. Setting the value of this
coefficient to 0.0 within a node, allows for switching off knowledge about the
soloist node. In essence, the node then only knows its own rhythmic pattern and
the duration it has played a rhythmic pattern when acting as a soloist. Setting
a to a positive value makes the node consider knowledge about the soloist. We
take a = 0.0 and a = 1.0 in order to explicitly investigate the effects of not
disclosing and disclosing respectively, the knowledge about the soloist node to
other nodes. Note that the soloist node remains unaffected from a change in the
value of a, because Dl is zero for it, thus making a irrelevant.

We can now detail the effects of such knowledge within the workings of Solo-
Jam, specifically looking at the nature of the decentralised circulation of solos
and also the coherence that can be achieved in the generated piece of music. We
first look at the piece resulting from the system, and then provide a discussion
based on the evolution of the utilities of the nodes, both with respect to such



Market-Based Control in Interactive Music Environments 449

knowledge. For our study, we use the following parameter settings: Rhythmic
pattern length (λ) = 8, ε = 0.1, Node count = 3, c = 2, b = 0.05.

Observations about the Resultant Piece. Figs. 2 and 3 show snapshots of
rhythmic patterns that are generated when the agents play SoloJam, under two
specific cases, one where bidder nodes do not consider using knowledge about
the soloist’s rhythmic pattern when evaluating the utility derived from their own
rhythmic patterns, and the other where they do so. These two cases are realised
by a = 0.0 (Fig. 2) and a = 1.0 (Fig. 3) respectively within the part of the utility
function (Equation 1) used by each node for this evaluation.

Node 1:
0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0

Node 2:
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

Node 3:
1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0

1 2 3 4

Fig. 2. Snapshot of the rhythmic patterns when a = 0.0. There is maximal circulation
of responsibility of playing solos (at every bar). The musical output is incoherent as
there is no mutation towards closer rhythmic patterns by bidders. In effect, there is no
active participation via mutation. Enabling participation is not effective.

These figures show the rhythmic patterns as bit strings and in music notation,
for each node in the system. Since we have 3 nodes, 3 lines with bit strings and
music notation correspond to each node, as indicated. These lines can be read
from left to right for each node. At the end of the 3 lines, the reader can continue
at the left of the next 3 lines (see Fig. 3), and so on. Each bar is clearly marked
as enclosing the respective rhythmic patterns (of length 8 bits) for each node.
The shaded regions denote the current soloist. An arrow between bars denotes
a rhythmic pattern being sufficient for a transfer to happen. Mutations within
a pattern from a previous bar for a node are denoted by dotted circles. The
numbers above bars are bar numbers, wherein a range means that the rhythmic
pattern is repeated for all the bars in that range, without any mutations or
transfers.

For the case with a = 0.0, the 3 nodes do not mutate their respective rhythmic
patterns over successive bars. Moreover, the transfer of control of responsibility
for the solo happens in every bar, as indicated by the shaded regions in the
figure. For the case with a = 1.0, we can see a more interesting final result: it
can be seen that at bar 21, the rhythmic pattern with which Node 1 bids in the
auction held by Node 3 (the then soloist), differs less (different by 1 bit) from
Node 3’s rhythmic pattern, as compared to the rhythmic pattern associated with
Node 2 (different by 2 bits). Node 1 wins this auction in this bar, and from bar
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Node 1:
0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0

Node 2:
1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0

Node 3:
1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0

13-20 21 22 23-28

Node 1:
0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1

Node 2:
0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0

Node 3:
1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0

29-41 42 43 44-45

Node 1:
0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1

Node 2:
0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 10 0 1 1 1 0 0 0

Node 3:
0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0

46-62 63 64 65-71

Fig. 3. Snapshot of the rhythmic patterns when a = 1.0. Decentralised coherent control
is exhibited. The transfer of responsibility of playing solos happens after the soloist
having played their rhythmic pattern for some bars. Coherence results from the nodes
actively searching for closer variants, via mutation, of the soloist’s rhythmic pattern,
and the closest rhythmic pattern being played by the respective bidder, provided the
bidder wins the auction. Enabling participation is effective.

22 onwards until bar 42, plays its rhythmic pattern. At bar 23, Node 2 and
3 mutate their rhythmic patterns, a further mutation happening at bar 29 for
Node 3. Note that in bar 23, Node 3 comes up with a rhythmic pattern that is
2 bits different from the soloist, as compared to its rhythmic pattern in bar 22.
This is because the rhythmic pattern in bar 22 has its value reduced to zero in
the following bar in accordance with the utility function. Thus, any mutation of
that rhythmic pattern in the bar following that will have a value greater than
zero. As such, this mutation will replace the previous rhythmic pattern. Other
than such a situation, the mutations that are generated over time take the nodes
closer to the rhythmic pattern of the soloist, as can be seen in the figure. In bar
42, there is a tie between Node 2 and Node 3, which is broken randomly and
Node 2 takes over the responsibility of playing its rhythmic pattern as a solo.
In bar 44, and then in 46, Node 1 mutates towards a closer variant of Node
2. This is followed by a tie again in bar 63, which is then broken randomly in
favour of Node 3. In bar 65, Node 2 mutates away from Node 3, again due to the
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nature of our utility function, as described above. It is clear from Fig. 3 that the
nodes actively search for closer variations of the soloist’s rhythmic pattern via
mutation, and the node (that is sometimes decided upon by a tie break) with
the closest match, becomes the soloist in the next bar, provided this node wins
the auction.

Discussion Based on the Utilities of Nodes. Fig. 4 plots the utilities that
each node derives from its respective rhythmic pattern in each bar, as individu-
ally evaluated by these nodes using the utility function described in Section 3.1,
and the sum of these utilities. These figures correspond to the snapshots of the
pieces from the system (Figs. 2 and 3).

As observed with the corresponding piece (Fig. 2), for the case when a = 0.0,
the transfer of control happens at every time step, thus a soloist node only
ever plays its rhythmic pattern for one bar. The auction held by the soloist
immediately leads to the bidder who was not the previous soloist, to take over
the control from the soloist, thus becoming the new soloist, but for only one bar.
This happens due to the nodes not considering using the knowledge about the
soloist’s rhythmic pattern, and thus having a utility and bid of u = c = 2.0, if
they were not the soloist in the immediate previous time step. The process of
such transfers of control carries on. Note that all possible mutations of rhythmic
patterns for a bidder who was not the soloist in the previous bar, have the same
value of 2.0. Thus, the agent has no pressure towards coming up with bids of
higher value. We see however, that there is not enough time for the bidders
to search (via mutation) for new rhythmic patterns. This is because when a
mutation results in a new rhythmic pattern, the previous rhythmic pattern has
its value equal to the value of this new rhythmic pattern at all times, be it in
the round after the round in which the node was the soloist (the value for both
rhythmic patterns is 0.0 in this case), or the rounds after this (value is 2.0).
As such, the rhythmic patterns with which the nodes started with in the first
bar, either as a soloist or bidder, remain as the rhythmic patterns associated
with these nodes forever, as can also be observed in the corresponding piece
for the a = 0.0 case (Fig. 2). In effect, coherence remains an issue, since the
initial rhythmic patterns of the nodes will not necessarily be slight variations
of each other. Moreover, the fact that nodes play their rhythmic patterns for
only one bar, goes against the whole idea behind playing solos, unless of course
playing for only one bar were to be a requirement from the composition. Most
importantly, however, the agents are not able to actively participate to explore
the composition. The current utility function with a = 0.0 is thus not suitable
for being used when participants are to play rhythmic solos within a band-like
setting. Using this, there would be maximal circulation of control (at every bar,
thus no solo being played), the musical output will be incoherent, and there
would be no active participation.

For the case when a = 1.0 however, the playing of solos and transfer of control
over time happens in a more favourable manner with respect to the envisaged
goal of decentralised interactions producing a resultant globally coherent piece of
music, or decentralised coherent circulation. Fig. 4(b) shows spikes in the node
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(a) a = 0.0

(b) a = 1.0

Fig. 4. Utilities of nodes (a) without (a = 0.0) and (b) with (a = 1.0) knowledge about
the soloist’s rhythmic pattern

utilities, which indicate the start of nodes playing their rhythmic pattern as solos,
and these utilities depleting over time. Whilst the soloist node’s rhythmic pattern
utility depletes, the bidder nodes have their artificial agents search towards slight
variations of the soloist’s rhythmic pattern, as indicated by the increase in their
utilities over time. As a result, the soloist gets to play its rhythmic pattern as a
solo for some time and then hands over control to the bidder managing to search
and bid to play the closest variation of the soloist’s rhythmic pattern, as observed
with the corresponding piece in Fig. 3. The flat regions in the utility graphs
(Fig. 4) indicate agents associated with bidder nodes having found rhythmic
patterns at a distance Dl of ελ from the soloist’s rhythmic pattern. Note that
there are always multiple rhythmic patterns that the agent could come up with,
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all of which differing by distance ελ, or indeed differing by a given distance
from the soloist’s rhythmic pattern, which can be seen as the flexibility in the
composition that may be explored by a participant based on their preferences,
e.g. preferring one rhythmic pattern over another, even though these rhythmic
patterns yield the same utility as assigned to them by the device. The artificial
agents mimicking participants have thus been enabled to play rhythmic solos in
a decentralised and coherent fashion via the consideration of a utility function
that takes the knowledge of the soloist’s rhythmic pattern into account. The
agents must now, as compared to the case where a = 0.0, actively participate to
search for a rhythmic pattern, and upon being the soloist, play them. The solos
that get played adhere to the composer defined boundaries as defined in Section
2, and the system maintains a decentralised coherent circulation. As mentioned
before, having a decentralised coherent circulation shows that the system enables
the agents to play through the composition effectively.

It would be interesting to consider how the increase in the number of nodes
affects the resultant behaviour of the system, with nodes possessing a utility
function such as the one defined in this paper, for the case with a = 1.0. We
leave this as future work.

4.2 SoloJam with Human Users

SoloJam with human participation has also been implemented. As mentioned
before, human participation involves a human user using a device that allows
for the exploration of the composition. The iPod Touch devices that we use
for human participation, one for each human user, have a thread each in the
Computation module representing them. Upon shaking the device, the signals
from this shaking are received by the associated thread and converted into a
rhythmic pattern, which becomes the candidate rhythmic pattern for the next
bar for the node in question. The human user, unlike the agent, may change the
rhythmic pattern in any bar when part of a soloist node.

A video of SoloJam with human participation can be found online2. The
video shows three people using iPod Touch devices to play through the piece,
playing rhythmic solos as soloists, and bidding for playing slight variations of
the soloist’s current rhythmic pattern as bidders, whenever a conflict arises. Fig.
5 shows a labelled screenshot of this video. The Max/MSP patch (our Sound
interfacing module described in Section 3.2) in the background visualises the
utilities (three horizontal bars at the top right part of the patch) for each node.
The top horizontal bar is the utility associated with the person on the right
(Node 1). The middle horizontal bar is associated with the person on the left
at the back (Node 2). The lower horizontal bar is associated with the person on
the left in the front (Node 3). The reader is advised to focus on the rhythmic
patterns resulting from the users shaking their devices and the horizontal bars
representing utility for each node. In the video, it is possible to see that the
transfer of responsibility happens when the soloist node’s utility goes below the

2 http://fourms.uio.no/downloads/video/SoloJam.mov

http://fourms.uio.no/downloads/video/SoloJam.mov
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Fig. 5. Labelled screenshot of the video of SoloJam with human participation

utility of the highest bidder node. Furthermore, the bidder nodes have their
utilities increased, as and when they come up with closer (in terms of hamming
distance) variations (but not exact copies) of the soloist’s rhythmic pattern.

