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Preface

The 7th International Conference on Provable Security (ProvSec 2013) was held
in Melaka, Malaysia, October 23–25, 2013. The conference was organized by
Universiti Teknikal Malaysia Melaka.

ProvSec 2013 received 44 submissions from 15 different countries all over the
world. The review process was a challenging task. Almost all submissions were
carefully evaluated by three reviewers, and then discussed among the Program
Committee. Moreover, 30 external subreviewers gave review comments on their
area of expertise. The Program Committee selected 18 papers for the program
out of 44 submissions. Further, the program featured an excellent invited talk
given by Serge Vaudenay (EPFL, Lausanne, Switzerland) titled “On Modeling
Terrorist Frauds”.

Many people contributed to the success of ProvSec 2013. First, we would like
to thank all of the authors for submitting their works to ProvSec 2013. We deeply
thank the 25 Program Committee members as well as the external reviewers for
their volunteer work of reading and discussing the submissions. Their names may
be found overleaf.We thank the General Co-chairs, Shekh Faisal Abdul Latip and
Jennifer Seberry, for their excellent management and dedication in organizing
and running the conference. We would also like to thank the Steering Committee
and Local Organizing Committee. We also want to express our gratitude to
our generous sponsors: PRESTARIANG and SKMM/MCMC. Finally, we would
like to express our thanks to Springer for continuing to support the ProvSec
conference and for help in the conference proceedings production.

October 2013 Willy Susilo
Reza Reyhanitabar
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On Modeling Terrorist Frauds

Addressing Collusion in Distance Bounding Protocols

Serge Vaudenay

EPFL, Lausanne, Switzerland
http://lasec.epfl.ch

Abstract. Quite recently, distance-bounding protocols received a lot of
attention as they offer a good solution to thwart relay attacks. Their
security models at still unstable, especially when considering terrorist
fraud. This considers the case where a malicious prover would try to
bypass the protocol by colluding with an adversary without leaking his
credentials. Two formal models appeared recently: one due to Fischlin
and Onete and another one by Boureanu, Mitrokotsa, and Vaudenay.
Both were proposed with a provably secure distance-bounding protocols
(FO and SKI, respectively) providing security against all state-of-the-art
threat models. So far, these two protocols are the only such ones.

In this paper we compare both notions and protocols. We identify
some errors in the Fischlin-Onete results. We also show that the design
of the FO protocol lowers security against mafia frauds while the SKI
protocol makes non-standard PRF assumptions and has lower security
due to not using post-authentication. None of these protocols provide
reasonable parameters to be used in practice with a good security. The
next open challenge consists in providing a protocol combining both ap-
proaches and good practical parameters.

Finally, we provide a new security definition against terrorist frauds
which naturally inspires from the soundness notion for proof-of-knowledge
protocols.

1 Introduction

Relay attacks and distance-bounding. Many access control protocols are vul-
nerable to relay attacks. This is the case of most of RFID-based protocols. To
defeat this, distance-bounding protocols offer a practical solution. These pro-
tocols, originally proposed by Brands and Chaum [6], consist of proving that
a prover is within a close distance to a verifier by using an interactive pro-
tocol. The protocol is based on the physical limits of communication. Namely,
transmission cannot go faster than the speed of light. So, these protocols use a
rapid-bit exchange phase in which the prover must respond extremely fast and
messages are very short (typically: single bits), in order to prove that he is close
enough.

Threat models. Clearly, distance-bounding shall resist to distance fraud, where
a malicious prover tries to defeat the protocol by passing even though he is far

W. Susilo and R. Reyhanitabar (Eds.): ProvSec 2013, LNCS 8209, pp. 1–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://lasec.epfl.ch


2 S. Vaudenay

away. They shall also defeat relay attacks and more general notions of man-
in-the-middle attacks where an adversary abuse of a far-away prover to pass
the protocol. This is what makes practitioners like distance-bounding protocols.
These types of attacks are often refer to as mafia frauds, following a (quite
unfortunate) terminology due to Desmedt [9]. A more subtle notion from [9]
consists of the terrorist fraud. There, the prover is also malicious, but still far
away. He is colluding with an adversary (who can be close to the verifier) to pass
the protocol, but without leaking his credentials to him. As discussed below, this
type of attack is very tricky, not always considered, and quite often incorrectly
addressed.

Many protocols and (informal) security notions have been proposed. Some
protocols have been semi-formally proven secure but most of results were shown
to be incorrect. For instance, some protocols based on a pseudorandom function
(PRF) were incorrectly proven secure, as shown in [2]. Consequently, and as far
as we know, none existing protocols (except the two which are discussed in this
paper) are proven to provide security against all the above threat models. We
refer the reader to [5] for a selective survey on the evolution of protocols which
has led to the current models and schemes.

There also exist some “more exotic” threat models such as distance hijack-
ing [8] where a far away malicious prover abuses other provers to pass the pro-
tocol with the verifier.

The Problem of Terrorist Fraud. Originally, “terrorist fraud” [9] consisted in
having a malicious prover helping an adversary to impersonate him but without
leaking his credentials. To safeguard against this type of attack means that a
malicious prover cannot help an adversary to impersonate him without making
this help reusable. Namely, there must be no other way than transferring the
credentials to a close participant in order to make the protocol succeed.

The Hancke-Kuhn protocol: a Case Study. To illustrate this notion, we first
give the example of a prominent distance-bounding protocol: the Hancke-Kuhn
protocol [14]. The prover and the verifier share a long-term secret x. (See Fig. 1.)
They first exchange some nonces. Then, a PRF f keyed with x is used to derive
some one-time n-bit keys a1 and a2. Then, they go through n rounds of rapid
bit-exchange: the verifier sends a random challenge ci ∈ {1, 2} and the prover
responds by the ith bit of aci . A terrorist fraud is easy: the malicious prover
helps the adversary to exchange the nonces then computes a1 and a2 and gives
them to the adversary. So, the adversary can successfully go through the rapid
bit-exchanges. Additionally, disclosing a1 and a2 does not expose x since we use
a secure PRF.

One difficulty with resistance to terrorist fraud is that it is non-falsifiable.
Indeed, we cannot falsify security just by exhibiting an attack. The attack must
be such that we could prove that the credentials do not leak, which is not always
easy to prove. (In the above example, this is based on the PRF assumption.)

A common technique to strengthen the Hancke-Kuhn protocol consists of us-
ing a2 = a1⊕x. This way, the prover cannot disclose a1 and a2 without exposing
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Verifier Prover
secret: x secret: x

initialization phase

pick NV
NV−−−−−−−−−−→
NP←−−−−−−−−−− pick NP

a1‖a2 = fx(NP , NV ) a1‖a2 = fx(NP , NV )

distance bounding phase
for i = 1 to n

pick ci ∈ {1, 2}
start timeri

ci−−−−−−−−−−→
stop timeri

ri←−−−−−−−−−− ri =

{
a1,i if ci = 1
a2,i if ci = 2

#{i : ri and timeri correct} ≥ τ
OutV−−−−−−−−−−→

Fig. 1. The Hancke-Kuhn Distance-Bounding protocol [14]

x. Unfortunately, it becomes vulnerable to a man-in-the-middle attack [15] in
which the man-in-the-middle flips one challenge ci and sends c̄i to the prover. So,
he can learn the ith bit from ac̄i from the prover and deduce from the protocol
outcome the ith bit of aci . To avoid this attack, Kim et al. [15] proposed the
Swiss-Knife protocol, in which the protocol transcript is authenticated before
the protocol outcome is revealed. (See Fig. 2.)

Terrorist Fraud using resilience to noise. Unfortunately, this does not protect
against terrorist fraud as soon as noisy channels are considered. Indeed, the rapid
bit-exchange must be done under heavy constraints and it is likely that noise will
corrupt a few rounds in honest executions. So, protocols must tolerate a constant
number of incorrect rounds. In the protocols, we assume that authentication
succeeds when the number of successful rounds is at least τ out of n. In practice,
τ
n must be a constant ratio depending on physical constraints.

It was observed by Hancke [13] that a malicious prover could still provide
some noisy versions of a1 and a2 so that the number of succeeding rounds is
likely to be at least τ (due to noise resilience) but a1 ⊕ a2 would only leak a
noisy version of x. Concretely, we can imagine a function g mapping x to a small
(but constant-sized) set of indices g(x) and that a1 and a2 would be random at
all positions specified in g(x). So, the number of possible x is exponential and x
does not leak. Without the noiseless version of x, we cannot evaluate the PRF.
So, the credential does not leak.

Related work. Avoine et al. [1] give a complete but very informal security model
for distance-bounding. A more promising model is the one due to Dürholz et
al. [10]. It separates the use of rapid-bit exchange and regular communication and
is based on communication traces in the rapid exchange phase. They propose the
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Verifier Prover
secret: x secret: x

initialization phase

pick NV
NV−−−−−−−−−−→
NP←−−−−−−−−−− pick NP

a1 = fx(NP , NV ) a1 = fx(NP , NV )
a2 = a1 ⊕ x a2 = a1 ⊕ x

distance bounding phase
for i = 1 to n

pick ci ∈ {1, 2}
start timeri

ci−−−−−−−−−−→
stop timeri

ri←−−−−−−−−−− ri =

{
a1,i if ci = 1
a2,i if ci = 2

verification phase

#{i : ri and timeri correct} ≥ τ
t←−−−−−−−−−− t = fx(transcript)

check t
OutV−−−−−−−−−−→

Fig. 2. The Swiss-Knife Distance-Bounding protocol [15]

notion of SimTF security to model resistance to terrorist frauds. Unfortunately,
they show that essentially no existing protocol satisfies this notion and suspect
in [11] that this notion may be too demanding. In [12], they finally provide a
protocol (called the FO protocol in this paper) providing this security notion and
all the above ones. In parallel, Boureanu et al. [3,4,5] propose another model
which introduces the notion of location and communication time. They also
propose to model resistance to terrorist frauds, but with a notion called collusion
fraud. Additionally, they construct a family of protocols (the SKI protocols)
which offer provable security against all the above security notions.

Our results. In this paper, we identify some errors from [12]. Namely, the modi-
fied SwissKnife (MSK) protocol does not satisfy the security which is proven in
[12] and some probability parameters in the FO protocol are too low.

Then, we compare the FO and SKI protocols. We show that FO has a non-
uniform security against distance frauds. We show that the SimTF notion that
the FO protocol must satisfy degrades resistance to mafia frauds. Consequently,
the number of rounds must be very high to obtain a good security. E.g., 163
rounds are needed for a security level equivalent to a 20-bit symmetric key.
With SKI, this is the same for distance fraud (but with a uniform security), this
is worse for collusion fraud (with 531 rounds), but the security against man-
in-the-middle (what we like distance-bounding for) only requires 76 rounds. All
this holds for τ/n = 90%.
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Finally, we compare the security notions to protect against terrorist frauds.
We also propose a new one which is naturally inspired from the notion of sound-
ness in proofs-of-knowledge: a distance-bounding protocol is sound if there is an
extractor who can extract the secret from the view of close participants by having
the protocol successfully executed. We prove that SKI satisfies this notion and
prove again strSimTF security for the FO protocol with corrected parameters.

Notations. In what follows, we will use B defined by

B(n, τ, q) =

n∑
i=τ

(n
i

)
qi(1 − q)n−i (1)

It is known [7] that for τ = nt, t and q constant such that t > q, and n → +∞,
we have

B(n, τ, q) ∼ 1√
2π

∫ +∞

(t−q)
√

n
q(1−q)

e−
x2

2 dx ∼ 1√
2π

√
q(1− q)

n(t− q)2
e−

n(t−q)2

2q(1−q)

So, we have the following result.

Lemma 1. For t and q constant such that t > q, we have

lim
n→+∞

− 1

n
lnB(n, nt, q) =

(t− q)2

2q(1− q)

2 The Fischlin-Onete Approach

2.1 SimTF Security

In [10], Dürholz et al. propose a way to formalize the security against terrorist
fraud. It is referred to as the SimTF security in [12]. This model tells apart
communications through a lazy (regular) channel from the ones through a time-
critical channel. There is a special notion of tainted session which depends on
the security notion.

Definition 2 (SimTF security). We consider two experiments. In the first
one, the malicious prover P ∗ and the adversary A interact with the verifier V .
A rapid exchange between V and A is tainted if we can make a sequence of
messages mV A,mAP∗ ,mP∗A,mAV in chronological order such that mUV is sent
from U then received by V . We denote by pA the probability that the verifier ac-
cepts in this first experiment. In the second experiment, we first run the previous
experiment, then provide a simulator S with the final view of A. S then interacts
alone with V in a new session. We denote by pS the probability that the verifier
accepts in this last session.

We say that a terrorist fraud (A,P ∗) is successful if for all S we have pS ≤ pA.
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So, P ∗ and A are not allowed to interact during the rapid exchange between V
and A. In [11], it was shown that essentially none of the existing protocols offers
SimTF security, but it was suggested that this could be due to the notion being
too strong.

This notion was strengthened even more in [12] by changing the notion of
tainted session. In this strengthened notion, P ∗ and A can interact during the
distance bounding phase, but they are not allowed to have any single round
(instead of the session) of rapid bit-exchange which goes through the V -A-P ∗-
A-V loop. This is the strSimTF notion.

2.2 GameTF Security

In [12], Fischlin and Onete proposed a weaker notion.

Definition 3 (GameTF security). Let AdvMF be the best probability that a ver-
ifier accepts in a mafia-fraud attack. (The maximum is taken over all adversaries
with limited complexity and number of queries to P and V .)

A terrorist fraud (P ∗, A) is helpful to an adversary A′ if running an exper-
iment with V , A, and P ∗ and no tainted session, then running a second ex-
periment with V , A′, and P , with A′ initialized with the final view of A and
no tainted session, makes V accept with a probability PA′ which is larger than
AdvMF. (The complexity bounds of AdvMF must be satisfied by A′.) We use the
notion of tainted session from strSimTF.

We have ε-GameTF security if all terrorist fraud (P ∗, A) succeeding with pA ≥
ε are helpful for at least one adversary A′.

Remark 4. The probability AdvMF of the best mafia-fraud attack is not a well-
defined quantity if we do not impose an exact limitation on the adversary (e.g.
in terms of complexity and number of queries). Indeed, if we consider all poly-
nomially bounded adversaries, for each value of the security parameter, there is
always a polynomially bounded attack (namely, the one making an exhaustive
search up to this value of the security parameter and doing nothing beyond)
succeeding with probability close to 1.

Remark 5. For every mafia-fraud adversary A, it is always possible to design
another adversaryA′ with a small complexity overhead and doing a bit better: we
assume that A makes enough observations. We define A′ by first making a guess
for the secret. Then, A′ simulates A. If, during the observations, A′ realizes that
the guess for the secret is consistent with the information collected by A, then
it stops simulating A and uses the guess to impersonate the prover. Otherwise,
the simulation continues normally. By tuning the number of observations so
that the probability that an incorrect guess is consistent is negligible against the
probability to guess the secret correctly, this new adversary A′ performs better
and A.
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In [12], Fischlin and Onete modify the Swiss-Knife protocol to make it Ga-
meTF-secure. The protocol is on Fig. 3.1 We call it the MSK protocol (as for
Modified Swiss-Knife). Essentially, they introduce a new shared secret y: x is
only used for the PRF computation while y is used in a2 = a1 ⊕ y. This pro-
tocol is GameTF-secure for ε = AdvMF [12, Prop.1]. It is further claimed that
AdvMF = B(n, τ, 1

2 ) + negl for a targeted reader session2 where B is defined by
Eq.(1).

Verifier Prover
secret: x, y secret: x, y

initialization phase

pick NV
NV−−−−−−−−−−→
NP←−−−−−−−−−− pick NP

a1 = fx(NP , NV ) a1 = fx(NP , NV )
a2 = a1 ⊕ y a2 = a1 ⊕ y

distance bounding phase
for i = 1 to n

pick ci ∈ {1, 2}
start timeri

ci−−−−−−−−−−→
stop timeri

ri←−−−−−−−−−− ri =

{
a1,i if ci = 1
a2,i if ci = 2

verification phase

#{i : ri and timeri correct} ≥ τ
t←−−−−−−−−−− t = fx(transcript)

check t
OutV−−−−−−−−−−→

Fig. 3. The Modified Swiss-Knife (MSK) Distance-Bounding protocol [11]

Introducing a new secret y besides the one x used in PRF is a clever choice
to avoid the problems based on PRF programming [2] making security results
incorrect. We still need to have y honestly selected (as specified in [12]) for
distance fraud. Otherwise, registering y = 0 leads to a trivial distance fraud.

1 For the sake of clarity in this paper, our description slightly differs from the one in
[12]. The main difference resides in that [12] uses two separate counters to count the
number of rounds for which the timer expires, and for which the timer is acceptable
but the response is incorrect. Our analysis remains valid for the original version in
[12].

2 We can infer this bound from [12, Prop.3] which applies to the original protocol. In
this result, the first term of AdvMF is qR2

−τ where qR is the number of (untargeted)
adversary-reader sessions, other terms being negligible as they express that nonces
may repeat or that the PRF property may be defeated.
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Terrorist fraud against the MSK protocol. We now show a practical terrorist
fraud contradicting the security proof for GameTF-security from [12]. We con-
sider a malicious prover helping the adversary in the nonce exchange and the
final transcript authentication, and just disclosing a1 and y to the adversary.
Clearly, the adversary using a1 and a2 = a1 ⊕ y succeeds with probability 1.
We have now to show that this adversary is not helpful in practice. He only
discloses y. The (a1, a2) pairs can be learnt by running the protocol with the
honest prover. So, we just have to consider a mafia fraud adversary getting y as
an auxiliary input. We can show (see the Lemma below) that such an adversary
is incapable of succeeding, except with negligible probability. So, it is clear that
we do have a terrorist fraud succeeding with probability 1 and leaking no useful
information to mount a mafia fraud attack.

Lemma 6. In the MSK protocol, we consider an experiment with a far-away
prover P , an adversary A receiving y as an auxiliary input, and a verifier V .
The probability that a target session of V accepts is limited by B(n, τ, 1

2 ) + negl.

Proof. We first reduce to cases where nonces do not repeat and the PRF is
replaced by a random function. Then, using hybrids, we reduce to a single session
on P and V using the same nonces. Finally, we assume that if P and V see
different transcripts, the protocol fails due to an incorrect t. All this induces a
negligible term in the probability of success.

Due to the large distance between P and V , A can either send a random c′i to
P before he receives ci from V (the Go-Early strategy), or answers to ci without
any clue and ask for some c′i to P later (the Go-Late strategy).

Since A knows y, in the Go-Early strategy,A deduces the answer to all possible
challenge ci at round i. However, the correct tag t can only be obtained from P
if ci = c′i, which happens with probability 1

2 .
In the Go-Late strategy, A has no clue about the response, so the probability

to be correct is 1
2 .

Hence, in any case, the probability that one round is correct is 1
2 . Since we

need τ correct rounds, the probability to win is B(n, τ, 1
2 ). 
�

It was proven in [12, Prop.1] that the MSK protocol is GameTF-secure. How-
ever, the proof makes no reference to the authenticating t in the protocol, which
makes us believe that the result is incorrect. The above attack shows that either
this is the case, or the GameTF security does not capture well the resistance to
terrorist fraud. Indeed, it could be the case that a helpful attack is still rele-
vant in practice, although ruled out by this notion, because the help provided is
negligible.

2.3 FO: A SimTF-Secure Protocol

In [12], Fischlin and Onete propose another protocol which is SimTF and str-
SimTF-secure. The protocol is on Fig. 4.3 We call it the FO protocol. In a normal

3 Like for the MSK protocol, the original FO protocol uses two separate counters. Our
analysis for the original protocol will be discussed in Remark 7.
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execution, we always have b = 0 and the protocol works like the one on Fig. 3.
For b = 1, a special procedure is run: the accepted response ri is different, and
the verification for I is a bit special. Namely, the verifier now accepts ri = ci as
the correct answer.4 For b = 0, the verifier checks that I ′ = I. Additionally, for
b = 1, I is accepted with a probability pdH(I,y) which depends on the Hamming
distance between I and y. The value of pd is adjusted to have SimTF security.
So, the mafia fraud resistance corresponds to the terrorist fraud resistance. The
idea is that the b = 0 case protects against distance frauds and mafia frauds,
and that terrorist frauds leak some information y′ close to y, and the b = 1 case
protects against distance frauds only but requires such information y′.

Verifier Prover
secret: x, y secret: x, y

initialization phase

pick NV
NV−−−−−−−−−−→ set b = 0

b,I,NP←−−−−−−−−−− pick NP

I ′‖a1 = fx(NP , NV ) I‖a1 = fx(NP , NV )
a2 = a1 ⊕ y a2 = a1 ⊕ y

distance bounding phase
for i = 1 to n

pick ci ∈ {1, 2}
start timeri

ci−−−−−−−−−−→
stop timeri

ri←−−−−−−−−−− ri =

{
a1,i if ci = 1
a2,i if ci = 2

verification phase

check b, I, t,
t←−−−−−−−−−− t = fx(transcript)

#{i : ri and timeri correct} ≥ τ
OutV−−−−−−−−−−→

correctness conditions for b = 0 correctness conditions for b = 1

I ′ = I correct with probability pdH(I,y)

t = fx(transcript) —
ri = aci,i ri = ci
timeri ≤ B timeri ≤ B

Fig. 4. The Fischlin-Onete Distance-Bounding protocol [12]

4 In [12], it is written that the verifier also accepts ri = ci which seems to mean that
both ri = (aci)i and ri = ci are accepted. However, having two different possible
responses could lead to an easy distance fraud: if for some value of ci both answers
are correct, we just prepare the answer for the other value c̄i. So, only the ri = ci

answer should be accepted.
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We first note that it is pretty weird to have a piece of code (namely, the b = 1
case) which shall never be used for b = 1, and which provides an escape way
to pass the protocol without knowing x. It may also introduce some strange
attack models similar to distance hijacking [8], where far-away malicious provers
take advantage of the proximity of honest participants to feed responses for
them. Here, a far-away prover only needs someone to echo the challenges. We
could also have a malicious participant P ∗

1 (x) carrying the initialization and
verification phases himself, and hijacking some (P ∗

2 (x), A(x)) pair running a
terrorist fraud with b = 1. So, this protocol modification may induce some new
“exotic” kinds of frauds in the family of distance fraud and distance hijacking.

Distance fraud. A malicious far-away prover could anticipate responses corre-
sponding to yi = 0 since they are independent of the challenge. Others are
correct with probability 1

2 . On average over the distribution of y, one round suc-
ceeds with probability 3

4 . With y fixed, the probability of success of the distance
fraud is B(w, τ − n+w, 1

2 ) with B defined by Eq.(1), where w = dH(0, y) is the
Hamming weight of y. So, user receiving a key y with a low weight have a better
incentive to cheat in a distance fraud! It could also induce some weird behaviors
of malicious users asking for new credentials until they have a better Hamming
weight. Another bad property is that the probability of B(w, τ−n+w, 12 ) is fixed
once for all: a user succeeding to get a low w offline has always better chances
to defeat distance fraud online. Clearly the security is non-uniform about the
selection of y. On average, it is of B(n, τ, 3

4 ).

Mafia fraud. Due to the design of the FO protocol, terrorist frauds induce mafia
frauds. Let us consider the following terrorist fraud (A,P ∗) depending on a
parameter e: let g(x) be a set of indices of cardinality e. Then, we consider a
malicious prover P ∗ disclosing y′ such that g(x) = {i; yi �= y′i} and #g(x) = e.
Additionally, he helps the adversary A in the nonce exchange and provides a′1
matching a1 on each position which is not in g(x) and set to random bits in
positions in g(x). The adversary using a′1 and a′2 = a′1 ⊕ y′ instead of a1 and
a2 wins if the number of errors is below n − τ . We know that errors happen
randomly in a set of e. So, the probability to pass is ρe = B(e, e − n + τ, 1

2 ).
Now, for an adversary S trying to pass the protocol by only knowing y′, since
he cannot forge t in the verification phase, the best strategy is to use the escape
strategy with b = 1. Since he has no information about g(x), y′ remains the best
approximation of y to him. By using I = y′, he passes with probability pe. For
instance, for e = 2(n − τ), we have ρe = 1

2 : it shall be enough to provide a y
with twice more errors than allowed. Due to the SimTF definition, this attacks
requires that we have pe ≥ ρe for all e. In Th. 8, we will show that this condition
is also sufficient.

However, the pe ≥ ρe bounds creates a new mafia fraud attack: Now, we
consider a mafia-fraud adversary who just tries to guess y′ within a small distance
to y and who uses the escape b = 1 in the protocol with this guess. Trying to
guess vector at a distance e works with probability of success

(
n
e

)
2−n. Finally,

the attack using b = 1 and a random I works with probability
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p =

n∑
e=0

(n
e

)
2−npe

≥
n∑

e=0

(n
e

)
2−nρe

=

n∑
e=0

(n
e

)
2−nB

(
e, e− n+ τ,

1

2

)

=
n∑

e=0

e∑
i=e−n+τ

(n
e

)(e
i

)
2−n−e

=

n∑
e=0

n−τ∑
i=0

(n
e

)(e
i

)
2−n−e

=
n−τ∑
i=0

n∑
e=0

(n
e

)(e
i

)
2−n−e

=

n−τ∑
i=0

n∑
e=0

(n
i

)(
n− i

n− e

)
2−n−e

=
n−τ∑
i=0

n∑
e=i

(n
i

)(
n− i

n− e

)
2−n−e

=

n−τ∑
i=0

(n
i

)
2−2n3n−i

=

n∑
j=τ

(
n

j

)(
3

4

)j (
1

4

)n−j

= B

(
n, τ,

3

4

)
with B defined by Eq.(1). In contrast, the probability of success of the regular
(i.e. with b = 0) mafia fraud is B(n, τ, 1

2 ) which is much lower. So, this modifica-
tion of the Swiss-Knife protocol induces a significant security loss for mafia-fraud
resistance.

As an application, we take n− τ = n
10 (that is, we want 90% of the rounds to

be correct to tolerate a noise level below 10%). For n = 144 rounds, we obtain
B(n, τ, 1

2 ) ≈ 2−80, but B
(
n, τ, 34

)
≈ 2−18. To reach B

(
n, τ, 34

)
≈ 2−80, we need

n ≥ 724 to secure the FO protocol against the mafia fraud. On Fig. 5, we plot
− log2 B(n, τ, p) for τ = �n ∗ 0.9� and p ∈ { 1

2 ,
3
4}. (Note that discontinuities are

due to rounding τ .) Due to Lem. 1, it is clear that these curves are close to a line

with slope
( τ
n−p)2

2p(1−p) ln 2 . So, for the number of rounds n, we are loosing a factor

3
4

(
τ
n− 1

2
τ
n− 3

4

)2

which is 16
3 in this case.
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The security of FO follows the curve 3 for distance fraud, mafia fraud, and terrorist
fraud while the security of MSK follows the curve 1 for mafia fraud. The security of
SKI follows the curves 3, 2, and 4 for distance fraud, man-in-the-middle, and collusion
fraud, respectively.

Fig. 5. Security (Equivalent Bitlength) in Terms of the Number of Rounds n for τ =
	n ∗ 0.9�
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Note that this attack can self-improve: assuming that an adversary has got
a good y′, his probability of success in a mafia fraud will always be at least
ρe. Furthermore, if this probability is low enough, by doing some statistics and
using a hill climbing approach, the adversary can find a better y′ and eventually
obtain one within a distance n−τ , which makes the attack work with probability
1. Fortunately, except in a terrorist fraud case, there is no better way to find a
good y′ than a random guess.

Another interesting observation is that we need n−τ � n
4 for security. Indeed,

for n− τ ≈ n
4 , we have p ≈ 1

2 which makes the protocol insecure.

Remark 7. In [12], there are specific counters for the response errors and the
timer errors. Namely, there should be no more than Emax errors and no more than
Tmax timeouts. Furthermore, it is specified that pd = min(1, 2−d+Tmax+Emax). We
can adapt our strategy above by having the malicious prover to use two disjoin
sets g(x) and g′(x) and disclosing y′ with errors in g(x) and holes in g′(x). The
adversary would run for a time out for every hole and work as above otherwise.
For e = 2Emax, the probability of success is 1

2 . Now, to approximate y, we have
to fill the holes with random bits. So, we have a probability of success

Tmax∑
i=0

(
Tmax

i

)
2−Tmaxpe+i =

Tmax∑
i=0

(
Tmax

i

)
2−Tmax min(1, 2−e−i+Tmax+Emax)

=

Tmax∑
i=0

(
Tmax

i

)
2−Tmax min(1, 2−Emax−i+Tmax)

=

Tmax∑
i=0

(
Tmax

i

)
2−Emax−i

=

(
1

2

)Emax
(
3

2

)Tmax

when Emax ≥ Tmax. This is smaller than
(
3
4

)Tmax
. Clearly, this is not larger than

1
2 , when Emax ≥ Tmax ≥ 2. So, the probabilities pd provided in [12] are incorrect
in this case.

Security proof for the FO protocol. With similar techniques as in [4], we can
prove the strSimTF security with a pe value matching the necessary condition
which was identified above.

Theorem 8 (TF-Resistance of the FO protocol). For pe = B(e, e−n+τ, 12 )
for every e, the FO scheme is strSimTF-secure.

Proof. In the experiment, we let A denote all participants close to V (by defi-
nition, they are all malicious) and P ∗ denote all far-away participants. We let
Viewi be the view of A just before receiving the challenge ci and View be the
final view. If View includes b = 1, it is clear that it leaks some I which is enough
for a simulator S to pass the protocol with exactly the same probability. So, we
only have to focus on the b = 0 case in the terrorist fraud.
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We let wi be the extra information (obtained from P ∗), not contained in
Viewi, which is received by A before it is critical to answer ri, and we denote
ri = A(Viewi, ci, wi). If A takes too long time, the answer ri is unimportant
and we denote ri = ⊥. Note that wi is still defined as the information before
it is critical to answer in this case. I.e., there is no time to have a round trip
between A and P ∗ from the time A receives ci to the time we set wi. Due to the
assumptions on tainted sessions and that ci is randomly selected by V , we note
that (Viewi, wi) is independent from ci. We define a vector y′ by

y′i = A(Viewi, 1, wi)⊕A(Viewi, 2, wi)

We consider a simulator S computing y′ and using it with b = 1 to pass the
protocol. We want to show that pS ≥ pA. Let e = dH(y, y′). Clearly, what we
have to prove is that E(pe) ≥ pA.

We let Ci be the set of all c’s such that A(Viewi, c, wi) = ac,i with a computed
from V . I.e., Ci is the set of challenges to which A answers correctly in round i.
We let S be the set of all i such that ci ∈ Ci. I.e., A answers correctly in round
i. Clearly, pA = Pr[#S ≥ τ ].

We let R be the set of all i’s such that Ci has cardinality 2, i.e., A always
answers correctly. Clearly, for i ∈ R, we have

y′i = A(Viewi, 1, wi)⊕A(Viewi, 2, wi) = a1,i ⊕ a2,i = yi

Since pe is decreasing, we have pe ≥ pn−#R. Now, we want to prove that
E(pn−#R) ≥ pA.

For every possible set R, we have Pr[#S ≥ τ |R] ≤ B(n −#R, τ −#R, 12 ) =
pn−#R. By averaging over R, we obtain E(pn−#R) ≥ pA. 
�

3 The Boureanu-Mitrokotsa-Vaudenay Approach

3.1 A Two-Dimensional Notion

In [3], Boureanu et al. proposed another definition of terrorist fraud security
which is sketched as follows:

Definition 9 ((γ, γ′)-resistance to TF [3]). We say that a DB protocol is
(γ, γ′)-resistant to terrorist-fraud if for any far-away, coerced prover P ∗, it is
the case that, below, (1) implies (2)
— (1). an adversary A interfering up to his powers with an interaction between
P ∗ and verifier V on their shared secret, where this interaction is successful with
probability at least γ (over the random choices of V and A),
— (2). A can later succeed on his own to make the verifier accept in a new
protocol run with a probability greater than γ′ (taken over the new random choices
made by V and A).

It is further said that this easily extends in a multiparty setting.
Interestingly, this definition separates the probability of success γ of the ter-

rorist fraud and the one γ′ of the further impersonation. This avoids having to
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consider a hard-to-define notion of optimal probability of success of an attack
which cannot be asymptotic (see remark 4) but makes security be based on two
dimensions (γ and γ′) instead of one.

3.2 Collusion Fraud

In [5], Boureanu et al. proposed to replace this definition by the notion of collu-
sion fraud :

“A far-away prover holding x helps an adversary to make the verifier
accept the proof. This might be in the presence of many other hon-
est participants. However, there should be no man-in-the-middle attack
constructed based on this malicious prover. I.e., the adversary should
not extract from him any advantage to run (later) a man-in-the-middle
attack.”

which is further formulated in Vaudenay’s FSE 2013 invited talk5 as

“P (x) far from all V (x)’s interacts with A and makes one V (x) accept,
but View(A) does not give any advantage to mount a man-in-the-middle
attack”

This resembles the GameTF notion where the final view of the adversary is
provided in a further mafia fraud adversary. This notion is further made more
precise in [4]:

Definition 10 ((γ, γ′)-resistance to collusion-fraud [4]).
(∀s)(∀P ∗) (∀locV0 such that d(locV0 , locP∗) > B) (∀ACF ppt.) such that

Pr

[
OutV0 = 1 :

(x, y) ← Gen(1s)
P ∗(x) ←→ ACF ←→ V0(y)

]
≥ γ

over all random coins, there exists a (kind of) MiM attack m, �, z,A1,A2, Pi, Pj ,
Vi′ using P and P ∗ in the learning phase, such that

Pr

⎡⎣OutV = 1 :

(x, y) ← Gen(1s)

P
(∗)
1 (x), . . . , P

(∗)
m (x) ←→ A1 ←→ V1(y), . . . , Vz(y)

Pm+1(x), . . . , P�(x) ←→ A2(V iewA1) ←→ V (y)

⎤⎦ ≥ γ′

where P ∗ is any (unbounded) dishonest prover and P (∗) runs either P or P ∗.
Following the MiM requirements, d(locPj , locV ) > B, for all j ∈ {m+1, �}. In a
concurrent setting, we implicitly allow a polynomially bounded number of P (x′),
P ∗(x′), and V (y′) with independent (x′, y′), but no honest participant close to
V0.

6

5 http://fse2013.spms.ntu.edu.sg/slides/Slides02.pdf
6 “ppt.” means “probabilistic polynomial-time algorithm”.

http://fse2013.spms.ntu.edu.sg/slides/Slides02.pdf
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Essentially, it allows the collusion fraud to be run several times until the adver-
sary can extract enough information to mount an attack. In the definition, we
assume that every running algorithms M are given a location which is denoted
by locM . The value B is the maximal distance until which the prover is consid-
ered too far from the verifier. The man-in-the-middle (MiM) attack separates a
learning phase with m provers and z verifiers, from an attack phase with �−m
far-away provers and one verifier. The learning phase can run with either the
honest prover or the malicious one P ∗ which is being considered in the collusion
fraud. The above theorem refers to a kind of MiM since it is assumed that the
man-in-the-middle plays also with P ∗, which is not the case in regular MiM
attacks.

