
A Short Universal Hash Function

from Bit Rotation, and Applications
to Blockcipher Modes

Kazuhiko Minematsu

NEC Corporation, 1753 Shimonumabe, Nakahara-Ku, Kawasaki, Japan
k-minematsu@ah.jp.nec.com

Abstract. In this paper we propose a new universal hash function based
on bit rotation. The proposed scheme, called Circulant hash, is a vari-
ant of the classical random matrix-based hash of Carter and Wegman,
called H3, and Toeplitz hash by Krawczyk. However, Circulant hash has
a smaller key space and the proved differential probability is not implied
by the previous analyses on these functions.

Since Circulant hash is an almost XOR-universal hash function for
balanced input/output, it may not be a perfect substitute for H3 and
Toeplitz hash. However, we show that Circulant hash is a useful tool for
blockcipher modes, specifically as an alternative to Galois field constant
multiplications. We provide some illustrative examples of the construc-
tions of tweakable blockcipher and vector-input pseudorandom function
using Circulant hash. Our schemes are as efficient as previous ones using
GF constant multiplications, and provide some unique features.

Keywords: Bit rotation, Toeplitz hash, Blockcipher Mode.

1 Introduction

Bit rotation is one of the most basic operations appearing in numerous fields of
computer science. In case of cryptography, bit rotation mainly serves as a basic
tool for building cryptographic primitives [4,6,14,31,40]. This paper shows that
bit rotation also offers a powerful tool in the field of provable security. We propose
a simple bit rotation-based function, called Circulant hash, and show that it is
ε-almost XOR universal (ε-AXU) hash function if the length of input vector
satisfies certain conditions. As the name suggests, it is basically a matrix-vector
product of a random circulant matrix over GF(2) and the input vector. Circulant
hash can be seen as a variant of classical randommatrix-based hash of Carter and
Wegman [10], called H3, or Toeplitz hash by Krawczyk [19], with a restriction to
square matrix. One can also take it as an extension of Data-dependent rotation
(DDR) by Rivest [29]. However, Circulant hash has a smaller key space than H3

and Toeplitz hash, while much larger input space than DDR of the same key
length.

Despite the simple look, proving the differential probability (i.e. the AXU bias)
of Circulant hash is non-trivial. We prove that, for Circulant hash using κ-bit key

W. Susilo and R. Reyhanitabar (Eds.): ProvSec 2013, LNCS 8209, pp. 221–238, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

222 K. Minematsu

and (κ−1)-bit input and κ-bit output, the differential probability is at most 2/2κ,
if κ is a special prime (see Definition 1 and Lemma 1). This result is not implied
by the previous analyses on H3, Toeplitz hash, and DDR [10, 11, 19, 30, 37, 38].
In fact, our finding is based on an old paper by Daykin [12] discussing how to
derive the rank of a matrix over a finite field, which has been overlooked by the
cryptography community, to the best of our knowledge.

Circulant hash realizes an ε-AXU hash function having almost balanced input
and output. When compared with square Toeplitz hash, Circulant hash has a
reduced key length and hardware complexity, hence is a better substitute when
(almost) square Toeplitz hash has been used, such as [9,22,23]. In contrast, even
though we can basically extend the input length via tree hashing [10], it may
not be appropriate for very long inputs.

We then show that Circulant hash provides a powerful tweaking tool for block-
cipher modes. In the field of blockcipher modes, the constant multiplication over
a Galois Field (GF) has been widely used as a tweaking tool [13, 16, 28, 33, 35].
We provide some illustrative examples showing that, Circulant hash can be an
alternative to GF constant multiplication, or even more useful in some cases. We
choose two illustrative applications. The first application is tweakable blockci-
pher (TBC) [21] based on a blockcipher. A previous TBC scheme called XEX [33]
utilizes constant GF multiplications for efficient sequential tweak update. We
build TBC using Circulant hash instead of constant GF multiplication. It allows
efficient sequential tweak update as well, and also effectively handles certain non-
sequential tweak update without using a precomputation, which may be useful
in the real-world applications of TBC.

The second application is vector-input pseudorandom function (PRF). Rog-
away and Shrimpton [35] proposed a concrete instantiation of vector-input PRF,
called S2V, using a string-input PRF with a post-processing based on constant
GF multiplications. In S2V, the computations of string-input PRFs are par-
allelizable, however the post-processing is logically serial. We show that, the
post-processing can be replaced with (an decomposed form of) Circulant hash,
which is essentially bit rotations and is fully parallelizable. Our proposal keeps
the most features of S2V while achieves a faster parallel computation. Moreover,
it enables powerful incremental update using the previous output (i.e., it is an
incremental message authentication code (MAC) [5]), which is impossible with
S2V. One can also use our result to build a fast, parallelizable short-input PRF.

These two examples imply that we can build a Circulant hash-based counter-
parts for the most of previous blockcipher modes utilizing GF constant multipli-
cations, and the each of the resulting scheme exhibits some unique advantages.

2 Preliminaries

Let {0, 1}n be the space of n-bit strings, and let {0, 1}∗ be the space of all
binary strings, including the empty string, ε. A bit length of a binary string

X is written as |X |. We define |X |n def
= �|X |/n�. Here |ε| = 0. The first

(last) c bits of X is denoted by msbc(X) (lsbc(X)). We write Nc to denote

A Short Universal Hash Function 223

{1, 2, . . . , c}. A concatenation of two strings, X and Y , is written as X‖Y
or simply XY . A sequence of i zeros is written as 0i. An i-bit left rota-
tion of n-bit string X = (X [1]‖X [2]‖ . . .‖X [n]) is written as X ≪ i =
(X [i + 1]‖ . . . ‖X [n]‖X [1]‖ . . .‖X [i]). For X,Y ∈ {0, 1}∗ with |X | ≤ |Y |, let
X⊕endY be the XOR of X into the end of Y , i.e. X⊕endY = (0|Y |−|X|‖X)⊕Y .
For X ∈ {0, 1}∗, let X [1]‖X [2]‖ . . .‖X [m]

n← X denote the n-bit block parti-
tioning of X , i.e., X [1]‖X [2]‖ . . .‖X [m] = X where m = |X |n, and |X [i]| = n
for i < m and |X [m]| ≤ n.

