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Abstract. In this paper, we prove the security against related key at-
tacks of two public key encryption schemes in the standard model. The
first scheme is a variation of the scheme (KYPS09) presented by Kiltz,
Pietrzak et al. in Eurocrypt 2009. While KYPS09 has been proved CCA
secure under the DDH assumption, we show that it is not secure against
related key attacks when the class of related key functions includes affine
functions. We make a modification on KYPS09 and prove that the re-
sulted scheme is secure against related key attacks in which the related
key functions could be affine functions. We also prove the security against
related key attacks of the scheme presented by Hofheinz and Kiltz in
Crypto 2009 based on the HR assumption. The security proofs rely heav-
ily on a randomness extractor called 4-wise independent hash functions.

Keywords: related key attack, 4-wise independent hash, DDH assump-
tion, HR assumption.

1 Introduction

Since “cold-boot” attacks demonstrated a practical threat to cryptography sys-
tems [13], researchers have contributed much effort to constructing schemes
against side channel attacks. Among these attacks there is one kind called re-
lated key attacks (RKA), which means that attackers can modify keys stored in
the memory and observe the outcome of the cryptographic primitive under this
modified key [10,8].

In this work we study public key encryption (PKE) schemes against chosen
ciphertext RKA (CC-RKA), which is formulated by Bellare et al. [4]. Following
the original theory given by Bellare and Kohoo [5], the definition is parameterized
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by the class of Φ functions that the adversary can apply to the secret key. As
denoted by Bellare et al. [7], let S be the secret key space. If S is a group,

Φlin = {φa}a∈S is used to denote the class of linear functions; if S is a ring,

Φaffine = {φa,b}a,b∈S is used to denote the class of affine functions; Φpoly(d) is
used to denote the class of polynomial functions bounded by degree d.

Bellare, Cash and Miller [4] showed that CC-RKA secure PKE can be trans-
formed from RKA secure pseudorandom functions (PRF) and RKA secure iden-
tity based encryption (IBE) separately for the same class of Φ. In [3] Bellare

and Cash gave a framework of building RKA secure PRFs for Φ = Φlin. In [7]
Bellare, Paterson and Thomson gave a framework of building RKA secure IBE

for Φ = Φpoly(d). So by combining [4] and [3] we can get Φ-CC-RKA secure PKE

for Φ = Φlin; and by combining [4] and [7] we can get Φ-CC-RKA secure PKE

for Φ = Φpoly(d). In [19] Wee proposed a framework of constructing Φ-CC-RKA

secure PKE from adaptive trapdoor relations for Φ = Φlin.
In [19] Wee pointed out that the Cramer-Shoup CCA secure construction [11]

can not achieve CC-RKA security through their approach, since the property
that the secret key has some residual entropy given only its evaluation on a non-
DDH tuple makes it impossible to fulfill “finger-printing”. However, whether all
variants of the Cramer-Shoup construction can not achieve CC-RKA secure is
still an open problem. Is “finger-printing” a necessary condition of CC-RKA
security for PKE?

Our Result. In this work we prove the Φ-CC-RKA security of two PKE schemes

for Φ = Φaffine in the standard model.

– The first scheme is based on the DDH assumption, and it achieves Φ-CC-
RKA security by making a modification to the CCA secure PKE proposed
by Kiltz et al. [16], which is a variant of the Cramer-Shoup construction.
As in [16], here we use 4-wise independent hash functions as a randomness
extractor. In the appendix we give a successful RKA attack on the PKE
scheme in [16] when Φ includes affine functions. By applying the 4-wise
independent hash function to more group elements, we get a PKE scheme

that is secure against Φ-CC-RKA for Φ = Φaffine.

– The second scheme is presented by Hofheinz and Kiltz [15] based on the HR
assumption. The scheme is an instantiation in the group QR+

N of “Diffie-
Hellman integrated encryption scheme” (DHIES) [2], which is contained in
several standard bodies, e.g. in IEEE P1363a, SECG and ISO 18033-2.

In the security proof, queries of the form (C, φ) are easy to answer since the
simulator holds the secret key. Although there exists many sk′ �= sk correspond-
ing to which the challenge ciphertext C∗ is valid, it is difficult for any PPT
adversary A to submit a φ such that φ(sk) �= sk and C∗ is valid corresponding
to φ(sk) under reasonable intractable assumptions.

Table 1 shows a comparison of known CC-RKA secure PKE schemes in the
standard model. Take the second row for example: by combining [4] and [3], we

can get Φ-CC-RKA secure schemes for Φ = Φlin separately based on the DDH
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and DLIN assumption. From the table we can see that [4]+[3] and [19] can only

achieve Φ-CC-RKA security for Φ = Φlin. Although [4]+[7] can achieve Φ-CC-

RKA security for Φ = Φpoly(d), it is based on a q-type hardness assumption
which is not so standard. Only [4]+[7] and our result can achieve Φ-CC-RKA

security for Φ = Φaffine under widely accepted assumptions like BDDH, DDH
and HR in the standard model.