Clearly, this captures the scenario used in GameTF security.

3.3 SKI: A Collusion-Fraud Resistant Protocol

Boureanu et al. [3,4,5] further proposed the SKI distance-bounding protocols
which provide security against collusion fraud. Compared to the protocols in
the Swiss-Knife family, these protocols do not have a post-authentication phase,
but require a larger set of challenges (namely, 3 instead of 2). (See Fig. 6.) The
second secret y is further derived from the first one x by using a leakage scheme
Lμ. Essentially, running a collusion fraud is bound to leak y which, based being
run several times, allows to fully reconstruct x.

Verifier Prover
secret: x secret: x

initialization phase
NP←−−−−−−−−−− pick NP

pick a,Lμ, NV
M,Lμ,NV−−−−−−−−−−→

M = a⊕ fx(NP , NV , Lμ) a = M ⊕ fx(NP , NV , Lμ)
y = Lμ(x) y = Lμ(x)

distance bounding phase
for i = 1 to n

pick ci ∈ {1, 2, 3}
start timeri

ci−−−−−−−−−−→

stop timeri
ri←−−−−−−−−−− ri =

⎧⎨
⎩

a1,i if ci = 1
a2,i if ci = 2
yi ⊕ a1,i ⊕ a2,i if ci = 3

#{i : ri and timeri correct} ≥ τ
OutV−−−−−−−−−−→

Fig. 6. The SKI Distance-Bounding Protocol [3,4]
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The SKI security requires n− τ � n
6 , which imposes some restriction on the

noise probability. Another disadvantage is that we need a stronger notion of
PRF: a circular-keying secure PRF. The security of SKI is stated as follows.

Theorem 11 (Boureanu-Mitrokotsa-Vaudenay [4]). If f is a (ε, T )-
circular-keying secure PRF and the verifier requires at least τ correct rounds,

– all distance frauds (with complexity bounded by T ) have a success probability
bounded by Pr[success] ≥ B(n, τ, 3

4 ) + ε;
– all man-in-the-middle attacks (with complexity bounded by T ) have a success

probability bounded by Pr[success] ≥ B(n, τ, 2
3 ) +

r2

2 2
−k + ε, where k is the

nonce length and r is the number of participants in the experiment;
– for all collusion frauds such that p = Pr[CF succeeds] ≥ B(n2 , τ −

n
2 ,

2
3 )

1−c and
p−1 polynomially bounded, there is an associatedman-in-the-middle attackwith
P ∗ such that Pr[MiM succeeds] ≥

(
1−B(n2 , τ − n

2 ,
2
3 )

c
)s
, for any c.

B is defined by Eq.(1). On Fig. 5 we plot − log2 B(n, τ, p) for p ∈ { 2
3 ,

3
4} and

− log2 B(n2 , τ − n
2 ,

2
3 ) for τ = �n ∗ 0.9�. Due to Lem. 1, it is clear that the first

two curves are close to a line with slope
( τ
n−p)2

2p(1−p) . By applying Lem. 1 with n and

t replaced by n
2 and 2t−1, we obtain that the slope of the third one is

(2 τ
n−1−p)2

2p(1−p)

with p = 2
3 . To reach a security of 2−80 for distance fraud, we need a pretty high

n = 724. For man-in-the-middle, n = 353 is enough. For collusion fraud, we still
need a very high n = 2 388, but this has no influence on the security against
man-in-the-middle. If a security of 2−20 is considered as enough, we need n = 76
for man-in-the-middle, n = 163 for distance fraud, or n = 531 for collusion fraud.
(Of course, figures become better with a larger τ/n ratio.)

Compared to the FO protocol, every distance fraud attacks is limited to a
success probability of B(n, τ, 3

4 ). Furthermore, there is no auxiliary input such
as some y′ vector to ease a mafia fraud. All man-in-the-middle attacks are limited
to a success probability of B(n, τ, 2

3 ).

3.4 Soundness

The idea behind SKI is that the secret is extractable from the collusion. Ex-
tractability may not always be necessary to protect against terrorist fraud but
it looks like a convenient and easy-to-deal-with notion. As a matter of fact,
Boureanu et al. [5] mentions that collusion resistance looks like some notion of
soundness in interactive proofs.

Indeed, a distance-bounding protocol is an interactive proof for holding a
secret (this is the authentication part) and of close distance. An associated notion
of soundness for this proof could be formalized by means of an extractor. We
propose the following definition:

Definition 12 (γ-m-soundness). We say that a distance-bounding protocol is
γ-sound if for all experiment exp(V , ID) such that
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– all provers and verifiers work for the same identity ID,

– there is no close prover,

– there is no close verifier,

– V accepts with probability at least γ,

there exists a ppt algorithm E called extractor, such that by running m times
exp(V , ID) in some executions expi(V , ID), i = 1, . . . ,m, if Viewi denotes the view
of all close participants in expi(V , ID) and Succi is the event that V accepts in
this experiment, we have

Pr [E(View1, . . . ,Viewm) = xID| Succ1, . . . , Succm] = 1− negl(n)

Lemma 13 (Link between soundness and collusion frauds). For any p ≥
γ such that p−1 is polynomially bounded, if the protocol is γ-m-sound, then it
(p, 1− negl(n))-resists to collusion fraud (in the sense of Def.10).

Proof. Given a collusion fraud with a malicious prover P ∗(xID) succeeding with
probability p ≥ γ, we have an experiment Exp satisfying the properties of the
definition of γ-m-soundness. Thus, there must exist some extractor E . This de-
fines a learning phase of a man-in-the-middle attack involving P ∗(xID), which
just simulates, for Ω(mp−1) times the experiment so that at least m simulations
succeed with probability 1− negl(n). At the end of this learning phase, A com-
putes xID by using E . Then, we define an attack phase with an adversary alone
with V (yID), receiving the x computed by A. This attack succeeds with proba-
bility 1− negl(n). So, the protocol (p, 1− negl(n))-resists to collusion fraud. 
�

With the new soundness definition, we can prove the following result.

Theorem 14 (Soundness of the SKI protocol). For any τ
n > 5

6 and γ such
that γ−1B(n2 , τ − n

2 ,
2
3 ) = negl(n), the SKI scheme is γ-s-sound.

We cannot prove the soundness of the FO protocol (since the x part of the secret
never leaks).

Proof. Again, we use techniques from [5]. The proof is similar to the one of Th. 8.
With the same notations, R now denotes the set of i’s such that the cardinality
of Ci is 3, and we define

y′i = A(Viewi, 1, wi)⊕A(Viewi, 2, wi)⊕A(Viewi, 3, wi)

For i ∈ R, we have y′i = μ · x. So, we are interested in the majority of the y′i’s.
Again, we have Pr[#S ≥ τ |R] ≤ B(n −#R, τ −#R, 2

3 ). For #R ≤ n
2 , we have

Pr[#S ≥ τ |R] ≤ B(n−#R, τ −#R, 2
3 ) ≤ B(n2 , τ − n

2 ,
2
3 ). By averaging over all

R’s such that #R ≤ n
2 , we obtain Pr[#S ≥ τ,#R ≤ n

2 ] ≤ B(n2 , τ − n
2 ,

2
3 ) from

which we deduce Pr[#R ≤ n
2 |#S ≥ τ ] ≤ γ−1B(n2 , τ−

n
2 ,

2
3 ). So, with probability

larger than 1− γ−1B(n2 , τ − n
2 ,

2
3 ), the majority of the y′i’s equals μ · x. After s

such attempts, we recover s linear bits of x, so we extract x. 
�
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4 Conclusion

We have identified some mistakes in [12]: The security result about the MSK
protocol is incorrect, as well as the original probabilities specified in the FO
protocol.

We have compared two notions of terrorist fraud resistance: SimTF and col-
lusion fraud resistance. We have also compared the two protocols offering these
resistance: FO and SKI, respectively. The advantages of FO are that

– it uses binary challenges;
– it is resilient to noise at a higher level 1

4 ;
– it relies on standard PRF security.

The drawbacks are that

– it includes a weird code, not supposed to be used;
– its resistance to mafia fraud is lowered to B(n, τ, 3

4 ) due to the (too) strong
requirements of SimTF security;

– it has a non uniform security B(w, τ − n+ w, 1
2 ) for distance fraud.

About the prominent proposal for the SKI protocol, the advantages are that

– it has a uniform security of B(n, τ, 3
4 ) for distance fraud;

– it has a better security B(n, τ, 2
3 ) against man-in-the-middle;

– all elements of the protocol are used.

The drawbacks are that

– it uses non-binary challenges;
– it is only resilient to noise at a level of 1

6 ;
– it relies on non-standard PRF security.

Clearly, designing a protocol offering all these types of resistance, still with
reasonable parameters in practice, remains an important challenge.

Finally, we extended the collusion fraud resistance by the notion of soundness.
This notion justifies itself by comparison to interactive proofs of knowledge based
on an extractor.

We believe that an ideal protocol could combine both approaches of the FO
and SKI protocols: to provide better security parameters, we should adopt the
leakage scheme approach of SKI (at the cost of a non-standard PRF assumption)
instead of the escape protocol with b = 1 (which lowers security) and adopt, like
FO, the Swiss-Knife frame with only two possible challenges instead of three.
It would provide uniform security for distance fraud and be resilient to noise
up to a 1

4 ratio. The only remaining drawback would be the non-standard PRF
assumption. Designing such a provably secure protocol remains an open problem.

Acknowledgements. The author thanks Marc Fischlin and Cristina Onete
for their feedbacks. Also: many thanks to Ioana Boureanu for some memorable
discussions about terrorism in distance bounding.
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Abstract. This paper investigates authenticated key exchange proto-
cols over signed quadratic residues group QR+

N , which is originally used
for encryption schemes. The key technical tool developed by Hofheinz
et al. is that in group QR+

N the strong Diffie-Hellman (SDH) problem is
implied by the factoring assumption.

To apply group QR+
N to authenticated key exchange protocols in the

enhanced Canetti-Krawczyk (eCK) model, we extend Hofheinz et al.’s
technique and introduce a new proof approach called k-th power.

The k-th power proof approach is almost generic, i.e., applying it to
many, if not all, existing authenticatedDiffie-Hellman key exchange proto-
cols in eCK model under gap assumption immediately produces protocols
in eCK model under factoring assumption if they work over QR+

N .
As one application of k-th power approach, we show that FS protocol,

in which k is a constant, is provably secure in eCK model under factoring
assumption if it works over QR+

N .
Our technique also applies to other protocols, e.g., UP,HMQV and its

variants, in which k is a non-constant, but at the cost of degrading a
factor in the reduction.

Keywords: Authenticated key exchange, Factoring assumption, QR+
N ,

eCK model.

1 Introduction

Key exchange protocols enable two parties, Alice (A) and Bob (B), to establish
a shared session key via an unsecured channel. The classic Diffie-Hellman (DH)
key exchange protocol is as follows: Let G = 〈g〉 be a cyclic group of prime order
q. The exchange messages are X = gx, Y = gy and the final session key is usually
of the form H(gxy). It is well known that DH protocol is only secure against a
passive attacker and vulnerable to the active man-in-the-middle attacker. Sub-
sequently, a lot of work has been dedicated to the design of authenticated key
exchange protocols which are secure against the active attacker.

1.1 Signed Quadratic Residues

Hofheinz et al. introduced a group called signed quadratic residues (QR+
N ). The

group is useful for cryptography because it is a “gap group”, in which the

W. Susilo and R. Reyhanitabar (Eds.): ProvSec 2013, LNCS 8209, pp. 21–37, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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membership in the group can be publicly verified while the computational prob-
lem, i.e., computing square roots, is equivalent to factoringN . Then, they showed
that in the QR+

N group, the strong Diffie-Hellman (SDH) problem [1] is implied
by the factoring assumption.

As one application of QR+
N group, Hofheinz et al. re-analyzed the Hybrid

ElGamal encryption scheme which was originally over prime order subgroups of
Z∗
p, and showed that the Hybrid ElGamal over QR+

N is CCA secure in random
oracle model under factoring assumption. Since the security proof of Hybrid
ElGamal does not use knowledge about the order of underlying group, the scheme
itself remains unchanged.

1.2 Problems with Authenticated Key Exchange Protocols over
QR+

N Group

It is natural to ask whether QR+
N group can be used to design authenticated key

exchange protocols under factoring assumption, especially in a strong security
model, e.g., eCK model. A natural example is as follows. The key derivation
function is

k = H(Z1, Z2, Z3, Z4, X, Y, Â, B̂), where Z1 = Ba, Z2 = Y a, Z3 = Bx, Z4 = Y x

(1)
The protocol is clearly provably secure in eCK model under SDH assumption
if the underlying group is a cyclic group of prime order q. On the other hand,
the scheme is secure under factoring assumption if it works over QR+

N group as
the security proof does not use knowledge about the order of underlying group.
However, the protocol requires 5 exponentiations which is unsatisfactory.

In the following, we provide some more efficient examples and their proof
strategies in eCK model, and discuss the possibility of basing them on QR+

N

group. Assume that the owner of Test session is Â and its peer is B̂. Assume
that the adversary can reveal the static private key of party Â and no reveal
query against the ephemeral private key of Test session is allowed, i.e, in the
proofs the simulator sets the outgoing message of Test session to be X = U
and the static private key of the peer B = V , where (U, V ) is a computational
Diffie-Hellman (CDH) problem instance.

Example 1: HMQV protocol. The first example is HMQV protocol [10].
The key derivation function is

k = H(Z,X, Y, Â, B̂), where Z = (Y Be)x+ad, e = h(Y, Â), d = h(X, B̂) (2)

In the security proof, with value Z, which is provided by the adversary, the
simulator runs the adversary once again (forking lemma) and gets another Z ′.
Then, SIM computes(
Z̄ =

Z/(Y Be)ad

Z ′/(Y Be′ )ad

) 1
(e−e′)

=

(
(Y Be)x

(Y Be′)x

) 1
(e−e′)

=
(
Bx(e−e′)

) 1
(e−e′)

= Bx = V u

(3)
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Example 2: FS protocol. The second example is FS protocol [4], which is
most efficient one among FS protocol family (example 2, [4]). The key derivation
function is

k = H(Z1, Z2, X, Y, Â, B̂), where Z1 = (Y B)x+a, Z2 = (Y Bc)x+ac (4)

where c is a constant, e.g., c = 2. In the security proof, with Z1, Z2, which is
provided by the adversary, SIM computes(

Z̄ =
Z2/(Y Bc)ac

Z1/(Y B)a

) 1
(c−1)

=

(
(Y Bc)x

(Y B)x

) 1
(c−1)

=
(
Bx(c−1)

) 1
(c−1)

= Bx = V u

(5)
Example 3: UP protocol. The third example is UP protocol [15]. The key
derivation function is

k = H(Z1, Z2, X, Y, Â, B̂),

where Z1 = (Y Be)x+a, Z2 = (Y B)x+ad, e = h(Y ), d = h(X) (6)

In the security proof, with Z1, Z2, which is provided by the adversary, SIM
computes(

Z̄ =
Z1/(Y Be)a

Z2/(Y B)ad

) 1
(e−1)

=

(
(Y Be)x

(Y B)x

) 1
(e−1)

=
(
Bx(e−1)

) 1
(e−1)

= Bx = V u (7)

Note that the proofs of all the examples above are involved in the computation of
the inverses of the exponents 1

(e′−e) ,
1

(c−1) and 1
(e−1) respectively, which requires

the knowledge about the order of the group. However, since the order of QR+
N

group is unknown these protocols can not be trivially moved to QR+
N group.

1.3 Our Contributions

The crux of the problem is that the inversion computation in the exponent is
difficult in QR+

N group with unknown order. To tackle this problem, we introduce
a new proof approach called k-th power, which does not require the inversion
computations in exponents. The k-th power approach extends the key technical
tool developed by Hofheinz et al. which reduces the factoring problem to SDH
problem in QR+

N (Theorem 2,[6]).
The k-th power proof approach is almost generic, i.e., applying k-th power

technique to many, if not all, existing authenticated Diffie-Hellman key exchange
protocols under gap assumption immediately produces protocols under factoring
assumption if they work over QR+

N .
As one application of k-th power approach, we show that FS protocol [4], in

which k is a constant, is provably secure in eCK model under factoring assump-
tion if it works over QR+

N .
Our technique also applies to other protocols, e.g., UP[15],KFU1[9],HMQV[10]

and its variants FHMQV,SMQV [13, 14], in which k is a non-constant, but at
the cost of degrading a factor in the reduction.
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1.4 Related Work

Cash et al. [3] introduced the “Twin Diffie-Hellman (TDH)” technique and
showed that SDH assumption is implied by the standard CDH assumption. How-
ever, to apply TDH technique [12, 7–9], they have to modify the protocol at a
cost of doubling computational overhead. In comparison, our technique directly
yield a security proof under factoring assumption without modifying the proto-
col.

Boyd et al. [2] and Fujioka et al. [5] proposed authenticated key exchange
protocols which can be instantiated under factoring assumption. However, their
protocols are based on the generic CCA encryption scheme and thus clearly less
efficient.

2 Preliminaries

Let the value κ be the security parameter. We write [N ] = {1, ..., N}. For group
elements g,X , we denote by loggX the discrete logarithm of X to the base g.

2.1 Factoring Assumption

A prime number P is called safe prime, if P = 2p + 1 for some prime number
p. We assume that N = PQ where P,Q are safe prime numbers, and thus N
is a blum integer number. Let RSAgen(1κ) be an algorithm that generates such
elements (N,P,Q). For any probabilistic polynomial time (PPT) algorithm A,

Pr[A(N) = {P,Q}] ≤ ε(κ)

where (N,P,Q) ←R RSAgen(1κ), and ε(κ) is negligible.

2.2 Signed Quadratic Residues

The set QRN of quadratic residues modulo N is defined as QRN := {x ∈ Z∗
N :

∃y and x = y2}. Since Z∗
N

∼= Z2 × Z2 × Zpq , QRN ∈ Z∗
N is cyclic group of order

pq. By JN , we denote the subgroup of Z∗
N with Jacobi symbol 1.

For x ∈ ZN we define |x| as the absolute of x, where x is represented as
a signed integer in the set {−(N − 1)/2, ..., (N − 1)/2}. We define the group
of signed quadratic residues as QR+

N = {|x| : x ∈ QRN}, where the group
operation is defined by g ◦ h = |gh mod N |. As all the computations will take
place in QR+

N , we will omit the absolute values and simply write xy or x · y for
x ◦ y. The following facts have been noted in [6].

1. (QR+
N , ◦) is a group of order φ(n)/4, where φ(n) is Euler’s totient function.

2. QR+
N = J+N where J+N = JN

⋂
[(N − 1)/2]. Thus, given only N the member-

ship in QR+
N is efficiently recognizable.

3. If QRN is cyclic, so is QR+
N .
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2.3 Strong Diffie-Hellman (SDH) Assumption

Let G = 〈g〉 be the cyclic group whose order is not necessarily known. Define
CDH(X,Y ) := g(loggX)(loggY ) where X,Y ∈ G. For our purpose, we consider
group QR+

N . For any probabilistic polynomial time algorithm A,

Pr[ADDHg,X (·,·)(N, g,X, Y ) = CDH(X,Y )] ≤ ε(κ)

where X,Y ← QR+
N , and ε(κ) is negligible. DDHg,X(·, ·) denotes that A has

oracle access to DDH, which given a two-tuples (Ŷ , Ẑ) in QR+
N , outputs 1 if

Ŷ loggX = Ẑ and 0 otherwise.
The following theorem (Theorem 2,[6]) shows that in the QR+

N group, the
SDH problem is implied by the factoring assumption.

Theorem 1 ([6]). If the factoring assumption holds then the strong DH as-
sumption holds. In particular, for every SDH problem adversary A, there exists
a factoring adversary B with roughly the same complexity as A.

3 Our New Techniques and Applications

Before introducing our new idea, we recall the key technical tool developed by
Hofheinz et al., which proved that in QR+

N group SDH problem is implied by
the factoring assumption (Theorem 2,[6]). We sketch the main idea as follows.
For our convenience, the notations are slightly changed.

Factoring−→SDH. A factoring algorithm B, which uses a SDH adversary A, is
constructed as follows. B chooses uniformly u ←R (Z∗

N )+\QR+
N and sets h = u2.

Then, B chooses x, b ∈ [N/4] and sets

g = h2 X = hgx B = hgb

This implicitly defines loggX = x + 1
2 mod ord(QR+

N ), and loggB = b + 1
2

mod ord(QR+
N ).

B can implement the SDH oracle, i.e., answers A’s oracle queries X̂, Ẑ ∈ QR+
N

(the membership is efficiently recognizable) by checking X̂2b+1 ?
= Ẑ2, which is

equivalent to X̂ loggB
?
= Ẑ.

Finally, A output Z = g(loggX)(loggB) = g(x+1/2)(b+1/2) = h2xb+x+b+1/2, from
which B can extract v = h1/2 with the knowledge about x, b. Now, with two
non-trivial different square roots u, v of h, B can factor N by gcd(u− v,N) (or
gcd(u+ v,N)).

Our New Technique. However, the situation for authenticated key exchange
protocols is different. Since the secret values Zi(i = 1, 2, ..m) of key derivation
function H(·), where m is the number of the secret values, are usually a com-
bination of the static/ephemeral public keys of two parties, and thus are not
usually of the form CDH(X,B) from which v = h1/2 is extracted. In particular,
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it is hard to compute CDH(X,B) from Zi(i = 1, 2, ..m) if the inversion compu-
tations in exponent are required because the order of QR+

N group is unknown.
For example, in order to compute CDH(X,B) from Z1, Z2 the simulator of FS
protocol requires the computation of the inverses 1

(c−1) in the exponent.

To tackle this problem, we extend Hofheinz et al.’s technique and introduce
a new proof approach called k-th power. We sketch the main idea in the termi-
nology of authenticated key exchange protocol. Assume that the Test session is
Πs∗

Â,B̂
. Assume that the adversary queries the static private key of Â and does

not query the ephemeral private key of Test session.
B chooses uniformly u ←R (Z∗

N )+\QR+
N and sets h = u2. Then, B chooses

x, b ∈ [N/4], and an additional value k , which is related to the protocol (e.g.
k = c− 1 for FS protocol), and sets

g = h2k X = hgx B = hgb

This implicitly defines loggX = x + 1
2k mod ord(QR+

N ), and loggB = b +
1
2k mod ord(QR+

N ). B sets the outgoing message of Test session and the static

public key of B̂ to be X,B respectively.
Now, B can keep the consistency of the oracle queries against session Πs

B̂,D̂
.

Take FS protocol as an example: upon receipt of queries (X̂, Ẑi(i = 1, 2)), B
computes Z̄1 = Ẑ1/(X̂D)

y
, Z̄2 = Ẑ2/(X̂Dc)

y
where Y = gy is maintained by B,

and hence

(X̂D)loggB=Z̄1 ⇐⇒ (X̂D)2k·loggB=Z̄1
2k ⇐⇒ (X̂D)(2kb+1)=Z̄1

2k

(X̂Dc)c·loggB=Z̄2 ⇐⇒ (X̂Dc)2k·c·loggB=Z̄2
2k ⇐⇒ (X̂Dc)c·(2kb+1)=Z̄2

2k

Thus, B can check the correctness of the value Ẑi(i = 1, 2) by checking whether

(X̂D)(2kb+1) ?
= Z̄1

2k
and (X̂Dc)c·(2kb+1) ?

= Z̄2
2k
.

Finally, A output Zi(i = 1, 2, ..m) from which B can extract the value
of the form Z̄ = CDH(X,B)k, e.g., for FS protocol Z̄ = CDH(X,B)k =
CDH(X,B)(c−1). While it is difficult to the compute inversion operation 1

k in
exponent, since

Z̄ = CDH(X,B)k = g(loggX)(loggB)k = g(x+1/2k)(b+1/2k)k = h(2k·xb+x+b+1/2k)k

B can extract v = h(1/2k)k = h1/2 with the knowledge about x, b. Thus, with two
non-trivial different square roots u, v of h, B can factor N by gcd(u− v,N) (or
gcd(u+v,N)). No inversion computations in exponents are required throughout
the proof.

Applications. The k-th power proof approach is almost generic, i.e., applying
k-th power technique to many, if not all, existing authenticated Diffie-Hellman
key exchange protocols under gap assumption immediately produces protocols
under factoring assumption if they work over QR+

N .
Note that the value k varies with the protocols and should be set to be some

value σ whose inversion operation 1
σ in exponent is required.
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Applying k-th power technique to protocols with constant σ, e.g., in FS pro-
tocol σ = (c−1), immediately produces protocols provably secure in eCK model
under factoring assumption if they work over QR+

N .
For protocols with non-constant σ, e.g., UP[15] in which σ = e − 1, our

technique also works but at the cost of degrading a factor in the reduction.

4 Authenticated Key Exchange Protocols Based on
Factoring Assumption

In this section, we discuss the protocol with constant k and defer the discussion
on the protocols with non-constant k to Section 5.

4.1 The Scheme with Constant k

FS protocol over QR+
N . A typical example with constant k is FS protocol,

which is most efficient one (example 2, [4]) among FS protocol family. Setting
c = 2 results in an efficient protocol with 3 exponentiations. FS protocol was
originally described in a cyclic group of known prime order q and provably secure
in eCK model under gap assumption. Here we present the protocol over QR+

N in
Fig. 1 which is provably secure in eCK model under the factoring assumption.
Our proof technique also applies to other protocols of FS protocol family with
the different choices of the value k.

Let the value κ be the security parameter. Let N = PQ be a RSA modulus
generated by RSAgen(1κ). Let QR+

N = 〈g〉 be a cyclic group of order pq. Let
H : {0, 1}∗ → {0, 1}l(κ) be a hash function.

The party Alice(Â)’s static private key is a ∈ [N/4] and its static public key is
A = ga ∈ QR+

N . Similarly, the party Bob(B̂)’s static private key is b ∈ [N/4] and
its static public key is B = ga ∈ QR+

N . We omit writing explicitly “ mod N”
for calculations modulo N .

4.2 Security

Theorem 2. Suppose that the factoring assumption holds for RSAgen, H is a
hash function modeled as random oracle, then the proposed protocol in Fig. 1
is a secure authenticated key exchange protocol in the eCK model described in
Appendix A.

Proof. The first condition of Definition 3 follows immediately from the correct-
ness of our protocol. That is, if two parties complete matching sessions, then they
compute the same key. The proof for second condition of Definition 3 consists
of showing that the probability that the adversary distinguishes a real session
key from a random string is not more than 1

2 plus a negligible fraction. Since all
exchanged information and identities are included in H(·) which is modeled as a
random oracle, the probability that a non-matching session has the same session
key with the Test session is negligible. Thus, the only way that the adversary
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Â B̂

(A = ga) (B = gb)

x ∈ [N/4], X = gx y ∈ [N/4], Y = gy

X−−−−−−→
Y←−−−−−−

Z1 = (Y B)x+a Z1 = (XA)y+b

Z2 = (Y Bc)x+ac Z2 = (XAc)y+bc

sk = H(Z1, Z2, X, Y, Â, B̂) sk = H(Z1, Z2, X, Y, Â, B̂)

Fig. 1. FS protocol over QR+
N

M succeeds is Forging attack, in which the adversary M computes the values
Z1, Z2 itself and then queries H with (Z1, Z2, X, Y, Â, B̂).

To show that the success probability of Forging attack is negligible, we will
construct a factoring problem solver SIM that uses an adversary M who suc-
ceeds with non-negligible probability in the attack. Assume that there are n
honest parties Û1, Û2, ..., Ûn, and at most m sessions are activated.

– Input to SIM. The input to SIM is a factoring problem instance N = PQ.
The goal of SIM is to compute P or Q.

According to freshness definition, there are two complementary cases that the
adversary chooses the Test session: Test session without a matching session and
Test session with a matching session.

4.2.1 Test Session Has No Matching Session
It suffices to discuss the following two subcases that: the adversary issues either
CASE 1: a StaticKeyReveal query on party Â or CASE 2: EphemeralKeyReveal
query on the Test session.

CASE 1: SIM chooses i, j ∈ {k|Ûk}, and s∗ ∈ [m]. We denote Ûi, Ûj by Â, B̂
respectively. With these choices, SIM guesses that the adversary M will select
the session Πs∗

Â,B̂
as the Test session.

SIM chooses uniformly u ←R (Z∗
N )+\QR+

N and sets h = u2. Then, SIM

chooses b ∈ [N/4] and computes g = h2k, B = hgb, where k=c-1 . This implicitly

defines loggB = b + 1
2k mod ord(QR+

N ). SIM sets the static public key B for

B̂, and random static key pairs for the remaining parties (including Â). SIM
interacts with the adversary M as follows. Without loss of generality, we assume
that B̂ is the responder.

– H(Z1, Z2, X, Y, Ûi, Ûj): SIM maintains an initially empty list H list with

entry of the form (Z1, Z2, X, Y, Ûi, Ûj , h). SIM simulates the oracle in usual
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way except for queries of the form (Z1, Z2, X, Y, Ûi, Ûj) with Ûi = D̂, Ûj = B̂,

i.e., we assume that B̂ is the responder communicating with a peer D̂. SIM
responds to these queries in the following way:
• If (Z1, Z2, X, Y, D̂, B̂) is already there, then SIM responds with stored
value h.

• Otherwise, if there are the entries of the form (X,Y, D̂, B̂, ∗) in Llist

(maintained in the Send query), SIM computes Z̄1 = Z1/(XD)
y
, Z̄2 =

Z2/(XDc)
y
, and hence

(XD)loggB=Z̄1 ⇐⇒ (XD)2k·loggB=Z̄1
2k ⇐⇒ (XD)(2kb+1)=Z̄1

2k
(8)

(XDc)c·loggB=Z̄2 ⇐⇒ (XDc)2k·c·loggB=Z̄2
2k ⇐⇒ (XDc)c·(2kb+1)=Z̄2

2k

(9)
Thus, SIM can check the correctness of the value Zi(i = 1, 2) by check-

ing whether (XD)(2kb+1) ?
= Z̄1

2k
and (XDc)c·(2kb+1) ?

= Z̄2
2k
. If the

equalities hold, it returns from Llist the stored value SK to the adver-
sary M , stores the new tuple (Z1, Z2, X, Y, D̂, B̂, SK) in H list.

• Otherwise, SIM chooses h at random, sends it to the adversary M and
stores the new tuple (Z1, Z2, X, Y, D̂, B̂, h) in H list.

– StaticKeyReveal(Ui):
• If Ui = B̂, then SIM aborts.
• Otherwise, SIM returns the corresponding static private key to the ad-
versary M .

– EstablishParty(Ûi): The adversary can arbitrarily register a user on behalf
of the party Ûi. This way, the adversary totally controls the party Ûi.

– EphemeralKeyReveal(Πs
Ui,Uj

):

• If Πs
Ui,Uj

is the Test session Πs∗

Â,B̂
, then simulator fails.

• Otherwise, SIM returns the stored ephemeral private key to the adver-
sary M .

– Send(Πs
Ûi,Ûj

,m): SIM maintains an initially empty list Llist with entries

of the form (X,Y, Ûi, Ûj , SK). SIM simulates the oracle in usual way except

for Test session and the sessions of party B̂. SIM responds to these queries
in the following way:
• If Πs

Ûi,Ûj
is the Test session Πs∗

Â,B̂
, SIM chooses x ∈ [N/4], returns

X∗ = hgx to the adversary M .
• If Ûi = B̂, SIM chooses y ∈ [N/4] and returns Y = gy to the adversary
M . (For convenience, we assume that B̂ is the responder, and denote Ûj

by D̂ and m by X .)
∗ SIM looks in H list for the entry of the form (∗, ∗, X, Y, D̂, B̂, ∗). If
finds it, SIM computes Z̄1 = Z1/(XD)

y
, Z̄2 = Z2/(XDc)

y
. Then,

SIM can check the correctness of the value Zi(i = 1, 2) by checking

whether (XD)(2kb+1) ?
= Z̄1

2k
and (XDc)c·(2kb+1) ?

= Z̄2
2k
.

· If the equality does not hold, SIM chooses SK randomly and
stores the new tuple (X,Y, D̂, B̂, SK) in Llist.
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· Otherwise, SIM stores the new tuple (X,Y, D̂, B̂, h) in Llist

where the value h is the last element from H list.

∗ Otherwise (no such entries exist), SIM chooses SK at random and
stores the new tuple (X,Y, D̂, B̂, SK) in Llist.

– SessionKeyReveal(Πs
Ûi,Ûj

):

• If Πs
Ûi,Ûj

is the Test session Πs∗

Â,B̂
, then simulator fails.

• Otherwise, SIM returns the stored value SK in Llist to the adversary
M .

– Test(Πs
Ûi,Ûj

):

• If Πs
Ûi,Ûj

is not the Test session Πs∗

Â,B̂
, SIM aborts.

• Otherwise, SIM randomly chooses ζ and returns it to the adversary M .

Finally, if the adversary M provides a correct guess at Z1 = (Y ∗B)loggX
∗+loggA,

Z2 = (Y ∗Bc)loggX
∗+cloggA where X∗ is the outgoing message of Test session, and

Y ∗ is the incoming message from the adversary, SIM proceeds with following
steps:

Z̄1 = Z1/(Y
∗B)loggA (10)

Z̄2 = Z2/(Y
∗Bc)cloggA (11)

Z =
Z̄2

Z̄1
=

(Y ∗Bc)loggX
∗

(Y ∗B)loggX
∗ = B(c−1)loggX

∗
= BkloggX

∗
(12)

Hence,

Z = BkloggX
∗
= gk(loggB)(loggX

∗) = gk(b+
1
2k )(x+ 1

2k ) = hk(2kbx+b+x+ 1
2k ) (13)

From (13), SIM can extract v = h(k/2k) = h1/2 with the knowledge about
x, b. Thus, with two non-trivial different square roots u, v of h, SIM can factor
N by gcd(u− v,N) (or gcd(u+ v,N)).

CASE 2: The setup of SIM is identical to that of CASE 1 except that SIM

chooses a, b ∈ [N/4] and computes g = h2k, A = hga, B = hgb, where k=c(c-1) .

SIM sets the static public key A,B for Â and B̂ respectively, and random static
key pairs for the remaining n− 2 parties.