If X is uniformly distributed over set X , we write X
$← X . The set of all

functions having n-bit inputs and m-bit outputs is denoted by Func(n,m) and
the set of all n-bit permutations is denoted by Perm(n). A keyed function F with
key K ∈ K, input domain X , and output domain Y is written as F : K×X → Y.
We may write FK : X → Y if the existence of key is obvious. A pair of two keyed
functions, F : K × X → Y and G : K′ ×X → Y, are said to be compatible (the
key spaces are not necessarily the same).

We define the uniform random function (URF) R : {0, 1}n → {0, 1}m as the
keyed function with a key being uniform over Func(n,m). The n-bit uniform
random permutation (URP), P : {0, 1}n → {0, 1}n is a keyed permutation with
a key being uniform over Perm(n). Note that the notion of URF can be extended
to the case that input domain is an infinite set, say, {0, 1}∗, by using the lazy
sampling. The inverse of keyed permutation EK (P) is written as E−1

K (P−1).
We define the two classes of universal hash function.

Definition 1. For HK : X → Y, if Pr[HK(x) = HK(x′)] ≤ ε for any distinct
x, x′ ∈ X , HK is ε-almost universal (ε-AU). If Y = {0, 1}n and Pr[HK(x) ⊕
HK(x′) = c] ≤ ε for any distinct x, x′ ∈ X and c ∈ {0, 1}n, HK is ε-almost
XOR universal (ε-AXU).

Note that if HK is ε-AXU it is also ε-AU.

Pseudorandom Function. For a pair of compatible keyed function F : K ×
X → Y and G : K′ × X → Y and an adversary A who performs (possibly
adaptive) chosen-plaintext queries and makes a binary output, we write

Adv
cpa
F,G(A)

def
= Pr[K

$← K : AFK ⇒ 1]− Pr[K ′ $← K′ : AGK′ ⇒ 1]

where K
$← K : AFK ⇒ 1 denotes the event that A outputs 1 by querying

FK , when K
$← K is the underlying key sampling. Using URF compatible to

FK : {0, 1}n → {0, 1}m, R, we write Adv
prf
FK

(A) to denote Adv
cpa
FK ,R(A), which

means Pr[K
$← K : AFK ⇒ 1]− Pr[R

$← Func(n,m) : AR ⇒ 1].
The definition of Adv

prf
FK

(A) may be extended when FK takes variable-length
input in {0, 1}∗. In this case the underlying R is replaced with $ oracle that
outputs independent and random value for any new input; for colliding inputs,
the outputs are the same.

224 K. Minematsu

3 Universal Hash Function from Bit Rotation

3.1 Constructions Based on Matrix-Vector Product

In [10], Carter and Wegman introduced the idea of universal hash function and
provided several examples. Among them a function called H3 is particularly
relevant to our proposal. Suppose we need a universal hash function of η-bit
input and κ-bit output. The key of H3 is a binary κ × η matrix, M, whose
elements are independent and random. Hence the key length is η · κ bits. For
input vector x ∈ {0, 1}η, the output ofH3 is a matrix-vector product over GF(2),
written as M · xT , where xT denotes the column vector of x.

Clearly H3 provides 1/2κ-AXU1 for any positive κ and η. Krawczyk [19]
showed a variant of H3 with reduced key bits, called Toeplitz hash. In Toeplitz
hash the key is randomly sampled to specify the κ×η Toeplitz matrix over GF(2),

M
(κ,η)
T . For input x ∈ {0, 1}η the κ-bit output is computed as the matrix-vector

product over GF(2), i.e. y = M
(κ,η)
T · xT . As M

(κ,η)
T has (κ+ η − 1) independent

bits to be specified (i.e. the first column and row vectors), the key length is
reduced to (κ+η−1) bits. This keyed function has η-bit input and κ-bit output,
and is 1/2κ-AXU [19].

In this paper, we present a new variant of H3 having even reduced key space
from Toeplitz, applicable when η is close to κ. The idea is to use a random
circulant matrix, which requires only key of κ bits.

Definition 2. Let κ be a positive integer. The Circulant hash (CLH for short)
is a keyed function : {0, 1}κ × {0, 1}κ−1 → {0, 1}κ defined as

CLHκ(K,x) =
⊕

1≤i≤κ−1: x[i]=1

(K ≪ (i− 1)),

where x = (x[κ − 1]‖ . . .‖x[1]) and x[i] ∈ {0, 1}.

For example, CLHκ(K, 0κ−1) = 0κ, and CLHκ(K, 0κ−4‖101) = K ⊕ (K ≪ 2).
It is easy to see that CLHκ(K,x) is equivalent to a matrix-vector product over

GF(2), represented as M
(κ,κ−1)
C · xT , where M

(κ,κ−1)
C denotes the first κ − 1

columns of circulant matrix of order κ whose first column vector is the key K
and xT ∈ {0, 1}κ−1 is the transposed input of x = (x[1]‖ . . . ‖x[κ− 1]).

Despite the simple look, proving ε-AXU for CLHκ turns out to be quite non-
trivial. The fact that random matrix works fine with H3 does not necessarily
mean the goodness of reduced-key variants. For example, when κ = 5, we can see
(by an exhaustive search) that CLH5(K,x)⊕CLH5(K,x′) for any x �= x contains
at least 4 independent bits of K, resulting in 1/24-AXU, which is close to the
theoretical minimum, 1/25. However, when κ = 8, CLH8(K,x) ⊕ CLH8(K,x′)
has only 2 independent bits when x⊕x′ = (1, 0, 1, 0, 1, 0, 1), thus the probability
is 1/22. When κ = 7, CLH7(K,x) ⊕ CLH7(K,x′) with x ⊕ x′ = (1, 1, 1, 0, 1, 0)
has 3 independent bits. This arises a natural question on the condition of κ that
assures ε-AXU for a small ε. The following lemma shows the answer.

1 [10] only proved that it is 1/2κ-AU, but it is easily extended to AXU.

A Short Universal Hash Function 225

Lemma 1. Let K
$← {0, 1}κ. We have

max
c∈{0,1}κ,

x,x′∈{0,1}κ−1, x �=x′

Pr
K
[CLHκ(K,x) ⊕ CLHκ(K,x′) = c] ≤ 2

2κ
, and

max
c∈{0,1}κ, x∈{0,1}κ−1\{0κ−1}

Pr
K
[CLHκ(K,x) = c] ≤ 2

2κ
,

when κ is prime and 2 is the primitive root modulo κ, which we call p-prime.

