
Towards Content-Aware SPARQL Query

Caching for Semantic Web Applications

Yanfeng Shu, Michael Compton, Heiko Müller, and Kerry Taylor

Computational Informatics, CSIRO, Australia
{yanfeng.shu,michael.compton,heiko.mueller,kerry.taylor}@csiro.au

Abstract. Applications are increasingly using triple stores as persis-
tence backends, and accessing large amounts of data through SPARQL
endpoints. To improve query performance, this paper presents an ap-
proach that reuses results of cached queries in a content-aware way for
answering subsequent queries. With a focus on a common class of con-
junctive SPARQL queries with filter conditions, not only does the paper
provide an efficient method for testing whether a query can be evaluated
on the result of a cached query, but it also shows how to evaluate the
query. Experimental results show the effectiveness of the approach.

1 Introduction

With the popularity of Semantic Web technologies, applications are increas-
ingly using triple stores as persistence backends, accessing large amounts of data
through SPARQL endpoints. As the number of queries increases, and data grow
in size, scalability becomes an issue. To address this, much work has been done
to improve the performance of triple stores through better storage, indexing and
query optimisation. However, little has been done so far to take advantage of
caching.

The work by Martin et al. [6] represents a first step towards filling the gap,
where caching is performed by a proxy layer residing between an application
and a SPARQL endpoint, and the proxy answers a SPARQL query without
accessing the triple store if the query is identical to a cached query. Caching
in [6] is basically content-blind, unaware of the content of cached results. In this
paper, we go one step further and explore reusing cached results in a content-
aware way, so that the proxy can not only answer a query that exactly matches a
cached query, but it can also answer a query by processing the result of a cached
query. Such a caching approach requires SPARQL query containment checking,
i.e. checking whether the result of a query is contained in that of a cached query.
Containment checking for full-SPARQL in general is undecidable [5]. Considering
this, we focus on a fragment of SPARQL which is commonly used in real world
queries [8], conjunctive queries with simple filter conditions (CQSFs). As our first
contribution, we define SPARQL query containment based on the (set) semantics
of SPARQL, and give sufficient conditions for containment checking of CQSFs.

Containment checking alone, however, is not enough. It is possible that a query
is contained in a cached query but cannot be evaluated on its result. For example,

X. Lin et al. (Eds.): WISE 2013, Part I, LNCS 8180, pp. 320–329, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Content-Aware SPARQL Query Caching 321

given query Q1, returning the names of all students of age 20 from a university
database, and query Q2, returning the names of all students. It is easy to see
that the result of Q1 is contained in that of Q2. However,Q1 cannot be evaluated
on the result of Q2, since it does not contain enough information to evaluate the
age constraint. Another issue with containment checking is that its cost could be
considerable, which potentially compromises the benefit of caching. Our second
contribution addresses these two issues. We introduce a notion of evaluability
and define requirements for queries to be answered using cached results. We
further provide an efficient method for checking whether a query can be answered
using the result of a cached query (i.e. query evaluability checking), and show
how query answering is done. We evaluate our approach experimentally based
on the LUBM benchmark. The results show that our approach achieves much
better performance than no caching and content-blind caching cases. The rest
of the paper is organised as follows. Section 2 introduces the concepts. Section 3
describes our caching approach. Section 4 presents experimental results. Finally,
Section 5 concludes the paper and points out future work.

2 Preliminaries

2.1 Syntax and Semantics of SPARQL

SPARQL is the official W3C recommendation for querying RDF graphs. In this
paper, we focus on SELECT queries on ground RDF graphs. Let V be a set of
variables disjoint from U (URIs) and L (Literals). Variables in V are prefixed by
the symbol ?. We denote a SELECT query by Q(S, P), where S ⊂ V is the set of
variables to be returned, P is the graph pattern to be matched. For simplicity,
we restrict our discussion to conjunctive queries with simple filter conditions
(CQSFs), i.e. queries composed of AND and simple FILTER operators. We refer
to a filter condition as simple, if it involves at most one variable. Given a graph
pattern P , we use vars(P) to denote the set of variables in P (for a triple pattern
t, we use vars(t)), and ftrs(P) to denote the set of filter conditions in P .