– H(Z,X, Y, Ûi, Ûj): SIM simulates the oracle in usual way except for queries

with Ûi = Â or B̂, or Ûj = Â or B̂. For these queries the action of SIM

is similar to that of CASE 1 for queries of the form (Z,X, Y, Ûi, Ûj) with

Ûi = D̂, Ûj = B̂.
– StaticKeyReveal(Ui):

• If Ui = B̂ (or Â), then SIM aborts.
• Otherwise, SIM returns the corresponding static private key to the ad-
versary M .
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– EstablishParty(Ui): The action of SIM is identical to that of CASE 1.
– EphemeralKeyReveal(Πs

Ui,Uj
): SIM returns the stored ephemeral pri-

vate key to the adversary M (including that of the Test session).
– SessionKeyReveal(Πs

Ui,Uj
): The action of SIM is identical to that of

CASE 1.
– Send(Πs

Ui,Uj
,m):

• If Πs
Ui,Uj

is the Test session Πs∗

Â,B̂
, SIM chooses x ∈ [N/4], returns

X∗ = gx instead of X∗ = hgx. Otherwise,
∗ If Ui = B̂ (or Â), the simulation is similar to that of CASE 1 for
party B̂.

∗ Otherwise, (Ui �= B̂ and Ui �= Â), since SIM knows the static private
key it follows the protocol specification.

– Test(Πs
Ui,Uj

): The action of SIM is identical to that of CASE 1.

Finally, if the adversary M provides a correct guess at Z1 = (Y ∗B)loggX
∗+loggA,

Z2 = (Y ∗Bc)loggX
∗+cloggA where X∗ is the outgoing message of Test session, Y ∗

is the incoming message from the adversary, SIM proceeds with following steps:

Z̄1 = Z1/(Y
∗B)loggX

∗
(14)

Z̄2 = Z2/(Y
∗Bc)loggX

∗
(15)

Z =
Z̄2

Z̄1
c =

(Y ∗Bc)cloggA

(Y ∗B)cloggA
= Bc(c−1)loggA = BkloggA (16)

Hence,

Z = BkloggA = gk(loggA)(loggB) = gk(a+
1
2k )(b+ 1

2k ) = hk(2kab+a+b+ 1
2k ) (17)

From (17), SIM can extract v = h(k/2k) = h1/2 with the knowledge about
a, b. Thus, with two non-trivial different square roots u, v of h, SIM can factor
N by gcd(u− v,N) (or gcd(u+ v,N)).

4.2.2 Test Session Has a Matching Session
It suffices to consider the following four subcases.

CASE 3: The adversary issues the EphemeralKeyReveal queries on both the
Test session and its matching session.

– The action of SIM is identical to that of CASE 2. However, as the value
Y ∗ is from the matching session maintained by the simulator SIM , a more
concise proof strategy is as following.

– SIM chooses uniformly u ←R (Z∗
N )+\QR+

N and sets h = u2. Then, SIM
chooses a, b ∈ [N/4] and computes g = h2k, A = hga, B = hgb, where

k=1 . Then, SIM sets the static public keys of party Â and B̂ to be A,B
respectively.
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– The simulation is identical to CASE 2. However, the reduction is more direct
as SIM knows loggY

∗. From value Z1 = (Y ∗B)loggX
∗+loggA, with the knowl-

edge about loggX
∗ and loggY

∗, SIM directly derives Z = CDH(A,B) =

g(loggA)(loggB) = g(a+
1
2k )(b+ 1

2k ) = h2k(ab+ 1
2k a+ 1

2k b+ 1
4k2 ) = h(2ab+a+b+ 1

2 ).
Then, SIM can extract v = h1/2 with the knowledge about a, b. Thus,
with two non-trivial different square roots u, v of h, SIM can factor N by
gcd(u− v,N) (or gcd(u+ v,N)).

CASE 4: The adversary issues the StaticKeyReveal queries on both the party Â
and its peer B̂.

– SIM chooses uniformly u ←R (Z∗
N )+\QR+

N and sets h = u2. Then, SIM
chooses x, y ∈ [N/4] and computes g = h2k, X∗ = hgx, Y ∗ = hgy, where

k=1 . Then, SIM sets the ephemeral public keys of Test session and match-
ing session to be X∗, Y ∗ respectively.

– The simulation is simple as SIM knows all the static private keys. The re-
duction is as follows. From value Z1 = (Y ∗B)loggX

∗+loggA, with the knowl-
edge about loggA and loggB, SIM directly derives Z = CDH(X∗, Y ∗) =

g(loggX
∗)(loggY

∗) = g(x+
1
2k )(y+ 1

2k ) = h2k(xy+ 1
2k x+ 1

2k y+ 1
4k2 ) = h(2xy+x+y+1

2 ).
Then, SIM can extract v = h1/2 with the knowledge about x, y. Thus,
with two non-trivial different square roots u, v of h, SIM can factor N by
gcd(u− v,N) (or gcd(u+ v,N)).

CASE 5: The adversary issues the StaticKeyReveal query on the party Â and
the EphemeralKeyReveal query on the matching session.

– The action of SIM is identical to that of CASE 1. The more concise proof
strategy is as following.

– SIM chooses uniformly u ←R (Z∗
N )+\QR+

N and sets h = u2. Then, SIM
chooses a, b ∈ [N/4] and computes g = h2k, X∗ = hgx, B = hgb, where

k=1 . Then, SIM sets the ephemeral public key of Test session and the

static public keys of B̂ to be X∗ and B respectively.
– The simulation is identical to CASE 1. However, the reduction is more direct

as SIM knows loggY
∗. From value Z1 = (Y ∗B)loggX

∗+loggA, with the knowl-
edge about loggA and loggY

∗, SIM directly derives Z = CDH(X∗, B) =

g(loggX
∗)(loggB) = g(x+

1
2k )(b+ 1

2k ) = h2k(xb+ 1
2k x+ 1

2k b+ 1
4k2 ) = h(2xb+x+b+ 1

2 )

Then, SIM can extract v = h1/2 with the knowledge about x, b. Thus,
with two non-trivial different square roots u, v of h, SIM can factor N by
gcd(u− v,N) (or gcd(u+ v,N)).

CASE 6: The adversary issues the EphemeralKeyReveal query on the Test ses-
sion and the StaticKeyReveal query on the party B̂.

– This case is symmetric to CASE 5, and omitted.

Together with all the subcases CASE 1-CASE 6, the success probability of
SIM is

Pr[SIM ] ≥ max{ max
i=1,2,3,5,6

{ 1

mn2
pi},

1

m2
p4} (18)
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where pi is the probability of the event that the cases occurs and the adversary
M succeeds in this case. If there is an adversary M who succeeds with non-
negligible probability in any cases above, we can solve the factoring problem.
This completes the proof of Theorem 2.

5 The Schemes with Non-constant k

UP Protocol over QR+
N . An example with non-constant k is UP protocol

[16] which was originally described in a cyclic group of known prime order q
and provably secure under gap assumption. Here we show that UP protocol is
provably secure under the factoring assumption if it works over QR+

N .

Â B̂

(A = ga) (B = gb)

x ∈ [N/4], X = gx y ∈ [N/4], Y = gy

X−−−−−−→
Y←−−−−−−

Z1 = (Y Be)x+a Z1 = (XA)y+be

Z2 = (Y B)x+ad Z2 = (XAd)y+b

where e = h(Y ), d = h(X) where e = h(Y ), d = h(X)

sk = H(Z1, Z2, X, Y, Â, B̂) sk = H(Z1, Z2, X, Y, Â, B̂)

Fig. 2. UP protocol over QR+
N

Theorem 3. Suppose that the factoring assumption holds for RSAgen, h,H are
hash functions modeled as random oracles, then UP protocol over QR+

N (Fig. 2)
is a secure authenticated key exchange protocol in the eCK model described in
Appendix A.

Sketch of proof. The proof is similar to that of section 4.1 with a difference that
in the setup SIM has to guess the value k as it is not a constant, which results in
a loss of a factor. In the following, we provide a rough discussion on the setting
of value k, and the more details will be given in the full version. Assume that
Test session is Πs∗

Â,B̂
. We take into account the following two cases in which the

setting of the value k is different.

CASE 1: SIM chooses uniformly u ←R (Z∗
N )+\QR+

N and sets h = u2. Then,
SIM chooses k, b ∈ [N/4] and computes g = h2k, X∗ = hgx, B = hgb. SIM sets
the ephemeral public key of Test session and the static public key of B̂ to be X∗

and B respectively.
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In the interaction with the adversary M , SIM answers the query h(Y ∗) with
value k + 1 where Y ∗ is the incoming message of Test session. This implicitly
sets k = e− 1 where e = h(Y ∗).

CASE 2: SIM chooses uniformly u ←R (Z∗
N )+\QR+

N and sets h = u2. Then,
SIM chooses k1, k2, b ∈ [N/4] and computes k = k1k2, g = h2k, A = hga, B =
hgb. SIM sets the static public keys of Â and B̂ to be A and B respectively.

In the interaction with the adversary M , SIM sets h(X∗) = k1 and h(Y ∗) =
k2+1 where X∗ is the outgoing message of Test session, and Y ∗ is the incoming
message of Test session. This implicitly sets k = (e − 1)d where e = h(Y ∗) and
d = h(X∗).

HMQV Protocol over QR+
N . HMQV protocol [10] is another typical example

with a non-constant k which was originally described in a cyclic group of known
prime order q and provably secure under gap assumption. Here we show that
HMQV protocol is provably secure under the factoring assumption if it works
over QR+

N .

Â B̂

(A = ga) (B = gb)

x ∈ [N/4], X = gx y ∈ [N/4], Y = gy

X−−−−−−→
Y←−−−−−−

Z = (Y Be)x+ad Z = (XAd)y+be

where e = h(Y, Â), d = h(X, B̂) where e = h(Y, Â), d = h(X, B̂)

sk = H(Z,X, Y, Â, B̂) sk = H(Z,X, Y, Â, B̂)

Fig. 3. HMQV protocol over QR+
N

Theorem 4. Suppose that the factoring assumption holds for RSAgen, h,H are
hash functions modeled as random oracles, then HMQV protocol over QR+

N (Fig.
3) is a secure authenticated key exchange protocol in the eCK model described in
Appendix A.

Sketch of proof. We provide a rough discussion on the setting of value k, and the
more details will be given in the full version. The proof strategy also applies to
the variants of HMQV, e.g., CMQV,FMQV and SMQV. Assume that Test ses-
sion is Πs∗

Â,B̂
. We take into account the following two cases in which the setting

of the value k is different.
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CASE 1: SIM chooses uniformly u ←R (Z∗
N )+\QR+

N and sets h = u2. Then,
SIM chooses k1, k2, x, b ∈ [N/4] and computes k = k1 − k2, g = h2k, X∗ =
hgx, B = hgb. SIM sets the ephemeral public key of Test session and the static
public key of B̂ to be X∗ and B respectively.

In the interaction with the adversary M , SIM answers the query h(Y ∗, Â)
with value k1 where Y ∗ is the incoming message of Test session. In the repeat
experiment, SIM sets h(Y ∗, Â) to be k2. This implicitly sets k = e − e′ where
e, e′ are two different response values of h(Y ∗, Â) in Forking lemma.

CASE 2: SIM chooses uniformly u ←R (Z∗
N )+\QR+

N and sets h = u2. Then,
SIM chooses k1, k21, k22, b ∈ [N/4] and computes k = (k21−k22)k1, g = h2k, A =
hga, B = hgb. SIM sets the static public keys of Â and B̂ to be A and B re-
spectively.

In the interaction with the adversary M , SIM sets h(X∗, B̂) = k1 and
h(Y ∗, Â) = k21 where X∗ is the outgoing message of Test session, and Y ∗ is the
incoming message of Test session. In the repeat experiment, SIM sets h(Y ∗, Â)
to be k22. This implicitly sets k = (e − e′)d where d = h(X∗, B̂) and e, e′ are
two different response values of h(Y ∗, Â) in Forking lemma.
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A. Security Model

In this section, we review the eCK security model for authenticated key exchange
protocols. For the details of the original eCK model, see [11, 15].

Participants. We model the protocol participants as a finite set U with each
Ui ∈ U being a probabilistic polynomial time (PPT) Turing machine, which may
execute a polynomial number of protocol instances in parallel. Πs

Ui,Uj
(i, j ∈ N)

denotes s-th instance of participant Ui with peer Uj .

Adversary Model. The adversary M is modeled as a PPT Turing machine
and has full control of the communication network and may eavesdrop, delay,
replay, alter and insert messages at will. We model the adversary’s capability by
providing it with oracle queries.

– EphemeralKeyReveal(Πs
Ui,Uj

) The adversary obtains the ephemeral pri-
vate key of Πs

Ui,Uj
.

– SessionKeyReveal(Πs
Ui,Uj

) The adversary obtains the session key for a
session s of Ui, provided that the session holds a session key.

– StaticKeyReveal(Ui) The adversary obtains the static private key of Ui.

http://eprint.iacr.org/
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– EstablishParty(Ui) The adversary can arbitrarily register a user on behalf
of the party Ui. This way, the adversary totally controls the party Ui. If a
party is registered by the adversary, then it is called dishonest (ormalicious).
Otherwise, it is called honest.

– Send(Πs
Ui,Uj

,m) The adversary sends the message m to the session Πs
Ui,Uj

and gets a response.
– Test(Πs

Ui,Uj
) Only one query of this form is allowed for the adversary. A ran-

dom bit b̂ is chosen, if b̂ = 0 then the real session key is returned; otherwise,
an uniformly chosen random value ζ is returned.

Definition 1 (Matching Session). Let Πs
Ui,Uj

be a completed session with

identifier (Ui, Uj , out, in, role), where Ui is the owner of the session, Uj is the
peer, and out is Ui’s outgoing message, in is Uj’s outgoing message, and role is
the Ui’s role in the session (initiator or responder). The session Πt

Uj ,Ui
is called

the matching session of Πs
Ui,Uj

, if the identifier of Πt
Uj ,Ui

is (Uj , Ui, out, in, role),

where out = in, in = out, role �= role.

Definition 2 (Freshness of eCK model). Let instance Πs
Ui,Uj

be a completed
session, which was executed by an honest party Ui with another honest party Uj.
We define Πs

Ui,Uj
to be fresh if none of the following three conditions hold:

– The adversary M reveals the session key of Πs
Ui,Uj

or of its matching session

(if latter exists).
– Uj is engaged in session Πt

Uj ,Ui
matching to Πs

Ui,Uj
and M issues either:

• both StaticKeyReveal(Ui) and EphemeralKeyReveal(Πs
Ui,Uj

)
queries; or

• both StaticKeyReveal(Uj) and EphemeralKeyReveal(Πt
Uj ,Ui

)
queries.

– No sessions matching to Πs
Ui,Uj

exist and M issues either:

• both StaticKeyReveal(Ui) and EphemeralKeyReveal(Πs
Ui,Uj

)
queries; or

• StaticKeyReveal(Uj) query.

As a function of the security parameter κ, the advantage of the PPT adversary

M in attacking protocol Σ is defined as AdvAKE
M,Σ (κ)

def
= |Pr[b = b̂] − 1

2 |, where
Pr[b = b̂] is the probability that the adversary queries Test oracle to a fresh

session, outputs a bit b which is equal to the bit b̂ of Test oracle.

Definition 3 (AKE Security). An authenticated key exchange protocol Σ is
said to be AKE-secure if following two conditions hold

1. If two parties complete the matching sessions, they compute the same session
key.

2. For any PPT adversary M , the probability AdvAKE
M,Σ (κ) is negligible.
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Abstract. Ever since Shamir introduced identity based cryptography
in 1984, there has been a tremendous interest in designing efficient key
agreement protocols in this paradigm. Since pairing is a costly operation
and the composite order groups must be very large to ensure security,
we focus on pairing free protocols in prime order groups. We propose a
new protocol that is pairing free, working in prime order group and hav-
ing tight reduction to Strong Diffie Hellman (SDH) problem under the
CK model. Thus, the first major advantage is that smaller key sizes are
sufficient to achieve comparable security. Our scheme has several other
advantages. The major one being the capability to handle active adver-
saries. All the previous protocols can offer security only under passive
adversaries. Our protocol recognizes the corruption by an active adver-
sary and aborts the process. Achieving this in single round is significantly
challenging. Ours is the first scheme achieving this property. In addition
to this significant property, our scheme satisfies other security properties
that are not covered by CK model such as forward secrecy, resistance
to reflection, key compromise impersonation attacks and ephemeral key
compromise impersonation attacks.
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1 Introduction

Symmetric key cryptography is a system in which both encryption and decryp-
tion is performed using the same key unlike asymmetric system in which each
user maintains a public key and a private key. Symmetric key cryptography is
much easier to implement and demands less processing than asymmetric. But
the main disadvantage with symmetric key cryptography is the establishment
of the shared secret between the entities that want to communicate. A secure
way of setting up the shared secret key is mandatory. The first key-agreement
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protocol was defined by Whitfield Diffie and Martin Hellman in 1976. This was
based on the public key setting. Under this model, each user has to get his public
key certified by a Certification Authority (CA), which is a trusted third party
that issues certificates validating each user’s public key. The idea was to use
public key cryptography for key establishment and symmetric key cryptography
for further communication using the shared secret key. But in this paradigm, the
overhead associated with the CA will be high.

Identity Based Cryptography was introduced by Shamir [15] in 1984. In this
infrastructure, each user’s public key is his identity. A trusted party known as
the Private Key Generator (PKG) maintains a master public key, master secret
key pair. The master public key is known to everyone and the master secret key
is known only to the PKG. It generates the private key of each user with the
user’s identity and master secret key. After the introduction of identity based
cryptography, many schemes were proposed based on this model. In identity
based key agreement protocol each user first obtains his private key from the
PKG and engages in an interactive protocol with another user to establish a
shared secret key. There is no need to transfer the public key certificates during
the process. This is the main advantage of identity based system. Moreover there
is a flexibility to use any string as the identity. It can be the user’s email id,
social security number, location and other attributes. The identity can also have
a temporal value linked to it and hence the private key derived from it is invalid
after a period of time. Hence identity based key agreement(IDKA) protocols
are preferred rather than their public key based counterparts. An important
factor to be considered with respect to key agreement is bandwidth requirement
and number of rounds. Since IDKA eliminate the need to transfer public key
verification certificates, they tend to reduce the bandwidth requirement. These
are useful in situations where there is a constraint on the available bandwidth.
Other properties like forward secrecy, resistance to man-in-the-middle attacks,
reflection attacks and key compromise impersonation attacks should also be
satisfied.

2 Previous Work and Our Contribution

After the discovery of identity based cryptography by Shamir [15], a number
of key agreement protocols were developed in the identity based paradigm. But
most of them involved pairing and hence their practical implementation was not
efficient. Hence, we do not consider pairing based schemes for our comparison.
The protocols which did not involve pairing were those of Gunther [7] and Saeed-
nia [14]. Fiore [5] proposed a key agreement protocol without pairing which was
an improvement over the protocols of Gunther [7] and Saeednia [14]. Cao [3] pro-
posed a pairing free key agreement protocol but this was vulnerable to key-offset
attack and known session specific secret information attack as presented in [8]
by Islam. The protocol presented in [8] and [3] involves an initial agreement on
who initiates the key agreement protocol. Therefore we do not consider [8] and
[3] in the comparison. We will consider the works of Gunther [7], Saeednia [14]
and Fiore [5] for comparison purpose.
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The previous works on identity based key agreement do not consider an active
adversary. An active adversary is one which can extract the messages that are
exchanged during key agreement and modify them arbitrarily during transit. In
the scheme presented in [5], the adversary can extract the ephemeral component
gti sent by user i to user j and modify it to gtx and send it to j. Similarly it can
capture gtj sent from j to i and modify it to gtx and send to i. The component
Z2 calculated by i will be (gtx)

ti and the one computed by j will be (gtx)
tj . Thus

the final shared secret key of i and j will not be in agreement. Similar attacks
are possible in Gunther [7] and Saeednia [14]. Our protocol avoids this kind of an
attack by a signature on the ephemeral components. We compare computational
power based on the number of exponentiation operations. We assume that the
ephemeral components are chosen from a pre-computed list and hence we do
not consider the cost of computing the ephemeral components. In our scheme,
we use a Schnorr group and hence the exponentiation operations are cheaper
than [5], [7], [14] even though it involves more exponentiation operations. This
is because in a Schnorr group the exponent is from a group Zp

∗ where size of p is
224 bits according to http://www.keylength.com/en/4/. The additional security
features like forward secrecy, resistance to reflection attacks, key compromise
impersonation and ephemeral key compromise impersonation with respect to
[5], [7], [14] are presented in Table 1.1 and Table 1.2.

Tightness of Security Reduction: Wedevelop the security proof of the scheme
as a game between a challenger and an adversary. If the adversary is able to break
the scheme in polynomial time, then the adversary is said to succeed. Using the ad-
versary’s success, the challenger develops a solution to the underlyinghardproblem
instance. Since there exists no solution to the hard problem that can be computed
in polynomial time, the scheme cannot be broken and is considered secure.

The security parameter is set such that the adversary is not able to break
the scheme in polynomial time through brute-force methods or sub-exponential
algorithms. The relative hardness of breaking the scheme to that of breaking the
computational assumption can be loose or tight. The use of forking lemma in
security proofs makes the reduction inefficient by imposing an increase in the size
of the modulus q. Hence, if we eliminate the use of forking lemma, the same level
of security can be achieved with a smaller size modulus q. This contributes to the
reduction in the number of bits required to realize the cryptographic primitive.
Based on the work of Goh [6], in any discrete log based system, if the adversary
can break the scheme in 2n steps then forking lemma implies that the underlying
discrete log problem can be solved in 22n steps. Here n is the security parameter.
Therefore the scheme should be implemented in a group where the discrete log
problem is believed secure with a security parameter of 2n. In any discrete log
system of a prime field Zq, a factor α increase in the security parameter implies
a factor α3 increase in the size of the modulus q. Therefore if forking lemma is
used in the security reduction, the security parameter increase by a factor of 2.
Thus the size of the modulus increases by a factor of 8.
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Our Contribution: In this paper, we present an identity based key agree-
ment protocol which can be proved secure under the Strong-Diffie Hellman
(SDH) assumption without using forking lemma. Thus we are able to achieve
a tight reduction to the Strong Diffie Hellman problem based on the random
oracle model. This tight reduction feature enables a reduction in the commu-
nication overhead thus making it efficient when compared to existing schemes.
Moreover, our scheme is resistant to a dynamic active adversary which is al-
lowed to modify the components exchanged during the key agreement. The
scheme performs a check which will detect any tampering done on the com-
ponents. In this way, a fully authenticated key agreement protocol is achieved.
The protocol also satisfies additional security properties like forward secrecy,
resistance to reflection attacks and key compromise impersonation attacks. But
this level of security can be achieved with a smaller group size since our secu-
rity proof does not involve the use of forking lemma and a tight reduction to
SDH is possible. Table 1.1 and Table 1.2 compares our scheme for key lengths
with the existing schemes that use forking lemma for the proof. Let ||G|| de-
note the number of bits needed to represent a group element. We have to set
||G|| = 224 for elliptic curve groups and ||G|| = 1024 for multiplicative groups
as per http : //www.keylength.com/en/4/.

Table 1. Comparison Table - Efficiency

Scheme No of
Rounds

Tightness Exp Communication
Cost-Elliptic
Curve Group

Communication
Cost Multiplicative
Group

Gunther
[7]

2 Not tight 4 2*(8*||G||)=
2*(8*224)=3584

2*(8*||G||)=
2*(8*2048)=32768

Saeednia
[14]

1 Not tight 3 1*(8*||G||)=
1*(8*224)=1792

1*(8*||G||)=
1*(8*2048)=16384

Fiore [5] 1 Not tight 2 1*(8*||G||)=
1*(8*224)=1792

1*(8*||G||)=
1*(8*2048)=16384

Ours 1 Tight 4 2*(||G||)+1*(224)=
2*224+1*224=672

2*(||G||)+1*(224)=
2*2048+1*224=4320

Remark 1 : Table 1 depict the resistance to the specified attacks.
√

represents
resistance and × represents vulnerability.

Remark 2 : The communication overhead and exponentiations are calculated
for a single user.

Remark 3 : The key length is chosen based on the standard definition in
http://www.keylength.com/en/4/. It states that to ensure security till the year
2030, the size of the elliptic curve group modulus should be 224 bits and 2048
bits for multiplicative groups. The size of the hash value is to be 224 bits for
both elliptic curve and multiplicative groups.
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Remark 4 : Generally the ephemeral components like ti, wi and gti , gwi used
during the protocol execution (see Table 2) are chosen from a pre-computed list.
Hence they are not considered in the number of exponentiations.

Remark 5 : In our scheme, the computations of uj2, vj2 by user i and ui2, vi2
by user j in Step 2 of Table 2 are specific to a pair of users. So these compu-
tations are done only once for a pair of users and do not involve any session
specific parameters. Hence these exponentiations are not included in computing
the complexity of the protocol.

Remark 6 : Exponentiations of the form g0
e0 .g1

e1 ...gk−1
ek−1 can be counted as

a single exponentiation as in [12].

Remark 7 : When realized in elliptic curve groups, the first three schemes
[7], [14] and [5] in Table 1.1 involve the specified number of exponentiation
operations with exponent and base in a group with modulus size 8 ∗ 224 ≈
211 bits. Our scheme involves exponentiation operations where the exponent is
from a group with modulus of 224 bits and base is from an elliptic curve group
with modulus size = 224 bits. The complexity of an exponentiation xy is given
by O

(
log2

2x.log2y
)
. So the cost of one exponentiation in [5], [7], [14] will be

22∗11+8 = 230. Cost of exponentiation in our scheme will be 22∗8+8 = 224.

Remark 8 : When realized in multiplicative groups, the first three schemes
[7], [14] and [5] involve the specified number of exponentiation operations with
exponent and base in a group with modulus size 8*2048=214 bits. Our scheme
involves exponentiation operations where the exponent is from a Schnorr group
with modulus of 224 bits and base is from a group with modulus size = 2048 bits.
The complexity of an exponentiation xy is given by O

(
log2

2x.log2y
)
. So cost of

one exponentiation in [5], [7], [14] will be 22∗14+14 = 242. Cost of exponentiation
in our scheme will be 22∗11+8 = 230.

Table 2. Comparison with the existing schemes - Security

Scheme Forward
Secrecy

Reflection
Attacks

KCI Ephemeral
KCI

Dynamic
adversary

Gunther
[7]

√ × √ × ×

Saeednia
[14]

√ √ √ × ×

Fiore [5]
√ √ √ × ×

Ours
√ √ √ √ √

The PKI-based MQV [10] protocol involves sending 2 group elements and
1.5 exponentiation operations to compute the shared secret key. But certificates
need to be sent in this system. We do not consider RSA signatures for certifi-
cates because RSA uses composite modulus. If we take into account Schnorr
signature for certification purpose, we will have 1 more group element and a
Schnorr group element to be sent and the signing and verification process will
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involve 3 more exponentiation operations. But these exponentiations will have
exponent in a Schnorr group which is realized on elliptic curves. Hence the total
number of exponentiation operations will be 1.5 with exponent size 8*224 and 3
with exponent size 224. Moreover this scheme does not achieve tight reduction
unlike our protocol. Thus our scheme is better than the PKI based scheme with
certificates.

3 Identity Based Key Agreement

In this section, we will give the definition of an identity based key agreement
protocol and the description of the security model.

3.1 Definition of Identity Based Key Agreement Protocol

In Identity Based Key Agreement protocol, each entity i is defined by a unique
identity, IDi. The PKG maintains master public key and master secret key and
generates the private key Si for each user. The protocol is defined as follows:

Setup: The PKG chooses the public parameters and the master secret key. The
public parameters are open to all users and the master secret key is known only
to the PKG.

Key Generation: The user i submits its identity IDi to the PKG and the
PKG constructs the private key Si for the user with identity IDi.

Key Agreement: In order to establish the shared secret key between two users
A and B with identities IDA and IDB and secret keys SA and SB, the users
engage in a session by exchanging components and eventually set up the shared
secret key. Either user A or B could initiate the protocol.

3.2 Definition of the Security Model

The security of our identity based key agreement protocol is analyzed based on
the Canetti-Krawczyk (CK) model for key agreement [2]. CK model does not
cover forward secrecy, resistance to reflection and key compromise impersonation
attacks. We provide these additional security features. Now we define certain
terms associated with identity based key agreement and formally define the
security model.

An instance of the protocol defined in Section 3.1 is called a session. The user
or entity that initiates a session is called the owner and the other user is called
the peer. The components exchanged between the owner and the peer constitute
the session state. The shared secret key obtained is called the session key.
On successful completion of a session, each entity outputs the session key and
deletes the session state. Otherwise, the session is said to be in abort state
and no session key is generated in this case. Each entity participating in a
session assigns a unique identifier to that session. For example, A sets the unique
identifier as (A,B, out, in) where B is its peer and out and in are respectively
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the components sent to B and received by A. If B holds a session (B,A, in, out),
then both the sessions are said to be matching sessions. There are three types
of adversary:

– Type I : The adversary of this type does not belong to the system and
hence has access only to the PKG’s parameters. It is not given access to the
private keys of users and does not impersonate anyone. This is the weakest
adversary.

– Type II : The adversary belongs to the identity based system and can query
for the private keys of polynomial number of users. It is not allowed to
impersonate as any user.

– Type III : The adversary of this type belongs to the identity based system
and it is given access to the private keys of polynomial number of users. It
can also impersonate as any other user. This is the strongest adversary and
we prove our scheme secure against this type of adversary.

Since we prove our scheme secure against the Type III adversary, it is also
secure against Type I and Type II because they are weaker adversaries com-
pared to Type III. We allow the adversary to access some of the parties secret
information, via the following attacks: party corruption, state-reveal queries and
session-key queries. In party corruption phase, the adversary learns the private
keys of the users. In a state-reveal query to a party running a session, the adver-
sary learns the session state for that session. In shared secret key query phase, the
adversary learns the shared secret key of a complete session. A session is called
exposed if it or its matching session (if existing) is compromised by one of the
attacks described above. The security model of the identity based key agreement
is modeled as a following game between the challenger and the adversary:

Setup: The challenger sets up the public parameters and the master secret key.
The public parameters are made known to the adversary whereas the master
secret key is kept private with the challenger.

Party corruption: In this phase, the adversary can query the challenger for
the private key of any user with identity IDi. The challenger has to compute the
private key Si corresponding to IDi and return the response to the adversary.

Session Simulation: In this phase, the adversary is allowed to ask the shared
secret key queries. The adversary queries for a shared secret belonging to a
session established between two users A and B. The adversary can also emulate
as one of the users, either A or B and present the challenger with the session
state corresponding to that user. The challenger has to generate the session state
for the other user of the session and obtain the shared secret key corresponding
to that session. The adversary can also query for the session secret key between
the two parties A and B from the challenger, where the adversary does not
impersonate any of the user. In this case the challenger has to generate the
session state for both the users and obtain the shared secret key corresponding
to that session and provide it to the adversary.

Test Session: The adversary chooses a test session among all the completed
and unexposed sessions. The challenger will toss a random bit b ∈R {0, 1}. If
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b = 0 the challenger will give the adversary the session key K0 of the test session.
Otherwise the challenger will take a random shared secret key K1 and provide
the adversary with K1.

Guess: The adversary makes a guess δ as to which key K0 or K1 was given by
the challenger. The adversary wins if δ = b.

The identity based key agreement protocol is said to be secure if no polynomial-
time adversary has non-negligible advantage in winning the above game, i.e.,
distinguishing K0 from K1.

Note: The Send query present in [9] is not required here since our protocol
is single round and it is a 2-party protocol. The adversary has access to the
components exchanged and can modify them as per its wish.

4 Preliminaries

In this section, we present a brief overview of the hard problem assumptions.

Definition 1. Computation Diffie-Hellman Problem (CDHP) - Given
(g, ga, gb) ∈ G3 for unknown a, b ∈ Z∗

q , where G is a cyclic prime order mul-
tiplicative group with g as a generator and q the order of the group, the CDH
problem in G is to compute gab.

The advantage of any probabilistic polynomial time algorithm A in solving the
CDH problem in G is defined as

AdvCDH
A = Pr

[
A(g, ga, gb) = gab | a, b ∈ Z∗

q

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCDH

A is negligibly small.

Definition 2. Decisional Diffie-Hellman Problem (DDHP) - Given
(g, ga, gb, h) ∈ G4 for unknown a, b ∈ Z∗

q, where G is a cyclic prime order
multiplicative group with g as a generator and q the order of the group, the DDH

problem in G is to check whether h
?
= gab.

The advantage of any probabilistic polynomial time algorithm A in solving the
DDH problem in G is defined as

AdvDDH
A = |Pr

[
A(g, ga, gb, gab) = 1

]
− Pr

[
A(g, ga, gb, h) = 1

]
| | a, b ∈ Z∗

q

The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCDH

A is negligibly small.

Definition 3. (Strong Diffie Hellman Problem (SDHP) [1]): Let κ be the
security parameter and G be a multiplicative group of order q, where |q| = κ.
Given (g, ga, gb) ∈R G3 and access to a Decision Diffie Hellman (DDH) oracle
DDHg,a(., .) which on input gb and gc outputs True if and only if gab = gc, the
strong Diffie Hellman problem is to compute gab ∈ G.
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The advantage of an adversary A in solving the strong Diffie Hellman problem is
defined as the probability with which A solves the above strong Diffie Hellman
problem.

AdvSDHP
A = Pr[A(g, ga, gb) = gab|DDHg,a(., .)]

The strong Diffie Hellman assumption holds in G if for all polynomial time
adversaries A, the advantage AdvSDHP

A is negligible.

Note: In pairing groups (also known as gap groups), the DDH oracle can be
efficiently instantiated and hence the strong Diffie Hellman problem is equivalent
to the Gap Diffie Hellman problem [13].

5 The Proposed Identity Based Key Agreement Protocol

We now give the description of the identity based key agreement protocol and
formally prove its security in the next section.

Setup: The PKG chooses a group G of prime order q. Let g be the generator of
group G. The PKG picks s1, s2 ∈R Zp

∗, where p divides q− 1, sets y1 = gs1 and
y2 = gs2 . The master secret key is 〈s1, s2〉 and the master public key is 〈y1, y2〉.
It also defines the following hash functions: H1 : {0, 1}∗ → G, H2 : {0, 1}∗×G →
Zp

∗, H3 : {0, 1}∗ ×G×G×G×G → Zp
∗, H4 : {0, 1}∗ ×G×G×G×G → Zp

∗,
H5 : G×G → Zp

∗ and H6 : G×G×G → Zp
∗. The PKG makes params public

and keeps msk to itself, where params and msk are defined as follows:

params = 〈G, g, q, p, y1, y2, H1, H2, H3, H4, H5, H6〉 and msk = 〈s1, s2〉.
Key Extract: An user i with identity IDi submits its identity to the PKG. The
PKG does the following to generate the private key of the user i.

