
CIL Security Proof for a Password-Based Key
Exchange

Cristian Ene1, Clémentine Gritti2, and Yassine Lakhnech1
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Abstract. Computational Indistinguishability Logic (CIL) is a logic for
reasoning about cryptographic primitives in computational model. It is
sound for standard model, but also supports reasoning in the random or-
acle and other idealized models. We illustrate the benefits of CIL by for-
mally proving the security of a Password-Based Key Exchange (PBKE)
scheme, which is designed to provide entities communicating over a pub-
lic network and sharing a short password, under a session key.
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1 Introduction

Cryptography plays a central role in the design of secure and reliable systems.
It consists in the conception and analysis of protocols achieving various aspects
of information security such as authentication. In particulary, the provable cryp-
tography is defined as the conception of proofs accounting for the exact amount
of security supplied by cryptographic protocols.

In the computational model, Computational Indistinguishability Logic (CIL)
supports concise and intuitive proofs accross several models of cryptography.
This logic features the notion of oracle system, an abstract model of interactive
games in which adaptative adversaries play against a cryptographic scheme by
interacting with oracles. Moreover, it states a small set of rules that capture
common reasoning patterns and interface rules to connect with external rea-
soning. To illustrate applicability of CIL, we consider the security proof of the
Password-Based Key Exchange (PBKE) protocol.

1.1 Related Work

About Security of PBKE Protocols: EKE (Encrypted Key Exchange) was in-
troduced by Bellovin and Merritt, [1]. In their protocol, two users execute an
encrypted version of the Diffie-Hellman key exchange protocol, in which each
flow is encrypted using the password shared between these two users as the sym-
metric key. Due to the simplicity of their protocol, other protocols were proposed
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in the literature based on it, each with its own instantiation of the encryption
function such that OEKE (One-Encryption Key-Exchange) protocol.

Since 2003, E. Bresson et al., [3], have been working on the analysis of very
efficient schemes on password-based authenticated key exchange methods, but
for which actual security was an open problem. In 2012, B. Blanchet have focused
on a crytpgraphic protocol verifier, called CryptoVerif, to mechanically prove
OEKE.

About CIL: DCS (Distributed and Complex Systems) is working on the logic
CIL for proving concrete security of cryptographic schemes. It enables reasonning
about schemes directly in the computational settings. The main contribution is
to support the design of proofs at a level of abstraction which allows to bridge
the gap between pencil-and-paper fundamental proofs and existing pratical ver-
ification tools (see article [7]).

1.2 Contributions and Contents

For the first time, we bring out the applicability of CIL for formalizing com-
putational proofs. The tool CIL allows us to give a new kind of analysis that
has advantages over the traditional as in [3] and [9]. As we use a tool based on
general and extended logic rules, the proofs are well constructed and easy to
understand, and achieve good results.

The paper begins with a recall of the framework to capture cryptographic
games(Section 2). The main technical contributions of the paper are: i) an ex-
tension of reasoning tools for oracle systems (Section 3); ii) a formal proof in
CIL of an efficient PBKE protocol (Section 4).

2 Oracle Systems

2.1 Preliminaries

ICM: An ideal block cipher is a totally random permutation from l-bit strings
to l-bit strings.

ROM: A random oracle is a mathematical function mapping every possible
query to a uniformly random response from its output domain.

Miscellaneous: Let 1 to denote the unit type and (x,y) to denote pairs. For
a set A, U(A) defines the set of uniform distributions over A. Let to denote
arguments that are not used or elements of tuples whose value is irrevelant in
the final distribution.

2.2 Semantics

The interaction between an oracle system and an adversary proceeds in three
successive phases:

– the initialization oracle sets the initial memory distributions of the oracle
system;
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– the adversary performs computations, updates its state and submits a query
to the oracle system; the oracle system performs computations, updates its
state, and replies to the adversary, which updates its state;

– the adversary outputs a result calling the finalization oracle.

During his attack, the adversary has access to the oracles, which modelize his
capacities to obtain (partial) information or to execute some party of the protocol
in the reality. His resources are bounded by two parameters: the number of
queries he performs to the oracles and his running time.

2.3 Oracle Systems and Adversaries

Oracle systems and adversaries are modeled as stateful systems meant to interact
with each another. An oracle system O is a stateful system that provides oracle
access to adversaries and given by:

– sets of oracle memories and of oracles;
– a query domain, an answer domain and the related implementation;
– a distinguished initial memory, and distinguished oracles oI for initialization

and oF for finalization.

Oracle systems O and O′ are compatible iff they have the same sets of oracle
names and the query and the answer domains of each oracle name coincide in
both oracle systems. We build compatible systems out of systems we have already
defined by modifying the implementation of one of the oracles.

2.4 Events

The interaction between oracle system and adversary seems as this of the pattern
consisting in the query of an oracle, the computation of an answer by the oracle,
and the update of its state by the adversary. This is formalized as a transition
system, where a step consists in one occurence of the pattern.

Security properties abstract away from the state of adversaries and are mod-
eled using traces. A trace is an execution sequence from which the adversary
memories have been erased. The subset of traces verifying the predicate is con-
sidered to assign a probability to an event defined by a predicate.

For a step-predicate φ, let the event ”eventually φ” be denoted by Fφ and
correspond to φ satisfied at one step of the trace. Furthermore, the event ”always
φ”, denoted by Gφ, is true iff φ is satisfied at every step of the trace. You can
find an example of this concept in Appendix A.3.

For more details and examples, you can see the Appendix A or refer to the
article [7].

3 Computational Indistinguishability Logic

3.1 Statements: Judgments

For an event E, a statement O :ε E is valid iff for every (k,t)-adversary A,
P r(A | O : E) ≤ ε(k,t). For O and O′ compatible oracle systems which expect a
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boolean as result, a statement O ∼ε O′ is valid iff for every (k,t)-adversary A,
| P r[A | O : R = True] − P r[A | O′ : R = True] |≤ ε(k,t). Let E be an event of
compatible systems O and O′. A statement O

E∼ε O′ is valid iff for every (k,t)-
adversary A, | P r[A | O : R = True∧E]−P r[A | O′ : R = True∧E] |≤ ε(k,t) . As
O ∼ε O′ ⇔ O

True∼ ε O′, we write O ∼ε O′ for the two statements. See Appendix
B.1 for details.

3.2 Rules and Their Extensions

We expose briefly the rules used in our proof on Figure (1). You can find more
classic and extended rules in Appendix B.1.

O :ε2 E2 O′ :ε1 F¬ϕ O ≡R,ϕ O′ E1RE2

O′ :ε1+ε2 E1
UpToBad

O :ε Fϕ
Fail

O ≤det,γ O′ O :ε E ◦ π

O′ :ε E
B-Det-Left

O :ε E ◦ C

C[O] :ε′ E
B-Sub

O
E2∼ ε1 O′ E2 ⇒ E1 O :ε2 E1 ∧ ¬E2 O′ :ε2 E1 ∧ ¬E2

O
E1∼ ε1+ε2 O′

URCd
O :ε′ Fϕ′

Fail2

O
E1∧E2∼ ε2 O′ O :ε1 ¬E1 ∧ E2 O′ :ε1 ¬E1 ∧ E2

O
E2∼ ε1+ε2 O′

FTr
O

E1∼ ε1 O′ O′ E2∼ ε2 O”

O
E1∨E2∼ ε1+ε2 O”

TrCd

O :ε1 Fϕ1 ∧ Gϕ2 O :ε2 F¬ϕ2 O ≡R,ϕ2 O′

O′ :ε1+ε2 Fϕ1

B-BisG2
O′ :ε F¬ϕ2 ∧ Gϕ1 O

ϕ1≡R,ϕ2 O′

O
Gϕ1∼ ε O′

I-BisCd

Fig. 1. Rules used in the proof (classic and extended rules). For compatible oracle
systems O, O′ and O”, events E, E1 and E2 of O, O′ and O”, and step-predicates ϕ,
ϕ1 and ϕ2.

3.3 Contexts

A context C is an intermediary between an oracle system O and adversaries. One
can compose a O-context C with O to obtain a new oracle system C[O] and with
a C[O]-adversary to obtain a new O-adversary C ‖ A. Procedures for contexts
differ of these for oracle systems: one that transfers calls from the adversary
to the oracles and another one that tranfers answers from the oracles to the
adversary. See Appendix B.2.

3.4 Bisimulation

Game-based proofs proceed by transforming an oracle system into an equiva-
lent one, or in case of imperfect simulation into a system that is equivalent up to
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some bad event. The notion of bisimulation-up-to is defined as two probabilis-
tic transition systems are bisimilar until the failure of a condition on their
tuple states-transitions. Bisimulations are closely related to obversational equiv-
alence and relational Hoare logic and allow to justify proofs by simulations. Be-
sides, bisimulations-up-to subsume the Fundamental Lemma of Victor Shoup.
See Appendix B.3.

3.5 Determinization

Using the concept of automata determinization technique, the definition is based
on the possibility to decompose states of a system into two components and to
exhibit a distribution γ allowing to obtain the second component given the first
one. See Appendix B.4.

4 CIL Security Proof for an Efficient PBKE

4.1 Preliminaries

In the computational model, messages are bitstrings, cryptographic primitives
are functions from bitstrings to bitstrings and adversary is any Probabilistic
Polynomial time Turing Machine.

Scheme: We denote objects describing the model:

– two sets Users and Servers such that u ∈ [Users] and s ∈ [Servers];
– for the arithmetic, G =< g > is a cyclic group of l-bit prime order q and

Ḡ = G \ 1G = {gx | x ∈ Z
∗
q} (g is a fixed parameter);

– for i = {0,1}, li is the parameter of data size for Hash function Hi;
– a set P assword as a small dictionary (polynomial in the security parameter),

of size N , equipped with the uniform distribution.

