
Efficient, Pairing-Free, Authenticated Identity

Based Key Agreement in a Single Round

S. Sree Vivek1, S. Sharmila Deva Selvi1,
Layamrudhaa Renganathan Venkatesan1, and C. Pandu Rangan1

1 Theoretical Computer Science Lab,
Department of Computer Science and Engineering,

Indian Institute of Technology Madras,
Chennai, India

2 National Institute of Technology Tiruchi,
Tiruchirapalli, India

Abstract. Ever since Shamir introduced identity based cryptography
in 1984, there has been a tremendous interest in designing efficient key
agreement protocols in this paradigm. Since pairing is a costly operation
and the composite order groups must be very large to ensure security,
we focus on pairing free protocols in prime order groups. We propose a
new protocol that is pairing free, working in prime order group and hav-
ing tight reduction to Strong Diffie Hellman (SDH) problem under the
CK model. Thus, the first major advantage is that smaller key sizes are
sufficient to achieve comparable security. Our scheme has several other
advantages. The major one being the capability to handle active adver-
saries. All the previous protocols can offer security only under passive
adversaries. Our protocol recognizes the corruption by an active adver-
sary and aborts the process. Achieving this in single round is significantly
challenging. Ours is the first scheme achieving this property. In addition
to this significant property, our scheme satisfies other security properties
that are not covered by CK model such as forward secrecy, resistance
to reflection, key compromise impersonation attacks and ephemeral key
compromise impersonation attacks.

Keywords: Identity Based Key agreement, Provable Security, General
forking lemma, Tight reduction, Random Oracle Model, Forward Se-
crecy, Reflection attacks, Key Compromise Impersonation attacks.

1 Introduction

Symmetric key cryptography is a system in which both encryption and decryp-
tion is performed using the same key unlike asymmetric system in which each
user maintains a public key and a private key. Symmetric key cryptography is
much easier to implement and demands less processing than asymmetric. But
the main disadvantage with symmetric key cryptography is the establishment
of the shared secret between the entities that want to communicate. A secure
way of setting up the shared secret key is mandatory. The first key-agreement

W. Susilo and R. Reyhanitabar (Eds.): ProvSec 2013, LNCS 8209, pp. 38–58, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Identity Based Key Agreement 39

protocol was defined by Whitfield Diffie and Martin Hellman in 1976. This was
based on the public key setting. Under this model, each user has to get his public
key certified by a Certification Authority (CA), which is a trusted third party
that issues certificates validating each user’s public key. The idea was to use
public key cryptography for key establishment and symmetric key cryptography
for further communication using the shared secret key. But in this paradigm, the
overhead associated with the CA will be high.

Identity Based Cryptography was introduced by Shamir [15] in 1984. In this
infrastructure, each user’s public key is his identity. A trusted party known as
the Private Key Generator (PKG) maintains a master public key, master secret
key pair. The master public key is known to everyone and the master secret key
is known only to the PKG. It generates the private key of each user with the
user’s identity and master secret key. After the introduction of identity based
cryptography, many schemes were proposed based on this model. In identity
based key agreement protocol each user first obtains his private key from the
PKG and engages in an interactive protocol with another user to establish a
shared secret key. There is no need to transfer the public key certificates during
the process. This is the main advantage of identity based system. Moreover there
is a flexibility to use any string as the identity. It can be the user’s email id,
social security number, location and other attributes. The identity can also have
a temporal value linked to it and hence the private key derived from it is invalid
after a period of time. Hence identity based key agreement(IDKA) protocols
are preferred rather than their public key based counterparts. An important
factor to be considered with respect to key agreement is bandwidth requirement
and number of rounds. Since IDKA eliminate the need to transfer public key
verification certificates, they tend to reduce the bandwidth requirement. These
are useful in situations where there is a constraint on the available bandwidth.
Other properties like forward secrecy, resistance to man-in-the-middle attacks,
reflection attacks and key compromise impersonation attacks should also be
satisfied.

2 Previous Work and Our Contribution

After the discovery of identity based cryptography by Shamir [15], a number
of key agreement protocols were developed in the identity based paradigm. But
most of them involved pairing and hence their practical implementation was not
efficient. Hence, we do not consider pairing based schemes for our comparison.
The protocols which did not involve pairing were those of Gunther [7] and Saeed-
nia [14]. Fiore [5] proposed a key agreement protocol without pairing which was
an improvement over the protocols of Gunther [7] and Saeednia [14]. Cao [3] pro-
posed a pairing free key agreement protocol but this was vulnerable to key-offset
attack and known session specific secret information attack as presented in [8]
by Islam. The protocol presented in [8] and [3] involves an initial agreement on
who initiates the key agreement protocol. Therefore we do not consider [8] and
[3] in the comparison. We will consider the works of Gunther [7], Saeednia [14]
and Fiore [5] for comparison purpose.

40 S. Sree Vivek et al.

The previous works on identity based key agreement do not consider an active
adversary. An active adversary is one which can extract the messages that are
exchanged during key agreement and modify them arbitrarily during transit. In
the scheme presented in [5], the adversary can extract the ephemeral component
gti sent by user i to user j and modify it to gtx and send it to j. Similarly it can
capture gtj sent from j to i and modify it to gtx and send to i. The component
Z2 calculated by i will be (gtx)

ti and the one computed by j will be (gtx)
tj . Thus

the final shared secret key of i and j will not be in agreement. Similar attacks
are possible in Gunther [7] and Saeednia [14]. Our protocol avoids this kind of an
attack by a signature on the ephemeral components. We compare computational
power based on the number of exponentiation operations. We assume that the
ephemeral components are chosen from a pre-computed list and hence we do
not consider the cost of computing the ephemeral components. In our scheme,
we use a Schnorr group and hence the exponentiation operations are cheaper
than [5], [7], [14] even though it involves more exponentiation operations. This
is because in a Schnorr group the exponent is from a group Zp

∗ where size of p is
224 bits according to http://www.keylength.com/en/4/. The additional security
features like forward secrecy, resistance to reflection attacks, key compromise
impersonation and ephemeral key compromise impersonation with respect to
[5], [7], [14] are presented in Table 1.1 and Table 1.2.

Tightness of Security Reduction: Wedevelop the security proof of the scheme
as a game between a challenger and an adversary. If the adversary is able to break
the scheme in polynomial time, then the adversary is said to succeed. Using the ad-
versary’s success, the challenger develops a solution to the underlyinghardproblem
instance. Since there exists no solution to the hard problem that can be computed
in polynomial time, the scheme cannot be broken and is considered secure.

The security parameter is set such that the adversary is not able to break
the scheme in polynomial time through brute-force methods or sub-exponential
algorithms. The relative hardness of breaking the scheme to that of breaking the
computational assumption can be loose or tight. The use of forking lemma in
security proofs makes the reduction inefficient by imposing an increase in the size
of the modulus q. Hence, if we eliminate the use of forking lemma, the same level
of security can be achieved with a smaller size modulus q. This contributes to the
reduction in the number of bits required to realize the cryptographic primitive.
Based on the work of Goh [6], in any discrete log based system, if the adversary
can break the scheme in 2n steps then forking lemma implies that the underlying
discrete log problem can be solved in 22n steps. Here n is the security parameter.
Therefore the scheme should be implemented in a group where the discrete log
problem is believed secure with a security parameter of 2n. In any discrete log
system of a prime field Zq, a factor α increase in the security parameter implies
a factor α3 increase in the size of the modulus q. Therefore if forking lemma is
used in the security reduction, the security parameter increase by a factor of 2.
Thus the size of the modulus increases by a factor of 8.

