
How to Remove the Exponent GCD in HK09�

Xianhui Lu, Bao Li, and Yamin Liu

Institute of Information Engineering of Chinese Academy of Sciences, Beijing,
100093, China

{xhlu,ymliu,lb}@is.ac.cn

Abstract. To improve the decapsulation efficiency of HK09 (proposed
by Hofheinz and Kiltz in Eurocrypt 2009), we propose a new skill to re-
move the exponent GCD operation. In the proposed scheme, the decapsu-
lation efficiency is improved by 38.9% (instantiated over the semi-smooth
subgroup) and the efficiency of encapsulation is dropped by 5.7%.

Keywords: public key encryption, chosen ciphertext security, factoring.

1 Introduction

Based on the Blum-Goldwasser encryption (BG84) [2], Hofheinz and Kiltz pro-
posed the first practical IND-CCA (Chosen Ciphertext Attack) secure public
key encryption scheme from the factoring assumption [7](HK09) in the standard
model. The BG84 scheme is IND-CPA (Chosen Plaintext Attack) secure under
the factoring assumption. To achieve IND-CCA security, Hofheinz and Kiltz used
the famous All-But-One skill [6,3,4,8], which was widely used in the construction
of IND-CCA secure encryption schemes.

The skill of HK09 was later generalized to the extractable hash proof system
by Wee in [13]. In [13], Wee also proposed a conceptually simpler variant of
HK09 which is more modular but less efficient (there is a linear blow-up in both
ciphertext overhead and public key size over HK09).

The efficiency of HK09 was later improved by Mei [11] and Lu [9,10]. In [11],
the authors instantiated HK09 over the semi-smooth subgroup and also proposed
an ElGamal style variant of HK09. Briefly, semi-smooth subgroup consider the
modulus of N = PQ = (2p′p+1)(2q′q+1), where (p′, q′) are prime numbers large
enough but much smaller than (P,Q), and (p, q) are product of distinct prime
numbers smaller than a bound. The unique subgroup of QRN (the quadratic
residuosity group) with order p′q′ is called semi-smooth subgroup. Since p′q′ is
much smaller than the order of QRN , schemes instantiated over semi-smooth
subgroup are more efficient. In [9] the authors proposed a tradeoff between the

� Supported by the National Basic Research Program of China (973
project)(No.2013CB338002), the National Nature Science Foundation of China
(No.61070171, No.61272534), the Strategic Priority Research Program of Chinese
Academy of Sciences under Grant XDA06010702, IIE’s Cryptography Research
Project (No.Y3Z0024103, Y3Z0027103).

W. Susilo and R. Reyhanitabar (Eds.): ProvSec 2013, LNCS 8209, pp. 239–248, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

240 X. Lu, B. Li, and Y. Liu

efficiency of encapsulation and decapsulation of HK09. The efficiency of decap-
sulation was improved by 38.9% and the efficiency of encapsulation was dropped
by 11.4% (instantiated over the semi-smooth subgroup). In [10] the authors im-
proved the decapsulation efficiency at the price of a slightly increased key size.
The decapsulation efficiency is improved by 32% (instantiated over the quadratic
residuosity group) or 57.6% (instantiated over the semi-smooth subgroup) and
the encapsulation efficiency remains the same.

1.1 Motivation

The ciphertext of HK09 is (R = gμ2
lK+lH , S = |gμtXμ|), the encapsulated key

is K = BBSr(g
μ2lH), where lK is the length of K, lH is the length of the hash

value t = H(R), BBSr() is a Blum-Blum-Shub pseudorandom generator [1]. Since
the exponent inversion can not be computed directly for hidden order group,

the decapsulation algorithm computes gμ2
lH

by using Shamir’s GCD (greatest
common divisor) in the exponent algorithm [12].

One of the skills to improve the efficiency of HK09 is to remove the exponent
GCD operation in the decapsulation. In [9] the authors derive the encapsulated

key from gμt2
lH and compute K = BBSr((S/R

ρ)
2lH

) directly. In [10] the authors
remove the computation of exponent GCD by hiding gμ instead of gμt into S.