The circulation of solos in this particular video follows the sequence: Node 1
→ Node 2 → Node 3 → Node 2. Node 1 starts off with the control of the
rhythmic feature in the music as a soloist and sets a rhythm. The node then
joins in with the others in influencing some other musical features not needing
conflict resolution3. In every bar, the soloist holds an auction. Thus, the device
which is part of Node 1 holds an auction, as long as Node 1 is a soloist. At some
point during the course of the piece, Nodes 2 and Node 3 individually decide
on controlling the rhythmic feature, whilst Node 1 still has control, resulting
in a conflict. The conflict gets resolved as Node 1 receives Node 2’s bid with a
utility value higher than that offered by Node 3, making Node 2 the soloist. After
becoming the soloist and setting the rhythm, Node 2 joins in with the others
to influence other musical features. While Node 2 still is the soloist, Node 3
feels the urge to become the soloist and starts shaking the device. This leads
to Node 3 producing rhythmic patterns which are closer matches to Node 2’s
rhythmic pattern, increasing Node 3’s bids for becoming the soloist. Node 3 takes
over eventually, while the others continue influencing other musical features.
Moving further with Node 3 as the soloist, others then decide to control the
rhythm as well, with Node 2 again taking over as the soloist. This is followed by
all participants playing other musical features. Thus, our approach encourages
human users to come up with rhythmic patterns that are slight variations of the

3 These other features are part of an extension to the work being presented in this
paper, so we limit their discussion.
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soloist. The closest bidder is then aptly rewarded by this bidder becoming the
next soloist, once this bidder wins the auction held by the current soloist.

4.3 The Relationship between SoloJam and Typical Modes of
Communication in Bands

Avoiding conflicts in a band with trained musicians can take various forms.
Consider the case of a jazz band. In such a band, the band members communicate
both before and during the performance [12]. Communication that occurs during
the performance is primarily non-verbal, which may refer to bodily gestures, such
as lifting the instrument, or even a barely noticeable nod or a glance. Further,
non-verbal communication between musicians occurs through the musical sound,
e.g. by responding to phrases by other musicians with a “matching” phrase, or
by adjusting the intensity, for instance to signal the transition to a new section.

One particular communication task in a jazz band is to signal the beginning of
a solo. The order of soloists and/or the start time and duration of each solo may
be pre-planned, but this is not necessarily the case always — another possibility
is that the soloist and the time of the solo is decided during the performance. In
this case, it is quite common that a band leader decides when the next solo be
played and who might play it, and signals this through an indicative gesture [1].
This can be seen as a form of centralised control, and is indeed a predominant
mode of communication. It is clear that this mode of communication violates the
fundamental requirement of decentralised control within the interactive musical
scenario considered in the paper. If indeed one participant were to control the
circulation of solos, that participant would need greater musical training than
the others, which further violates our assumption about the participants of our
system having little or no musical training.

On the other hand, there are bands with trained musicians which have no
pre-defined leader. In this case, the selection of the next soloist may be based
on a musical or gestural initiative of the current or would be soloist, or based on
the initiative of one or more (e.g. forming a consensus) of the other members of
the group. It is also possible for certain members in the band to have a greater
impact on the choice of the next soloist, as compared to others. In addition
to such gestural cues, the notion of “empathetic attunement” [12] can also be
a possibility. This notion suggests that people can get musically attuned to
each other in time, and can thus seamlessly and coherently play solos, as if they
individually know what the group wants, thus spending very little time in explicit
communication. One can view these modes of communication between band
members, as a decentralised way of resolving conflicts which could arise if such
communication were not present. Such decentralised control requires musical
training. However, a group that is not trained musically will need assistance for
decentralised interactions, which is where our work comes in.

Remarkably, the modes of communication mentioned above have much in
common with interaction mechanisms that have thoroughly been investigated in
the social and economic sciences, and indeed markets, albeit not within a musi-
cal setting. For example, if gestural initiatives represent expressions of interest
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in performing solos, one could see them as equivalent to bidding for the position
of soloist. If the initiatives are a form of consensus, they can be seen as votes
resulting in a socially acceptable choice of soloist. Thus, the commonalities be-
tween the social setup of a band, and social interaction schemes studied in the
social and economic sciences, have much to offer towards formulating interac-
tion schemes for a band consisting of members with little or no musical training,
in order to realise decentralisation. Such schemes forming part of the intelli-
gence in devices helps enable the requisite type of participation, as we show via
market-based control. It would indeed be interesting to explore other interaction
schemes, for example, voting to choose a soloist, or indeed other auction types,
as part of future work.

4.4 Flexibility of SoloJam

The presented system is extendable beyond the currently presented implemen-
tation, both in terms of musical output and the type of responsibility for which
conflict resolution via auctions may be useful. For example, the solos in the
present system could take the more traditional form of melodic phrases rather
than a sequence of rhythmic patterns. This would require small changes in the
representation of musical output, and correspondingly in the utility function,
e.g. replacing the bit-string by a string of integer midi notes, or real-valued fre-
quencies. Further, instead of bidding for the position of soloist, the bid could
be for the control of some larger structure in the music. For example, bidding
to decide a chord progression with a duration of multiple bars, or to decide
the downbeats of a drum-pattern. We have already implemented the latter as
one extension to the SoloJam system presented in this paper. An online video
example4 shows three agents bidding for control of a single drum module. As in
the system presented throughout this paper, the musical output is represented
by bit-strings, but rather than controlling each individual beat directly, the bit-
strings are mapped to downbeats in the rhythm. A heuristic is implemented to
generate full drum patterns from the downbeat pattern. As a consequence, a
dynamic musical output is obtained, while SoloJam ensures coherence in the
downbeat patterns as the control circulates across nodes.

5 Conclusions

We have outlined and discussed the issue with enabling participants with little
or no musical training to play together in the interactive music system SoloJam.
An approach inspired by the economic sciences, in particular markets, specif-
ically considering the concepts of auctions and utility, is proposed in order to
address this issue. Nodes that possess the capability of evaluating the deserved-
ness of being able to take on the responsibility of playing the solo starting in
the next bar (via a utility function), and auctioning and bidding capabilities,

4 http://fourms.uio.no/downloads/video/SolojamDownbeat.mov

http://fourms.uio.no/downloads/video/SolojamDownbeat.mov
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are shown to exhibit decentralised co-ordination when circulating solos in Solo-
Jam. Furthermore, a careful design of the utility function enables participants
(simulated by artificial agents) to come up with an output that is musically co-
herent. This is highlighted by the manner in which the agents, as bidders, search
towards higher utility deriving variants of the soloist node’s rhythmic pattern.
These variants, in fact, are slight variations of the soloist node’s rhythmic pat-
tern. We further exhibit human user participation within SoloJam supporting
our approach. In effect, decentralised coherent circulation that results from our
market-based approach, demonstrates the effectiveness of the approach towards
enabling participation within SoloJam. Having proven the concept, our next step
will be to conduct usability tests with human participants. In addition to test-
ing the system with participants with little or no musical training, we are also
interested in seeing how music students and professional musicians interact with
the system.
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Abstract. This research focuses on identifying and modelling performers’ 
preferred strategies for achieving expressive performances. This paper reports 
on the results of analysis of a professional pianist's practice session of Chopin's 
2nd Ballade, Op. 38. The analysis focused on his approach to balance voices 
within polyphonic texture. The model for balance of voices is a weighted 
average of several renditions of the excerpt. Differences of average balance of 
voices are statistically significant, which suggests that each voice varies around 
a preferred, overall balance. Tukey HSD reveals that each of the four voices of 
the excerpt (beginning of the musical work) had been performed within an 
independent dynamic range. New models representing similar renditions were 
created using clustering techniques. Those models can then be transformed into 
new, reshaped performances.  

Keywords: Musical Gesture, Music Performance, Expressiveness, Piano, 
Deliberate Practice. 

1 Introduction 

From a creative perspective, music encompasses thoroughly crafted structures and 
patterns, which we call here organised sound. From an interpretative perspective, 
those structures are recognised by performers as graphic signs in the musical score 
and by listeners as sonic signs, from which symbols (complex meaning) may arise [1]. 
The process of interpreting a score has been studied as immanent analysis (of those 
signs), poietics (composer and meaning), and esthesics (listeners and cognition) [2]. 

Within this paper, the balance among voices and the overall contour of dynamics 
are, thus, the signs being analysed. The research focuses on modelling the manner 
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through which contours of dynamics are reshaped in each new performance. Thus, 
this research follows the approach suggested by literature on musical expression as 
behaviour, which recommends to study differences among performances [3].  

1.1 Musical Gesture, Melody Lead, and the Performance of Polyphonic 
Texture 

The theory of Musical Gesture proposes that a rhetorical construction of musical 
meaning emerges from humans’ "ability to recognize the significance of energetic 
shaping through time" [4]. Polyphonic texture presents concurrent melodic lines that 
can be emphasised at will by the performer. It was, thus, assumed in this paper that 
the performer may change the emphasis of melodic lines within the polyphonic 
texture whilst practising. Within the scope of this paper, only differences in dynamics 
were utilised to compare melodic lines. Therefore, the performer's reshaping of the 
balance among voices was studied here in regard to differences in dynamics measured 
as MIDI-velocity values of notes within the melodic lines of a polyphonic texture.  

In addition to differences in dynamics, louder melodic lines may usually be 
anticipated as a result of piano hammer action on the strings as well as performers' 
intentional use of asynchronous playing as expressive strategy [5], [6]. The amount of 
overlap has also been reported as an expressive strategy adopted by organists [7].1 
The ability to perform polyphonic textures is highly relevant for keyboard musicians. 
New approaches include deliberate practice to identify strategies to enhance the 
necessary skills to perform polyphonic texture [8]. 

1.2 Deliberate Practice along with Ecological Validity 

A professional pianist with more than 20 years of performance experience has 
recorded the first bars of Chopin's Ballade Op. 38 on a digital piano eleven times.2 In 
order to seek ecological validity [9], the only direction given to the performer was to 
practise these bars as he would normally do. He was allowed to define his own goals, 
and to practise the preferred excerpt as many times as he wished [10].3 No specific 
information about the goal of the research was given. The performer could listen to 
the recorded excerpts, and was asked to choose his preferred one. According to the 
performer, the goal of his deliberate practice was to intuitively find "the ideal balance 
of dynamics and phrasing to communicate the desired expression" during each 
rendition of the excerpt. He preferred his last performance, recording session 11. 

                                                           
1 "Variations in the amount of overlap appear to be the most widespread and consistent 

strategy used by organists to emphasize a voice, at least in the experiment described here. 
Specifically, a voice was played in a more detached manner when it was emphasized than 
when it was not." (pp. 57-8) [7]. 