Table 1. A comparison of known CC-RKA secure PKE schemes

Works Φ Assumptions

[4]+[3] lin DDH,DLIN

[4]+[7] affine BDDH

[4]+[7] poly(d) q-EBDDH

[19] lin factoring,BDDH,LWE

Ours affine DDH,HR

The rest of our paper is organized as follows: in section 2 we give definitions
and preliminaries; in section 3 we give complexity assumptions; in section 4 we
describe the PKE constructions and prove the security; section 5 is the conclusion
of the whole paper.

2 Definitions and Preliminaries

2.1 Notation

We use PPT as the abbreviation of probabilistic polynomial time. Let l(X)
denote the length of X . Let X and Y be probability spaces on a finite set S,
the statistical distance SD(X,Y ) between X and Y is defined as SD(X,Y ) :=
1
2Σα∈S |PrX [α]−PrY [α]|, The min-entropy of a random variable X is defined as
H∞(X) = − log2(maxx∈D Pr[X = x]), wherein D is the domain of X .

2.2 Security Definition

Here we give the security definition of Φ-CC-RKA security. The security of a
PKE scheme is defined using the following game between an adversary A and a
challenger.

Setup: Thechallenger runs thekeygenerationalgorithmKeygen(pp)→ (pk, sk),
sends pk to the adversaryA, and keeps the secret key sk to itself.

Phase 1: A adaptively issues queries (φ,C) where φ ∈ Φ, the challenger re-
sponds with Dec(φ(sk), C).

Challenge: A submits two messages (m0,m1) to the challenger. The challenger
picks a random bit b and responds with Encrypt(pk,mb).

Phase 2: A adaptively issues additional queries as in Phase 1, with the restric-
tion that (φ(sk), C) �= (sk, C∗).
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Guess: A outputs a guess b′ of b.

The advantage of A is defined as AdvA,Φ =
∣
∣
∣Pr[b′ = b]− 1

2

∣
∣
∣.

Definition 1 (Φ-CC-RKA Security). A PKE scheme is Φ-CC-RKA secure
if for all PPT adversary A, AdvA,Φ is negligible in λ.

Here our security definition follows the definition given by Bellare et al. [4].
However, in [4] it is required that the public key is completely determined by
the secret key, while in our paper part of the elements in the public key can be
randomly chosen and irrelevant to the secret key.

Symmetric Encryption. A symmetric encryption scheme consists of two poly-
nomial time algorithms: (E ,D). Let KSE be the secret key space. The encryption
algorithm E takes as input a messagem and a secret keyK and outputs a cipher-
text χ, E(K,m) = χ; the decryption algorithm D takes as input the ciphertext
χ and a secret key K and outputs a message m or ⊥,D(K,χ) = m or ⊥. Here
we require both algorithms are deterministic. For correctness we require that
D(K, E(K,m)) = m.
Ciphertext Indistinguishability. Let SE = (E ,D) be a symmetric key encryption
scheme, the advantage of an adversary A in breaking the ciphertext indistin-
guishability (IND-OT) of SE is defined as:

AdvIND−OT
A =

∣
∣
∣
∣
Pr

[

b = b′ :
K∗ ←R KSE ; (m0,m1)← A; b←R {0, 1};
χ∗ ← E(K∗,mb); b

′ ← A(χ∗)

]

− 1

2

∣
∣
∣
∣

We say that SE is one-time secure in the sense of indistinguishability (IND-OT)
if for every PPT A, AdvIND−OT

A is negligible.
Ciphertext Integrity. Informally, ciphertext integrity requires that it is difficult
to create a valid ciphertext corresponding to a random secret key for any PPT
adversaryA, evenA is given an encryption of a chosen message with the same key
before. Let SE = (E ,D) be a symmetric key encryption scheme, the advantage
of an adversaryA in breaking the ciphertext integrity (INT-OT) of SE is defined
as:

AdvINT−OT
A =

∣
∣
∣
∣
Pr

[

χ �= χ∗ ∧ D(K∗, χ) �= ⊥ :
K∗ ←R KSE ;m← A;
χ∗ ← E(K∗,m);χ← A(χ∗)

]∣
∣
∣
∣

We say that SE is one-time secure in the sense of integrity (INT-OT) if for every
PPT A, AdvINT−OT

A is negligible.

Authenticated Encryption. A symmetric encryption scheme SE is secure in the
sense of one-time authenticated encryption (AE-OT) iff it is IND-OT and INT-
OT secure. An AE-OT secure symmetric encryption can be easily constructed
using a one-time symmetric encryption and an existentially unforgeable MAC
[11,6].
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2.3 Primitives

Here we introduce a primitive called 4-wise independent hash family [16] that can
be used as a randomness extractor. A simple construction of 4-wise independent
hash family is shown in [16].

Definition 2 (4-wise Independent Hash Family). Let HS be a family of
hash functions H : X → Y. We say that HS is 4-wise independent if for any
distinct x1, x2, x3, x4 ∈ X , the random variables H(x1), ...,H(x4) are uniform
and independently random, where H ←R HS.
The next two lemmata state that for a 4-wise independent hash function H and
two random variables X, X̃ with Pr[X = X̃] = δ negligible that even related, the
random variable (H,H(X)) and (H,H(X),H(X̃)) is close to uniformly random
as long as the min-entropy of X and X̃ are large enough.