– The PKG chooses xi ∈R Zp
∗.

– It computes ui1 = gxi and sets hi = H1 (IDi).

– It computes vi1 = hi
xi .

– It chooses ri ∈R Zp
∗, computes ui2 = gri and vi2 = hi

ri .

– It sets ci = H2 (IDi, ui1), bi = H3 (IDi, ui1, vi1, ui2, vi2) and ei =
H4(IDi, ui1, vi1, ui2, vi2).

– It computes di1 = xi+s1ci where s1 is the master secret key. It also calculates
di2 = xi + ribi + s2ei.

– Finally it sends 〈ui1, vi1, ui2, vi2, di1, di2, hi
s2〉 to the user i.

The user after receiving the private key components from the PKG performs
the checks described in the appendix (Key Sanity Check) to ensure the correct-
ness of the components.

Key Agreement: The two users i and j with identities IDi and IDj get their
respective private keys from the PKG and choose ephemeral secret components
ti, wi ∈R Zp

∗ and tj , wj ∈R Zp
∗ respectively and engage in a session as described

in Table 2.
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Table 3. Description of the Key Agreement protocol

User i User j

1. Send Fi = 〈ui1, vi1, di2, bi, ei, hi
s2 , IDi〉,

Vi = 〈wi + di1.H5

(
gti , gwi

)
, gti , gwi〉 to j.

1. Send Fj = 〈uj1, vj1, dj2, bj , ej , hj
s2 ,

IDj〉, Vj = 〈wj + dj1.H5

(
gtj , gwj

)
,

gtj , gwj 〉 to i.

2. (a) Check for correctness of Fj:

Compute uj2 =
(

g
dj2

uj1.y2
ej

)bj
−1

Compute vj2 =

(
hj

dj2

vj1.(hj
s2)ej

)bj
−1

Check 1 : Check if
bj

?
= H3(IDj , uj1, vj1, uj2, vj2)

ej
?
= H4(IDj , uj1, vj1, uj2, vj2)

If not equal abort, else proceed.

(b) Check for correctness of Vj:

Check 2 : Check if[
g(wj+dj1.H5(g

tj ,g
wj ))

(gxj )
H5(g

tj ,g
wj )(y1)

cj.H5(g
tj ,g

wj )

]
?
= gwj

where cj = H2 (IDj , uj1).

If equal proceed to step 3, else abort.

2. (a) Check for correctness of Fi:

Compute ui2 =
(

gdi2

ui1.y2
ei

)bi
−1

Compute vi2 =
(

hi
di2

vi1.(hi
s2 )ei

)bi
−1

Check 1 : Check if
bi

?
= H3 (IDi, ui1, vi1, ui2, vi2)

ei
?
= H4 (IDi, ui1, vi1, ui2, vi2)

If not equal abort, else proceed.

(b)Check for correctness of Vi:

Check 2 : Check if[
g(wi+di1.H5(gti ,gwi))

(gxi )
H5(gti ,gwi)(y1)

ci.H5(gti ,gwi)

]
?
= gwi

where ci = H2 (IDi, ui1).

If equal proceed to step 3, else abort.

3. Shared secret key generation:

Compute Z1 =
(
uj1y1

cjgtj
)di1+ti

Z2 = vi1vj1

Z3 =
(
gtj

)ti .
Z = H6 (Z1, Z2, Z3).

3. Shared secret key generation:

Compute Z1 =
(
ui1y1

cigti
)dj1+tj

Z2 = vj1vi1

Z3 =
(
gti

)tj .
Z = H6 (Z1, Z2, Z3).

Z is the shared secret key that is established between User i and User j.

Remark 9 : The protocol is asynchronous and consists of only one send per
user per session. Hence the data transfer can occur in any order.

Remark 10 : The values in Fi are same for all sessions between a pair of users
and is independent of the session.

Remark 11 : The values in Vi are freshly generated for every session in the
following manner. In a preprocessing or a setup stage, the user i generates a
large number of

(
β, gβ

)
pairs and stores them in a table Ti. For each session,

user i extracts two fresh pairs from the table Ti and uses them to generate
components of Vi. For security reasons, we assume that

(a) immediately after generating the components of Vi, wi is erased from the
system.
(b) wi + di1.H5 (g

ti , gwi) is computed in a secured way so that wi and di1 are
not leaked to the adversary and only wi + di1.H5 (g

ti , gwi) is available to the
adversary.
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Remark 12 : The components in Fi, Vi and Fj , Vj is required to be sent only
for the first time key establishment between users i and j. For subsequent key
establishments between i and j, only Vi and Vj need to be exchanged. So we
have considered only the components of Vi in communication overhead in Table
1.1. The exponentiations done in Check for correctness of components of Fi is
one time and hence it is not included in computation cost. We include only the
exponentiations in check for correctness of components in Vi and shared secret
key generation in Table 1.1. We have to discuss the size of Fi and Vi in the cases
of multiplicative groups and elliptic curve groups. The sizes in multiplicative
group of order p which has a subgroup of order q, |p| denoting the number of
bits in p, |q| referring to the number of bits in q and |IDi| denoting the length
of the identity of user i are Fi = 3.|q|+3.|p|+ |IDi| and Vi = 1.|q|+2.|p|. In the
case of elliptic curve of order p, the sizes are Fi = 6.|p|+ |IDi| and Vi = 3.|p|
Remark 13 : The intuition behind using the component Z3 is to eliminate
gti.tj from Z1 in the security proof to obtain the solution to the hard problem.

Remark 14 : Check 1 is done to ensure that g and hi are raised to the same
exponent xi. This is a crucial security requirement.

For valid components this check holds good. We prove it here.(
gdi2

ui1.y2
ei

)bi
−1

=
(

gxi+ri.bi+s2.ei

gxi .gs2.ei

)bi
−1

=
(
gri.bi

)bi−1

= gri = ui2.(
hi

di2

vi1.(hi
s2)ei

)bi
−1

=
(

hi
xi+ri.bi+s2.ei

hi
xi .(hi

s2)ei

)bi
−1

=
(
hi

ri.bi
)bi

−1

= hi
ri = vi2

The components that are recomputed are valid and hence the computation of
bi = H3 (IDi, ui1, vi1, ui2, vi2) will match the one obtained if not for any tam-
pering during transfer.

Remark 15 : Check 2 is done to ensure that a dynamic adversary cannot
tamper the components exchanged and affect the shared secret key generation.
It verifies the signature wi + di1.H5 (g

ti , gwi) on gti .

g(wi+di1.H5(gti ,gwi))

(gxi )
H5(gti ,gwi).(y1)

ci.H5(gti ,gwi)
= g(wi+(xi+s1.ci).H5(gti ,gwi))

(gxi )
H5(gti ,gwi).(g)s1.ci.H5(gti ,gwi)

= gwi

Lemma 1: The shared secret key computed by both the parties are identical.

Proof: User i computes :

Z1 = (uj1y1
cjgtj )

di1+ti =
(
g(xj+s1cj+tj)

)(di1+ti)
= g(dj1+tj)(di1+ti), since uj1 =

gxj and xj + s1cj = dj1.
User j computes:

Z1 = (ui1y1
cigti)

dj1+tj =
(
g(xi+s1ci+ti)

)(dj1+tj)
= g(di1+ti)(dj1+tj), since ui1 =

gxi and xi + s1ci = di1.

Thus Z1 computed by both the parties are identical. Z2 and Z3 are also consis-
tent. Thus the final shared secret key computed by both the parties are consis-
tent. �
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6 Security Proof

In this section, we give the security proof of the scheme presented in the pre-
vious section. The proof is modeled based on the CK-model. The scheme is
proved secure in the random oracle model. The scheme is reduced to the Strong
Diffie-Hellman (SDH) problem. Since the proof technique eliminates the use of
forking lemma, we are able to achieve a tight reduction to the underlying hard
problem. The security proof is modeled as a game between the challenger and
the adversary.

Setup: The challenger is given the SDH problem instance 〈G, g, q, p, C =
ga, D = gb〉 and access to the Diffie Hellman Oracle DH (y1, ., .). The challenger
sets the master public key y1 = C and hence the master secret key s1 is implic-
itly set as a. The challenger chooses s2 ∈R Zp

∗ and sets y2 = gs2 . The challenger
gives the tuple 〈G, g, q, p, y1, y2〉 to the adversary. The challenger simulates the
hash oracles in the following way:

H1Oracle : The challenger is queried by the adversary for the hash value of
the identity IDi. If the H1 Oracle was already queried with IDi as input,
the challenger returns the value computed before which is stored in the hash
list Lh1 described below. Otherwise the challenger tosses a coin τi where the
Pr (τi = 0) = α. The output of this oracle is defined as:

hi =

{
gki , if τi = 0(
gb

)ki
, if τi = 1

where ki ∈R Zp
∗. The challenger makes an entry in the hash list Lh1 =

〈hi, IDi, τi, ki〉 for future use and returns hi.

H2 Oracle : The adversary queries the challenger with inputs (IDi, ui1). If the
H2 Oracle was already queried with (IDi, ui1) as input, the challenger extracts
the value ci from the hash list Lh2 described below and returns the value. Oth-
erwise, the challenger chooses a random value ci ∈R Zp

∗. It makes an entry in
the hash list Lh2 = 〈ci, ui1, IDi〉 and returns ci.

H3 Oracle : The adversary queries the challenger with inputs (IDi, ui1, vi1, ui2,
vi2). If the H3 Oracle was already queried with (IDi, ui1, vi1, ui2, vi2) as input,
the challenger extracts the value bi from the hash list Lh3 described below and
returns the value. Otherwise, the challenger chooses a random value bi ∈R Zp

∗.
It makes an entry in the hash list Lh3 = 〈bi, IDi, ui1, vi1, ui2, vi2〉 and returns bi.

H4 Oracle : The adversary queries the challenger with inputs (IDi, ui1, vi1, ui2,
vi2). If the H4 Oracle was already queried with (IDi, ui1, vi1, ui2, vi2) as input,
the challenger extracts the value ei from the hash list Lh4 described below and
returns the value. Otherwise, the challenger chooses a random value ei ∈R Zp

∗.
It makes an entry in the hash list Lh4 = 〈ei, IDi, ui1, vi1, ui2, vi2〉 and returns ei.

H5 Oracle : The adversary queries the challenger with inputs (gti , gwi). If the
H5 Oracle was already queried with (gti , gwi) as input, the challenger extracts
the value fi from the hash list Lh5 described below and returns the value. Oth-
erwise, the challenger chooses a random value fi ∈R Zp

∗. It makes an entry in
the hash list Lh5 = 〈fi, gti , gwi〉 and returns fi.
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H6 Oracle : The adversary queries the challenger with inputs (Z1, Z2, Z3). If
the H4 Oracle was already queried with (Z1, Z2, Z3) as input, the challenger
extracts the value li from the hash list Lh6 described below and returns the
value. Otherwise, the challenger chooses a random value li ∈R Zp

∗. It makes an
entry in the hash list Lh6 = 〈li, Z1, Z2, Z3〉 and returns li.

Party corruption: The adversary presents the challenger with an identity IDi

and the challenger should return the private key of that entity. The challenger
proceeds in the following way:

The challenger checks if the H1 Oracle was already queried for IDi. If yes and
the corresponding τi = 1, it aborts. Otherwise it extracts ki, hi from the list
Lh1 and proceeds to the next step. If IDi was not queried before, the challenger
runs the H1 Oracle with IDi as input. If τi = 1, it aborts. Else the challenger
chooses ki ∈R Z∗

p , computes hi = gki , adds the tuple 〈hi, IDi, τi, ki〉 to the Lh1

list.

The challenger does not know the master secret key s1 as master public key
y1 = ga setting s1 = a. Therefore in order to generate the private key of users,
the challenger makes use of the random oracles and generates the private key as
described below:

– The challenger chooses ci, bi, ei, xi
′, ri

′ ∈R Zp
∗.

– It sets ui1 = gx
′
i .y1

−ci .

– It sets H2 (IDi, ui1) = ci and adds the tuple 〈ci, ui1, IDi〉 the Lh2 list.

– It sets di1 = x′
i, di2 = x′

i + r′ibi + s2ei and ui2 = gr
′
i .y1

ci.bi
−1

.

– It computes vi1 = gki.x
′
i .y1

−ki.ci and vi2 = gki.r
′
i .y1

ki.ci.bi
−1

.

– It also sets H3 (IDi, ui1, vi1, ui2, vi2) = bi, H4 (IDi, ui1, vi1, ui2, vi2) = ei and
adds the tuples 〈bi, IDi, ui1, vi1, ui2, vi2〉, 〈ei, IDi, ui1, vi1, ui2, vi2〉 to the lists
Lh3 and Lh4 respectively.

– It computes hi
s2 .

– It returns the tuple 〈ui1, vi1, ui2, vi2, di1, di2, hi
s2〉 as the private key of the

user with identity IDi and makes an entry in the list LE = 〈ui1, vi1, ui2, vi2,
di1, di2, IDi〉.

Lemma 2: The private key returned by the challenger during the party corrup-
tion query are consistent with the system.

Proof: We now prove that the components returned by the challenger are consis-
tent with that of the system. The components returned by the challenger should
satisfy the 3 checks given in Key Sanity Check.

– Test 1 : Check if gdi1

y
H2(IDi,ui1)
1

?
= ui1.

This can be verified as gx′
i

ga.H2(IDi,ui1)
where ci = H2 (IDi, ui1). This is equal

to gx
′
i−a.ci = gx

′
i .y1

−ci = ui1.
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– Test 2 : Check if gdi2

ui2
H3(IDi,ui1,vi1,ui2,vi2).y2

H4(IDi,ui1,vi1,ui2,vi2)

?
= ui1.

This can be verified as gx′
i+r′ibi+s2ei(

gr′
i .y1

ci.bi
−1
)bi

.gs2.ei

= gx
′
i−a.ci = gx

′
i.y1

−ci = ui1, as

bi = H3 (IDi, ui1, vi1, ui2, vi2) and ei = H4 (IDi, ui1, vi1, ui2, vi2).

– Test 3 : Check if
h
di2
i

vi2
H3(IDi,ui1,vi1,ui2,vi2).(hi

s2 )H4(IDi,ui1,vi1,ui2,vi2)

?
= vi1.

This can be verified as
h
x′
i+r′i.bi+s2.ei

i(
gki.r

′
i .y1

ki.ci.bi
−1
)bi

.(hi
s2 )ei

= hi
x′
i .y1

−ki.ci = vi1

where bi = H3 (IDi, ui1, vi1, ui2, vi2) and ei = H4 (IDi, ui1, vi1, ui2, vi2).

Thus the components generated by the challenger are consistent with the system
as the tests 1,2 and 3 are satisfied. �
Session Simulation: The adversary requires the challenger to simulate shared
secret keys. The challenger simulates session other than the test session. Here
we mention the party which initiates the session as owner of the session and
the other party who responds to the request of the owner as peer. We have to
consider the following cases during the session simulation phase.

Case 1: In this case, the adversary has executed the party corruption query
with respect to i. Hence the adversary knows the secret key of i. The adver-
sary treats i as owner and generates the tuple 〈ui1, vi1, di2, bi, ei, hi

s2 , gti , wi +
di1.H5 (g

ti , gwi) , gwi , IDi〉 and passes it to the challenger and asks the challenger
to complete the session with j as the peer.

Case 1a: If τj = 0, the challenger knows the secret key corresponding to j and
hence executes the actual protocol and delivers the session key to the adversary.

Case 1b: If τj = 1, the challenger does not know the secret key corresponding
to j and hence simulates the session key as follows:

1. The challenger first performs the check presented in the Step 2
of the Key Agreement protocol, on 〈ui1, vi1, di2, bi, ei, hi

s2 , gti , wi +
di1.H5 (g

ti , gwi) , gwi , IDi〉.
2. The challenger generates the parameters 〈uj1 = gxj , vj1 = hj

xj , dj2 =

xj + rj .bj + s2.ej, bj , ej, hj
s2 , gtj , w′

j + xj .fj , g
w′

j .y1
−cj .fj , IDj〉 , where

rj , xj , tj , w
′
j , fj ∈R Zp

∗, hj = H1 (IDj), bj = H3 (IDj , uj1, vj1, g
rj , hj

rj )
and ej = H4 (IDj , uj1, vj1, g

rj , hj
rj ).

3. If H5 was already queried with inputs
(
gtj , gw

′
j .y1

−cj .fj
)
, generate a fresh

w′
j and recompute the last but two components. With very high probability,

the new
(
gtj , gw

′
j .y1

−cj .fj
)
will not result in a previously queried input set

to H5. Set H5

(
gtj , gw

′
j .y1

−cj.fj
)
as fj.

4. The parameters generated by the challenger, 〈uj1, vj1, dj2, bj , ej, hj
s2〉 will

satisfy Check 1 in Step 2 of Key Agreement. This is because the parame-
ters 〈uj1, vj1, dj2, bj, ej , hj

s2〉 are generated in the same way as the original
scheme.
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5. The parameters 〈uj1, vj1, dj2, bj, ej , hj
s2〉 also satisfy Check 2 in the Step 2

of Key Agreement of Section 5.

g
w′

j+xj.fj

(gxj )
H5

(
g
tj ,g

w′
j .y1

−cj.fj

)
.(y1)

cj.H5

(
g
tj ,g

w′
j .y1

−cj.fj

) = gw
′
j .y1

−cj.fj = gwj .

6. Thus the parameters generated by the challenger, 〈uj1, vj1, dj2, bj, ej , hj
s2〉

are consistent with that of the system.
7. The challenger sends the parameters to the adversary.

8. The challenger computes Z̄1 = (gxi.y1
ci .gti)

xj+tj where ci = H2 (IDi, ui1).
It also computes P1 = (ui1.y1

ci .gti)
cj and P2 = y1 where cj = H2 (IDj , uj1).

9. The challenger computes Z2 = vi1.vj1 and Z3 = (gti)
tj .

10. The challenger is given access to the DH (y1, ., .) oracle, since we assume the
hardness of Strong-Diffie Hellman problem. The challenger makes use of the
DH (y1, ., .) Oracle to answer the query as follows:

– The challenger finds a Z such that DH
(
P2, P1, Z1/Z̄1

)
(valid since P2 =

y1) and H6(Z1, Z2, Z3) = Z, where Z2 = vi1.vj1 and Z3 = (gti)
tj .

– If a Z exists, the challenger returns Z as the shared secret key.
– Otherwise the challenger chooses Z ∈R Zp

∗ and for any further query
of the form (Z1, Z2, Z3) to the H6 Oracle, if DH

(
P2, P1, Z1/Z̄1

)
, Z2 =

vi1.vj1 and Z3 = (gti)
tj , the challenger returns Z as the result to the

query.

Finally the challenger returns Z as the shared secret key.
Case 2: The adversary does not know the secret key of i, the owner of the
session. Here the adversary simply asks the challenger to generate a session with
i as owner and j as peer.

Case 2a: The case where τi = 0 and τj = 0. In this case, the challenger can
simulate the computations done by both the parties since the challenger knows
the private key of both the owner i and the peer j.

Case 2b: The case where either τi = 1 or τj = 1. Without loss of generality let
us consider that τi = 0 and τj = 1. Here the challenger knows the secret key of
i but does not know the secret key of j. Hence for i the challenger will generate
the session secret key as per the algorithm. For j the challenger has to simulate
as follows:

1. The challenger generates the values 〈uj1 = gxj , vj1 = hj
xj , dj2 = xj+rj .bj+

s2.ej , bj, ej , hj
s2 , gtj , w′

j+xj .fj , g
w′

j .y1
−cj.fj , IDj〉 , where rj , xj , tj , w

′
j , fj ∈R

Zp
∗, hj = H1 (IDj), bj = H3 (IDj, uj1, vj1, g

rj , hj
rj ) and ej = H4(IDj , uj1,

vj1, g
rj , hj

rj) for user j.

2. The challenger also generates the values 〈ui1 = gxi, vi1 = hi
xi , di2 = xi +

ri.bi + s2.ei, bi, ei, hi
s2 , gti , w′

i + xi.fi, g
w′

i .y1
−ci.fi , IDi〉 with i’s private key

for user i.

3. If H5 was already queried with inputs
(
gtj , gw

′
j .y1

−cj .fj
)
, generate a fresh

w′
j and recompute the last but two components. With very high probability,
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the new
(
gtj , gw

′
j .y1

−cj .fj
)
will not result in a previously queried input set

to H5. Set H5

(
gtj , gw

′
j .y1

−cj.fj
)
as fj.

4. Similarly if H5 was already queried with inputs
(
gti , gw

′
i .y1

−ci.fi
)
, generate

a fresh w′
i and recompute the last but two components. With very high

probability, the new
(
gti , gw

′
i .y1

−ci.fi
)
will not result in a previously queried

input set to H5. Set H5

(
gti , gw

′
i .y1

−ci.fi
)
as fi.

5. The challenger computes Z̄1 = (gxi.y1
ci .gti)

xj+tj where ci = H2 (IDi, ui1).
It also computes P1 = (ui1.y1

ci .gti)
cj and P2 = y1 where cj = H2 (IDj , uj1).

6. The challenger computes Z2 = vi1.vj1 and Z3 = (gti)
tj .

7. The challenger is given access to the DH (y1, ., .) oracle, since we assume the
hardness of Strong-Diffie Hellman problem. The challenger makes use of the
DH (y1, ., .) Oracle to answer the query as follows:

– The challenger finds a Z such that DH
(
P2, P1, Z1/Z̄1

)
(valid since P2 =

y1) and H6(Z1, Z2, Z3) = Z, where Z2 = vi1.vj1 and Z3 = (gti)
tj .

– If a Z exists, the challenger returns Z as the shared secret key.
– Otherwise the challenger chooses Z ∈R Zp

∗ and for any further query
of the form (Z1, Z2, Z3) to the H6 Oracle, if DH

(
P2, P1, Z1/Z̄1

)
, Z2 =

vi1.vj1 and Z3 = (gti)
tj .

Finally the challenger returns Z as the shared secret key.

Case 2c: The case where τi = 1 and τj = 1. In this case the challenger does
not know the secret key of both i and j. Hence the challenger has to simulate
the session values for both i and j, which is done as follows:

1. The challenger generates the values 〈uj1 = gxj , vj1 = hj
xj , dj2 = xj+rj .bj+

s2.ej , bj, ej , hj
s2 , gtj , w′

j+xj .fj , g
w′

j .y1
−cj.fj , IDj〉 , where rj , xj , tj , w

′
j , fj ∈R

Zp
∗, hj = H1 (IDj), bj = H3 (IDj, uj1, vj1, g

rj , hj
rj ) and ej = H4(IDj , uj1,

vj1, g
rj , hj

rj) for user j.

2. The challenger also generates the values 〈ui1 = gxi, vi1 = hi
xi , di2 = xi +

ri.bi + s2.ei, bi, ei, hi
s2 , gti , w′

i + xi.fi, g
w′

i .y1
−ci.fi , IDi〉 , where ri, xi, ti, w

′
i,

fi ∈R Zp
∗, hi = H1 (IDi), bi = H3 (IDi, ui1, vi1, g

ri , hi
ri) and ei = H4(IDi,

ui1, vi1, g
ri , hi

ri) for user i.

3. If H5 was already queried with inputs
(
gtj , gw

′
j .y1

−cj .fj
)
, generate a fresh

w′
j and recompute the last but two components. With very high probability,

the new
(
gtj , gw

′
j .y1

−cj .fj
)
will not result in a previously queried input set

to H5. Set H5

(
gtj , gw

′
j .y1

−cj.fj
)
as fj.

4. Similarly if H5 was already queried with inputs
(
gti , gw

′
i .y1

−ci.fi
)
, generate

a fresh w′
i and recompute the last but two components. With very high



54 S. Sree Vivek et al.

probability, the new
(
gti , gw

′
i .y1

−ci.fi
)
will not result in a previously queried

input set to H5. Set H5

(
gti , gw

′
i .y1

−ci.fi
)
as fi.

5. The challenger computes Z̄1 = (gxi.y1
ci .gti)

xj+tj where ci = H2 (IDi, ui1).
It also computes P1 = (ui1.y1

ci .gti)
cj and P2 = y1 where cj = H2 (IDj , uj1).

6. The challenger computes Z2 = vi1.vj1 and Z3 = (gti)
tj .

7. The challenger is given access to the DH (y1, ., .) oracle, since we assume the
hardness of Strong-Diffie Hellman problem. The challenger makes use of the
DH (y1, ., .) Oracle to answer the query as follows:

– The challenger finds a Z such that DH
(
P2, P1, Z1/Z̄1

)
(valid since P2 =

y1) and H6(Z1, Z2, Z3) = Z, where Z2 = vi1.vj1 and Z3 = (gti)
tj .

– If a Z exists, the challenger returns Z as the shared secret key.

– Otherwise the challenger chooses Z ∈R Zp
∗ and for any further query

of the form (Z1, Z2, Z3) to the H6 Oracle, if DH
(
P2, P1, Z1/Z̄1

)
, Z2 =

vi1.vj1 and Z3 = (gti)
tj .

Finally the challenger returns Z as the shared secret key.

Test Session: The adversary impersonates as user i and sends the parameters
〈ui1, vi1, di2, bi, ei, hi

s2 , gti , wi + di1.H5 (g
ti , gwi) , gwi , IDi〉 to the challenger for

session simulation. The challenger runs the H1 Oracle with input IDi. The test
session is assumed to run between two users i and j, where adversary imper-
sonates as i and challenger has to generate parameters for user j. If τi = 0, it
aborts. Else it does the following:

– The challenger passes the parameters 〈uj1 = gxj , vj1 = hj
xj , dj2 = xj +

rj .bj + s2.ej, bj , ej,
hj

s2 , D.g−dj1 , wj+dj1.H5

(
D.g−dj1 , gwj

)
, IDj〉 to the adversary, where dj1 is

the private key component associated with User j which is known to the chal-
lenger, rj , xj , wj ∈R Zp

∗, hj = H1 (IDj), bj = H3 (IDj , uj1, vj1, g
rj , hj

rj )
and ej = H4 (IDj, uj1, vj1, g

rj , hj
rj ). The parameters passed satisfy the

checks as they are generated in the way similar to the scheme. gtj =
D.g−dj1 = gb−dj1 .

– The challenger performs the checks specified in Step 2 of the Key Agree-
ment algorithm described in Section 5 on 〈ui1, vi1, di2, bi, ei, hi

s2 , gti , wi +
di1.H5 (g

ti , gwi) , gwi , IDi〉. If the checks pass, the challenger proceeds to next
step. Else, it aborts.

– The challenger returns a Z∗ ∈R Zp
∗ as the shared secret key. This won’t be a

valid shared secret key. But in order to find that this is invalid the adversary
should have queried the H6 Oracle with a valid tuple (Z1, Z2, Z3). Thus the

challenger computes Z̄2 = (Z2/vj1)
ki

−1

and Z̄3 = Z3.(g
ti)

dj1 . The challenger

also computes S =
(
Z1/Z̄2Z̄3

)ci−1

where ci = H2 (IDi, ui1).

– Finally the challenger returns S as the solution for the CDH hard problem.
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Lemma 3: The value returned by the challenger is the solution to the CDH
instance of the SDH hard problem set in the beginning.

Proof:The challenger returns S =
(
Z1/Z̄2Z̄3

)ci−1

where ci = H2 (IDi, ui1) as
the solution to the hard problem.

– S =
(
g(di1+ti)(dj1+b−dj1)/Z̄2Z̄3

)ci−1

.

– Z2 = (Z2/vj1)
ki

−1

= (vi1.vj1/vj1)
ki

−1

= vi1
ki

−1

= (hi
xi)ki

−1

=(
gb.ki

)xi.ki
−1

= gb.xi.(Note : The component hi =
(
gb

)ki
as τi = 1.).

– Z3 = Z3. (g
ti)

dj1 = (gti)
(b−dj1). (gti)

dj1 = gb.ti .

– Therefore S =
(
g(xi+a.ci+ti)(dj1+b−dj1)/gb.xi.gb.ti

)ci−1

= gab.

Thus we have proved that the value returned by the challenger is solution to the
CDH Problem. �

7 Additional Security Properties

The proposed protocol offers additional security properties which we discuss
informally. Formal details of these properties can be found in the full version of
the paper.

Forward Secrecy: A key agreement protocol has forward secrecy, if after a
session is completed and its shared secret key is erased, the adversary cannot
learn it even if it corrupts the parties involved in that session. In other words,
learning the private keys of parties should not affect the security of the shared
secret key. Relaxing the definition of forward secrecy, we assume that the past
sessions with passive adversary are the ones whose shared secret keys are not
compromised. The proposed scheme offers forward secrecy.

Resistance to Reflection Attacks: A reflection attack occurs when an adver-
sary can compromise a session in which the two parties have the same identity.
A practical situation in which both parties with the same identity communicate
is when a person wants to establish secure connection between her computers in
the house and the one in the office. The proposed scheme is resistant to reflection
attacks which can be proved by the techniques used in [5] and [11].

Resistance to Key Compromise Impersonation Attacks: Whenever a
user I’s private key is learned by the adversary, it can impersonate as I. A key
compromise impersonation (KCI) attack can be carried out when the knowledge
of I’s private key allows the adversary to impersonate another party to I. Our
scheme is resistant to KCI attacks. This is because in the proof, when the ad-
versary tries to impersonate i to user j, the challenger is able to answer private
key queries from the adversary corresponding to user j. Thus the resistance to
KCI attacks is inbuilt in the security proof.

Resistance to Ephemeral Key Compromise Impersonation: Generally
the users pick the ephemeral keys (ti, g

ti) from a pre-computed list in order to



56 S. Sree Vivek et al.

minimize online computation cost. But the problem with this approach is that
the ephemeral components may be subjected to leakage. This attack considers
the case when the adversary can make state-reveal queries even in the test ses-
sion. [4] presents such an attack on the scheme presented by Fiore [5]. But our
scheme is resistant to that type of an attack because when an adversary tries to
impersonate a user j without knowing the private key of j (as in [4]), it cannot
generate the components dj2 and the signature on gtj (We assume that wi is
erased immediately after the signature on gti is computed and hence is not avail-
able to the adversary during state-reveal queries). Thus it is secure and resists
ephemeral key compromise impersonation attack.

8 Conclusion

The main advantage of our scheme is that there is only a single round of com-
munication between the pair of users and there is no predefined order in which
messages are exchanged between the users. Moreover our scheme is secure against
active adversary which can intercept and modify the messages as per will. The
next advantage is that forking lemma is not used in the security reduction con-
tributing to the tight reduction feature. This results in a reduction in the com-
munication overhead. Our scheme also satisfies additional security attributes like
forward secrecy, resistance to reflection attacks, key compromise impersonation
attack and ephemeral key compromise impersonation attack. Finally our proof
can also be modified to support security in the advanced CK+ model. This will
be discussed in the full version of the paper.
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Appendix

Key Sanity Check: After receiving the private key from the PKG in the key
extract phase, the user performs the following check to ensure the correctness of
the components of the private key.

The user first computes
ci = H2 (IDi, ui1)

bi = H3 (IDi, ui1, vi1, ui2, vi2)

ei = H4 (IDi, ui1, vi1, ui2, vi2)

Test 1: Check if gdi1

y
H2(IDi,ui1)
1

?
= ui1.

This can be verified as gxi+s1.ci

gs1.H2(IDi,ui1)
where ci = H2 (IDi, ui1). This is equal to

gxi = ui1. This check ensures the correctness of di1 and ui1.

Test 2: Check if gdi2

ui2
H3(IDi,ui1,vi1,ui2,vi2).y2

H4(IDi,ui1,vi1,ui2,vi2)

?
= ui1.

This can be verified as g(xi+ri.bi+s2.ei)

gri.H3(IDi,ui1,vi1,ui2,vi2).gs2.H4(IDi,ui1,vi1,ui2,vi2)

?
= gxi = ui1,

as bi = H3 (IDi, ui1, vi1, ui2, vi2) and ei = H4 (IDi, ui1, vi1, ui2, vi2).

This check ensures the correctness of di2, ui2, vi1, vi2.
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Test 3 : Check if
h
di2
i

vi2
H3(IDi,ui1,vi1,ui2,vi2).(hi

s2 )H4(IDi,ui1,vi1,ui2,vi2)
= vi1.

This can be verified as
h
xi+ri.bi+s2.ei
i

(hi
ri )H3(IDi,ui1,vi1,ui2,vi2).(hi

s2)H4(IDi,ui1,vi1,ui2,vi2)
= hi

xi =

vi1 where bi = H3(IDi, ui1, vi1, ui2, vi2) and ei = H4 (IDi, ui1, vi1, ui2, vi2).

Test 3 ensures the correctness of hi
s2 . Test 2 and Test 3 ensures that g and hi

are raised to the same exponent xi in ui1 and vi1 respectively.

If the received private key satisfies all the tests then it is valid.
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Abstract. Computational Indistinguishability Logic (CIL) is a logic for
reasoning about cryptographic primitives in computational model. It is
sound for standard model, but also supports reasoning in the random or-
acle and other idealized models. We illustrate the benefits of CIL by for-
mally proving the security of a Password-Based Key Exchange (PBKE)
scheme, which is designed to provide entities communicating over a pub-
lic network and sharing a short password, under a session key.

Keywords: Password-Based Key Exchange, Logic, Security Proof.

1 Introduction

Cryptography plays a central role in the design of secure and reliable systems.
It consists in the conception and analysis of protocols achieving various aspects
of information security such as authentication. In particulary, the provable cryp-
tography is defined as the conception of proofs accounting for the exact amount
of security supplied by cryptographic protocols.

In the computational model, Computational Indistinguishability Logic (CIL)
supports concise and intuitive proofs accross several models of cryptography.
This logic features the notion of oracle system, an abstract model of interactive
games in which adaptative adversaries play against a cryptographic scheme by
interacting with oracles. Moreover, it states a small set of rules that capture
common reasoning patterns and interface rules to connect with external rea-
soning. To illustrate applicability of CIL, we consider the security proof of the
Password-Based Key Exchange (PBKE) protocol.

1.1 Related Work

About Security of PBKE Protocols: EKE (Encrypted Key Exchange) was in-
troduced by Bellovin and Merritt, [1]. In their protocol, two users execute an
encrypted version of the Diffie-Hellman key exchange protocol, in which each
flow is encrypted using the password shared between these two users as the sym-
metric key. Due to the simplicity of their protocol, other protocols were proposed

W. Susilo and R. Reyhanitabar (Eds.): ProvSec 2013, LNCS 8209, pp. 59–85, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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in the literature based on it, each with its own instantiation of the encryption
function such that OEKE (One-Encryption Key-Exchange) protocol.

Since 2003, E. Bresson et al., [3], have been working on the analysis of very
efficient schemes on password-based authenticated key exchange methods, but
for which actual security was an open problem. In 2012, B. Blanchet have focused
on a crytpgraphic protocol verifier, called CryptoVerif, to mechanically prove
OEKE.