We define the semantics of SPARQL by following the set semantics defined
in [9,7]. A solution mapping1 μ from V to U ∪ L is a partial function μ : V →
U ∪ L. The domain of μ, dom(μ), is the subset of V where μ is defined. Given
a triple pattern t and a solution mapping μ such that vars(t) ⊆ dom(μ), we
use μ(t) to denote the triple obtained by replacing the variables in t according
to u. Two solution mappings μ1 and μ2 are compatible, denoted by μ1 ∼ μ2,
if for all ?X ∈ dom(μ1) ∩ dom(μ2), μ1(?X) = μ2(?X), i.e. if μ1 ∪ μ2 is also a
solution mapping. Let Ω, Ω1 and Ω2 be sets of solution mappings, R a filter
condition, and S ⊂ V a set of variables. We define algebraic operations join (��),
projection (π), and selection (σ) over mapping sets: Ω1 �� Ω2 = {μ1∪μ2 | μ1 ∈
Ω1, μ2 ∈ Ω2 and μ1 ∼ μ2}; πS(Ω) = {μ1 | ∃μ2, μ1 ∪ μ2 ∈ Ω ∧ dom(μ1) ⊆
S ∧ dom(μ2) ∩ S = ∅}; σR(Ω) = {μ ∈ Ω | μ |= R, i.e. μ satisfies R}.
1 It is simply called mapping in [9,7].

322 Y. Shu et al.

Based on these operations, the evaluation of graph patterns and queries over
an RDF graphG is defined as a function [[.]]G that takes a pattern or a query, and
returns a set of solution mappings. Let G be an RDF graph, t a triple pattern,
P , P1, P2 graph patterns, R a filter condition, S ⊂ V a set of variables, and
Q(S, P) a SELECT query, we define: [[t]]G = {μ | dom(μ)=vars(t) and μ(t) ∈ G};
[[P1 AND P2]]G = [[P1]]G �� [[P2]]G; [[P FILTER R]]G = σR([[P]]G); [[Q(S, P)]]G =
πS([[P]]G).

Example 1. Consider a SELECT query Q({?x}, ((?x, type, student)(?x, age, ?y)
FILETER (?y = 20))) and an RDF graph G = {(a, type, student), (a, age, 30),
(b, type, student), (b, age, 20)}. When evaluating Q over G, we obtain [[Q]]G =
{{?x→ b}}.

2.2 Containment of SPARQL Queries

We define the containment of SPARQL queries based on the definition of sub-
sumption of solution mappings. In [1], the authors introduce a definition of sub-
sumption of solution mappings. Here, we extend their definition by considering
different sets of variables that are possibly used in queries.

Definition 1 (Subsumption of Solution Mappings). Let Ω1 and Ω2 be
two sets of solution mappings. Ω1 is subsumed by Ω2, denoted by Ω1 � Ω2, if
there is a variable mapping ψ from the domain of Ω1 (the union of domains
of its solution mappings) to the domain of Ω2 that for every μ1 ∈ Ω1, there
exists μ2 ∈ Ω2 such that ψ(μ1) ⊆ μ2, where ψ(μ1) denotes the solution mapping
obtained from μ1 by replacing every variable ?X ∈ dom(μ1) with ψ(?X).

Definition 2 (SPARQLQueryContainment).LetQ andQ′ be two SPARQL
queries.Q is contained inQ′, denoted byQ � Q′, if and only if for every RDF graph
G, [[Q]]G � [[Q′]]G.

3 Content-aware SPARQL Query Caching

In this section, we describe our caching approach. Similar to [6], the main func-
tionality is performed by a proxy residing between the application(s) and a
SPARQL endpoint. Given a query (CQSF), the proxy first parses the query.
It then checks whether the query is the same as a cached query by comparing
the query strings. If that is the case, the result is retrieved from the cache and
returned to the user. If the query is not cached, the proxy checks whether the
query can be evaluated on a cached result. Queries that cannot be evaluated on
the cache are forwarded to the SPARQL endpoint and results are cached before
returned to the user. We use LRU (Least Recently Used) as the replacement
scheme for our cache.