Identity Based Key Agreement 41

Our Contribution: In this paper, we present an identity based key agree-
ment protocol which can be proved secure under the Strong-Diffie Hellman
(SDH) assumption without using forking lemma. Thus we are able to achieve
a tight reduction to the Strong Diffie Hellman problem based on the random
oracle model. This tight reduction feature enables a reduction in the commu-
nication overhead thus making it efficient when compared to existing schemes.
Moreover, our scheme is resistant to a dynamic active adversary which is al-
lowed to modify the components exchanged during the key agreement. The
scheme performs a check which will detect any tampering done on the com-
ponents. In this way, a fully authenticated key agreement protocol is achieved.
The protocol also satisfies additional security properties like forward secrecy,
resistance to reflection attacks and key compromise impersonation attacks. But
this level of security can be achieved with a smaller group size since our secu-
rity proof does not involve the use of forking lemma and a tight reduction to
SDH is possible. Table 1.1 and Table 1.2 compares our scheme for key lengths
with the existing schemes that use forking lemma for the proof. Let ||G|| de-
note the number of bits needed to represent a group element. We have to set
||G|| = 224 for elliptic curve groups and ||G|| = 1024 for multiplicative groups
as per http : //www.keylength.com/en/4/.

Table 1. Comparison Table - Efficiency

Scheme No of
Rounds

Tightness Exp Communication
Cost-Elliptic
Curve Group

Communication
Cost Multiplicative
Group

Gunther
[7]

2 Not tight 4 2*(8*||G||)=
2*(8*224)=3584

2*(8*||G||)=
2*(8*2048)=32768

Saeednia
[14]

1 Not tight 3 1*(8*||G||)=
1*(8*224)=1792

1*(8*||G||)=
1*(8*2048)=16384

Fiore [5] 1 Not tight 2 1*(8*||G||)=
1*(8*224)=1792

1*(8*||G||)=
1*(8*2048)=16384

Ours 1 Tight 4 2*(||G||)+1*(224)=
2*224+1*224=672

2*(||G||)+1*(224)=
2*2048+1*224=4320

Remark 1 : Table 1 depict the resistance to the specified attacks.
√

represents
resistance and × represents vulnerability.

Remark 2 : The communication overhead and exponentiations are calculated
for a single user.

Remark 3 : The key length is chosen based on the standard definition in
http://www.keylength.com/en/4/. It states that to ensure security till the year
2030, the size of the elliptic curve group modulus should be 224 bits and 2048
bits for multiplicative groups. The size of the hash value is to be 224 bits for
both elliptic curve and multiplicative groups.

42 S. Sree Vivek et al.

Remark 4 : Generally the ephemeral components like ti, wi and gti , gwi used
during the protocol execution (see Table 2) are chosen from a pre-computed list.
Hence they are not considered in the number of exponentiations.

Remark 5 : In our scheme, the computations of uj2, vj2 by user i and ui2, vi2
by user j in Step 2 of Table 2 are specific to a pair of users. So these compu-
tations are done only once for a pair of users and do not involve any session
specific parameters. Hence these exponentiations are not included in computing
the complexity of the protocol.

Remark 6 : Exponentiations of the form g0
e0 .g1

e1 ...gk−1
ek−1 can be counted as

a single exponentiation as in [12].

Remark 7 : When realized in elliptic curve groups, the first three schemes
[7], [14] and [5] in Table 1.1 involve the specified number of exponentiation
operations with exponent and base in a group with modulus size 8 ∗ 224 ≈
211 bits. Our scheme involves exponentiation operations where the exponent is
from a group with modulus of 224 bits and base is from an elliptic curve group
with modulus size = 224 bits. The complexity of an exponentiation xy is given
by O

(
log2

2x.log2y
)
. So the cost of one exponentiation in [5], [7], [14] will be

22∗11+8 = 230. Cost of exponentiation in our scheme will be 22∗8+8 = 224.

Remark 8 : When realized in multiplicative groups, the first three schemes
[7], [14] and [5] involve the specified number of exponentiation operations with
exponent and base in a group with modulus size 8*2048=214 bits. Our scheme
involves exponentiation operations where the exponent is from a Schnorr group
with modulus of 224 bits and base is from a group with modulus size = 2048 bits.
The complexity of an exponentiation xy is given by O

(
log2

2x.log2y
)
. So cost of

one exponentiation in [5], [7], [14] will be 22∗14+14 = 242. Cost of exponentiation
in our scheme will be 22∗11+8 = 230.

Table 2. Comparison with the existing schemes - Security

Scheme Forward
Secrecy

Reflection
Attacks

KCI Ephemeral
KCI

Dynamic
adversary

Gunther
[7]

√ × √ × ×

Saeednia
[14]

√ √ √ × ×

Fiore [5]
√ √ √ × ×

Ours
√ √ √ √ √

The PKI-based MQV [10] protocol involves sending 2 group elements and
1.5 exponentiation operations to compute the shared secret key. But certificates
need to be sent in this system. We do not consider RSA signatures for certifi-
cates because RSA uses composite modulus. If we take into account Schnorr
signature for certification purpose, we will have 1 more group element and a
Schnorr group element to be sent and the signing and verification process will

Identity Based Key Agreement 43

involve 3 more exponentiation operations. But these exponentiations will have
exponent in a Schnorr group which is realized on elliptic curves. Hence the total
number of exponentiation operations will be 1.5 with exponent size 8*224 and 3
with exponent size 224. Moreover this scheme does not achieve tight reduction
unlike our protocol. Thus our scheme is better than the PKI based scheme with
certificates.

3 Identity Based Key Agreement

In this section, we will give the definition of an identity based key agreement
protocol and the description of the security model.

3.1 Definition of Identity Based Key Agreement Protocol

In Identity Based Key Agreement protocol, each entity i is defined by a unique
identity, IDi. The PKG maintains master public key and master secret key and
generates the private key Si for each user. The protocol is defined as follows:

Setup: The PKG chooses the public parameters and the master secret key. The
public parameters are open to all users and the master secret key is known only
to the PKG.

Key Generation: The user i submits its identity IDi to the PKG and the
PKG constructs the private key Si for the user with identity IDi.

Key Agreement: In order to establish the shared secret key between two users
A and B with identities IDA and IDB and secret keys SA and SB, the users
engage in a session by exchanging components and eventually set up the shared
secret key. Either user A or B could initiate the protocol.

3.2 Definition of the Security Model

The security of our identity based key agreement protocol is analyzed based on
the Canetti-Krawczyk (CK) model for key agreement [2]. CK model does not
cover forward secrecy, resistance to reflection and key compromise impersonation
attacks. We provide these additional security features. Now we define certain
terms associated with identity based key agreement and formally define the
security model.

