
ParlBench: A SPARQL Benchmark

for Electronic Publishing Applications�

Tatiana Tarasova and Maarten Marx

ISLA, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
{t.tarasova,maartenmarx@}uva.nl

Abstract. ParlBench is an RDF benchmark modelling a large scale electronic
publishing scenario. The benchmark offers large collections of the Dutch par-
liamentary proceedings together with information about members of the par-
liament and political parties. The data is real, but free of intellectual property
rights issues. On top of the benchmark data sets several application benchmarks
as well as targeted micro benchmarks can be developed. This paper describes
the benchmark data sets and 19 analytical queries covering a wide range of
SPARQL constructs. The potential use of ParlBench is demonstrated by exe-
cuting the queries for 8 different scaling of the benchmark data sets on Virtuoso
RDF store. Measured on a standard laptop, data loading times varied from 43
seconds (for 1% of the data set) to 48 minutes (for the complete data set), and
execution of the complete set of queries (570 queries in total) varied from 9
minutes to 13 hours.

Keywords: SPARQL, RDF benchmark, parliamentary proceedings.

1 Introduction

RDF stores are the backbones of RDF data driven applications. There is a wide range
of RDF store systems available1 together with various benchmark systems2 to assess
performances of the RDF stores.

As discussed in the Benchmark Handbook [1], different applications impose dif-
ferent requirements to a system, and the performance of the system may vary from
one application domain to another. This creates the need for domain specific bench-
marks. The existing application benchmarks for RDF store systems often employ
techniques developed by the Transaction Processing Performance Council (TPC)3 for
relational databases and use synthetically generated data sets for their workloads.
However, performance characteristics for loading and querying such data may differ
from those that were measured on real life data sets, as it was shown by the DBpe-
dia benchmark [2] on DBpedia [6]. To the best of our knowledge, among the exist-
ing benchmarks for RDF store systems, only the DBpedia benchmark provides a real
data set.

� This work was supported by the EU- FP7 (FP7/2007-2013) project ENVRI (grant number
283465).

1 http://www.w3.org/wiki/LargeTripleStores, last accessed: July 9, 2013.
2 http://www.w3.org/wiki/RdfStoreBenchmarking , last accessed: July 9, 2013.
3 http://www.tpc.org/, last accessed: July 10, 2013.

P. Cimiano et al. (Eds.): ESWC 2013, LNCS 7955, pp. 5–21, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.w3.org/wiki/LargeTripleStores
http://www.w3.org/wiki/RdfStoreBenchmarking
http://www.tpc.org/

6 T. Tarasova and M. Marx

With this work we propose the ParlBench application benchmark that closely mimics
a real-life scenario: large scale electronic publishing with OLAP-type queries. ParlBench
consists of (1) real life data and (2) a set of analytical queries developed on top of
these data.

The benchmark data sets include the Dutch parliamentary proceedings, political
parties and politicians. The ParlBench data fit very well the desiderata of Gerhard
Weikum’s recent Sigmod blog4: it is open, big, real, useful, linked to other data sources,
mixing data-values and free text, and comes with a number of real-life workloads.

The queries in the benchmark can be viewed as coming from one of two use cases:
create a report or perform a scientific research. As an example of the latter, con-
sider the question whether the performance of males and females differs in parliament,
and how that has changed over the years. To enable more comprehensive analysis
of the RDF stores’ performances, we grouped the benchmark queries into four mi-
cro benchmarks [3] with respect to their analytical aims Average, Count, Factual and
Top 10.

The paper is organized as follows. Section 2 gives an overview of the related work.
Section 3 describes the benchmark data sets. In Section 4 we define the benchmark
queries and present the micro benchmarks. An experimental run of ParlBench on the
Virtuoso RDF store is discussed in Section 5.

