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Abstract. We define a new primitive, input-aware equivocable commitment, bar-
ing similar hardness assumptions as plaintext-aware encryption and featuring
equivocability. We construct an actual input-aware equivocable commitment pro-
tocol, based on a flavor of Diffie-Hellman assumptions allowing adversarially
chosen domain parameters. On a parallel front, and since our commitment is ex-
tractable and equivocable in a straight-line way, we show that our commitment
enjoys UC-security, when atomic exchanges are available as a UC setup. We fur-
ther compare our protocol and our UC setup with similar, existing ones (i.e., in
terms of efficiency, assumptions needed, etc.). Finally, we show that cryptography
becomes UC-realizable in a natural way when participants are able to have “close
encounters” or when atomic exchanges can be enforced onto the communication.

1 Introduction

An attractive, neat way to prove security of a protocol is to show that it realizes an ideal
functionality [26,1,3,19] modelling a primitive. In this sense, a normal starting point
is the well-known framework of Canetti’s, i.e., the universal composability (UC) [7].
There are several versions of the UC framework (from [7] to [8]); slight differences are
operated in the communication model, the order of quantifiers in the UC proofs, etc. In
this paper, we will follow the original universal composability model, i.e., the one in [7],
summarised below.

At a high level, a UC proof that a protocol is secure (in the bare UC model) means
to show that no environment machine, Z, can distinguish between the execution in
the “real world” from the execution in the “ideal world”. The “ideal world” contains
“dummy” parties, the “target” ideal functionality (that the protocol is emulating) and
the “ideal” adversary, I . These “dummy” parties simply send their inputs to the ideal
functionality and wait for the response which they write on their output tapes. The envi-
ronment Z gives the inputs to the parties and reads their local outputs and can commu-
nicate with I . The “real world” contains actual protocol participants, the environment
Z, the “real adversary” A . The “ideal” adversary I or the “real” adversary A can cor-
rupt protocol-parties, in which case the adversary will see the input of such a party, all
communication sent to it, and A can decide its output. The communication channels
between participants is assumed to be secure. So far, this perfectly describes the bare
UC model which is often referred to as the UC plain model. In the UC plain model, sev-
eral essential cryptographic protocols (e.g., commitments) are not realizable. Thus, the
formalism is enhanced with some extra functionality, i.e., a setup functionality. Such an
“empowering” add-on to the UC plain models yields the so-called UC hybrid models.
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UC Plain Models and Commitments. In the context of UC, we recall that if multiple
commitments are UC-realized, then any multiparty computation can be UC-realized [11].
The UC functionality for single commitment is normally referred to as FCOM and can be
assimilated to an ideal safe where to store the commitment. Another common function-
ality FMCOM can deal with multiple commitments. Note that the general impossibility
result of realizing UC commitment in the plain UC model is strongly linked to the
notion of relay attacks.

UC Hybrid Models & Commitments. To achieve UC-secure (multiple) commitments,
different UC setups have been used. We recall that UC-secure multi-commitment are
generally realizable as follows: with a common reference string (CRS) setup [11], or
with a public-key infrastructure (PKI) using a trusted party to manage the correct knowl-
edge of respective public/secret keys [2], or with Katz’s tamper-resistant hardware to-
ken [23] (under the computational Diffie-Hellman assumption and a static adversarial
model), or with similar tokens to Katz’s but susceptible to more powerful attacks [12],
or with hardware tokens similar to those in [23], but used in a “receiver-empowering”
fashion to minimize the computational assumptions. More recently, Damgård et al. [15]
UC-realized multiple commitments by using a setup assumption that relaxes the tamper-
resistant hardware token to a functionality that models the partial isolation and limited
communication-power of a party. Unlike previous protocols, the protocol of Damgård’s
et al. [15] is in fact a general construction, relying on the following fact: if a functionality
of isolated parties is available, then witness indistinguishable proofs of knowledge (WI
PoK) can be realized, which further provide a PKI and make UC multiple commitments
possible. In this setting, the UC-realization relies on the existence of one-way permuta-
tions and dense public key, IND-CPA secure encryption schemes with pseudorandom
ciphertexts, but the adversarial model is strong (i.e., active and adaptive). In their pa-
per, Damgård et al. [15] fully compare their functionality with that of tamper-evident
hardware devices; we refer the reader to [15] for this comparison.

UC Augmented Models & Commitments. In fact, a UC-like scenario that made com-
mitment possible is that of a communication augmented with pre-specified delays: i.e.,
the timing model of Kalai’s et al. [22]. The assumptions under which multi-party com-
putation becomes possible in this model are similar to some of the aforementioned
assumptions for UC commitments with setups, i.e., the existence of enhanced trapdoor
permutations and dense cryptosystems. However, whilst commitment in itself is not an
issue anymore (i.e., the relay is prevented), Kalai’s et al. [22] state that their model
has the drawback of not being usable with protocols that employ time themselves (e.g.,
distance-bounding protocols [6]). But this may be unfortunate: as we will see further
(i.e., in Section 3.2), time-sensitive protocols can in fact be themselves tightly linked to
UC-secure protocols and their realization.

Our Justification for UC Hybrid Models with Atomic Exchanges. Summing up the
above paragraphs, we can see that the �-isolated parties of Damgård’s et al. [15] can
clearly be viewed as a restriction of the UC communication, as much as Kalai’s et
al. [22] model can. Thus, the former can also prevent relay attacks; moreover, �-isolated
parties do allow (and, in fact, facilitate) the composition of/with protocols that involve
time themselves. And, as we envisage the usage of timed protocols (e.g., distance-
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bounding protocols [6]), thus setting à la Kalai with delayed messages would be dif-
ficult to handle in our context. So, we embark on the approach of using UC setups,
rather than augmentation of models with time/delays. In order to realize UC (multiple)
commitments (and thus all multi-party computation as per [11]), we will invoke a UC-
setup similar to the recent �-isolated parties of Damgård’s et al. To this end, we put
forward a UC setup called Fatomic. By atomic exchanges we mean the communication
between protocol parties produced via their interaction with Fatomic.