About CIL: DCS (Distributed and Complex Systems) is working on the logic
CIL for proving concrete security of cryptographic schemes. It enables reasonning
about schemes directly in the computational settings. The main contribution is
to support the design of proofs at a level of abstraction which allows to bridge
the gap between pencil-and-paper fundamental proofs and existing pratical ver-
ification tools (see article [7]).

1.2 Contributions and Contents

For the first time, we bring out the applicability of CIL for formalizing com-
putational proofs. The tool CIL allows us to give a new kind of analysis that
has advantages over the traditional as in [3] and [9]. As we use a tool based on
general and extended logic rules, the proofs are well constructed and easy to
understand, and achieve good results.

The paper begins with a recall of the framework to capture cryptographic
games(Section 2). The main technical contributions of the paper are: i) an ex-
tension of reasoning tools for oracle systems (Section 3); ii) a formal proof in
CIL of an efficient PBKE protocol (Section 4).

2 Oracle Systems

2.1 Preliminaries

ICM: An ideal block cipher is a totally random permutation from l-bit strings
to l-bit strings.

ROM: A random oracle is a mathematical function mapping every possible
query to a uniformly random response from its output domain.

Miscellaneous: Let 1 to denote the unit type and (x,y) to denote pairs. For
a set A, U(A) defines the set of uniform distributions over A. Let to denote
arguments that are not used or elements of tuples whose value is irrevelant in
the final distribution.

2.2 Semantics

The interaction between an oracle system and an adversary proceeds in three
successive phases:

– the initialization oracle sets the initial memory distributions of the oracle
system;
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– the adversary performs computations, updates its state and submits a query
to the oracle system; the oracle system performs computations, updates its
state, and replies to the adversary, which updates its state;

– the adversary outputs a result calling the finalization oracle.

During his attack, the adversary has access to the oracles, which modelize his
capacities to obtain (partial) information or to execute some party of the protocol
in the reality. His resources are bounded by two parameters: the number of
queries he performs to the oracles and his running time.

2.3 Oracle Systems and Adversaries

Oracle systems and adversaries are modeled as stateful systems meant to interact
with each another. An oracle system O is a stateful system that provides oracle
access to adversaries and given by:

– sets of oracle memories and of oracles;
– a query domain, an answer domain and the related implementation;
– a distinguished initial memory, and distinguished oracles oI for initialization

and oF for finalization.

Oracle systems O and O′ are compatible iff they have the same sets of oracle
names and the query and the answer domains of each oracle name coincide in
both oracle systems. We build compatible systems out of systems we have already
defined by modifying the implementation of one of the oracles.

2.4 Events

The interaction between oracle system and adversary seems as this of the pattern
consisting in the query of an oracle, the computation of an answer by the oracle,
and the update of its state by the adversary. This is formalized as a transition
system, where a step consists in one occurence of the pattern.

Security properties abstract away from the state of adversaries and are mod-
eled using traces. A trace is an execution sequence from which the adversary
memories have been erased. The subset of traces verifying the predicate is con-
sidered to assign a probability to an event defined by a predicate.

For a step-predicate φ, let the event ”eventually φ” be denoted by Fφ and
correspond to φ satisfied at one step of the trace. Furthermore, the event ”always
φ”, denoted by Gφ, is true iff φ is satisfied at every step of the trace. You can
find an example of this concept in Appendix A.3.

For more details and examples, you can see the Appendix A or refer to the
article [7].

3 Computational Indistinguishability Logic

3.1 Statements: Judgments

For an event E, a statement O :ε E is valid iff for every (k,t)-adversary A,
P r(A | O : E) ≤ ε(k,t). For O and O′ compatible oracle systems which expect a
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boolean as result, a statement O ∼ε O′ is valid iff for every (k,t)-adversary A,
| P r[A | O : R = True] − P r[A | O′ : R = True] |≤ ε(k,t). Let E be an event of
compatible systems O and O′. A statement O

E∼ε O′ is valid iff for every (k,t)-
adversary A, | P r[A | O : R = True∧E]−P r[A | O′ : R = True∧E] |≤ ε(k,t) . As
O ∼ε O′ ⇔ O

True∼ ε O′, we write O ∼ε O′ for the two statements. See Appendix
B.1 for details.

3.2 Rules and Their Extensions

We expose briefly the rules used in our proof on Figure (1). You can find more
classic and extended rules in Appendix B.1.

O :ε2 E2 O′ :ε1 F¬ϕ O ≡R,ϕ O′ E1RE2

O′ :ε1+ε2 E1
UpToBad

O :ε Fϕ
Fail

O ≤det,γ O′ O :ε E ◦ π

O′ :ε E
B-Det-Left

O :ε E ◦ C

C[O] :ε′ E
B-Sub

O
E2∼ ε1 O′ E2 ⇒ E1 O :ε2 E1 ∧ ¬E2 O′ :ε2 E1 ∧ ¬E2

O
E1∼ ε1+ε2 O′

URCd
O :ε′ Fϕ′

Fail2

O
E1∧E2∼ ε2 O′ O :ε1 ¬E1 ∧ E2 O′ :ε1 ¬E1 ∧ E2

O
E2∼ ε1+ε2 O′

FTr
O

E1∼ ε1 O′ O′ E2∼ ε2 O”

O
E1∨E2∼ ε1+ε2 O”

TrCd

O :ε1 Fϕ1 ∧ Gϕ2 O :ε2 F¬ϕ2 O ≡R,ϕ2 O′

O′ :ε1+ε2 Fϕ1

B-BisG2
O′ :ε F¬ϕ2 ∧ Gϕ1 O

ϕ1≡R,ϕ2 O′

O
Gϕ1∼ ε O′

I-BisCd

Fig. 1. Rules used in the proof (classic and extended rules). For compatible oracle
systems O, O′ and O”, events E, E1 and E2 of O, O′ and O”, and step-predicates ϕ,
ϕ1 and ϕ2.

3.3 Contexts

A context C is an intermediary between an oracle system O and adversaries. One
can compose a O-context C with O to obtain a new oracle system C[O] and with
a C[O]-adversary to obtain a new O-adversary C ‖ A. Procedures for contexts
differ of these for oracle systems: one that transfers calls from the adversary
to the oracles and another one that tranfers answers from the oracles to the
adversary. See Appendix B.2.

3.4 Bisimulation

Game-based proofs proceed by transforming an oracle system into an equiva-
lent one, or in case of imperfect simulation into a system that is equivalent up to
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some bad event. The notion of bisimulation-up-to is defined as two probabilis-
tic transition systems are bisimilar until the failure of a condition on their
tuple states-transitions. Bisimulations are closely related to obversational equiv-
alence and relational Hoare logic and allow to justify proofs by simulations. Be-
sides, bisimulations-up-to subsume the Fundamental Lemma of Victor Shoup.
See Appendix B.3.

3.5 Determinization

Using the concept of automata determinization technique, the definition is based
on the possibility to decompose states of a system into two components and to
exhibit a distribution γ allowing to obtain the second component given the first
one. See Appendix B.4.

4 CIL Security Proof for an Efficient PBKE

4.1 Preliminaries

In the computational model, messages are bitstrings, cryptographic primitives
are functions from bitstrings to bitstrings and adversary is any Probabilistic
Polynomial time Turing Machine.

Scheme: We denote objects describing the model:

– two sets Users and Servers such that u ∈ [Users] and s ∈ [Servers];
– for the arithmetic, G =< g > is a cyclic group of l-bit prime order q and

Ḡ = G \ 1G = {gx | x ∈ Z∗
q} (g is a fixed parameter);

– for i = {0,1}, li is the parameter of data size for Hash function Hi;
– a set P assword as a small dictionary (polynomial in the security parameter),

of size N , equipped with the uniform distribution.

Encryption/Decryption: E is the Encryption and D is the Decryption in the
Ideal Cipher Model .

Hash Functions: There are two hash functions H0 and H1 in the Random
Oracle Model.

We want to bound the probability for an adversary, within time t, and with
less than Nu sessions with a client, Ns sessions with a server (active attacks), and
asking qH hash queries and qE Encryption/Decryption queries, to distinguish
the session key from a random key.

4.2 One-Encryption Key-Exchange (OEKE), A Password-Based
Key Exchange

On Figure (2) (with a honest execution of the OEKE protocol), the protocol
runs between a client u and a server s. The session key space associated to this
protocol is {0,1}l0 equipped with the uniform distribution. u and s initially share
a low-quality string pw, the password, from P assword.
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Client u Server s
pw pw

accept ← false ; terminate ← false accept ← false ; terminate ← false
x ← [1..(q − 1)] y ← [1..(q − 1)]

X ← gx u,X−−−→ Y ← gy

Y ← D(pw,Y �) s,Y �

←−−− Y � ← E(pw,Y )
Ku ← Y x ; Auth ← H1(Z ‖ Ku) ; sku ← H0(Z ‖ Ku) Ks ← Xy

accept ← true Auth−−−−→ Auth
?= H1(Z ‖ Ks) ; if true, accept ← true

sks ← H0(Z ‖ Ks)
terminate ← true terminate ← true

Fig. 2. An execution of the protocol OEKE, run by the client u and the server s. We
let Z be equal to u ‖ s ‖ X ‖ Y .

The real game O1
0: This game consists of: initialization and finalization or-

acles, Encryption/Decryption oracles, Hash oracles, oracles that simulate the
protocol (named U1, S1, U2 and S2), Execute oracle, Test oracle and Reveal
oracle. In the initialization oracle, the bit b is equal to 1 and hence, the Test
oracle returns the real value of the session key.

Imp(oI )() =
pw ← P assword; LH0 := [ ]; LH1 := [ ];
LE := [ ]; Lpw := [ ]; LO := [ ];
varX :=⊥; varθ :=⊥; varϕ :=⊥; varsk :=⊥;
b := 1
return 1

Imp(E)(pw,x) = Imp(D)(pw,y) =
if (pw,x, , ) /∈ LE then if (pw, ,y, ) /∈ LE then

y ← Ḡ; LE := LE .(pw,x,y,⊥); φ ← Z∗
q ; x = gφ ; LE := LE .(pw,x,y,φ);

endif endif
return y such that (pw,x,y, ) ∈ LE return x such that (pw,x,y, ) ∈ LE

Imp(H0)(x) = Imp(H1)(x) =
if x /∈ LH0 then if x /∈ LH1 then

y ← U(l0); LH0 := LH0 .(x,y); y ← U(l1); LH1 := LH1 .(x,y);
endif endif
return LH0(x) return LH1(x)

Imp(U1)(u,i) = Imp(S1)((s,j),(u,X)) =
θ ← Z∗

q ; X = gθ ; varθ[(u,i)] = (θ,X); ϕ ← Z∗
q ; Y = gϕ; Y � = E(pw,Y );

return (u,X) varϕ[(s,j)] = (ϕ,Y,Y �); varX [(s,j)] = X ;
Ks = Xϕ

return (s,Y �)
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Imp(U2)((u,i),(s,Y �)) = Imp(S2)((s,j),u,Auth) =
if varθ[(u,i)]! =⊥ then if varϕ[(s,j)]! =⊥ then

Y = D(pw,Y �); (θ,X) = varθ[(u,i)]; (ϕ,Y,Y �) = varϕ[(s,j)]; X = varX [(s,j)];
Ku = Y θ; Ks = Xϕ;
Auth = H1(u ‖ s ‖ X ‖ Y ‖ Ku); H ′ = H1(u ‖ s ‖ X ‖ Y ‖ Ks);
varsk[(u,i)] = H0(u ‖ s ‖ X ‖ Y ‖ Ku) if H ′ = Auth then

endif varsk[(s,j)] = H0(u ‖ s ‖ X ‖ Y ‖ Ks)
return Auth endif

endif
return 1

Imp(Reveal)(p,k) = Imp(T est1)(p,k) =
if varsk[(p,k)]! =⊥ then if varsk[(p,k)]! =⊥ then

sk := varsk[(p,k)] sk := varsk[(p,k)]
endif endif
return sk return sk

Imp(Exec)((u,i),(s,j)) = Imp(oF )(x) = return 1
θ ← Z∗

q ; X = gθ; ϕ ← Z∗
q ;

Y = gϕ; Y � = E(pw,Y ); Ks = Xϕ; Ku = Y θ;
Auth = H1(u ‖ s ‖ X ‖ Y ‖ Ku);
varsk[(u,i)] = H0(u ‖ s ‖ X ‖ Y ‖ Ku)
return ((u,X),(s,Y �),Auth)

The real game O0
0: As for O1

0, this game consists of exactly the same oracles.
The differences are in the initialization oracle where b = 0 and in the Test oracle
where is returned a random value for sk.

Summary: In a first part, we bound the probabilities that two step-predicates
occur. The first one, Cl, is for formalizing the collisions. The second one, φpw, is
for describing the dependence on the password in the oracles. In a second part,
we write the general proof in order to obtain the indistinguishability between
O0

0 and O1
0, considering that the two previous step-prediactes can not occur. For

that, we describe the transformations of the game O1
0 , step by step, until finding

a simplified game. We notice that we obtain the same thing for the game O0
0 .

These two parts are very similar: the same tranformations are made in order
to obtain the wanted result. Therefore, we explain clearly the first proof and we
expose briefly the second one.

N.B.: The list Lpw is created to simulate the oracles E and D in ICM.
We suppose that the domain of E matches with the group generated by g. LO

is defined as the list stocking the tuple (oracle o,query q,answer a), writing as
LO = LO · (o,q,a).

4.3 Proof for Bounding the Probability of the Step-Predicate φpw

C.1. Eliminating the Collisions :
We want to eliminate collisions during Hash and Encryption/Decryption pro-
cesses. We formalize the small probability of that an inappropriate collision could
let the adversary to find a sequence without any required effort.
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Let the step-predicate Cl be defined on the triple ((o,q,a),m, ) as the con-
junction of the clauses:

– for i = 0,1, o = Hi ∧ q /∈ m · LHi
∧ (,a) ∈ m · LHi

– o = E ∧ (pw,q, , ) /∈ m · LE ∧ ( , ,a, ) ∈ m · LE

– o = D ∧ (pw, ,q, ) /∈ m · LE ∧ ( ,a, , ) ∈ m · LE

To complete and restrict the definition of Cl, let us introduce two other clauses:

– if (pw,Y,Y �
1 ,ϕ) and (pw,Y,Y �

2 ,ϕ) then Y �
1 = Y �

2
– if (pw,Y1,Y �,ϕ) and (pw,Y2,Y �,ϕ) then Y1 = Y2

Since Cl can only be satisfied when querying H0, H1, E or D, applying the
rule Fail2 (see Appendix B.1) allows to conclude to:

– on the hash oracles, where l = max(l0, l1) and qH = qH0 + qH1 , we obtain

ε1
0 = 1

2 × (qH0 +qH1 )2

2l = q2
H

2l+1 ,
– on the Encryption/Decryption oracles, where qE = qEnc +qDec, we get ε2

0 =
1
2 × (qEnc+qDec)2

q−1 = q2
E

2(q−1) .

Therefore, we obtain that O1
0 :ε0 FCl where ε0 = q2

H
2l+1 + q2

E
2(q−1) . We perform the

same analysis for the other game obtaining O0
0 :ε0 FCl.

For further, at each step, we suppose there is no collision when modifying the
game O1

0 . We can introduce a particular equivalence relation under the step-
predicate ¬Cl in order to avoid the collisions, since it steps in over memories.
We use the extented notion of bisimulation (for more details, see Appendix B.3).
To conclude the proof, we bound the probability of such collisions (this avoids
the repetition of the value ε0 at each transformation).

C.2. Creating the independence from the password in the oracles:
We want to eliminate dependence on pw in all the oracles. We formalize the

probability that the adversary guesses the good password and succeeds in the
acquisition of the session key.

We define the step-predicate φpw = φpw1 ∨ φpw2, where φpw1 and φpw2 are
written as follows:

φpw1 = λ(m, ). (U2,q, ) ∈ m · LO ∧ (m · pw, ,q,⊥) ∈ m · LE

φpw2 = λ(m, ). (S1, ,a) ∈ m · LO ∧ ( ,a) ∈ m · S1 ∧ (m · pw,Y,a, ) ∈ m · LE

∧( ‖ ‖ ‖ Y ‖ ,a′) ∈ m · LH1 ∧ (S2,a′, ) ∈ m · LO

φpw steps in over memories only. We want to find the value ε1 such that:
O1

0 :ε1 Fφpw = Fφpw1∨φpw2 .



CIL Security Proof for a Password-Based Key Exchange 67

We transform the game O1
0 until finding a game wherein the password is sam-

pled in the finalization oracle. Therefore, we can obtain easily the optimal result
Nu+Ns

N . Indeed, this means that the adversary can test at most one password
per session.

Removing the Encryption in the oracle S1. The unique way for the adver-
sary to gain something is to correctly guess pw, by either sending a Y � that is
really an encryption under it of some well-chosen message or using it to decrypt
Y �. In O1

1 , we change S1 modelizing the Encryption inside this oralce.

Imp(S1)((s,j),(u,X)) = ϕ ← Z∗
q ; Y = gϕ; Y � ← Ḡ; varϕ[(s,j)] = (ϕ,Y,Y �);

LE := LE.(pw,Y,Y �,ϕ) ; varX [(s,j)] = X ; Ks = Xϕ;
return (s,Y �) such that (pw,Y,Y �, ) ∈ LE

In a particular case, we do not receive an exponent ϕ but ⊥: that happens
when Y � has been previously obtained as a ciphertext returned by an Encryp-
tion query. Let the step-predicate Exp be this case:

Exp = λ((o, ,a),m, ). o = S1 ∧ (pw, ,a,⊥) ∈ m · LE

Therefore, O1
0 and O1

1 are in bisimulation-up-to ¬Exp, using as relation R′1

the equality on the common components of their states in M
O1

i

¬Cl. Indeed, states
m,m′ are in relation:

– if m,m′ ∈ M
O1

0
¬Cl or M

O1
1

¬Cl, mR′
1m′ iff m = m′

– if m ∈ M
O1

0
¬Cl and m′ ∈ M

O1
1

¬Cl, mR′
1m′ iff

• ∀(pw,x,y,e) ∈ m ·LE \m′ ·LE ⇒ e =⊥ ∧∃(pw,x,y,ϕ) ∈ m′ ·LE \m ·LE s.t. x =
gϕ

• ∀(pw,x,y,e) ∈ m′ · LE \ m · LE ⇒ e = ϕ s.t. x = gϕ ∧ ∃(pw,x,y,⊥) ∈ m · LE \
m′ · LE

Hence, we apply the rule I-BisG2 to result in:

O1
1 :ε′

2
FExp(∧G¬Cl) O1

1 :ε′
1

Fφpw
(∧G¬Cl) O1

0
¬Cl≡ R′1,¬Exp∧¬φpw

O1
1

O1
0 :ε′

1+ε′
2

Fφpw
(∧G¬Cl)

I-BisG2

Applying the rule Fail allows to obtain O1
1 :ε′

2
FExp, where ε′

2 = Ns×qE

q−1 .

Splitting the Hash Lists. We want to be sure that u will offer a good Authenti-
cator and s will accept it. Therefore, we modify the oracle U2 in order to get a honest
value for Y . We split the lists of the two public hash oracles H0 and H1 in O1

2 , intro-
ducing two private hash functions H2 : {0,1}∗ → {0,1}l0 and H3 : {0,1}∗ → {0,1}l1 .
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Imp(oI )( ) = Imp(U2)((u,i),(s,Y �)) =
pw ← P assword if varθ[(u,i)]! =⊥ then
LH0 := [ ]; LH1 := [ ]; LH2 := [ ]; LH3 := [ ]; (θ,X) = varθ[(u,i)]
LE := [ ]; Lpw := [ ]; LO := [ ]; if ∃Y,∃ϕ such that (pw,Y,Y �,ϕ) ∈ LE

varX :=⊥; varθ :=⊥; varϕ :=⊥; varsk :=⊥; Ku = Y θ ;
b := 1 Auth = H1(u ‖ s ‖ X ‖ Y ‖ Ku);
return 1 varsk[(u,i)] = H0(u ‖ s ‖ X ‖ Y ‖ Ku)

else
Y ← Ḡ; Ku = Y θ;
Auth = H3(u ‖ s ‖ X ‖ Y ‖ Ku);
varsk[(u,i)] = H2(u ‖ s ‖ X ‖ Y ‖ Ku)

endif
endif
return Auth

O1
1 and O1

2 are R′
2-bismilar up to ¬φpw1. The equivalence relation R′

2 between
states m and m′ is as follows:

– if m,m′ ∈ M
O1

1
¬Cl or M

O1
2

¬Cl, mR′
2m′ iff m = m′

– if m ∈ M
O1

1
¬Cl and m′ ∈ M

O1
2

¬Cl, mR′
2m′ iff m ·LH0 = m′ ·(LH0 ∪LH2 ) and m ·LH1 =

m′ · (LH1 ∪ LH3 )

Then, applying the rule I-BisG2, we find:

O1
2 :ε′

3
Fφpw1(∧G¬Cl) O1

2 :ε′
4

Fφpw
∧ G¬φpw1(∧G¬Cl) O1

1
¬Cl≡ R′2,¬φpw1 O1

2

O1
1 :ε′

3+ε′
4

Fφpw
(∧G¬Cl)

I-BisG2

such that ε′
3 + ε′

4 = ε′
1. We notice that: Fφpw

∧ G¬φpw1 ⇔ Fφpw2 .

Randomizing the Hash Oracles. In O1
3 , we sample the value of Y . Therefore,

we no longer use the private hash functions since we internalize the hash functions in
another way with the random Y . We modify the oracles U2 and S2.

Imp(U2)((u,i),(s,Y �)) = Imp(S2)((s,j),u,Auth) =
if varθ[(u,i)]! =⊥ then if varϕ[(s,j)]! =⊥ then

Y ← Ḡ; ( ,Y,Y �) ∈ varϕ[(u,i)]; (ϕ,Y,Y �) = varϕ[(s,j)]; X = varX [(s,j)]; Ks = Xϕ;
(θ,X) = varθ[(u,i)]; Ku = Y θ; H ′ = H1(u ‖ s ‖ X ‖ Y ‖ Ks);
Auth = H1(u ‖ s ‖ X ‖ Y ‖ Ku); if H ′ = Auth then
varsk[(u,i)] = H0(u ‖ s ‖ X ‖ Y ‖ Ku) varsk[(s,j)] = H0(u ‖ s ‖ X ‖ Y ‖ Ks)

endif endif
return Auth endif

return 1

Let the step-predicate Auth be the conjunction of the following clauses:

– (pw,Y,Y �,ϕ) ∈ LE ∧ X ∈ varθ

– for u and s, u ‖ s ‖ X ‖ Y ‖ CDH(X,Y ) ∈ LH1

The adversary can not see the link between Y and Y �, except if he calls E(pw, ) or
D(pw, ).
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We notice that the probability that Fφpw2 occurs is very negligible since we suppose
that the adversary can not get the password. Since we have FAuth∨φpw2 = FAuth ∨
(Fφpw2 ∧G¬Auth), we expose that Fφpw2 ∧G¬Auth occurs with the probability ε′

5 and
FAuth with ε′

6. Using the rule Fail, we get ε′
5 = Nu+Ns

q−1 .
We want to establish the indistinguishability between O1

2 and O1
3 up to ¬Auth ∧

¬φpw2. We exhibit two equivalence relations R′
3 between both systems. Indeed, states

m and m′ are in relation:

– if m,m′ ∈ M
O1

2
¬Cl or M

O1
3

¬Cl, mR′
3m′ iff m = m′

– if m ∈ M
O1

2
¬Cl and m′ ∈ M

O1
3

¬Cl, mR′
3m′ iff m ·(LH0 ∪LH2 ) = m′ ·LH0 and m ·(LH1 ∪

LH3 ) = m′ · LH1

On the left hand, focusing on the step-predicate φpw1, we apply the rule I-BisG2 to
result in:

O1
3 :ε′

5+ε′
6

FAuth∨φpw2 (∧G¬Cl) O1
3 :ε′

7
Fφpw1 ∧ G¬Auth∧¬φpw2 (∧G¬Cl) O1

2
¬Cl≡ R′3,¬Auth∧¬φpw2 O1

3

O1
2 :ε′

5+ε′
6+ε′

7
Fφpw1 (∧G¬Cl)

I-BisG2

such that ε′
5 + ε′

6 + ε′
7 = ε′

3.
On the right hand, since we have FAuth∨φpw2 = [FAuth ∧ Gφpw2 ] ∨ [Fφpw2 ∧

GAuth∧φpw2 ] and O1
3 :0 Fφpw2 ∧ GAuth∧φpw2(∧G¬Cl), we simplify the line. Focusing

on the step-predicate φpw2, we apply the rule I-BisG2 to result in:

O1
3 :ε′

6
FAuth ∧ Gφpw2 (∧G¬Cl) O1

3 :ε′
8

Fφpw2 (∧G¬Cl) O1
2

¬Cl

≡ R′3,¬Auth∧¬φpw2 O1
3

O1
2 :ε′

6+ε′
8

Fφpw2 (∧G¬Cl)
I-BisG2

such that ε′
6 + ε′

8 = ε′
4.

We focus on the CDH problem to obtain the value of ε′
6 (for more details about the

Computational Diffie-Hellman assumption in G, see Appendix B.2). Hence, we write
the game O1

4 as a context C of CDH . The oracle system CDH captures the game
played by an adversary to find the Diffie-Hellman instance (A,B).

We define the step-predicate Auth’ as follows:
– o = U1 s.t. (α,X) ∈ LA ∧ o = S1 s.t. (β,Y ) ∈ LB

– for u and s, u ‖ s ‖ X ‖ Y ‖ CDH(X,Y ) ∈ LH1

The adversary has returned a pair (R1,R2) that is a valid authentication when H1(R1) =
R2. Given (α,X) ∈ LA, (β,Y ) ∈ LB and one CDH instance (A,B), we notice that
CDH(A,B) = CDH(X,Y )α−1β−1

.
Therefore, applying the rule B-Sub, we get:

CDH :ε(1k,t) FAuth’ ◦ C

O1
4 = C[CDH ] :ε′

6
FAuth’

B-Sub

where ε′
6 = qH × ε(1k, t) (see Appendix B.2).
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Moreover, the games O1
3 and O1

4 are in perfect bisimulation. We define the equiva-
lence relation R′

4 between states m and m′ as follows:

– if m,m′ ∈ M
O1

3
¬Cl or M

O1
4

¬Cl, mR′
4m′ iff m = m′

– if m ∈ M
O1

3
¬Cl and m′ ∈ M

O1
4

¬Cl, mR′
4m′ iff there is the equality on the common

components of their states, knowing that the added lists LA and LB are completely
determinated using the other common tables.

Then, we check the compatibility of FAuth ∪ FAuth’ with R′
4, i.e. that given two

states m ∈ M
O1

3
¬Cl and m′ ∈ M

O1
4

¬Cl in relation by R′
4, FAuth holds in state m iff FAuth’

holds in state m′, which is obvious by the definition of the relation. Thus, applying the
rule UpToBad, we find:

O1
4 :ε′

6
FAuth’(∧G¬Cl) O1

3 :0 F¬True O1
3

¬Cl

≡ R′4,True
O1

4 FAuthR′
4FAuth’

O1
3 :ε′

6
FAuth(∧G¬Cl)

UpToBad

Sorting the Password in the Finalization Oracle. We a simplified game such
that all the oracles are independent of pw. We modify the finalization oracle in order
to draw the password only at the end of O1

5 .

Imp(oF )(x) = x = pw; return 1

The event Fφpw
◦ π on O1

5-traces is defined by Fφpw
◦ π(τ ) = True iff π(τ ) verifies

Fφpw
, where τ is any O1

5-trace. Therefore, using the rule Fail, we get O1
5 :ε1 Fφpw

, where
ε′

9 = Nu+Ns
N . Then, applying the rule B-Det-Left, we find:

O1
3 ≤det,γ O1

5 O1
5 :ε′

9
(Fφpw

◦ π) ∧ G¬Cl

O1
3 :ε′

9
Fφpw

(∧G¬Cl)
B-Det-Left

such that ε′
9 = ε′

7 +ε′
8 = Nu

N + Ns
N . More precisely, we get O1

3 :ε′
7

Fφpw1 and O1
3 :ε′

8
Fφpw2 .

To conclude, we obtain that O1
0 :ε1 Fφpw

where ε1 = Nu+Ns
N + Nu+Ns

q−1 + NsqE

q−1 +
2qH ×ε(1k, t). We perform the same analysis for the other game obtaining that O0

0 :ε1

Fφpw
.

For further, at each step, we suppose there is no dependence on the password when
modifying the game O1

0 . We can introduce a particular equivalence relation under the
step-predicate ¬φpw in order to avoid a query from the adversary with the good pw,
since it steps in over memories using the list LO. From that, E and D no longer give
some evidence about the password to the adversary. This process enables to avoid the
repetition of the value ε1 at each transformation in the general proof.

Proof Tree: We illustrate the proof tree for bounding the probability of the step-
predicate φpw on Figure (3). For convenience, we understand that each event FPredicate
is associated to the event G¬Cl and b is the bit randomly sampled in the initialization
oracle.

N.B.: Defining the step-predicate φpw allows us to construct a proof which seems
the more general possible. Indeed, we notice that it can be applied in another password-
based protocol proof. From that, we hope to get security proofs more easily since we
have already met the concept.
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I-BisG2
Ob

0
G¬Cl≡ R1,¬Exp∧¬φpw

Ob
1 Ob

1 :ε′
2

FExp
I-BisG2

Tree’1
Ob

1 :ε′1 Fφpw

Ob
0 :ε′

1+ε′
2

Fφpw

Tree’1:

I-BisG2
Ob

1
G¬Cl≡ R2,¬φpw1 Ob

2
I-BisG2

Tree’2
Ob

2 :ε′
3

Fφpw1

I-BisG2
Tree’3

Ob
2 :ε′

4
Fφpw

∧ G¬φpw1

Ob
1 :ε′

1
Fφpw

Tree’2:

I-BisG2
Ob

2
G¬Cl≡ R3,¬Auth∧φpw2 Ob

3
I-BisG2

Tree’4
Ob

3 :ε′
6

FAuth∨φpw2

I-BisG2
Tree’5

Ob
3 :ε′

7
Fφpw1 ∧ G¬Auth∧¬φpw2

Ob
2 :ε′

3
Fφpw1

Tree’3:

I-BisG2
Ob

2
G¬Cl≡ R3,¬Auth∧φpw2 Ob

3
I-BisG2

Tree’4
Ob

3 :ε′
6

FAuth ∧ Gφpw2

I-BisG2
Tree’5

Ob
3 :ε′

8
Fφpw2

Ob
2 :ε′

4
Fφpw

∧ G¬φpw1 = Fφpw2

Tree’4:

Up-To-Bad
Ob

3
G¬Cl≡ R4,True Ob

4 Ob
3 :0 F¬True FAuthR4FAuth’

B-Sub
CDH :ε(1k,t) FAuth’ ◦ C

Ob
3 :ε′

6
FAuth’

Ob
3 :ε′

6
FAuth

Tree’5:

B-Det-Left
Ob

3 ≤det,γ Ob
5 Ob

5 :ε′
7

Fφpw1 ◦ π

Ob
3 :ε′

7
Fφpw1

Tree’6:

B-Det-Left
Ob

3 ≤det,γ Ob
5 Ob

5 :ε′
8

Fφpw2 ◦ π

Ob
3 :ε′

8
Fφpw2

Fig. 3. Proof Tree for the probability that the step-predicate φpw occurs

4.4 General Proof for the Indistinguishability between the Games
O0

0 and O1
0.

Since the two conditions we described previously seem revelant, we transform the game
O1

0 in several steps under G¬Cl ∧ G¬φpw
. The description of the general proof is less

developed since we use the same transformations than for the proof for bounding the
probability of φpw. Indeed, except the last game O1

5 using the concept of determiniza-
tion, we will apply in the same order each step using in the previous proof.

Removing the Encryption in the Oracle S1. In O1
1, modified S1 modelizes

the Encryption inside (refer to page 67). If Y � exists already then the exponent is equal
to ⊥. The step-predicate Exp defines this case (see pagerefexp).
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Therefore, O1
0 and O1

1 are in bisimulation-up-to ¬Exp, using as relation R1 the
equality on the common components of their states in M

O1
i

¬Cl∧¬φpw
. Indeed, states

m,m′ are in relation:

– if m,m′ ∈ M
O1

0
¬Cl∧¬φpw

or m,m′ ∈ M
O1

1
¬Cl∧¬φpw

, mR1m′ iff m = m′

– if m ∈ M
O1

0
¬Cl∧¬φpw

, m′ ∈ M
O1

1
¬Cl∧¬φpw

, mR1m′ iff
• ∀(pw,x,y,e) ∈ m ·LE \m′ ·LE ⇒ e =⊥ ∧∃(pw,x,y,ϕ) ∈ m′ ·LE \m ·LE s.t. x =

gϕ

• ∀(pw,x,y,e) ∈ m′ · LE \ m · LE ⇒ e = ϕ s.t. x = gϕ ∧ ∃(pw,x,y,⊥) ∈ m · LE \
m′ · LE

Hence, using the rule Fail, we get O1
1 :

ε2= Ns×qE
q−1

FExp and we apply the rule I-BisCd
to result in:

O1
1 :ε2 FExp(∧G¬Cl ∧ G¬φpw

) O1
0

¬Cl∧¬φpw≡ R1,¬Exp O1
1

O1
0

G¬Cl∧G¬φpw∼ε2 O1
1

I-BisCd

Splitting the Hash Lists. In O1
2 , we split the lists of the hash functions. For that,

we create two private hash functions H2 and H3 (refer to page 67).
O1

1 and O1
2 are R2-bismilar up to ¬φpw1 (see page 66). We define the equivalence

relation R2 between states m and m′ as follows:

– if m,m′ ∈ M
O1

1
¬Cl∧¬φpw

or m,m′ ∈ M
O1

2
¬Cl∧¬φpw

, mR2m′ iff m = m′

– if m ∈ M
O1

1
¬Cl∧¬φpw

, m′ ∈ M
O1

2
¬Cl∧¬φpw

, mR2m′ iff m ·LH0 = m′ · (LH0 ∪LH2 )∧m ·
LH1 = m′ · (LH1 ∪ LH3 )

We obtain O1
2 :0 F φpw1 since we consider the independence of the password in the

oracles. Then, applying the rule I-BisCd, we find:

O1
2 :0 Fφpw1(∧G¬Cl ∧ G¬φpw

) O1
1

¬Cl∧¬φpw≡ R2,¬φpw1 O1
2

O1
1

G¬Cl∧G¬φpw∼0 O1
2

I-BisCd

Randomizing the Hash Oracles. In O1
3 , sampling Y modifies the oracles U2 and

S2 (refer to page 68).
Auth is defined page 68 and φpw2 page 66. We notice that the event Fφpw2 do not

occur since we suppose that the adversary can not get the password. Using the equality
FAuth∨φpw2 = FAuth ∨ (Fφpw2 ∧ G¬Auth) = FAuth, we calculate the value ε3 of the
probability that the event FAuth occurs.
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We want to establish the indistinguishability between O1
2 and O1

3 up to ¬Auth ∧
¬φpw2. We exhibit an equivalence relation R3 between both systems. Indeed, states m
and m′ are in relation:

– if m,m′ ∈ M
O1

2
¬Cl∧¬φpw

or m,m′ ∈ M
O1

3
¬Cl∧¬φpw

, mR3m′ iff m = m′

– if m ∈ M
O1

2
¬Cl∧¬φpw

, m′ ∈ M
O1

3
¬Cl∧¬φpw

, mR3m′ iff m · (LH0 ∪LH2 ) = m′ ·LH2 ∧m ·
(LH1 ∪ LH3 ) = m′ · LH3

Hence, we apply the rule I-BisCd to result in:

O1
3 :ε3 FAuth∨φpw2(∧G¬Cl ∧ G¬φpw

) O1
2

¬Cl∧¬φpw≡ R3,¬Auth∧¬φpw2 O1
3

O1
2

G¬Cl∧G¬φpw∼ ε3 O1
3

I-BisCd

In the previous proof, we obtained that O1
3 :ε′

6
FAuth(∧G¬Cl). We use classic rule of

Logic O :ε A ⇒ O :ε A ∧ B such that A = FAuth(∧G¬Cl) and B = G¬φpw
. Therefore,

we obtain that O1
3 :ε′

6
FAuth(∧G¬Cl ∧ G¬φpw

) where ε3 ≤ ε′
6.