An instance of the protocol defined in Section 3.1 is called a session. The user
or entity that initiates a session is called the owner and the other user is called
the peer. The components exchanged between the owner and the peer constitute
the session state. The shared secret key obtained is called the session key.
On successful completion of a session, each entity outputs the session key and
deletes the session state. Otherwise, the session is said to be in abort state
and no session key is generated in this case. Each entity participating in a
session assigns a unique identifier to that session. For example, A sets the unique
identifier as (A,B, out, in) where B is its peer and out and in are respectively

44 S. Sree Vivek et al.

the components sent to B and received by A. If B holds a session (B,A, in, out),
then both the sessions are said to be matching sessions. There are three types
of adversary:

– Type I : The adversary of this type does not belong to the system and
hence has access only to the PKG’s parameters. It is not given access to the
private keys of users and does not impersonate anyone. This is the weakest
adversary.

– Type II : The adversary belongs to the identity based system and can query
for the private keys of polynomial number of users. It is not allowed to
impersonate as any user.

– Type III : The adversary of this type belongs to the identity based system
and it is given access to the private keys of polynomial number of users. It
can also impersonate as any other user. This is the strongest adversary and
we prove our scheme secure against this type of adversary.

Since we prove our scheme secure against the Type III adversary, it is also
secure against Type I and Type II because they are weaker adversaries com-
pared to Type III. We allow the adversary to access some of the parties secret
information, via the following attacks: party corruption, state-reveal queries and
session-key queries. In party corruption phase, the adversary learns the private
keys of the users. In a state-reveal query to a party running a session, the adver-
sary learns the session state for that session. In shared secret key query phase, the
adversary learns the shared secret key of a complete session. A session is called
exposed if it or its matching session (if existing) is compromised by one of the
attacks described above. The security model of the identity based key agreement
is modeled as a following game between the challenger and the adversary:

Setup: The challenger sets up the public parameters and the master secret key.
The public parameters are made known to the adversary whereas the master
secret key is kept private with the challenger.

Party corruption: In this phase, the adversary can query the challenger for
the private key of any user with identity IDi. The challenger has to compute the
private key Si corresponding to IDi and return the response to the adversary.

Session Simulation: In this phase, the adversary is allowed to ask the shared
secret key queries. The adversary queries for a shared secret belonging to a
session established between two users A and B. The adversary can also emulate
as one of the users, either A or B and present the challenger with the session
state corresponding to that user. The challenger has to generate the session state
for the other user of the session and obtain the shared secret key corresponding
to that session. The adversary can also query for the session secret key between
the two parties A and B from the challenger, where the adversary does not
impersonate any of the user. In this case the challenger has to generate the
session state for both the users and obtain the shared secret key corresponding
to that session and provide it to the adversary.

Test Session: The adversary chooses a test session among all the completed
and unexposed sessions. The challenger will toss a random bit b ∈R {0, 1}. If

Identity Based Key Agreement 45

b = 0 the challenger will give the adversary the session key K0 of the test session.
Otherwise the challenger will take a random shared secret key K1 and provide
the adversary with K1.

Guess: The adversary makes a guess δ as to which key K0 or K1 was given by
the challenger. The adversary wins if δ = b.

The identity based key agreement protocol is said to be secure if no polynomial-
time adversary has non-negligible advantage in winning the above game, i.e.,
distinguishing K0 from K1.

Note: The Send query present in [9] is not required here since our protocol
is single round and it is a 2-party protocol. The adversary has access to the
components exchanged and can modify them as per its wish.

4 Preliminaries

In this section, we present a brief overview of the hard problem assumptions.

Definition 1. Computation Diffie-Hellman Problem (CDHP) - Given
(g, ga, gb) ∈ G3 for unknown a, b ∈ Z∗

q , where G is a cyclic prime order mul-
tiplicative group with g as a generator and q the order of the group, the CDH
problem in G is to compute gab.

The advantage of any probabilistic polynomial time algorithm A in solving the
CDH problem in G is defined as

AdvCDH
A = Pr

[A(g, ga, gb) = gab | a, b ∈ Z
∗
q

]

The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCDH

A is negligibly small.

Definition 2. Decisional Diffie-Hellman Problem (DDHP) - Given
(g, ga, gb, h) ∈ G4 for unknown a, b ∈ Z∗

q, where G is a cyclic prime order
multiplicative group with g as a generator and q the order of the group, the DDH

problem in G is to check whether h
?
= gab.

The advantage of any probabilistic polynomial time algorithm A in solving the
DDH problem in G is defined as

AdvDDH
A = |Pr

[A(g, ga, gb, gab) = 1
]− Pr

[A(g, ga, gb, h) = 1
] | | a, b ∈ Z

∗
q

The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCDH

A is negligibly small.

Definition 3. (Strong Diffie Hellman Problem (SDHP) [1]): Let κ be the
security parameter and G be a multiplicative group of order q, where |q| = κ.
Given (g, ga, gb) ∈R G3 and access to a Decision Diffie Hellman (DDH) oracle
DDHg,a(., .) which on input gb and gc outputs True if and only if gab = gc, the
strong Diffie Hellman problem is to compute gab ∈ G.

46 S. Sree Vivek et al.

The advantage of an adversary A in solving the strong Diffie Hellman problem is
defined as the probability with which A solves the above strong Diffie Hellman
problem.

AdvSDHP
A = Pr[A(g, ga, gb) = gab|DDHg,a(., .)]

The strong Diffie Hellman assumption holds in G if for all polynomial time
adversaries A, the advantage AdvSDHP

A is negligible.

Note: In pairing groups (also known as gap groups), the DDH oracle can be
efficiently instantiated and hence the strong Diffie Hellman problem is equivalent
to the Gap Diffie Hellman problem [13].

5 The Proposed Identity Based Key Agreement Protocol

We now give the description of the identity based key agreement protocol and
formally prove its security in the next section.

Setup: The PKG chooses a group G of prime order q. Let g be the generator of
group G. The PKG picks s1, s2 ∈R Zp

∗, where p divides q− 1, sets y1 = gs1 and
y2 = gs2 . The master secret key is 〈s1, s2〉 and the master public key is 〈y1, y2〉.
It also defines the following hash functions: H1 : {0, 1}∗ → G, H2 : {0, 1}∗×G →
Zp

∗, H3 : {0, 1}∗ ×G×G×G×G → Zp
∗, H4 : {0, 1}∗ ×G×G×G×G → Zp

∗,
H5 : G×G → Zp

∗ and H6 : G×G×G → Zp
∗. The PKG makes params public

and keeps msk to itself, where params and msk are defined as follows:

params = 〈G, g, q, p, y1, y2, H1, H2, H3, H4, H5, H6〉 and msk = 〈s1, s2〉.
Key Extract: An user i with identity IDi submits its identity to the PKG. The
PKG does the following to generate the private key of the user i.

– The PKG chooses xi ∈R Zp
∗.

– It computes ui1 = gxi and sets hi = H1 (IDi).

– It computes vi1 = hi
xi .

– It chooses ri ∈R Zp
∗, computes ui2 = gri and vi2 = hi

ri .