Our functionality Fatomic is similar to the “�-isolated parties” setup of Damgård et
al. [15]. The intuition behind is that the Fatomic functionality allows two parties to have
an elementary, “fully isolated” exchange of just one message each. This can be viewed
as a specialization of the F�-isolated functionality of Damgård’s et al. [15] (namely, with
�= 0 and an exchanges limited to two messages in “one-round”). On the one hand, it is
not clear how to realize F0-isolate using Fatomic. Intuitively, we need several instances of
Fatomic and it would mean to pass information from one to the other using non-malleable
encryption. So, Fatomic may be weaker than F0-isolate. On the other hand, Fatomic may be
simpler to implement. For instance, the responder may be subject to several constraints
such as time-bound to respond (like in NFC tags in distance-bounding [6]), or may be
in a tamper proof token (such as the one by Katz [23]), or may result from a “close
encounter”.

Extrapolating PAW. In parallel, in this paper, we will define input-aware equivocable
commitments (outside the UC model), a scheme akin in its characteristics to plaintext-
aware encryption [14,21,31]. Our definition also includes equivocability, which is cru-
cial for UC-security. We propose a specific protocol that implements this scheme under
special types Diffie-Hellman assumptions. I.e., one such assumption is an extension
of the DH regular knowledge assumption to be required to hold in any group [17]. In
our case, the DH knowledge assumption needed is supposed to hold further in any ad-
versarially chosen group (which is a weaker assumption than assuming it holds in any
group). Also, in our UC setting, such a scheme can be employed in, e.g., concurrent
RFID/NFC-based contactless payment protocols [25] where some computation is to
be done atomically (i.e., by the RFID/NFC tag alone) and the final result needs to be
“independent” for other simultaneous such computations.

UC Commitments and Their Assumptions. UC multiple commitments are possible
under the different UC-setups. A short list of such setups is as follows: 1. Katz’s tamper-
resistant hardware tokens [23] (where under the computational Diffie-Hellman assump-
tion and a static adversarial model); 2. similar tokens to Katz’s but susceptible to more
powerful attacks [12]; 3. hardware tokens similar to those in [23], but used in an asym-
metric fashion to minimize the computational assumptions [28]; 4. the more recent [15]
relaxation of the tamper-resistant hardware tokens to a functionality modelling the par-
tial isolation and limited communication power of a party (under the assumptions of
one-way permutations and dense public key, IND-CPA secure encryption schemes with
pseudorandom ciphertexts, but the adversarial model is strong (i.e., active and adaptive).

There are some UC lines [10,16] in which the ideas underlying the ideal-world sim-
ulation of (multiple) commitment can be loosely linked to the one that we are going to
put forward. Firstly, in [10], Canetti et al. achieve a FMCOM-realization with
non-erasing parties, in the CRS-hybrid model using an encryption scheme obviously
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samplable[14]. In this case, the trick that allows I to run its simulations (i.e., that gives I
the oblivious-sampling coins for its ciphertext) is to sample ciphertexts without running
the encryption algorithm. Note that an encryption obviously samplable (with respect to
chosen-ciphertext attacks) [14] is possible under the Decisional Diffie-Hellman (DDH)
assumption. Similarly, our protocol is possible if some special Diffie-Hellman assump-
tions are used.

Using several instances of FCOM , ZK is UC-realized in the FCOM-hybrid model [10]
by mainstream ideas: by repeating t times, in parallel, Blum’s protocol for Hamiltonian-
Cycles (HC) [4], where the commitments of the provers are calls to FCOM . Damgård and
Nielsen [16] construct ZK more efficiently, but in a similar way, using the SAT protocol
which proves satisfiability of boolean circuits. Along similar lines, our one-bit commit-
ment can be used to Fatomic-UC realize ZK in the same complexity as the Canetti’s et
al. [10]. In Appendix A we included a discussion about some further, “unconventional”
commitments.

Our Contribution. In this paper, we introduce the notion of input-aware equivocable
commitment, i.e., commitments that include both extractability and equivocability. We
further propose some extensions of the Diffie-Hellman hardness assumptions or of the
discrete logarithm hardness assumption, for the case where the adversary can mali-
ciously select the group structure. We call it an adversarially-chosen group extension
of the DH assumption. We propose the Fatomic functionality as a new setup assumption.
This is a new, easy to implement UC setup, drawing upon un-aided local computation.
Finally, we propose an input-aware equivocable commitment in the plain model, which
we then prove to UC-realize FCOM in presence of the Fatomic setup.

2 Input-Aware Commitments in Classical Cryptography

In this section, we formalize the notion of input-aware equivocable commitments and
present one protocol. On our way to doing so, we specify different flavors of Diffie-
Hellman (DH) assumptions.

2.1 Commitment Scheme

The following definition reiterates the usual meaning of a commitment scheme in con-
formity with traditional (i.e., non-composable) cryptography.

Definition 1 (Commitment Scheme). A bit-commitment scheme in terms of a secu-
rity parameter λ is a pair of polynomially bounded protocols
((SCOM,RCOM),(SOPEN ,ROPEN)) where SCOM has an input bit b, and ROPEN has an
output bit b̄. The protocols may abort. The

SCOM(1λ,b;rS)↔ RCOM(1λ;rR)

execution1 is called the commitment phase. For simplicity, 1λ is omitted from the nota-
tion. Let ViewS, respectively ViewR, denote the view of SCOM, respectively the view of
RCOM. The

SOPEN(ViewS;r′S)↔ ROPEN(ViewR;r′R)
1 This execution is understood as any standard interactive system [20].
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execution is called the opening phase. It produces the final output from R, i.e., b̄. A
commitment scheme is expected to be correct: i.e., when correctly executed, no protocol
aborts and b̄ = b.

The following definition completes the above by formalizing the usual requirements
of a commitment scheme in conformity with traditional (i.e., non-composable) cryptog-
raphy.