4.5 Digest

Using four steps and the rule TrCd, we find O1
0

G¬Cl∧¬φpw∼ ε2+ε3 O1
3 . Similarly, we get

O0
0

G¬Cl∧¬φpw∼ ε2+ε3 O0
3 .

To achieve the conclusion, we compare the games O0
3 and O1

3 . At present, the adver-
sary can not discern a random value from a real value for the session key sk. From that,
he can not guess what was the bit sampled in the initialization oracle. Consequently,
the latter discussion implies that the two last modified games O0

3 and O1
3 are in perfect

bisimulation, with as a relation R5 the equality on the common components of their
states. To conclude, we use the rule I-BisCd:

O0
3 :0 F¬True(∧G¬Cl ∧ G¬φpw

) O1
3 :0 F¬True(∧G¬Cl ∧ G¬φpw

) O0
3

¬Cl∧¬φpw≡ R5,True O1
3

O0
3

G¬Cl∧G¬φpw∼0 O1
3

I-BisCd

We use the rule TrCd to conclude to: O0
0

G¬Cl∧G¬φpw∼ 2ε2+2ε3 O1
0 . Having Ob

0 :ε1 Fφpw

and using the rule FTr, we get: O0
0

G¬Cl∼ ε1+2ε2+2ε3 O1
0 . Since Ob

0 :ε0 FCl, applying the
rule FTr, we obtain: O0

0 ∼ε0+ε1+2ε2+2ε3 O1
0 , where ε0 +ε1 +2ε2 +2ε3 = q2

H

2l+1 + q2
E

2(q−1) +
Nu+Ns

N + Nu+Ns
q−1 + NsqE

q−1 + 2qH × ε(1k, t) + 2NsqE

q−1 + 2qH × ε(1k, t).
General Proof Tree: We illustrate the proof tree on Figure (4). Most of the time, we

use the rules I-BisCd and TrCd under the condition G¬Cl ∧ G¬φpw
. For convenience,

we understand that each event FPredicate is associated to the event G¬Cl ∧ G¬φpw

and b is the bit randomly sampled in the initialization oracle.

4.6 Conclusion

We gave a manual formal proof of the OEKE protocol, as the first application of the tool
CIL. This proof is well contructed under two parts; The first proof seems complicated
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FTr

FTr

TrCd
Tree1

O0
0

G¬Cl∧G¬φpw∼ 2ε2+2ε3+2ε4 O1
0

Fail
Ob

0 :ε1 Fφpw
∧ G¬Cl

O0
0

G¬Cl∼ ε1+2ε2+2ε3+2ε4 O1
0

Fail2
Ob

0 :ε0 FCl

O0
0 ∼ε0+ε1+2ε2+2ε3+2ε4 O1

0

Tree1:

TrCd

TrCd
Tree2

Ob
0

G¬Cl∧G¬φpw∼ ε2+ε3+ε4 Ob
3

I-BisCd
Ob

3 :0 F¬True O0
3

¬Cl∧¬φpw≡ R5,True O1
3

O0
3

G¬Cl∧G¬φpw∼0 O1
3

O0
0

G¬Cl∧G¬φpw∼ 2ε2+2ε3+2ε4 O1
0

Tree2:

TrCd

TrCd
Tree3

Ob
0

G¬Cl∧G¬φpw∼ ε2 Ob
2

I-BisCd
Ob

3 :ε3+ε4 FAuth∨φpw2 Ob
2

¬Cl∧¬φpw≡ R3,¬Auth∧¬φpw2 Ob
3

Ob
2

G¬Cl∧G¬φpw∼ ε3+ε4 Ob
3

Ob
0

G¬Cl∧G¬φpw∼ ε2+ε3+ε4 Ob
3

Tree3:

TrCd

I-BisCd
Ob

1 :ε2 FExp Ob
0

¬Cl∧¬φpw≡ R1,¬Exp Ob
1

Ob
0

G¬Cl∧G¬φpw∼ ε2 Ob
1

I-BisCd
Ob

2 :0 Fφpw
Ob

1
¬Cl∧¬φpw≡ R2,¬φpw

Ob
2

Ob
1

G¬Cl∧G¬φpw∼ 0 Ob
2

Ob
0

G¬Cl∧G¬φpw∼ ε2 Ob
2

Fig. 4. Proof Tree for OEKE

to find the probability of one-step predicate but stays clear. As this proof is similar to
the general proof, therefore the latter is concise, precise and easy to understand. We
obtained a new kind of security proof for OEKE based on general and extended logic
rules, instead of “writing” proofs or “rewriting” proof using CryptoVerif.

Theorem 1. Let us consider the OEKE protocol, where P assword is a finite dictio-
nnary of size N equipped with the uniform distribution. Let A be a (k,t)-adversary
against the security of OEKE within a time bound t, with less than Nu + Ns inter-
actions with the parties and asking qH hash queries and qE Encryption/Decryption
queries. Then we have:

Advoeke(A) ≤ Nu + Ns

N
+ Nu + Ns

q − 1
+

q2
E

2(q − 1)
+ 3NsqE

q − 1
+

q2
H

2l+1 + 4qH × ε(1k, t)

We stayed careful of putting realistic hypothesis for elements of the proof, as for func-
tions in ROM and ICM. We obtained the optimal term Nu+Ns

N .
N.B.: In 2003, the autors of the paper [3] recognized that their results of the

reductions proof were not optimal. For technical reasons, they used a collision-resistant
hash function H1. After we began our article, in the paper [9], they proved the security
of OEKE using the tool CryptoVerif. The boundary was improved relative to the former
proof since they reached the optimal result Nu+Ns

N . As in these papers, we obtained
the optimal term but using a new kind of analysis under CIL.

Moreover, the logic CIL is sufficiently developed: it can be used easily and efficiently
to construct computational proofs.
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A Oracle Systems

A.1 Oracle Systems and Adversaries

An oracle system is a stateful system that provides oracle access to adversaries.

Definition 1. An oracle system O is given by:
– sets Mo of oracle memories and No of oracles,
– for each o ∈ No, a query domain In(o), an answer domain Out(o) and an imple-

mentation Oo : In(o) × Mo → D(Out(o) × M0),
– a distinguished initial memory m̄o ∈ Mo, and distinguished oracles oI for initializa-

tion and oF for finalization, such that In(oI) = Out(oF ) = 1. We let Res = In(oF ).

Two oracle systems O and O′ are compatible iff they have the same sets of oracle
names, and the query and the answer domains of each oracle name coincide in both
oracle systems. When building a compatible oracle system from another one, it is thus
sufficient to provide its set of memories, its initial memory and the implementation of
its oracles.

Adversaries interact with oracle systems by making queries and receiving answers.
An exchange for an oracle system O is a triple (o,q,a) where o ∈ No, q ∈ In(o) and a ∈
Out(o). We let Xch be the set of exchanges. Initial and final exchanges are defined in the
obvious way, by requiring that o is an initialization and finalization oracle respectively
(the sets of these exchanges are denoted by XchI and XchF respectively). The sets
Que of queries and Ans of answers are respectively defined as {(o,q) | (o,q,a) ∈ Xch}
and {(o,a) | (o,q,a) ∈ Xch}.
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Definition 2. An adversary A for an oracle system O is given by a set Ma of adversary
memories, an initial memory m̄a ∈ Ma and functions for querying and updating A :
Ma → D(Que × Ma) and A↓ : Xch × Ma → D(ma).

Informally, the interaction between an oracle system and an adversary proceeds in
three successive phases: the initialization oracle sets the initial memory distributions
of the oracle system and of the adversary. Then, A performs computations, updates its
state and submits queries to O. In turn, O performs computations, updates its state,
and replies to A, which updates its state. Finally, A outputs a result by calling the
finalization oracle.

A.2 Semantics

Definition 3. A transition system S consists of:
– a (countable non-empty) set M of memories (states) with a distinguished initial

memory m̄,
– a set

∑
of actions with distinguished subsets of

∑
I and

∑
F of initialization and

finalization actions,
– a (partial) transition function step : M ⇀ D(

∑
×M).

A partial execution sequence of S is a sequence of ζ of the form m0
x1−−→ m1

x2−−→
·· · xk−−→ mk such that P r[step(mk−1) = (ak,mk)] > 0 for i = 1..k and xi = (oi, qi,ai).
If k = 1 then ζ is a step. If m0 = m̄, x1 ∈

∑
I and xk ∈

∑
F then ζ is an execution

sequence of length k. A probabilistic transition system S induces a sub-distribution
on executions, denoted S, such that the probability of a finite execution sequence ζ is
P r[S = ζ] =

∏k
i=1 P r[step(mi−1) = (ai,mi)]. A transition system is of height k ∈ N if

all its executions have length at most k: in this case, S is a distribution.

Definition 4. Let O be an oracle system and A be an O-adversary. The composition
A | O is a transition system such that M = Ma × Mo, the initial memory is (m̄a, m̄o),
the set of actions is

∑
= Xch,

∑
I = XchI and

∑
F = XchF , and

stepA|O(ma,mo) = ((o,q),m′
a) ← A(ma); (a,m′

o) ← Oo(q,mo) ; m′′
a ← A↓((o,q,a),m′

a);
return ((o,q,a),(m′′

a,m′
o))

An adversary is called k-bounded if A | O is of height k. This means that A calls
the finalization oracle after less than k interactions with O. A | O may be ill-defined for
unbounded adversaries, since stepA|O(ma,mo) may be a sub-distribution. Throughout
the paper, we only consider bounded adversaries, i.e. that are k-bounded for some k.

A.3 Events

Security properties abstract away from the state of adversaries and are modeled using
traces. Informally, a trace τ is an execution sequence η from which the adversary
memories have been erased.

Definition 5. Let O be an oracle system.
– A partial trace is a sequence τ of the form m0

x1−−→ m1
x2−−→ ·· · xk−−→ mk where

m0..mk ∈ Mo and x1..xk ∈ Xch such that P r[Ooi(qi,mi−1) = (ai,mi)] > 0 for
i = 1..k and xi = (oi, qi,ai). A trace is a partial trace τ such that m0 = m̄o,
x1 = (oI , , ) and xk = (oF , , ).
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– An O-event E is a predicate over O-traces, whereas an extended O-event E is a
predicate over partial O-traces.

The probability of an (extended) event is derived directly from the definition of A | O:
since each execution sequence η induces a trace T (η) simply by erasing the adversary
memory at each step, one can define for each trace τ , the set T −1(τ ) of execution
sequences that are erased to τ , and for every (generalized) event E, the probability:
P r[A | O : E] = P r[A | O : T −1(E)] =

∑
{η∈Exec(A|O)|E(T (η))=True} P r[A | O : η].

Constructions and proofs in CIL use several common operations on (extended)
events and traces. First, one can define the conjunction, the disjunction, etc, of events.
Moreover, one can define for every predicate P over Xch×Mo ×Mo the events ”even-
tually P ” FP and ”always P ” GP that correspond to P being satisfied by one step and
all steps of the trace respectively.

Reduction-based arguments require that adversaries can partially simulate behav-
iors. In some cases, adversaries must test whether a predicate ϕ ⊆ Xch×Mo ×Mo holds
for given values. Since the adversary has no access to the oracle memory, we say that
ϕ is testable iff for all x,m1,m′

1,m2,m′
2, we have ϕ(x,m1,m′

1) iff ϕ(x,m2,m′
2) (that is

ϕ depends only on the exchange).
Given two traces τ and τ ′, we write τRτ ′ iff for every i ∈ [1,k], we have miRm′

i,
where: τ = m0

x1−−→ m1
x2−−→ ·· · xk−−→ mk and τ ′ = m′

0
x1−−→ m′

1
x2−−→ ·· · xk−−→ m′

k.
Moreover, we say that two events E and E’ are R-compatible, written ERE’, iff

E(τ ) is equivalent to E’(τ ′) for every traces τ and τ ′ such that τRτ ′.

B Computational Indistinguishability Logic

B.1 Statements and Rules

As cryptographic proofs rely on assumptions, CIL manipulates sequents of the form
Δ ⇒ ω, where Δ is a set of statements (the assumptions) and ω is a statement (the
conclusion). Validity extends to sequents Δ ⇒ ω in the usual manner. Given a set Δ of
statements, |= Δ iff |= ψ for every ψ ∈ Δ. Then Δ |= ω iff |= Δ implies |= ω. For clarity
and brevity, our presentation of CIL omits hypotheses and the standard structural and
logical rules for sequent calculi.

Theorem 2. Every sequent Δ ⇒ ϕ provable in CIL is also valid, i.e. Δ |= ϕ.

Judgments. CIL considers negligibility statements of the form O :ϕ E, where E is
an event. A statement O :ϕ E is valid, written |= O :ϕ E, iff for every (k,t)-adversary
A, P r(A | O : E) ≤ ε(k,t).

We also consider indistinguishability statements of the form O ∼ε O′, where O and
O′ are compatible oracle systems which expect a boolean as result. A statement O ∼ε O′

is valid, written |= O ∼ε O′, iff for every (k,t)-adversary A,

| P r[A | O : R = True] − P r[A | O′ : R = True] |≤ ε(k,t)

where R = True is shorthand for Fλ(o,q,a). o=oF ∧q=True.
Therefore, we formalize the indistinguishability of distributions yielded by systems

under condition, the latter being written as an event of systems. Let E be an event of O
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and O′. A statement O
E∼ε O′ is valid, written |= O

E∼ε O′, iff for every (k,t)-adversary
A,

| P r[A | O : R = True ∧ E] − P r[A | O′ : R = True ∧ E] |≤ ε(k,t)
As cryptographic proofs rely on assumptions, CIL manipulates sequents of the form

Δ ⇒ ω, where Δ is a set of statements (the assumptions) and ω is a statement (the
conclusion). Validity extends to sequents Δ ⇒ ω in the usual manner. Given a set Δ
of statements, |= Δ iff |= ψ for every ψ ∈ Δ. Then Δ |= ω iff |= Δ implies |= ω.

Rules. On Figures (5), (6) and (7), we expose rules that support equational reason-
ing and consequence in Hoare logic, rules that were extended rules found during the
conception of the proofs in this article, and rules that are used mainly in the proofs in
this article. Let O, O′ and O” be compatible oracle systems, E, E1 and E2 be events
of O, O′ and O”, and ϕ, ϕ1 and ϕ2 be step-predicates.

O ∼εi Ei(i ∈ I) E ⇒
∨
i∈I

Ei

O :∑
i∈I

εi
E

UR
O :ε Fϕ

Fail
O :ε F¬ϕ O ≡R,ϕ O′

O ∼ε O′ I-Bis

O ≤det,γ O′ O :ε E ◦ π

O′ :ε E
B-Det-Left

O :ε E ◦ C

C[O] :ε′ E
B-Sub

O :ε E1 ∧ Gϕ O ≡R,ϕ O′ E1RE2

O′ :ε E2 ∧ Gϕ
B-BisG

O :ε2 E2 O′ :ε1 F¬ϕ O ≡R,ϕ O′ E1RE2

O′ :ε1+ε2 E1
UpToBad

Fig. 5. Classic rules

O
E2∼ ε1 O′ E2 ⇒ E1 O :ε2 E1 ∧ ¬E2 O′ :ε2 E1 ∧ ¬E2

O
E1∼ ε1+ε2 O′

URCd
O :ε′ Fϕ′

Fail2
O

E1∼ ε1 O′ O′ E2∼ ε2 O”

O
E1∨E2∼ ε1+ε2 O”

TrCd

Fig. 6. Extended rules

O :ε1 Fϕ1 ∧ Gϕ2 O :ε2 F¬ϕ2 O ≡R,ϕ2 O′

O′ :ε1+ε2 Fϕ1

B-BisG2
O′ :ε F¬ϕ2 ∧ Gϕ1 O

ϕ1≡R,ϕ2 O′

O
Gϕ1∼ ε O′

I-BisCd

O
E1∧E2∼ ε2 O′ O :ε1 ¬E1 ∧ E2 O′ :ε1 ¬E1 ∧ E2

O
E2∼ ε1+ε2 O′

FTr

Fig. 7. Rules used in the proof (extended rules)
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More precisely, CIL features a rule to compute an upper-bound on the probability of
an event from the number of oracle calls, and from the probability that a single oracle
call triggers that event. Let ϕ be a predicate on Xch × Mo × Mo and define, for every
o ∈ No, the probability εo as max

q∈Que,m∈Mo,
a∈Ans,m′∈Mo

P r[Oo(q,m) = (a,m′) ∧ ϕ((o,q,a),m,m′)].

For every o ∈ No, let ko be the maximal number of queries to o and let ε =
∑

o∈No
koεo.

CIL features the rule O :ε Fϕ
Fail

. But sometimes, this upper-bound is not enough
convenient for the proof. We introduce another rule which keeps all the previous oracles
calls triggerring the event when considering a single oracle call. CIL features the rule

O :ε′ Fϕ
Fail2

, where ε′ = ε ×
(
∑

o∈I
ko)2

2 such that:

– ko is the maximal number of queries of the oracle o and n is the cardinal of the
set No

– I is the family of oracles that can ensure that the step-predicate ϕ can be satisfied:
o can be an oracle in No \ I such that εo(ko1 , · · · ,kon) = 0 or an oracle in I such
that ∃ε, εo(ko1 , · · · ,kon ) = ε ×

∑
o′∈I ko′

B.2 Contexts

Informally, a context C is an intermediary between an oracle system O and adversaries.
One can compose a O-context C with O to obtain a new oracle system C[O] and with
a C[O]-adversary to obtain a new O-adversary C ‖ A. Moreover, one can show that
the systems C ‖ A | O and A | C[O] coincide in a precise mathematical sense. Despite
its seemingly naivety, the relationship captures many reduction arguments used in
cryptographic proofs and yields CIL rules that allow proving many schemes.

The definition of contexts is very similar to that of oracle systems, except that pro-
cedures are implemented by two functions: one that transfers calls from the adversary
to the oracles and another one that tranfers answers from the oracles to the adversary
(possibly after some computations).

Definition 6. An O-context C is given by:
– sets Mc of context memories, an initial memory m̄c and Nc of procedures
– for every c ∈ Nc, a query domain In(c), an answer domain Out(c) and two func-

tions C−→c : In(c)×Mc → D(Que×Mc) and C←−c : In(c)×Xch×Mc → D(Out(c)×
Mc).

– distinguished initialization and finalization procedures cI and cF such that In(cI) =
Out(cF ) = 1, and for all x and mc, range(C−→cI

(x,mc))(λ((o, ), ).o = oI) and
range(C−→cF

(x,mc))(λ((o, ), ).o = oF ). We let Resc = In(cF ).

An indistinguishability context is an O-context C such that Resc = Res and C−→cF
(r,m) =

δ((r,oF ),m) for all r and m.

The sets Quec of context queries, Ansc of context answers and Xchc of context
exchanges are defined similarly to oracle systems. An O-context can be composed with
the oracle system O or with any O-adversary A, yielding a new oracle system C[O]
or a new adversary C ‖ A. We begin by defining the composition of a context and an
oracle system.
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Definition 7. The application of an O-context C to O defines an oracle system C[O]
such that:

– the set of memories is Mc × Mo and the initial memory is (m̄c, m̄o)
– the oracles are the procedures of C and their query and answer domains are given by

C. The initialization and finalization oracles are the initialization and finalization
procedures of C

– the implementation of an oracle c is:
λ(qc,(mc,mo)). ((o,qo),m′

c) ← C−→c (qc,mc) ; (ao,m′
o) ← Oo(qo,mo); (ac,m′′

c ) ← C←−c (qc,(o,qo,ao),m′
c) ;

return (ac,(m′′
c ,m′

o))
where · ← · notation is used for monadic composition and ”return” is used for
returning the result of the function.

The composition of an adversary with a context is slightly more subtle and requires
that the new adversary stores the current query in its state.

Definition 8. The application of an O-context C to a C[O]-adversary A defines an
O-adversary C ‖ A such that:

– the set of memories is Mc × Ma × Quec and the initial memory is (m̄c, m̄a, )
– the transition function is:

λ(mc,ma, ). ((c,qc),m′
a) ← A(ma) ; ((o,q),m′

c) ← C−→c (qc,mc); return ((o,q),(m′
c,m′

a,(o,q)))
– the update function is:

λ((mc,ma,(oc, qc)),(oo, qo,ao)). (ac,m′
c) ← C←−c (qc,(oo, qo,ao),mc) ; return (m′

c,A↓((oc, qc,ac),ma), )

Context CDH Used in the Proofs

CDH Assumption in G

Let G = 〈g〉 be a finite cyclic group of order a l-bit prime number q, where the
operation is denoted multiplicatively. We give an oracle system CDH such that:

– the memories map the variable g to the values in G and the variables α and β to
the values [1..(q − 1)];

– for one such variable g, the initialization oracle draws uniformly at random values
for α and β and outputs (gα,gβ);

– the finalization oracle takes as input an element of G (in addition to a memory).

Bounding the number of calls of the adversary to the oracles is irrevelant. Let 1k be
the function mapping oI and oF to 1. Given a negligible function ε, the ε − CDH
assumption holds for the group G iff for all (1k, t)-adversary, we have ε − CDH �
oracle CDH :ε(1k,t) R = 1.

Notation: Given g, x ← Z∗
q and y ← Z∗

q , let CDH(gx,gy) = gxy.
Formalization of CDH assumption: We define an oracle system CDH to capture

the game played by an adversary to find the Diffie-Hellman instance (A,B). We imple-
ment this oracle as follows:

ImpCDH(oI)(g) = ImpCDH(oF )(x) =
α0 ← Z∗

q β0 ← Z∗
q ; A := gα0 ; B := gβ0 ; if x = CDH(A,B) then return 1

return (A,B) else return 0
endif
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Context of CDH Assumption

For this part, we write the game O1
4 as a context C of CDH . We simulate the

oracles using the random self-reducibility of the Diffie-Hellman problem, given one
CDH instance (A,B).

C−→cI
(x): C←−cI

(x,(o,q,(A,B))):
return (oI ,1) pw ← P assword

LH0 := [ ] ; LH1 := [ ] ; LH2 := [ ] ; LH3 := [ ] ; LE := [ ] ; Lpw := [ ] ; LO := [ ] ;
LA := [ ] ; LB := [ ] ; varX :=⊥ ; varθ :=⊥ ; varϕ :=⊥ ; varsk :=⊥ ;
b := 1
return 1

C−→
E

(pw,x): C←−
E

((pw,x),(o,q,a)):
return (⊥,1) if (pw,x, , ) /∈ LE then y ← Ḡ ; LE := LE .(pw,x,y,⊥) endif

return y such that (pw,x,y, ) ∈ LE

C−→
D

(pw,y): C←−
D

((pw,y),(o,q,B)):
return (⊥,1) if (pw, ,y, ) /∈ LE then φ ← Z∗

q ; x = gφ ; LE := LE .(pw,x,y,φ) endif
return x such that (pw,x,y, ) ∈ LE

C−→
H0

(x): C←−
H0

(x,(o,q,a)):
return (⊥,1) if x /∈ LH0 then y ← U(l0) ; LH0 := LH0 .(x,y) endif

return LH0 (x)
C−→

H1
(x): C←−

H1
(x,(o,q,a)):

return (⊥,1) if x /∈ LH1 then y ← U(l1) ; LH1 := LH1 .(x,y) endif
return LH1 (x)

C−→
U1

(u,i): C←−
U1

((u,i),(o,q,A)):
return (⊥,1) α ← Z∗

q ; X = Aα ; varθ[(u,i)] = (α,X); varX [(u,i)] = X ; LA := LA.(α,X)
return (u,X)

C−→
S1

((s,j),(u,X)): C←−
S1

((s,j),(u,X),(o,q,B)):
return (⊥,1) Y � ← Ḡ ; β ← Z∗

q ; Y = Bβ ; varϕ[(s,j)] = (β,Y,Y �) ; LB := LB .(β,Y ) ; varX [(s,j)] = X
return (s,Y �)

C−→
U2

((u,i),(s,Y �)): C←−
U2

((u,i),(s,Y �),(o,q,a)):
return (⊥,1) if varθ[(u,i)]! =⊥ then Y ← Ḡ ; ( ,Y,Y �) = varϕ[(u,i)] ;

(α,X) = varθ[(u,i)] ; Ku = Y α

Auth = H1(u ‖ s ‖ X ‖ Y ‖ Ku) ; varsk[(u,i)] = H0(u ‖ s ‖ X ‖ Y ‖ Ku)
endif
return Auth

C−→
S2

((s,j),u,Auth): C←−
S2

((s,j),u,Auth,(o,q,B)):
return (⊥,1) if varϕ[(s,j)]! =⊥ then (β,Y,Y �) = varϕ[(s,j)] ; X = varX [(s,j)] ; Ks = Xβ

H ′ = H1(u ‖ s ‖ X ‖ Y ‖ Ks)
if H ′ = Auth then varsk[(s,j)] = H0(u ‖ s ‖ X ‖ Y ‖ Ks) endif

endif
return 1

C−−−→
Exec

((u,i),(s,j)): C←−−−
Exec

((u,i),(s,j),(o,q,(A,B))):
return (⊥,1) α ← Z∗

q ; X = Aα ; β ← Z∗
q ; Y = Bβ ; Y � = E(pw,Y )

Auth = H1(u ‖ s ‖ X ‖ Y ‖ Ku) ; varsk[(u,i)] = H0(u ‖ s ‖ X ‖ Y ‖ Ku)
return ((u,X),(s,Y �),Auth)

C−−−−→
Reveal

(p,k): C←−−−−
Reveal

((p,k),(o,q,a)):
return (⊥,1) if varsk[(p,k)]! =⊥ then sk := varsk[(p,k)] endif

return sk

C−−−→
T est1 (p,k): C←−−−

T est1 ((p,k),(o,q,a)):
return (⊥,1) if varsk[(p,k)]! =⊥ then sk := varsk[(p,k)] endif

return sk

C−→cF
(x):
u ‖ s ‖ X ‖ Y ‖ K ← LH1

if X = (A,α) ∧ Y = (B,β) then oF (Kα−1β−1
) endif

return 1
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B.3 Bisimulation

Game-based proofs often proceed by transforming an oracle system into an equivalent
one, or in case of imperfect simulation into a system that is equivalent up to some
bad event. We reason in terms of probabilistic transition systems, using a mild exten-
sion of the standard notion of bisimulation. More specifically, we define the notion of
bisimulation-up-to, where two probabilistic transition systems are bisimilar until the
failure of a condition on their transitions. The definition of bisimulation is recovered
by considering bisimulation-up-to the constant predicate True.

Let O and O′ be two compatible oracle systems. For every oracle name, we let M̂
be Mo +M ′

o and for every o ∈ No, we let Ôo be the disjoint sum of Oo and O′
o, i.e. Ôo :

In(o) × M̂ → D(Out(o) × M̂). We write m
(x,y)−−−→>0 m′ iff P r[Ôo(q,mi) = (a,m′

i)] > 0.

Definition 9. Let ϕ ⊆ Xch×M̂ ×M̂ and let R ⊆ M̂ ×M̂ be an equivalence relation. O

and O′ are bisimilar-up-to ϕ, written O ≡R,ϕ O′, iff m̄Rm̄′, and for all m1
(o,q,a)−−−−→>0

m′
1 and m2

(o,q,a)−−−−→>0 m′
2 such that m1Rm2:

– Stability: if m′
1Rm′

2 then ϕ((o,q,a),m1,m′
1) ⇔ ϕ((o,q,a),m2,m′

2);
– Compatibility: if ϕ((o,q,a),m1,m′

1) then P r[Ôo(q,m1) ∈ (a,C)] = P r[Ôo(q,m2) ∈
(a,C)] where C is the equivalence class of m′

1 under R.

Bisimulations are closely related to obversational equivalence and relational Hoare
logic, and allow to justify proofs by simulations. Besides, bisimulations-up-to subsume
the Fundamental Lemma of Victor Shoup. Then, we introduce an extension of this con-
cept, taking account of a particular equivalence relation included in a more restricted
set of memories.

Definition 10. Let ϕ′ ⊆ M̂ and let M̂ϕ′ = {m ∈ M̂ | ϕ′(m)}. Let ϕ ⊆ Xch × M̂ × M̂

and let R ⊆ M̂ϕ′ × M̂ϕ′ be an equivalence relation.

O and O′ are bisimilar-up-to ϕ, written O
ϕ′
≡R,ϕ O′, iff for all m̄,m̄′,m1,m2,m′

1,m′
2

in M̂ϕ′ such that m̄Rm̄′, and for m1
(o,q,a)−−−−→>0 m′

1 and m2
(o,q,a)−−−−→>0 m′

2 such that
m1Rm2:

– Stability: if m′
1Rm′

2 then ϕ((o,q,a),m1,m′
1) ⇔ ϕ((o,q,a),m2,m′

2);
– Compatibility: if ϕ((o,q,a),m1,m′

1) then P r[Ôo(q,m1) ∈ (a,C)] = P r[Ôo(q,m2) ∈
(a,C)] where C is the equivalence class of m′

1 under R.

B.4 Determinization

Bisimulation is stronger than language equivalence, and can not always be used to hope
from one game to another. In particular, bisimulation can not be used for eager/lazy
sampling, or for extending the internal state of the oracle system. The goal of this
section is to introduce a general construction, inspired from the subset construction for
determinizing automata, to justify such transitions. We consider two oracles systems
O and O′ and assume that states m′ ∈ Mo′ can be seen as pairs (m,m”) ∈ Mo × Mo”.
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There are two ways to compute the probability to end up (m,m”) for a fixed m”
knowing that the step starts with a state of first component m. The first is to perform
the exchange in O and then draw m” according to a distribution γ. The second is to
look at all possible m” which γ map to m and then to perform the exchange in O′.
Imposing the equality between these two ways of computing probabilities is going to
compel the same equality to hold for steps, which in turn propagates to traces.

Definition 11. Let O and O′ be compatible oracle systems. O determinizes O′ by γ :
Mo → D(Mo), written O ≤det,γ O′, iff Mo ×Mo” = M ′

o and there exists m̄o” such that
(m̄o, m̄o”) = m̄′

o, and γ(m̄o) = δm̄o”, and P r[γ(m2 = m2”]p1 =
∑

m1”∈Mo” P r[γ(m1 =
m1”]p2(m1”) for all m1,m2 ∈ Mo, m1”,m2” ∈ Mo”, where p1 = P r[O(oc, q,m1) =
(a,m2)] and p2(m1”) = P r[O′(oc, q,(m1,m1”)) = (a,(m2,m2”))].

We define a projection function π from O′-traces to O-traces by extending the projec-
tion from Mo × Mo” to Mo.

C Proofs for Extended Rules

C.1 Proof of the Rule Fail2

Lemma 1. Rule Fail2 defined as follows is sound: O :ε′ Fϕ
Fail2

where

ε′ = ε ×
(
∑

o∈I
ko)2

2 and
– ko is the maximal number of queries of the oracle o and n is the cardinal of the set

No

– I is the family of oracles that can ensure that the step-predicate ϕ can be satisfied:
o can be an oracle in No \ I such that εo(ko1 , · · · ,kon ) = 0 or an oracle in I such
that ∃ε, εo(ko1 , · · · ,kon) = ε ×

∑
o′∈I ko′

Proof. Let A be a (k,t)-adversary for oracle system O. Let ϕ be a step-predicate in
Xch×M̂ ×M̂ . We denote by T the set of traces satisfying Fϕ. We recall that the
event ”eventually ϕ”, written Fϕ, means ϕ being satisfied at one step of a trace.
Let I be the family of oracles o that can ensure that the step-predicate ϕ can be
satisfied, I ⊆ No. We define n as the cardinal of the set No and for one oracle
o ∈ No, ko is the maximal number of its queries.

Let the trace τ in T be the sequence of the form m0
x1−−→ m1

x2−−→ ·· · xl−→ ml where
m0, · · · ,ml ∈ Mo and x1, · · · ,xl ∈ Xch such that P r[Ooi (qi,mi−1) = (ai,mi)] > 0
for i = 1, · · · , l and xi = (oi, qi,ai). Therefore, there exists one mi0 such that ϕ
becomes satisfied, where i0 ∈ [1, · · · , l].
We write two hypothesis:

– let o be an oracle in No \ I such that εo(ko1 , · · · ,kon ) = 0
– let o be an oracle in I such that ∃ε, εo(ko1 , · · · ,kon) =

max
{τ∈T |ko queries}

P r[Oo(q,ml−1) = (a,ml)] = ε ×
∑

o′∈I ko′ s.t. we denote

ε as the maximal number common to all oracles in I

First, we divide traces of set T in subgroups using equivalence relation. Two traces
are related iff ϕ is true for the first time at step i for a query to oracle o. Classes
are denoted C(i,o, j), where j =

∑
o′∈I ko′ is the number of good queries (i.e. the

queries to oracles in I), and realize a partition of T .
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Second, we let T be the projection mapping sequences of steps to partial traces
(see for more details Section 2.4). Then, by definition, the probability that a system
yields a trace τ is the sum of the probabilities that the system yields execution η
projecting to τ , which we write P r[A | O : τ ] =

∑
{η∈Exec(A|O)|T (η)=τ} P r[A | O : η].