Proof. We first observe that CLHκ(K,x) ⊕ CLHκ(K,x′) = CLHκ(K,x ⊕ x′),
hence the first claim is proved by showing the maximum of probability
Pr[CLHκ(K,x) = c] for all c ∈ {0, 1}κ and x ∈ {0, 1}κ−1 \ {0κ−1}, i.e. prov-
ing the second claim also proves the first. Now, let R be κ × κ GF(2)-matrix
defined as

R =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...
...
...

...
...

0 0 0 . . . 1
1 0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎦
. (1)

Then we have (K ≪ i)T = R
i·KT , where · is the matrix-vector multiplication

over GF(2), and R
i denotes the matrix exponentiation over GF(2) (i.e. R3 =

R × R × R with matrix multiplication ×). Here we define R
0 as the identity

matrix, thus R0 ·KT means (K ≪ 0) = K.
From the theory of linear systems, we have

Pr[CLHκ(K,x) = c]

= Pr
K

⎡

⎣
∑

1≤i≤κ−1:x[i]=1

R
i ·K = c

⎤

⎦ = Pr
K

⎡

⎣

⎛

⎝
∑

1≤i≤κ−1:x[i]=1

R
i

⎞

⎠ ·K = c

⎤

⎦

=

∣∣∣k ∈ {0, 1}κ :
(∑

i:x[i]=1 R
i
)
· k = c

∣∣∣
2κ

(2)

≤ 2κ−rank(
∑

i:x[i]=1 R
i)

2κ
=

1

2rank(
∑

i:x[i]=1 Ri)
, (3)

where K is uniform over {0, 1}κ and the matrix sums are over GF(2), and
rank(M) denotes the rank of matrix M over GF(2). Hence, we have to prove
that rank(

∑
i∈I R

i) ≤ κ− 1 for any nonempty I ⊆ {0, . . . , κ− 2}.
For a finite field F , let M be the matrix over F . Let F [M] be the set of

all (nonempty) univariate polynomials for M with coefficients in F . For in-
stance F [M] contains a · M2 + b · M1 + c · M0, where a, b, c ∈ F and addi-
tion and multiplication are defined over F . The corresponding F -polynomial is

226 K. Minematsu

f(x) = ax2 + bx+ c. Specifically, we let F = GF(2) and M = R, then
∑

i∈I R
i

is a member of GF(2)[R]. We then apply a useful formula of Daykin [12] which
provides the F -rank of a square matrix in F [M] for any field F and matrix M.
Using Theorem 1 and Section 5 of [12], for any f [R] ∈ GF(2)[R] we have

rank(f(R)) = κ−DegL(xκ − 1, f(x)) (4)

where DegL(g(x), g′(x)) denotes the degree of largest common factor of GF(2)-
polynomials, g and g′. Here, xκ−1 is factored into (x−1)(xκ−1+xκ−2+· · ·+x+1),
where addition and subtraction are XOR, for any n. The latter factor is called
the all-one polynomial (AOP). Because the degree of f(R) we consider is at
most κ − 2, if AOP of degree κ − 1 is irreducible over GF(2), rank(f(R)) is at
least κ − 1. Here, Wah et al. [39] proved that over GF(2)-AOP of degree m is
irreducible if and only if m+1 is prime and 2 is the primitive root modulo m+1.
This proves the second claim, and thus concludes the proof. �

Lemma 1 shows that if κ satisfies the conditions, CLHκ with K
$← {0, 1}κ is

2/2κ-AXU, and that CLH+
κ : {0, 1}κ × ({0, 1}κ−1 × {0, 1}κ) → {0, 1}κ defined

as CLH+
κ (K, (x1, x2)) = CLHκ(K,x1)⊕ x2 is 2/2κ-AU. As a slight extension of

the lemma, if K is not uniform but maxk Pr[K = k] ≤ 1/2p holds for some p,
then the resulting CLH is 2/2p-AXU.

For example, 3, 5, 11, 13, and 19 are p-primes. Larger values can be easily de-
rived (e.g.) from the table [2] or by using software. Table 1 shows some examples,
where κ<2i (κ<2i) denotes the largest (smallest) κ being p-prime smaller (larger)
than 2i. It is worth noting that for many cases there exists a p-prime close to a
power of two.

Table 1. Examples of p-primes

κ<25 κ>25 κ<26 κ>26 κ<27 κ>27 κ<28 κ>28 κ<29 κ>29 κ<210 κ>210 κ<211 κ>211

29 37 61 67 107 131 227 269 509 523 1019 1061 2029 2053

3.2 Useful Variants

The output and key lengths of CLH are prime, however we frequently need a
function of n-bit output with n-bit key, for n being a power of two. For this
purpose, we define two variants of CLH.

Definition 3. Let κ ≤ n ≤ λ. Let f1
n,κ : {0, 1}n × Nκ−1 → {0, 1}n and f2

n,λ :
{0, 1}n × Nλ−1 → {0, 1}n, where

f1
n,κ(K, i) = (msbκ(K) ≪ i)‖0n−κ,

f2
n,λ(K, i) = msbn(K‖0λ−n ≪ i),

A Short Universal Hash Function 227

and we define CLH′
n,κ : {0, 1}n × {0, 1}κ−1 → {0, 1}n and CLH′′

n,κ : {0, 1}n ×
{0, 1}λ−1 → {0, 1}n as

CLH′
n,κ(K,x)

def
=

⊕

1≤i≤κ−1: x[i]=1

f1
n,κ(K, i), for x = (x[κ− 1]‖ . . . ‖x[1]),

and

CLH′′
n,λ(K,x)

def
=

⊕

1≤i≤λ−1: x[i]=1

f2
n,λ(K, i), for x = (x[λ − 1]‖ . . . ‖x[1]).

Note that CLH′
n,κ(K,x) and CLH′′

n,λ(K,x) are respectively equivalent to

CLHκ(msbκ(K), x)‖0n−κ and msbn(CLHλ(K‖0λ−n, x)), and when κ = n = λ,
they are the same as the original CLHκ. Both f1

n,κ(K, i) and f2
n,λ(K, i) can be

computed with two shifts and one logic operation.
We have the following lemma.

Lemma 2. Let K be uniform over {0, 1}n. For κ ≤ n ≤ λ we have

max
c∈{0,1}n,

x,x′∈{0,1}κ−1, x �=x′

Pr
K
[CLH′

n,κ(K,x) ⊕ CLH′
n,κ(K,x′) = c] ≤ 2

2κ
, and

max
c∈{0,1}n,

x∈{0,1}κ−1\{0κ−1}

Pr
K
[CLH′

n,κ(K,x) = c] ≤ 2

2κ
,

max
c∈{0,1}n,

x,x′∈{0,1}λ−1, x �=x′

Pr
K
[CLH′′

n,λ(K,x) ⊕ CLH′′
n,λ(K,x′) = c] ≤ 2

22n−λ
, and

max
c∈{0,1}n,

x∈{0,1}λ−1\{0λ−1}

Pr
K
[CLH′′

n,λ(K,x) = c] ≤ 2

22n−λ
,

when κ and λ are p-primes.