2 Related Work

There is a number of RDF store benchmarks available. The most relevant bench-
marks to our work are discussed further. The Berlin SPARQL Benchmark (BSBM) [4]
implements an e-commerce application scenario. Similarly to ParlBench, BSBM em-
ployed the techniques developed by the Transaction Processing Performance Council
(TPC)5, such as query permutations (for the Business Intelligence use case) and system
ramp-up.

The SPARQL Performance Benchmark (SP2Bench) [5] is settled in the DBLP sce-
nario. SP2Bench queries are carefully designed to test the behavior of RDF stores in
relation to common SPARQL constructs, different operator constellations and RDF
access patterns. SP2Bench measures query response time in cold runs settings, i.e.,
when query execution time is measured immediately after the server was started.

Both the Berlin and SP2Bench use synthetically generated data sets, whereas, the
DBpedia SPARQL Benchmark (DBPSB) [2] uses a real data set, DBpedia [6]. In ad-
dition to using a real data set, the DBPSB benchmark uses real queries that were
issued by humans and applications against DBpedia. These queries cover most of the
SPARQL features and enable comprehensive analysis of RDF stores’ performances on
a single feature as well as combinations of features. The main difference between the
ParlBench and DBPSB benchmarks is that the latter is not developed with a particular
application in mind. Thus, it is more useful for a general assessment of the performance
of different RDF stores’ implementations, while ParlBench is particularly targeted on
developers of e-publishing applications and can support them in choosing systems that
are more suitable for analytical query processing.

4 http://wp.sigmod.org/?p=786, last accessed: July 1, 2013.
5 http://www.tpc.org/, last accessed: July 1, 2013.

http://wp.sigmod.org/?p=786
http://www.tpc.org/

ParlBench: A SPARQL Benchmark for E-publishing Applications 7

3 Benchmark Data Sets

The benchmark consists of five conceptually separate data sets summarized in Table 1:

Members : describes political players of the Dutch parliament.
Parties : describes Dutch political parties.
Proceedings : describes the structure of the Dutch parliamentary proceedings.
Paragraphs : contains triples linking paragraphs to their content.
Tagged entities : contains triples linking paragraphs to DBpedia entities indicating

that these entities were discussed in the paragraphs.

Table 1. Statistics of the benchmark data sets

data set # of triples size # of files
members 33,885 14M 3,583
parties 510 612K 151
proceedings 36,503,688 4.15G 51,233
paragraphs 11,250,295 5.77G 51,233
tagged entities 34,449,033 2.57G 34,755
TOTAL: 82,237,411 ∼13G 140,955

The data model of the benchmark data sets is described in Appendix A.

3.1 Scaling of the Benchmark Data Sets

The size of the ParlBench data sets can be changed in different ways. The data set
can be scaled by the number of included proceedings. All proceeding files are ordered
chronologically by year. In order to construct a scaled proceeding data set, we randomly
sampled from each year of proceedings an equal number of proceedings. This was done
to ensure uniform and sufficient presence of proceedings from each year. Optionally,
one can include Tagged entities and/or Paragraphs data sets to the test collection.
In this case Paragraphs and Tagged Entities are scaled accordingly to the included
proceedings, i.e., only paragraphs and/or tags pointing to id’s in the chosen proceedings
are included.

4 Benchmark Queries

ParlBench provides 19 SPARQL queries. The queries were grouped into four micro
benchmarks:

Average: 3 queries, numbered from A0 to A2, retrieve aggregated information.
Count: 5 queries, numbered from C0 to C4, count entities that satisfy certain filtering

conditions.
Factual: 6 queries, numbered from F0 to F5, retrieve instances of a particular class

that satisfy certain filtering conditions.
Top 10: 5 queries, numbered from T0 to T4, retrieve the top 10 instances of a particular

class that satisfy certain filtering conditions.

All the queries are listed in Appendix B. Their SPARQL representations can be seen
in Appendix C. The benchmark queries cover a wide range of the SPARQL language
constructs. Table 2 shows the usage of SPARQL features by individual query and
distribution of the features across micro benchmarks.