Let τ ∈ C(i,o, j). We define Pref(η, i) as the prefix of length i of partial execution
η, and η[i] its i-th step. Then, we have:

∑
τ∈C(i,o,j)

P r[A | O : τ ] =
∑

{τ∈C(i,o,j)|T (η)=τ}

P r[A | O : η] ≤
∑

{τ∈C(i,o,j)|T (η)=τ}

P r[A | O : Pref(η, i)]

=
∑

{τ∈C(i,o,j)|T (η)=τ}

P r[A | O : Pref(η, i − 1)].P r[A | O : η[i]]

=
∑

{τ∈C(i,o,j)|T (η)=τ |T (η[i])=((o,q,a),m,m′)}

P r[A | O : Pref(η, i − 1)].P r[Oo(q,m) = (a,m′)]

either
≤

∑
{τ∈C(i,o,j)|T (η)=τ |T (η[i])=((o,q,a),m,m′)}

P r[A | O : Pref(η, i − 1)] × j.ε ≤ j.ε if o ∈ I

or
≤

∑
{τ∈C(i,o,j)|T (η)=τ |T (η[i])=((o,q,a),m,m′)}

P r[A | O : Pref(η, i − 1)] × 0 = 0 if o /∈ I

Then, we use the fact that equivalence class forms a partition to conclude:

P r[A | O : Fϕ] =
∑
τ∈T

P r[A | O : τ ]
∑
i,o,j

∑
τ∈C(i,o,j)

P r[A | O : τ ] ≤
∑

o∈I,j

j.ε =
∑
o∈I

(∑
o′∈I

ko′

)
.ε ≤ ε ×

(
∑

o∈I ko)2

2

C.2 Proof of the Rule I-BisCd

Lemma 2. We consider two compatible oracle systems O and O′. Let ϕ1 and ϕ2 be
two step-predicates in M̂ and Xch × M̂ × M̂ respectively. The following rule is sound:

O′ :ε F¬ϕ2 ∧ Gϕ1 O
ϕ1≡R,ϕ2 O′

O
Gϕ1∼ ε O′

I-BisCd

Proof. We introduce the equivalence relation R such that for two states m and
m′ in M̂ϕ1 , we have mRm′ and ϕ1(m) ∧ ϕ1(m′), where the step-predicate ϕ1 is
in M̂ (i.e. ϕ1 steps in over the memories but not over the actions in Xch). We
recall that R = True∧Gϕ1 ∧Gϕ2 is a compatible event. We decompose the set of
traces created by A | O and A | O′ and verifying Gϕ1 ∧ Gϕ2 into distinct classes
of equivalence of a finite number of executions σ1, · · · ,σm, resulting in P r[A | O :
R = True ∧ Gϕ1 ∧ Gϕ2 ] =

∑m
i=1 P r[A | O : CO(σi)] =

∑m
i=1 P r[A | O′ : CO′ (σi)] =

P r[A | O′ : R = True ∧ Gϕ1 ∧ Gϕ2 ]. Then, we conclude the rule I-BisCd since:

P r[A | O : R = True ∧ Gϕ1 ] − P r[A | O′ : R = True ∧ Gϕ1 ]
= P r[A | O : R = True ∧ Gϕ1 ∧ F¬ϕ2 ] − P r[A | O′ : R = True ∧ Gϕ1 ∧ F¬ϕ2 ]
≤ max(P r[A | O : R = True ∧ Gϕ1 ∧ F¬ϕ2 ],P r[A | O′ : R = True ∧ Gϕ1 ∧ F¬ϕ2 ])
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C.3 Proof of the Rule B-BisG2

Lemma 3. We consider two compatible oracle systems O and O′. Let ϕ1 and ϕ2 be
two step-predicates in Xch × M̂ × M̂ . The following rule is sound:

O :ε1 Fϕ1 ∧ Gϕ2 O :ε2 F¬ϕ2 O ≡R,ϕ2 O′

O′ :ε1+ε2 Fϕ1

B-BisG2

Proof. Let ϕ1 and ϕ2 be step-predicates in Xch × M̂ × M̂ . The rule B-BisG2 is ob-
tained from the combination of the rule B-BisG and a variation of this latter rule:

O :ε1 Fϕ1 ∧ Gϕ2 O ≡R,ϕ2 O′

O′ :ε1 Fϕ1 ∧ Gϕ2

B-BisG
O :ε2 True ∧ F¬ϕ2 O ≡R,ϕ2 O′

O′ :ε2 True ∧ F¬ϕ2

B-BisG-variation

We are allowed to conclude since O′ :ε1 Fϕ1 ∧ Gϕ2 and O′ :ε2 F¬ϕ2 .
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Abstract. Security proofs in the Random Oracle Model (ROM) often
make use of the fact that the queries made by the adversary to the
oracle are observable as well as the responses to those queries can be
programmed. While, the issue of programmability of query responses has
received attention in the literature, to the best of our knowledge, observ-
ability of the adversary’s queries has not been identified as an artificial
artefact of the Random Oracle Model. In this work, we propose a variant
of ROM, in which the challenger of the security game cannot “observe”
the adversary’s queries to the random oracle, but can (possibly) continue
to “program” the query responses. We show that this model is separa-
ble from ROM by proving that Fischlin’s online extractors from [Fis05])
cannot exist when they are Non Observing. At the same time, we also
show that reductions/extractors that seem to rely on observability, can
sometimes achieve the same effect by programming of the responses. We
also show that the schemes RSA-PFDH and Schnorr signatures are still
secure with Non Observing reductions.

1 Introduction

The Random Oracle Model (ROM) was introduced by Bellare and Rogaway in
[BR93] as an alternative model to study the security of cryptographic primitives
and protocols. In contrast to the standard model, it assumes the availability of
a random function (via an oracle) to all parties in any security game devised
to study the security of a cryptographic primitive. The oracle implementing the
random function (called the random oracle) returns a randomly chosen value
(which it remembers for later) from the range, when queried at a new domain
point. For already queried points, it returns the same value that it returned the
first time around. The introduction of ROMmade it possible to prove the security
of many different kinds of cryptographic primitives (including digital signatures,
encryption schemes etc.) for which there existed no proof in the standard model
[PS00]. As truly random functions do not exist in practice, when using these
primitives in the real world, the role of random oracle is played by a secure hash
function. The heuristic is that secure hash functions are close enough to random
oracles in their behavior, and so, the primitives continue to remain secure even
under this substitution. This methodology has resulted in many provably secure
(in ROM), and at the same time, practical and efficient schemes.

W. Susilo and R. Reyhanitabar (Eds.): ProvSec 2013, LNCS 8209, pp. 86–103, 2013.
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Since no real world hash function is truly random, proofs in ROM have been
a subject of debate by cryptographers. Public key encryption and Signature
schemes have been devised such that they can be proved secure in the ROM
but which become insecure as soon as the random oracle is instantiated by any
real hash function [CGH04]. However, no real attacks have been demonstrated
against any practical scheme that has been proved secure in ROM. This ambigu-
ity about the reasonability of ROM has been of great interest to cryptographers.
Furthermore, from a practical viewpoint, random oracle heuristic is the only ba-
sis for arguing the security of some of the most efficient cryptographic schemes
(e.g. [PS00, BR95, BR96]). Therefore, it is of fundamental importance to un-
derstand why certain cryptographic schemes can be proved secure in the ROM
while no proof of security exists for them in the standard model.

In a security game defined in ROM, the challenger (for instance, the reduction
or the knowledge extractor) can simulate the random oracle for the adversary.
The ability to simulate the random oracle seems to “artificially” augment the
capabilities of the challenger (in comparison to a standard model challenger) in
the following two ways:

– The challenger can now observe the input points at which the adversary
makes queries to the random oracle. We will refer to this ability of the
challenger as observability.

– The challenger can now control the response of the random oracle at these in-
put points, often embedding instances of some hard problem in the response.
We will refer to this ability of the challenger as programmability.

Both these additional capabilities of the challenger are very artifical when
compared to a standard model challenger. Neither do we know of hash functions
that can support such complicated programming nor do we know of a way of ob-
serving an adversary’s queries to a hash function. The possibility of programming
the random oracle has been exploited in constructing many security reductions
and thus the programmability aspect of the ROM has attracted much attention
(see [Nie02, FLR+10]). We explain some of that work later. On the other hand,
even though observability is often criticized (explicitly in [Nie02]) for providing
the challenger with an unreasonable ability1, to the best of our knowledge, no
formal study of this capability of the reduction has been done. Perhaps one of
the most important reasons for the lack of this study is a general perception
that observability is crucial to every proof in the ROM and that nothing can be
achieved without it, thereby leaving no motivation to study reductions that limit
observability. In this work, we study the role of observability in the construction
of security proofs for several schemes. We call a reduction/extractor, which does
not get to view the communication between the adversary and the random or-
acle, as Non Observing reduction/extractor. In the following, while we use the
term reduction to explain the notion of non observability, it also refers to any
entity representing the challenger in the security game (for instance extractors,
simulators etc.).

1 Standard model reductions would never get to see the queries made by the adversary
to the hash function.
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1.1 Non Observing Reductions

While in ROM, reductions often work by providing a simulation of the random
oracle to the adversary, we want Non Observing reductions to operate in the
presence of an external random oracle. All entities make their queries to this
external random oracle which is independent of the reduction. All communication
between the random oracle and the adversary is hidden from the reduction. As
our focus is on restricting the observability capability of the reduction, we do
let the reduction control the responses returned by the random oracle to the
adversary (as long as the returned responses are uniformly distributed in the
range of the random function). As shown in Figure 1, at initiation, the reduction
sends a Turing machineM to the external random oracle which uses this machine
to respond to the queries as follows. On receiving a query, the external random
oracle, inputs “Next” to M to obtain an output r which it sends as a response
to the query. We give details in Section 2. Non-Observing reductions, the way
we have defined, deliberately have a fair bit of programming capability as our
focus is to identify security reductions which crucially rely on Observability.

Our first result is about online extractors for NIZK-PoK proposed by Fischlin
et al. in [Fis05]. The Fischlin transformation converts an interactive ZK-PoK
(with some special properties) into NIZK-PoK with online extractors in the
ROM. An online extractor, as defined in [Fis05], can output the witness given
an acceptable proof and the queries made by the prover to the random oracle
(i.e. with no rewinding). Their extractor does not need to program the random
oracle responses. We introduce the notion of Non Observing extractors, which
can program the responses but not observe the queries made by the adversarial
prover, and then prove that they do not exist for NIZK-PoKs obtained from
the Fischlin transformation. Thus, our result also rules out extractors which can
neither observe random oracle queries or program the responses. Our proof idea
can be extended to rule out the online extractor of [Pas03a] as well though we do
not discuss this in our work. Thus, our result proves that observability is crucial
for the existence of Fischlin extractor.

Our second result demonstrates the existence of extractable commitment
schemes with non observing extractors. The security of the extractable commit-
ment schemes as studied in [Pas03b] seem to rely on the fact that the extractors
can observe the set of query-response pairs. We show that the capability to ob-
serve is not necessary by constructing a secure extractable commitment scheme
where the extractor is not allowed to observe the queries made by the committer
but only allowed to program the random oracle.

We also show that both RSA-PFDH and Schnorr signatures remain secure
(under the notion of Existential Forgery with Chosen Message Attack) with Non
Observing reductions. This confirms the fact that our Non Observing reductions
have enough programming capabilities so as to be able to rewind and embed the
challenge. Due to space constraints, we present these results (RSA-PFDH and
Schnorr) in our full version [AB12].
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1.2 Related Work

As part of this ongoing scrutiny of ROM, weaker versions of the Random Oracle
model have been proposed. We briefly survey the most relevant ones:

– Micali and Reyzin [MR98] initiated the study of the security of signing with
weak hashing by considering hash functions for which an adversary can fix
arbitrarily the input-output values at polynomially many inputs.

– Nielsen [Nie02] proposed a variant of the random oracle model where the
random oracle is not programmable. In this model, one cannot program
or set the value that the random oracle returns to any arbitrary value. He
establishes separation results between proofs in the (programmable) random
oracle model and non-programmable random oracle model

– Liskov [Lis06] proposed models for weak hash functions where there exist
the random oracle and the additional oracles that break some properties of
the ROM. He listed several such oracles that provide, for example, collisions.
He also proposed a general construction of a hash function from weak hash
functions. Pasini and Vaudenay [PV07] applied Liskov’s idea to the security
analysis of digital signature schemes. They considered the security of hash-
then-sign type signature schemes in the random oracle model with an ad-
ditional oracle that returns first-preimages. Numayama, Isshiki and Tanaka
[NIT08] studied the security of the Full Domain Hash signature scheme, as
well as three variants thereof in weakened random oracle models.

– Mironov [Mir06] relaxed the collision-resistant requirement of hash func-
tions in hash-and-sign constructions, without addressing the need for a ran-
dom oracle. He notably revisited two popular signature schemes, DSA and
PSS-RSA, and proposed variants based only on the target-collision resistant
property of the underlying hash function. Their proofs of security, while
still dependent on random oracles, only require short-input ones. In [HK06],
Halevi and Krawczyk proved similar results.

– Unruh [Unr07] pointed out the fact that it might be more realistic to consider
random oracles with auxiliary input. The auxiliary input models the fact that
adversary at times has access to certain information about the hash function
(e.g. collisions) before the initiation of the protocol. He showed that the RSA-
OAEP encryption scheme [BR95] is secure in the random oracle model even
in the presence of oracle-dependent auxiliary inputs

– [FLR+10] was the first work to examine the programmability by (black-box)
reductions in ROM and proposed three variants of reduction in ROM: Fully-
Programming Reductions, Non-Programming Reductions and Randomly-
Programming Reductions. Our work is similar in spirit but for the property
of observability in black-box reductions in ROM.

2 Modelling Non Observability

In this section, we formally define the notion of Non Observability via reduc-
tions in ROM, though as before, the discussion also applies to extractors. As
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a) NO Reductions b) NO NP Reductions

Fig. 1. Non Observing (NO) reductions can return responses to adversary’s queries
without actually observing the query. Non Observing, Non Programming (NO NP)
reductions can neither observe the queries nor influence the responses.

discussed in the introduction, a non observing reduction cannot observe the in-
teraction between the adversary and the random oracle, though it can continue
to ‘influence’ the query responses. Modelling how the reduction can influence
the responses returned by the oracle machine while ensuring that the reduction
can get no ‘information’ about the queries of the adversary is tricky. One way of
modelling it is as follows: The reduction sends a (stateful) Turing machine M to
the external oracle. On receiving a query q from the adversary, M is executed
by the oracle machine on input q to obtain an element r. The value r is then
sent to the adversary as a response. Also, M needs to be programmed in such a
way that for a repeat query, the same response is returned. Unfortunately, this
approach does not work because consider a machine M designed in a way, such
that on receiving a ’‘pecial’ query from the reduction, all the queries made by
the adversary till then are revealed. Thus, even though the reduction did not
actually “see” the queries made by the adversary it still gets information about
the queries made by the adversary through the machine M . The problem with
the previous approach was that the response returned to a query could depend
upon all the queries made till then. We can rectify this problem by forcing the
condition that the machine M should return responses from a list which is fixed
before the adversary makes any query. We allow the reduction to program this
list before the random oracle is initiated. This again allows the reduction to
learn several bits of the adversary’s queries as follows: M can output a list of
size 2� · qh, where the reduction wants to learn some � bits of the query and qh
is the maximum number of queries that the adversary can make. The machine
returns a response for each query from a bucket of size 2� based on its � bits. The
reduction, can make special formatted queries to learn all the returned responses
and thus learn � bits of each query made by the adversary. The problem with
this approach is that the machine M is allowed to maintain state. We can fix this
problem by requiring M to be stateless. Thus, the reduction sends a stateless
machine M along with a list L such that for every query q the following is done:
M(q, L) is executed to obtain r. It is verified whether r is in L before sending
it to the adversary. This seems to do better than the previous approaches, in
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that the machine can no longer return responses which are correlated to the
queries made till that point. But even this approach does not work! For two dif-
ferent queries q1 and q2, M(q1, L) and M(q2, L) can give the same answer which
might help the adversary in distinguishing between a pure random oracle from
M because in a pure random oracle model this can happen only with negligible
probability. To circumvent these problems, we present a model, defined in the
next subsection, which seems to not only capture non observability reasonably
well but also is a more natural transition from (programmable and observable)
ROM.

2.1 Our Model

A Non Observing reduction works in the presence of an external random ora-
cle which is beyond its control. The adversary and other parties make queries
directly to this external random oracle and receive the responses from it. All
communication between the adversary and the random oracle is hidden from
everyone else. For every instantiation of a random oracle, the reduction can send
a Turing machine M to the oracle. This machine is used by the external ran-
dom oracle to answer its queries in the following manner: When a random oracle
receives a query, which it has never answered before2, it forwards a request to
machineM using the ”Next” message. The machineM , at this point, can provide
a response chosen uniformly at random from the range of the random function.
On receiving a response from M , the oracle stores the (query, response) pair for
future use and returns the response to the adversary. The reduction is also al-
lowed to send updates in the form of query-response pairs to the external oracle
during the lifetime of its exection. This update procedure, allows the reduction
to dynamically adjust its responses to the random oracle queries. As the reduc-
tion may be interacting with the adversary through other channels (for instance
it may be simulating a signature oracle for the adversary), this way, it can use
its knowledge from the other channels in returning the response. The external
machine, maintains consistency of the stored list, by ensuring that the list is not
updated with a new response for a already stored query. The reduction can also
send queries of its own to the random oracle. In case of it being a fresh query,
the oracle will answer it just like an adversary’s fresh query, else it will return
a response using the stored (query, response) pairs. We show this in Figure 1.
Before we formally define the model, we present some preliminaries.

For a cryptographic primitive S with the security property ΠS, let Adv
Π
S (A)

be defined as the success probability of the adversary A in violating the security
property ΠS. For an oracle adversary AO, the probability AdvΠS (AO) is taken
over the random coins of the oracle O as well. More formally, AdvΠS (AO) is
the weighted average of the Adv parameters when instantiated with specific
oracles and the weights correspond to the probabilities that the corresponding
specific oracles are chosen. We say that an adversary A ΠS-breaks S if there

2 The external random oracle can check this by maintaining list of all returned query-
response pairs.
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exists a polynomial p(·) such that AdvΠS (A) > 1/p(n) for infinitely many n.
Consider cryptographic primitives S and f with security properties ΠS and Πf

respectively. Let A denote an attacker on the primitive S and let R denote a
reduction from f to S, i.e., R uses A to attack primitive f . We will denote by O
to denote a random oracle that chooses a response uniformly at random from its
range and by O(M) an oracle that uses the machine M produced by reduction

R to provide the responses to its queries. We will use R AO(M)

to denote the fact
that the reduction has black box access to A and that the interaction between A
and O(M) is hidden from R. Further, R AO(M)

,O(M) denotes such a reduction
which also has oracle access to O(M).

Definition 1. There exists a black-box Non Observing reduction from f to S if
there exists a machine R that outputs M with the property that if AO(M) ΠS

-breaks S, making qO queries to the oracle O(M), then R AO(M)
,O(M)

Πf -breaks f .

We define a Non Observing Non Programming reduction as a Non Observing
reduction that can no longer provide the responses to the oracle. Thus, such a
reduction works with oracle O rather than O(M). See Figure 1 for a diagramatic
representation of the reduction.

Definition 2. There exists a black-box Non Observing Non Programming re-
duction from f to S if there exists a PPT ITM machine R with the property that

if AO ΠS-breaks S, making qO queries to the oracle O, then R AO
,O Πf -breaks

f .

3 Preliminaries

Let λ ∈ N be the security parameter. We say that a function is negligible in λ
if it is asymptotically smaller than the inverse of any fixed polynomial. More
precisely, a function η(λ) from non-negative integers to reals is called negligible
in λ if for every constant c > 0, ∃λc such that ∀λ > λc, |η(λ)| < λ−c. Otherwise,
η(λ) is said to be non-negligible in λ.

3.1 Fischlin Transformation

We now describe the preliminaries to understand Fischlin transformation. Fis-
chlin transformation converts a Fiat-Shamir proof of knowledge to a non inter-
active proof of knowledge. We describe Fiat-Shamir proof of knowledge below.

Definition 3. A Fiat Shamir proof of knowledge (with l(k)-bit challenges) for
relation W is pair (P, V ) of probabilistic polynomial time algorithms P = (P0, P1)
, V = (V0, V1) with the following properties. [Completeness.] For any parameter
k, any (x,w) ∈ Wk, any (P (x,w), V0(x)) → (α, β, γ) it holds V1(x, α, β, γ) = 1.
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[Commitment Entropy.] For parameter k, for any (x,w) ∈ Wk, the min-entropy
of P0(x,w) → α is superlogarithmic in k.
[Public Coin.] For any k, any (x,w) ∈ Wk any α ← P0(x,w) the challenge
V0(x, α) → β is uniform on {0, 1}l(k).
[Unique responses.] For any probabilistic polynomial time algorithm A, for pa-
rameter k and A(k) → (x, α, β, γ, γ′) we have, as a function of k,

Pr[V1(x, α, β, γ) = V1(x, α, β, γ
′) = 1 ∧ γ �= γ′] ≈ 0

[Special Soundness.] There exists a probabilistic polynomial time algorithm K, the
knowledge extractor, such that for any k, any (x,w) ∈ Wk, any pairs (α, β, γ),
(α, β′, γ′) with V1(x, α, β, γ) = V1(x, α,
β′, γ′) = 1 and β �= β′, for K(x, α, β, γ, β′, γ′) → w′ it holds (x,w′) ∈ Wk.
[Honest-Verifier Zero-Knowledge.] There exists a probabilistic polynomial time
algorithm Z, the zero-knowledge simulator, such that for any pair of probabilis-
tic polynomial time algorithms D = (D0, D1) the following distributions are
computationally indistinguishable:

– Let D0(k) → (x,w, δ) and (P (x,w), V0(x)) → (α, β, γ) if (x,w) ∈ Wk and
⊥ → (α, β, γ) otherwise. Output D1(α, β, γ, δ).

– Let D0(k) → (x,w, δ) and Z(x, Y ES) → (α, β, γ) if (x,w) ∈ Wk and
Z(x,NO) → (α, β, γ). Output D1(α, β, γ, δ).

If a Fiat-Shamir proof of knowledge in addition to the above properties has
a polynomial sized challenge space (that is, the challenge space is of the size
p(k) for some polynomial p) then it satisfies a property termed as Special Zero
Knowledge, which is described below.

Definition 4 (Special Zero-Knowledge). There exists a probabilistic poly-
nomial time algorithm X, the special zero-knowledge simulator, such that for
any pair of probabilistic polynomial-time algorithms D = (D0, D1) the following
distributions are computationally indistinguishable: (-) Let (x,w, ch, δ) ← D0(k)
and (com, ch, resp) ← (P (x,w), V0(x, ch)) if (x,w) ∈ Wk and (com, ch, resp) ←
⊥ else. Output D1(com, ch, resp, δ). (-) Let (x,w, ch, δ) ← D0(k) and (com, ch
, resp) ← Z(x, ch, Y ES) if (x,w) ∈ Wk and (com, ch, resp) ← Z(x, ch,NO)
else. Output D1(com, ch, resp, δ).

The Fischlin transformation is shown to be secure by arguing that if there exists
a PPT adversary that violates the soundness then there exists a PPT algorithm
that given a valid input instance (corresponding to the relation for which the
protocol is defined) outputs a witness for that instance with non-negligible prob-
ability. In other words, the security of the Fischlin transformation is based on
the assumption that given a valid input instance, drawn from some distribution,
it is hard to obtain a witness for the instance. This is formalised in the following
assumption.
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Definition 5. A relation W is said to have a one-way instance generator I if for
any parameter k algorithm I returns in probabilistic polynomial time (x,w) ∈
Wk, but such that for any probabilistic polynomial time algorithm, termed as
inverter, I, for (x,w) ∈ I(1k) and I(x) → w′ the probability P ((x,w′) ∈ Wk) is
negligible in k.

3.2 Commitment Schemes

In this section, we recall the definition of commitment schemes in the random
oracle model. A commitment scheme consists of three PPT algorithms: Commit,
Decommit and Verify which are as described below. The committer executes
the Commit algorithm during the commit phase and it executes the Decommit
algorithm during the reveal phase. Consider a random oracle H .

– Commit(m, r): It takes the message m and chooses randomness r to derive
a commitment c using the random oracle H .

– Decommit(c): The commitment c is opened by outputting m and r.
– Verify(m, r, c): It verifies whether c is indeed the output of (m, r) using the

random oracle H .

A commitment scheme is said to satisfy two main properties: namely, hiding
and binding. The computational hiding property says that distributions of the
commitments corresponding to two different messages are computationally in-
distinguishable. The computational binding property says that a probabilistic
polynomial time committer can open a commitment to two different values only
with negligible probability.

4 Non Observing Online Extractors

In this section, we explore online extractors in the non observability framework.
The construction of online extractors in Non Interactive Zero Knowledge Proofs
of Knowledge (NIZK-PoK) was studied by [Fis05] though it was first discussed
in [SG98]. Informally, an online extractor can extract a witness for an input
instance, given a proof (accepted by an honest verifier) and all the queries made
by the prover to the random oracle. The online extractors deviate from the
traditional extractors in that rewinding is not necessary to extract the witness.
As remarked in [Fis05], rewinding leads to loose security reductions and hence
online extractors can be useful to obtain tighter security results.

The formal definition of online extractors for a non interactive zero knowledge
proof of knowledge is given below.

Definition 6 (Online Extractor). [Fis05] There exists a probabilistic polyno-
mial time algorithm K such that the following holds for any algorithm A. Let O
be a random oracle, (x, π) ← AO(k) and QO(A) be the sequence of queries of A
to O. Let w ← K(x, π,QO(A)). Then as a function of k,

Pr[(x,w) �∈ Wk ∧ V O(x, π) = 1] ≈ 0
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In the above definition, the online extractor does not have any power to choose
the random oracle. In other words, the extractor is not allowed to program the
random oracle. We first describe the result from [Fis05] which gives the con-
struction of online extractors. [Fis05] gave a transformation, termed as Fischlin
transformation, to convert an interactive proof of knowledge (defined as Fiat
Shamir Proof of knowledge; see definition 3 in Section 3) to a NIZK-PoK which
has an online extractor.

Fischlin transformation converts a 3-message interactive ZKPoK (PFS , VFS)
to a non interactive ZKPoK (PH , V H), where H is the random oracle, as fol-
lows. PH executes logarithmically many copies, denoted by r, of the underlying
prover PFS . In each execution it gets the commitment comi from PFS . In the ith

execution, PH then sequentially checks whether there exists any challenge chi

from 0 to 2t − 1 such that H(com, i, chi, respi) has all its last b bits as 0, where
b is typically logarithmic in the security parameter and respi is the response re-
turned by the ith copy of PFS on challenge chi. If no such challenge exists then
PH picks the challenge chi for which H(com, i, chi, respi) is minimum among all
other challenges. Finally, PH composes the proof (comi, chi, respi)1≤i≤r . The
verifier VFS on input x, (comi, chi, respi)1≤i≤r checks whether VFS accepts the
proof (x, comi, chi, respi) for all 1 ≤ i ≤ r. And also, it checks whether the last b
bits of summation of H(com, i, chi, respi) is at most logarithmic in the security
parameter. We formally describe the Fischlin transformation below.

Definition 7 (Fischlin Transformation). [Fis05] Let H be a random oracle.
Let (PFS , VFS) be an interactive Fiat-Shamir proof of knowledge with challenges
of � = �(k) = O(log(k)) bits for relation W . Define the parameters b, r, S, t (as
functions of k) for the number of test bits, repetitions, maximum sum and trial
bits such that br = ω(logk), 2t−b = ω(logk), b, r, t = O(logk), S = O(r) and
b ≤ t ≤ �. Define the following non-interactive proof system for relation W in
the random oracle model, where the random oracle maps to b bits.

- Prover. The prover PH on input (x,w) first runs the prover PFS(x,w) in
r independent repetitions to obtain r commitments com1, · · · , comr. Let
com = (com1, · · · , comr). Then PH does the following, either sequentially or
in parallel for each repetition i. For each chi = 0, 1, 2, · · · , 2t − 1 (viewed as
t-bit strings) it lets PFS compute the final responses respi = respi(chi) by
rewinding, until it finds the first one such that H(x, com, i, chi, respi) = 0b;
if no such tuple is found then PH picks the first one for which the hash
value is minimal among all 2t hash values. The prover finally outputs π =
(comi, chi, respi)i=1,2,...,r.

- Verifier. The verifier V H on input x and π = (comi, chi, respi)i=1,2,...,r

accepts if and only if V1,FS(x, comi, chi, respi) = 1 for each i = 1, 2, · · · , r,
and if Σr

i=1H(x, com, chi, respi) ≤ S.

We first give an intuitive description of the proof of online extractability of the
above transformation. Consider an adversary who, on input x, has produced a
proof π without having a witness for x. Let Q be the set of queries made by the
adversary to the random oracle. We first claim that there cannot exist two queries
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(com, i, chi, respi) and (com, i, ch∗
i , resp

∗
i ) in Q such that both (comi, chi, respi)

and (comi, ch
∗
i , resp

∗
i ) are accepted by the verifier VFS . If there existed two such

queries then by the special soundness property of (PFS , VFS), the witness can
be extracted. The extraction can be done by the online extractor since he can
observe the queries made by the adversary. Hence, once the commitment tuple is
fixed the adversary can query the random oracle for one particular challenge chi

for i from 1 to r. Let si be the value output by the random oracle for the challeng
e chi. Using simple probability arguments it can be shown that the summation
of si for all the repetitions is negligible. Thus, for a given commitment tuple
adversary succeeds with negligible probability in producing an accepting proof
corresponding to that tuple. Since, adversary can try only polynomially many
commitment tuples he can succeed in producing an accepting proof only with
negligible probability.

The capability of the online extractor to extract the witness comes from cru-
cial fact that the extractor can observe the queries made by the prover. If the
extractor is not allowed to see the queries made by the prover and not allowed
to program the random oracle then it can be seen that the extractor cannot
extract the witness from the proof. In other words, there does not exist an on-
line extractor for any NIZKPoK that neither programs the random oracle nor
observes the queries made by the prover. The reason is that, if such an extrac-
tor were to exist then a malicious verifier can simply run the extractor to get
the witness thus contradicting the zero knowledge property of the protocol. The
same is not clear when the extractor is allowed to program the random oracle.
More precisely, we want to understand whether there exist online extractors for
NIZKPoK which are allowed do some limited programming of the random or-
acle but not allowed to observe. We term this class of online extractors as non
observing online extractors and formally define them below.

Definition 8 (Non Observing Online Extractors). There exists a proba-
bilistic polynomial time algorithm K = (K1,K2) such that for large enough k
the following holds for any algorithm A. There exists a polynomial p(k) such
that (M,aux) ← K1(k, p(k)) and (x, π) ← AO(M)(k) making qO ≤ p(k) queries

to the oracle O(M). Then we have that w ← K
O(M)
2 (x, π,M, aux). Then as a

function of k,

Pr[(x,w) �∈ Wk ∧ V O(M)(x, π) = 1] ≈ 0

We first show that there is a NIZKPoK which has a non observing extractor in
the random oracle model. Consider a NIZKPoK (P, V ) in the common reference
string model. Construction of NIZKPoK in the common reference string model
has been well studied in literature. See [DSP92] for one such example. The fact
that (P, V ) is a NIZKPoK means that it has an extractor E = (E0, E1) which
executes as follows. On input security parameter, E0 produces a pair of strings
(σ, aux). Let π be an acceptable proof produced by an adversary A on input x
as well as σ. Then, E1 on input (x, π, σ, aux) outputs a witness w for x with
non negligible probability. We construct (P ∗, V ∗) in the random oracle model
from (P, V ) as follows. P ∗ on input x, queries the random oracle on the point
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x to get the response σ. P ∗ then executes P (x, σ) to obtain π. The verifier
V ∗, on receiving π, first queries x to the random oracle to get σ and then
executes V (x, π, σ). V ∗ then outputs whatever V outputs. We can construct a
non observing online extractor E∗ = (E∗

0 , E
∗
1 ) as follows. Consider an adversarial

prover A. Let qO be the number of queries made by the adversary. E∗
0 executes

E0 for qO times to obtain the strings
(
(σ1, aux1), . . . , (σqO , auxqO )

)
. E∗

0 then

constructs a Turing machine M which on being invoked for the ith time with
input next outputs the string σi. E

∗
0 then sends the Turing machine M to the

random oracle. After receiving the proof π from an adversary A, E∗
1 then queries

x to the random oracle to obtain σi and then it executes E1(x, π, σi, auxi) to
obtain w. From the extractability property of (P, V ), it follows that if π is an
acceptable proof then E∗ outputs a witness for x with non negligible probability.
This shows the existence of a NIZKPoK having non observing extractors.

The natural question to ask now is whether this is true for all NIZKPoK in
the random oracle model. That is, whether there exists non observing online
extractors for all NIZKPoK. We show that this is not true. In fact, we show that
all the NIZKPoKs that are obtained from the Fischlin transformation do not
have non observing online extractors. We formalize this result in the following
theorem.

Theorem 1. Consider a relation W having a one-way instance generator I.
Let (PH , V H) be a non-interactive zero-knowledge proof of knowledge obtained
by applying the Fischlin transformation to an interactive Fiat-Shamir proof of
knowledge, (PFS, VFS) defined for the relation W . Then, there does not exist a
Non Observing extractor for (PH , V H) 3.

Proof: We show that if a Non Observing online extractor K exists for (PH ,V H)
then we can construct an algorithm B, termed as inverter, which does the follow-
ing. It takes as input x where x is produced by the one way instance generator,
I. It then outputs a witness w for x with non-negligible probability such that
(x,w) ∈ W . This contradicts the fact that I is a one-way instance generator for
the relation W . We now give the construction of B. The algorithm B on input
x executes the following steps.

Step 1) B first executes K1 to get the Turing machine M which is passed on to
the random oracle. It then makes 2tr queries to a copy of M to obtain
a list L. The reason why the size of the list is set to 2tr is because the
honest prover makes at most 2tr queries. Note, the list L is the same
as the first 2tr responses returned by O(M).

Step 2) B chooses the r challenges chi, i ∈ [1, r] by looking up the list L. As
B has access to the list L of hash responses, it can figure out the
exact challenges which an honest prover will include in his proof by

3 We say that there does not exist a non observing online extractor for a proof system
if for every PPT extractor there exists a PPT adversarial prover such that the
probability that the adversarial prover produces an accepting proof and at the same
time the non observing extractor cannot extract a witness is non-negligible.
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imitating the honest prover’s strategy. B considers the first 2t elements
in the list L which K1(1

k) outputs. If there is an element whose least
significant b bits are 0 (if there are many such elements pick the one
with the least index in L), then B assigns ch

′
1 to be its index else

assign ch
′
1 to be the index of the minimum among the first 2t elements.