Encryption/Decryption: E is the Encryption and D is the Decryption in the
Ideal Cipher Model .

Hash Functions: There are two hash functions H0 and H1 in the Random
Oracle Model.

We want to bound the probability for an adversary, within time t, and with
less than Nu sessions with a client, Ns sessions with a server (active attacks), and
asking qH hash queries and qE Encryption/Decryption queries, to distinguish
the session key from a random key.

4.2 One-Encryption Key-Exchange (OEKE), A Password-Based
Key Exchange

On Figure (2) (with a honest execution of the OEKE protocol), the protocol
runs between a client u and a server s. The session key space associated to this
protocol is {0,1}l0 equipped with the uniform distribution. u and s initially share
a low-quality string pw, the password, from P assword.
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Client u Server s
pw pw

accept ← false ; terminate ← false accept ← false ; terminate ← false
x ← [1..(q − 1)] y ← [1..(q − 1)]

X ← gx u,X−−−→ Y ← gy

Y ← D(pw,Y �) s,Y �

←−−− Y � ← E(pw,Y )
Ku ← Y x ; Auth ← H1(Z ‖ Ku) ; sku ← H0(Z ‖ Ku) Ks ← Xy

accept ← true Auth−−−−→ Auth
?= H1(Z ‖ Ks) ; if true, accept ← true

sks ← H0(Z ‖ Ks)
terminate ← true terminate ← true

Fig. 2. An execution of the protocol OEKE, run by the client u and the server s. We
let Z be equal to u ‖ s ‖ X ‖ Y .

The real game O1
0: This game consists of: initialization and finalization or-

acles, Encryption/Decryption oracles, Hash oracles, oracles that simulate the
protocol (named U1, S1, U2 and S2), Execute oracle, Test oracle and Reveal
oracle. In the initialization oracle, the bit b is equal to 1 and hence, the Test
oracle returns the real value of the session key.

Imp(oI )() =
pw ← P assword; LH0 := [ ]; LH1 := [ ];
LE := [ ]; Lpw := [ ]; LO := [ ];
varX :=⊥; varθ :=⊥; varϕ :=⊥; varsk :=⊥;
b := 1
return 1

Imp(E)(pw,x) = Imp(D)(pw,y) =
if (pw,x, , ) /∈ LE then if (pw, ,y, ) /∈ LE then

y ← Ḡ; LE := LE .(pw,x,y,⊥); φ ← Z
∗
q ; x = gφ ; LE := LE .(pw,x,y,φ);

endif endif
return y such that (pw,x,y, ) ∈ LE return x such that (pw,x,y, ) ∈ LE

Imp(H0)(x) = Imp(H1)(x) =
if x /∈ LH0 then if x /∈ LH1 then

y ← U(l0); LH0 := LH0 .(x,y); y ← U(l1); LH1 := LH1 .(x,y);
endif endif
return LH0(x) return LH1(x)

Imp(U1)(u,i) = Imp(S1)((s,j),(u,X)) =
θ ← Z

∗
q ; X = gθ ; varθ[(u,i)] = (θ,X); ϕ ← Z

∗
q ; Y = gϕ; Y � = E(pw,Y );

return (u,X) varϕ[(s,j)] = (ϕ,Y,Y �); varX [(s,j)] = X ;
Ks = Xϕ

return (s,Y �)
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Imp(U2)((u,i),(s,Y �)) = Imp(S2)((s,j),u,Auth) =
if varθ[(u,i)]! =⊥ then if varϕ[(s,j)]! =⊥ then

Y = D(pw,Y �); (θ,X) = varθ[(u,i)]; (ϕ,Y,Y �) = varϕ[(s,j)]; X = varX [(s,j)];
Ku = Y θ; Ks = Xϕ;
Auth = H1(u ‖ s ‖ X ‖ Y ‖ Ku); H ′ = H1(u ‖ s ‖ X ‖ Y ‖ Ks);
varsk[(u,i)] = H0(u ‖ s ‖ X ‖ Y ‖ Ku) if H ′ = Auth then

endif varsk[(s,j)] = H0(u ‖ s ‖ X ‖ Y ‖ Ks)
return Auth endif

endif
return 1

Imp(Reveal)(p,k) = Imp(T est1)(p,k) =
if varsk[(p,k)]! =⊥ then if varsk[(p,k)]! =⊥ then

sk := varsk[(p,k)] sk := varsk[(p,k)]
endif endif
return sk return sk

Imp(Exec)((u,i),(s,j)) = Imp(oF )(x) = return 1
θ ← Z

∗
q ; X = gθ; ϕ ← Z

∗
q ;

Y = gϕ; Y � = E(pw,Y ); Ks = Xϕ; Ku = Y θ;
Auth = H1(u ‖ s ‖ X ‖ Y ‖ Ku);
varsk[(u,i)] = H0(u ‖ s ‖ X ‖ Y ‖ Ku)
return ((u,X),(s,Y �),Auth)

The real game O0
0: As for O1

0, this game consists of exactly the same oracles.
The differences are in the initialization oracle where b = 0 and in the Test oracle
where is returned a random value for sk.

Summary: In a first part, we bound the probabilities that two step-predicates
occur. The first one, Cl, is for formalizing the collisions. The second one, φpw, is
for describing the dependence on the password in the oracles. In a second part,
we write the general proof in order to obtain the indistinguishability between
O0

0 and O1
0, considering that the two previous step-prediactes can not occur. For

that, we describe the transformations of the game O1
0 , step by step, until finding

a simplified game. We notice that we obtain the same thing for the game O0
0 .

These two parts are very similar: the same tranformations are made in order
to obtain the wanted result. Therefore, we explain clearly the first proof and we
expose briefly the second one.

N.B.: The list Lpw is created to simulate the oracles E and D in ICM.
We suppose that the domain of E matches with the group generated by g. LO

is defined as the list stocking the tuple (oracle o,query q,answer a), writing as
LO = LO · (o,q,a).

4.3 Proof for Bounding the Probability of the Step-Predicate φpw

C.1. Eliminating the Collisions :
We want to eliminate collisions during Hash and Encryption/Decryption pro-
cesses. We formalize the small probability of that an inappropriate collision could
let the adversary to find a sequence without any required effort.
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Let the step-predicate Cl be defined on the triple ((o,q,a),m, ) as the con-
junction of the clauses:

– for i = 0,1, o = Hi ∧ q /∈ m · LHi
∧ (,a) ∈ m · LHi

– o = E ∧ (pw,q, , ) /∈ m · LE ∧ ( , ,a, ) ∈ m · LE

– o = D ∧ (pw, ,q, ) /∈ m · LE ∧ ( ,a, , ) ∈ m · LE

To complete and restrict the definition of Cl, let us introduce two other clauses:

– if (pw,Y,Y �
1 ,ϕ) and (pw,Y,Y �

2 ,ϕ) then Y �
1 = Y �

2
– if (pw,Y1,Y �,ϕ) and (pw,Y2,Y �,ϕ) then Y1 = Y2

Since Cl can only be satisfied when querying H0, H1, E or D, applying the
rule Fail2 (see Appendix B.1) allows to conclude to:

– on the hash oracles, where l = max(l0, l1) and qH = qH0 + qH1 , we obtain

ε1
0 = 1

2 × (qH0 +qH1 )2

2l = q2
H

2l+1 ,
– on the Encryption/Decryption oracles, where qE = qEnc +qDec, we get ε2

0 =
1
2 × (qEnc+qDec)2

q−1 = q2
E

2(q−1) .

Therefore, we obtain that O1
0 :ε0 FCl where ε0 = q2

H
2l+1 + q2

E
2(q−1) . We perform the

same analysis for the other game obtaining O0
0 :ε0 FCl.

For further, at each step, we suppose there is no collision when modifying the
game O1

0 . We can introduce a particular equivalence relation under the step-
predicate ¬Cl in order to avoid the collisions, since it steps in over memories.
We use the extented notion of bisimulation (for more details, see Appendix B.3).
To conclude the proof, we bound the probability of such collisions (this avoids
the repetition of the value ε0 at each transformation).

C.2. Creating the independence from the password in the oracles:
We want to eliminate dependence on pw in all the oracles. We formalize the

probability that the adversary guesses the good password and succeeds in the
acquisition of the session key.

We define the step-predicate φpw = φpw1 ∨ φpw2, where φpw1 and φpw2 are
written as follows:

φpw1 = λ(m, ). (U2,q, ) ∈ m · LO ∧ (m · pw, ,q,⊥) ∈ m · LE

φpw2 = λ(m, ). (S1, ,a) ∈ m · LO ∧ ( ,a) ∈ m · S1 ∧ (m · pw,Y,a, ) ∈ m · LE

∧( ‖ ‖ ‖ Y ‖ ,a′) ∈ m · LH1 ∧ (S2,a′, ) ∈ m · LO

φpw steps in over memories only. We want to find the value ε1 such that:
O1

0 :ε1 Fφpw = Fφpw1∨φpw2 .
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We transform the game O1
0 until finding a game wherein the password is sam-

pled in the finalization oracle. Therefore, we can obtain easily the optimal result
Nu+Ns

N . Indeed, this means that the adversary can test at most one password
per session.

Removing the Encryption in the oracle S1. The unique way for the adver-
sary to gain something is to correctly guess pw, by either sending a Y � that is
really an encryption under it of some well-chosen message or using it to decrypt
Y �. In O1

1 , we change S1 modelizing the Encryption inside this oralce.