– It sets ci = H2 (IDi, ui1), bi = H3 (IDi, ui1, vi1, ui2, vi2) and ei =
H4(IDi, ui1, vi1, ui2, vi2).

– It computes di1 = xi+s1ci where s1 is the master secret key. It also calculates
di2 = xi + ribi + s2ei.

– Finally it sends 〈ui1, vi1, ui2, vi2, di1, di2, hi
s2〉 to the user i.

The user after receiving the private key components from the PKG performs
the checks described in the appendix (Key Sanity Check) to ensure the correct-
ness of the components.

Key Agreement: The two users i and j with identities IDi and IDj get their
respective private keys from the PKG and choose ephemeral secret components
ti, wi ∈R Zp

∗ and tj , wj ∈R Zp
∗ respectively and engage in a session as described

in Table 2.

Identity Based Key Agreement 47

Table 3. Description of the Key Agreement protocol

User i User j

1. Send Fi = 〈ui1, vi1, di2, bi, ei, hi
s2 , IDi〉,

Vi = 〈wi + di1.H5

(
gti , gwi

)
, gti , gwi〉 to j.

1. Send Fj = 〈uj1, vj1, dj2, bj , ej , hj
s2 ,

IDj〉, Vj = 〈wj + dj1.H5

(
gtj , gwj

)
,

gtj , gwj 〉 to i.

2. (a) Check for correctness of Fj:

Compute uj2 =
(

g
dj2

uj1.y2
ej

)bj
−1

Compute vj2 =

(
hj

dj2

vj1.(hj
s2)ej

)bj
−1

Check 1 : Check if
bj

?
= H3(IDj , uj1, vj1, uj2, vj2)

ej
?
= H4(IDj , uj1, vj1, uj2, vj2)

If not equal abort, else proceed.

(b) Check for correctness of Vj:

Check 2 : Check if[
g(wj+dj1.H5(g

tj ,g
wj))

(gxj)
H5(g

tj ,g
wj)(y1)

cj.H5(g
tj ,g

wj)

]
?
= gwj

where cj = H2 (IDj , uj1).

If equal proceed to step 3, else abort.

2. (a) Check for correctness of Fi:

Compute ui2 =
(

gdi2

ui1.y2
ei

)bi
−1

Compute vi2 =
(

hi
di2

vi1.(hi
s2)ei

)bi
−1

Check 1 : Check if
bi

?
= H3 (IDi, ui1, vi1, ui2, vi2)

ei
?
= H4 (IDi, ui1, vi1, ui2, vi2)

If not equal abort, else proceed.

(b)Check for correctness of Vi:

Check 2 : Check if[
g(wi+di1.H5(gti ,gwi))

(gxi)
H5(gti ,gwi)(y1)

ci.H5(gti ,gwi)

]
?
= gwi

where ci = H2 (IDi, ui1).

If equal proceed to step 3, else abort.

3. Shared secret key generation:

Compute Z1 =
(
uj1y1

cjgtj
)di1+ti

Z2 = vi1vj1

Z3 =
(
gtj

)ti .

Z = H6 (Z1, Z2, Z3).

3. Shared secret key generation:

Compute Z1 =
(
ui1y1

cigti
)dj1+tj

Z2 = vj1vi1

Z3 =
(
gti

)tj .

Z = H6 (Z1, Z2, Z3).

Z is the shared secret key that is established between User i and User j.

Remark 9 : The protocol is asynchronous and consists of only one send per
user per session. Hence the data transfer can occur in any order.

Remark 10 : The values in Fi are same for all sessions between a pair of users
and is independent of the session.

Remark 11 : The values in Vi are freshly generated for every session in the
following manner. In a preprocessing or a setup stage, the user i generates a
large number of

(
β, gβ

)
pairs and stores them in a table Ti. For each session,

user i extracts two fresh pairs from the table Ti and uses them to generate
components of Vi. For security reasons, we assume that

(a) immediately after generating the components of Vi, wi is erased from the
system.
(b) wi + di1.H5 (g

ti , gwi) is computed in a secured way so that wi and di1 are
not leaked to the adversary and only wi + di1.H5 (g

ti , gwi) is available to the
adversary.

48 S. Sree Vivek et al.

Remark 12 : The components in Fi, Vi and Fj , Vj is required to be sent only
for the first time key establishment between users i and j. For subsequent key
establishments between i and j, only Vi and Vj need to be exchanged. So we
have considered only the components of Vi in communication overhead in Table
1.1. The exponentiations done in Check for correctness of components of Fi is
one time and hence it is not included in computation cost. We include only the
exponentiations in check for correctness of components in Vi and shared secret
key generation in Table 1.1. We have to discuss the size of Fi and Vi in the cases
of multiplicative groups and elliptic curve groups. The sizes in multiplicative
group of order p which has a subgroup of order q, |p| denoting the number of
bits in p, |q| referring to the number of bits in q and |IDi| denoting the length
of the identity of user i are Fi = 3.|q|+3.|p|+ |IDi| and Vi = 1.|q|+2.|p|. In the
case of elliptic curve of order p, the sizes are Fi = 6.|p|+ |IDi| and Vi = 3.|p|
Remark 13 : The intuition behind using the component Z3 is to eliminate
gti.tj from Z1 in the security proof to obtain the solution to the hard problem.

Remark 14 : Check 1 is done to ensure that g and hi are raised to the same
exponent xi. This is a crucial security requirement.

For valid components this check holds good. We prove it here.

(
gdi2

ui1.y2
ei

)bi
−1

=
(

gxi+ri.bi+s2.ei

gxi .gs2.ei

)bi
−1

=
(
gri.bi

)bi−1

= gri = ui2.

(
hi

di2

vi1.(hi
s2)ei

)bi
−1

=
(

hi
xi+ri.bi+s2.ei

hi
xi .(hi

s2)ei

)bi
−1

=
(
hi

ri.bi
)bi

−1

= hi
ri = vi2

The components that are recomputed are valid and hence the computation of
bi = H3 (IDi, ui1, vi1, ui2, vi2) will match the one obtained if not for any tam-
pering during transfer.

Remark 15 : Check 2 is done to ensure that a dynamic adversary cannot
tamper the components exchanged and affect the shared secret key generation.
It verifies the signature wi + di1.H5 (g

ti , gwi) on gti .

g(wi+di1.H5(gti ,gwi))

(gxi)
H5(gti ,gwi).(y1)

ci.H5(gti ,gwi)
= g(wi+(xi+s1.ci).H5(gti ,gwi))

(gxi)
H5(gti ,gwi).(g)s1.ci.H5(gti ,gwi)

= gwi

Lemma 1: The shared secret key computed by both the parties are identical.

Proof: User i computes :

Z1 = (uj1y1
cjgtj)

di1+ti =
(
g(xj+s1cj+tj)

)(di1+ti)
= g(dj1+tj)(di1+ti), since uj1 =

gxj and xj + s1cj = dj1.
User j computes:

Z1 = (ui1y1
cigti)

dj1+tj =
(
g(xi+s1ci+ti)

)(dj1+tj)
= g(di1+ti)(dj1+tj), since ui1 =

gxi and xi + s1ci = di1.