Based on results from relational databases [10], we have the following propo-
sition for checking the containment of CQSFs2.

2 Without loss of generality, we assume that all the filter conditions are safe, i.e. each
variable in a condition appears in some triple pattern.

Towards Content-Aware SPARQL Query Caching 323

Proposition 1. Let Q(S, P) and Q′(S′, P ′) be two CQSFs. Q � Q′ if

1. there exists a mapping τ from the variables of P ′ to the variables, URIs or
literals of P that maps each triple pattern of P ′ to a triple pattern of P ,

2. ftrs(P) logically implies τ(ftrs(P ′)), i.e. ftrs(P) ⇒ τ(ftrs(P ′)), where
τ(ftrs(P ′)) denotes the set of filter conditions obtained from ftrs(P ′) by
replacing each variable ?X ′ in ftrs(P ′) with τ(?X ′), and

3. S ⊆ τ(S′).

We refer to a mapping that satisfies Proposition 1 a containment mapping.
Given two queriesQ and Q′, Q � Q′ only tells us that the result ofQ is contained
in that of Q′. We still have to compute the result of Q. Unfortunately, Q � Q′

does not guarantee that Q can be evaluated on the result of Q′, as pointed out
in the Introduction. Here, we give a definition of what it means that a SPARQL
query can be evaluated on the result of another SPARQL query. The definition
is inspired by Larson and Yang’s work on computing SQL queries from derived
relations [4].

Definition 3 (Evaluability). Let Q and Q′ be two SPARQL queries. We say
that Q can be evaluated on the result of Q′, or simply, Q can be evaluated by Q′,
denoted by Q � Q′, if the operations needed to compute the result of Q from the
result of Q′ contain no algebraic joins.

In order for Q to be evaluated on the result of Q′, the following conditions
are required to hold.

Proposition 2. Let Q(S, P) and Q′(S′, P ′) be two CQSFs. Q � Q′, if

– there exists a containment mapping τ from Q′ to Q,
– for each triple pattern t of P , there exists a triple pattern t′ of P ′ such that
τ(t′) = t, and

– for each variable ?X ′ in P ′, if τ(?X ′) is an URI or a literal, or τ(?X ′) is a
variable which is included in S or in a filter condition in P , then ?X ′ ∈ S′.

The first condition is easily understandable: for Q � Q′, the result of Q must
be contained in that of Q′. The second condition ensures that any triple in an
RDF graph that matches a triple pattern of P also matches a triple pattern of
P ′. The third condition basically specifies the variables that have to be included
in S′ in order for Q to be evaluated by Q′. These three conditions can be used
to terminate testing early if Q cannot be evaluated by Q′.

With this proposition, we can evaluate Q through three types of operations
on the result of Q′: πS(Ω), σR(Ω), and substitution operation τ(Ω). Ω denotes
a set of intermediate solution mappings generated during the application of
operations, S a set of variables to be returned in Q, and R a conjunction of filter
conditions including those in Q, and those derived from τ in the form ?X ′ = c
(when a variable in Q′ is mapped to an URI or a literal in Q) or ?X ′ =?Y ′ (when
two different variables in Q′ are mapped to the same variable in Q).

324 Y. Shu et al.

Example 2. Consider two queries, Q1({?X1}, (?X1, type, stu)(?X1, age, 20)) and
Q2{?X2, ?Y2}, (?X2, type, stu)(?X2, age, ?Y3)FILTER(?Y2 > 15)). From Q2 to
Q1, there is a containment mapping τ that satisfies Proposition 2: τ(?X2) =
?X1, τ(?Y2) = 20. Let G is an RDF graph. We can evaluate Q1 by Q2 through
π{?X1}(τ(σ(?Y2=20)([[Q2]]G))).