Imp(S1)((s,j),(u,X)) = ϕ ← Z
∗
q ; Y = gϕ; Y � ← Ḡ; varϕ[(s,j)] = (ϕ,Y,Y �);

LE := LE.(pw,Y,Y �,ϕ) ; varX [(s,j)] = X ; Ks = Xϕ;
return (s,Y �) such that (pw,Y,Y �, ) ∈ LE

In a particular case, we do not receive an exponent ϕ but ⊥: that happens
when Y � has been previously obtained as a ciphertext returned by an Encryp-
tion query. Let the step-predicate Exp be this case:

Exp = λ((o, ,a),m, ). o = S1 ∧ (pw, ,a,⊥) ∈ m · LE

Therefore, O1
0 and O1

1 are in bisimulation-up-to ¬Exp, using as relation R′1

the equality on the common components of their states in M
O1

i

¬Cl. Indeed, states
m,m′ are in relation:

– if m,m′ ∈ M
O1

0
¬Cl or M

O1
1

¬Cl, mR′
1m′ iff m = m′

– if m ∈ M
O1

0
¬Cl and m′ ∈ M

O1
1

¬Cl, mR′
1m′ iff

• ∀(pw,x,y,e) ∈ m ·LE \m′ ·LE ⇒ e =⊥ ∧∃(pw,x,y,ϕ) ∈ m′ ·LE \m ·LE s.t. x =
gϕ

• ∀(pw,x,y,e) ∈ m′ · LE \ m · LE ⇒ e = ϕ s.t. x = gϕ ∧ ∃(pw,x,y,⊥) ∈ m · LE \
m′ · LE

Hence, we apply the rule I-BisG2 to result in:

O1
1 :ε′

2
FExp(∧G¬Cl) O1

1 :ε′
1

Fφpw
(∧G¬Cl) O1

0
¬Cl≡ R′1,¬Exp∧¬φpw

O1
1

O1
0 :ε′

1+ε′
2

Fφpw
(∧G¬Cl)

I-BisG2

Applying the rule Fail allows to obtain O1
1 :ε′

2
FExp, where ε′

2 = Ns×qE

q−1 .

Splitting the Hash Lists. We want to be sure that u will offer a good Authenti-
cator and s will accept it. Therefore, we modify the oracle U2 in order to get a honest
value for Y . We split the lists of the two public hash oracles H0 and H1 in O1

2 , intro-
ducing two private hash functions H2 : {0,1}∗ → {0,1}l0 and H3 : {0,1}∗ → {0,1}l1 .
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Imp(oI )( ) = Imp(U2)((u,i),(s,Y �)) =
pw ← P assword if varθ[(u,i)]! =⊥ then
LH0 := [ ]; LH1 := [ ]; LH2 := [ ]; LH3 := [ ]; (θ,X) = varθ[(u,i)]
LE := [ ]; Lpw := [ ]; LO := [ ]; if ∃Y,∃ϕ such that (pw,Y,Y �,ϕ) ∈ LE

varX :=⊥; varθ :=⊥; varϕ :=⊥; varsk :=⊥; Ku = Y θ ;
b := 1 Auth = H1(u ‖ s ‖ X ‖ Y ‖ Ku);
return 1 varsk[(u,i)] = H0(u ‖ s ‖ X ‖ Y ‖ Ku)

else
Y ← Ḡ; Ku = Y θ;
Auth = H3(u ‖ s ‖ X ‖ Y ‖ Ku);
varsk[(u,i)] = H2(u ‖ s ‖ X ‖ Y ‖ Ku)

endif
endif
return Auth

O1
1 and O1

2 are R′
2-bismilar up to ¬φpw1. The equivalence relation R′

2 between
states m and m′ is as follows:

– if m,m′ ∈ M
O1

1
¬Cl or M

O1
2

¬Cl, mR′
2m′ iff m = m′

– if m ∈ M
O1

1
¬Cl and m′ ∈ M

O1
2

¬Cl, mR′
2m′ iff m ·LH0 = m′ ·(LH0 ∪LH2 ) and m ·LH1 =

m′ · (LH1 ∪ LH3 )

Then, applying the rule I-BisG2, we find:

O1
2 :ε′

3
Fφpw1(∧G¬Cl) O1

2 :ε′
4

Fφpw
∧ G¬φpw1(∧G¬Cl) O1

1
¬Cl≡ R′2,¬φpw1 O1

2

O1
1 :ε′

3+ε′
4

Fφpw
(∧G¬Cl)

I-BisG2

such that ε′
3 + ε′

4 = ε′
1. We notice that: Fφpw

∧ G¬φpw1 ⇔ Fφpw2 .

Randomizing the Hash Oracles. In O1
3 , we sample the value of Y . Therefore,

we no longer use the private hash functions since we internalize the hash functions in
another way with the random Y . We modify the oracles U2 and S2.

Imp(U2)((u,i),(s,Y �)) = Imp(S2)((s,j),u,Auth) =
if varθ[(u,i)]! =⊥ then if varϕ[(s,j)]! =⊥ then

Y ← Ḡ; ( ,Y,Y �) ∈ varϕ[(u,i)]; (ϕ,Y,Y �) = varϕ[(s,j)]; X = varX [(s,j)]; Ks = Xϕ;
(θ,X) = varθ[(u,i)]; Ku = Y θ; H ′ = H1(u ‖ s ‖ X ‖ Y ‖ Ks);
Auth = H1(u ‖ s ‖ X ‖ Y ‖ Ku); if H ′ = Auth then
varsk[(u,i)] = H0(u ‖ s ‖ X ‖ Y ‖ Ku) varsk[(s,j)] = H0(u ‖ s ‖ X ‖ Y ‖ Ks)

endif endif
return Auth endif

return 1

Let the step-predicate Auth be the conjunction of the following clauses:

– (pw,Y,Y �,ϕ) ∈ LE ∧ X ∈ varθ

– for u and s, u ‖ s ‖ X ‖ Y ‖ CDH(X,Y ) ∈ LH1

The adversary can not see the link between Y and Y �, except if he calls E(pw, ) or
D(pw, ).
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We notice that the probability that Fφpw2 occurs is very negligible since we suppose
that the adversary can not get the password. Since we have FAuth∨φpw2 = FAuth ∨
(Fφpw2 ∧G¬Auth), we expose that Fφpw2 ∧G¬Auth occurs with the probability ε′

5 and
FAuth with ε′

6. Using the rule Fail, we get ε′
5 = Nu+Ns

q−1 .
We want to establish the indistinguishability between O1

2 and O1
3 up to ¬Auth ∧

¬φpw2. We exhibit two equivalence relations R′
3 between both systems. Indeed, states

m and m′ are in relation:

– if m,m′ ∈ M
O1

2
¬Cl or M

O1
3

¬Cl, mR′
3m′ iff m = m′

– if m ∈ M
O1

2
¬Cl and m′ ∈ M

O1
3

¬Cl, mR′
3m′ iff m ·(LH0 ∪LH2 ) = m′ ·LH0 and m ·(LH1 ∪

LH3 ) = m′ · LH1

On the left hand, focusing on the step-predicate φpw1, we apply the rule I-BisG2 to
result in:

O1
3 :ε′

5+ε′
6

FAuth∨φpw2 (∧G¬Cl) O1
3 :ε′

7
Fφpw1 ∧ G¬Auth∧¬φpw2 (∧G¬Cl) O1

2
¬Cl≡ R′3,¬Auth∧¬φpw2 O1

3

O1
2 :ε′

5+ε′
6+ε′

7
Fφpw1 (∧G¬Cl)

I-BisG2

such that ε′
5 + ε′

6 + ε′
7 = ε′

3.
On the right hand, since we have FAuth∨φpw2 = [FAuth ∧ Gφpw2 ] ∨ [Fφpw2 ∧

GAuth∧φpw2 ] and O1
3 :0 Fφpw2 ∧ GAuth∧φpw2(∧G¬Cl), we simplify the line. Focusing

on the step-predicate φpw2, we apply the rule I-BisG2 to result in:

O1
3 :ε′

6
FAuth ∧ Gφpw2 (∧G¬Cl) O1

3 :ε′
8

Fφpw2 (∧G¬Cl) O1
2

¬Cl

≡ R′3,¬Auth∧¬φpw2 O1
3

O1
2 :ε′

6+ε′
8

Fφpw2 (∧G¬Cl)
I-BisG2

such that ε′
6 + ε′

8 = ε′
4.

We focus on the CDH problem to obtain the value of ε′
6 (for more details about the

Computational Diffie-Hellman assumption in G, see Appendix B.2). Hence, we write
the game O1

4 as a context C of CDH . The oracle system CDH captures the game
played by an adversary to find the Diffie-Hellman instance (A,B).

We define the step-predicate Auth’ as follows:
– o = U1 s.t. (α,X) ∈ LA ∧ o = S1 s.t. (β,Y ) ∈ LB

– for u and s, u ‖ s ‖ X ‖ Y ‖ CDH(X,Y ) ∈ LH1

The adversary has returned a pair (R1,R2) that is a valid authentication when H1(R1) =
R2. Given (α,X) ∈ LA, (β,Y ) ∈ LB and one CDH instance (A,B), we notice that
CDH(A,B) = CDH(X,Y )α−1β−1

.
Therefore, applying the rule B-Sub, we get:

CDH :ε(1k,t) FAuth’ ◦ C

O1
4 = C[CDH ] :ε′

6
FAuth’

B-Sub

where ε′
6 = qH × ε(1k, t) (see Appendix B.2).
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Moreover, the games O1
3 and O1

4 are in perfect bisimulation. We define the equiva-
lence relation R′

4 between states m and m′ as follows:

– if m,m′ ∈ M
O1

3
¬Cl or M

O1
4

¬Cl, mR′
4m′ iff m = m′

– if m ∈ M
O1

3
¬Cl and m′ ∈ M

O1
4

¬Cl, mR′
4m′ iff there is the equality on the common

components of their states, knowing that the added lists LA and LB are completely
determinated using the other common tables.