Lemma 1 (Leftover Hash Lemma [14]). Let X ∈ X be a random variable
where H∞(X) ≥ κ. Let HS be a family of pairwise independent hash functions
with domain X and range {0, 1}l. Then for H ←R HS and Ul ←R {0, 1}l,

SD((H,H(X)), (H, Ul)) ≤ 2(l−κ)/2.

Lemma 2 (A Generalization of the Leftover Hash Lemma [16]). Let
(X, X̃) ∈ X × X be two random variables having joint distribution where
H∞(X) ≥ κ,H∞(X̃) ≥ κ and Pr[X = X̃ ] = δ. Let HS be a family of 4-wise in-
dependent hash functions with domain X and range {0, 1}l. Then for H ←R HS
and U2l ←R {0, 1}2l,

SD((H,H(X),H(X̃)), (H, U2l)) ≤
√
1 + δ · 2l−κ/2 + δ.

From the above lemmata we can get the following lemma that will be used in
our security proof. Lemma 3 states that for a 4-wise independent hash function
H and two random variables X, X̃ with Pr[X = X̃] = δ negligible that even
related, the output H(X̃) is close to uniformly random even H(X) is fixed as
long as the min-entropy of X and X̃ are large enough.

Lemma 3. Let δ ≤ 1
2 , l ≤ 6, (X, X̃) ∈ X × X be two random variables having

joint distribution where H∞(X) ≥ κ,H∞(X̃) ≥ κ and Pr[X = X̃] = δ. Let
HS be a family of 4-wise independent hash functions with domain X and range
{0, 1}l. Then for H ←R HS and Ul ←R {0, 1}l,

SD((H,H(X),H(X̃)), (H,H(X), Ul)) ≤ 2l−
κ−1
2 + δ.

Proof. Let Δ be the random variable (H, U2l), we can use the triangle inequality
to get

SD((H,H(X),H(X̃)), (H,H(X), Ul))

≤ SD((H,H(X),H(X̃)), Δ) + SD(Δ, (H,H(X), Ul), (1)
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Since we know that H∞(X) ≥ κ, H∞(X̃) ≥ κ and X �= X̃. By using Lemma
2 we can upper bound the first term of (1) as

SD((H,H(X),H(X̃)), Δ) ≤ √1 + δ · 2 2l−κ
2 + δ ≤

√

3

2
· 2 2l−κ

2 + δ.

Similarly by using Lemma 1 we can upper bound the second term of (1) as

SD(Δ, (H,H(X), Ul) ≤ 2
l−κ
2 ≤ 1

8
· 2 2l−κ

2 .

��

3 Complexity Assumptions

Decisional Diffie-Hellman Assumption (DDH). To formally define our assump-
tion, we let G denote a group generation algorithm, which takes in a security
parameter λ and outputs p and a group description G of order p.

Run G(1λ) to get (p,G), and randomly choose g1, g2 ∈ G, r �= w ∈ Zp. Set
T0 = (gr1 , g

r
2), T1 = (gr1, g

w
2 ). The advantage of A is defined as

AdvDDH
A =

∣
∣
∣Pr[A(g1, g2, T1) = 1]− Pr[A(g1, g2, T0) = 1]

∣
∣
∣.

Definition 3 (DDH). We say that G satisfies the DDH assumption if for all
PPT algorithm A, AdvDDH

A is negligible in λ.

Higher Residuosity Assumption (HR). Next we give the HR assumption as
that in [15]. There are also similar assumptions in literatures [12,17,18]. We let
RSAgen denote a RSA generation algorithm, which takes in a security parame-
ter λ and outputs (P,Q,N, S) such that N = PQ, S|ϕ(N)/4, let GS denote the
unique subgroup of order S of Z∗

N . Generally speaking, HR assumption means
that it is difficult to distinguish a random element in GS from a random element
in JN , where JN = {x ∈ Z

∗
N |( x

N ) = 1}.
To formulate this notion precisely, run RSAgen(1

λ) to get (P,Q,N, S), and
randomly choose g, u0 ∈ GS , u1 ∈ JN . The advantage of A is defined as

AdvHR
A =

∣
∣
∣Pr[A(g, u1) = 1]− Pr[A(g, u0) = 1]

∣
∣
∣.

Definition 4 (HR). We say that G satisfies the HR assumption if for all PPT
algorithm A, AdvHR

A is negligible in λ.

For λ = 80 bits security one may choose l(N) = 1024, l(S) = 256. Then N may
be chosen as follows: P = 2PSPT + 1, Q = QSQT + 1, N = PQ, S = PSQS ,
where QS , QT , PS , PT are primes and l(PS), l(PT ) ≈ 128.
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4 RKA Secure PKE Schemes

4.1 Construction Based on the DDH Assumption

In this section we describe a RKA secure PKE scheme based on the DDH as-
sumption. The structure of our scheme inherits that in [16]. In the appendix we
will show that the original PKE scheme in [16] is not RKA secure if Φ includes a
function of the form φ∗

a(s) = as. By applying a 4-wise independent hash function
to more group elements, our scheme is Φ-RKA secure for Φ is a family of affine
functions.