The proof of Lemma 2 is a simple extension of the proof of Lemma 1 (the bound
of the last two claims are obtained as (2/2n) · 2λ−n = 2/22n−λ), hence omit-
ted. For example, CLH′

64,61(K,x) and CLH′′
64,71(K,x) implement about 64-bit

input/output space with differential probability 1/260, and CLH′′
128,131(K,x) im-

plements 130-bit input, 128-bit output space with differential probability 1/2124.

3.3 Notes

Relation to DDR. The keyed DDR, defined as DDR(K,x)
def
= (K ≪ x) for

x ∈ {0, . . . , κ − 1} with |K| = κ, is 2/2κ-AXU if κ is prime [11]. However, the
log |K| input space is too small for most practical applications. With CLH, we
can extend the input space from log |K| to |K|/2.

228 K. Minematsu

Toeplitz Hash with LFSR. In generation of κ×η Toeplitz matrix, Krawczyk
[19] also suggested to use the (κ+ η− 1)-bit output of κ-bit linear feedback shift
register (LFSR). If the initial seed of LFSR is uniformly chosen from {0, 1}κ
and the feedback polynomial is uniformly chosen from the set of all irreducible
polynomials, the resulting Toeplitz hash is 2η/2κ-AXU [3, 19]. In this case the
key can be represented as a pair of κ-bit strings, K1 and K2, where K1 specifies
the coefficients of feedback polynomial and K2 specifies the initial seed of LFSR.
The hardware implementation requires an κ-bit accumulator register and an κ-
bit LFSR [19]. As pointed out by [26, 36] the K1’s distribution is not uniform
over {0, 1}κ and is hard to determine if κ is large, say, 80.

Compared with κ × κ square Toeplitz hash, CLH can roughly halve the key
bits. Table 2 provides a comparison of Toeplitz and Circulant hashs for the
accumulator-based hardware implementation. It shows that, as an AXU hash
function of balanced I/O, CLH provides a smaller footprint while keeping the
small differential probability (DP). This will be useful for some applications,
e.g. [9, 22, 23].

Extending Input Length. When we want to extend input length, we can use
Tree hashing [10] with CLH+

κ of Section 3.1, in a similar manner to Badger [8].
At the cost of logarithmic key increase, we can process a long input with small
circulant matrices. Effectiveness of such implementation is an interesting future
topic.

Table 2. Comparison of Toeplitz and Circulant hashs for accumulator-based hardware
implementation. DP = ε means that the function is ε-AXU. For Circulant hash we
require κ to be a p-prime.

Function I/O (bit) Key (bit) ShReg (bit) ShReg Feedback DP
Toeplitz (LFSR) [19] κ/κ 2κ κ Key-dep. IRPoly 2κ/2κ

Toeplitz (Naive) [19] κ/κ 2κ − 1 2κ − 1 Nothing 1/2κ

Circulant (This paper) κ − 1/κ κ κ Rotation 2/2κ

4 Tweakable Blockcipher

We describe how to use CLH for blockcipher modes of operations. Our first
target is tweakable blockcipher (TBC), proposed by Liskov et al. [21].

4.1 Definition of Tweakable Blockcipher

TBC is a keyed permutation with auxiliary input called tweak. Formally, a ci-
phertext of a TBC, ẼK :M×T →M, is C = ẼK(M,T) for plaintext M ∈M
and tweak T ∈ T . The encryption, ẼK , must be a keyed permutation over
M for every T ∈ T , and the decryption is defined as Ẽ−1

K (C, T) = M with

Ẽ−1
K : M× T → M. We here assume M = {0, 1}n for some fixed n and T

is a certain finite set. TBC works as a building-block of blockcipher modes for
various purposes [13, 15, 21, 27, 33].

A Short Universal Hash Function 229

To define the security, let Perm(T , n) be the set of all mappings from T
to n-bit permutations. The size of Perm(T , n) is |Perm(n)||T |. The sampling

P̃
$← Perm(T , n) implements a set of independent n-bit URPs indexed by T ∈

T , where P̃ and P̃
−1

have the same interfaces as ẼK and Ẽ−1
K . The security

notion for ẼK is the indistinguishability from P̃ under a chosen-ciphertext attack
(CCA), that is,

Adv
tsprp

Ẽ
(A)

def
= Pr[K

$← K : AẼK ,Ẽ−1
K ⇒ 1]− Pr[P̃

$← Perm(T , n) : AP̃,P̃
−1

⇒ 1], (5)

where AO1,O2 denotes the adversary A querying two oracles, O1 and O2, in an
arbitrary order.

4.2 Previous Constructions

Liskov et al. [21] showed how to build a secure TBC in the sense of Eq. (5),
using EK :M→M and an ε-AXU hash, HL : T → M, for independent keys,
K and L. Extending the idea of [21], Rogaway proposed a one-key variant called
XEX [33] using GF(2n) constant multiplications. Let α1, . . . , αk be the distinct
non-zero elements of GF(2n) called bases. For each αi we define the set of allowed
indices, Ii ⊆ Z, which is an integer interval (e.g. Ii = [0 . . . 10]). The tweak space
of (basic) XEX is T = T1 × T2 with T1 = I1 × · · · × Ik, T2 = {0, 1}n, and it is
defined as

XEX[EK](M,T) = EK(M ⊕ Γ · EK(T2))⊕ Γ · EK(T2), (6)

where tweak is T = (T1, T2) with T1 = (i1, . . . , ik) and Γ = αi1
1 ·αi2

2 · · · ·α
ik
k , and

the multiplications are over GF(2n). The multiplication Γ · EK(T2) is also over
GF(2n) by seeing EK(T2) as a coefficient vector of a polynomial in GF(2n). The
security in terms of Eq. (5) is proved when bases and T1 satisfy some conditions
(see [33]). The point of such construction is that the sequential update of a
component index of T1, i.e., ij → ij + 1 for some j, can be quite efficient if
we cache the previous value of Γ , because it is essentially the multiplication of
the cached Γ by αj . Typically we set α1 = 2 (the primitive element) since the
multiplication by 2 is particularly simple. In this case the update procedure is
called “doubling”.