Then, we check the compatibility of FAuth ∪ FAuth’ with R′
4, i.e. that given two

states m ∈ M
O1

3
¬Cl and m′ ∈ M

O1
4

¬Cl in relation by R′
4, FAuth holds in state m iff FAuth’

holds in state m′, which is obvious by the definition of the relation. Thus, applying the
rule UpToBad, we find:

O1
4 :ε′

6
FAuth’(∧G¬Cl) O1

3 :0 F¬True O1
3

¬Cl

≡ R′4,True
O1

4 FAuthR′
4FAuth’

O1
3 :ε′

6
FAuth(∧G¬Cl)

UpToBad

Sorting the Password in the Finalization Oracle. We a simplified game such
that all the oracles are independent of pw. We modify the finalization oracle in order
to draw the password only at the end of O1

5 .

Imp(oF )(x) = x = pw; return 1

The event Fφpw
◦ π on O1

5-traces is defined by Fφpw
◦ π(τ ) = True iff π(τ ) verifies

Fφpw
, where τ is any O1

5-trace. Therefore, using the rule Fail, we get O1
5 :ε1 Fφpw

, where
ε′

9 = Nu+Ns
N . Then, applying the rule B-Det-Left, we find:

O1
3 ≤det,γ O1

5 O1
5 :ε′

9
(Fφpw

◦ π) ∧ G¬Cl

O1
3 :ε′

9
Fφpw

(∧G¬Cl)
B-Det-Left

such that ε′
9 = ε′

7 +ε′
8 = Nu

N + Ns
N . More precisely, we get O1

3 :ε′
7

Fφpw1 and O1
3 :ε′

8
Fφpw2 .

To conclude, we obtain that O1
0 :ε1 Fφpw

where ε1 = Nu+Ns
N + Nu+Ns

q−1 + NsqE

q−1 +
2qH ×ε(1k, t). We perform the same analysis for the other game obtaining that O0

0 :ε1

Fφpw
.

For further, at each step, we suppose there is no dependence on the password when
modifying the game O1

0 . We can introduce a particular equivalence relation under the
step-predicate ¬φpw in order to avoid a query from the adversary with the good pw,
since it steps in over memories using the list LO. From that, E and D no longer give
some evidence about the password to the adversary. This process enables to avoid the
repetition of the value ε1 at each transformation in the general proof.

Proof Tree: We illustrate the proof tree for bounding the probability of the step-
predicate φpw on Figure (3). For convenience, we understand that each event FPredicate
is associated to the event G¬Cl and b is the bit randomly sampled in the initialization
oracle.

N.B.: Defining the step-predicate φpw allows us to construct a proof which seems
the more general possible. Indeed, we notice that it can be applied in another password-
based protocol proof. From that, we hope to get security proofs more easily since we
have already met the concept.
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I-BisG2
Ob

0
G¬Cl≡ R1,¬Exp∧¬φpw

Ob
1 Ob

1 :ε′
2

FExp
I-BisG2

Tree’1
Ob

1 :ε′1 Fφpw

Ob
0 :ε′

1+ε′
2

Fφpw

Tree’1:

I-BisG2
Ob

1
G¬Cl≡ R2,¬φpw1 Ob

2
I-BisG2

Tree’2
Ob

2 :ε′
3

Fφpw1

I-BisG2
Tree’3

Ob
2 :ε′

4
Fφpw

∧ G¬φpw1

Ob
1 :ε′

1
Fφpw

Tree’2:

I-BisG2
Ob

2
G¬Cl≡ R3,¬Auth∧φpw2 Ob

3
I-BisG2

Tree’4
Ob

3 :ε′
6

FAuth∨φpw2

I-BisG2
Tree’5

Ob
3 :ε′

7
Fφpw1 ∧ G¬Auth∧¬φpw2

Ob
2 :ε′

3
Fφpw1

Tree’3:

I-BisG2
Ob

2
G¬Cl≡ R3,¬Auth∧φpw2 Ob

3
I-BisG2

Tree’4
Ob

3 :ε′
6

FAuth ∧ Gφpw2

I-BisG2
Tree’5

Ob
3 :ε′

8
Fφpw2

Ob
2 :ε′

4
Fφpw

∧ G¬φpw1 = Fφpw2

Tree’4:

Up-To-Bad
Ob

3
G¬Cl≡ R4,True Ob

4 Ob
3 :0 F¬True FAuthR4FAuth’

B-Sub
CDH :ε(1k,t) FAuth’ ◦ C

Ob
3 :ε′

6
FAuth’

Ob
3 :ε′

6
FAuth

Tree’5:

B-Det-Left
Ob

3 ≤det,γ Ob
5 Ob

5 :ε′
7

Fφpw1 ◦ π

Ob
3 :ε′

7
Fφpw1

Tree’6:

B-Det-Left
Ob

3 ≤det,γ Ob
5 Ob

5 :ε′
8

Fφpw2 ◦ π

Ob
3 :ε′

8
Fφpw2

Fig. 3. Proof Tree for the probability that the step-predicate φpw occurs

4.4 General Proof for the Indistinguishability between the Games
O0

0 and O1
0.

Since the two conditions we described previously seem revelant, we transform the game
O1

0 in several steps under G¬Cl ∧ G¬φpw
. The description of the general proof is less

developed since we use the same transformations than for the proof for bounding the
probability of φpw. Indeed, except the last game O1

5 using the concept of determiniza-
tion, we will apply in the same order each step using in the previous proof.

Removing the Encryption in the Oracle S1. In O1
1, modified S1 modelizes

the Encryption inside (refer to page 67). If Y � exists already then the exponent is equal
to ⊥. The step-predicate Exp defines this case (see pagerefexp).
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Therefore, O1
0 and O1

1 are in bisimulation-up-to ¬Exp, using as relation R1 the
equality on the common components of their states in M

O1
i

¬Cl∧¬φpw
. Indeed, states

m,m′ are in relation:

– if m,m′ ∈ M
O1

0
¬Cl∧¬φpw

or m,m′ ∈ M
O1

1
¬Cl∧¬φpw

, mR1m′ iff m = m′

– if m ∈ M
O1

0
¬Cl∧¬φpw

, m′ ∈ M
O1

1
¬Cl∧¬φpw

, mR1m′ iff
• ∀(pw,x,y,e) ∈ m ·LE \m′ ·LE ⇒ e =⊥ ∧∃(pw,x,y,ϕ) ∈ m′ ·LE \m ·LE s.t. x =

gϕ

• ∀(pw,x,y,e) ∈ m′ · LE \ m · LE ⇒ e = ϕ s.t. x = gϕ ∧ ∃(pw,x,y,⊥) ∈ m · LE \
m′ · LE

Hence, using the rule Fail, we get O1
1 :

ε2= Ns×qE
q−1

FExp and we apply the rule I-BisCd
to result in:

O1
1 :ε2 FExp(∧G¬Cl ∧ G¬φpw

) O1
0

¬Cl∧¬φpw≡ R1,¬Exp O1
1

O1
0

G¬Cl∧G¬φpw∼ε2 O1
1

I-BisCd

Splitting the Hash Lists. In O1
2 , we split the lists of the hash functions. For that,

we create two private hash functions H2 and H3 (refer to page 67).
O1

1 and O1
2 are R2-bismilar up to ¬φpw1 (see page 66). We define the equivalence

relation R2 between states m and m′ as follows:

– if m,m′ ∈ M
O1

1
¬Cl∧¬φpw

or m,m′ ∈ M
O1

2
¬Cl∧¬φpw

, mR2m′ iff m = m′

– if m ∈ M
O1

1
¬Cl∧¬φpw

, m′ ∈ M
O1

2
¬Cl∧¬φpw

, mR2m′ iff m ·LH0 = m′ · (LH0 ∪LH2 )∧m ·
LH1 = m′ · (LH1 ∪ LH3 )

We obtain O1
2 :0 F φpw1 since we consider the independence of the password in the

oracles. Then, applying the rule I-BisCd, we find:

O1
2 :0 Fφpw1(∧G¬Cl ∧ G¬φpw

) O1
1

¬Cl∧¬φpw≡ R2,¬φpw1 O1
2

O1
1

G¬Cl∧G¬φpw∼0 O1
2

I-BisCd

Randomizing the Hash Oracles. In O1
3 , sampling Y modifies the oracles U2 and

S2 (refer to page 68).
Auth is defined page 68 and φpw2 page 66. We notice that the event Fφpw2 do not

occur since we suppose that the adversary can not get the password. Using the equality
FAuth∨φpw2 = FAuth ∨ (Fφpw2 ∧ G¬Auth) = FAuth, we calculate the value ε3 of the
probability that the event FAuth occurs.
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We want to establish the indistinguishability between O1
2 and O1

3 up to ¬Auth ∧
¬φpw2. We exhibit an equivalence relation R3 between both systems. Indeed, states m
and m′ are in relation:

– if m,m′ ∈ M
O1

2
¬Cl∧¬φpw

or m,m′ ∈ M
O1

3
¬Cl∧¬φpw

, mR3m′ iff m = m′

– if m ∈ M
O1

2
¬Cl∧¬φpw

, m′ ∈ M
O1

3
¬Cl∧¬φpw

, mR3m′ iff m · (LH0 ∪LH2 ) = m′ ·LH2 ∧m ·
(LH1 ∪ LH3 ) = m′ · LH3

Hence, we apply the rule I-BisCd to result in:

O1
3 :ε3 FAuth∨φpw2(∧G¬Cl ∧ G¬φpw

) O1
2

¬Cl∧¬φpw≡ R3,¬Auth∧¬φpw2 O1
3

O1
2

G¬Cl∧G¬φpw∼ ε3 O1
3

I-BisCd

In the previous proof, we obtained that O1
3 :ε′

6
FAuth(∧G¬Cl). We use classic rule of

Logic O :ε A ⇒ O :ε A ∧ B such that A = FAuth(∧G¬Cl) and B = G¬φpw
. Therefore,

we obtain that O1
3 :ε′

6
FAuth(∧G¬Cl ∧ G¬φpw

) where ε3 ≤ ε′
6.