Run G(1λ) to obtain (p,G), Let SE be an AE-OT secure symmetric encryption
scheme with secret key space {0, 1}l. Let HS be a family of 4-wise independent
hash functions with domain G3 and image {0, 1}l. Public parameters are set as
pp = (p,G).

Keygen(pp) : The key generation algorithm chooses random g1, g2 ∈ G and
H ∈ HS. It picks random x1, x2 ∈ Zp and computes X = gx1

1 gx2
2 . The public

key is set as pk = (g1, g2, X,H) and the secret key is set as sk = (x1, x2).
Enc(pk,m) : The encryption algorithm chooses random r ∈ Zp and computes

the ciphertext C = (C1, C2, C3) as:

C1 = gr1, C2 = gr2, Y = Xr,K = H(C1, C2, Y ), C3 = E(K,m).

Dec(C, sk) : The decryption algorithm computes the message as:

Y = Cx1
1 Cx2

2 ,K = H(C1, C2, Y ),m = D(K,C3).

Correctness can be easily verified for the correctness of the symmetric encryp-
tion scheme and Y = Cx1

1 Cx2
2 = grx1

1 grx2
2 = Xr. In terms of concrete security,

it requires the image {0, 1}l of H to be sufficiently small, i.e. l ≤ 1
4 log2 p. Con-

sequently for a symmetric cipher with l = 80 bits keys we should use groups of
order log2 p ≥ 4l = 320 bits.

Security Proof

Theorem 1. If the DDH assumption holds, SE is an AE-OT secure symmetric
encryption scheme with secret key space {0, 1}l, HS is a family of 4-wise inde-
pendent hash functions with domain G3 and image {0, 1}l, then our PKE scheme
is Φ-CC-RKA secure for the class of affine functions Φ. In particular, for every
advasary A on CC-RKA security of the above scheme, there exist adversaries
B, C,D, E with

AdvCC−RKA
A ≤ AdvDDH

B + q(2l−(κ−1) +AdvDL
C +AdvINT−OT

SE,D ) +AdvIND−OT
SE,E

where κ = log2(|G|).
First let us introduce two lemmata that will be used in our proof.
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Lemma 4. [11] Let S1, S2, F be events defined on some probability space that
the events S1 ∧ ¬F occurs iff S2 ∧ ¬F occurs, then

|Pr[S1]− Pr[S2]| ≤ Pr[F ].

Lemma 5. [11] Let k, n be integers with 1 ≤ k ≤ n, and let K be a finite

field. Consider a probability space with random variables −→α ∈ Kn×1,
−→
β =

(β1, ..., βk)
T ∈ Kk×1,−→γ ∈ Kk×1 and M ∈ Kk×n such that −→α is uniformly

distributed over Kn×1,
−→
β = M−→α +−→γ , and for 1 ≤ i ≤ k, the i-th row of M and−→γ are determined by β1, ..., βi−1.

Then conditioning on any fixed values of β1, ..., βk−1 such that the resulting
matrix M has rank k, the value of βk is uniformly distributed over K in the
resulting conditional probability space.

Proof (of Theorem 1). Suppose that the public key is (X,H) and the secret key
is (x1, x2). The challenge ciphertext is denoted by C∗ = (C∗

1 , C
∗
2 , C

∗
3 ). We also

denote by r∗, Y ∗,K∗ the values corresponding with r, Y,K related to C∗. We
say that a ciphertext C is invalid if C1 = gr11 , C2 = gr22 for some r1 �= r2.

Let log(·) denote logg1(·) and ω = log g2, then

logX = x1 + ωx2 (2)

To prove the security of our scheme, we define a sequence of games that any
PPT adversary can not tell the difference between two adjacent games. Let q
denote the number of decryption queries that the adversary makes during the
whole game, here we denote an affine function as φ(sk) = (φ1(sk), φ2(sk)) =
(a1x1 + b1, a2x2 + b2).

Game0: the real security game.
Game1: the same as Game0 except that the challenge ciphertext is generated

using the secret key. That is

Y ∗ = C∗
1
x1C∗

2
x2 .

Game2: the same as Game1 except that the challenge ciphertext is invalid. That

is (C∗
1 , C

∗
2 ) is replaced with a random pair (g

r∗1
1 , g

r∗2
2 ) with r∗1 �= r∗2 .

Game3: the same as Game2 except that the decryption oracle rejects all queries
(φ,C) that satisfy a1r1 �= a2r2, where C1 = gr11 , C2 = gr22 .

Game4: the same as Game3, except that SE encrypts mb using a random key
K+ instead of K∗.

Let AdviA denote A’s advantage in Gamei for i = 0, 1, ..., 4.
Clearly, Adv0A = Adv1A.