Definition 2 (The Hiding Property). A commitment scheme is said to be hiding if
the following holds. For any polynomially bounded R∗COM, if SCOM(b;rS)↔ R∗COM(rR)
ends up with the final view ViewR for R∗COM, then ViewR|b = 0 and ViewR|b = 1 are
computationally indistinguishable.

In the above, ViewR|b = x (with x ∈ {0,1}) denotes the marginal distribution (over all
random coins and inputs) of ViewR as a random variable, conditioned to the event b = x.
Note that we can assume without loss of generality that R∗COM is deterministic (since rR

could be hard-coded in it).

Definition 3 (The Binding Property). A commitment scheme is said to be binding if
the following holds. For any polynomially bounded S∗COM and S∗OPEN, if the S∗COM(rS)↔
RCOM(rR) and then the S∗OPEN(ViewS;r′S)↔ ROPEN(ViewR;r′R) experiment occur, then
min(Pr[b = 0|rS,rR],Pr[b = 1|rS,rR]) = negl(λ), where this probability is taken in the
random choices of S∗OPEN and ROPEN.

This means that once the commitment is made (i.e., rS and rR are fixed), S∗OPEN cannot
open to both b̄ = 0 and b̄ = 1. We recall that f (λ) = negl(λ) means that for all c > 0,
we have f (λ) = O(λ−c).

2.2 Diffie-Hellman Assumptions

In this subsection, we specify several Diffie-Hellman assumptions.

Definition 4 (DH Key Generator). A DH key is a tuple K = (G,q,g) such that G is
a group, q is a prime dividing the order of G, g is an element of G of order q. A DH
key-generator is a ppt. algorithm Gen producing DH keys K such that |K|= Poly(logq)
and the operations (i.e., multiplication, comparison, and membership checking in the
group 〈g〉 generated by g) over their domain can be computed in time Poly(logq). We
say that (S,S′) is a valid K-DH pair for gσ if S ∈ 〈g〉 and S′ = Sσ, where σ ∈ Zq. Given
K = (G,q,g), we define a function DHK with a variable number of inputs from G by
DHK(gx1 , . . . ,gxn) = gx1···xn .

An example of a DH key is (Z∗p,q,g) where p and q are primes and p = 2q+ 1, g ∈
QR(p), g 	= 1.

We now strengthen the Decisional Diffie-Hellman (DDH) assumption. Below, we
use an arbitrary ppt. algorithm B generating some coins ρ and a state state. Such coins
ρ and/or state state will be sometimes used as auxiliary inputs to some ITMs in the
security games formalized below.
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Definition 5 (DDH Asmpt. in an Adversarially-Chosen Group (ag-DDHGen)). The
ag-DDHGen assumption over a domain of DH keys K states that for any ppt. algorithms
A and B in the next game, Pr[b = b]− 1

2 = negl(λ):
1: (ρ,state) := B(1λ;rB)
2: K := Gen(1λ;ρ)
3: define (G,q,g) from K
4: pick α,β,γ ∈U Zq

5: A := gα; B := gβ; C0 := gγ; C1 := gαβ

6: pick b ∈U {0,1}
7: b := A(1λ,state,A,B,Cb;r)

The probability stands over the random coins rB , r, b ∈U {0,1} and α,β,γ ∈U Zq and
is negligible in terms of logq. A (and B) run in ppt. in terms of logq.

It should be clear that ag-CDHGen, the computational version of this problem can be
defined as well.

Definition 6 (CDHn Asmpt. in an Adversarially-Chosen Group (ag-CDHn
Gen)). The

ag-CDHn
Gen assumption over a domain of DH keys K states that for any ppt. algorithms

A and B in the next game, the probability that S0 = DHK(A,B,S1, . . . ,Sn) and that
Si 	= 1 for i = 1, . . . ,n is negligible:

1: (ρ,state) := B(1λ;rB)
2: K := Gen(1λ;ρ)
3: define (G,q,g) from K
4: pick α,β ∈U Zq

5: A := gα; B := gβ

6: (S0,S1, . . . ,Sn) := A(1λ,state,A,B;r)

The probability stands over the random coins rB , r, and α,β ∈U Zq. The probability is
negligible in terms of logq. A (and B) run in ppt. in terms of logq.

The standard Diffie-Hellman computational problem corresponds to the CDH0 prob-
lem. Clearly, the CDHn assumption implies the CDHn−1 assumption for all n > 0, but
the opposite implication is an open problem. In what follows, we will use the CDH1

assumption.
We now similarly strengthen the Diffie-Hellman knowledge (DHK0) assumption (for

a summary the latter, refer to [17]).

Definition 7 (DHK0 Asmpt. in an Adversarially-Chosen Group (ag-DHK0Gen)). The
ag-DHK0Gen assumption over a domain of DH keys K states that for any ppt. algorithm
A and B in the next game, there is a polynomially bounded algorithm E such that the
probability of the below experiment outputting 1 is negligible:

1: (ρ,state) := B(1λ;rB)
2: K := Gen(1λ;ρλ)
3: define (G,q,g) from K
4: pick σ ∈U Zq

5: (S,S′) := A(1λ,state,gσ;r)
6: if (S,S′) is not a valid K-DH pair for gσ, then return 0
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7: s := E(1λ,state,gσ,r)
8: if S = gs, then return 0
9: return 1

The probability stands over the random coins rB , r and σ ∈U Zq and is negligible in
terms of logq. The running time of E (and B) is ppt. in terms of logq.

This assumption means that whatever the algorithm producing valid DH pairs for a
random gσ with σ unknown, this algorithm must know the discrete logarithm of their
components except for some negligible cases.