2 The same excerpt has also been utilised for researching asynchronous playing [5]. 
3 At first sight, the concepts of ecological validity and deliberate practice seem to be mutually 

exclusive for one is actively observing oneself during the deliberate practice session.  
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2 Methods 

The main hypothesis of this paper is that the pianist segregates melodic lines within 
different dynamic ranges. In order to compare performances, two models were 
devised: one containing score data, and another representing MIDI ∆velocities.  

Three kinds of differences in dynamics were considered in this study: (1) within 
voices, (2) between voices, and (3) centered in relation to all other notes. In case of 
comparisons within a voice, each note velocity value is subtracted from all other note 
velocities in that voice, as in Table 2, whereas in comparisons between voices, each 
note velocity value is subtracted from all concurrent notes, as in Figure 2.  

The statistical significance of differences in average ∆velocity have been computed 
using ANOVA, and Tukey HSD post-hoc tests. Distances between clusters of overall 
dynamics contour were computed using Ward’s agglomerative hierarchical clustering 
method [11].4 Ward's method considers the minimal variance within the cluster before 
including members [12]. The minimal variance produces clusters formed by samples 
more similar to one another than those produced by other clustering techniques. 

2.1 Score Model  

The score model included the first 73 notes from the excerpt. It contains information 
regarding pitches and onset times, as organised into four voices. Information 
regarding metric accents and durations has not been considered. The voices are 
labelled as Upper/Lower voice (melodic line) on the Right/Left Hand.   

Table 1. Score model - initial 73 pitches on the score, organised into four voices 

Voice 0.3 0.4 0.6 1.1 1.3 1.4 1.6 2.1 2.3 2.4 2.6 3.1 3.2 3.3 3.4 3.6 4.1 4.3 4.4 4.6 5.1 5.3 5.4 

URH C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 E4 D4 C4 F4 D4 C4 A4 F4 G4 G4 — A4 

LRH 
       

A3 A3 Bb3 Bb3 Bb3 — Bb3 A3 F3 F3 E3 C3
F4 E4 D4 

C4 
       Bb2 Bb2 Bb2 

ULH C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 — C3 C3 Bb2 A2 A2 A2 D2   F2 

LLH        F2 F2 F2 F2 F2 — F2 F2   C2 D2 G1 C2 C2 F1 

 

 

Fig. 1. Data from the score model, represented as a score. Note stems are presented as follows: 
URH upward on G-clef, LRH downward on G-clef, ULH upward on F-clef, LLH downward on 
F-clef. Editions [14] and [16] present a single slur (phrasing arch) over this excerpt. 

                                                           
4 Ward’s distance is “an ultrametric, or tree distance, which defines a hierarchical clustering 

(and also an ultrametric topology, which goes beyond a metric geometry) (...) differs from a 
distance in that the strong triangular inequality is instead satisfied.” [12]. 
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As discussed earlier, the fundamental hypothesis is that melodic lines were 
performed within distinct dynamic ranges. The recognition of melodic lines in the 
score, however, depends upon interpretation [13]. In this research, a four-voice model 
has been devised, and notes were organised as presented in Table 1 and Figure 1.  

Nevertheless, melodic lines that may arise from rules of counterpoint and voice-
leading (four-part writing) do not necessarily conform with any four-voice model. 
This is the case of the beginning of Op. 38. Just after the highest point (both as pitch 
height and dynamic level), in measure 3.6, only three notes continue their melodic 
path (4.1 and 4.4). In 4.6, five pitches occur at the same time. Moreover, from 4.6 to 
5.4, another melodic line could be recognised (f-e-d-c), which are slurred in [15], 
which suggests their independence and facilitates their recognition by the performer.   

2.2 Empirical Models of Each Rendition 

The empirical model of each rendition of the excerpt consists of two values for each 
note, namely onset velocity minus the mean velocity for the entire excerpt,5 and a 
proportional onset time. Thus, velocities are centred and onset times become invariant 
to overall musical tempo. The proportional onset time is a (L1) normalisation in 
which the entire proportions of onset add up to one. The value of each bar (measure) 
is 0.004. Table 2 presents a model with velocities centred on each voice, instead of 
the entire excerpt. Also, the proportional onset time is multiplied 100 times in Table 2 
which eases reading. Thus, in Table 2, each bar is located around multiples of 0.4. 
Rubato and gogic accents may change the exact position in time. 

3 Results 

This paper reports three kinds of results: (1) Analysis of Variance (ANOVA) suggests 
that each voice has been performed in distinct dynamic ranges (mean MIDI-velocity); 
(2) Hierarchical Clustering reveals 4 cluster centres with average renditions, which 
can be rendered as new, reshaped performances; and (3) a representation based on 
interpolation of ∆velocities is offered as a visual feedback for performers. 

3.1 Balance Among Voices  

The model for balance of voices is an average of the first ten renditions of the excerpt. 
ANOVA (F = 128.43, df = 3, p < 0.001) resulted in statistically significant differences 
between average ∆velocities, which suggests that voices vary around a preferred, 
overall balance. Tukey HSD confirms that each of the four voices had been performed 
within an independent dynamic range. The differences between all voices were 
statistically significant (p < 0.01, and LRH x LLH p < 0.05).  

                                                           
5 MIDI velocities range from 0 to 127. ∆velocity values are defined as the MIDI velocity value 

of a note subtracted from the mean of the velocities of the set of all notes to which the note 
belongs. Thus, ∆velocity values can be negative. 
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Table 2. Empirical model for each voice of all recording sessions. Below are presented the 
average ∆velocity and the proportional onset time (t) of the first 43 pitches of the excerpt. The 
actual model includes all 73 pitches from the excerpt. MIDI velocity values are centered on 
each voice by subtracting the mean velocity, then values are averaged on each note. 

 0.3 0.4 0.6 1.1 1.3 1.4 1.6 2.1 2.3 2.4 2.6 3.1 3.2 3.3 3.4 

URH C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 E4 D4 C4 F4 

 -24.6 -19.1 -16.8 -9.84 -7.93 -4.84 -4.20 -3.20 0.62 2.80 6.43 10.3 7.89 12.8 16.8 

t 0.001 0.090 0.230 0.314 0.452 0.537 0.679 0.787 0.944 1.031 1.172 1.263 1.364 1.397 1.490 

                

LRH        A3 A3 Bb3 Bb3 Bb3  Bb3 A3 

        -11.0 -6.52 -0.79 -2.25 -1.34  -8.70 9.21 

t        0.789 0.946 1.032 1.173 1.263  1.396 1.491 

                

ULH C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3  C3 C3 

 -4.89 -6.07 -4.34 2.0 4.57 5.02 1.57 -6.62 -6.16 -3.16 -0.52 0.57  4.29 1.75 

t 0.002 0.092 0.230 0.315 0.453 0.540 0.683 0.792 0.948 1.036 1.175 1.270  1.400 1.493 

                

LLH        F2 F2 F2 F2 F2  F2 F2 

        -7.42 -4.88 -4.15 -4.06 -3.42  0.40 1.03 

t        0.793 0.948 1.036 1.176 1.269  1.400 1.493 

 

 

Fig. 2. Average model for ∆velocity of the first ten performances. In this model, the average 
velocity for each simultaneous set of notes is subtracted, which separates the balance of voices 
from the overall contour of dynamics. The model includes all 73 pitches from the excerpt. 
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When the pitch difference between an inner voice and the main melody became 
small (e.g. major second, in 3.3), the balance among voices changed completely. The 
pitch of the secondary voice that comes closer in pitch to the main melody becomes 
much softer. This sudden change of dynamics is soon reverted as the pitch difference 
increases. This exception to the model can be explained by the Gestalt principle of 
pitch proximity [17]. In order to maintain their independence, the pitch proximity 
needed to be compensated with a change of balance among voices.  

 

 

Fig. 3. The four curves represent clusters of averages of overall contour of dynamics of practice 
sessions. Cluster 1 (dotted) and Cluster 2 (small dashed) represents sessions 3, 6 and 1, 2, 5 
respectively, whereas Cluster 3 (long dashed), sessions 7, 8, 10; and Cluster 4 (solid) sessions 
4, 9, 11. Session 11 was the preferred rendition, according to the performer.  

3.2 Clusters of Overall Contour of Dynamics 

Ward's agglomerative hierarchical clustering reveals at least four cluster centres in 
regard to overall contour of dynamics, as depicted in Figures 3 and 4. The first cluster 
contains data samples representing the overall contour of dynamics from sessions 4, 
9, and 11. Those three samples are, thus, very different from all others and very 
similar to one another. Samples from sessions 7, 8, and 10 form another cluster. 
Sample M represents the average of data samples from sessions 1 to 10. Therefore, all 
samples with exception to the preferred one (sample 11). Samples 4, 7, 8, 9, and 10 
clearly differ from the mean (sample M), whereas samples 1, 2, 3, 5, and 6 seem, in 
comparison, closer to the mean. The other two clusters are formed by samples 1, 2, 
and 5, and samples 3 and 6, respectively. Thus, in the first half of the recording 
session, with exception of session 4, the overall contour differed from the second half. 
It can be inferred that the performance of sample 4 may have influenced the contour 
of samples 9 and 11.  

In Figure 3, there is a pair of local maxima, with the first local maximum situated 
between 0 and 0.005; and another between 0.015 and 0.020 of the proportional onset 
time. Arguably, it can be inferred that Clusters 1 and 2 tended to present strong 
difference between the first and second local maxima, whereas Clusters 3 and 4, seem 

 

-12 
-9 
-6 
-3 
0 
3 
6 
9 

0 0.005 0.01 0.015 0.02 0.025 

Av
er

ag
e ∆

ve
loc

ity
  

L1-Normalised onset time  



 (Re)Shaping Musical Gesture 465 

 

to exhibit two local maxima with a local minima between them. Those results suggest 
that in earlier renditions the performer sought a different contour from the later ones.  

3.3 Representation of Combined Contours for Each Voice 

The model that represents the contour of each voice consists of four polynomial 
fittings on note velocities and normalised onset times. This representation provides an 
overview that may serve as visual feedback for performers. In this particular study, 
the performer preferred the smoothest, most gradual crescendo, contour in the main 
melodic line, along with the most accentuated pair of local maxima in overall contour.  
 

 

Fig. 4. Hierarchical clustering of samples of overall dynamics contour using Ward's distance. 
Cluster 4 (formed by samples 4, 9, and 11) presents the closest samples to one another, at the 
maximal distance of 2; distance 21 to the Cluster 3 (samples 7, 8, and 10); and distance 25 to 
the other Clusters.  

Figures 5, 6, and 7 depict the three representations of the four-voice model of 
dynamic contour. The top, bold line represents the main melodic line (URH), which 
was the most prominent (loudest) in all samples. The dotted line represents the voice 
performed by the lower pitches of the right hand (LHR, often played by the thumb 
and index finger), and this voice was usually the softest in dynamics among all 
voices. The small dotted lines represent the upper and lower voices performed by  
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Fig. 5. Average of the first 10 practice sessions. Each voice is represented by a curve. 

 

Fig. 6. Practice session 4, which exhibited the similar patterns of dynamic contour 

the left hand (ULH and LLH, respectively). The ULH was slightly louder than LLH. 
The differences in overall average ∆velocity are +16.6 URH, -12.0 ULH, -0.6 LRH, -
5.9 LLH. Those differences are statistically significant (as discussed earlier), and thus 
it can be inferred that voices were performed in distinct dynamic ranges.   