Lemma 6. Suppose that there exists a PPT adversary A such that Adv1A −
Adv2A = ε, then there exists a PPT adversary B with advantage ε in breaking the
DDH assumption.
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Proof. B receives

D = (g1, g2, T := (u1, u2))

and its task is to decide whether D is a DDH tuple. B picks random x1, x2 ∈ Zp

and H ∈ HS. B computes X = gx1
1 gx2

2 and sends (pk = (g1, g2, X,H)) to A.
Whenever A submits (φ,C), B simply runs the decryption oracle with the

secret key φ(sk).
When A submits (m0,m1),B randomly chooses b ←R {0, 1}, it sets C∗

1 =
u1, C

∗
2 = u2, Y

∗ = ux1
1 ux2

2 ,K∗ = H(C∗
1 , C

∗
2 , Y

∗), C∗
3 = E(K∗,mb) and responds

with C∗ = (C∗
1 , C

∗
2 , C

∗
3 ).

When A outputs b′, B outputs 1 if b′ = b and 0 otherwise.
Note that when D is a DDH tuple, then the above game perfectly simulates

Game1; when D is not a DDH tuple, the above game perfectly simulates Game2.
��

Lemma 7. Suppose that there exists a PPT adversary A in Game2 and Game3
such that it can submit a query (C, φ) satisfying (C1, C2) = (C∗

1 , C
∗
2 ), φ(sk) �=

sk, Y = Y ∗ with probability δ, then there exists a PPT adversary B with advan-
tage δ in breaking the DL assumption.

Proof. B receives

D = (g, h)

and its task is to compute γ ∈ Zp such that h = gγ . B chooses random s, t ∈ Zp

with the constraint h �= gt and computes g1 = gs, g2 = gt1, so (g1, g2, g, h) is not
a DDH tuple. Then it picks x1, x2 ∈ Zp, H ∈ HS. B computes X = gx1

1 gx2
2 and

sends (pk = (g1, g2, X,H)) to A.
Whenever A submits (φ,C),B simply runs the decryption oracle with the

secret key φ(sk).
When A submits (m0,m1),B randomly chooses b ←R {0, 1}, γ ∈ Zp, it sets

C∗
1 = g, C∗

2 = h, Y ∗ = C∗
1
x1C∗

2
x2 ,K∗ = H(C∗

1 , C
∗
2 , Y

∗), C∗
3 = E(K∗,mb) and

responds with C∗ = (C∗
1 , C

∗
2 , C

∗
3 ).

Whenever A submits (φ,C) satisfying (C1, C2) = (C∗
1 , C

∗
2 ), φ(sk) �= sk, Y =

Y ∗, then we have Cx1
1 Cx2

2 = C
φ1(sk)
1 C

φ2(sk)
2 , and h = gθ, where θ = φ1(sk)−x1

x2−φ2(sk)
,

thus solve the DL problem. ��

Lemma 8. Assume that the symmetric key encryption scheme is AE-OT se-
cure, HS is a family of 4-wise independent hash functions, the DDH assumption
holds, then Adv2A −Adv3A is negligible.

Proof.

log Y ∗ = r∗1x1 + ωr∗2x2 (3)

Let E be the event that a query (C, φ) is rejected in Game3 but not rejected
in Game2. Then we have |Adv2A −Adv3A| ≤ Pr[E].

Case 1: (C1, C2) = (C∗
1 , C

∗
2 ).
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– φ(sk) = sk. We have
(

logX
log Y ∗

)

=

(
1 ω
r∗1 ωr∗2

)

︸ ︷︷ ︸

=:M∗

·
(
x1

x2

)

Since det(M∗) = ω(r∗1 − r∗2) �= 0, as stated by Lemma 5, the distribution
of Y ∗ is randomly distributed in G, so H∞(Y ∗) ≥ κ. From the leftover
hash lemma, we know that K∗ is randomly distributed. From the INT-
OT property of the SE scheme, we can see that it is difficult to generate
a C3 �= C∗

3 s.t. D(K∗, C3) �= ⊥.
– φ(sk) �= sk. Let Γ ∗ be the random variable (C∗

1 , C
∗
2 , Y

∗), Γ be the ran-
dom variable (C1, C2, Y ). From Lemma 7 it can be seen that Pr[Y =
Y ∗] = δ, hence Pr[Γ = Γ ∗] = δ, where δ is negligible assuming DL
problem is hard to solve.

(
logX
log Y

)

=

(
1 ω
a1r

∗
1 ωa2r

∗
2

)

︸ ︷︷ ︸

:=M1

·
(
x1

x2

)

+

(
0

b1r
∗
1 + ωb2r

∗
2

)

As analyzed above we have H∞(Γ ) ≥ κ. From Lemma 3 we know:

SD((pk,H,H(Γ ∗),H(Γ )), (pk,H,H(Γ ∗), Ul)) ≤ 2l−(κ−1)/2 + δ.

Here Ul is uniformly random chosen from {0, 1}l. So the distribution of
K looks random to the adversary A, then from the INT-OT property of
the SE scheme, with overwhelming probability Dec(sk, C) = ⊥.