Alternatively, based on [21], we could simply use GF multiplication. Assuming
n-bit tweak T and n-bit second key2 L, we take a multiplication of L and T ,
denoted by L · T , and encrypt as EK(M ⊕ L · T)⊕ L · T . By precomputing all
powers of L, i.e. L,2L, . . . ,2n−1L, L · T is computed as L · T = ⊕i:T [i]=12

i−1L,
where T [i] denotes the i-th bit of T for i = 1, . . . , n. Thanks to the precomputed
powers of L, this scheme enables an efficient incrementation of T using Gray
code (see Section 4.3).

2 With a slight modification one can generate L from K in a similar manner to XEX,
see [25] (Section 5).

230 K. Minematsu

4.3 Tweakable Blockcipher Using CLH

We present a single-key TBC based on CLH, in a similar manner to XEX.

Definition 4. Let κ ≤ n ≤ λ. Let EK be an n-bit blockcipher. The single-key
TBCs, XEX-R1[EK] and XEX-R2[EK], are defined as

XEX-R1[EK](M,T)
def
= EK(M ⊕ Γ1)⊕ Γ1, and ,

XEX-R2[EK](M,T)
def
= EK(M ⊕ Γ2)⊕ Γ2,

where Γ1 = CLH′
n,κ(EK(T2), T1) and Γ2 = CLH′′

n,λ(EK(T2), T1).
Here, a tweak is T = (T1, T2) ∈ T = T1 × T2 with T2 = {0, 1}n. XEX-R1 has

T1 = {0, 1}κ−1 \ {0κ−1, 0κ−21}. XEX-R2 has T1 = {0, 1}λ−1 \ {0λ−1, 0λ−21}.

When the underlying blockcipher is a URP, the security of our schemes are
proved as follows. The computational counterparts are trivial.

Theorem 1. Suppose κ and λ are p-primes. Let P be an n-bit URP, and let A
be an adversary against TBC, using q CCA-queries. Then we have

Adv
tsprp

XEX-R1[P](A) ≤
(

6

2κ
+

4

2n

)
q2, Adv

tsprp

XEX-R2[P](A) ≤
(

8

22n−λ
+

2

2n

)
q2.

Proof. See Appendix A.

When n = 128, XEX-R1 with κ = 107 provides about 52-bit security with
106-bit tweak, and XEX-R2 with λ = 131 provides about 61-bit security with
130-bit tweak.

Properties. Our proposals enable efficient sequential updates of T1. For sim-
plicity, let us assume κ = n. Then, since CLHκ is XOR-linear, the computation
of CLHκ(L, T

′
1) using CLHκ(L, T1) (for L = EK(T2)) is easy if the hamming

weight of T1 ⊕ T ′
1 is small. To fully utilize this property we can use Gray code

in a similar manner to the previous works [20, 34], which is as follows. We first
take T1 ∈ T1 as a positive integer, thus 2 ≤ T1 ≤ 2κ−1 − 1, and we modify
Definition 4 so that the input to CLH is Gray code of T1, gc(T1). This causes no
security degradation since Gray code is a permutation and gc(0κ−1) = 0κ−1 and
gc(0κ−21) = 0κ−21. Let Z = CLHκ(L, gc(T1 − 1)) and Z ′ = CLHκ(L, gc(T1)).
We want to compute Z ′ using Z. From the property of Gray code we have

Z ′ = Z ⊕ CLHκ(L, gc(T1)⊕ gc(T1 − 1))

= Z ⊕ CLHκ(L, (0 . . . 01� ntz(T1))) = Z ⊕ (L ≪ (ntz(T1) + 1)),

where ntz(v) denotes the number of trailing zero for v (e.g. ntz(0100) = 2).
This can be quite efficient; most CPUs natively support an ntz instruction
and there exist fast generic methods [1]. Moreover, this does not require any
precomputation on L or additional blockcipher calls. In general, the computa-
tion of CLHκ(L, gc(T

′
1)) from CLHκ(L, gc(T1)) is fast as long as the weight of

A Short Universal Hash Function 231

gc(T1)⊕ gc(T ′
1) is small. That is, we can easily “jump” to such T ′

1. Though con-
ceptually a similar operation is possible with XEX using multiple bases, ours
seems to have more flexibility. The above method can be easily extended to the
case κ < n or n < λ, using CLH′

n,κ or CLH′′
n,λ, where the latter needs to keep

κ-bit output before truncation. We remark that jump operation with Gray code
trick is also possible with a TBC construction described in the last of Section 4.2,
that is, mask is generated by GF(2n) multiplication based on the precomputed
powers, {2iL}i=0,...,n−1.

In summary, our CLH enables incremental tweak update and certain non-
incremental (jump) update without precomputation, while the basic form of
doubling enables only incremental update. GF multiplication using precomputed
powers enables both incremental and non-incremental updates, though the cost
of precomputation and memory can be problematic, in particular for constrained
devices.

If our TBCs replace blockcipher modes where internal tweak update is mostly
sequential (e.g. OCB, PMAC [33], and XTS [13]), ours enable additional func-
tionalities, such as selective decryption, without harming the efficiency of normal
operation. If we built an online cipher using TBC [27], internal TBC has ran-
dom tweaks. In [27], using GF multiplication is suggested, however using CLH′

or CLH′′ may be another option.

Software Results. According to our experiments, even random input to CLH is
manageable. We implement CLH′

64,61 on Intel Xeon E5620 (2.4GHz) and 64-bit
Windows OS, using C with ntz instruction, called BitScanForward. It processes
random inputs using 22 cycles per byte (cpb). For random inputs with weight
16 it runs at about 7.5 cpb, and for sequential update with Gray code, it runs
at below 0.5 cpb. The same performance can be obtained for parallel comput-
ing of two CLH′

64,61 functions by using XMM registers and SSE intrinsics. For

reference, a naive C implementation of doubling function, dblL(i) = 2iL for
L ∈ GF(264), runs at 1.38 cpb for i = 1, 18.6 cpb for i = 10, and 52.5 cpb for
i = 30 on the same platform.