The above skills to remove the exponent GCD operation also have some draw-
backs. The skill used in [9] causes a loose security reduction and the skill used
in [10] increases the size of the key.

An interesting question is, how can we remove the exponent GCD operation
while maintain the key size and the security reduction complexity?

1.2 Our Contribution

We propose a new method to remove the exponent GCD operation in HK09. The
decapsulation efficiency is improved by 38.9% (instantiated over the semi-smooth
subgroup) and the efficiency of encapsulation is dropped by 5.7%.

Our main idea is to directly embed gμ into S. Concretely, the ciphertext

is (R = gμ2
lK , S = |gμXμt|), the encapsulated key is K = BBSN (gμ), where

g ∈ QRN , X = gx2
lK , x ∈ [(N−1)/4] is the private key. Thus, the decapsulation

computes gμ = S/Rxt directly.
One of the main difficulties in the security proof is the construction of the

challenge ciphertext. According the All-But-One skill, the simulator needs to set

X = gx2
lK g−1/t∗ . Unfortunately, the simulator can not compute 1/t∗ since he

does not know the factoring of N . Our solution is to choose h ∈ QRN and set

g = ht
∗
. Thus the simulator can set X = gx2

lK h−1.
The other difficulty in the security reduction is the simulation of the decap-

sulation operation. When the adversary submits a ciphertext (R = gμ2
lK , S =

|gμXμt|), the simulator can compute (S/Rxt)t
∗
= gμ(t

∗−t) and then get gμ2
c

,
where 2c = gcd(2lK , (t∗ − t)). If c ≥ 1 , the simulator can not compute gμ. To

How to Remove the Exponent GCD in HK09 241

solve this problem we use the same skill as in [7]. Briefly, the simulator sets

R = gμ2
lK+lH

and computes K = BBSN (gμ2
lH
).

Compared with the scheme in [9], the encapsulation of our new scheme is more
efficient and the efficiency of decapsulation remains the same. More importantly,
the security reduction of our new scheme is tighter. Compared with the scheme
in [10], their scheme is more efficient, while the key of our new scheme is shorter.

We remark that our new variant can be instantiated over the semi-smooth
subgroup using the technique in [11]. The resulting scheme is more efficient than
that over the QRN group.

1.3 Outline

In section 2 we review the definition of key encapsulation mechanism and target
collision resistant hash function. In section 3 we propose our new variant of
HK09. Finally we give the conclusion in section 4.

2 Definitions

In describing probabilistic processes, x
R← X denotes that x is sampled according

to the distribution X. If S is a finite set, s
R← S denotes that s is sampled from the

uniform distribution on S. If A is a probabilistic algorithm and x an input, then

A(x) denotes the output distribution of A on input x. Thus, we write y
R← A(x)

to denote of running algorithm A on input x and assigning the output to the
variable y.

2.1 Key Encapsulation Mechanism

A key encapsulation mechanism consists of the following algorithms:

– KEM.KeyGen(1k): A probabilistic polynomial-time key generation algo-
rithm takes as input a security parameter (1k) and outputs a public key
PK and a secret key SK. We write (PK, SK)← KEM.KeyGen(1k)

– KEM.Enc(PK): A probabilistic polynomial-time encapsulation algorithm
takes as input the public key PK, and outputs a pair (K,ψ), where
K ∈ KD(KD is the key space) is a key and ψ is a ciphertext. We write
(K,ψ)← KEM.Enc(PK)

– KEM.Dec(SK, ψ): A decapsulation algorithm takes as input a ciphertext ψ
and the secret key SK. It returns a key K. We write K ← KEM.Dec(SK, ψ).

We require that for all (PK,SK) output by KEM.KeyGen(1k), all (K,ψ) ∈
[KEM.Enc(PK)], we have KEM.Dec(SK, ψ)=K.

Now we review the IND-CCA (Indistinguishability against adaptive chosen
ciphertext attack) security of KEM. Note that we use the definition in [8] which
is simpler than the original definition in [5].

242 X. Lu, B. Li, and Y. Liu

Definition 1. A KEM scheme is secure against adaptive chosen ciphertext at-
tacks if the advantage of any adversary in the following game is negligible in the
security parameter k.