4.5 Digest

Using four steps and the rule TrCd, we find O1
0

G¬Cl∧¬φpw∼ ε2+ε3 O1
3 . Similarly, we get

O0
0

G¬Cl∧¬φpw∼ ε2+ε3 O0
3 .

To achieve the conclusion, we compare the games O0
3 and O1

3 . At present, the adver-
sary can not discern a random value from a real value for the session key sk. From that,
he can not guess what was the bit sampled in the initialization oracle. Consequently,
the latter discussion implies that the two last modified games O0

3 and O1
3 are in perfect

bisimulation, with as a relation R5 the equality on the common components of their
states. To conclude, we use the rule I-BisCd:

O0
3 :0 F¬True(∧G¬Cl ∧ G¬φpw

) O1
3 :0 F¬True(∧G¬Cl ∧ G¬φpw

) O0
3

¬Cl∧¬φpw≡ R5,True O1
3

O0
3

G¬Cl∧G¬φpw∼0 O1
3

I-BisCd

We use the rule TrCd to conclude to: O0
0

G¬Cl∧G¬φpw∼ 2ε2+2ε3 O1
0 . Having Ob

0 :ε1 Fφpw

and using the rule FTr, we get: O0
0

G¬Cl∼ ε1+2ε2+2ε3 O1
0 . Since Ob

0 :ε0 FCl, applying the
rule FTr, we obtain: O0

0 ∼ε0+ε1+2ε2+2ε3 O1
0 , where ε0 +ε1 +2ε2 +2ε3 = q2

H

2l+1 + q2
E

2(q−1) +
Nu+Ns

N + Nu+Ns
q−1 + NsqE

q−1 + 2qH × ε(1k, t) + 2NsqE

q−1 + 2qH × ε(1k, t).
General Proof Tree: We illustrate the proof tree on Figure (4). Most of the time, we

use the rules I-BisCd and TrCd under the condition G¬Cl ∧ G¬φpw
. For convenience,

we understand that each event FPredicate is associated to the event G¬Cl ∧ G¬φpw

and b is the bit randomly sampled in the initialization oracle.

4.6 Conclusion

We gave a manual formal proof of the OEKE protocol, as the first application of the tool
CIL. This proof is well contructed under two parts; The first proof seems complicated
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FTr

FTr

TrCd
Tree1

O0
0

G¬Cl∧G¬φpw∼ 2ε2+2ε3+2ε4 O1
0

Fail
Ob

0 :ε1 Fφpw
∧ G¬Cl

O0
0

G¬Cl∼ ε1+2ε2+2ε3+2ε4 O1
0

Fail2
Ob

0 :ε0 FCl

O0
0 ∼ε0+ε1+2ε2+2ε3+2ε4 O1

0

Tree1:

TrCd

TrCd
Tree2

Ob
0

G¬Cl∧G¬φpw∼ ε2+ε3+ε4 Ob
3

I-BisCd
Ob

3 :0 F¬True O0
3

¬Cl∧¬φpw≡ R5,True O1
3

O0
3

G¬Cl∧G¬φpw∼0 O1
3

O0
0

G¬Cl∧G¬φpw∼ 2ε2+2ε3+2ε4 O1
0

Tree2:

TrCd

TrCd
Tree3

Ob
0

G¬Cl∧G¬φpw∼ ε2 Ob
2

I-BisCd
Ob

3 :ε3+ε4 FAuth∨φpw2 Ob
2

¬Cl∧¬φpw≡ R3,¬Auth∧¬φpw2 Ob
3

Ob
2

G¬Cl∧G¬φpw∼ ε3+ε4 Ob
3

Ob
0

G¬Cl∧G¬φpw∼ ε2+ε3+ε4 Ob
3

Tree3:

TrCd

I-BisCd
Ob

1 :ε2 FExp Ob
0

¬Cl∧¬φpw≡ R1,¬Exp Ob
1

Ob
0

G¬Cl∧G¬φpw∼ ε2 Ob
1

I-BisCd
Ob

2 :0 Fφpw
Ob

1
¬Cl∧¬φpw≡ R2,¬φpw

Ob
2

Ob
1

G¬Cl∧G¬φpw∼ 0 Ob
2

Ob
0

G¬Cl∧G¬φpw∼ ε2 Ob
2

Fig. 4. Proof Tree for OEKE

to find the probability of one-step predicate but stays clear. As this proof is similar to
the general proof, therefore the latter is concise, precise and easy to understand. We
obtained a new kind of security proof for OEKE based on general and extended logic
rules, instead of “writing” proofs or “rewriting” proof using CryptoVerif.

Theorem 1. Let us consider the OEKE protocol, where P assword is a finite dictio-
nnary of size N equipped with the uniform distribution. Let A be a (k,t)-adversary
against the security of OEKE within a time bound t, with less than Nu + Ns inter-
actions with the parties and asking qH hash queries and qE Encryption/Decryption
queries. Then we have:

Advoeke(A) ≤ Nu + Ns

N
+ Nu + Ns

q − 1
+

q2
E

2(q − 1)
+ 3NsqE

q − 1
+

q2
H

2l+1 + 4qH × ε(1k, t)

We stayed careful of putting realistic hypothesis for elements of the proof, as for func-
tions in ROM and ICM. We obtained the optimal term Nu+Ns

N .
N.B.: In 2003, the autors of the paper [3] recognized that their results of the

reductions proof were not optimal. For technical reasons, they used a collision-resistant
hash function H1. After we began our article, in the paper [9], they proved the security
of OEKE using the tool CryptoVerif. The boundary was improved relative to the former
proof since they reached the optimal result Nu+Ns

N . As in these papers, we obtained
the optimal term but using a new kind of analysis under CIL.

Moreover, the logic CIL is sufficiently developed: it can be used easily and efficiently
to construct computational proofs.
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A Oracle Systems

A.1 Oracle Systems and Adversaries

An oracle system is a stateful system that provides oracle access to adversaries.

Definition 1. An oracle system O is given by:
– sets Mo of oracle memories and No of oracles,
– for each o ∈ No, a query domain In(o), an answer domain Out(o) and an imple-

mentation Oo : In(o) × Mo → D(Out(o) × M0),
– a distinguished initial memory m̄o ∈ Mo, and distinguished oracles oI for initializa-

tion and oF for finalization, such that In(oI) = Out(oF ) = 1. We let Res = In(oF ).

Two oracle systems O and O′ are compatible iff they have the same sets of oracle
names, and the query and the answer domains of each oracle name coincide in both
oracle systems. When building a compatible oracle system from another one, it is thus
sufficient to provide its set of memories, its initial memory and the implementation of
its oracles.

Adversaries interact with oracle systems by making queries and receiving answers.
An exchange for an oracle system O is a triple (o,q,a) where o ∈ No, q ∈ In(o) and a ∈
Out(o). We let Xch be the set of exchanges. Initial and final exchanges are defined in the
obvious way, by requiring that o is an initialization and finalization oracle respectively
(the sets of these exchanges are denoted by XchI and XchF respectively). The sets
Que of queries and Ans of answers are respectively defined as {(o,q) | (o,q,a) ∈ Xch}
and {(o,a) | (o,q,a) ∈ Xch}.
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Definition 2. An adversary A for an oracle system O is given by a set Ma of adversary
memories, an initial memory m̄a ∈ Ma and functions for querying and updating A :
Ma → D(Que × Ma) and A↓ : Xch × Ma → D(ma).

Informally, the interaction between an oracle system and an adversary proceeds in
three successive phases: the initialization oracle sets the initial memory distributions
of the oracle system and of the adversary. Then, A performs computations, updates its
state and submits queries to O. In turn, O performs computations, updates its state,
and replies to A, which updates its state. Finally, A outputs a result by calling the
finalization oracle.

A.2 Semantics

Definition 3. A transition system S consists of:
– a (countable non-empty) set M of memories (states) with a distinguished initial

memory m̄,
– a set

∑
of actions with distinguished subsets of

∑
I and

∑
F of initialization and

finalization actions,
– a (partial) transition function step : M ⇀ D(

∑
×M).

A partial execution sequence of S is a sequence of ζ of the form m0
x1−−→ m1

x2−−→
·· · xk−−→ mk such that P r[step(mk−1) = (ak,mk)] > 0 for i = 1..k and xi = (oi, qi,ai).
If k = 1 then ζ is a step. If m0 = m̄, x1 ∈

∑
I and xk ∈

∑
F then ζ is an execution

sequence of length k. A probabilistic transition system S induces a sub-distribution
on executions, denoted S, such that the probability of a finite execution sequence ζ is
P r[S = ζ] =

∏k
i=1 P r[step(mi−1) = (ai,mi)]. A transition system is of height k ∈ N if

all its executions have length at most k: in this case, S is a distribution.

Definition 4. Let O be an oracle system and A be an O-adversary. The composition
A | O is a transition system such that M = Ma × Mo, the initial memory is (m̄a, m̄o),
the set of actions is

∑
= Xch,

∑
I = XchI and

∑
F = XchF , and

stepA|O(ma,mo) = ((o,q),m′
a) ← A(ma); (a,m′

o) ← Oo(q,mo) ; m′′
a ← A↓((o,q,a),m′

a);
return ((o,q,a),(m′′

a,m′
o))

An adversary is called k-bounded if A | O is of height k. This means that A calls
the finalization oracle after less than k interactions with O. A | O may be ill-defined for
unbounded adversaries, since stepA|O(ma,mo) may be a sub-distribution. Throughout
the paper, we only consider bounded adversaries, i.e. that are k-bounded for some k.