8 T. Tarasova and M. Marx

Table 2. SPARQL characteristics of the benchmark queries

micro benchmark
Average Count Factual Top 10

A0 A1 A2 C0 C1 C2 C3 C4 F0 F1 F2 F3 F4 F5 T0 T1 T2 T3 T4
FILTER + + + + + + + +
UNION + + + + + + + + +
LIMIT + + + + + + +

ORDER BY + + + + + + +
GROUP BY + + + + + + + + + + + +

COUNT + + + + + + + + + + + + + + + + +
DISTINCT + + + +

AVG + + +
negation +

OPTIONAL + +
subquery + + + + + + +

blank node scoping + + + + + + + + +
of triple patterns 10 9 12 5 5 5 6 13 8 16 6 6 2 4 2 4 9 3 11

5 Experimental Run of the Benchmark

In this section we demonstrate the application of our benchmark on the Virtuoso RDF
native store (OSE, v.06.01.3127)6. Tested on the Berlin benchmark, Virtuoso showed
one of the best performance results among other systems [4].

5.1 Experimental Setup

Test Environment. For the benchmark experiment we used a personal laptop Apple
MacBook Pro with Intel i7 CPU (2x2 cores) running at 2.8 GHz and 8GB memory.
See Appendix D for a more detailed specification of the test environment.

Evaluation Metrics

Loading Time. The loading time is the time for loading RDF data into an RDF store.
The benchmark data sets are in RDF/XML format. The time is measured in seconds.
Loading of data into Virtuoso was done one data set at a time. For the loading of Parties
and Members we used the Virtuoso RDF bulk load procedure. For Proceedings we used
the Virtuoso function DB.DBA.RDF LOAD RDFXML MT to load large RDF/XML text.

Query Response Time. The query response time is the time it takes to execute a
SPARQL query. To run the queries programmatically, we used isql, the Virtuoso
interactive SQL utility. The execution time of a single query was taken as the real time
returned by the bash /usr/bin/time command. 10 permutations of the benchmark
queries were created, each containing 19 SPARQL queries.

Before starting measuring the query response time, we warmed-up Virtuoso by run-
ning 5 times 10 different permutations of all 19 queries of the benchmark. In total, 950
queries were executed in the warm-up phase, and each query was run 50 times. After
that, we run the same permutations 3 more times and measured the execution time
of each query. The query response time was computed as the mean response time of
executing each query 30 times.

Test Collections. Experiments are run on 8 test collections. Each collection includes
the Parties and Members data sets and a scaled Proceedings data set ranging from 1
to 100% . Table 3 gives an overview of the size of each test collection.

6 http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/, last accessed: July 1,
2013.

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

ParlBench: A SPARQL Benchmark for E-publishing Applications 9

Table 3. Sizes of the test collections for different scaling of Proceedings

Scaling Factor 1% 2% 4% 8% 16% 32% 64% 100%

of triples 494,875 1,027,395 1,906,880 3,851,642 7,554,304 15,129,621 23,341,602 36,542,431

5.2 Results

We report on three experiments, relating database size to execution time: (1) time
needed to load the test collections (see fig. 1), (2) total time needed to execute all
the queries in micro benchmarks7 (see fig. 2), and (3) query execution time of all the
queries on the largest collection (see fig. 3).

1 2 4 8 16 32 64 100
1

4

16
32
64
128
256
512
1024
2048
4096

Size of proceedings, %

Ti
m

e,
 s

ec

Fig. 1. Loading Time in sec of the benchmark
collections

1 2 4 8 16 32 64 100
0.125

0.5
1
2
4
8
16
32
64
128
256

Size of proceedings, %

S
um

 o
f e

xe
cu

tio
n

tim
e,

 s
ec average

count
factual
top10

Fig. 2. Query Execution Time in sec of micro
benchmarks on the test collections

A0 A1 A2 C0 C1 C2 C3 C4 F0 F1 F2 F3 F4 F5 T0 T1 T2 T3 T40
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