5 Vector-Input PRF

5.1 Construction of S2V-R

For string X [i] ∈ {0, 1}∗ with i = 1, . . . , 	, we call X = (X [1], . . . , X []) a

vector. Let {0, 1}∗∗ def
=

⋃
�=0,1,2,...{(X [1], . . . , X []) : X [i] ∈ {0, 1}∗}, i.e. the set

of all vectors. Note that {0, 1}∗∗ includes the empty vector (which contains no
string) which is denoted by εv. Rogaway and Shrimpton [35] called a PRF of
input domain {0, 1}∗∗ a vector-input PRF (vPRF). They showed how to build
vPRF: {0, 1}∗∗ → {0, 1}n from a string-input PRF, sPRF: {0, 1}∗ → {0, 1}n
such as CMAC [16]. Their construction, called S2V, is used as a component of a
deterministic AE (DAE) called SIV. S2V uses GF constant multiplications in a
different way from XEX of Section 4. For reference it is presented in Appendix

232 K. Minematsu

Algorithm S2V-R[f, FK](X[1], . . . , X[�]), 0 ≤ � ≤ t− 1

1. S ← 0n, L ← FK(0n)
2. if � = 0 then return FK(f(L, t))
3. for i ← 1 to �− 1 do S ← S ⊕ f(FK(X[i]), i)
4. if |X[�]| ≥ n then V ← (S ⊕ f(L, t− 1))⊕end X[�]
5. else V ← S ⊕ f(L, t)⊕X[�]‖10∗
6. return FK(V)

�
�

���� ���� ������

�
�

�
�

���

���

� � ��

�
�

����

	
�

�

�
�

���� ���� ������

�
�

�
�

���

���

� �

�

�
�

�������

�

�
�

�
�

�������

Fig. 1. Vector-input PRF using FK : {0, 1}∗ → {0, 1}n and post-processing f :
{0, 1}n × Nt → {0, 1}n. In the lower figure, the box with i = 1, 2, . . . denotes the
post-processing f(∗, i).

B. Building a vPRF from an sPRF is basically possible by first applying an
invertible function (encoding) g : {0, 1}∗∗ → {0, 1}∗ to the input vector then
applying the sPRF to the encoded string. However, as explained by [35], S2V
has a number of practical advantages over this naive construction.

This section shows a new S2V-like vPRF. Our vPRF, which we call S2V-R,
can be based on any sPRF, FK : {0, 1}∗ → {0, 1}n. The pseudo-code and the
figure are given in Fig. 1, where X [i]‖10∗ denotes the padding, X [i]‖10n−1−|X[i]|

for 0 ≤ |X [i]| ≤ n−1. The key component of our proposal is the post-processing
function, f : {0, 1}n×Nt → {0, 1}n, applied to the outputs of underlying sPRF.
Here, t denotes the maximum post-processing variations and each vector can
contain at most t − 1 strings. We show that, f can be a (variant of) unit
computation of CLHκ, i.e., a bit rotation of the input.

Let R∗∗ : {0, 1}∗∗ → {0, 1}n be the vector-input URF. For security notion of
a vector-input keyed function, FK : {0, 1}∗∗ → {0, 1}n, we write Adv

prf
FK

(A) to
mean the indistinguishability of FK from R∗∗ under a CPA-adversary A. The
security bound of our proposal is as follows.

Theorem 2. Let f : {0, 1}n× Nt → {0, 1}n be a post-processing function satis-
fying

max
I⊆Nt,I�=∅,c∈{0,1}n

Pr

[
U

$← {0, 1}n :
⊕

i∈I
f(U, i) = c

]
≤ pf

for 1/2n ≤ pf ≤ 1. Let R : {0, 1}∗ → {0, 1}n be URF, and let S2V-R[f,R]
be S2V-R using f and R. Let A be an adversary querying S2V-R[f,R] with q

A Short Universal Hash Function 233

chosen-plaintext queries and the total number of component strings among q
queries being σs. Then we have

Adv
prf

S2V-R[f,R](A) ≤ (2qσs + q2)pf .

Corollary 1. For n = 128, we define S2V-R1[FK] and S2V-R2[FK] as
S2V-R[f1

128,107, FK] and S2V-R[f2
128,131, FK] using f1

128,107 and f2
128,131 of Defi-

nition 3. Then, S2V-R1 can accept a vector of 105 strings, with security bound
(4qσs + 2q2)/2107, and S2V-R2 can accept a vector of 129 strings, with security
bound (2qσs + q2)/2124.

The proof of Theorem 2 will be given in the full version. The proof of Corollary
1 is obtained by Theorem 2 and Lemma 2.

5.2 Properties of S2V-R

Basic Points. We could implement S2V-R with FK being (e.g.) CMAC-AES
or HMAC-SHA2. If L = FK(0n) is precomputed S2V-R[f, FK] requires one FK

invocation to process one string. These features are shared with the original S2V.
The acceptable number of component strings in a vector is largely the same as
S2V, which accepts at most n− 1 strings. One can build a DAE using S2V-R in
the same manner as SIV.

In sequential computation, the computation cost of S2V-R is basically the
same as S2V. A difference arises in parallel computation. As well as S2V, the
computations of FK(X [i]) in S2V-R are parallelizable. Moreover, S2V-R allows
the parallel computation of the post-processing after FK(X [i]), namely bit ro-
tations, while those of S2V is sequential constant multiplications (See Appendix
B). This implies that our proposal enables a faster parallel computation. We re-
mark that a variant using a powering-based post-processing, e.g., f(x, i) = 2ix, is
also possible. This has the same parallelizability as S2V-R1 or S2V-R2, however
the computation cost is much higher.

Short-Input PRF. When we implement FK by an n-bit blockcipher, EK , the
resulting S2V-R[f, EK] is a PRF accepting short inputs, i.e. at most n(t−1) bits.
For instance, S2V-R2 of Corollary 1 accepts 16 · 128 = 2Kbyte inputs, which is
enough for most of the packet communications3. In case of the parallel process-
ing, S2V-R2 with blockcipher is advantageous compared to PMAC, as PMAC
needs serial mask computation of 2iEK(0n) for i = 1, . . . , 128, or, needs 2Kbyte
memory to store the precomputed masks. In hardware (parallel) implementa-
tion, the post-processing of S2V-R1 and S2V-R2 are just wires, hence quite fast
and small.