The algorithm B used in the games above is denoted as the biotope algorithm.
What distinguishes these assumptions from the mainstream DDH and DHK0 assump-

tions [17] is that these should hold for all K selected by a ppt. biotope algorithm (even
by a malicious one) and not only for some K which is randomly selected by an honest
participant. In fact, when selecting a DH key without a CRS in a two party protocol, the
above assumption must hold for any maliciously selected K (since we ignore a priori
which party is honest). Hence, the name we use: DH assumptions in an adversarially-
chosen group. As we mentioned in the introduction, the latter assumption is a special
case of the DH knowledge assumption required to hold in any group, or, equivalently,
for any B and rB . Such assumptions were originally introduced by Dent in [17]. Here,
we do not require the assumption to hold in any group, but rather in those groups G for
which we can produce a seed for Gen to use in generating G, or equivalently, for any, B
on average over rB .

In the next, for readability purposes, we will omit the additional-input 1λ from the
inputs of the machines that take it, its presence being implicit.

2.3 Input-Aware Equivocable Bit-Commitment

Definition 8 (Input-Aware Equivocable Commitment Scheme). An input-aware
equivocable bit-commitment (IAEC) scheme is a commitment scheme
((SCOM,RCOM),(SOPEN ,ROPEN)) as per Def. 1, with the following additional proper-
ties. Let b denote the input of SCOM, b̄ be the output of ROPEN or R∗OPEN, and ViewS,
respectively ViewR, be the view of SCOM or S∗COM and, respectively, of RCOM or R∗COM
in the commitment phase.

– (sender input-awareness aka extractability) For any polynomially bounded algo-
rithms S∗COM and S∗OPEN, there is a polynomially bounded algorithm Extract such
that the following holds. When running the commitment phase

S∗COM(rS)↔ RCOM(rR),

followed by the opening phase

S∗OPEN(ViewS;r′S)↔ ROPEN(ViewR;r′R),

the next holds with probability 1−negl(λ), taken over the random rS,r′S,rR,r′R:
– b̄ = Extract(ViewS) and no protocol aborts,
– or Extract(ViewS) aborts and the commitment phase as well,
– or the opening phase aborts.
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– (receiver self-equivocability) For any polynomially bounded algorithm R∗COM and
R∗OPEN, there is a polynomially bounded algorithm Equiv such that the following
holds. When running the commitment phase

SCOM(b;rS)↔ R∗COM(rR),

followed by the flipping a coin b′ to run the opening phase

{
SOPEN(ViewS;r′S)↔ R∗OPEN(ViewR;r′R), if b′ = b
Equiv(b′,ViewR;r′S)↔ R∗OPEN(ViewR;r′R), if b′ = 1− b,

it all results in a final view View′R of R∗OPEN and this is such that View′R|b = 0 and
View′R|b = 1 are computationally indistinguishable over the random rS, rR, r′R, r′S
and b′.

The above definition implies the classical notions of security (i.e., notions of hiding and
binding commitments as per Defs. 2, 3). Equivocability already says that ViewR|b = 0
and ViewR|b = 1 are indistinguishable since ViewR is included in View′R; so the com-
mitment is hiding. Furthermore, a malicious sender who could open a commitment
to both b = 0 and b = 1 with a probability which is negligible would contradict b̄ =
Extract(ViewS); so, the commitment is binding.

We will now construct an IAEC based on the ag-DHK0Gen, the ag-DDHGen and the
ag-CDH1

Gen assumptions. We denote it as protocol ΠGen (see Fig. 1). As per Section 3.2,
the label “atomic” in Fig. 1, applies only in the context of the use of a UC functionality
for atomic exchanges when building the protocol to be UC-secure. It shall be ignored
in the current section.

Protocol ΠGen

The commitment phase (i.e., to be described by the SCOM and RCOM protocols) works
as follows.

1. S generates ρ for Gen, i.e., it does K := Gen(ρ), and S sends ρ to R.
2. Then, R also computed K :=Gen(ρ) and R selects2 some α∈Z∗q and sends X0 := gα

to S.
3. S verifies3 that X0 ∈ 〈g〉, selects x ∈ Z∗q, calculates X := gx and X ′ := Xx

0 , and sends

X ,X ′ to R. S picks β ∈ Z∗q and calculates Y0 := gβ. S sends Y0 to R.
4. R verifies that X ∈ 〈g〉, X ′ = Xα, and that Y0 ∈ 〈g〉. Then, R selects y ∈ Z∗q and

calculates Y := gy and Y ′ := Y y
0 . Then, R sends Y , Y ′, and α to S. Then, R selects

some z0,z1 ∈ Z∗q and calculates Z0 and Z1 as follows: Zi := gzi , for i ∈ {0,1}. The
R party sends Z0 and Z1 to S.

5. The party S verifies that Y,Z0,Z1 ∈ 〈g〉, that Y ′ = Y β, and that X0 = gα. S further
selects r ∈ Zq and sends U := gr, V := ZbXr and β to R, where b is the bit that S is
in the process of committing to.

6. R verifies that U,V ∈ 〈g〉 and that Y0 = gβ.

2 All occurrences of “selects” in this description denote “picks uniformly”.
3 If a verification fails, then the party running it aborts.
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Sender Receiver

commitment phase
input: b

pick ρ and set K := Gen(1λ,ρ)
ρ−−−−−−−−−−−−−−−−→ set K := Gen(1λ,ρ)

X0
?∈ 〈g〉 atomic: X0←−−−−−−−−−−−−−−−− α ∈U Z∗q, X0 := gα

x ∈U Z∗q, X := gx, X ′ := Xx
0

X ,X ′−−−−−−−−−−−−−−−−→ X
?∈ 〈g〉, X ′ ?

= Xα

β ∈U Z∗q, Y0 := gβ atomic: Y0−−−−−−−−−−−−−−−−→ Y0
?∈ 〈g〉

Y
?∈ 〈g〉, Y ′ ?