To test Q � Q′, we need to check whether there is a containment mapping
from Q′ to Q that satisfies the conditions in Proposition 2. We can do this
efficiently ifQ′ is acyclic, as described below. A key operation is checking whether
each triple pattern of Q′ can be mapped to a triple pattern of Q. This is done
by comparing corresponding elements of triple patterns, i.e. subject to subject,
predicate to predicate, and object to object. See Algorithm 1 for details. Let
t′ be a triple pattern of Q′, t a triple pattern of Q, and e′ and e a pair of
corresponding elements of t′ and t. There are four cases: (1) both e′ and e are
URIs or literals; (2) e′ is an URI or a literal, but e is a variable; (3) e′ is a
variable, but e is an URI or a literal; (4) both e′ and e are variables. In the first
case, e′ and e need to be equivalent in order for t′ being able to be mapped to
t. In the second case, t′ cannot be mapped to t, as e′ is more specific than e. In
the last two cases, there is a mapping from e′ to e. If all the mappings from t′ to
t are compatible, i.e. they agree on shared variables, then t′ can be mapped to
t. During the mapping, we can also check whether e′ should be included in S′,
if it is a variable, and whether there are filter conditions involving e′ or e, and
whether the filter condition involving e′ can be implied by the filter condition
involving e. In doing so, we are checking whether t could be evaluated by t′

with regard to return variables and filter conditions of Q and Q′. In our current
implementation, if both filter conditions involving e′ and e exist, we require that
they be conjunctions of arithmetic comparisons of the form ?Xθc, where c is a
numeric value, and θ ∈ {=, �=, <,≤, >,≥}.

A triple pattern of Q′ can be potentially mapped to several triple patterns of
Q. As such, there may be more than one mapping associated with a triple pattern
of Q′, all with the same domain: the set of the variables in the triple pattern.
Such mappings are called partial mappings from Q′ to Q, as their domains are
a subset of the variables of Q′. Based on partial mappings, we are then able to
check whether there is a containment mapping from Q′ to Q such that Q � Q′.
Before we present our approach for testing Q � Q′, we introduce the concept of
query acyclicity.

A query (i.e. CQSF) is acyclic (cyclic) if its hypergraph is acyclic (cyclic).
A query’s hypergraph consists of a set of vertices and a set of hyperedges: each
vertex corresponds to a variable in the query, and each hyperedge corresponds
to a triple pattern and includes the variables in the triple pattern. A hypergraph
is acyclic if its GYO-reduction results in an empty hypergraph; otherwise it is
cyclic. The GYO-reduction [2] is a process that repeatedly applies the following
two operations on a hypergraph: (1) delete a vertex that occurs in only one
hyperedge; (2) delete a hyperedge that is contained in another hyperedge. If a
query is acyclic, an elimination tree for the query can be constructed during
the GYO-reduction: each node of the tree corresponds to a triple pattern in the

Towards Content-Aware SPARQL Query Caching 325

Input: two triple patterns t and t′ of Q and Q′ respectively,
two sets of return variables S and S′ of Q and Q′ respectively,
two sets of filter conditions F and F ′ in Q and Q′ respectively

Output: null, or a mapping τt′→t from t′ to t if t � t′

τt′→t ← null, E ← the triple elements of t, E′ ← triple elements of t′;
for i← 1 to 3 do

e← the ith element of E, f ← the filter condition involving e in F ;
e′ ← the ith element of E′, f ′ ← filter condition involving e′ in F ′;
if both e and e′ are URIs or literals, and e �= e′ then return null ;
if e is a variable and e′ is not a variable then return null ;
if e is not a variable and e′ is a variable then

if e′ /∈ S′, or e′ ∈ S′, f ′ �= null and e does not satisfy f ′ then
return null ;

if both e and e′ are variables then
if ((f = null) and (f ′ = null)) then

if (e ∈ S and e′ /∈ S′) then return null ;

if ((f �= null) and (f ′ = null)) then
if (e′ /∈ S′) then return null ;

if ((f = null) and (f ′ �= null)) then return null ;
if ((f �= null) and (f ′ �= null)) then

if e′ /∈ S, or f ′ cannot be implied by f after replacing e′ in
f ′ with e then return null ;

if e′ is a variable then
if {e′ → e} is compatible with τt′→t then τt′→t ← τ ∪ {e′ → e};
else return null ;

return τ ;