The largest differences in dynamics occur between URH and ULH, and the most 
subtle differences occur between LRH and LLH. This seems to indicate that the 
pianist performed the lines consistently maintaining this balance, for it occurs 
independently from the overall dynamic contour.  
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Fig. 7. Practice session 11, which was the preferred sample by the performer 

4 Conclusion 

Results suggest that (1) the pianist performed each voice in a different dynamic range; 
(2) the preferred contour sought during deliberate practice can be traced with the four 
cluster centres and that it favours higher variation in overall dynamic range; (3) the 
preferred performance may combine minimal variation in the main melody with 
maximal variation in the overall dynamic contour; (4) the pianist follows a pattern by 
keeping the balance among the four voices (URH > ULH > LRH > LLH) 
independently from the overall dynamic contour. 

5 Discussion and Applications 

The approach presented in this study could be used to follow the evolution of 
deliberate practice and, thus, be used both as pedagogical tool and as a resource of 
interpretative possibilities for the professional performer. For the teacher and the 
developing musician, it can be used as an aid to refine listening and interpretive skills 
for it allows the visualization of subtle differences in phrasing that are generated by 
different balances among voices and dynamic contours. In each new performance, by 
(re)shaping the dynamic balance of voices and visualizing the resulting dynamic 
contours, pianists can receive immediate feedback on the differences among his 
various attempts in search of his ideal interpretative version. The software interface 
also allows reshaping the balance of note velocities by the user. It serves as a 
theoretical feedback for understanding subtle changes within the balance among 
voices and of overall dynamic contour. 
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Multimodal Analysis of Piano Performances Portraying 
Different Emotions 
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Abstract. This paper discusses the role of gestural vs auditive components of a 
piano performance when the performer is prompted to portray a specific emo-
tion. Pianist William Westney was asked to perform a short passage from a spe-
cific piece of music 6 times, 3 times without making any deliberate changes, 
and 3 times where the music was intended to portray the emotions happy, sad 
and angry, respectively. Motion-capture data from all of the performances was 
recorded alongside the audio. We analyze differences in the data for the differ-
ent emotions, both with respect to the size and shape of the pianist’s movements 
and with respect to the sonic qualities of the performances. We discuss probable 
explanations of these differences. Although differences are found in both  
the gestural and auditive components of the performance, we argue that the ges-
tural components are of particular importance to the performer’s shaping of a 
musical expression. 

Keywords: Music Informatics, Music Performance, Aesthetics, Gesture,  
Motion Capture. 

1 Introduction 

Several studies have been concerned with how music communicates emotions. Ac-
cording to Juslin [1], music elicits emotional responses in listeners, and performers 
are able to communicate anger, sadness, happiness and fear to listeners through tem-
po, sound level, frequency spectrum, articulation and articulation variability. It has 
also been shown [2] that the gestures of musicians communicate emotions efficiently. 
The current study proposes to compare the auditive aspects of a music performance 
with the gestural, analyzing how both vary across different music performances in-
tended to communicate different emotions. 

While the present study concerns piano performance, the movements described 
here have a lot in common with the movements of performers playing percussive 
instruments and to a large extent with the movements of musicians in general. Ges-
tures are by definition movements that are expressive, but the way they are expressive 
varies. In relation to music, some gestures, which we will denote as expressive ges-
tures, express something in addition to the produced musical sounds, they may em-
phasize certain moods or add a dramatic pathos to the performance. Gestures in a 
performance can, however, also be effective in the sense defined by Wanderley [3]: 
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An effective gesture participates in defining the sound. (In this sense, one can say that 
it is not an expressive movement in itself, but the movement participates in producing 
music, which is, strictly speaking, a means of expression) As an example of effective 
gestures, Dahl [4] has investigated the preparatory gestures of drummers and showed 
that the drummers move the hand and the tip of the drumstick in a fishtail movement 
in order to gain the necessary height to perform certain notes. Many performance 
gestures, e.g. the movements of the pianists' arms and hands, are at the same time 
expressive and effective in the sense that they are both practically needed for the per-
formance of certain notes and give the impression of being infused with a certain 
energy or emotion. Other gestures, such as head and facial ones may, however, pri-
marily be regarded as expressive - they are apparently mainly part of a visual com-
munication process with the audience. In the work of Davidson [5] (as well as the 
related work she provides a review of), facial gestures are argued to be an ‘added 
value’ on the emotions expressed by the pianist’s entire torso, which, however, also 
seems to trace the phrase structure, dynamics and rhythm of the piece played. In this 
study, we consider gestures that may be both expressive and effective, but also com-
ment on certain gestures that are arguably only expressive. 

In February 2010, the Nordic Network for the Integration of Music Informatics, 
Performance and Aesthetics1 held a workshop in Oslo, involving a session at the 
fourMs laboratory (Department of Musicology, University of Oslo) hosted by Profes-
sor Rolf Inge Godøy and postdoctoral researcher Alexander Refsum Jensenius. Dur-
ing this session, Pianist William Westney was prompted by the workshop participants 
(including the authors of this paper) to perform a short passage from “That Old Black 
Magic” (written by Harold Arlen, arranged for the piano by Cy Walter2) 6 times, 3 
times without making any deliberate changes (denoted normal in the following), and 
3 times where the music was intended to portray the emotions happy, sad and angry, 
respectively3. The performances were made on a Yamaha Disklavier. Motion-capture 
data from all of the performances was recorded alongside the audio. In this paper, we 
analyze differences in the data for the different emotions, both with respect to the 
pianist’s movements, with the hand movements as an example, and with respect to the 
sonic qualities of the performances. When relevant, the emotions chosen are classified 
according to a two dimensional model [6], with arousal (the level of energy in the 
emotion) and valence (whether the emotion is positive or negative).  

The motion capture equipment was a Qualisys motion capture system consisting of 
a nine-camera Oqus 300 system and a 200 fps grayscale Point Grey camera. Data was 
streamed in real time through OSC-protocol via UDP/IP to MAX/MSP/Jitter software 
and synchronized through a MOTU timepiece allowing synchronous playback of 

                                                           
1 See www.nnimipa.org for more information on this research network. 
2 Sheet music for this passage can be found here: http://www.cywalter.com/ 

archives/SheetMusic/ThatOldBlackMagic/HTMLs/Page2.htm (retrieved 
by April 29, 2013). 

3 Videos, alongside MoCap visuals of the three emotion-laden performances can be found 
under part 3 of [11], http://nnimipa.org/JWG.html 
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analog, motion, video and audio data [7,8]. MoCap data of 23 different points4 on 
Westney’s head, torso, arms and lower body are available. 

2 Audio Analysis 

For the analysis of the audio, 4 different features were estimated from the sound files: 
the sound pressure level (SPL), according to the ISO-226 standard (2003); the dynam-
ics, calculated as 90% of the max volume minus the median, divided by the median; 
the spectral centroid (SC) - a relative measure of the strength of the higher partials 
(related to brightness); and the sensory dissonance (SD), calculated as the sum of all 
overtone pairs that cause fluctuations, weighted with the amplitude of the overtones 
[9]. The latter is related to musical tension.  

 

Fig. 1. Mean (solid) and standard deviation (dotted) of Sound Pressure Level (left), Dynamics, 
Spectral Centroid and Sensory Dissonance (right). Dynamics are calculated globally, so the 
value has no mean or standard deviation. 

In Figure 1, the four features, as calculated from the six performances are shown. It 
can be seen that the three normal performances have very much the same values of 
these features, while the ‘emotional’ performances have varying values. In particular, 
the angry and, to a lesser degree, the happy performances have higher sensory disson-
ance, sound pressure level and spectral centroid, but less dynamics, while the sad 
performance has lower dissonance, loudness and brightness and more dynamics than 
the normal performances. The lower degree of dynamics in the angry and happy per-
formances is obtained because very little of the audio has low loudness, thus restrain-
ing the dynamic range. Similarly, the sad performance has more dynamics, because 
even though most of the audio has low loudness, a few very loud notes occurred. In 
addition, the tempo of the six performances were estimated, showing that the angry 
and, to a lesser degree, the happy performances were played significantly faster  
(154 & 138 BPM respectively), and the sad performance slower (94 BPM) than the 

                                                           
4 http://fourms.wiki.ifi.uio.no/MoCap_marker_names. Some of these are 

omitted in the current study. 
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normal performances (all three at 104 BPM). (All tempi given as measured at start of 
piece.) 

3 Video Analysis of Hand Movements 

As an example of how the movements of a performer can be analyzed, we consider 
the movement of two points on William Westney’s body (out of the 23 that were 
mapped by the Motion Capture system), namely the right and left hand inwards mark-
ers (RHAI and LHAI), placed on upper part of the hand under the index finger of each 
hand. (The movement of Westney’s head will be discussed in section 4.) The move-
ments of these are shown in Figure 2 for the six performances. (The y-axis indicates 
the horizontal distance from the keyboard, whereas values on the x-axis indicate the 
horizontal position along the keyboard direction. The path of each graph shows how 
the position of the hands shifts over time.) The three normal performances have ap-
proximately the same gestures, which is shown below. Some of these are simply re-
lated to the performance of specific notes, others are effective, e.g. the movement of 
one hand away from the keyboard in order to make room for the other hand.  

For the emotion-laden performances, the movements seem (in Figure 2) to be larg-
er for angry and happy compared to the three normal performances, but smaller for 
sad, supporting the idea that angry and happy prompt larger gestures in the perfor-
mance than sad does. The angry and happy performances also seem to have more 
preparatory movements (made before starting the performance, at the vicinity of 'start' 
in Figure 2) at the start and end of the performances, again supporting the idea of 
angry and happy as more lively gestures than sad. Some of the differences (such as 
the lack of the arc in the normal performances) may be attributed to the performer 
changing his approach. The more detailed analysis given in the sections below reveals 
interesting differences between the movements made during the different emotions. 
When reading the following sections, it is, however, important to keep in mind that 
the standard deviation is generally too large, and varies too much between different 
conditions, to allow for any statistical significance of the differences between the 
emotions. More data, i.e. more musicians and more pieces of music would be neces-
sary in order to perform a study with statistically significant differences. 

3.1 Height, Width and Depth of Movements 

In order to measure the relative size of the hand movements in the different perfor-
mances, we detect the positions in each of the three spatial dimensions where the 
performer changes direction. For all positions, we measure the distance between the 
lower and higher points. Finally we calculate the mean of these distances for each of 
the three dimensions. 

Figure 3 shows the mean movement distances along the x- y- and z-axes for each 
of the six performances. 
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Fig. 2. Movement of RHAI and LHAI markers 

 

Fig. 3. Mean movement distances along the x- y- and z-axes for each of the six performances. 
The left figure shows the values for the LHAI markers, the right figure for the RHAI markers. 
The standard deviation (not shown) is generally as high as or higher than the means. 