Incremental Update. One unique feature of S2V is that it efficiently han-
dles static (invariant) strings. More generally, once we have computed the

3 For example IPSec authenticates packets of 43 to 1.5K Bytes.

234 K. Minematsu

output for an input vector (X [1], . . . , X []) and cached the outputs of F ,
{FK(X [1]), . . . , FK(X [− 1])}, the output computation for the next input,
(X ′[1], . . . , X ′[′]), requires only the computations of FK(X ′[i]) for all X ′[i] �∈
{X [1], . . . , X [− 1]}. That is, a restricted form of incremental update. An incre-
mental update for vPRF is particularly valuable when component strings can
be long. Our S2V-R shares this feature. Moreover, if the post-processing is com-
mutative (i.e. f(f(x, i), j) = f(f(x, j), i) = f(x, i+ j)), as with S2V-R1, we can
say much more about the incremental operation. Suppose the last string is at
most n bits and FK is invertible for n-bit inputs, which is satisfied with (e.g.)
CMAC. Then, S2V-R allows the incremental update from previous outputs,
without caching the internal FK outputs. As well as PMAC [7], this update is
secure under the basic security notion for incremental update defined by [5]. For
example, suppose we have Y = S2V-R[f, FK](X) for X = (X [1], . . . , X []) with
X [i] ∈ {0, 1}∗ for i ≤ 	−1 and |X []| ≤ n. Let us write X<i = X [1]‖ · · · ‖X [i−1]
and X>i = X [i+ 1]‖ · · · ‖X []. Then, the output computation for a new vector,
(X<i‖X ′[i]‖X>i) for some X ′[i] �= X [i], can be done as

1. V ′ ← F−1
K (Y)

2. V ′ ← V ′ ⊕ f(FK(X [i]), i)⊕ f(FK(X ′[i]), i)
3. Y ′ ← FK(V ′),

where F−1
K denotes the inversion for n bits. Namely, we can handle the replace

operation written as X → (X<i‖X ′[i]‖X>i). Similarly, truncate, X → X<�,
and append, X → X‖X ′[+ 1], are efficiently handled. We remark that the
same (block-wise) update operations are also supported by PMAC [7,33].

Thanks to the nature of rotation, we can do even more. When X |[]| = n,
insert operation, X → X ′[1]‖X , is also possible as

1. V ′ ← F−1
K (Y)⊕ f(L, t− 1)⊕X []

2. V ′ ← f(V ′, 1)⊕ f(FK(X [1]), 1)⊕ f(L, t− 1)⊕X []
3. Y ′ ← FK(V ′),

where L = FK(0n). Generally, if we insert a string X ′[i] before X [i], the update
requires min{i, 	 − i} FK calls with few additional FK and F−1

K calls, thus we
can save at least the half of FK calls. One more example, merge operation,
which means the output computation for X‖X ′ using Y1 = S2V-R[f, FK](X)
and Y2 = S2V-R[f, FK](X ′), also possible with few FK calls. There should be
more examples of practical, application-specific incremental operations that can
be handled by S2V-R, and the set of these update operations can offer a very
powerful incremental vPRF beyond the ability to handle static strings.

6 Conclusion

This paper has presented Circulant hash, a simple keyed hash function consist-
ing of bit rotations and XORs. We showed that it is ε-AXU for ε close to the
minimum if the length of rotated vectors satisfies certain conditions. Circulant
hash can be a good alternative to the famous Toeplitz hash in case we need an

A Short Universal Hash Function 235

ε-AXU hash of balanced I/O lengths. We also showed that Circulant hash works
as a powerful tweaking tool for blockcipher modes, and presented two illustrative
examples for tweakable blockcipher and vector-input PRF.

Acknowledgments. The author would like to thank Norifumi Kamiya for the
discussion on the work of Daykin. The author also would like to thank Mo-
hammad Reza Reyhanitabar for constructive suggestions, and the anonymous
reviewers for many useful comments, in particular for pointing out H3 function
of Carter and Wegman.

References

1. Chess Programming Wiki, http://chessprogramming.wikispaces.com/

2. The On-Line Encyclopedia of Integer Sequences: A046145 Smallest primitive root
of n, or 0 if no root exists, http://oeis.org/A046145/

3. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple Constructions of Almost
k-Wise Independent Random Variables. In: FOCS, pp. 544–553. IEEE Computer
Society (1990)

4. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE,
Round 2 (2009)

5. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and applica-
tion to virus protection. In: Leighton, F.T., Borodin, A. (eds.) STOC, pp. 45–56.
ACM (1995)

6. Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw, Billet (eds.)
[32], pp. 84–97

7. Black, J., Rogaway, P.: A Block-Cipher Mode of Operation for Parallelizable Mes-
sage Authentication. In: Knudsen (ed.) [18], pp. 384–397

8. Boesgaard, M., Christensen, T., Zenner, E.: Badger – A Fast and Provably Secure
MAC. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 176–191. Springer, Heidelberg (2005)

9. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient Helper
Data Key Extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)

10. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

11. Contini, S., Yin, Y.L.: On differential properties of data-dependent rotations and
their use in MARS and RC6 (Extended Abstract). In: Proceedings of the Second
AES Candidate Conference, pp. 230–239 (2000)

12. Daykin, D.E.: On the Rank of the Matrix f(A) and the Enumeration of Certain
Matrices over a Finite Field. Journal of the London Mathematical Society s1-35(1),
36–42 (1960)

13. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The XTS-
AES Mode for Confidentiality on Storage Devices. Special Publication 800-38E pp.
175–182 (2010)

14. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family. Submission to the NIST SHA-3
Competition, Round 2 (2009)

http://chessprogramming.wikispaces.com/
http://oeis.org/A046145/

236 K. Minematsu

15. Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-
Line Authenticated Encryption Schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 196–215. Springer, Heidelberg (2012)

16. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

17. Jetchev, D., Özen, O., Stam, M.: Understanding Adaptivity: Random Systems
Revisited. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 313–330. Springer, Heidelberg (2012)

18. Knudsen, L.R. (ed.): EUROCRYPT 2002. LNCS, vol. 2332. Springer, Heidelberg
(2002)

19. Krawczyk, H.: LFSR-based Hashing and Authentication. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

20. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption
Modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

21. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable Block Ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

22. Ma, X., Xu, F., Xu, H., Tan, X., Qi, B., Lo, H.K.: Postprocessing for quantum
random number generators: entropy evaluation and randomness extraction (2012),
http://arxiv.org/abs/1207.1473

23. Maes, R., Tuyls, P., Verbauwhede, I.: Low-Overhead Implementation of a Soft
Decision Helper Data Algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009)

24. Maurer, U.M.: Indistinguishability of Random Systems. In: Knudsen (ed.) [18], pp.
110–132

25. Minematsu, K.: Improved Security Analysis of XEX and LRW Modes. In: Biham,
E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 96–113. Springer, Heidel-
berg (2007)