1. The adversary queries a key generation oracle. The key generation oracle
computes (PK, SK)← KEM.KeyGen(1k) and responds with PK.

2. The adversary queries an encapsulation oracle. The encapsulation oracle
computes:

b
R← {0, 1}, (K1, ψ

∗)← KEM.Enc(PK),K0
R← KD,

and responds with (Kb, ψ
∗).

3. The adversary makes a sequence of calls to the decapsulation oracle. For each
query the adversary submits a ciphertext ψ, and the decapsulation oracle
responds with KEM.Dec(SK, ψ). The only restriction is that the adversary
can not request the decapsulation of ψ∗.

4. Finally, the adversary outputs a guess b′.

The adversary’s advantage in the above game is AdvccaA (k) = |Pr[b′ = 1|b =
1] − Pr[b′ = 1|b = 0]|. If a KEM is secure against adaptive chosen ciphertext
attacks defined in the above game we say it is IND-CCA secure.

2.2 Target Collision Resistant Hash Function

Now we review the definition of target collision resistant (TCR) hash function.
We say that a function H : X → Y is a TCR hash function, if given a random
preimage x ∈ X , it is hard to find x′ �= x with H(x′) = H(x). Concretely, the
advantage of an adversary A is defined as:

AdvtcrA (k) = Pr[x
R← X, x′ ← A(x) : x �= x′ ∧ H(x) = H(x′)].

We say H is a TCR hash function if AdvtcrA (k) is negligible.

3 New Variant of HK09

Our new variant of HK09 is described as follows.

– KeyGen: The key generation algorithm chooses uniformly at random a Blum
integer N = PQ = (2p+1)(2q+1), where P,Q, p, q are prime numbers, then
computes:

g
R← QRN , x

R← [(N − 1)/4], X ← gx2
lK+lH

,

pk← (N, g,X), sk ← x,

where H : QRN → {0, 1}lH is a TCR hash function, lH is the bit length of
the output value of H, lK is the bit length of the encapsulated key K, .

How to Remove the Exponent GCD in HK09 243

– Encapsulation: Given pk, the encapsulation algorithm computes:

μ
R← [(N − 1)/4], R← gμ2

lK+lH
, t← H(R), S ← ∣

∣
(

gXt
)μ∣
∣ ,

K ← BBSN (gμ2
lH
),

where BBSN (α) = LSB(α), · · · ,LSB(α2lK−1

), LSB(α) denotes the least sig-
nificant bit of α.

– Decapsulation: Given a ciphertext (R,S) and sk, the decapsulation algo-
rithm verifies R ∈ Z∗

N , S ∈ Z∗
N ∩ [(N − 1)/2], then computes:

t← H(R), ρ← xt,

if

(
S

Rρ

)2lK+lH

= R then computes K ← BBSN

(

S2lH

Rρ2lH

)

,

else returns the rejection symbol ⊥ .
The correctness of the scheme above can be verified as follows:

(

S2lH

Rρ2lH

)

=

(

|(gXt)μ|2lH
(gμ2

lK+lH)xt2
lH

)

=

(

|(g(gx2lK+lH)t)μ|2lH
(gμ2

lK+lH)xt2
lH

)

= gμ2
lH
.

We remark that, similar to [10], if pq is added to the private key, the efficiency
of decapsulation can be improved by computing ρ = xt mod pq. It is clear that
our new variant above can also be instantiated over semi-smooth subgroup using
the technique in [11]. In this case, x is selected from 2lp′+lq′+λ, where lp′ is the
length of p′, lq′ is the length of q′, λ is a parameter for security level. If p′q′ is
added to the private key, the efficiency of decapsulation can be further improved
by selecting x from [p′q′] instead of 2lp′+lq′+λ.

3.1 Security Proof

Theorem 1. If factoring N is hard and H is a TCR hash function, then the
new variant is IND-CCA secure.