Queries

Ti
m

e,
 s

ec

45.9
39.6

47.1

2.4
10.7

1.4 0.9

30.0

8.0

78.1

22.4 22.4

0.1

48.9

0.8

10.3

41.7

0.9

168.1

average
count
factual
top10

Fig. 3. Query Execution Time in sec of the benchmark queries on the largest test collection

The y-axes on fig. 1 and fig. 2 are presented in a log scale, and the numbers rep-
resent the loading and query response time in seconds. To make the results repro-
ducible, we publish the benchmark data sets, queries and scripts at http://data.

politicalmashup.nl/RDF/.

7 For each group we summed the execution time of each query in the group.

http://data.politicalmashup.nl/RDF/
http://data.politicalmashup.nl/RDF/

10 T. Tarasova and M. Marx

6 Conclusion

ParlBench has the proper characteristics of an RDF benchmark: it can be scaled easily
and it has a set of intuitive queries which measure different aspects of the SPARQL
engine.

We believe that ParlBench is a good proxy for a realistic large scale digital pub-
lishing application. ParlBench provides real data that encompass major characteristics
shared by most of the e-publishing use cases including rich metadata and hierarichal
organization of the content into text chunks.

The data set is large enough to perform non-trivial experiments. In addition to the
analytical scenario presented, one can think of several other application scenarios that
can be developed on the same data sets. Due to the many and strong connections of
the benchmark to the Linked Open Data Cloud through the DBpedia links, natural
Linked Data integration scenarios can be developed from ParlBench. The ParlBench
data is also freely available in XML format [7], enabling cross-platform comparisons of
the same workload.

As a future work we will consider the execution of the benchmark on other RDF
stores and comparison of the results with the ones achieved on Virtuoso.

Another interesting direction for future work could be to extend the set of queries.
Currently, there are only two queries with the OPTIONAL operator and one query with
negation. Queries that use these and other features of SPARQL 1.1 could be a good
addition to the benchmark. ParlBench has many queries that extensively use the UNION
to construct various paths based on the hasPart property. We could re-write these
queries through the SPARQL 1.1. path expressions and exploit the transitive property
of hasPart to test the reasoning capabilities of RDF store systems.

References

1. Gray, J.: The Benchmark Handbook for Database and Transaction Systems, 2nd edn.
Morgan Kaufmann (1993)

2. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL Benchmark
– Performance Assessment with Real Queries on Real Data. In: Aroyo, L., Welty, C., Alani,
H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I.
LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011)

3. Afanasiev, L., Manolescu, I., Michiels, P.: MemBeR: A Micro-benchmark Repository for
XQuery. In: Bressan, S., Ceri, S., Hunt, E., Ives, Z.G., Bellahsène, Z., Rys, M., Unland, R.
(eds.) XSym 2005. LNCS, vol. 3671, pp. 144–161. Springer, Heidelberg (2005)

4. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. International Journal on Semantic
Web and Information Systems 5(2), 1–24 (2009)

5. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Performance
Benchmark. In: ICDE, pp. 222–233. IEEE (2009)

6. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.:
DBpedia - a crystallization point for the web of data. Journal of Web Semantics (JWS) 7,
154–165 (2009)

7. Maarten, M.: Advanced Information Access to Parliamentary Debates. Journal of Digital
Information (JoDI) 10(6) (2009)

8. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans-
actions on Database Systems (TODS) 34(3), 16:1–16:45 (2009)

ParlBench: A SPARQL Benchmark for E-publishing Applications 11

A Data Model

Figure 4 gives an overview of the data model. The data model consists of the following
classes:

– PoliticalParty represents political parties. Parties are linked to their equivalent
resources in DBpedia.

– ParliamentMember represents politicians, i.e., members of the parliament. Mem-
bers are linked to the DBpedia resources that correspond to the same politicians.
Additionally, members have biographical information such as gender, birthday and
the place of birth, and the death date and place if applicable.