= Y β, X0
?
= gα Y,Y ′,α←−−−−−−−−−−−−−−−− y ∈U Z∗q, Y := gy, Y ′ :=Y y

0

Z0,Z1
?∈ 〈g〉 Z0,Z1←−−−−−−−−−−−−−−−− z0,z1 ∈U Z∗q, Z0 := gz0 , Z1 := gz1

r ∈U Zq, U := gr, V := ZbXr U,V,β−−−−−−−−−−−−−−−−→ U,V
?∈ 〈g〉,Y0

?
= gβ

opening phase

set b′ := b
b′−−−−−−−−−−−−−−−−→

γ ∈U Z∗q
U ′,V ′←−−−−−−−−−−−−−−−− s ∈U Zq, U ′ :=Uygs, V ′ :=V yXs

W := gγ, W ′ :=
(

V ′U ′−x
)γ W,W ′
−−−−−−−−−−−−−−−−→

U ′ ?
= Y rgs,

(
V ′Y−xrX−s

)γ ?
=W ′ s←−−−−−−−−−−−−−−−−

γ−−−−−−−−−−−−−−−−→ W
?
= gγ, W ′ ?

= Zyγ
b′

Fig. 1. Input-aware Equivocable Commitment Protocol ΠGen

The opening phase (i.e., to be described by the SOPEN and ROPEN protocols) works
as follows.

1. S sends a bit b′ with b′ = b.
2. Then, R selects s ∈ Zq and calculates U ′ :=Uygs and V ′ :=V yxs. Then, R sends U ′

and V ′ to S.
3. S selects γ ∈ Z∗q and calculates W := gγ and W ′ := (V ′U ′−x)γ. Then, S sends W,W ′

to R.
4. R sends s to S.
5. S verifies that U ′ = Y rgs and (V ′Y−xrX−s)

γ
=W ′. Then, R sends γ to S.

6. S verifies that W = gγ, W ′ = Zyγ
b′ and outputs b̄ := b′.

The commitment is an ElGamal encryption (U,V ) of Zb with a self-made public
key X . The opening uses the homomorphic properties of the encryption to transform
(U,V ) into an encryption of Zy

b such that the following holds: if Zb′ were not the correct
decryption of (U,V ), then decrypting Zy

b′ would require to know y or zb′ (since Zy
b′ =

(gzb′ )y is equal to the “public” W ′
1
γ ). The trick is that keys X and Y are declared in such

a way that the DHK0 assumption would make the corresponding secret-keys x and y
extractable by using input-aware equivocable techniques when given the appropriate
coins. Indeed, x would allow to extract b from the commitment and y would allow to
equivocate.

Theorem 9. Under the ag-CDH1
Gen, DDHGen, and ag-DHK0Gen assumptions, the pro-

tocol ΠGen above is an input-aware equivocable bit-commitment.
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Proof (space-constrained sketch). Since the polynomial-time bound and the correct-
ness are trivial, we only have to construct Extract and Equiv.

Sender Input-Awareness. Let S∗COM and S∗OPEN be some malicious commitment and
opening algorithms, respectively. We define two algorithms A and B as follows. The
algorithm B simulates the experiment S∗COM(rS)↔ RCOM(rR) up to the moment before
S∗COM receives X0, when B stops. Then, as per dictated by the ag-DHK0Gen game, B
sets ρ and state according to the experiment he just took part in. That is ρ would be as
generated in S∗COM(rS)↔ RCOM(rr) and state would be the current view of S∗COM with
its coins limited to its run so far, i.e., limited to a prefix rs of the whole set of coins rs

(rs := rs||rs). Then the output (X ,X ′) of S∗COM with input state, augmented with the mes-
sage X0 and the coins rs defines A(state,X0;rs). By the ag-DHK0Gen assumption, there
must exist some algorithm E(state,X0;rs) such that —except for negligible cases—
E(state,X0;rs) outputs x satisfying that X = gx, or RCOM rejects (X ,X ′).

Now, let rs = rs||rs be the coins in ViewS and state,X0,Z0,Z1 as above be in
ViewS. We now define Extract(ViewS) as follows. Let ρ := S∗COM(rS) and (X ,X ′) :=
S∗COM(X0;rS). Except in negligible cases, x = E(1λ,state,X0;rS) is such that X = gx. If
(U,V ) is valid, Extract can compute Z =VU−x and compare Z to Z0 and to Z1. If there
is no match, then we return ⊥. Otherwise, we return b as per the match Zb = Z. Note
that Pr[Z0 = Z1] is negligible, so there is a unique match.

Now, we need to show the soundness of this procedure, i.e., S∗OPEN cannot open to
something different from b = Extract(ViewS). For this, we show that S∗COM and S∗OPEN

could define an adversary for ag-CDH1
Gen. We will use a rewinding technique to define

this adversary. (Note that extraction is straight-line. It is only the adversary showing
that extraction is sound which is using rewinding.)

To define the adversary (using the created ρ) receiving A and B from outside, we
first simulate the experiment until we get β. Then, we rewind it but inject Y = A instead
of some Y with a known discrete logarithm. We can also compute Y ′ = Y β thanks to
getting β. Similarly, we flip a coin b̃ and inject Zb̃ = gzb̃ with zb̃ random and Z1−b̃ = B.
Clearly, β is bound to be unchanged. Since ViewS has a correct distribution, we can still
run b = Extract(ViewS) and x = E(1λ,state,X0,rS). If b 	= b̃, this is bad luck and we
restart. Since S∗COM sees no information about b̃, bad luck happens with probability 1

2
and we do not have to restart too much until we are in the lucky b = b̃ case.