Case 2: (C1, C2) �= (C∗
1 , C

∗
2 ), and a1r1 �= a2r2. In the following we let Γ ∗ be the

random variable (C∗
1 , C

∗
2 , Y

∗), Γ be the random variable (C1, C2, Y ), then
Γ �= Γ ∗. Here we have

(

logX
log Y

)

=

(

1 ω
a1r1 ωa2r2

)

︸ ︷︷ ︸

:=M2

·
(

x1

x2

)

+

(

0
b1r1 + ωb2r2

)

Since det(M2) �= 0, we have H∞(Y ) ≥ κ. Similar as Case 1, we have
H∞(Γ ∗) ≥ κ, H∞(Γ ) ≥ κ and Γ ∗ �= Γ . From Lemma 3 we know:

SD((pk,H,H(Γ ∗),H(Γ )), (pk,H,H(Γ ∗), Ul)) ≤ 2l−(κ−1)/2.

Here Ul is uniformly random chosen from {0, 1}l. So the distribution of K
looks random to the adversary A, then from the INT-OT property of the SE
scheme, with overwhelming probability Dec(sk, C) = ⊥.

From the above analysis, we can see that it is difficult to distinguish Game2
and Game3 for any PPT adversary. ��
Lemma 9. Assume that HS is a family of 4-wise independent hash functions,
then Adv3A −Adv4A is negligible.
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Proof. Since in both Game3 and Game4, all decryption queries are rejected
except those ((C1, C2, C3), φ) satisfying Y = Ca1x1+b1

1 Ca2x2+b2
2 with a1r1 = a2r2,

so for any information-theoretical adversaryA, all it can get from the decryption
queries is :

log Y − θ = arx1 + ωarx2. (4)

Here θ = b1r1+ωb2r2 and ar = a1r1 = a2r2. Since eq. (4) is a linearly correlation
of eq. (1). Conditioned on the the decryption answers, the distribution of Y ∗ is
still randomly distributed in G, then Game3 and Game4 are indistinguishable.

��

Lemma 10. Suppose that there exists a PPT adversary A such that Adv4A = ε,
then there exists a PPT adversary B with the same advantage in breaking the
IND-OT of the SE scheme.

Proof. B chooses random x1, x2 ∈ Zp and H ∈ HS. B computes X = gx1
1 gx2

2 and
sends (pp = (G, p, g1, g2), pk = (X,H)) to A.

Whenever A submits (φ,C),B simply runs the decryption oracle using the
secret key φ(sk).

When A submits (m0,m1),B sends (m0,m1) to its challenger and receives

C∗
3 . Then B chooses random r∗1 �= r∗2 and sets C∗

1 = g
r∗1
1 , C∗

2 = g
r∗2
2 and responds

with C∗ = (C∗
1 , C

∗
2 , C

∗
3 ).

When A outputs b′, B outputs b′. ��

4.2 Construction Based on the HR Assumption

In this section we prove that the scheme proposed in [15] is Φ-CC-RKA secure for
the class of affine functions Φ. This scheme is contained in several standard bod-
ies, e.g., in IEEE P1363a, SECG and ISO 18033-2 as “Diffie-Hellman integrated
encryption scheme” (DHIES) [2].

In the following we use |u| to denote the absolute value of u, where u is
represented as a signed integer in the set {−(N−1)/2, ..., (N−1)/2}. LetQR+

N :=
{|x| : x ∈ QRN} and G+

S := {|x| : x ∈ GS}.
Let SE be an AE-OT secure symmetric encryption scheme with secret key

space {0, 1}l. Let HS be a family of 4-wise independent hash functions with
domain (QR+

N )2 and range {0, 1}l. In the following we let gx denote |gx mod N |.

Keygen(pp) : The key generation algorithm runs RSAgen(1
λ) to obtain

(P,Q,N, S) and chooses random g ∈ G+
S , it picks random x ∈ [N/4] and

H ∈ HS, it computes X = gx. The public key is set as pk = (N, g,X,H)
and the secret key is set as sk = x.

Enc(pk,m) : The encryption algorithm chooses random r ∈ [N/4] and computes
the ciphertext C = (C1, C2) as:

C1 = gr, Y = Xr,K = H(C1, Y ), C2 = E(K,m).
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Dec(C, sk) : The decryption algorithm first checks whether C1 ∈ QR+
N and

rejects if not. Then it computes the message as:

Y = Cx
1 ,K = H(C1, Y ),m = D(K,C3).

Correctness can be easily verified from the correctness of the symmetric en-
cryption scheme and Y = Cx

1 = grx = Xr.
In the security proof we will use the following assumption HR′ directly.
Run RSAgen(1

λ) to get (P,Q,N, S), and randomly choose g, u0 ∈ G+
S , u1 ∈

QR+
N . The advantage of A is defined as

AdvHR′
A =

∣
∣
∣Pr[A(g, u1) = 1]− Pr[A(g, u0) = 1]

∣
∣
∣.

Definition 5 (HR′). We say that G satisfies the HR′ assumption if for all PPT
algorithm A, AdvHR′

A is negligible in λ.

Clearly, the HR′ assumption is implied by the HR assumption.