– ParliamentaryProceedings are written records of parliamentary meetings.
– Topic represents a different point on the agenda in the proceedings.
– Scene and StageDirection are important structural elements of the Dutch parlia-

mentary proceedings. They contain information about current speakers and their
interrupters.

– Speech is a constituent of a Topic, a Scene or Stage Direction. Speech represents a
beginning of a speech of a new speaker.

– Paragraph is a container for all spoken text; can be part of any structural element
of the proceedings described above.

The structural elements of the proceedings are connected to Proceedings through
the dcterms:hasPart property. The speaker of the speech and the affiliated party
of the speaker are attached to Speech via the refMember and refParty properties
correspondingly.

Vocabularies. Relevant existing vocabularies and ontologies to represent documents
of parliamentary proceedings fall into two categories. In the first category we iden-
tified vocabularies that are too generic, such as the SALT Document Ontology8 or
the DoCo, the Document Components Ontology9. They do not provide means to rep-
resent such specific concepts as stage direction or scene. Vocabularies in the second
category are too specific. For example, the Semantic Web Conference Ontology10 or
the Semantic Web Portal Ontology11 define classes and properties to model conference
proceedings.

8 http://salt.semanticauthoring.org/ontologies/sdo#
9 http://purl.org/spar/doco/Paragraph

10 http://data.semanticweb.org/ns/swc/swc_2009-05-09.html#
11 http://sw-portal.deri.org/ontologies/swportal#

http://salt.semanticauthoring.org/ontologies/sdo#
http://purl.org/spar/doco/Paragraph
http://data.semanticweb.org/ns/swc/swc_2009-05-09.html#
http://sw-portal.deri.org/ontologies/swportal#

12 T. Tarasova and M. Marx

Topic

Stage
Direction

Speech

Paragraph

Scene

Parliament
Member

Political
Party

Content of the
paragraph

has part

legislative
period

Legislative
period

Parliamentary
Proceedings

has part

has parthas part

references
member

references
party

has part

has part

has text

DBpedia
resource

same as

DBpedia
resource

same as

Biography

biography

Tag

DBpedia
resource

has auto meaning

Person Organization Spatial
Thing

is a

is a

is a

Fig. 4. Data model of the benchmark data sets

We defined our own RDFS vocabulary to model parliamentary proceedings, the Par-
liamentary Proceedings vocabulary12, and integrated it with other existing vocabular-
ies. To represent biographical information of politicians, we used BIO: A vocabulary for
biographical information13 together with the Friend of a Friend Vocabulary (FOAF)14

and the DBpedia Ontology15. The Modular Unified Tagging Ontology (MUTO)16 was
used to represent information about tagged entities of paragraphs. The Dublin Core
Metadata Terms17 was used to encode metadata information.

12 http://purl.org/vocab/parlipro#
13 http://vocab.org/bio
14 http://xmlns.com/foaf/0.1/
15 http://dbpedia.org/ontology/
16 http://muto.socialtagging.org/
17 http://purl.org/dc/terms/ and http://purl.org/dc/elements/1.1/

http://purl.org/vocab/parlipro#
http://vocab.org/bio
http://xmlns.com/foaf/0.1/
http://dbpedia.org/ontology/
http://muto.socialtagging.org/
http://purl.org/dc/terms/
http://purl.org/dc/elements/1.1/

ParlBench: A SPARQL Benchmark for E-publishing Applications 13

B ParlBench Queries

Table 4. List of the benchmark queries

average

1. A0 Retrieve average number of people spoke per topic.
2. A1 Retrieve average number of speeches per topic.
3. A2 Retrieve average number of speeches per day.

count

4. C0 Count speeches of females.
5. C1 Count speeches of males.
6. C2 Count speeches of speakers who were born after 1960.
7. C3 Count speeches of male speakers who were born after 1960.
8. C4 Count speeches of a female speaker from the topic where only one female spoke.