Then, the adversary continues to simulate the opening. If b′ = b, the adversary
aborts. Otherwise, the adversary must simulate some genuine (U ′,V ′). We know that
V = gzbUx. The regular receiver would send a random U ′ =Uygs and some V ′ = Y yXs

connected to U ′ with the relation V ′ = Y zb(U ′)x. So, the simulator could just pick U ′ at
random and compute V ′ =Y zb(U ′)x since he knows zb = zb̃ and x. He then obtains from
S∗OPEN some (W,W ′). With a genuine receiver sending s, we obtain γ such that

DH(A,B,W ) = DH(Y,Z1−b,g
γ) = Zyγ

1−b

So, to make the receiver accept, the (W,W ′) pair we must satisfy DH(A,B,W ) = W ′
even before providing s. Due to the ag-CDH1

Gen assumption, this happens with negli-
gible probability. So, in the genuine experiment, either the experiment aborts, or b′ =
Extract(ViewS), or W ′ 	= DHK(Y,Z1−b′ ,W ), thus making ROPEN aborts.
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Receiver Self-Equivocability. Let R∗COM and R∗OPEN be some malicious commitment
and opening algorithms. We define two algorithms A and B as follows. The algorithm
B simulates the experiment SCOM(rS)↔ R∗COM(rR) until the moment before R∗COM re-
ceives Y0 and then B stops. As before, B will produce his needed ρ as in the experiment
SCOM(rS)↔ R∗COM(rR) and state as the current view of R∗COM , limiting his coins rR to rR,
i.e., to those used so far, where rR := rR||rR. Then the output (Y,Y ′) of R∗COM with input
state, augmented with the message Y0 and the coins rR defines A(state,Y0;rR). Due to
the ag-DHK0Gen assumption, there must exist some algorithm E such that, except for
negligible cases, E(state,Y0;rR) produces y satisfying Y = gy, or SCOM rejects (Y,Y ′).

We define all messages as in the SCOM(b;rS)↔ R∗COM(rR) experiment from the view
ViewS. Note that running SCOM(b;rS) also defines ρ.

We define Equiv(b′,ViewR;r′S) by sending out b′, receiving U ′,V ′, computing y =
E(state,Y0;rR) constructed like above, computing Zy

b′ and producing the pair (W,W ′)
such that W ′ = DHK(Y,Zb′ ,W ), by W = gγ and W ′ =

(
Zy

b′
)γ

.
The view of R includes ρ, X ,X ′, Y0, U,V,β, b′, W,W ′, γ. In all cases, W,W ′,γ can

be simulated by R with the same distribution, as well as Y0,β. Since α is produced
by R, X ′ can be simulated as well. Finally, the view reduces to (ρ,X ,U,V,b′). Indeed,
distinguishing b = 0 from b = 1 with b′ random reduces to the semantic security of the
ElGamal cryptosystem. As proven in [5], this reduces to the Decisional Diffie-Hellman
(DDH) problem. �

3 UC-Secure (Input-Aware Equivocable) Commitment with a
“Mild” Setup

In Subsection 3.1, we introduce the UC functionality called Fatomic, which is needed as
UC setup for the UC-realization of our (IAEC) commitment. The actual UC-realization
of commitment is shown in Subsection 3.2; some discussions about this realization and
its relationships with existing lines of UC-realization of commitment are also included.

3.1 UC Setup Functionality for Atomic Exchanges

We will now present a UC functionality that models one exchange of messages between
two parties, one of which is in complete isolation; hence, the name atomic exchange.
The restriction to one exchange makes this functionality a specialization of the F�−isolate

of Damgård’s et al. [15]. Also, differently from [15], the functionality below draws
strictly upon the user on which the limited communication is enforced; in that sense,
in the functionality below, this user can update its algorithm sent to the functionality
several times before the actual computation is made.

The Fatomic Functionality of Atomic Exchanges. Let poly be a polynomial. Assume
two parties A and B that would like to have an atomic exchange, i.e., A would normally
send m to B and, without outside help, B would have to respond with m′. Mainly, this
lack of outside help and the one exchange are the core of the Fatomic functionality.

Request for Atomicity. The participant B sends a message (atomic,A,B,M) to Fatomic,
where M denotes description of the Turing machine4 run by B. The functionality Fatomic

4 We assume that this machine is deterministic.
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parses the message and stores (A,B,M). Any other tuple including the same (A,B) is
erased.5 A special case is where the participant B sends the message (atomic,A,B,⊥),
which counts for an abortion of the atomic session.

Challenge an Atomic Response. The participant A can send the command
(challenge,A,B,m) to Fatomic. In this case, the functionality verifies the existence of
a tuple (A,B,M). If the corresponding register is empty or if M = ⊥, then the function-
ality sends a reject message to A and to the ideal adversary. Otherwise, the machine
proceeds as follows. It runs M(m) for no more than poly(|m|) steps, finally storing the
result in m′. Then, it sends (challenge-issued,A,B,m) to B and (response,A,B,m′) to
A. The (A,B,M) tuple is then erased.

Again, this functionality models the fact that B does not communicate with another
participant in between receiving m and producing his response m′, that before “being
asked” to compute m in isolation the participant can update his machine and that this
computation/communication is supposed to capture one exchange only. As we said in
the introduction and in the related-work, this functionality is a specialization of the
F�−isolated in [15], where �= 0, the exchange is reduced to one message per each of the
two parties involved and where the machine of the “computing-party” can be updated
before the need for the computation is imminent. In that sense, one cannot say clearly
if our functionality is weaker or stronger than the F�−isolated functionality in [15].

Further, we note that this sort of setup is sufficient for bypassing a relay attack of the
sort that lead to the impossibility of UC-commitments in the plain model. In the same
time, especially for the cases where only two parties are involved (e.g., the aforemen-
tioned mutually independent commitments [24]), this sort of setup is suitable to bypass
the known malleability problems.

In practice, a possible way to implement such an atomic-exchange functionality is
given by distance-bounding protocols [6]. This is one of the actual methods imple-
mented to prevent relay attacks [18]. Namely, to achieve the atomic-exchange, the two
concerned parties can use –in an initial/certain part of the communication– a distance-
bounding protocol (or a slight modification of such a protocol, which still considers
the time-of-flight of the messages in accepting/rejecting them). I.e., the correct an-
swer could have been produced only and solely by the close-by partner, otherwise the
distance-bound would be broken.

To easily specify protocols using atomic exchanges, the (challenge,A,B,m) query
by A it simply denoted “atomic: m”. It is followed by the message answering M(m)
by B, due to an abuse of notation. This implicitly means that B must have committed M
to Fatomic before.