In all of the performances, the right hand displays larger movements than the left if 
measured along the vertical dimension (the y-axis), whereas the left hand in general 
has ‘wider’ movements, i.e. the largest movements when measured along the x-axis. 
Both of these facts can be explained in relation to the piece of music being played: 
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The left hand mainly plays accompanying chords, whereas the right hand mainly 
plays the melody. The left hand moves to the right of the right hand at one passage, 
while the right hand typically stays within the same octave on the keyboard. The left 
hand stays closer to the keyboard to make the transitions between chords easier, whe-
reas the right hand has more freedom to move upwards, away from the keys, in the 
small pauses between notes. For the same reason, the values for movement along the 
z-axis (height), are also slightly smaller for the left hand than for the right. 

Movements along the x-axis are in general tied to which notes are being played. It 
is, however, worth noting that the values for movements in the left hand along the x-
axis are in fact higher for angry and happy than for the other performances. In fact, 
when the distance values for one dimension increase, the other two dimensions follow 
suit. This may indicate that the pianist is not able to isolate the expressive energy he 
infuses his gestures with to just one spatial dimension - or even one limb. Put diffe-
rently, if he wants to move, say, his right hand more violently up and down, this cha-
racter spreads to all of his movements, so that left hand movements from side to side 
also become more intense. 

As seen in Figure 3, angry has larger movement distances along the y-axis than the 
other performances (for both right and left hand), indicating that the pianist in general 
plays the notes more violently when trying to capture this emotion. This is caused (as 
found in data not shown here) by the performer starting from a greater height before 
each attack for angry than in the other performances. Angry and happy both display 
larger movement distances in all three dimensions for the left hand and along the y- 
and z-axes for the right hand, whereas sad has lower distance values for all of the 
three dimensions than any of the other performances. This supports the idea that an-
gry and happy involve a high arousal level, meaning that they are types of emotions 
that have a lot of energy in them, whereas sad prompts a more timid and calm attitude 
of the performer. This mirrors the finding in Figure 2, that angry and happy has high-
er SPL, brightness and sensory dissonance, and sad has lower, when compared to the 
normal performances. 

3.2 Speed and Curvature 

The size of the hand movements is, however, only one parameter of a performer’s 
gestures. The actual shape of the gestures is just as important, as well as the speed 
with which they are carried out, e.g. the degree of abruptness with which the hands 
move. 

‘Pointy’ edges in the graphs in Figure 2 suggest that the pianist plays more stacca-
to, that is, moves his hand away fast after the attack, whereas softer edges indicate a 
gentler movement. In order to assess this trait of the motion capture data, the Eucli-
dean speed and the curvature (how bent the gesture is; calculated as the length of the 
vector cross product of the first and second time derivative of the positions divided by 
the length of the time derivative to the power of 3) has been calculated for the differ-
ent markers (low curvature corresponds to a high degree of ‘pointiness’ in the graph). 
The mean and standard deviation of the speed and curvature is shown in Figure 4. 
With regards to the speed, it is clear that the emotions angry and happy have higher 
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speed in comparison with the normal performances, while the sad performance has 
lower speed. The curvature values are markedly lower for the angry and happy per-
formances than for the other performances. While there is much noise in the curvature 
values (c.f. the standard deviations), intuitively, the curvature values seem reciprocal 
to the speed. This is related to the 1/3 power law [10], which states that, for a specific 
gesture, the angular speed is equal to a constant (k) multiplied with the radius to the 
power of one third. As the curvature is the reciprocal of the radius, it is normal to 
expect the curvature to be inversely proportional to the speed. The constant (k) is 
calculated as the mean of the speed multiplied by the curvature to the power of one-
third and found to be proportional to the arousal value of the emotion, as the high 
arousal-emotions angry and happy [6] are found to have a constant (k) higher than in 
the normal performances while the low arousal-emotion sad has a constant (k) below 
the one in the normal performances. It is interesting to observe how the speed and the 
one-third power law constant (k) (not shown in figure) are systematically lower for 
the left hand. This is probably related to the fact that the left hand has less general 
movement, but whether this is further related to the music performed here, or a poten-
tial right-handedness of the performer is a matter for further studies beyond the reach 
of this work. In short, when Westney plays happy or angry, the speed is higher, and 
the curvature is lower. Speed is then correlated to the audio features SPL, brightness 
and sensory dissonance, i.e. when the speed is higher then the audio features is also 
higher. 

 

 

Fig. 4. Mean values (solid) and standard deviations (dotted) for Euclidian speed and curvature. 
Left hand (left) and right hand (right) 

4 Exclusively Expressive Gestures 

So far, we have only considered how differences with respect to how the pianist 
shapes his hand gestures in the performance coincide with his attempt to infuse the 
performances with particular emotions. Gestures involving other parts of the body 
might, however, also be important parts of the musician’s expressive means. In the 
following we look first at the role of the pianist’s head in his performance gestures 
and postures, and then proceed to consider the role of his facial gestures. These ges-
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tures have in common that they do not seem to be effective, although in theory part of 
the movement of the pianist’s head might intuitively follow other movements in his 
torso which are caused by effective gestures in the arms and hands. 

4.1 Head Posture 

When studying the movements of the trackable points on William Westney’s head, 
we found that while the movement of Westney’s head were not significantly large or 
different enough to warrant any conclusions with respect to their expressivity, the 
position of his head was in fact quite different from performance to performance. 
More specifically, we found interesting differences in how high Westney holds  
his head over the piano in the different performances, and also in the slope of his 
head, that is, how it is inclined. The results for the 6 video recordings are showed in 
Figure 5 below. 

 

 

Fig. 5. Head height (left) and slope (right) for the six performances. Mean values are indicated 
with solid '+' and standard deviation with dotted 'x'. 

The head height is measured using four head markers (left and right and front and 
back), and calculated as the mean of the front left and right head height, and the slope 
is calculated by dividing the differences between the front and back height and depth 
values. It is clear that the head is lower and more inclined forward in the angry per-
formance, and higher and more inclined backwards in the happy performance. These 
results points to a significant correlation between the valence of the intended infused 
emotions and the position of the head: Positive valence corresponds to a positively 
inclined head held high, while negative valence coincides with a negatively inclined 
head held low. Camurri et al [12], in an observation study of a pianist’s gestures and 
their role in the interaction with the audience, show that the pianist moves his head 
more in a markedly expressive performance than in a normal performance. Our result 
above expands on this observation in the sense that we are able to distinguish between 
different kinds of expressivity and their relation to different head postures. Camurri et 
al also hypothesize that the back contracts along with heightened arousal or build-up 
of tension while opening when this tension is released. Our study (deduced from head 
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position in Figure 5, and confirmed by C7 marker depth, not shown) shows that this 
process goes in both directions dependent on the valence: the body leans forward and 
the head lowers with negative valence and the body leans backwards and the head 
rises with positive valence. This differs from the audio analysis, in which angry and 
happy generally had larger feature values, and thus it does not seem to be related to 
the sound production, at least not to the features estimated from the audio. 

4.2 Facial Gestures 

In ensemble performances, facial gestures are important parts of the interaction be-
tween the players, e.g. in a string quartet, in the sense that they tend to communicate 
very specific information (e.g. “it is your turn to play now” or “play softer”). Isabella 
Poggi [13] has described how a conductor’s facial gestures during symphony orchestra 
performances even constitute an almost unambiguous sign system (in relation to the 
orchestra musicians). In the case of one person performing, i.e. a solo performance, the 
role of facial gestures seems less well-defined. Thorough observation of the 6 video 
recordings of William Westney showed that there was little connection between the 
intended emotion to be conveyed and the facial expression of the pianist. In the three 
normal performances, one sees an inkling of a smile on the pianist’s face 32 seconds 
into the first video, and in the other two videos, a solemn look at the start and again at 
about 15-18 seconds into the performance. In the angry performance, Westney looks 
down so much that it is not possible to see his facial expressions properly. In the happy 
video, the performer displays a solemn smile throughout, while the sad performance 
has the performer looking downwards a lot. Other than these subtle differences, the 
pianist keeps a fairly expressionless face throughout the performances. 

Our tentative conclusion regarding facial gestures in Westney’s solo performance 
is that they do not play any important part in his communication with the audience, 
given that they do not seem to display any of the emotions that Westney is trying to 
portray in the situation. All that can be observed is a solemn smile that is not properly 
speaking happy.  

5 Conclusions and Further Perspectives 

We have shown specific differences between the normal and the angry, happy, and sad 
performances of one piece of music played by a pianist with respect to sound level, 
spectral centroid, dynamics and sensory dissonance in the audio, and for the hand 
movement sizes, speed and curvature. We have also shown that the pianist’s head 
posture seems to follow changes in the intended infused emotions. While the size, 
speed and curvature are directly correlated with the audio features, the head slope is 
not, as it accounts for valence changes that are not found in the audio features.  

We also looked for differences across the different performances with respect to 
the pianist’s facial gestures, and found that the pianist was smiling in the happy per-
formance. To sum up, while there are also marked differences between the audio from 
the 6 performances, gesture (as observed for the hands and head) seems to be a very 
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important component for the pianist, when prompted to shape his expression accord-
ing to a specific emotion.   

 Given that the study only uses data from one pianist and one piece of music, the 
findings only give a general idea with respect to tendencies in the expressive means of 
a performer. We have also not considered whether the gestures of the performer ac-
tually give the audience an experience of the different emotions the performer intends 
to portray. Possible expansions of this study thus includes repeated experiments with 
more pianists, different pieces of music, and data from the audience (e.g. collected via 
questionnaires) with respect to how they experience the performance. 

 With respect to the shape of gestures, a further analysis of the movements of the 
other 21 points on Westney’s body might yield more nuanced results. Nonetheless, 
this study shows interesting observations on the differences in both audio and gestures 
for different emotional expressions, indicating how performances rely on both mod-
alities when conveying emotions. 
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Abstract. This paper presents an overview of a theory of motor organization in 
the performance of music, the theory of focal impulses, and it draws out impli-
cations for use in modeling expressive performance. According to the theory of 
focal impulses, motor organization is chunked by means of the placement of 
focal impulses, usually on the beats at some chosen main beat level. Focal im-
pulses are bodily motions that often involve larger and more proximal effector 
segments and that, by recruiting stable resonance frequencies of the body, 
create a motional context that facilitates the production of the hierarchically-
subordinate motions that follow. Several issues are discussed: the sonic traces 
of focal impulses; focal impulses that are inflected to suggest motion either with 
or against the pull of gravity; the different character of accents aligned with 
focal impulses vs. not; and the effects of choosing a metrical interpretation 
when multiple interpretations are possible. 

Keywords: performance, motor control, meter, embodiment, modeling. 

1 Introduction and Overview 

This paper presents an overview of a large theory [1] and [2], giving glimpses of main 
ideas rather than explicating or defending them in detail. Its main goal is to suggest 
new possibilities for researchers who want to model (in the sense of imitate) subtle 
sonic aspects of expressive performance, and it does this by suggesting ways in which 
physical coordination is organized in the performance of music. 

In the dynamic systems approach to motor control, which builds on foundational 
work by Kelso and Turvey [3-6], motor behavior exploits stable resonance properties 
of musculoskeletal and neuronal systems. Simple period and phase relationships do 
not need to be constructed; they are an available groove that the system naturally 
finds. In the dynamic systems approach, a large part of constructing complex motion 
sequences is a matter of recruiting and exploiting stable, periodic resonance patterns. 