factual

9. F0 What members were born after 1950, their parties and dates of death if exist?
10. F1 What is the gender of politicians who spoke most between 1995 and 2005?
11. F2 What is the percentage of male speakers?
12. F3 What is the percentage of female speakers?
13. F4 What politician has most number of Wikipedia pages in different languages?
14. F5 What speeches are made by politicians without Wikipedia pages?

top 10

15. T0 Retrieve top 10 members with the most number of speeches.
16. T1 Retrieve top 10 topics when most of the people spoke.
17. T2 Retrieve top 10 topics with the most number of speeches.
18. T3 Retrieve top 10 days with the most number of topics.
19. T4 Retrieve top 10 longest topics (i.e., topics with the most number of paragraphs).

C ParlBench SPARQL Queries

Table 5. Prefixes used in the SPARQL queries

rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

parlipro: <http://purl.org/vocab/parlipro#>
dcterms: <http://purl.org/dc/terms/>
dc: <http://purl.org/dc/elements/1.1/>

bio: <http://purl.org/vocab/bio/0.1/>

foaf: <http://xmlns.com/foaf/0.1/>

dbpedia: <http://dbpedia.org/resource/>
owl: <http://www.w3.org/2002/07/owl#>

14 T. Tarasova and M. Marx

Table 6. SPARQL representation of the benchmark queries

A0: Retrieve average number of people spoke per topic.

SELECT AVG(?numOfMembers) as ?avgNumOfMembersPerTopic

WHERE {{

SELECT COUNT(?member) AS ?numOfMembers

WHERE {

?topic rdf:type parlipro:Topic .

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

{?topic dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?sd .

?sd rdf:type parlipro:StageDirection .

?sd dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?scene .

?scene rdf:type parlipro:Scene .

?scene dcterms:hasPart ?speech .}}

GROUP BY ?topic}}

A1: Retrieve average number of speeches per topic.

SELECT AVG(?numOfSpeeches) as ?avgNumOfSpeechesPerTopic

WHERE {{

SELECT COUNT(?speech) AS ?numOfSpeeches

WHERE {

?topic rdf:type parlipro:Topic .

?speech rdf:type parlipro:Speech .

{?topic dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?sd .

?sd rdf:type parlipro:StageDirection .

?sd dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?scene .

?scene rdf:type parlipro:Scene .

?scene dcterms:hasPart ?speech .}}

GROUP BY ?topic}}

ParlBench: A SPARQL Benchmark for E-publishing Applications 15

A2: Retrieve average number of speeches per day.

SELECT AVG(?numOfSpeeches) as ?avgNumOfSpeechesPerDay

WHERE {{

SELECT ?date COUNT(?speech) AS ?numOfSpeeches

WHERE {

?proc dcterms:hasPart ?topic .

?proc rdf:type parlipro:ParliamentaryProceedings .

?proc dc:date ?date .

?speech rdf:type parlipro:Speech .

?topic rdf:type parlipro:Topic .

{?topic dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?sd .

?sd rdf:type parlipro:StageDirection .

?sd dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?scene .

?scene rdf:type parlipro:Scene .

?scene dcterms:hasPart ?speech .}}

GROUP BY ?date}}

C0: Count speeches of females.

SELECT COUNT(?speech)

WHERE {

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:gender dbpedia:Female .}

C1: Count speeches of males.

SELECT COUNT(?speech)

WHERE {

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:gender dbpedia:Male .}

C2: Count speeches of speakers who were born after 1960.

SELECT COUNT(?speech)

WHERE {

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:birthday ?birthday .

FILTER (year(?birthday) > 1960)}

16 T. Tarasova and M. Marx

C3: Count speeches of male speakers who were born after 1960.

SELECT COUNT(?speech)

WHERE {

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:gender dbpedia:Male .

_:bio foaf:birthday ?birthday .

FILTER (year(?birthday) > 1960)}

C4: Count speeches of a female speaker from the topic where only one female spoke.