3.2 UC-realization of Commitment in the Fatomic-hybrid Model

It is easy to see that any input-aware equivocable commitment UC-realizes commitment
using F0-isolate: we just have to run S and R in isolation. Here, we strengthen the result
by relying on Fatomic only. The ΠGen protocol, presented in Fig. 1 also requires some
messages to be exchanged atomically, i.e., using the Fatomic functionality. This means

5 Note that –by the above– B can resend this command to Fatomic, possibly with a different
machine-description M.
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that if R wants S to compute X ,X ′ on his own based upon S’s view and the fresh receipt
of X0, then they establish an atomic exchange: S cooperates in this and sends (several)
(atomic,R,S,algo_of_S) to Fatomic, where algo_of_S computes (X ,X ′) from the (hard-
coded) partial view of S and the input X0. We consider only the last deposited algo_of_S.
Then, R sends (challenge,R,S,X0) to Fatomic, which will eventually send X0 to S and
X ,X ′ to R, with (X ,X ′) := algo_of_S(X0) with algo_of_S running up to poly(|X0|) in
time. The same goes for the Y0 �→ (Y,Y ′) atomic exchange.

We are now going to prove that the ΠGen protocol UC-realizes commitment.

Theorem 10. Under the ag-CDH1
Gen, DDHGen, and ag-DHK0Gen assumptions, in the

Fatomic-hybrid UC model in the presence of static, non-adaptive adversaries, the proto-
col ΠGen UC-realizes FCOM.

The proof is very similar to the one of Th. 9. We construct an ideal adversary I by
using the straight-line extraction of b (when the sender is corrupted) or the straight-line
equivocation (when the receiver is corrupted). In the first case, we use the extracted b
to commit to it. In the latter case, I simulates the commitment to a dummy bit b to
R∗COM , then we use the equivocation once b′ is opened by the functionality to simulate
the opening to b′.

We note that the constructed I does not require rewinding. However, to prove that I
works well, we do rewind algorithms, but this is allowed. The (sketch of) proof is given
in Appendix B.

Discussions about the UC-realization of FCOM by ΠGen. We underline that, as per Fig. 1,
after the initialization phase, the two parties involved are in the position where they
share (amongst other things) the tuple (X ,Y ). This part can be separated and viewed
realizing itself a particular key-sharing functionality (call it G) in a Fatomic-hybrid UC
model. Then, the UC-realization in Th. 10 can be cast as follows: “in the G-hybrid
UC model in the presence of static, non-adaptive adversaries, the protocol Π′Gen (i.e.,
ΠGen without its init phase exchanging X and Y ) UC-realizes FCOM (if the ag-DHK0Gen
assumption, the ag-DDHGen and the ag-CDH1

Gen assumption hold).”
The formulation above renders our result visibly closer to the result in [15]. Namely,

if a setup functionality restricting the communication is available, then this leads to
some key-establishment, which then leads to the UC-realization of commitment. How-
ever, the difference between our approach here and the one in [15] is that secret extrac-
tion is integrated based on input-awareness, and we do not need to run a multi-round
protocol in isolation: only an elementary challenge-response one. Finally, this indicates
that cryptography becomes UC-realizable in a natural way when participants are able
to have “close encounters” to exchange public-key material.

ZK is UC-realized in the FCOM-hybrid model [10] by mainstream ideas: by repeat-
ing t times, in parallel, Blum’s protocol for Hamiltonian-Cycles (HC) [4], where the
commitments of the provers are calls to FCOM . Thus, our one-time one-bit-commitment
can be used to UC realize ZK in the same complexity as the Canetti’s et al.

Damgård and Nielsen UC-realize a commitment UC-functionality called FHCOM [16],
for homomorphic commitment. This functionality is slightly different from the original
FMCOM ; there the difference stems from the increased efficiency sought and, most im-
portantly, from the way to achieve equivocability and extractability for the ideal adver-
sary I . In the introduction, we recalled the so-called UC-“mixed commitments” [16]
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by Damgård and Nielsen, which achieve their equivocability and extractability for the
ideal adversary I by basing their commitment on two, disjoint sets of keys: the E-keys
(for the perfectly hiding property and equivocability by I ), and on the X-keys (for the
perfectly binding property and extractability by I ). For the simulation to work, only
a part of the key (formed of E-keys [16], used for the perfectly hiding property and
equivocability by I ) is placed in the reference string. The Damgård and Nielsen com-
mitments are inherently based on non-erasure Σ-protocols and their security against
lunchtime opening [16], i.e., roughly, an adversary is unable to produce an arbitrary
opening for a commitment, even if he sees several fake commitments under E-keys
and can adaptively specify how these ones should be opened. One such commitment
protocol is based on the p-subgroup assumption [29] and another assumes hardness of
the decisional composite residuosity problem [30] used in Paillier’s cryptosystem. We
believe that our construction can be extended also exploiting the Paillier encryption, to
commit to more than one bit. Damgård and Nielsen [16] construct ZK efficiently using
their commitments on top of the SAT protocol which proves satisfiability of boolean
circuits.

Using our approach, we can further realize a PKI in a natural way. What we need
is to establish a link between each participant and a central authority, then UC-realize
key registration based on commitment using standard proof-of-knowledge techniques.
Based on the PKI, we can realize multiparty computation. Our technique also makes it
easier to realize 2-party computation is a light way.

4 Conclusions

In this paper, we formalized two special kinds of Diffie-Hellman assumptions, for-
malized an input-aware equivocable scheme and exhibits a protocol ΠGen that prov-
ably implements the scheme under the aforementioned assumptions. These objects and
proofs have been done along traditional lines, i.e., outside of a particular framework
like Canetti’s UC model.

We presented a UC (setup) functionality called Fatomic (which allows two parties to
have a short, “fully isolated” exchange of just one message each). We gave the neces-
sary proofs to show that a slight modification of our protocol ΠGen UC-realizes commit-
ments. This is possible without the need of a PKI, i.e., with the mere separation of an
initialization phase (using just 2 atomic exchanges) and allows the two parties involved
to establish two private, public key-pairs.