Thus Z1 computed by both the parties are identical. Z2 and Z3 are also consis-
tent. Thus the final shared secret key computed by both the parties are consis-
tent. �

Identity Based Key Agreement 49

6 Security Proof

In this section, we give the security proof of the scheme presented in the pre-
vious section. The proof is modeled based on the CK-model. The scheme is
proved secure in the random oracle model. The scheme is reduced to the Strong
Diffie-Hellman (SDH) problem. Since the proof technique eliminates the use of
forking lemma, we are able to achieve a tight reduction to the underlying hard
problem. The security proof is modeled as a game between the challenger and
the adversary.

Setup: The challenger is given the SDH problem instance 〈G, g, q, p, C =
ga, D = gb〉 and access to the Diffie Hellman Oracle DH (y1, ., .). The challenger
sets the master public key y1 = C and hence the master secret key s1 is implic-
itly set as a. The challenger chooses s2 ∈R Zp

∗ and sets y2 = gs2 . The challenger
gives the tuple 〈G, g, q, p, y1, y2〉 to the adversary. The challenger simulates the
hash oracles in the following way:

H1Oracle : The challenger is queried by the adversary for the hash value of
the identity IDi. If the H1 Oracle was already queried with IDi as input,
the challenger returns the value computed before which is stored in the hash
list Lh1 described below. Otherwise the challenger tosses a coin τi where the
Pr (τi = 0) = α. The output of this oracle is defined as:

hi =

{
gki , if τi = 0
(
gb
)ki

, if τi = 1

where ki ∈R Zp
∗. The challenger makes an entry in the hash list Lh1 =

〈hi, IDi, τi, ki〉 for future use and returns hi.

H2 Oracle : The adversary queries the challenger with inputs (IDi, ui1). If the
H2 Oracle was already queried with (IDi, ui1) as input, the challenger extracts
the value ci from the hash list Lh2 described below and returns the value. Oth-
erwise, the challenger chooses a random value ci ∈R Zp

∗. It makes an entry in
the hash list Lh2 = 〈ci, ui1, IDi〉 and returns ci.

H3 Oracle : The adversary queries the challenger with inputs (IDi, ui1, vi1, ui2,
vi2). If the H3 Oracle was already queried with (IDi, ui1, vi1, ui2, vi2) as input,
the challenger extracts the value bi from the hash list Lh3 described below and
returns the value. Otherwise, the challenger chooses a random value bi ∈R Zp

∗.
It makes an entry in the hash list Lh3 = 〈bi, IDi, ui1, vi1, ui2, vi2〉 and returns bi.

H4 Oracle : The adversary queries the challenger with inputs (IDi, ui1, vi1, ui2,
vi2). If the H4 Oracle was already queried with (IDi, ui1, vi1, ui2, vi2) as input,
the challenger extracts the value ei from the hash list Lh4 described below and
returns the value. Otherwise, the challenger chooses a random value ei ∈R Zp

∗.
It makes an entry in the hash list Lh4 = 〈ei, IDi, ui1, vi1, ui2, vi2〉 and returns ei.

H5 Oracle : The adversary queries the challenger with inputs (gti , gwi). If the
H5 Oracle was already queried with (gti , gwi) as input, the challenger extracts
the value fi from the hash list Lh5 described below and returns the value. Oth-
erwise, the challenger chooses a random value fi ∈R Zp

∗. It makes an entry in
the hash list Lh5 = 〈fi, gti , gwi〉 and returns fi.

50 S. Sree Vivek et al.

H6 Oracle : The adversary queries the challenger with inputs (Z1, Z2, Z3). If
the H4 Oracle was already queried with (Z1, Z2, Z3) as input, the challenger
extracts the value li from the hash list Lh6 described below and returns the
value. Otherwise, the challenger chooses a random value li ∈R Zp

∗. It makes an
entry in the hash list Lh6 = 〈li, Z1, Z2, Z3〉 and returns li.

Party corruption: The adversary presents the challenger with an identity IDi

and the challenger should return the private key of that entity. The challenger
proceeds in the following way:

The challenger checks if the H1 Oracle was already queried for IDi. If yes and
the corresponding τi = 1, it aborts. Otherwise it extracts ki, hi from the list
Lh1 and proceeds to the next step. If IDi was not queried before, the challenger
runs the H1 Oracle with IDi as input. If τi = 1, it aborts. Else the challenger
chooses ki ∈R Z∗

p , computes hi = gki , adds the tuple 〈hi, IDi, τi, ki〉 to the Lh1

list.

The challenger does not know the master secret key s1 as master public key
y1 = ga setting s1 = a. Therefore in order to generate the private key of users,
the challenger makes use of the random oracles and generates the private key as
described below:

– The challenger chooses ci, bi, ei, xi
′, ri′ ∈R Zp

∗.
– It sets ui1 = gx

′
i .y1

−ci .

– It sets H2 (IDi, ui1) = ci and adds the tuple 〈ci, ui1, IDi〉 the Lh2 list.

– It sets di1 = x′
i, di2 = x′

i + r′ibi + s2ei and ui2 = gr
′
i .y1

ci.bi
−1

.

– It computes vi1 = gki.x
′
i .y1

−ki.ci and vi2 = gki.r
′
i .y1

ki.ci.bi
−1

.

– It also sets H3 (IDi, ui1, vi1, ui2, vi2) = bi, H4 (IDi, ui1, vi1, ui2, vi2) = ei and
adds the tuples 〈bi, IDi, ui1, vi1, ui2, vi2〉, 〈ei, IDi, ui1, vi1, ui2, vi2〉 to the lists
Lh3 and Lh4 respectively.

– It computes hi
s2 .

– It returns the tuple 〈ui1, vi1, ui2, vi2, di1, di2, hi
s2〉 as the private key of the

user with identity IDi and makes an entry in the list LE = 〈ui1, vi1, ui2, vi2,
di1, di2, IDi〉.

Lemma 2: The private key returned by the challenger during the party corrup-
tion query are consistent with the system.

Proof: We now prove that the components returned by the challenger are consis-
tent with that of the system. The components returned by the challenger should
satisfy the 3 checks given in Key Sanity Check.

– Test 1 : Check if gdi1

y
H2(IDi,ui1)
1

?
= ui1.

This can be verified as gx′
i

ga.H2(IDi,ui1)
where ci = H2 (IDi, ui1). This is equal

to gx
′
i−a.ci = gx

′
i .y1

−ci = ui1.

Identity Based Key Agreement 51

– Test 2 : Check if gdi2

ui2
H3(IDi,ui1,vi1,ui2,vi2).y2

H4(IDi,ui1,vi1,ui2,vi2)

?
= ui1.

This can be verified as gx′
i+r′ibi+s2ei(

gr′
i .y1

ci.bi
−1

)bi
.gs2.ei

= gx
′
i−a.ci = gx

′
i.y1

−ci = ui1, as

bi = H3 (IDi, ui1, vi1, ui2, vi2) and ei = H4 (IDi, ui1, vi1, ui2, vi2).

– Test 3 : Check if
h
di2
i

vi2
H3(IDi,ui1,vi1,ui2,vi2).(hi

s2)H4(IDi,ui1,vi1,ui2,vi2)

?
= vi1.