Under the present theory of coordination in performance, the theory of focal im-
pulses, musicians exploit these natural resonance periods in performance, inscribing 
the detailed, aperiodic or quasi-periodic motions of performance within larger, period-
ic motions, almost like a physically enacted version of Fourier synthesis. The larger 
periodic motions often involve larger portions of the body and are often driven by 
larger and more proximal joints or even by the spine and/or legs, so that the larger, 
more central parts of the body move more slowly while more distal effectors  
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(e.g. fingers) make the aperiodic motions involved in playing individual notes. The 
larger periods tend to align with the stable periodicities of the music, that is with the 
meter, and musicians talk about the choice of a specific periodicity in terms of feeling 
a beat, e.g. feeling the music in two vs. in four. Video Example 1 presents a selection 
of passages from DVDs of music performance, passages that illustrate the slower 
motions of larger portions of the body that are often involved in performance.1 Figure 
1 illustrates one possible way in which focal impulses might help to organize the per-
formance of a passage of music. 

 

 

Fig. 1. One possible instantiation of focal impulses 

Even at this very basic level, this understanding of motor organization already 
sheds light on expressive performance, as this hierarchical organization of motion is a 
developmental precondition for musical expressivity. Novice performances are often 
deadpan in part because many novices do not employ any kind of hierarchical organi-
zation; instead they string together individual motions to produce individual notes. 
The lack of fluidity that this engenders usually renders the performance inexpressive. 
In contrast, the goal-directedness inherent in the motor organization of experts (even 
at the simple level of playing from larger beat to larger beat instead of from note to 
note) is already a step toward greater expressiveness. Videos of this kind of novice 
performance are widely available (though also ephemeral) on the internet. 

In this theory, felt beats of the kind described above are called focal impulses. It is 
helpful to name the individual beats instead of a level of beat (such as the quarter-note 
beat) because these basically periodic motions can shift in and out of phase with the 
beat levels they track; while it is a default to have focal impulses align with some 
level of beat, a variety of contextual factors can lead a musician to shift the focal im-
pulses to some other metrical position.2 Furthermore, it is a standard option in triple 
meter to have a pattern of motion in which only one of the two weak beats receives a 
focal impulse, for example hearing the meter as “one two three one two three,” where 
the italics indicate the use of a focal impulse. Triple meter was often understood as 

                                                           
1 For media examples, please see the following directory of my personal website: <http:// 

www.andrew.cmu.edu/user/johnito/research/FocalImpulses/CMMR> 
2 Most commonly this happens when the heard meter and the notated meter are in conflict, as 

discussed below. For another example, it can also happen when an attack point on a weak 
beat is understood – and performed – as an anticipation of a strong beat ([1], pp. 116-119). 
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uneven duple in the renaissance and baroque periods [7], and many compositional 
techniques make this a reasonable approach to performance, for example the empha-
sis on the second beat in the sarabande. Robert Port has also made parallel observa-
tions regarding the use of two positions within a three-beat cycle in the rhythmic or-
ganization of language [8]. 

An analogy with halfpipe skateboarding and snowboarding may help convey the 
main idea: the focal impulses are like the pushes off from the surface, as they set basic 
motional parameters for the aerial phase, especially momentum and angular momen-
tum. In addition to determining flight time, these parameters determine which ma-
neuvers can be done during the flight and which cannot. There remains much active 
motion to be made during the flight, but the push off from the surface establishes a 
crucial context of motion and imposes constraints on the motion to follow. Video 
Example 2 gives examples of halfpipe sports and illustrates the relationship with mus-
ical performance. 

From discussion with motor control scientists, it seems that this theory is quite 
consonant with the dynamic systems approach, but that the discipline has not yet ad-
vanced to a point at which the theory could be directly tested. It is also not entirely 
clear how this might best be modeled, but one simple possibility would be to treat 
some large portion of the body (head and torso, for example) as a damped mass-
spring system that is tuned to the periodicity of one of the prominent beat levels in the 
music. This could affect easily measurable parameters such as loudness and timing as 
well as more subtle aspects of articulation, envelope, and timbre. This possibility for 
modeling is elaborated in the second half of the paper, together with more detailed 
aspects and consequences of the theory of focal impulses. 

2 Possibilities for Modeling 

There are number of ways in which the theory of focal impulses both offers new pers-
pectives on expressive performance and opens new possibilities for modeling. The 
selection discussed here begins with the most generally applicable implications and 
proceeds to more specific cases. 

2.1 The Sonic Profile of Focal Impulses 

Focal impulses can affect the sound in a number of ways that are holistic and there-
fore difficult to decompose, but there are also three straightforward common effects. 
Focal impulses can lead to: 1) a loudness accent on the note that receives the focal 
impulse, as a result of the stronger muscular contractions involved; 2) lengthening of 
the duration immediately following the focal impulse, as a result of leaning on the 
note with the focal impulse; 3) lengthening of the duration immediately preceding the 
next focal impulse, as a result of rushing through the intervening notes because of a 
strong sense of release of tension accompanying the focal impulse. In thirteen papers 
dating as far back as 1937, each often describing multiple experiments, researchers 
report finding at least one of these cues to meter, and only two papers have looked at 
both loudness and timing and failed find these patterns ([1], pp. 182—189; for  
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representative examples see [9-14]). Because of these sonic traces, choosing a focal 
impulse placement (e.g. feeling the music in two vs. in four) leads to global expres-
sive differences. 

Because focal impulses have to do with the performer’s organization of physical 
motion, determining their placement in a sound recording, i.e. with no motion data, is 
always conjectural to some degree; this is because many other factors can result in 
similar loudness accents and note lengthenings. Recordings can, however, feature 
very strong clues to focal impulse placement. Figure 2 comes from the Gigue from 
Bach’s First Suite for Unaccompanied Cello, and Audio Example 1 is Yo-Yo Ma’s 
1983 recording of this passage. In the example, the vertical lines with the beginnings 
of slurs are the notation for focal impulses. Here the clues to focal impulse placement 
are the strong accents on the dotted-quarter beats, some noticeable lengthening of the 
note that is on the beat (especially in mm. 1 and 5), and in m. 3 a noticeable lengthen-
ing of the duration that precedes the beat (a lengthening that arises because preceding 
notes came early, not because the main beat arrives late). These cues furthermore 
project a very strong gestural sense, making it seem quite plausible that the passage 
was indeed performed from dotted-quarter beat to dotted-quarter beat. 

 

Fig. 2. Bach, First Suite for Unaccompanied Cello, mm. 1-12, with focal impulse notations 
describing Yo-Yo Ma’s recording 

Figure 3 shows the beginning of the Allemande from Bach’s Sixth French Suite, 
and Audio Example 2 is Gustav Leonhardt’s 1975 recording of the passage. The harp-
sichord cannot, of course, produce dynamic accents, but Leonhardt’s recording does 
have both of the timing traces of focal impulses (placed at the level of the half-note 
beats): an often quite noticeable lengthening of the duration that falls on the beat; and 
sometimes a smaller but still noticeable lengthening of the duration that directly pre-
cedes the beat. Again, these project a strong gestural sense of motion organized in 
half-note spans. 
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Fig. 3. Bach, Sixth French Suite, mm. 1-4, with focal impulse notations describing Gustav 
Leonhardt’s recording 

2.2 Upward and Downward Focal Impulses 

Focal impulses can be correlated with a sense of motion either with or against gravity. 
This sense of motion in relation to gravity is more a matter of imagined character than 
of actual orientation of motion in a gravitational field, but it trades on basic physio-
logical distinctions (e.g. the greater potential for force and explosiveness of elbow 
extension in comparison to flexion) and on very well established tendencies in the 
organization of motion (e.g. when lifting a heavy object vs. letting it drop) ([1], pp. 
82-89). Taking extreme cases to illustrate tendencies, upward pulls against gravity 
have a gentler attack and a more sustained sound, while motions downward with 
gravity have sharper attacks followed by rapid release of the sound. Upward and 
downward focal impulses are focal impulses that are given a special shape in perfor-
mance, inflecting them with senses of motion either with or against gravity. If the 
standard conducting pattern for measures in two is performed with a strong sense of 
pulling on the upbeat and with a strong sense of release for the downbeat, this will 
convey the gestural character of upward and downward focal impulses.  

Figure 4 shows a passage in which the contrast can be quite salient, the first section 
from the Sarabande from Bach’s Fifth Suite for Unaccompanied Cello. The example 
indicates two focal impulse placements, one from Yo-Yo Ma’s 1983 recording (Au-
dio Example 3) and the other from Anner Bylsma’s 1979 recording (Audio Example 
4); the downward and upward arrows indicate downward and upward focal impulses. 
Both performances give a sense of alternation between upward and downward mo-
tion, but one places the upward impulse on beat 2 and the other on beat 3; as a result 
the downward character predominates in one performance, the upward in the other. 
This contributes to a strong affective contrast; the performance in which the longer 
span is governed by the upward impulse (Bylsma’s) has a more positive and hopeful 
character, while the performance in which the longer span is governed by the  
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downward impulse (Ma’s) has a heavier and more lamenting character. To most clear-
ly appreciate the contrast, it is helpful to conduct along in two with the examples, with 
a downward releasing motion for the downward arrow and an upward pulling motion 
for the upward arrow. 

 

 

Fig. 4. Bach, Fifth Suite for Unaccompanied Cello, mm. 1-8, with focal impulse notations 
describing Yo-Yo Ma’s and Anner Bylsma’s recordings 

This contrast between downward and upward focal impulses could be modeled in 
terms of the dynamic contrasts between allowing an object to fall (with an impact on 
the beat) and pulling it upwards non-ballistically. This would probably involve a con-
trast between sharper attacks and quicker releases versus gentler attacks and more 
insistent sustain phases, with these contrasts applying not only to the notes coinciding 
with the focal impulses but also being distributed through the span until the next focal 
impulse. 

2.3 Qualitative Differences between Accents Based on Focal Impulse 
Alignment 

Strong accents played on the beat (with focal impulses) are more straightforward to 
perform than strong accents off the beat, and the physical difference in the manner of 
production leads to audible differences in the sound. Thus the near-canonic rhythms 
in the passage from Stravinsky’s Rite of Spring in Figure 5 and Audio Example 5 are 
quite different both performatively and sonically. The basses’ attack points coincide 
with focal impulses, so that their performance has an economy of movement that 
helps it to be stable and grounded, while the winds are much more active and energet-
ic, as they must produce both the strong focal impulses (silently, in order to keep the  
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body synchronized with the meter) and the strong accents that follow them. These 
contrasting modes of performance are best appreciated by miming the parts in turn 
along with the recording, imagining playing them on any familiar instrument.  
 

 

Fig. 5. Stravinsky, “Glorification de l’Élue” from Rite of Spring, mm. 1-3, with focal impulse 
notations. Dashed lines clarify the focal impulse placement in the lower staff. 

This extra level of activity and intensity required to produce the syncopated notes 
will leave traces in the sound produced, and the physicality of performance is likely 
part of the reason that highly syncopated music often has such an active and unstable 
rhythmic character. In modeling this mode of performance, a first attempt might be to 
use a multiple mass-spring system undergoing forced motion from both ends simulta-
neously.  