Algorithm 1. Checking whether t � t′

query; if a hyperedge E is deleted by operation (2) because it is contained in
some other hyperedge F , then the tree has an edge (tE , tF) where tE denotes the
triple pattern corresponding to E, and tF the triple pattern corresponding to F .
If there are several hyperedges containing E when E is deleted, then a random
one is picked as F . For simplicity, we restrict our discussion to queries whose
hypergraphs are connected. As such, an elimination tree of a query always covers
all the triple patterns of the query. However, our results can be generalised to
queries with disconnected hypergraphs.

An elimination tree of a query (acyclic) captures relationships of triple pat-
terns in a deterministic way. We can take advantage of this to find containment
mappings (if any) efficiently. Since a cyclic query does not have an elimination
tree, we have two cases when testing Q � Q′, i.e. when Q′ is acyclic and when it

326 Y. Shu et al.

Input: two queries Q and Q′ (Q′ is acyclic)
Output: null, or a mapping τQ′→Q from Q′ to Q if Q � Q′

T ← the elimination tree of Q′;
for each triple pattern t′ in T do

t′.mappings← null;
for each triple pattern t of Q do

if ((τt′→t = t � t′) �= null) then insert τt′→t into t
′.mappings;

return null if no such t;

return null if there exists t of Q that cannot be evaluated ;
for each triple pattern t′ in T (bottom-up) do

for each child t′i of t
′ do

t′.mappings← t′.mappings� t′i.mappings;

return null if the mappings of T ’s root are empty;
Γ ← the mappings of T ’s root;
for each triple pattern t′ in T (top-down) do

Γ ← Γ �� t′.mappings;
if dom(Γ) = vars(Q′) then for each mapping τQ′→Q in Γ do

if each triple pattern t of Q can be mapped to by τQ′→Q then
return τQ′→Q;

return null ;

Algorithm 2. Checking whether Q � Q′

is cyclic (it should become clear in the following that it is unimportant whether
Q is acyclic or not). For both cases, the testing consists of two major phases.
The first phase is generating partial mappings for each triple pattern of Q′, as
described earlier. The second phase is generating containment mappings, if any,
from partial mappings. If Q′ is acyclic, we generate containment mappings by
traversing an elimination tree of Q′. We first traverse the tree bottom-up. If a
node has children in the tree, we check whether the parent’s partial mappings
(i.e. the partial mappings associated with the triple pattern corresponding to
the parent node) are compatible with its children’s by semi-joining the parent’s
partial mappings with the children’s. This is continued until the root of the tree
is reached and its partial mappings are processed. If the resulting partial map-
pings of the root are empty, then there are no containment mappings from Q′ to
Q such that Q can be evaluated by Q′. Otherwise we traverse the tree top-down
to compute containment mappings by joining each node’s partial mappings with
its children’s, until the resulting mappings cover all variables of Q′. Algorithm 2
shows the whole process when Q′ is acyclic. It is adapted from the AcyclicCon-
tainment algorithm in [2].

Towards Content-Aware SPARQL Query Caching 327

��� ���

���	
��������	���	�� ���	��	����������	��	���	��

���

���

���� ��

��

��

�� �� ��

Fig. 1. The hypergraph and elimination tree for Q2 in Example 3

��� !���
��� !���

��� !���
��� !���

��� !���"	��� !�#��� !���"	��� !����$%�"	��� !���
��� !���"	��� !���"	��� !&�'
��� !���"	��� !���"	��� !&�'
��� !���"	��� !��"	��� !�#