The proof is similar to that of HK09, in which the reduction is divided into
two phases. First, the BBS distinguisher is reduced to the factoring assumption.
Then, the IND-CCA security of the scheme is reduced to the BBS distinguisher.
The experiment for the BBS distinguish problem is defined as:

AdvBBS
A = |Pr[A(N, z,BBSN (u)) = 1]− Pr[A(N, z, U) = 1]|,

where N is a Blum integer (N = PQ,P = 2p + 1, Q = 2q + 1, p and q are

prime numbers), u ∈ QRN , z = u2
lK , U is a random bit string of length lK .

Given Theorem 2 in [7], it is clear that we only need to prove the following
theorem.

244 X. Lu, B. Li, and Y. Liu

Theorem 2. If it is hard to distinguish (N, z,BBSN (u)) from (N, z, U) and H
is a TCR hash function, then the new variant is IND-CCA secure.

Proof. Suppose that an adversary A can break the IND-CCA security of the
new variant. To prove the theorem, we construct an adversary B to distinguish
(N, z,BBSN (u)) from (N, z, U). The construction of B is described as follows.

Setup: On receiving (N, z, V), where V = U or V = BBSN (u), the adversary
B computes:

t∗ ← H(z), h
R← QRN , g ← ht

∗
, x

R← [(N − 1)/4],

X ← gx2
lK+lH

h−1, pk ← (N, g,X).

The adversary B sends pk to adversary A.
Challenge: The adversary B constructs the challenge ciphertext as follows.

R∗ ← z, S∗ ←
∣
∣
∣R∗xt∗

∣
∣
∣ ,K∗ ← V.

Let R∗ = gμ
∗2lK+lH , the correctness of the challenge ciphertext can be verified

as follow:

S∗ =
∣
∣R∗xt∗ ∣∣

=
∣
∣
∣gμ

∗2lK+lH (xt∗)
∣
∣
∣

=
∣
∣
∣gμ

∗
gμ

∗2lK+lHxt∗g−μ∗
∣
∣
∣

=
∣
∣
∣gμ

∗
(gx2

lK+lH h−1)μ
∗t∗
∣
∣
∣

=
∣
∣gμ

∗
Xμ∗t∗

∣
∣

=
∣
∣(gXt∗)μ

∗ ∣
∣ .

(1)

Decapsulation: On receiving the decapsulation query (R,S), the adversary B
verifies R ∈ Z∗

N , S ∈ Z∗
N ∩ [(N − 1)/2], then computes:

t← H(R).

Then the adversary B considers three cases:

Case 1: t �= t∗. In this case, the adversary B acts as:

if

(
S

Rxt

)t∗2lK+lH

= R(t∗−t) computes:

2c = gcd(t∗ − t, 2lK+lH) = a(t∗ − t) + b2lK+lH ,

returns K ← BBSN

(((

SR−xt
)t∗a

Rb
)2lH−c)

,

else returns the rejection symbol ⊥ .

How to Remove the Exponent GCD in HK09 245

Since t �= t∗ we have 0 < c < lH . Let R = gμ2
lK+lH , the correctness of the

verification equation can be verified as follows:

(
S

Rxt

)t∗2lK+lH

=
(

(gXt)µ

gµxt2lK+lH

)t∗2lK+lH

=

(

(ggxt2lK+lH
h−t)µ

gµxt2lK+lH

)t∗2lK+lH

= ((gh−t)μ)
t∗2lK+lH

=
(

gt
∗
g−t
)μ2lK+lH

= g(t
∗−t)μ2lK+lH

= R(t∗−t).

(2)

The correctness of K can be verified as follows:

K = BBSN

((

(SR−xt)
t∗a

Rb
)2lH−c)

= BBSN

(((
(gXt)µ

gµxt2lK+lH

)t∗a
Rb

)2lH−c)

= BBSN

⎛

⎝

((

(ggxt2lK+lH
h−t)µ

gµxt2lK+lH

)t∗a

Rb

)2lH−c⎞

⎠

= BBSN

((

((gh−t)μ)
t∗a

Rb
)2lH−c)

= BBSN

((

gμ(t
∗−t)agμ2

lK+lH b
)2lH−c)

= BBSN

((

gμ(a(t
∗−t)+b2lK+lH)

)2lH−c)

= BBSN

(
(

gμ2
c)2lH−c

)

= BBSN

(

gμ2
lH
)

.