Theorem 2. If the HR′ assumption holds, SE is an AE-OT secure symmetric
encryption scheme with secret key space {0, 1}l, HS is a family of 4-wise inde-
pendent hash functions with domain G3 and image {0, 1}l, then our PKE scheme
is Φ-CC-RKA secure for the class of affine functions Φ. In particular, for every
advasary A on CC-RKA security of the above scheme, there exist adversaries
B, C,D with

AdvCC−RKA
A ≤ (q + 1)AdvHR

B + q(2l−(κ−1) +AdvINT−OT
SE,C ) +AdvIND−OT

SE,D .

where κ = log2(�N/4S�).
The proof methodology of Theorem 2 is similar to Theorem 1 and we put the
concrete proof in Appendix B.

5 Conclusion

In this paper, we prove the security against related key attacks of two public key
encryption schemes in the standard model. The first scheme is a variation of the
KYPS09. While KYPS09 has been proved CCA secure under the DDH assump-
tion, we show in the appendix that it is not secure against related key attacks
when the key related function includes affine functions. We make a modification
on KYPS09 and prove that the resulting scheme is Φ-CC-RKA secure for Φ =

Φaffine. We also prove the scheme in [15] is Φ-CC-RKA secure for Φ = Φaffine

based on the HR assumption. The security relies heavily on a randomness extrac-
tor called 4-wise independent hash functions and we use game sequences in the
proof. In the future we will study the CC-RKA security property for universal-1
hash proof systems.
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Appendix A: A RKA attack on KPSY09

The PKE Scheme by KPSY09
The PKE scheme of [16] is given as follows:

Keygen(1λ) : The key generation algorithm chooses random x1, x2 ∈ Zp and
H ∈ HS, it computes X = gx1

1 gx2
2 . The public key is set as pk = (X,H) and

the secret key is set as sk = (x1, x2)
Enc(pk,m) : The encryption algorithm chooses random r ∈ Zp and computes

the ciphertext C = (C1, C2, C3) as:

C1 = gr1, C2 = gr2, Y = Xr,K = H(Y ), C3 = E(K,m).

Dec(C, sk) : The decryption algorithm computes the message as:

Y = Cx1
1 Cx2

2 ,K = H(Y ),m = D(K,C3).

The above scheme is not RKA secure if Φ includes a function φ∗
a1,a2

(x1, x2) =
(a1x1, a2x2). Once the adversary sees the challenge ciphertext C∗

1 , C
∗
2 , C

∗
3 , it can

create a query as (C = (C∗
1

1
a1 , C∗

2

1
a2 , C∗

3 ), φ
∗), and it can get the decryption of

the challenge ciphertext since Y ∗ = C∗
1
x1C∗

2
x2 .

Appendix B: Proof of Theorem 2

Proof. Suppose that the public key is (N, g,X,H) and the secret key is x. The
challenge ciphertext is denoted by C∗ = (C∗

1 , C
∗
2 ). We also denote by r∗, Y ∗,K∗

the values corresponding with r, Y,K related to C∗. We say that a ciphertext C
is invalid if C1 ∈ QR+

N\G+
S . Let log(·) denote logg(·). Then we have

x = logX + t · S, where t ∈ {0, 1, ..., �N/4S�} (5)

To prove the security of our scheme, we define a sequence of games that any
PPT adversary can not tell the difference between two adjacent games. Let q
denote the number of decryption queries that the adversary makes during the
whole game, here we write an affine function as φ(sk) = ax+ b, a, b ∈ [N/4].
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Game0: the real security game.
Game1: the same as Game0 except that the challenge ciphertext is generated

using the secret key. That is

Y ∗ = C∗
1
x.

Game2: the same as Game1 except that the challenge ciphertext is invalid. That
is C∗

1 ∈ QR+
N\G+

S .
Game3: the same as Game2 except that the decryption oracle rejects all invalid

queries.
Game4: the same as Game3, except that SE encrypts mb using a random key

K+ instead of K∗.

Let AdviA denote A’s advantage in Gamei for i = 0, 1, ..., 4.
Clearly, Adv0A = Adv1A.

Lemma 11. Suppose that there exists a PPT adversary A such that Adv1A −
Adv2A = ε, then there exists a PPT adversary B with advantage ε in breaking the
HR′ assumption.

Proof. B receives
D = (g, T )

and its task is to decide whether T ∈ G+
S . B picks random x ∈ [N/4] and

H ∈ HS. B computes X = gx and sends pk = (N, g,X,H)) to A.
Whenever A submits (φ,C), B simply runs the decryption oracle with the

secret key φ(sk).
When A submits (m0,m1),B randomly chooses b ←R {0, 1}, it sets C∗

1 =
T, Y ∗ = T x,K∗ = H(C∗

1 , Y
∗), C∗

2 = E(K∗,mb) and respondswithC
∗ = (C∗

1 , C
∗
2 ).

When A outputs b′, B outputs 1 if b′ = b and 0 otherwise.
Note that when T ∈ G+

S , then the above game perfectly simulates Game1;
when T /∈ G+

S , the above game perfectly simulates Game2. ��
Lemma 12. Suppose that there exists a PPT adversary A in Game2 and Game3
such that it can submit a query (C, φ) satisfying C1 = C∗

1 , φ(sk) �= sk, Y = Y ∗

with probability δ, then there exists a PPT adversary B with advantage δ in
breaking the HR′ assumption.