��� !���"	��� !����$%�"	��� !��� ��� !���
��� !���

��� !���
��� !���

��� !���"	��� !�#

��� !���"	��� !����$%�"	��� !���"��� !�#

�� �� �� ��

�� �� �� ��

���	(������	�������	�������&	���	�)�	�����	������	��	��

���	*������	�������&	����	���+�&���	��	����������	��	��	��	������ '�

�)�	,�	�����)���������	�������	����	��	��	��	&')�	����	��)��	�	+��'��$	��	��"	
������$	����	���+�&���	��	����������	��	��� $�-�

Fig. 2. Mappings generated during testing Q1 � Q2 in Example 3

If Q′ is cyclic, we need to check each triple pattern’s partial mappings against
all other triple patterns’ if their domains overlap, and compute the partial map-
pings through semi-join operations. This is continued until there is a triple pat-
tern whose partial mappings are empty, or there are no more changes to all triple
patterns’ partial mappings. If it is the former case, it means that there are no
containment mappings from Q′ to Q such that Q can be evaluated by Q′. In
the latter case, we compute containment mappings by joining all triple patterns’
partial mappings with overlapping domains one by one until the resulting map-
pings cover all variables of Q′. Though some heuristics can be applied to decide
which triple patterns’ partial mappings are processed first, the testing of Q � Q′

when Q′ is cyclic is in general inefficient in both time and space. Fortunately,
most real world queries are acyclic and have few triple patterns [8].

Example 3. Let Q1 be ({?X1, ?Y1}, (?X1, friendOf, ?Y1)(?X1, type, stu)(?Y1,
type, stu)(?Y1, age, 25)), Q2 be ({?X2, ?Y2, ?Z2}, (?X2, ?Y2, ?Z2)(?X2, type, stu)
(?Z2, type, stu)(?X2, age, ?U2)FILTER(?U2 > 20)). To test Q1 � Q2, we first

328 Y. Shu et al.

��� ��� �)�

.

�..

�..

/..

0..

1�. 1�. 1/.

�
��
��
��
�	
�

�
�

�
��
��

��
��

�

21

131

1�1

.

�..

�..

/..

0..

�.. �.. /.. 0.. �...�
��
��
��
�	
�

��

��
��
�
��
��

�

����������

21

131

1�1

.

�..

�..

/..

0..

4546�34��".� 4546�34�#".� 4546�34��.".�

�
��
��
��
�	
�

��

�
��
��

��
��

�
�

21

131

1�1

Fig. 3. Performance comparison of the three cases with respect to percentage of con-
tained queries, dataset size, cache size

construct the hypergraph and an elimination tree for Q2, as shown in Figure 1,
where t1, t2, t3, and t4 represent triple patterns (?X2, ?Y2, ?Z2), (?X2, type,
stu), (?Z2, type, stu), (?X2, age, ?U2) respectively. We then generate the con-
tainment mappings from Q2 to Q1 such that Q1 � Q2 . The generation pro-
cess is shown in Figure 2(a)-(c). Let τ be the final mapping in (c), G be an
RDF Graph. We can evaluate Q1 on the result of Q2 through π{?X1,?Y1}(τ(
σ(?U2=25)(?Y2=friendOf)([[Q2]]G))).

4 Evaluation

We evaluated the performance of our approach through experiments. All exper-
iments were done on a machine with the following configuration: Intel Core i5
(M540, 2.53GHz), 3.24 GB of RAM, 848GB HD, Java 1.6, 512MB of max heap
size, Apache Jena 2.7.3, and TDB 0.9.3 (with the default file caching).

We generated datasets by modifying the LUBM benchmark [3]. We added
a data property “value” (with the range of “xsd:double”) to the benchmark
ontology (univ-bench.owl) and changed the data generator so that each gener-
ated student instance would have a certain random “value”. Using the modi-
fied data generator, we generated 3 datasets: MLUBM(1,0), MLUBM(5,0) and
MLUBM(10,0), which contain OWL files for 1, 5, and 10 universities respec-
tively, and then loaded each dataset into TDB after OWL inferencing. The sizes
of their materialised versions are 185182, 1125339, 2279105 respectively. For
query generation, we used the following template: SELECT ?X ?Y WHERE{?X
rdf:type ub:Student. ?X ub:value ?Y FILTER (?Y >= %%value1%% && ?Y<=
%%value2%%) ?X ub:takesCourse<http://www.Department0.University0.edu/
GraduateCourse0>}. By controlling the values which are used to replace the
parameters, we generated query traces with different percentages of contained
queries (i.e. the queries that are contained in other queries in the same trace).
The traces we experimented with are C20, C40, and C60, with 20%, 40%, and
60% of contained queries respectively. Each trace contains 1,000 queries and has
the same percentage of identical queries (20%).