(3)

Case 2: t = t∗, R �= R∗. Denote this case as an event badtcr. Since H is a TCR
hash function, we have Pr[badtcr] ≤ AdvtcrC .

Case 3: t = t∗, R = R∗, S �= S∗. In this case, if S2 �= R2xt return the rejection
symbol ⊥. If S2 = R2xt, we have |S| = S �= S∗ = |S∗| and S2 = R2xt = R∗2xt∗ =
S∗2. Then, S �= ±S∗ and S2 − S∗2 = (S + S∗)(S − S∗) = 0. Thus B can factor
N directly by computing gcd(N,S + S∗) or gcd(N,S − S∗).

Guess: On receiving b′ from adversary A, the adversary B outputs b′.
This finishes the construction of the adversary B. We claim that the distribu-

tion of simulated public key and the challenge ciphertext are almost identical in
the simulation above and the IND-CCA game.

Lemma 1. There exists an event badkey such that, conditioned on ¬badkey the
public key and the challenge ciphertext are identically distributed in simulation
and the IND-CCA game. Concretely,

246 X. Lu, B. Li, and Y. Liu

Pr[badkey] ≤ 5

2k−1
,

where k is the parameter of security level.

Since the proof of the lemma above is very similar to that of lemma 1 in [7], we
omit the detail.

It is clear that, unless badtcr or badkey occurs, B perfectly simulates the real
IND-CCA game. To be concrete:

AdvBBS
B = AdvccaA − Pr[badtcr]− Pr[badkey]
≥ AdvccaA −AdvtcrC − 5

2k−1 .
(4)

This completes the proof of theorem 2. ��

3.2 Efficiency

In this section, we analyze the efficiency of our new variant and compare it
with the previous schemes in [7,11,9,10]. Note that, all of these schemes can be
instantiated over the QRN group or the semi-smooth subgroup. For the sake of
clarity, these two cases are discussed respectively.

The Case of QRN Group. The efficiency of schemes in [7,11,9,10] and our
variant is listed in table 1, where HK09 is the scheme in [7], E-HK is the ElGamal
style variant of HK09 in [11], LLML2011 is the variant of HK09 in [9], LLML2012
is the variant of HK09 in [10] and NEW is the proposed variant. The parameters
are the same as those in [7,11,9,10], lN = 1024, lK = lH = 80.

Table 1. Schemes instantiated over the QRN group

Encapsulate(mul) Decapsulate(mul) SK (bits) PK (bits)

HK09 3272(3lN + lK + 1.5lH) 2376(1.5lN + 4lK + 6.5lH) lN 2lN
E-HK 4808(4.5lN + lK + 1.5lH) 2043(1.5 × 1.2lN + 2.5lH) 2lN 3lN
LLML2011 3432(3lN + 2lK + 2.5lH) 1816(1.5lN + lK + 2.5lH) lN 2lN
LLML2012 3272(3lN + lK + 1.5lH) 1736(1.5lN + lK + 1.5lH) 2lN 3lN
NEW 3352(3lN + lK + 2.5lH) 1816(1.5lN + lK + 2.5lH) lN 2lN

The encapsulation of our variant can first compute A = gμ, which requires
1.5lN multiplications. Then, the computation of B = Xμt requires 1.5lN +1.5lH
multiplications. Finally, the computations of R = A2lK+lH = g2

lK+lHμ and

K = BBSN (A2lK) require lK + lH multiplications. Thus, the encapsulation re-
quires 3lN + lK + 2.5lH multiplications. The decapsulation computes D = Rρ,
which requires 1.5lN + 1.5lH multiplications (the length of ρ = xt is lN + lH).

Then computes (S/D)2
lK+lH and K = BBSN ((S/D)2

lH), which require lK + lH
multiplications. We have that the decapsulation requires 1.5lN + lK + 2.5lH

How to Remove the Exponent GCD in HK09 247

multiplications. Note that, the decapsulation can be improved by adding pq to
the private key and computing ρ = xt mod pq. As a result, the decapsulation
requires 1.5lN + lK + lH multiplications.