2.4 Performative Consequences of Different Metrical Interpretations 

Some pieces of music can be heard under multiple metrical interpretations, and in 
such cases the metrical interpretation of the performer, though not determinative of 
that of the listener, can nonetheless strongly influence the sound of the performance 
through determining which notes will receive focal impulses. Figure 6 shows a pas-
sage from Schumann in which surface rhythms often conflict with the notated meter. 

In Figure 7 this passage is rebarred to fit surface rhythms more closely, drawing on 
an analysis of the passage by Harald Krebs [15]. Figure 7 indicates focal impulses 
placed in accord with the meter, and pianist David Keep was instructed to use this 
focal impulse placement when recording Audio Example 6. (That is, Keep understood 
the theory, he believed he was placing focal impulses in this way, and the resulting 
sound was judged to fit this intention/belief.) 

While Figure 7 captures many surface rhythms well, the underlying harmonic mo-
tion supports the notated meter; as illustrated in Figure 8, the passage can be generat-
ed through a three-stage process, first presenting main harmonies at a rate of one per 
dotted half note, then adding embellishing harmonies, and finally adding anticipations 
to create the actual passage. 

In Audio Example 7, Keep plays the passage as in Figure 9, with focal impulses 
that follow the notated meter until the hemiola of mm. 69-70. It is instructive to com-
pare the two performances; because the performance as in Figure 9 makes so many  
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more of the attacks into syncopations, it makes sense that this performance sounds 
more dynamic, the performance as in Figure 7 sounding much more stable and 
grounded. In metrically malleable music, choice of a metrical interpretation may be 
expected to bring with it gestalt changes in the expressive details of a performance. 
 

 

Fig. 6. Schumann, “Grillen” from the Phantasiestücke, mm. 61-72 

 

 

Fig. 7. The same passage from “Grillen,” rebarred to follow surface rhythms, with focal im-
pulses that follow the (new) meter 
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Fig. 8. Two successive stages in the derivation of mm. 61-66 from “Grillen” 

 

Fig. 9. “Grillen,” focal impulses with notated meter except for hemiola in mm. 69-70 

2.5 Conclusion 

The placement of focal impulses influences the sound produced, as does choice of 
type (upward or downward); but as mentioned above, this influence is not unambi-
guously recoverable from the sound produced. Though in the clearer cases there may 
be a convincing best fit, if the listener is hearing in terms of a different beat level or a 
different metrical interpretation, the performance will not make that hearing impossi-
ble. Rather, a different performance will often be understood in terms of the listener’s 
mental framework, as features that might point to a different framework can instead 
be interpreted as an unusual musical shaping, even as a trace of an unusual posture, or 
of an unusual way of organizing physical motion in performance [16]. The kind of 
one-to-one correlation that would be most convenient for scientific testing of the 
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theory is absent, and in its absence tests that measure aspects of the motion itself will 
be necessary. 

For the performer, however, the theory of focal impulses illuminates a number of 
ways in which changes in the mode of performance may be expected to have syste-
matic effects on the sound produced. And those who attempt to model the human 
performance of music may find helpful new ways to approach the design of their 
models, ways that capture aspects of the performer’s embodiment, aspects of the 
complex dynamic system that is the human body in motion. 
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Abstract. We propose to significantly extend our work in EEG-based emotion 
detection for automated expressive performances of algorithmically composed 
music for affective communication and induction. This new system involves 
music composed and expressively performed in real-time to induce specific af-
fective states, based on the detection of affective state in a human listener. Ma-
chine learning algorithms will learn: (1) how to use biosensors such as EEG to 
detect the user’s current emotional state; and (2) how to use algorithmic per-
formance and composition to induce certain trajectories through affective states. 
In other words the system will attempt to adapt so that it can – in real-time - 
turn a certain user from depressed to happy, or from stressed to relaxed, or (if 
they like horror movies!) from relaxed to fearful. Expressive performance is 
key to this process as it has been shown to increase the emotional impact of af-
fectively-based algorithmic composition. In other words if a piece is composed 
by computer rules to communicate an emotion of happiness, applying expres-
sive performance rules to humanize the piece will increase the likelihood it is 
perceived as happy. As well as giving a project overview, a first step of this re-
search is presented here: a machine learning system using case-based reasoning 
which attempts to learn from a user how themes of different affective types 
combine sequentially to communicate emotions. 

Keywords: Music, Emotion, Bio-signals, Affective Computing, Music  
Therapy, Medicine, Machine Learning, Algorithmic Composition, Computer 
Expressive Performance. 

1 Introduction 

The aim of our research is to develop technology for implementing innovative intelli-
gent systems that can monitor a person’s affective state and induce a further specific 
affective state through music, automatically and adaptively. [1] investigates the use of 
EEG to detect emotion in an individual and to then generate emotional music based 
on this. These ideas have been extended into a 4.5 year EPSRC research project [2] in 
which machine learning is used to learn, by EEG emotional feedback, what types of 
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music evoke what emotions in the listener. If the positive affective state inducing 
capacity of music could be harnessed in a more controlled way, it would make a sig-
nificant impact in various recreational and medical areas. The economic impact of a 
system that would enable users to enter a desired affective state using music would 
contribute to (a) the UK’s burgeoning entertainment industry and (b) the health sector 
(e.g., preventive medicine). Such a system could help to enhance our quality of life 
and contribute towards the wellbeing of the population (e.g., help reducing levels of 
stress and/or anxiety). This chapter introduces the key background elements behind 
the project: Music and Emotion, Emotional Expressive Performance and Algorithmic 
Composition, and EEG Affective Analysis; then details some preparatory work being 
undertaken, together with the future project plans.  

2 Music and Emotion 

Music is commonly known to evoke various affective states (popularly referred to as 
“emotions”); e.g., elation, calm or cheerfulness [3]. There have been a number of 
questionnaire studies supporting the notion that music communicates affective states 
(e.g., [4, 5]) and that music can be used for affect regulation and induction (e.g.,  
[6, 7]). However the exact nature of these phenomena is not fully understood. The 
literature makes a distinction between perceived and induced emotion with music 
being able to generate both types [4]. The differences between induced affective state 
and perceived affective state have been discussed by Juslin and Sloboda [3]. For ex-
ample a listener may enjoy a piece of music like Barber’s Adagio, which most people 
would describe as a “sad” piece of music. However, if they gain pleasure from listen-
ing, the induced affective state must be positive, but the perceived affective state is 
sadness; i.e., a negative state. Despite the differences between perceived and induced 
affective state, they are highly correlated [4, 8]. Zentner et al. [9] reported on research 
into quantifying the relationship between perceived and induced affective state in 
music genres. Scherer [10] discussed the underlying physical mechanisms of musi-
cally induced emotions. 

3 Emotion-Based Algorithmic Composition 

One area of algorithmic composition which has received more attention recently is 
affectively-based computer-aided composition. A common theme running through 
some of the affective-based systems is the representation of the valence and arousal of 
a participant’s affective state [11]. Valence refers to the positivity or negativity of an 
affective state; e.g., a high valence affective state is joy or contentment, a low valence 
one is sadness or anger. Arousal refers to the energy level of the affective state; e.g., 
joy is a higher arousal affective state than happiness. Until recently the arousal-
valence space was a dominant quantitative two-dimensional representation of emo-
tions in research into musical affectivity. More recently, a new theory of emotion with 
the corresponding scale, referred to as GEMS (Geneva Emotional Musical Scale) has 
been proposed [9]. 
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Many of the affective-based systems are actually based around re-composition 
rather than composition; i.e. they focus on how to transform an already composed 
piece of music to give a different emotional effect – e.g. make it sadder, happier, etc. 
This is the case with the best known and most thoroughly tested system - the Compu-
tational Music Emotion Rule System (CMERS) [11]. The rules for expressing emo-
tions map valence and arousal onto such elements as modes and pitch class. These 
rules were developed based on the combining a large number of studies by psycholo-
gists into music and emotion. However it was found these needed to be supplemented 
by rules for expressive performance of the transformed music to express the emotion 
successfully. Hence CMERS is actually an integrated composition and expressive 
performance system. CMERS key limitation as a composition system is that it is de-
signed for re-composition, not for generating new material. 

Oliveira and Cardoso [13] also perform affective transformations on MIDI music, 
and utilize the valence-arousal approach to affective specification. These are to be 
mapped on to musical features: tempo, pitch register, musical scales, and instrumenta-
tion. A knowledge-base of musical features and emotion was developed based on 
musical segments with a known affective content. This knowledge-base was then 
used to train a generalized mapping of affective state to required music and a model 
was then generated based on Support Vector Machine regression. The model was 
tested for transforming the emotion of classical music – the current results are not as 
good as CMERS. One reason for this may be that Oliveira and Cardoso has the limita-
tion that it is unable to generate expressive performances. 

Although Legaspi et al. [14] utilize pre-composed music as its heart, it is more fo-
cused on composing new music. An affective model is learned based on score frag-
ments manually labeled with their appropriate affective perception – this maps a desired 
affective state on to a set of musical features. The model is learned based on the ma-
chine learning approaches Inductive Logic Programming and Diverse Density Weight-
ing Metric. This is then used as a fitness function for a Genetic Algorithm – however the 
GA is also constrained by some basic music theory. The GA is then used to generate the 
basic harmonic structure, and a set of heuristics are used to generate melodies based on 
the harmonic structure. The system was trained with emotion label dimensions “favour-
able-unfavourable”, “bright-dark”, “happy-sad”, and “heartrending-not heartrending”. 
Listening tests were done on a series of eight bar tunes and the results obtained were 
considered promising, but indicated that more development was needed. Once again, the 
system is lacking the ability to generate expressive performances. 

4 Expressive Music Performance 

The introduction of MIDI led to an explosion in the use of sequencers and computers, 
thanks to the new potential for connection and synchronization. These computers and 
sequencers performed their stored tunes in perfect metronomic time, a performance 
which sounded “mechanical”. They sounded mechanical because human performers 
normally perform expressively – for example speeding up and slowing down while 
playing, and changing how loudly they play. The performer’s changes in tempo and 
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dynamics, and other subtle musical features, allow them to express a fixed score – 
hence the term expressive performance. Publications on computer expressive per-
formance of music have lagged behind computer-aided composition by almost quarter 
of a century. But from the end of the 1980s onwards there was an increasing interest 
in automated and semi-automated Computer Systems for Expressive Music Perform-
ance (CSEMP). A CSEMP is a computer system which – given a score in some form 
– is able to generate expressive performances of music [15]. For example software for 
music typesetting will often be used to write a piece of music, but some packages play 
back the music in a relatively mechanical way – the addition of a CSEMP enables a 
more “human sounding” playback, giving a better idea of how the final performance 
may sound. Computer expressive music performance is used in this chapter to make 
performances sound less mechanical to the user, and thus increase the affective im-
pact, as demonstrated by [11]. The particular system to be utilized is now described. 

Director Musices (DM) [2] has been an ongoing project since 1982. Researchers 
including violinist Lars Fryden developed and tested performance rules using an 
analysis-by-synthesis method (later using analysis-by-measurement and studying 
actual performances). Currently there are around 30 rules which are written as rela-
tively simple equations that take as input music features such as height of the current 
note pitch, the pitch of the current note relative to the key of the piece, or whether the 
current note is the first or last note of the phrase. The output of the equations defines 
the performance actions. For example the higher the pitch the louder the note is 
played, or during an upward run of notes, play the piece faster. Another DM rule is 
the Phrase Arch which defines a “rainbow” shape of tempo and dynamics over a 
phrase .The performance speeds up and gets louder towards the centre of a phrase and 
then tails off again in tempo and dynamics towards the end of the phrase. Each rule in 
DM can be weighted to give it a greater or lesser relative effect on the performance, 
by changing a parameter known as its k-value. 