Figure 3(a) shows the average response time of the three traces on M MLUBM
(10,0) in three cases, i.e. no caching (NC), content-blind caching (CBC), and
content-aware caching (CAC). As expected, when the percentage of contained
queries increases, the average response times with CAC decrease. This, however,

Towards Content-Aware SPARQL Query Caching 329

has little impact on the performance of CBC, as the percentage of identical
queries is the same for the three traces. We then studied the performance of
CAC with respect to dataset size. For this, we ran C40 to the three datasets. As
shown in Figure 3(b), CAC outperforms CBC by 44%-50%, and the performance
improvement is even better for larger datasets. In the earlier experiments, we
assumed unlimited cache size, i.e. there is no cache replacement. To investigate
the behavior of CAC with respect to cache size, we ran C40 on M MLUBM(10,0)
at various cache sizes. From Figure 3(c), we see that even with a small cache
size, CAC achieves much better performance than CBC. Also, CAC seems to be
more resilient to the change of cache size.

5 Conclusions and Future Work

In this paper, we presented a caching approach for improving the performance
of Semantic Web applications. Our approach is novel in that not only does
it benefit a query that exactly matches a cached query, but it also benefits a
query that is contained in a cached query and can be evaluated by the cached
query. We tested our approach on the slightly modified version of the LUBM
benchmark. Experimental results showed that our approach can achieve much
better performance than no caching and content-blind caching cases. In the
future, we would like to try some other cache replacement schemes, e.g. those
considering access frequency or miss cost. Also, we plan to extend our approach
for other fragments of SPARQL, e.g. queries with OPT and UNION operators.

References

1. Arenas, M., Perez, J.: Querying Semantic Web Data with SPARQL. In: Proceedings
of PODS (2011)

2. Chekuri, C., Rajaranman, A.: Conjunctive Query Containment Revisited. Theo-
retical Computer Science 239(2), 211–229 (2000)

3. Guo, Y., Pan, Z., Heflin, J.: LUBM: a Benchmark for OWL Knowledge Base Sys-
tems. Journal of Web Semantics 3(2), 158–182 (2005)

4. Larson, P.A., Yang, H.Z.: Computing Queries from Derived Relations. In: Proceed-
ings of VLDB (1985)

5. Letelier, A., Perez, J., Pichler, R., Skritek, S.: Static Analysis and Optimisation of
Semantic Web Queries. In: Proceedings of PODS (2012)

6. Martin, M., Unbehauen, J., Auer, S.: Improving the Performance of Semantic Web
Applications with SPARQL Query Caching. In: Aroyo, L., Antoniou, G., Hyvönen,
E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010,
Part II. LNCS, vol. 6089, pp. 304–318. Springer, Heidelberg (2010)

7. Pérez, J.,Arenas,M.,Gutierrez,C.: Semantics andComplexity of SPARQL. In:Cruz,
I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006)

8. Picalausa, F., Vansummeren, S.: What are Real SPARQL Queries Like? In: Pro-
ceedings of SWIM (2011)

9. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL Query Optimization.
In: Proceedings of ICDT (2010)

10. Ullman, J.D.: Principles of Database Systems, 2nd edn. Computer Science Press
(1982)

	Towards Content-Aware SPARQL QueryCaching for Semantic Web Applications
	1 Introduction
	2 Preliminaries
	2.1 Syntax and Semantics of SPARQL
	2.2 Containment of SPARQL Queries

	3 Content-aware SPARQL Query Caching
	4 Evaluation
	5 Conclusions and Future Work
	References