26. Nguyen, L.H., Roscoe, A.W.: Simple construction of epsilon-biased distribution.
Cryptology ePrint Archive, Report 2012/429 (2012), http://eprint.iacr.org/

27. Rogaway, P., Zhang, H.: Online Ciphers from Tweakable Blockciphers. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 237–249. Springer, Heidelberg (2011)

28. Ristenpart, T., Rogaway, P.: How to Enrich the Message Space of a Cipher. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 101–118. Springer, Heidelberg
(2007)

29. Rivest, R.L.: The RC5 Encryption Algorithm. In: Preneel, B. (ed.) FSE 1994.
LNCS, vol. 1008, pp. 86–96. Springer, Heidelberg (1995)

30. Rivest, R.L.: The invertibility of the xor of rotations of a binary word. Int. J.
Comput. Math. 88(2), 281–284 (2011)

31. Rivest, R.L., Robshaw, M.J.B., Yin, Y.L.: Rc6 as the aes. In: AES Candidate
Conference, pp. 337–342 (2000)

32. Robshaw, M., Billet, O. (eds.): New Stream Cipher Designs. LNCS, vol. 4986.
Springer, Heidelberg (2008)

33. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

34. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM Conference on Computer and Communications Security, pp. 196–205.
ACM (2001)

http://arxiv.org/abs/1207.1473
http://eprint.iacr.org/

A Short Universal Hash Function 237

35. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

36. Sarkar, P.: A new multi-linear universal hash family. Designs, Codes and Cryptogra-
phy pp. 1–17, http://dx.doi.org/10.1007/s10623-012-9672-8, 10.1007/s10623-
012-9672-8

37. Stankovski, P., Hell, M., Johansson, T.: Analysis of Xorrotation with Application
to an HC-128 Variant. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012.
LNCS, vol. 7372, pp. 419–425. Springer, Heidelberg (2012)

38. Thomsen, S.S.: Cryptographic hash functions. PhD thesis, Technical University of
Denmark (2008)

39. Wah, P., Wang, M.Z.: Realization and application of the Massey-Omura lock. Dig-
ital Commnucation, International Zurich Seminar, 175–182 (1984)

40. Wu, H.: The Stream Cipher HC-128. In: Robshaw, Billet (eds.) [32], pp. 39–47

A Proof of Theorem 1

We use a result of Minematsu [25]4. We first show the proof for XEX-R1. Let
us write h(V, t1) = CLH′

n,κ(V, t1) for V ∈ {0, 1}n and t1 ∈ T1. Then the

tweakable encryption of Theorem 1 can be written as ẼK(M,T) = EK(M ⊕
h(EK(T2), T1)) ⊕ h(EK(T2), T1), which fits into the model discussed by [25].
First, we have to bound

γ
def
= max

t1∈T1,c∈{0,1}n
Pr[h(V, t1) = c],

ε
def
= max

t1 �=t′1∈T1,c∈{0,1}n
Pr[h(V, t1)⊕ h(V, t′1) = c], and

ρ
def
= max

t1∈T1,c∈{0,1}n
Pr[h(V, t1)⊕ V = c],

where probabilities are defined over V
$← {0, 1}n and T1 = {0, 1}κ−1 \

{0κ−1, 0κ−21}. For γ, the probability is at most the maximum point probability
of CLH′

n,κ(V, t1) for t1 �= 0κ−1. As V is uniform, we have γ = 2/2κ from Lemma
1. Then, ε is equivalent to Pr[msbκ(h(V, t1) ⊕ h(V, t′1)) = msbκ(c)], which is at
most 2/2κ from Lemma 1. For ρ, let V = Vl‖Vr and c = cl‖cr with |Vl| = |cl| = κ
and |Vr | = |cr| = n− κ. Then we have

Pr[h(V, t1)⊕ V = c] = Pr[CLHκ(Vl, t1)⊕ CLHκ(Vl, 0
κ−2‖1) = cl, Vr = cr].

Since T1 does not contain 0κ−2‖1 and that Vl and Vr are independent and ran-
dom, the probability of the right hand side is at most 2/2κ · 1/2n−κ = 2/2n

from Lemma 2. Combining Lemma 2 and Theorem 4 of [25] with the result
(γ, ε, ρ) = (2/2κ, 2/2κ, 2/2n), we obtain the bound of TSPRP-advantage being
(2ε+ γ + ρ+ 2/2n)q2 = (6/2κ + 2.5/2n)q2.

For proving the bound for XEX-R2, we similarly have γ, ε ≤ 2/22n−λ from
Lemma 2. For ρ, since V = CLH′′

n,λ(V, 0
λ−2‖1) and t1 = 0λ−2‖1 is excluded, we

obtain ρ ≤ 2/22n−λ.

4 This result is obtained by using Maurer’s random system method [24], and the result
does not suffer from a flaw of a theorem of [24] recently found by Jetchev et al. [17].

http://dx.doi.org/10.1007/s10623-012-9672-8

238 K. Minematsu

B String-to-Vector (S2V) PRF

Fig. 2 shows the String-to-Vector (S2V) PRF [35]. Here 2S denotes the GF
doubling over GF(2n).

Algorithm S2V[FK](X[1], . . . , X[�])

1. if � = 0 then return FK(0n−11)
2. S ← FK(0n)
3. for i ← 1 to �− 1 do S ← 2S ⊕ FK(X[i])
4. if |X[�]| ≥ n then V ← S⊕endX[�] else V ← 2S⊕X[�]‖10∗
5. return FK(V)

�
�

����

���

	

�
�

��
� ���� ����
�

�
�

�
�

���

���

�

�
�

����
�

	

�
�

�

� �

�

�
�

��
� ���� ����
�

�
�

�
�

���

���

�

�
�

�

� �

Fig. 2. S2V vector-input PRF using FK : {0, 1}∗ → {0, 1}n. The box with “d” in the
lower figure denotes the GF doubling.

	A Short Universal Hash Function from Bit Rotation, and Applicationsto Blockcipher Modes
	1 Introduction
	2 Preliminaries
	3 Universal Hash Function from Bit Rotation
	3.1 Constructions Based on Matrix-Vector Product
	3.2 Useful Variants
	3.3 Notes

	4 Tweakable Blockcipher
	4.1 Definition of Tweakable Blockcipher
	4.2 Previous Constructions
	4.3 Tweakable Blockcipher Using

	5 Vector-Input PRF
	5.1 Construction of S2V-R
	5.2 Properties of S2V-R

	6 Conclusion
	References