DM has also been developed to enable emotion-based expression [16]. Listening 
experiments were used to define the k-value settings on the DM rules for expressing 
emotions. The music used was a Swedish nursery rhyme and a computer-generated 
piece. Six rules were used from DM to generate multiple performances of each piece. 
Subjects were asked to identify a performance emotion from the list: fear, anger, hap-
piness, sadness, solemnity, tenderness or no-expression. As a result parameters were 
found for each of the 6 rules which mould the emotion-communicating expression of 
a piece. For example for “tenderness”: inter-onset interval is lengthened by 30%, 
sound level reduced by 6dB, and two other rules are used: the Final Ritardando rule 
(slowing down at the end of a piece) and the Duration Contrast rule (if two adjacent 
notes have contrasting durations, increase this contrast). 

5 EEG and Emotion 

EEG measurements have been found to be useful in a clinical setting for diagnosing 
brain damage, sleep conditions and epilepsy; e.g. [17]. It is well known in the litera-
ture that it is possible to relate different EEG spectral bandwidths (often referred to as 
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“EEG rhythms”) to certain characteristics of mental states, such as wakefulness, 
drowsiness, etc. As early as the 1970s researchers have reported on the relationship 
between EEG asymmetry and affective state. Reviews of EEG asymmetry and affec-
tive state can be found in [18, 19] and one of the most recent sets of results can be 
found in [20]. Davidson [21] proposed a link between asymmetry of frontal alpha 
activation and the valence and arousal of a participant’s affective state. 

Musha and co-workers [22] developed one of the earliest computer EEG affective 
state detection systems and a number of detection methods have been investigated 
since then; e.g., [23]. More recently detection and analysis of weak synchronization 
patterns in EEG have been shown to be indicators of cognitive processing; growing 
evidence suggests that synchronization may be a carrier of information about the in-
formation processing in the brain [24]. There are different ways in which signals may 
co-vary. For instance, there is the hypothesis that information about many cognitive 
phenomena is preserved not necessarily in the intensity of the activation, but rather in 
the relationship between different sources of activity. There are an increasing number 
of studies investigating the role of synchronization in cognitive processing using vari-
ous techniques, e.g. [25]. A particularly promising form of synchronization is called 
Phase–locking, which has been studied extensively by the third author and co-
workers, e.g. [26]. Moreover, there is growing evidence supporting the role of syn-
chronization in music perception [27] and also in response to affectively charged non-
musical stimuli [28]. 

6 Emotional Feedback EEG Music 

The above sections show that there is increasing evidence in the literature that musical 
traits such as rhythm, melody and tonality, can communicate specific affective states. 
There is also increasing evidence (e.g. [12]) that these states are detectable in the EEG 
of the listener. There are fewer studies into establishing which musical traits are use-
ful for implementing a system to induce affective states. Amongst the techniques 
available, the analysis of synchronisation patterns in the EEG signal is a promising 
option for detecting affective states induced by music. Other techniques (such as fron-
tal asymmetry) will also be considered in the project and the most suitable will be 
adopted. Thus the detection of affective state by EEG is a research area which this 
project will contribute to as well. 

As was mentioned earlier, [1] investigates the use of EEG to detect emotion in an 
individual and to then generate emotion-inducing music based on this. The work done 
previously in [1] was not real-time and did not involve any machine learning process. 
The research and implementation of a real-time version of a more advanced detection 
method would allow us to monitor affective states induced by music on the fly. We 
hypothesise that once we establish – for a given context - specific musical traits asso-
ciated with specific affective states, then we will be able to parameterise such traits in 
order to exert control in a musical composition; e.g., speed up the tempo to induce 
affective state X, use a “harsher” timbre to induce state Y, etc. The parameterisation 
of musical traits will allow for the design of algorithms capable of generating music 
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(e.g., rule-based) embodying musical traits aimed at inducing specific EEG-observed 
trajectories correlated to affective states. Such a generative system can be rendered 
intelligent and adaptive by means of machine learning techniques (e.g., case-based 
reasoning and reinforcement learning) that are able to learn to recognize complex 
patterns and make decisions based on detected patterns in real-time. 

Our initial results will be driven by more universal musical determinants of emo-
tional response than context-specific.  Thus, they will be based on results averaged 
across a test population. The later stages of the project will extend the former to in-
clude context-specific emotional responses. Later stages will also include the more 
real-time approach to learning and detection. The move towards more on-going as-
sessment of affective state will be important because it will enable us to extend the 
system beyond the music composition based on manipulation of the musical traits 
eliciting generic affective responses, to a more adaptive individual-oriented system 
taking into account participants’ states; thus utilising also the contextual effects of an 
individual and the environment.  

7 Affective Structure Prototype 

It has been discussed how expressive performance and various compositional musical 
elements will be tested for their affective impact based on context. On the music and 
machine learning side of the project, a Matlab prototype has been produced for inves-
tigating the effects of one musical element on emotional communication. This ele-
ment is musical structure. (Communicated emotion analysis is a first step towards 
induced emotional analysis.)  

At the heart of this prototype is a phrase generator that uses random walk with 
jumps [29] to generate the basic motifs. The phrases produced by the generator are 
then transformed in pitch height, loudness level and global tempo to investigate affec-
tive features. They can also be transformed between major and minor key modes. 
Once these transforms have been done Director Musices rules are applied. The fol-
lowing rules are utilized: Duration Contrast, Duration Contrast Articulation, Punctua-
tion, High Loud, Phrase Arch, and Motor Errors. Although DM is capable of mimick-
ing emotional expression, the rules are being used here to make the performances 
sound less mechanical to the user, and thus increase the affective impact [11]. 

The prototype is embedded in a test-bed which uses a pairs comparison system for 
ascertaining communicated valence, which is correlated to induced emotion [4, 8]. 
The user is presented with a piece of monophonic expressively performed music and 
the user is asked “Which of the following two tunes reminds you of more positive 
feelings?” This question is designed to ascertain the communicated valence of the 
tune. The user is given the options of selecting tune 1 or 2, selecting a “don’t know” 
option, or asking to have the tunes played again. Thus at the end of the experiment a 
series of locally-ordered parameter set pairs (a1, a2) (b1, b2) ... etc. will have been 
generated. Each pair will be ordered by valence, thus leading to series of inequalities. 
If sufficient pairs are available for valence, then the inequalities can be used to infer a 
global ordering for which parameters communicate a greater valence for the user.  
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An algorithm for inferring the global ordering from the local ordering is incorporated 
into the test-bed.  

The structure-based testing currently involves the following procedure. Benchmark 
transformations have been assigned for Happy, Sad, Stressed, and Relaxed – based on 
past research into the area of musical affective communication [11][30]. To initiate a 
structure test, two phrases are generated. Two benchmark states are randomly selected 
from the four above. The first phrase is transformed using the first benchmark and the 
second using the second. Thus a tune consisting of two affective parts is played – for 
example one Happy and one Sad, or one Stressed and one Happy, etc. It was found 
that this created a perceptible discontinuity between the two halves, so an interpola-
tion system was developed which approximately interpolated pitches, loudness, tempo 
and key between the two halves – thus perceptually smoothing the transition. The 
whole combined theme is then also transformed using the expressive performance 
algorithms of DM. The original two generated phrases can then be used again and 
transformed to create a different affective interpolated structure. So there will now be 
two themes, built from the same initially generated phrases, but with different affec-
tive structures. These are then presented to the test subject one after the other, who 
orders them by communicated valence. 

Due to the correlation between induced and communicated affect, this system will 
help to generate an initial core rule-set for the machine learning algorithm which we 
are developing. However it is also useful in learning more about the effects of musical 
structure on affective communication.  

8 Conclusions 

A new method for utilizing the emotion-inducing nature of music and sound has been 
introduced. The background elements have been detailed, including affective repre-
sentation, computer expressive performance, affective algorithmic composition and 
EEG-based machine learning. Some initial steps in this research have been the devel-
opment of a test-bed which utilizes computer expressive performance, and investi-
gates the testing of musical structure effects on affective communication. The system 
uses a pairs-based analysis approach and structural emotion interpolation. This test-
bed enables the development of a core rule-set linking musical structure and valence. 

Future work in the broader project includes characterising synchrony patterns cor-
responding to different induced affective states from the EEG recordings while par-
ticipants listen to music stimuli. Initially, the analysis and the system for learning the 
emotional control music generation will be developed based on the valence arousal 
emotional scale, due to its widespread acceptance and availability of tagged data-
bases. We will subsequently develop a GEMS representation and will evaluate the 
usefulness of the two scales for developing our system.  

Then, we shall progressively move towards the final goal of real-time assessment 
of affective states using reinforcement learning (RL). Initially, the affective state es-
timation will be updated at a slower time scale consistent with the computational de-
mands of the synchronisation analysis. However, our aim is to create a system for a 
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fast real-time assessment of affective state based on efficient analysis using feature 
selection and dimensionality reduction.  

We plan to develop further algorithms for generating music featuring the various 
musical traits that have been discussed in the literature. Some musical features are 
more universal determinants of affective response, invariant across populations with 
common cultural background [9]. Other features may show more variation dependent 
on contextual effects of culture, personality and environment. Our initial results will 
be driven by more universal musical determinants of emotional response than context-
specific.  Thus, they will be based on results averaged across a test population. The 
later stages of the project will extend the former to include context-specific emotional 
responses.  

We plan to test our initial generative music algorithms for inductive effects using 
an offline EEG affective state detector. The results of these tests will be used to ini-
tialize a case-based reasoning (CBR) system for affective induction by music. Then, 
we will extend the CBR system by investigating specific musical genres. A recent 
study [9] also suggested the importance of genre selection for the induction of certain 
affective states. The benchmark will be a classical solo piano genre, as classical music 
has well known computational approaches for eliciting certain affective states, but 
expansions on this will be investigated utilizing ideas from pop and electroacoustic 
music genres. 

In order to have a real-time, dynamic assessment of the affective state – so as to in-
crease accuracy and effectiveness - we will use the CBR system to initialise an auto-
matic music generation system based on reinforcement learning (RL). RL has been 
successfully used in optimising the stimulation patterns in deep brain stimulation 
therapy of the epileptic seizures [31]. The RL system we plan to build will be used in 
action selection optimizing a desired affective response of this participant. The move 
towards more on-going assessment of affective state will be important because it will 
enable us to extend the system beyond the music composition based on manipulation 
of the musical traits eliciting generic affective responses, to a more adaptive individ-
ual-oriented system taking into account participants’ states; thus utilising also the 
contextual effects of an individual and the environment.  
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Levé, Florence 422
Li, Dengshi 82
Lyon, Richard F. 197

Madsen, Jens 253
McAdams, Stephen 44
McPherson, Gary E. 1
Miranda, Eduardo R. 490
Morrell, Martin J. 58
Morton, Brandon G. 278
Mouchtaris, Athanasios 171
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