This can be verified as
h
x′
i+r′i.bi+s2.ei

i(
gki.r

′
i .y1

ki.ci.bi
−1

)bi
.(hi

s2)ei
= hi

x′
i .y1

−ki.ci = vi1

where bi = H3 (IDi, ui1, vi1, ui2, vi2) and ei = H4 (IDi, ui1, vi1, ui2, vi2).

Thus the components generated by the challenger are consistent with the system
as the tests 1,2 and 3 are satisfied. �
Session Simulation: The adversary requires the challenger to simulate shared
secret keys. The challenger simulates session other than the test session. Here
we mention the party which initiates the session as owner of the session and
the other party who responds to the request of the owner as peer. We have to
consider the following cases during the session simulation phase.

Case 1: In this case, the adversary has executed the party corruption query
with respect to i. Hence the adversary knows the secret key of i. The adver-
sary treats i as owner and generates the tuple 〈ui1, vi1, di2, bi, ei, hi

s2 , gti , wi +
di1.H5 (g

ti , gwi) , gwi , IDi〉 and passes it to the challenger and asks the challenger
to complete the session with j as the peer.

Case 1a: If τj = 0, the challenger knows the secret key corresponding to j and
hence executes the actual protocol and delivers the session key to the adversary.

Case 1b: If τj = 1, the challenger does not know the secret key corresponding
to j and hence simulates the session key as follows:

1. The challenger first performs the check presented in the Step 2
of the Key Agreement protocol, on 〈ui1, vi1, di2, bi, ei, hi

s2 , gti , wi +
di1.H5 (g

ti , gwi) , gwi , IDi〉.
2. The challenger generates the parameters 〈uj1 = gxj , vj1 = hj

xj , dj2 =

xj + rj .bj + s2.ej, bj , ej, hj
s2 , gtj , w′

j + xj .fj , g
w′

j .y1
−cj .fj , IDj〉 , where

rj , xj , tj , w
′
j , fj ∈R Zp

∗, hj = H1 (IDj), bj = H3 (IDj , uj1, vj1, g
rj , hj

rj)
and ej = H4 (IDj , uj1, vj1, g

rj , hj
rj).

3. If H5 was already queried with inputs
(
gtj , gw

′
j .y1

−cj .fj
)
, generate a fresh

w′
j and recompute the last but two components. With very high probability,

the new
(
gtj , gw

′
j .y1

−cj .fj
)
will not result in a previously queried input set

to H5. Set H5

(
gtj , gw

′
j .y1

−cj.fj
)
as fj.

4. The parameters generated by the challenger, 〈uj1, vj1, dj2, bj , ej, hj
s2〉 will

satisfy Check 1 in Step 2 of Key Agreement. This is because the parame-
ters 〈uj1, vj1, dj2, bj, ej , hj

s2〉 are generated in the same way as the original
scheme.

52 S. Sree Vivek et al.

5. The parameters 〈uj1, vj1, dj2, bj, ej , hj
s2〉 also satisfy Check 2 in the Step 2

of Key Agreement of Section 5.

g
w′

j+xj.fj

(gxj)
H5

(
g
tj ,g

w′
j .y1

−cj.fj

)

.(y1)
cj.H5

(
g
tj ,g

w′
j .y1

−cj.fj

) = gw
′
j .y1

−cj.fj = gwj .

6. Thus the parameters generated by the challenger, 〈uj1, vj1, dj2, bj, ej , hj
s2〉

are consistent with that of the system.
7. The challenger sends the parameters to the adversary.

8. The challenger computes Z̄1 = (gxi.y1
ci .gti)

xj+tj where ci = H2 (IDi, ui1).
It also computes P1 = (ui1.y1

ci .gti)
cj and P2 = y1 where cj = H2 (IDj , uj1).

9. The challenger computes Z2 = vi1.vj1 and Z3 = (gti)
tj .

10. The challenger is given access to the DH (y1, ., .) oracle, since we assume the
hardness of Strong-Diffie Hellman problem. The challenger makes use of the
DH (y1, ., .) Oracle to answer the query as follows:

– The challenger finds a Z such that DH
(
P2, P1, Z1/Z̄1

)
(valid since P2 =

y1) and H6(Z1, Z2, Z3) = Z, where Z2 = vi1.vj1 and Z3 = (gti)
tj .

– If a Z exists, the challenger returns Z as the shared secret key.
– Otherwise the challenger chooses Z ∈R Zp

∗ and for any further query
of the form (Z1, Z2, Z3) to the H6 Oracle, if DH

(
P2, P1, Z1/Z̄1

)
, Z2 =

vi1.vj1 and Z3 = (gti)
tj , the challenger returns Z as the result to the

query.

Finally the challenger returns Z as the shared secret key.
Case 2: The adversary does not know the secret key of i, the owner of the
session. Here the adversary simply asks the challenger to generate a session with
i as owner and j as peer.

Case 2a: The case where τi = 0 and τj = 0. In this case, the challenger can
simulate the computations done by both the parties since the challenger knows
the private key of both the owner i and the peer j.

Case 2b: The case where either τi = 1 or τj = 1. Without loss of generality let
us consider that τi = 0 and τj = 1. Here the challenger knows the secret key of
i but does not know the secret key of j. Hence for i the challenger will generate
the session secret key as per the algorithm. For j the challenger has to simulate
as follows:

1. The challenger generates the values 〈uj1 = gxj , vj1 = hj
xj , dj2 = xj+rj .bj+

s2.ej , bj, ej , hj
s2 , gtj , w′

j+xj .fj , g
w′

j .y1
−cj.fj , IDj〉 , where rj , xj , tj , w

′
j , fj ∈R

Zp
∗, hj = H1 (IDj), bj = H3 (IDj, uj1, vj1, g

rj , hj
rj) and ej = H4(IDj , uj1,

vj1, g
rj , hj

rj) for user j.

2. The challenger also generates the values 〈ui1 = gxi, vi1 = hi
xi , di2 = xi +

ri.bi + s2.ei, bi, ei, hi
s2 , gti , w′

i + xi.fi, g
w′

i .y1
−ci.fi , IDi〉 with i’s private key

for user i.

3. If H5 was already queried with inputs
(
gtj , gw

′
j .y1

−cj .fj
)
, generate a fresh

w′
j and recompute the last but two components. With very high probability,

Identity Based Key Agreement 53

the new
(
gtj , gw

′
j .y1

−cj .fj
)
will not result in a previously queried input set

to H5. Set H5

(
gtj , gw

′
j .y1

−cj.fj
)
as fj.

4. Similarly if H5 was already queried with inputs
(
gti , gw

′
i .y1

−ci.fi
)
, generate

a fresh w′
i and recompute the last but two components. With very high

probability, the new
(
gti , gw

′
i .y1

−ci.fi
)
will not result in a previously queried

input set to H5. Set H5

(
gti , gw

′
i .y1

−ci.fi
)
as fi.

5. The challenger computes Z̄1 = (gxi.y1
ci .gti)

xj+tj where ci = H2 (IDi, ui1).
It also computes P1 = (ui1.y1

ci .gti)
cj and P2 = y1 where cj = H2 (IDj , uj1).