A.3 Events

Security properties abstract away from the state of adversaries and are modeled using
traces. Informally, a trace τ is an execution sequence η from which the adversary
memories have been erased.

Definition 5. Let O be an oracle system.
– A partial trace is a sequence τ of the form m0

x1−−→ m1
x2−−→ ·· · xk−−→ mk where

m0..mk ∈ Mo and x1..xk ∈ Xch such that P r[Ooi(qi,mi−1) = (ai,mi)] > 0 for
i = 1..k and xi = (oi, qi,ai). A trace is a partial trace τ such that m0 = m̄o,
x1 = (oI , , ) and xk = (oF , , ).
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– An O-event E is a predicate over O-traces, whereas an extended O-event E is a
predicate over partial O-traces.

The probability of an (extended) event is derived directly from the definition of A | O:
since each execution sequence η induces a trace T (η) simply by erasing the adversary
memory at each step, one can define for each trace τ , the set T −1(τ ) of execution
sequences that are erased to τ , and for every (generalized) event E, the probability:
P r[A | O : E] = P r[A | O : T −1(E)] =

∑
{η∈Exec(A|O)|E(T (η))=True} P r[A | O : η].

Constructions and proofs in CIL use several common operations on (extended)
events and traces. First, one can define the conjunction, the disjunction, etc, of events.
Moreover, one can define for every predicate P over Xch×Mo ×Mo the events ”even-
tually P ” FP and ”always P ” GP that correspond to P being satisfied by one step and
all steps of the trace respectively.

Reduction-based arguments require that adversaries can partially simulate behav-
iors. In some cases, adversaries must test whether a predicate ϕ ⊆ Xch×Mo ×Mo holds
for given values. Since the adversary has no access to the oracle memory, we say that
ϕ is testable iff for all x,m1,m′

1,m2,m′
2, we have ϕ(x,m1,m′

1) iff ϕ(x,m2,m′
2) (that is

ϕ depends only on the exchange).
Given two traces τ and τ ′, we write τRτ ′ iff for every i ∈ [1,k], we have miRm′

i,
where: τ = m0

x1−−→ m1
x2−−→ ·· · xk−−→ mk and τ ′ = m′

0
x1−−→ m′

1
x2−−→ ·· · xk−−→ m′

k.
Moreover, we say that two events E and E’ are R-compatible, written ERE’, iff

E(τ ) is equivalent to E’(τ ′) for every traces τ and τ ′ such that τRτ ′.

B Computational Indistinguishability Logic

B.1 Statements and Rules

As cryptographic proofs rely on assumptions, CIL manipulates sequents of the form
Δ ⇒ ω, where Δ is a set of statements (the assumptions) and ω is a statement (the
conclusion). Validity extends to sequents Δ ⇒ ω in the usual manner. Given a set Δ of
statements, |= Δ iff |= ψ for every ψ ∈ Δ. Then Δ |= ω iff |= Δ implies |= ω. For clarity
and brevity, our presentation of CIL omits hypotheses and the standard structural and
logical rules for sequent calculi.

Theorem 2. Every sequent Δ ⇒ ϕ provable in CIL is also valid, i.e. Δ |= ϕ.

Judgments. CIL considers negligibility statements of the form O :ϕ E, where E is
an event. A statement O :ϕ E is valid, written |= O :ϕ E, iff for every (k,t)-adversary
A, P r(A | O : E) ≤ ε(k,t).

We also consider indistinguishability statements of the form O ∼ε O′, where O and
O′ are compatible oracle systems which expect a boolean as result. A statement O ∼ε O′

is valid, written |= O ∼ε O′, iff for every (k,t)-adversary A,

| P r[A | O : R = True] − P r[A | O′ : R = True] |≤ ε(k,t)

where R = True is shorthand for Fλ(o,q,a). o=oF ∧q=True.
Therefore, we formalize the indistinguishability of distributions yielded by systems

under condition, the latter being written as an event of systems. Let E be an event of O
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and O′. A statement O
E∼ε O′ is valid, written |= O

E∼ε O′, iff for every (k,t)-adversary
A,

| P r[A | O : R = True ∧ E] − P r[A | O′ : R = True ∧ E] |≤ ε(k,t)
As cryptographic proofs rely on assumptions, CIL manipulates sequents of the form

Δ ⇒ ω, where Δ is a set of statements (the assumptions) and ω is a statement (the
conclusion). Validity extends to sequents Δ ⇒ ω in the usual manner. Given a set Δ
of statements, |= Δ iff |= ψ for every ψ ∈ Δ. Then Δ |= ω iff |= Δ implies |= ω.

Rules. On Figures (5), (6) and (7), we expose rules that support equational reason-
ing and consequence in Hoare logic, rules that were extended rules found during the
conception of the proofs in this article, and rules that are used mainly in the proofs in
this article. Let O, O′ and O” be compatible oracle systems, E, E1 and E2 be events
of O, O′ and O”, and ϕ, ϕ1 and ϕ2 be step-predicates.

O ∼εi Ei(i ∈ I) E ⇒
∨
i∈I

Ei

O :∑
i∈I

εi
E

UR
O :ε Fϕ

Fail
O :ε F¬ϕ O ≡R,ϕ O′

O ∼ε O′ I-Bis

O ≤det,γ O′ O :ε E ◦ π

O′ :ε E
B-Det-Left

O :ε E ◦ C

C[O] :ε′ E
B-Sub

O :ε E1 ∧ Gϕ O ≡R,ϕ O′ E1RE2

O′ :ε E2 ∧ Gϕ
B-BisG

O :ε2 E2 O′ :ε1 F¬ϕ O ≡R,ϕ O′ E1RE2

O′ :ε1+ε2 E1
UpToBad

Fig. 5. Classic rules

O
E2∼ ε1 O′ E2 ⇒ E1 O :ε2 E1 ∧ ¬E2 O′ :ε2 E1 ∧ ¬E2

O
E1∼ ε1+ε2 O′

URCd
O :ε′ Fϕ′

Fail2
O

E1∼ ε1 O′ O′ E2∼ ε2 O”

O
E1∨E2∼ ε1+ε2 O”

TrCd

Fig. 6. Extended rules

O :ε1 Fϕ1 ∧ Gϕ2 O :ε2 F¬ϕ2 O ≡R,ϕ2 O′

O′ :ε1+ε2 Fϕ1

B-BisG2
O′ :ε F¬ϕ2 ∧ Gϕ1 O

ϕ1≡R,ϕ2 O′

O
Gϕ1∼ ε O′

I-BisCd

O
E1∧E2∼ ε2 O′ O :ε1 ¬E1 ∧ E2 O′ :ε1 ¬E1 ∧ E2

O
E2∼ ε1+ε2 O′

FTr

Fig. 7. Rules used in the proof (extended rules)
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More precisely, CIL features a rule to compute an upper-bound on the probability of
an event from the number of oracle calls, and from the probability that a single oracle
call triggers that event. Let ϕ be a predicate on Xch × Mo × Mo and define, for every
o ∈ No, the probability εo as max

q∈Que,m∈Mo,
a∈Ans,m′∈Mo

P r[Oo(q,m) = (a,m′) ∧ ϕ((o,q,a),m,m′)].

For every o ∈ No, let ko be the maximal number of queries to o and let ε =
∑

o∈No
koεo.

CIL features the rule O :ε Fϕ
Fail

. But sometimes, this upper-bound is not enough
convenient for the proof. We introduce another rule which keeps all the previous oracles
calls triggerring the event when considering a single oracle call. CIL features the rule

O :ε′ Fϕ
Fail2

, where ε′ = ε ×
(
∑

o∈I
ko)2

2 such that:

– ko is the maximal number of queries of the oracle o and n is the cardinal of the
set No

– I is the family of oracles that can ensure that the step-predicate ϕ can be satisfied:
o can be an oracle in No \ I such that εo(ko1 , · · · ,kon) = 0 or an oracle in I such
that ∃ε, εo(ko1 , · · · ,kon ) = ε ×

∑
o′∈I ko′

B.2 Contexts

Informally, a context C is an intermediary between an oracle system O and adversaries.
One can compose a O-context C with O to obtain a new oracle system C[O] and with
a C[O]-adversary to obtain a new O-adversary C ‖ A. Moreover, one can show that
the systems C ‖ A | O and A | C[O] coincide in a precise mathematical sense. Despite
its seemingly naivety, the relationship captures many reduction arguments used in
cryptographic proofs and yields CIL rules that allow proving many schemes.

The definition of contexts is very similar to that of oracle systems, except that pro-
cedures are implemented by two functions: one that transfers calls from the adversary
to the oracles and another one that tranfers answers from the oracles to the adversary
(possibly after some computations).

Definition 6. An O-context C is given by:
– sets Mc of context memories, an initial memory m̄c and Nc of procedures
– for every c ∈ Nc, a query domain In(c), an answer domain Out(c) and two func-

tions C−→c : In(c)×Mc → D(Que×Mc) and C←−c : In(c)×Xch×Mc → D(Out(c)×
Mc).

– distinguished initialization and finalization procedures cI and cF such that In(cI) =
Out(cF ) = 1, and for all x and mc, range(C−→cI

(x,mc))(λ((o, ), ).o = oI) and
range(C−→cF

(x,mc))(λ((o, ), ).o = oF ). We let Resc = In(cF ).

An indistinguishability context is an O-context C such that Resc = Res and C−→cF
(r,m) =

δ((r,oF ),m) for all r and m.