Finally, we also herein discussed the relevance and efficiency of our protocol, on a
stand-alone basis as well as a protocol realizing other primitives, e.g., ZK.
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A “Unconventional” Commitments: A Comparison

The notion of input-aware commitments (IAC) was studied before under the name of
extractable commitments [13]. This was carried mainly in the CRS model, in [27,13],
as part of zero-knowledge proofs. Unlike the scheme to follow, these commitments did
not contain an explicit notion of equivocability, in the standard lines, i.e., outside the
UC framework. Thus, we sometimes refer to them as IAC (input-aware commitments)
as opposed to IAEC (input-aware equivocable commitments).

Canetti et al. [9] applied known commitment-constructions from injective one-way
functions and from pseudorandom generators to get extractable commitments (i.e., IAC)
when the underlying primitives used are extractable. We dissociate ourselves from this
method and rely instead on hardness assumptions6.

In the above sense, we use a stronger knowledge guarantee, which brings us closer to
an (unpublished) result by Ventre and Visconti [32] in which they construct extractable
commitments (i.e., IAC) from plaintext-aware encryption schemes, using certain hard-
ness assumptions. However, our construction is not from PAW encryption directly, yet
it bears similar assumptions to such encryption schemes [14], but it is also equivocable,
i.e., it is an IAEC.

6 Extractable functions abstract away from specific e.g., number-theoretic assumptions like the
knowledge of exponents and are cast in a complexity-theoretic setting.
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Further, we mention that primitives similar to input-aware equivocable commitments
have been explored before by Damgård and Nielsen (i.e., mixed commitments) inside
the UC framework, UC-realizing an ideal functionality FHCOM of homomorphic com-
mitment [16] in the CRS-hybrid UC model. Here, the formalization is different, the
protocol more specific, the scheme is initially cast upon traditional lines. We only even-
tually show that we UC-realize the normal, ideal functionality of commitment, i.e., not
the homomorphic version, using not a CRS, but a different setup. Namely, we show that
our specialized commitment protocol is UC-realizable in the UC hybrid model with
the Fatomic setup. More precisely, we will show that the thus-wise realized protocol
UC-emulates the ideal functionality of commitment FCOM (not FHCOM ). The protocol
from Damgård and Nielsen [16] is sometimes extractable, sometimes equivocable, but
not both. This depends on what the simulator needs in UC-security. (See more techni-
cal details on page 134.) In the plain model, Damgård and Nielsen’s commitment is
therefore not extractable nor equivocable. This is essentially different from the protocol
advanced herein. Indeed, one of the ideas in this paper also lies in introducing new tech-
niques of extractability of the “real” committed bit by the ideal adversary. Our protocol
enjoys both extractability and equivocability, at the same time, even outside of the UC
framework.

When compared to constructions from Damgård et al. [15], one advantage of our
input-aware equivocable commitment is that it integrates the secret key extraction and
becomes feasible with Fatomic efficiently. (In [15], the entire prover protocol of a WI �-
PoK scheme must be run in isolation.)

Another notion to thwart relay attack in commitment protocols is the notion of mu-
tually independent commitments [24].

B Proof of Th. 10
Proof (sketch). Given a real-world adversary A in the UC model with atomic-exchange
setup, we construct a UC ideal adversary I as follows.

A. We first treat the case where only S is corrupted by A and it is denoted as S∗. I
simulates S∗, Fatomic and RCOM internally, and I lets S∗ interact with Z externally (so
that Z cannot distinguish I ’s run from the real-world experiment).

The simulation by I together with Z defines an algorithm B , which stops before
Fatomic receives X0 from RCOM (as per the games defining the DDH and DHK0 assump-
tions). The algorithm B defines ρ and state, the latter being the current view of S∗.
Like before, in state, we restrict to the coins rA that S∗ has used so far. Let the unused
coins by S∗ be denoted rA . The next step of the simulation defines from state the last
algorithm that S∗ would have sent to Fatomic such that A(state,X0;rA ) would produce
(X ,X ′), using solely on the view of A since in fact X ,X ′ should be the output m′ of
Fatomic. By the assumptions we use, we now have another algorithm E(state,X0;rA )
that yields x such that X = gx or RCOM aborts7. Thus, our constructed I can simply run
E(state,X0;rA ) by using the view of S∗. As I goes on in the simulation of RCOM , it can
extract the committed bit b from (U,V ) thanks to x and send this bit to FCOM . As in
Th. 9, we can show that the opening to 1− b would contradict the assumptions.

B. When R is corrupted by A , we denote it as R∗. The simulation works as follows.
I simulates R∗, Fatomic and SCOM(b0) (for an arbitrary bit b0) internally, and I lets R∗

7 If M aborts in real life, we assume it outputs a special value such that the protocol itself finishes.
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interact with Z externally (so that Z cannot distinguish I ’s run from the real-world
experiment).

The simulation by I together with Z defines an algorithm B , which runs until the
moment before Fatomic receives Y0 from SCOM and then B stops. As before, B will pro-
duce ρ and state as the current view of R∗, limiting his coins rA to rA , i.e., to those used
so far, where rA := rA ||rA . Then the output (Y,Y ′) of Fatomic (on the algorithm sent to it
by R∗) can be seen as the output of A with input state. Augmented with the message Y0

and the coins rA , it defines A(state,Y0;rA ). Due to the ag-DHK0Gen assumption, there
must exist some algorithm E such that, except for negligible cases, E(state,Y0;rA ) pro-
duces y satisfying Y = gy, or SCOM rejects (Y,Y ′). Note that as before, the pair (Y,Y ′) is
produced by using solely on the view of R∗ (since the message Y0 is tagged as atomic).
So, our constructed I can again simply run E(state,Y0;rA ). Then, the adversary I can
either simulate SOPEN (if b=b0) or, otherwise, simulate Equiv using y.

The argument of the indistinguishability between the two worlds (the real one
and the simulated one by I ) follows the exact same arguments as those in the proof
of Th. 9. �
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