SELECT ?topic ?member COUNT(?speech) as ?numOfSpeeches

WHERE {{

SELECT ?topic ?member COUNT(?member) AS ?numOfFemales ?speech

WHERE {

?topic rdf:type parlipro:Topic .

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:gender dbpedia:Female .

{?topic dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?sd .

?sd rdf:type parlipro:StageDirection .

?sd dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?scene .

?scene rdf:type parlipro:Scene .

?scene dcterms:hasPart ?speech .}}

GROUP BY ?topic ?member ?speech}

FILTER (?numOfFemales = 1)}

GROUP BY ?topic ?member

F0: What members were born after 1950, their parties and dates of death if exist?

SELECT DISTINCT ?member ?party ?birthday

WHERE {

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member.

?speech parlipro:refParty ?party .

?member rdf:type parlipro:ParliamentMember .

?member bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:birthday ?birthday .

FILTER (year(?birthday) > 1960)}

FILTER (year(?birthday) > 1950)

OPTIONAL{_:bio dbpedia-ont:deathDate ?deathDate .}}

ParlBench: A SPARQL Benchmark for E-publishing Applications 17

F1: What is the gender of politicians who spoke most between 1995 and 2005?

SELECT ?gender COUNT(?member) AS ?numOfMembers

WHERE {

?proc rdf:type parlipro:ParliamentaryProceedings .

?proc dc:date ?date .

?proc dcterms:hasPart ?topic .

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member rdf:type parlipro:ParliamentMember .

?member bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:gender ?gender .

{?topic dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?sd .

?sd rdf:type parlipro:StageDirection .

?sd dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?scene .

?scene rdf:type parlipro:Scene .

?scene dcterms:hasPart ?speech .}

FILTER (year(?date) > 1995 AND year(?date) < 2005)}

GROUP BY ?gender

ORDER BY DESC(?numOfMembers)

LIMIT 1

F2: What is the percentage of male speakers?

SELECT (?numOfMaleMembers*100)/?numOfMembers

WHERE{{

SELECT COUNT(DISTINCT ?memberMale) as ?numOfMaleMembers

COUNT(DISTINCT ?member) as ?numOfMembers

WHERE {{

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member rdf:type parlipro:ParliamentMember .}

UNION{

?memberMale bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:gender dbpedia:Male .

FILTER (sameTerm(?member,?memberMale))}}}}

18 T. Tarasova and M. Marx

F3: What is the percentage of female speakers?

SELECT (?numOfFemaleMembers*100)/?numOfMembers

WHERE{{

SELECT COUNT(DISTINCT ?memberFemale) as ?numOfFemaleMembers

COUNT(DISTINCT ?member) as ?numOfMembers

WHERE {{

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member rdf:type parlipro:ParliamentMember .}

UNION{

?memberFemale bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:gender dbpedia:Female .

FILTER (sameTerm(?member,?memberFemale))}}}}

F4: What politician has most number of Wikipedia pages in different languages?

SELECT ?member ?numOfPages

WHERE {{

SELECT DISTINCT ?member COUNT(?dbpediaMember) AS ?numOfPages

WHERE {

?member rdf:type parlipro:ParliamentMember .

?member owl:sameAs ?dbpediaMember .}

GROUP BY ?member}}

ORDER BY DESC(?numOfPages)

LIMIT 1

F5: What speeches are made by politicians without Wikipedia pages?

SELECT DISTINCT ?speech ?member

WHERE {

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member rdf:type parlipro:ParliamentMember .

OPTIONAL {?member owl:sameAs ?dbpediaMember .}

FILTER (!bound(?dbpediaMember))}

T0: Retrieve top 10 members with the most number of speeches.

SELECT ?member COUNT(?speech) as ?numOfSpeeches

WHERE {

?member rdf:type parlipro:ParliamentMember .