The sets Quec of context queries, Ansc of context answers and Xchc of context
exchanges are defined similarly to oracle systems. An O-context can be composed with
the oracle system O or with any O-adversary A, yielding a new oracle system C[O]
or a new adversary C ‖ A. We begin by defining the composition of a context and an
oracle system.
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Definition 7. The application of an O-context C to O defines an oracle system C[O]
such that:

– the set of memories is Mc × Mo and the initial memory is (m̄c, m̄o)
– the oracles are the procedures of C and their query and answer domains are given by

C. The initialization and finalization oracles are the initialization and finalization
procedures of C

– the implementation of an oracle c is:
λ(qc,(mc,mo)). ((o,qo),m′

c) ← C−→c (qc,mc) ; (ao,m′
o) ← Oo(qo,mo); (ac,m′′

c ) ← C←−c (qc,(o,qo,ao),m′
c) ;

return (ac,(m′′
c ,m′

o))
where · ← · notation is used for monadic composition and ”return” is used for
returning the result of the function.

The composition of an adversary with a context is slightly more subtle and requires
that the new adversary stores the current query in its state.

Definition 8. The application of an O-context C to a C[O]-adversary A defines an
O-adversary C ‖ A such that:

– the set of memories is Mc × Ma × Quec and the initial memory is (m̄c, m̄a, )
– the transition function is:

λ(mc,ma, ). ((c,qc),m′
a) ← A(ma) ; ((o,q),m′

c) ← C−→c (qc,mc); return ((o,q),(m′
c,m′

a,(o,q)))
– the update function is:

λ((mc,ma,(oc, qc)),(oo, qo,ao)). (ac,m′
c) ← C←−c (qc,(oo, qo,ao),mc) ; return (m′

c,A↓((oc, qc,ac),ma), )

Context CDH Used in the Proofs

CDH Assumption in G

Let G = 〈g〉 be a finite cyclic group of order a l-bit prime number q, where the
operation is denoted multiplicatively. We give an oracle system CDH such that:

– the memories map the variable g to the values in G and the variables α and β to
the values [1..(q − 1)];

– for one such variable g, the initialization oracle draws uniformly at random values
for α and β and outputs (gα,gβ);

– the finalization oracle takes as input an element of G (in addition to a memory).

Bounding the number of calls of the adversary to the oracles is irrevelant. Let 1k be
the function mapping oI and oF to 1. Given a negligible function ε, the ε − CDH
assumption holds for the group G iff for all (1k, t)-adversary, we have ε − CDH �
oracle CDH :ε(1k,t) R = 1.

Notation: Given g, x ← Z
∗
q and y ← Z

∗
q , let CDH(gx,gy) = gxy.

Formalization of CDH assumption: We define an oracle system CDH to capture
the game played by an adversary to find the Diffie-Hellman instance (A,B). We imple-
ment this oracle as follows:

ImpCDH(oI)(g) = ImpCDH(oF )(x) =
α0 ← Z

∗
q β0 ← Z

∗
q ; A := gα0 ; B := gβ0 ; if x = CDH(A,B) then return 1

return (A,B) else return 0
endif
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Context of CDH Assumption

For this part, we write the game O1
4 as a context C of CDH . We simulate the

oracles using the random self-reducibility of the Diffie-Hellman problem, given one
CDH instance (A,B).

C−→cI
(x): C←−cI

(x,(o,q,(A,B))):
return (oI ,1) pw ← P assword

LH0 := [ ] ; LH1 := [ ] ; LH2 := [ ] ; LH3 := [ ] ; LE := [ ] ; Lpw := [ ] ; LO := [ ] ;
LA := [ ] ; LB := [ ] ; varX :=⊥ ; varθ :=⊥ ; varϕ :=⊥ ; varsk :=⊥ ;
b := 1
return 1

C−→
E

(pw,x): C←−
E

((pw,x),(o,q,a)):
return (⊥,1) if (pw,x, , ) /∈ LE then y ← Ḡ ; LE := LE .(pw,x,y,⊥) endif

return y such that (pw,x,y, ) ∈ LE

C−→
D

(pw,y): C←−
D

((pw,y),(o,q,B)):
return (⊥,1) if (pw, ,y, ) /∈ LE then φ ← Z

∗
q ; x = gφ ; LE := LE .(pw,x,y,φ) endif

return x such that (pw,x,y, ) ∈ LE

C−→
H0

(x): C←−
H0

(x,(o,q,a)):
return (⊥,1) if x /∈ LH0 then y ← U(l0) ; LH0 := LH0 .(x,y) endif

return LH0 (x)
C−→

H1
(x): C←−

H1
(x,(o,q,a)):

return (⊥,1) if x /∈ LH1 then y ← U(l1) ; LH1 := LH1 .(x,y) endif
return LH1 (x)

C−→
U1

(u,i): C←−
U1

((u,i),(o,q,A)):
return (⊥,1) α ← Z

∗
q ; X = Aα ; varθ[(u,i)] = (α,X); varX [(u,i)] = X ; LA := LA.(α,X)

return (u,X)
C−→

S1
((s,j),(u,X)): C←−

S1
((s,j),(u,X),(o,q,B)):

return (⊥,1) Y � ← Ḡ ; β ← Z
∗
q ; Y = Bβ ; varϕ[(s,j)] = (β,Y,Y �) ; LB := LB .(β,Y ) ; varX [(s,j)] = X

return (s,Y �)
C−→

U2
((u,i),(s,Y �)): C←−

U2
((u,i),(s,Y �),(o,q,a)):

return (⊥,1) if varθ[(u,i)]! =⊥ then Y ← Ḡ ; ( ,Y,Y �) = varϕ[(u,i)] ;
(α,X) = varθ[(u,i)] ; Ku = Y α

Auth = H1(u ‖ s ‖ X ‖ Y ‖ Ku) ; varsk[(u,i)] = H0(u ‖ s ‖ X ‖ Y ‖ Ku)
endif
return Auth

C−→
S2

((s,j),u,Auth): C←−
S2

((s,j),u,Auth,(o,q,B)):
return (⊥,1) if varϕ[(s,j)]! =⊥ then (β,Y,Y �) = varϕ[(s,j)] ; X = varX [(s,j)] ; Ks = Xβ

H ′ = H1(u ‖ s ‖ X ‖ Y ‖ Ks)
if H ′ = Auth then varsk[(s,j)] = H0(u ‖ s ‖ X ‖ Y ‖ Ks) endif

endif
return 1

C−−−→
Exec

((u,i),(s,j)): C←−−−
Exec

((u,i),(s,j),(o,q,(A,B))):
return (⊥,1) α ← Z

∗
q ; X = Aα ; β ← Z

∗
q ; Y = Bβ ; Y � = E(pw,Y )

Auth = H1(u ‖ s ‖ X ‖ Y ‖ Ku) ; varsk[(u,i)] = H0(u ‖ s ‖ X ‖ Y ‖ Ku)
return ((u,X),(s,Y �),Auth)

C−−−−→
Reveal

(p,k): C←−−−−
Reveal

((p,k),(o,q,a)):
return (⊥,1) if varsk[(p,k)]! =⊥ then sk := varsk[(p,k)] endif

return sk

C−−−→
T est1 (p,k): C←−−−

T est1 ((p,k),(o,q,a)):
return (⊥,1) if varsk[(p,k)]! =⊥ then sk := varsk[(p,k)] endif

return sk

C−→cF
(x):
u ‖ s ‖ X ‖ Y ‖ K ← LH1

if X = (A,α) ∧ Y = (B,β) then oF (Kα−1β−1
) endif

return 1
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B.3 Bisimulation

Game-based proofs often proceed by transforming an oracle system into an equivalent
one, or in case of imperfect simulation into a system that is equivalent up to some
bad event. We reason in terms of probabilistic transition systems, using a mild exten-
sion of the standard notion of bisimulation. More specifically, we define the notion of
bisimulation-up-to, where two probabilistic transition systems are bisimilar until the
failure of a condition on their transitions. The definition of bisimulation is recovered
by considering bisimulation-up-to the constant predicate True.

Let O and O′ be two compatible oracle systems. For every oracle name, we let M̂
be Mo +M ′

o and for every o ∈ No, we let Ôo be the disjoint sum of Oo and O′
o, i.e. Ôo :

In(o) × M̂ → D(Out(o) × M̂). We write m
(x,y)−−−→>0 m′ iff P r[Ôo(q,mi) = (a,m′

i)] > 0.

Definition 9. Let ϕ ⊆ Xch×M̂ ×M̂ and let R ⊆ M̂ ×M̂ be an equivalence relation. O

and O′ are bisimilar-up-to ϕ, written O ≡R,ϕ O′, iff m̄Rm̄′, and for all m1
(o,q,a)−−−−→>0

m′
1 and m2

(o,q,a)−−−−→>0 m′
2 such that m1Rm2:

– Stability: if m′
1Rm′

2 then ϕ((o,q,a),m1,m′
1) ⇔ ϕ((o,q,a),m2,m′

2);
– Compatibility: if ϕ((o,q,a),m1,m′

1) then P r[Ôo(q,m1) ∈ (a,C)] = P r[Ôo(q,m2) ∈
(a,C)] where C is the equivalence class of m′

1 under R.

Bisimulations are closely related to obversational equivalence and relational Hoare
logic, and allow to justify proofs by simulations. Besides, bisimulations-up-to subsume
the Fundamental Lemma of Victor Shoup. Then, we introduce an extension of this con-
cept, taking account of a particular equivalence relation included in a more restricted
set of memories.

Definition 10. Let ϕ′ ⊆ M̂ and let M̂ϕ′ = {m ∈ M̂ | ϕ′(m)}. Let ϕ ⊆ Xch × M̂ × M̂

and let R ⊆ M̂ϕ′ × M̂ϕ′ be an equivalence relation.