6. The challenger computes Z2 = vi1.vj1 and Z3 = (gti)
tj .

7. The challenger is given access to the DH (y1, ., .) oracle, since we assume the
hardness of Strong-Diffie Hellman problem. The challenger makes use of the
DH (y1, ., .) Oracle to answer the query as follows:

– The challenger finds a Z such that DH
(
P2, P1, Z1/Z̄1

)
(valid since P2 =

y1) and H6(Z1, Z2, Z3) = Z, where Z2 = vi1.vj1 and Z3 = (gti)
tj .

– If a Z exists, the challenger returns Z as the shared secret key.
– Otherwise the challenger chooses Z ∈R Zp

∗ and for any further query
of the form (Z1, Z2, Z3) to the H6 Oracle, if DH

(
P2, P1, Z1/Z̄1

)
, Z2 =

vi1.vj1 and Z3 = (gti)
tj .

Finally the challenger returns Z as the shared secret key.

Case 2c: The case where τi = 1 and τj = 1. In this case the challenger does
not know the secret key of both i and j. Hence the challenger has to simulate
the session values for both i and j, which is done as follows:

1. The challenger generates the values 〈uj1 = gxj , vj1 = hj
xj , dj2 = xj+rj .bj+

s2.ej , bj, ej , hj
s2 , gtj , w′

j+xj .fj , g
w′

j .y1
−cj.fj , IDj〉 , where rj , xj , tj , w

′
j , fj ∈R

Zp
∗, hj = H1 (IDj), bj = H3 (IDj, uj1, vj1, g

rj , hj
rj) and ej = H4(IDj , uj1,

vj1, g
rj , hj

rj) for user j.

2. The challenger also generates the values 〈ui1 = gxi, vi1 = hi
xi , di2 = xi +

ri.bi + s2.ei, bi, ei, hi
s2 , gti , w′

i + xi.fi, g
w′

i .y1
−ci.fi , IDi〉 , where ri, xi, ti, w

′
i,

fi ∈R Zp
∗, hi = H1 (IDi), bi = H3 (IDi, ui1, vi1, g

ri , hi
ri) and ei = H4(IDi,

ui1, vi1, g
ri , hi

ri) for user i.

3. If H5 was already queried with inputs
(
gtj , gw

′
j .y1

−cj .fj
)
, generate a fresh

w′
j and recompute the last but two components. With very high probability,

the new
(
gtj , gw

′
j .y1

−cj .fj
)
will not result in a previously queried input set

to H5. Set H5

(
gtj , gw

′
j .y1

−cj.fj
)
as fj.

4. Similarly if H5 was already queried with inputs
(
gti , gw

′
i .y1

−ci.fi
)
, generate

a fresh w′
i and recompute the last but two components. With very high

54 S. Sree Vivek et al.

probability, the new
(
gti , gw

′
i .y1

−ci.fi
)
will not result in a previously queried

input set to H5. Set H5

(
gti , gw

′
i .y1

−ci.fi
)
as fi.

5. The challenger computes Z̄1 = (gxi.y1
ci .gti)

xj+tj where ci = H2 (IDi, ui1).
It also computes P1 = (ui1.y1

ci .gti)
cj and P2 = y1 where cj = H2 (IDj , uj1).

6. The challenger computes Z2 = vi1.vj1 and Z3 = (gti)
tj .

7. The challenger is given access to the DH (y1, ., .) oracle, since we assume the
hardness of Strong-Diffie Hellman problem. The challenger makes use of the
DH (y1, ., .) Oracle to answer the query as follows:

– The challenger finds a Z such that DH
(
P2, P1, Z1/Z̄1

)
(valid since P2 =

y1) and H6(Z1, Z2, Z3) = Z, where Z2 = vi1.vj1 and Z3 = (gti)
tj .

– If a Z exists, the challenger returns Z as the shared secret key.

– Otherwise the challenger chooses Z ∈R Zp
∗ and for any further query

of the form (Z1, Z2, Z3) to the H6 Oracle, if DH
(
P2, P1, Z1/Z̄1

)
, Z2 =

vi1.vj1 and Z3 = (gti)
tj .

Finally the challenger returns Z as the shared secret key.

Test Session: The adversary impersonates as user i and sends the parameters
〈ui1, vi1, di2, bi, ei, hi

s2 , gti , wi + di1.H5 (g
ti , gwi) , gwi , IDi〉 to the challenger for

session simulation. The challenger runs the H1 Oracle with input IDi. The test
session is assumed to run between two users i and j, where adversary imper-
sonates as i and challenger has to generate parameters for user j. If τi = 0, it
aborts. Else it does the following:

– The challenger passes the parameters 〈uj1 = gxj , vj1 = hj
xj , dj2 = xj +

rj .bj + s2.ej, bj , ej,
hj

s2 , D.g−dj1 , wj+dj1.H5

(
D.g−dj1 , gwj

)
, IDj〉 to the adversary, where dj1 is

the private key component associated with User j which is known to the chal-
lenger, rj , xj , wj ∈R Zp

∗, hj = H1 (IDj), bj = H3 (IDj , uj1, vj1, g
rj , hj

rj)
and ej = H4 (IDj, uj1, vj1, g

rj , hj
rj). The parameters passed satisfy the

checks as they are generated in the way similar to the scheme. gtj =
D.g−dj1 = gb−dj1 .

– The challenger performs the checks specified in Step 2 of the Key Agree-
ment algorithm described in Section 5 on 〈ui1, vi1, di2, bi, ei, hi

s2 , gti , wi +
di1.H5 (g

ti , gwi) , gwi , IDi〉. If the checks pass, the challenger proceeds to next
step. Else, it aborts.

– The challenger returns a Z∗ ∈R Zp
∗ as the shared secret key. This won’t be a

valid shared secret key. But in order to find that this is invalid the adversary
should have queried the H6 Oracle with a valid tuple (Z1, Z2, Z3). Thus the

challenger computes Z̄2 = (Z2/vj1)
ki

−1

and Z̄3 = Z3.(g
ti)

dj1 . The challenger

also computes S =
(
Z1/Z̄2Z̄3

)ci−1

where ci = H2 (IDi, ui1).

– Finally the challenger returns S as the solution for the CDH hard problem.

Identity Based Key Agreement 55

Lemma 3: The value returned by the challenger is the solution to the CDH
instance of the SDH hard problem set in the beginning.

Proof:The challenger returns S =
(
Z1/Z̄2Z̄3

)ci−1

where ci = H2 (IDi, ui1) as
the solution to the hard problem.

– S =
(
g(di1+ti)(dj1+b−dj1)/Z̄2Z̄3

)ci−1

.

– Z2 = (Z2/vj1)
ki

−1

= (vi1.vj1/vj1)
ki

−1

= vi1
ki

−1

= (hi
xi)ki

−1

=
(
gb.ki

)xi.ki
−1

= gb.xi.(Note : The component hi =
(
gb
)ki

as τi = 1.).

– Z3 = Z3. (g
ti)

dj1 = (gti)
(b−dj1). (gti)

dj1 = gb.ti .