?speech parlipro:refMember ?member .}

GROUP BY ?member

ORDER BY DESC(?numOfSpeeches)

LIMIT 10

ParlBench: A SPARQL Benchmark for E-publishing Applications 19

T1: Retrieve top 10 topics when most of the people spoke.

SELECT ?topic COUNT(?member) as ?numOfMembersSpokeInTopic

WHERE {

?topic rdf:type parlipro:Topic .

?topic dcterms:hasPart ?speech .

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .}

GROUP BY ?topic

ORDER BY DESC(?numOfMembersSpokeInTopic)

LIMIT 10

T2: Retrieve top 10 topics with the most number of speeches.

SELECT ?topic

COUNT(?speech) as ?numOfSpeeches

WHERE {

?topic rdf:type parlipro:Topic .

?speech rdf:type parlipro:Speech .

{?topic dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?sd .

?sd rdf:type parlipro:StageDirection .

?sd dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?scene .

?scene rdf:type parlipro:Scene .

?scene dcterms:hasPart ?speech .}}

GROUP BY ?topic

ORDER BY DESC(?numOfSpeeches)

LIMIT 10

T3: Retrieve top 10 days with the most number of topics.

SELECT ?date COUNT(?topic) as ?numOfTopics

WHERE {

?proc rdf:type parlipro:ParliamentaryProceedings .

?proc dcterms:hasPart ?topic .

?proc dc:date ?date .}

GROUP BY ?date

ORDER BY DESC(?numOfTopics)

LIMIT 10

20 T. Tarasova and M. Marx

T4: Retrieve top 10 longest topics (i.e., topics with the most number of paragraphs).

SELECT ?topic COUNT(?par) as ?numOfPars

WHERE {

?topic rdf:type parlipro:Topic .

?speech rdf:type parlipro:Speech .

?speech dcterms:hasPart ?par .

?par rdf:type parlipro:Paragraph .

{?topic dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?sd .

?sd rdf:type parlipro:StageDirection .

?sd dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?scene .

?scene rdf:type parlipro:Scene .

?scene dcterms:hasPart ?speech .}}

GROUP BY ?topic

ORDER BY DESC(?numOfPars)

LIMIT 10

D Test Machine Specification

For the benchmark evaluation we used a personal laptop Apple MacBook Pro. The
operating system running is Mac OS X Lion 10.7.5 x64. The specification of the machine
is the following:

Hardware

– CPUs: 2.8 GHz Intel Core i7 (2x2 cores)
– Memory: 8 GB 1333 MHz DDR3
– Hard Disk: 750GB

Software

– OpenLink Virtuoso: Open Source Edition v.06.01.3127 compiled from source for
OS X

– MySQL Community Server (GPL) v. 5.5.15
– Scripts (bash 3.2, Python 2.7.3) to scale and upload RDF data sets, to create

permutations of queries and run them on Virtuoso. The scripts are available for
downloading at http://data.politicalmashup.nl/RDF/scripts/.

Virtuoso Configuration We configured the Virtuoso Server to handle load of large data
sets18.

18 The configuration was performed following the guidelines at
http://www.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtRDFPerformanceTuning

http://data.politicalmashup.nl/RDF/scripts/
http://www.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtRDFPerformanceTuning

ParlBench: A SPARQL Benchmark for E-publishing Applications 21

NumberOfBuffers = 680000
MaxDirtyBuffers = 500000

The RDF Index Scheme remained as it was supplied with the default Virtuoso
installation. Namely, the scheme consists of the following indexes:

– PSOG - primary key.
– POGS - bitmap index for lookups on object value.
– SP - partial index for cases where only S is specified.
– OP - partial index for cases where only O is specified.
– GS - partial index for cases where only G is specified.

	ParlBench: A SPARQL Benchmark
for Electronic Publishing Applications
	1 Introduction
	2 Related Work
	3 Benchmark Data Sets
	3.1 Scaling of the Benchmark Data Sets

	4 Benchmark Queries
	5 Experimental Run of the Benchmark
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion
	References