O and O′ are bisimilar-up-to ϕ, written O
ϕ′
≡R,ϕ O′, iff for all m̄,m̄′,m1,m2,m′

1,m′
2

in M̂ϕ′ such that m̄Rm̄′, and for m1
(o,q,a)−−−−→>0 m′

1 and m2
(o,q,a)−−−−→>0 m′

2 such that
m1Rm2:

– Stability: if m′
1Rm′

2 then ϕ((o,q,a),m1,m′
1) ⇔ ϕ((o,q,a),m2,m′

2);
– Compatibility: if ϕ((o,q,a),m1,m′

1) then P r[Ôo(q,m1) ∈ (a,C)] = P r[Ôo(q,m2) ∈
(a,C)] where C is the equivalence class of m′

1 under R.

B.4 Determinization

Bisimulation is stronger than language equivalence, and can not always be used to hope
from one game to another. In particular, bisimulation can not be used for eager/lazy
sampling, or for extending the internal state of the oracle system. The goal of this
section is to introduce a general construction, inspired from the subset construction for
determinizing automata, to justify such transitions. We consider two oracles systems
O and O′ and assume that states m′ ∈ Mo′ can be seen as pairs (m,m”) ∈ Mo × Mo”.
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There are two ways to compute the probability to end up (m,m”) for a fixed m”
knowing that the step starts with a state of first component m. The first is to perform
the exchange in O and then draw m” according to a distribution γ. The second is to
look at all possible m” which γ map to m and then to perform the exchange in O′.
Imposing the equality between these two ways of computing probabilities is going to
compel the same equality to hold for steps, which in turn propagates to traces.

Definition 11. Let O and O′ be compatible oracle systems. O determinizes O′ by γ :
Mo → D(Mo), written O ≤det,γ O′, iff Mo ×Mo” = M ′

o and there exists m̄o” such that
(m̄o, m̄o”) = m̄′

o, and γ(m̄o) = δm̄o”, and P r[γ(m2 = m2”]p1 =
∑

m1”∈Mo” P r[γ(m1 =
m1”]p2(m1”) for all m1,m2 ∈ Mo, m1”,m2” ∈ Mo”, where p1 = P r[O(oc, q,m1) =
(a,m2)] and p2(m1”) = P r[O′(oc, q,(m1,m1”)) = (a,(m2,m2”))].

We define a projection function π from O′-traces to O-traces by extending the projec-
tion from Mo × Mo” to Mo.

C Proofs for Extended Rules

C.1 Proof of the Rule Fail2

Lemma 1. Rule Fail2 defined as follows is sound: O :ε′ Fϕ
Fail2

where

ε′ = ε ×
(
∑

o∈I
ko)2

2 and
– ko is the maximal number of queries of the oracle o and n is the cardinal of the set

No

– I is the family of oracles that can ensure that the step-predicate ϕ can be satisfied:
o can be an oracle in No \ I such that εo(ko1 , · · · ,kon ) = 0 or an oracle in I such
that ∃ε, εo(ko1 , · · · ,kon) = ε ×

∑
o′∈I ko′

Proof. Let A be a (k,t)-adversary for oracle system O. Let ϕ be a step-predicate in
Xch×M̂ ×M̂ . We denote by T the set of traces satisfying Fϕ. We recall that the
event ”eventually ϕ”, written Fϕ, means ϕ being satisfied at one step of a trace.
Let I be the family of oracles o that can ensure that the step-predicate ϕ can be
satisfied, I ⊆ No. We define n as the cardinal of the set No and for one oracle
o ∈ No, ko is the maximal number of its queries.

Let the trace τ in T be the sequence of the form m0
x1−−→ m1

x2−−→ ·· · xl−→ ml where
m0, · · · ,ml ∈ Mo and x1, · · · ,xl ∈ Xch such that P r[Ooi (qi,mi−1) = (ai,mi)] > 0
for i = 1, · · · , l and xi = (oi, qi,ai). Therefore, there exists one mi0 such that ϕ
becomes satisfied, where i0 ∈ [1, · · · , l].
We write two hypothesis:

– let o be an oracle in No \ I such that εo(ko1 , · · · ,kon ) = 0
– let o be an oracle in I such that ∃ε, εo(ko1 , · · · ,kon) =

max
{τ∈T |ko queries}

P r[Oo(q,ml−1) = (a,ml)] = ε ×
∑

o′∈I ko′ s.t. we denote

ε as the maximal number common to all oracles in I

First, we divide traces of set T in subgroups using equivalence relation. Two traces
are related iff ϕ is true for the first time at step i for a query to oracle o. Classes
are denoted C(i,o, j), where j =

∑
o′∈I ko′ is the number of good queries (i.e. the

queries to oracles in I), and realize a partition of T .
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Second, we let T be the projection mapping sequences of steps to partial traces
(see for more details Section 2.4). Then, by definition, the probability that a system
yields a trace τ is the sum of the probabilities that the system yields execution η
projecting to τ , which we write P r[A | O : τ ] =

∑
{η∈Exec(A|O)|T (η)=τ} P r[A | O : η].

Let τ ∈ C(i,o, j). We define Pref(η, i) as the prefix of length i of partial execution
η, and η[i] its i-th step. Then, we have:

∑
τ∈C(i,o,j)

P r[A | O : τ ] =
∑

{τ∈C(i,o,j)|T (η)=τ}

P r[A | O : η] ≤
∑

{τ∈C(i,o,j)|T (η)=τ}

P r[A | O : Pref(η, i)]

=
∑

{τ∈C(i,o,j)|T (η)=τ}

P r[A | O : Pref(η, i − 1)].P r[A | O : η[i]]

=
∑

{τ∈C(i,o,j)|T (η)=τ |T (η[i])=((o,q,a),m,m′)}

P r[A | O : Pref(η, i − 1)].P r[Oo(q,m) = (a,m′)]

either
≤

∑
{τ∈C(i,o,j)|T (η)=τ |T (η[i])=((o,q,a),m,m′)}

P r[A | O : Pref(η, i − 1)] × j.ε ≤ j.ε if o ∈ I

or
≤

∑
{τ∈C(i,o,j)|T (η)=τ |T (η[i])=((o,q,a),m,m′)}

P r[A | O : Pref(η, i − 1)] × 0 = 0 if o /∈ I

Then, we use the fact that equivalence class forms a partition to conclude:

P r[A | O : Fϕ] =
∑
τ∈T

P r[A | O : τ ]
∑
i,o,j

∑
τ∈C(i,o,j)

P r[A | O : τ ] ≤
∑

o∈I,j

j.ε =
∑
o∈I

(∑
o′∈I

ko′

)
.ε ≤ ε ×

(
∑

o∈I ko)2

2

C.2 Proof of the Rule I-BisCd

Lemma 2. We consider two compatible oracle systems O and O′. Let ϕ1 and ϕ2 be
two step-predicates in M̂ and Xch × M̂ × M̂ respectively. The following rule is sound:

O′ :ε F¬ϕ2 ∧ Gϕ1 O
ϕ1≡R,ϕ2 O′

O
Gϕ1∼ ε O′

I-BisCd

Proof. We introduce the equivalence relation R such that for two states m and
m′ in M̂ϕ1 , we have mRm′ and ϕ1(m) ∧ ϕ1(m′), where the step-predicate ϕ1 is
in M̂ (i.e. ϕ1 steps in over the memories but not over the actions in Xch). We
recall that R = True∧Gϕ1 ∧Gϕ2 is a compatible event. We decompose the set of
traces created by A | O and A | O′ and verifying Gϕ1 ∧ Gϕ2 into distinct classes
of equivalence of a finite number of executions σ1, · · · ,σm, resulting in P r[A | O :
R = True ∧ Gϕ1 ∧ Gϕ2 ] =

∑m
i=1 P r[A | O : CO(σi)] =

∑m
i=1 P r[A | O′ : CO′ (σi)] =

P r[A | O′ : R = True ∧ Gϕ1 ∧ Gϕ2 ]. Then, we conclude the rule I-BisCd since:

P r[A | O : R = True ∧ Gϕ1 ] − P r[A | O′ : R = True ∧ Gϕ1 ]
= P r[A | O : R = True ∧ Gϕ1 ∧ F¬ϕ2 ] − P r[A | O′ : R = True ∧ Gϕ1 ∧ F¬ϕ2 ]
≤ max(P r[A | O : R = True ∧ Gϕ1 ∧ F¬ϕ2 ],P r[A | O′ : R = True ∧ Gϕ1 ∧ F¬ϕ2 ])
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C.3 Proof of the Rule B-BisG2

Lemma 3. We consider two compatible oracle systems O and O′. Let ϕ1 and ϕ2 be
two step-predicates in Xch × M̂ × M̂ . The following rule is sound:

O :ε1 Fϕ1 ∧ Gϕ2 O :ε2 F¬ϕ2 O ≡R,ϕ2 O′

O′ :ε1+ε2 Fϕ1

B-BisG2

Proof. Let ϕ1 and ϕ2 be step-predicates in Xch × M̂ × M̂ . The rule B-BisG2 is ob-
tained from the combination of the rule B-BisG and a variation of this latter rule:

O :ε1 Fϕ1 ∧ Gϕ2 O ≡R,ϕ2 O′

O′ :ε1 Fϕ1 ∧ Gϕ2

B-BisG
O :ε2 True ∧ F¬ϕ2 O ≡R,ϕ2 O′

O′ :ε2 True ∧ F¬ϕ2

B-BisG-variation

We are allowed to conclude since O′ :ε1 Fϕ1 ∧ Gϕ2 and O′ :ε2 F¬ϕ2 .
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