The Case of Semi-smooth Subgroup Group. The efficiency of schemes in
[7,11,9,10] and our variant is listed in table 2, where S-HK is the instantiation of
HK09, S-E-HK is the instantiation of E-HK, S-LLML2011 is the instantiation of
LLML2011, S-LLML2012 is the instantiation of LLML2012 and S-NEW is the
instantiation of our new variant. The parameters are the same as those in [7,11,9],
lK = lH = 80, lp′ = lq′ = 160, λ = 80, le = lp′ + lq′ +λ = 400, le′ = lp′ + lq′ = 320.

Table 2. Schemes instantiated over the semi-smooth subgroup

Encapsulate(mul) Decapsulate(mul) SK (bits) PK (bits)

S-HK 1400(3le + lK + 1.5lH) 1440(1.5le + 4lK + 6.5lH) le 2lN
S-E-HK 2000(4.5le + lK + 1.5lH) 920(1.5 × 1.2le + 2.5lH) 2le 3lN
S-LLML2011 1560(3le + 2lK + 2.5lH) 880(1.5le + lK + 2.5lH) le 2lN
S-LLML2012 1400(3le + lK + 1.5lH) 800(1.5le + lK + 1.5lH) 2le 3lN
S-NEW 1480(3le + lK + 2.5lH) 880(1.5le + lK + 2.5lH) le 2lN

Note that, the private key of schemes instantiated over semi-smooth subgroup
is selected from [2lp′+lq′+λ]. When p′q′ is added to the private key, the decapsu-
lation efficiency can be improved by selecting the private key from [p′q′].

4 Conclusion

We proposed a new method to remove the exponent GCD operation in HK09,
which improves the decapsulation without increasing the key size. The decapsu-
lation efficiency is improved by 38.9% (instantiated over the semi-smooth sub-
group) and the efficiency of encapsulation is dropped by 5.7%. Compared with
previous skill in [9] to remove the exponent GCD operation, the security reduc-
tion of our new scheme is tighter. Compared with the skill in [10], their scheme
is more efficient, while the key of our new scheme is shorter. We proved that the
proposed variant is IND-CCA secure under the factoring assumption.

References

1. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)

2. Blum, M., Goldwasser, S.: An probabilistic public key encryption scheme which
hides all partial information. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984.
LNCS, vol. 196, pp. 289–299. Springer, Heidelberg (1985)

3. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

248 X. Lu, B. Li, and Y. Liu

4. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: ACM Conference on Computer and Communications Secu-
rity, pp. 320–329. ACM (2005)

5. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33,
167–226 (2004), http://dl.acm.org/citation.cfm?id=953065.964243

6. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC, pp. 542–552. ACM (1991)

7. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009)

8. Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed diffie-
hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–297.
Springer, Heidelberg (2007)

9. Lu, X., Li, B., Mei, Q., Liu, Y.: Improved tradeoff between encapsulation and
decapsulation of HK09. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011.
LNCS, vol. 7537, pp. 131–141. Springer, Heidelberg (2012)

10. Lu, X., Li, B., Mei, Q., Liu, Y.: Improved efficiency of chosen ciphertext secure
encryption from factoring. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC
2012. LNCS, vol. 7232, pp. 34–45. Springer, Heidelberg (2012)

11. Mei, Q., Li, B., Lu, X., Jia, D.: Chosen ciphertext secure encryption under factoring
assumption revisited. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 210–227. Springer, Heidelberg (2011)

12. Shamir, A.: On the generation of cryptographically strong pseudo-random se-
quences. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 544–550.
Springer, Heidelberg (1981)

13. Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010)

http://dl.acm.org/citation.cfm?id=953065.964243

	How to Remove the Exponent GCD in HK09
	1 Introduction
	1.1 Motivation
	1.2 Our Contribution
	1.3 Outline

	2 Definitions
	2.1 Key Encapsulation Mechanism
	2.2 Target Collision Resistant Hash Function

	3 NewVariantofHK09
	3.1 Security Proof
	3.2 Efficiency

	4 Conclusion
	References