Proof. B receives

D = (g, u)

and its task is to decide whether u ∈ G+
S . Then B picks random x ∈ [N/4],

H ∈ HS. B computes X = gx and sends pk = (N, g,X,H) to A.
Whenever A submits (φ,C),B simply runs the decryption oracle with the

secret key φ(sk).
When A submits (m0,m1),B randomly chooses b ←R {0, 1}, t ∈ QR+

N , then
with overwhelming probabilitywe have ut /∈ G+

S . It setsC
∗
1 = ut, Y ∗ = C∗

1
x,K∗ =

H(C∗
1 , Y

∗), C∗
2 = E(K∗,mb) and responds with C∗ = (C∗

1 , C
∗
2 ).
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Whenever A submits (φ,C) satisfying C1 = C∗
1 , φ(sk) �= sk, Y = Y ∗, then we

have C1 = C
φ(x)
x

1 . Since C∗
1 ∈ QR+

N\G+
S , with overwhelming probability we have

ϕ(N)
4 |ord(C∗

1 ), so
4φ(x)

x is a multiple of ϕ(N), then we can solve the factoring
problem according to the method in [[9],Fact 1.]. ��

Lemma 13. Assume that the symmetric encryption scheme is AE-OT secure,
HS is a family of 4-wise independent hash functions, the HR′ assumption holds,
then Adv2A −Adv3A is negligible.

Proof. Let F be the event that a query (C, φ) is rejected in Game3 but not
rejected in Game2. Then we have |Adv2A − Adv3A| ≤ Pr[F ]. We consider the
following cases:

Case 1: C1 = C∗
1 .

– φ(sk) = sk. From eq. (5) we can see that t is information-theoretically
hidden for any PPT adversary A, so H∞(Y ∗) ≥ κ. As stated by the left-
over hash lemma, K∗ is randomly distributed. As a result, it is difficult
to generate a C2 �= C∗

2 s.t. D(K∗, C2) �= ⊥ according to the INT-OT
property of the SE scheme.

– φ(sk) �= sk. Let Γ ∗ be the random variable (C∗
1 , Y

∗), Γ be the random
variable (C1, Y ). According to Lemma 12 we know that δ = Pr[Γ =
Γ ∗] = Pr[Y = Y ∗] is negligible. From the choice of sk we know that
H∞(Y ) ≥ κ, so H∞(Γ ∗) ≥ κ, H∞(Γ ) ≥ κ. From Lemma 3 we know:

SD((pk,H,H(Γ ∗),H(Γ )), (pk,H,H(Γ ∗), Ul)) ≤ 2l−(κ−1)/2 + δ.

Here Ul is uniformly random chosen from {0, 1}l. So the distribution of
K looks random to the adversary A, then from the INT-OT property of
the SE scheme, with overwhelming probability Dec(sk, C) = ⊥.

Case 2: C1 �= C∗
1 , and C1 /∈ G+

S . Let Γ
∗ be the random variable (C∗

1 , Y
∗), Γ be

the random variable (C1, Y ), then we have Γ ∗ �= Γ . From the distribution
of sk, we have H∞(Γ ∗) ≥ κ, H∞(Γ ) ≥ κ. Then according to Lemma 3 we
have:

SD((pk,H,H(Γ ∗),H(Γ )), (pk,H,H(Γ ∗), Ul)) ≤ 2l−(κ−1)/2.

Therefore, the distribution of K looks random to the adversary A, then
from the INT-OT property of the SE scheme, with overwhelming probability
Dec(sk, C) = ⊥.

From the above analysis, we can see that it is difficult to distinguish Game2
and Game3 for any PPT adversary. ��

Lemma 14. Assume that HS is a family of 4-wise independent hash functions,
then Adv3A −Adv4A is negligible.
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Proof. Since in both Game3 and Game4, all queries (C, φ) that are not rejected
satisfy C1 ∈ G+

S , so for any information-theoretical adversary A, all it can get
from the decryption queries is :

log Y = arx + b mod S

= ar logX + b mod S

As a result, t is information-theoretically hidden, H∞(Y ∗) ≥ κ, then according
to the leftover hash lemma we can see that K∗ is randomly distributed, Game3
and Game4 are indistinguishable.

Lemma 15. Suppose that there exists a PPT adversary A such that Adv4A = ε,
then there exists a PPT adversary B with the same advantage in breaking the
IND-OT property of the SE scheme.

Proof. B runs RSAgen(1
λ) to obtain (P,Q,N, S) and choose random g ∈ G+

S .
B computes X = gx and sends pk = (N, g,X,H) to A.

Whenever A submits (φ,C),B simply runs the decryption oracle with the
secret key φ(sk).

When A submits (m0,m1),B sends (m0,m1) to its challenger and receives
C∗

2 . Then B chooses random C∗
1 ∈ QR+

N\G+
S and responds with C∗ = (C∗

1 , C
∗
2 ).

When A outputs b′, B outputs b′. ��
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