– Therefore S =
(
g(xi+a.ci+ti)(dj1+b−dj1)/gb.xi.gb.ti

)ci−1

= gab.

Thus we have proved that the value returned by the challenger is solution to the
CDH Problem. �

7 Additional Security Properties

The proposed protocol offers additional security properties which we discuss
informally. Formal details of these properties can be found in the full version of
the paper.

Forward Secrecy: A key agreement protocol has forward secrecy, if after a
session is completed and its shared secret key is erased, the adversary cannot
learn it even if it corrupts the parties involved in that session. In other words,
learning the private keys of parties should not affect the security of the shared
secret key. Relaxing the definition of forward secrecy, we assume that the past
sessions with passive adversary are the ones whose shared secret keys are not
compromised. The proposed scheme offers forward secrecy.

Resistance to Reflection Attacks: A reflection attack occurs when an adver-
sary can compromise a session in which the two parties have the same identity.
A practical situation in which both parties with the same identity communicate
is when a person wants to establish secure connection between her computers in
the house and the one in the office. The proposed scheme is resistant to reflection
attacks which can be proved by the techniques used in [5] and [11].

Resistance to Key Compromise Impersonation Attacks: Whenever a
user I’s private key is learned by the adversary, it can impersonate as I. A key
compromise impersonation (KCI) attack can be carried out when the knowledge
of I’s private key allows the adversary to impersonate another party to I. Our
scheme is resistant to KCI attacks. This is because in the proof, when the ad-
versary tries to impersonate i to user j, the challenger is able to answer private
key queries from the adversary corresponding to user j. Thus the resistance to
KCI attacks is inbuilt in the security proof.

Resistance to Ephemeral Key Compromise Impersonation: Generally
the users pick the ephemeral keys (ti, g

ti) from a pre-computed list in order to

56 S. Sree Vivek et al.

minimize online computation cost. But the problem with this approach is that
the ephemeral components may be subjected to leakage. This attack considers
the case when the adversary can make state-reveal queries even in the test ses-
sion. [4] presents such an attack on the scheme presented by Fiore [5]. But our
scheme is resistant to that type of an attack because when an adversary tries to
impersonate a user j without knowing the private key of j (as in [4]), it cannot
generate the components dj2 and the signature on gtj (We assume that wi is
erased immediately after the signature on gti is computed and hence is not avail-
able to the adversary during state-reveal queries). Thus it is secure and resists
ephemeral key compromise impersonation attack.

8 Conclusion

The main advantage of our scheme is that there is only a single round of com-
munication between the pair of users and there is no predefined order in which
messages are exchanged between the users. Moreover our scheme is secure against
active adversary which can intercept and modify the messages as per will. The
next advantage is that forking lemma is not used in the security reduction con-
tributing to the tight reduction feature. This results in a reduction in the com-
munication overhead. Our scheme also satisfies additional security attributes like
forward secrecy, resistance to reflection attacks, key compromise impersonation
attack and ephemeral key compromise impersonation attack. Finally our proof
can also be modified to support security in the advanced CK+ model. This will
be discussed in the full version of the paper.

References

1. Abe, M., Kiltz, E., Okamoto, T.: Compact cca-secure encryption for messages of
arbitrary length. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp.
377–392. Springer, Heidelberg (2009)

2. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

3. Cao, X., Kou, W., Du, X.: A pairing-free identity-based authenticated key agree-
ment protocol with minimal message exchanges. Information Sciences 180(15),
2895–2903 (2010)

4. Cheng, Q., Ma, C.: Ephemeral key compromise attack on the ib-ka protocol. IACR
Cryptology ePrint Archive 2009, 568 (2009)

5. Fiore, D., Gennaro, R.: Making the diffie-hellman protocol identity-based. In:
Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 165–178. Springer, Hei-
delberg (2010)

6. Goh, E.-J., Jarecki, S.: A signature scheme as secure as the diffie-hellman problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer,
Heidelberg (2003)

7. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990)

Identity Based Key Agreement 57

8. Hafizul Islam, S.K., Biswas, G.P.: An improved pairing-free identity-based authen-
ticated key agreement protocol based on {ECC}. Procedia Engineering 30, 499–507
(2012)

9. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. Jour-
nal of Cryptology 20(1), 85–113 (2007)

10. Krawczyk, H.: HMQV: A high-performance secure diffie-hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005)

11. Maurer, U.M., Wolf, S.: Diffie-hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)

12. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy, ch. 14, pp. 617–618. CRC Press (1996)

13. Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the
security of cryptographic schemes. In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001)

14. Saeednia, S.: Improvement of gunther’s identity-based key exchange protocol. Elec-
tronics Letters 36(18), 1535–1536 (2000)

15. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

Appendix

Key Sanity Check: After receiving the private key from the PKG in the key
extract phase, the user performs the following check to ensure the correctness of
the components of the private key.

The user first computes
ci = H2 (IDi, ui1)

bi = H3 (IDi, ui1, vi1, ui2, vi2)

ei = H4 (IDi, ui1, vi1, ui2, vi2)

Test 1: Check if gdi1

y
H2(IDi,ui1)
1

?
= ui1.

This can be verified as gxi+s1.ci

gs1.H2(IDi,ui1)
where ci = H2 (IDi, ui1). This is equal to

gxi = ui1. This check ensures the correctness of di1 and ui1.

Test 2: Check if gdi2

ui2
H3(IDi,ui1,vi1,ui2,vi2).y2

H4(IDi,ui1,vi1,ui2,vi2)

?
= ui1.

This can be verified as g(xi+ri.bi+s2.ei)

gri.H3(IDi,ui1,vi1,ui2,vi2).gs2.H4(IDi,ui1,vi1,ui2,vi2)

?
= gxi = ui1,

as bi = H3 (IDi, ui1, vi1, ui2, vi2) and ei = H4 (IDi, ui1, vi1, ui2, vi2).

This check ensures the correctness of di2, ui2, vi1, vi2.

58 S. Sree Vivek et al.

Test 3 : Check if
h
di2
i

vi2
H3(IDi,ui1,vi1,ui2,vi2).(hi

s2)H4(IDi,ui1,vi1,ui2,vi2)
= vi1.

This can be verified as
h
xi+ri.bi+s2.ei
i

(hi
ri)H3(IDi,ui1,vi1,ui2,vi2).(hi

s2)H4(IDi,ui1,vi1,ui2,vi2)
= hi

xi =

vi1 where bi = H3(IDi, ui1, vi1, ui2, vi2) and ei = H4 (IDi, ui1, vi1, ui2, vi2).

Test 3 ensures the correctness of hi
s2 . Test 2 and Test 3 ensures that g and hi

are raised to the same exponent xi in ui1 and vi1 respectively.

If the received private key satisfies all the tests then it is valid.

	Efficient, Pairing-Free, Authenticated Identity Based Key Agreement in a Single Round
	1 Introduction
	2 Previous Work and Our Contribution
	3 Identity Based Key Agreement
	3.1 Definition of Identity Based Key Agreement Protocol
	3.2 Definition of the Security Model

	4 Preliminaries
	5 The Proposed Identity Based Key Agreement Protocol
	6 Security Proof
	7 Additional Security Properties
	8 Conclusion
	References