If (ch
′
1)

th
element corresponds to an element whose least significant b

bits are 0, then B repeats the process to compute ch
′
2 starting from

the (β
′
1 + 1)th element of L. Whereas if (ch

′
1)

th
element corresponds to

the smallest element in the first 2t elements, repeat the above process
starting from the (2t + 1)th element of the list. Thus, using the above
approach B computes ch

′
i, for all i ∈ [1, r]. Assign chi to be ch

′
i if i = 1

else chi = ch
′
i − ch

′
i−1.

Step 3) B executes the special zero knowledge simulator, Z, of the interactive
Fiat-Shamir proof of knowledge, (PFS , VFS), at (x, chi, YES) to obtain
comi and respi for all i ∈ [1, r]. Let com = (com1, . . . , comr).

Step 4) B makes ch′
r queries to the random oracle O(M) as follows. At query

numbers ch
′
i, ∀i ∈ [1, r] it queries the oracle with (x, com, i, chi, respi).

At all other points it queries the oracle at (x, com, 1, 0, 0), where
com is a r-sized vector with each element chosen randomly from the
commitment space.

Finally, B produces πB = ((com1, ch1, resp1), (com2, ch2,
resp2), . . . , (comr, chr, respr)) as the proof. The following lemma proves that no
probabilistic polynomial time algorithm (even with access to the Turing machine
M) can distinguish proof πB from a proof πPO(L) produced by an honest prover
PO(M), where PO(M) is same as the prover PH but with random oracle H
replaced with O(M).

Lemma 1. Let D be a probabilistic polynomial time algorithm. The following
two distributions are indistinguishable.

– K1(1
k, 2tr) → M . B is executed with input (x,M) and oracle access to O(M)

which then outputs πB. Output DO(M)(x,M, πB).
– K1(1

k, 2tr) → M . PO(M) is executed with input x,w and oracle access to
O(M) which then outputs πPO(M) . Output DO(M)(x,M, πPO(M)).

Proof. B’s strategy of producing the challenges and the special zero knowledge
property ensure that the distributions of πB is computationally indistinguish-
able from πPO(M) and thus D cannot distinguish the proof transcript πB from
πPO(M) . But as the queries made to the random oracle by B are different from
that of an honest prover, D could try guessing the queries. We show below that
this happens with negligible probability. Let the set of queries made by PO(M)

(respectively, B) to O(M) during its execution be QueryPO(M) (resp. QueryB).
Denote the set of respones returned by O(M) corresponding to QueryPO(M)

(resp. QueryB) by RespPO(M) (resp. RespB). To prove the theorem, we first
make the claim that RespPO(M) is in fact the same as RespB. This follows from
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the description of B and PO(M). Let πPO(M) = (comi, chi, respi)1≤i≤r and πB =

(com
′
i, ch

′
i, resp

′
i)1≤i≤r. We then claim that in both the cases, if the distinguisher

makes a query q to O(M) then q belongs to (QueryPO(M)\{(com1, · · · , comr, i,
chi, respi) : 1 ≤ i ≤ r}) (resp. q belongs to (QueryB\{(com

′
1, · · · , com

′
r, i, ch

′
i

, resp
′
i)}) with negligible probability. To prove this claim, consider the following

cases.

Case 1. PO(M): Without loss of generality let q be equal to (com1, · · · , comr, i
, ch, resp) for some i ∈ {1, . . . , r}. Since q ∈ (QueryPO(M)\{(com1, · · · , comr, i,
chi, respi) : 1 ≤ i ≤ r}), it should happen that (comi, ch, resp) is an accepting
transcript (this is because the honest prover follows the protocol and hence all its
queries correspond to accepting transcripts). We now have two accepting tran-
scripts (comi, chi, respi) (from πPO(M)) and (comi, ch, resp) using which we can
extract a witness for x. Using this observation, we can construct a polynomial
time procedure which can extract a witness from the input instance. Now, we
make the observation that we could have executed the zero knowledge simula-
tor to obtain πSim (which is indistinguishable from πPO(M)) and then using the
strategy of D (in a non black box way) to find q we could then extract a witness
for the input instance. Since such an approach gives us a probabilistic polyno-
mial time algorithm to compute the witness, our assumption that the considered
relation has a one-way instance generator is violated.

Case 2. B : Consider the query q′ = (com
′′
1 , . . . , com

′′
r , 0, 0, 0) in the set (QueryB\

{(com′
1, · · · , com

′
r), i, ch

′
i, resp

′
i}). The probability that q′ = q is negligible since

com
′′
1 , . . . , com

′′
r is picked uniformly at random.

From the above two cases it can be inferred that the distributions DO(M)(x, L,
πPO(M)) and DO(M)(x, L, πB) are indistinguishable. 
�
Now, consider the following probabilistic polynomial time algorithm.

Input: Instance x obtained as the output of the one-way instance generator I.
Output: Witness w.
1. K1(1

k, 2tr) → M .
2. BO(M)(x,M) → πB.

3. K
O(M)
2 (x,M, πB) → w.

Using Lemma 4 and the construction of B, it can be seen that the above algo-
rithm outputs w with non-negligible probability for input x such that (x,w) ∈ W
contradicting the assumption that W has a one-way instance generator. Thus,
Non Observing online extractors do not exist for (PH , V H).

5 Extractable Commitment Schemes

The notion of extractable commitment schemes has been studied [Pas03b, ACP09]
in the common reference string model as well as the random oracle model.
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Extractable commitments are commitment schemes equipped with an additional
algorithm, called the extractor, which can recover the committed value given the
commitment as well as the trapdoor to the CRS (in the CRS model) or given ac-
cess to the queries to the random oracle made by the committer to generate the
commitment. In this section, we study extractable commitments in the random
oracle model. If the extractor is allowed to observe the queries made by the com-
mitter then there is a simple commitment scheme as described in [Pas03b].We give
an example of an non interactive extractable commitment scheme where the ex-
tractor is allowed the program the random oracle but not allowed to observe the
queries made by the committer to the random oracle. We now define the notion of
extractable commitment schemes in the random oracle model when the extractor
is non-observing.

Definition 9. Consider a non-interactive commitment scheme (C,R) defined
in the random oracle model where C is the committer and R is the receiver. We
say (C,R) is an extractable commitment scheme with non observing extractors
if there exists a PPT extractor K = (K1,K2) which does the following. The
algorithm K1 on input security parameter ouputs a Turing machine M along
with auxillary information aux. Let the output of the committer with access to
O(M) be the commitment c. Then, K2 on input (c,M, aux) and access to the
random oracle O(M) outputs m with probability negligibly close to the probability
that the committer succeeds in decommitting to m.

We now describe our extractable commitment scheme. Consider the random
oracle H mapping from {0, 1}∗ to {0, 1}n, where n is some polynomial in the
security parameter. Let k1 < n and k2 be polynomials in the security parameter.

ExtCom
Commit phase:
On input m, the committer picks a value R from {0, 1}k2 uniformly at random.
It then sends the queries (m,R, 1), . . . , (m,R, l) to H to receive the responses
(h′

1, . . . , h
′
l), where l is the length of m. It then picks a non-zero key K from the

space {0, 1}n−k1\{0n−k1} uniformly at random 4. It then computes (h1, . . . , hl)
as follows: hi = h′

i if mi = 0 (mi denotes the i
th bit of m) else hi = h′

i⊕(K||0k1).
It then sends (h1, . . . , hl) as the commitment.

Reveal phase:
The committer sends (m,R,K) as the decommitment. Let the input received by
the receiver during the commit phase be (h1, . . . , hl). The receiver accepts if the
following conditions are satisfied.
1. K �= 0.
2. H(m,R, i) = hi if mi = 0, else H(m,R, i)⊕ (K||0k1) = hi.

4 This means that it picks a non-zero key from the space {0, 1}n−k1 uniformly at
random.
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We now show that the above commitment scheme satisfies both the hiding and
the binding properties. We first show that the commitment scheme satisfies
computational hiding property. Observe that the only way for the adversary to
distinguish the commitments corresponding to two different messages is when
it queries the random oracle on the message which is contained in the com-
mitment. Since the adversary runs in polynomial time the probability that it
guesses R (picked by the committer) correctly is negligible, since R is polyno-
mial in the security parameter. This shows that no PPT adversary can distin-
guish commitments corresponding to two different messages. We now show that
the extractable commitment scheme satisfies the binding property. Let m1 and
m2 be two distinct messages which correspond to the opening of a commitment
c = (h1, . . . , hl). Without loss of generality, assume that the ith bit of m1 is
different from the ith bit of m2. Also assume that the ith bit of m1 is 1 while
the ith bit of m2 is 0. Since c can be opened to both m1 and m2, this means
that H(m1, R, i) ⊕ (K||0k1) = H(m2, R, i). In other words, the last k1 bits of
H(m1, R, i) is the same as the last k1 bits of H(m2, R, i). But this can happen
only with probability 1

2k1
= negl(k) which in turn means that with negligible

probability the commitment c can be opened to both m1 and m2 for any two
distinct messages m1 and m2. This shows that the commitment scheme satisfies
binding property.

The following theorem shows that the above described commitment scheme
is a secure extractable commitment scheme even when the extractor is non ob-
serving, as per Definition 9.

Theorem 2. ExtCom is an extractable commitment scheme secure in the ran-
dom oracle model. Further, the extractor in the commitment scheme is non-
observing.

Proof. We demonstrate the existence of an extractor K for the commitment
scheme ExtCom which succeeds in extracting the message from the commit-
ment with non-negligible probability. To do this, we crucially use the fact that the
extractor can program the random oracle. Further, the extractor we construct is
a non-observing one: the extractor cannot see the interaction between the oracle
and the adversary. We now define the extractor K which is decomposed into
algorithms K1 and K2.

K1 picks a list L of responses of length qh uniformly at random. It then
constructs a machine M which does the following. On being invoked for the ith

time with the next query, M outputs the ith entry in the list L. Note that M
is a stateful machine and so can store the number of times it has been invoked
till now. K1 then sends M to the oracle O. We now define K2: On input a
commitment (h1, . . . , hl) along with the Turing machine M and oracle access to
O(M), K2 does the following. It executes M(next) for qh times to get a list L.
It then computes a message m such that for all i = 1, . . . , l it assigns the ith bit
of m to be 0 if hi is found in L else it assigns mi to be 1. It then outputs m.

We claim that, with overwhelming probability the output of K2 is the same as
the message decommitted by the sender during the reveal phase. More precisely,
if the sender successfully decommits to m then K outputs m′ such that m′ = m
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with overwhelming probability. To prove this claim, we first consider the event
that m

′
i �= mi for some i from 1, . . . , l. To show that this event is negligible,

observe that it suffices to show that the event respi = respj ⊕ (K||0k1) is neg-
ligible for any non-zero K, where respi, respj are any two responses returned
by the machine M . This follows from the following two cases: if respi = respj
then respi �= respj ⊕ (K||0k1) since K is non-zero and if respi �= respj then
respi can be same as respj ⊕ (K||0k1) with negligible probability since the prob-
ability that the last k1 bits of respi and respj are the same is 1

2k1
(because

the responses returned by M are picked uniformly at random). This proves that
respi = respj ⊕ (K||0k1) with negligible probability which further proves that
the probability that m′ �= m is negligible. This completes the proof. 
�

These ideas can be extended further, in a straightforward manner, to construct
plaintext aware encryption schemes having non observing plaintext extractors.
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Abstract. The knowledge that whether a purported ciphertext is valid
or not may leak sufficient information to mount practical attacks on
public key cryptosystem, e.g., Bleichenbacher’s attack on RSA-PKCS#1,
Hall-Goldberg-Schneier’s “reaction attack” on both McEliece and Ajtai-
Dwork cryptosystems. A notion called indistinguishability against cho-
sen ciphertext verification attack (IND-CCVA) has been introduced in
the literature, where the adversary has access to a chosen ciphertext
verification oracle (not the full decryption oracle), to address those cryp-
tographic functionalities where IND-CPA security is not sufficient and
IND-CCA security is more than necessary. Some of the implications and
separations between CPA, CCA and CCVA notions are known, while
the rest are still open. In this paper we provide non-trivial constructions
of schemes (existing/ new) to resolve all the open issues, thus providing
a complete picture. We also introduce a slightly stronger attack, called
Adaptive Chosen Ciphertext Decryption/Verification Attack (CCA1.5),
where the adversary gets an access to a decryption oracle in the first
query phase and a ciphertext verification oracle in the second query
phase. We argue that this attack is more realistic than usual CCA2 at-
tack. In fact, it lies between CCA1 and CCA2 security as well as between
CCVA2 and CCA2 security. In this regard, inter-relationships between
the proposed CCA1.5 notion with existing notions are established. More-
over, it is shown that any group homomorphic cryptosystem is CCA1.5
under some reasonable assumption, thereby providing another motiva-
tion for studying this particular type of attack scenario.

Keywords: Chosen Ciphertext Attack, Chosen Ciphertext Verification
Attack, Homomorphic Cryptosystems.

1 Introduction

The notion of indistinguishability of ciphertexts under adaptive chosen cipher-
text attack has been well-accepted all over for designing pubic-key cryptosystems
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for general cryptographic purposes. However, for the advanced and more useful
applications e.g., electronic voting, cloud computing etc., the encryption scheme
should allow computation on encrypted messages. Unfortunately, IND-CCA2
security forbids computation on encrypted data and hence many useful func-
tionalities, like homomorphic encryption schemes, can never achieve this level
of security. No doubt, this is the security that an encryption scheme deserves
in general, but not the one suited for computing on encrypted databases. To
the other extremity lies the notion of IND-CPA security and more or less all
of the known and existing schemes [19,9,15] which are efficient too, achieve this
level of security. But one can never be sure to use IND-CPA secure schemes in
a larger set up for the dire consequences they may cause because of their “ad-
ditional unforeseen features” that one may fail to notice but the adversary may
not. As for example, the knowledge that whether a purported ciphertext is valid
or not may leak sufficient information to mount practical attacks on public key
cryptosystem, e.g., Bleichenbacher’s attack on RSA-PKCS#1 [4], Hall-Goldberg-
Schneier’s “reaction attack” on both McEliece and Ajtai-Dwork cryptosystems
[12], Joye-Quisquater-Yung’s attack on EPOC [14]. Although almost all of the
known IND-CCA secure schemes till date, starting from [17,22] to more recent
[10,11,21,6,18,8], have a validity check step embedded in the decryption algo-
rithm to achieve some sort of plaintext awareness but, Bleichenbacher’s attack
[4] is an eye-opener to the fact that merely a validity check set up does not
guarantee security. This serves as one of the motivations to study those cryp-
tosystems which remain secure when adversary has access to such a validity
checking “judge” oracle or chosen ciphertext verification oracle. The definition
of chosen ciphertext verification attack (CCVA) closely resembles CCA2, the
major difference being that the adversary will not have access to the full de-
cryption oracle but rather a judge oracle that will simply output whether or not
a ciphertext is “legal”. In fact, CCVA is a practical attack as many protocols
such as RSA PKCS#1 etc, inform the adversary over the network whenever it
submits an illegal or invalid ciphertext, rather than requiring the adversary to
have physical access to the decryption box.

Thenotionof indistinguishability against (bothadaptive andnon-adaptive) cho-
sen ciphertext verification attack (IND-CCVA) was first introduced in [16], under
the name of “illegal ciphertext attack” (IND-ICA) to explore and quantify the gap
between practical attacks in [4], [14] and more formal and theoretical frameworks
in [2]. A similar kind of attack, called “reaction attack” was discussed in [12] in
connection with McEliece and Ajtai-Dwork cryptosystems. The name CCVA was
used in [20], where the authors considered only adaptive attacks.1 CCVA attacks
and security against it in symmetric key setting can be found in [13].

1.1 Our Results

While finding the relationship among the notions of indistinguishability against
CPA, CCA1, CCA2, CCVA1 and CCVA2 attacks, it was shown in [16] and

1 We will be using this terminology for the rest of the paper.
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[20] that only the trivial implications hold (e.g., IND-CCA2 ⇒ IND-CCVA2
⇒ IND-CCVA1 and IND-CCA1 ⇒ IND-CCVA1 and so on). Apart from that
others were either shown or conjectured to be separations (See Figure 1). In this
present work, we resolve all of them by showing them to be strict separations.

We also introduce a relatively stronger and yet practical attack, termed as
Adaptive Chosen Ciphertext Decryption/Verification Attack (CCA1.5) and se-
curity against it. In CCA1.5 attack, the adversary gets access to a decryption
oracle in the first query phase and a ciphertext verification or validity checking
oracle in the second query phase. In fact, it is quite plausible that the adver-
sary had gained access to decryption box during “lunchtime” and later wants
to attack a ciphertext when he can only check the validity of ciphertexts over
the network with no more access to the full decryption box. In this connection,
we study inter-relationships with respect to indistinguishability of encryptions
among the proposed CCA1.5 notion with existing CCA1, CCA2, RCCA2 and
CCVA2 notions.

Moreover, it is shown that a slight modification of a group homomorphic
cryptosystem [1] yields another group homomorphic cryptosystem which is IND-
CCA1.5 secure. In fact, as far as the knowledge of authors, till date, this is the
strongest security achievable for any group homomorphic cryptosystems, the
previous best being IND-CCA1 security discussed in [1].

The complete picture showing previous and our work is given in Figure 1.
A hatched arrow means seperation and a regular arrow is an implication. The
dotted arrows shows previous results from [16], [20], the bold arrows are the new
results and regular arrows indicates the trivial implications. Each number refers
to the theorem or corollary that justifies the separation. All the constructions in
this paper are given in standard model.
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Fig. 1. The Complete Picture

2 Definitions and Preliminaries

Definition 1. A public-key encryption scheme Π = (K, E ,D) consists of three
probabilistic polynomial-time algorithms with the length of their inputs: a key
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generation algorithm K, an encryption algorithm E and a decryption algorithm
D such that

1. K takes as input a security parameter k and outputs a public key-private key
pair (pk, sk).

2. E takes as input a message m from the message space M and the public-key
pk to output c = Epk(m), the encryption of m.

3. D takes as input the corresponding private key sk and a ciphertext c to output
either a message m when c = Epk(m) or a special failure symbol ⊥.

Remark 1. This definition of PKE differs from those in which the decryption
algorithm may return a random value for inputs which can not be generated by
the encryption algorithm. In our definition, only the feasible outputs of encryp-
tion algorithm are decrypted to their corresponding plaintexts and for the rest,
a special symbol ⊥ is returned.

Definition 2. [11] Let Π = (K, E ,D) be a public-key encryption scheme with
message space M, ciphertext space C and randomness space COINS. For given
(pk, sk), x ∈ M and y ∈ C, define

Γ (x, y) = Pr[h ∈R COINS : y = Epk(x, h)].
We say that Π is γ-uniform if for any (pk, sk), any message x ∈ M and any
ciphertext y ∈ C, Γ (x, y) ≤ γ.

Now, we review the existing notions of security of public key cryptosystems
like indistinguishability against CPA, CCA [17,22], CCVA [16,20] attacks and
the proposed notion of CCA1.5 by presenting the formalizations of these attacks,
where the goal of the attack is to distinguish encryptions. All the definitions are
framed in terms of an interactive experiment or game between two abstract
parties, a challenger C and an adversary A as follows:

– Set up: C picks (PK, SK) ← KeyGen and gives PK to A.
– Query Phase I: A is given access to an oracle O(·).
– Challenge Phase: C flips a random coin b ← {0, 1} and receives from A

two plaintexts msg0, msg1. C computes c∗ ← EncPK(msgb), and gives c∗ to
A.

– Query Phase II: A is given access to the oracle O(·).
– Output Phase: A outputs a bit b′. The advantage of A in this game is

given by AdvA = 2Pr[b = b′]− 1.

By using different predicates for O, different levels of security are obtained:

Security O(c)
CPA no decryption queries in both phases.
CCA1 [17] decryption queries only in 1st phase.
CCA2 [22] decryption queries in both phases, but c �= c∗.
RCCA2 [5] decryption queries for those D(c) �∈ {msg0,msg1}.

If D(c) ∈ {msg0,msg1}, oracle returns a special symbol “test”.
CCVA1 [16] validity of ciphertexts can be checked only in the 1st phase.
CCVA2 [16,20] validity of ciphertexts can be checked in both phases.
CCA1.5 decryption queries in 1st phase and verification queries in 2nd.
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If all probabilistic polynomial time (p.p.t.) adversaries A have a negligible
advantage AdvA, then we deem the cryptosystem secure against that attack
scenario.

Remark 2. It is to be noted that in an encryption scheme, like Elgamal [9],
Paillier [19] etc., any string in the ciphertext space C is a valid ciphertext, i.e.,
Epk(M) = C. In that case, the notions of IND-CPA, IND-CCVA1 and IND-
CCVA2 are all equivalent. But as in most of the standard cryptosystems not all
ciphertexts are valid, they have a validity check step in the decryption algorithm.
In this work, we consider those cryptosystems where Epk(M) � C.

Given the definitions of IND-CCVA1, IND-CCVA2 and IND-CCA1.5, we ex-
pect that it fits logically within the framework of the existing definitions of
IND-CPA, IND-CCA1 and IND-CCA2. Apart from the trivial implications, some
others were shown as strict seperations in [16,20] (See Figure 1). But, some of
the questions like whether
• IND-CCVA1⇒ IND-CCA1 or not? • IND-CCVA2⇒ IND-CCA1 or not?
• IND-CPA⇒ IND-CCVA1 or not? • IND-CPA⇒ IND-CCA1 or not?

were either left unaddressed or unresolved. In fact, as far as the knowledge of the
authors, the last one was an open problem since the evolution of notion of chosen
ciphertext attacks in case of PKE’s where the decryption oracle returns ⊥ for
any invalid ciphertext (as in Definition 1). Though in [2], authors showed that
IND-CPA �⇒ IND-CCA1, but that was shown for cryptosystems which decrypts
and leaks information when malformed or illegal ciphertexts are queried upon.

3 Implications and Separations: Constructions and
Proofs

Apart from the trivial implications as discussed in the above section, we show
that IND-RCCA2 security implies IND-CCA1.5 security.

Lemma 1. IND-RCCA2 ⇒ IND-CCA1.5.

Proof. Let Π be an IND-RCCA2 secure PKE. If possible, let A be an IND-
CCA1.5 adversary againstΠ . We construct an IND-RCCA2 adversary B against
Π using A as a subroutine. B takes as input the public key pk ofΠ and restricted
decryption oracle, OR(·), as in the RCCA2 game. A is fed with pk and a de-
cryption oracle for the IND-CCA1.5 game, O1.5(·), simulated by B as follows:
In the first query phase, when A queries O1.5(·) with c, B returns OR(c) to A.
(Note that in the first query phase, both the oracles are same, i.e., both of them
either output m = Dec(c) or an invalid symbol ⊥, when the ciphertext c is not
a valid one.) In the challenge phase, A outputs two messages m0 and m1, which
B passes to the IND-RCCA2 challenger C. C outputs c∗ = Enc(mb) to B, which
in return is passed on to A. In the second query phase, O1.5(·) responds to the
queries of A as follows:

O1.5(c) =

{
“valid”, if c = c∗ or OR(c) = m or test
“invalid”, if OR(c) =⊥
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(Note that A can even query the challenge ciphertext c∗.) In the guess phase, A
outputs a bit b′, which B passes to C. As the simulation of O1.5(·) in both the
phases is perfect, we have AdvA = AdvB.

However, the converse of this lemma is not true, which is exhibited later by
Lemma 6 and Corollary 5.

In the rest of this section, we first provide constructions (existing/new) to
prove that all the four open problems are strict separations. We also construct
schemes to seperate the notion of IND-CCA1.5 security from the other existing
ones. The first construction was used in [3], but in a different motivation. We
show that the same construction can be used to show that IND-CCVA2 security
does not imply IND-CCA1 security. The second construction is a new one which
shows that IND-CPA security does not imply IND-CCVA1 security. The third
one is an example of a scheme which is IND-CCA1.5 secure but not IND-CCA2.
In fact, this construction indicates that any group homomorphic cryptosystem
can be converted into another group homomorphic one which achieves IND-
CCA1.5 security. At this junction, it is worth mentioning that though it seems
intuitively that IND-CCVA2 and IND-CCA1 security taken together implies
IND-CCA1.5 security, but it is not so, as demonstrated in the fourth construc-
tion. On the other hand, we show that Cramer-Shoup (CS) lite scheme, which
was previously known to be both IND-CCVA2 and IND-CCA1 secure, is also
secure in IND-CCA1.5 sense. Lastly, we give a non-homomorphic variant of CS
lite which achieves IND-CCA1.5 security to show that the class of IND-CCA1.5
secure schemes contains non-homomorphic schemes too.

Construction-I: Let Π = (Gen,Enc,Dec) be a cryptosystem with message
space M and ciphertext space {0, 1}k. We construct another cryptosystem Π =
(Gen,Enc,Dec) which is IND-CCVA2 secure but not IND-CCA1 secure, with
same message space M and ciphertext space as {0, 1}k+1, using Π and an one-
way permutation f on M. (See Figure 2)

Two things are to be observed over here. Firstly, it is evident that the scheme
is consistent i.e., Dec(Enc(m)) = m for all m ∈ M. Secondly, not all k + 1 bit
strings are valid ciphertexts for Π e.g., the strings starting with 1 except 1||1k.

Lemma 2. Π is IND-CCVA2 secure if Π is γ-uniform & IND-CCVA2 secure
and f is one-way, i.e., if A be an IND-CCVA2 adversary against Π with winning

Gen : 1n Enc : m ∈ M, pk Dec : c, sk,

Gen(1n)→ (pk, sk) If Y = f(m) Parse c = (s||c), s ∈ {0, 1}
Choose Mweak ∈R M output c = (1||1k) If s = 0, output Dec(sk, c)
Y = f(Mweak) else output, c = (0||c) If s = 1, c = 1k,

pk = (pk, f, Y ) where c = Enc(pk,m) output Mweak

sk = (sk,Mweak) Else output ⊥

Fig. 2. Construction-I
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probability ε, then there exists either an IND-CCVA2 adversary A against Π or
an inverting algorithm I for f such that

Pr[I wins] + Pr[A wins] ≥ (1 − qγ)ε,

where q is the number of decryption queries made by A.

Proof. Let A be an IND-CCVA2 adversary against Π . Using A as a subroutine,
we construct either an IND-CCVA2 adversary A against Π or an algorithm I
which inverts Y under f (i.e., find Mweak from Y, f).

As an input, A takes pk of Π and a chosen ciphertext verification oracle,
OΠ(·). I takes as input Y and f . A is simulated with pk = (pk, f, Y ) and a
chosen ciphertext verification oracle, OΠ . When a ciphertext verification query,
c, is made by A, OΠ responds as following:

1. Parse c as s||c, where s ∈ {0, 1}.
2. If s = 0, return OΠ(c).
3. If s = 1 and c = 1k, return “valid”.
4. Else, return “invalid”.

This simulation of OΠ is perfect, except the case when c = (0||c) and c =
Enc(pk,Mweak). Observe that c = Enc(pk,Mweak) is a valid ciphertext for Π but
0||c is not a valid ciphertext for Π . Hence, OΠ will render c as valid and and as
a result the simulated OΠ will incorrectly declare 0||c as valid. Now, since Π is
γ-uniform, the probability that the simulation of OΠ is incorrect is at most γ.
If q queries are made to the OΠ , the probability that it answers correctly is

(1− γ)
q ≥ (1− qγ) .

Now, in the challenge phase, A outputs two messages m0 and m1 to A. If
either f(m0) or f(m1) is equal to Y , then A aborts the game (hence, A wins)
and I outputs the corresponding mi for which f(mi) = Y and thereby inverting
f . If neither of f(m0) and f(m1) equals Y , A sends m0,m1 to the IND-CCVA2
challenger C of Π as the challenge plaintexts. C randomly chooses a bit b ∈ {0, 1}
and sends c∗ = Enc(pk,mb) to A and A passes c∗ = (0||c∗) to A as the challenge
ciphertext. The second query phase is simulated exactly in the same way as that
in first phase. (Note that here even the challenge ciphertext can be queried).
Finally, in the guess phase, A returns the answer b′ given by A to C.

Let ε be the probability with which A wins the real IND-CCVA2 game. Now,
in the simulated game, , providedOΠ answers correctly,A wins if eitherMweak ∈
{m0,m1} (i.e., I wins) or b′ = b (i.e., A wins) i.e.,

Pr[I wins] + Pr[A wins] ≥ (1− qγ)ε

Lemma 3. Π is not IND-CCA1 secure.

Proof. We construct an IND-CCA1 adversary A against Π as follows: A queries
the decryption oracle in the first phase with (1||1k) to getMweak and he setsm0 =
Mweak and m1 ∈ M\{Mweak} and sends it to the IND-CCA1 challenger. Once,
A gets the challenge ciphertext, he can determine whether it is the encryption
of m0 or m1 simply by looking at the first bit of the challenge ciphertext.
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Theorem 1. IND-CCVA2 �⇒ IND-CCA1.

Proof. The theorem follows from Lemma 2 and 3.

Corollary 1. IND-CCVA1 �⇒ IND-CCA1.

Proof. As Construction-I is IND-CCVA2 secure (by Lemma 2), it is IND-CCVA1
secure. But it is not IND-CCA1 secure (by Lemma 3).

Corollary 2. IND-CPA �⇒ IND-CCA1.

Proof. As Construction-I is IND-CCVA2 secure (by Lemma 2), it is IND-CPA
secure. But it is not IND-CCA1 secure (by Lemma 3).

Corollary 3. IND-CCA1 �⇒ IND-CCA1.5.

Proof. If IND-CCA1 implies IND-CCA1.5, which in turn implies IND-CCVA2,
it follows that IND-CCA1 implies IND-CCVA2. But this is not the case by
Theorem 4.7 [16] or Section 6.3 [20].

Corollary 4. IND-CCVA2 �⇒ IND-CCA1.5.

Proof. If IND-CCVA2 implies IND-CCA1.5, which in turn implies IND-CCA1,
it follows that IND-CCVA2 implies IND-CCA1. But this is not the case by
Theorem 1.

Construction-II: Let Π = (Gen,Enc,Dec) be an IND-CPA secure cryptosys-
tem with message space M = {0, 1}l and ciphertext space {0, 1}k. We construct
another cryptosystem Π = (Gen,Enc,Dec) (See Figure 3), which is IND-CPA
secure but not IND-CCVA1 secure with same message space M and ciphertext
space as {0, 1}k+1, using Π and an one-way permutation f on M. Here, by
î, m[i] and c(k − 1), we mean (k − 1)-bit representation of i, i-th bit of m and
first k − 1 bits of c respectively.

Observe that unlike the previous construction where Mweak has only one pos-
sible ciphertext 1||1k, here Mweak has l possible ciphertexts.

Gen : 1n Enc : m ∈ {0, 1}l, pk Dec : c ∈ {0, 1}k+1, sk,

Gen(1n)→ (pk, sk) If Y = f(m) Parse c = (s||c), s ∈ {0, 1}
Mweak ∈R {0, 1}l Choose i ∈R {1, 2, . . . , l} If s = 0, output Dec(sk, c)

Y = f(Mweak) Output c = (1||̂i||m[i]) If s = 1, c(k − 1) = î,

pk = (pk, f, Y ) Else output c = (0||c), and Mweak[i] = c[k]

sk = (sk,Mweak) where c = Enc(pk,m) output Mweak

Else output ⊥

Fig. 3. Construction-II
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Lemma 4. Π is IND-CPA secure if Π is IND-CPA secure and f is one-way.

Proof. See Appendix A.2.

Lemma 5. Π is not IND-CCVA1 secure.

Proof. We construct an IND-CCVA1 adversary A against Π . A queries the
ciphertext verification oracle, OΠ in the first phase as follows:

– For i = 1 to l

do

⎧⎨⎩Query ci = (1||̂i||0) to OΠ

If OΠ(ci) = “valid”, set m[i] = 0
Else, set m[i] = 1

– Return Mweak = (m[1]||m[2]||m[3]|| · · · ||m[l]).

Now, in the challenge phase, A sets m0 = Mweak and m1 ∈ M \ {Mweak} and
sends it to the challenger. Once it receives the challenge ciphertext, A considers
its first bit. If it is 0, A returns m1 and if it is 1, A returns m0. The correctness
of the attack is obvious.

Theorem 2. IND-CPA �⇒ IND-CCVA1.

Proof. The theorem follows from Lemma 4 and 5.

Construction-III: We recall that Paillier cryptosystem [19] and GBD cryp-
tosystem [15] are two group homomorphic encryption schemes which have been
proved to be IND-CCA1 secure under a new class of problem called Splitting
Oracle-Assisted Subgroup Membership Problem (SOAP) in [1]. But as mentioned
earlier, in these schemes, Epk(M) = C and hence the notions of IND-CPA, IND-
CCVA1 & IND-CCVA2 are all equivalent and IND-CCA1 & IND-CCA1.5 are
equivalent.

Let Π = (Gen,Enc,Dec) be the Paillier (or GBD) cryptosystem with mes-
sage space M and ciphertext space as {0, 1}k. We construct a scheme Π =
(Gen,Enc,Dec) (See Figure 4), which is IND-CCA1.5 secure but not IND-CCA2
secure, with same message space M and ciphertext space as {0, 1}k+1, where
Epk(M) � C and .
Clearly, the scheme Π is consistent and Epk(M) ⊂ C.

Gen : 1n Enc : m ∈ M, pk Dec : c, sk,

Gen(1n)→ (pk, sk) Output c = (0||c) Parse c = (s||c), s ∈ {0, 1}
pk = pk where c = Enc(pk,m) If s = 0, output Dec(sk, c)

sk = sk If s = 1, Output ⊥

Fig. 4. Construction-III
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Lemma 6. Π is IND-CCA1.5 secure.

Proof. By Theorem 5 in [1], Π is IND-CCA1. Also as it is trivial to distinguish
valid ciphertexts from invalid ciphertexts (by just looking at the most significant
bit) in Π , CCVA oracle does not give any extra advantage to the adversary in
the second (any) query phase. Hence, Π is IND-CCA1.5 secure.

Lemma 7. Π is not IND-CCA2 secure.

Proof. As the original cryptosystem Π , is group homomorphic and Π just con-
catenate 0 with the original ciphertext, an IND-CCA2 adversary A against Π
runs as follows: A removes the most significant bit i.e., 0 from the challenge ci-
phertext c∗ to get c∗. Now, as c∗ is a malleable ciphertext (Π is homomorphic),
so is c∗ = 1||c∗. Thus, Π is not NM-CCA2 secure and hence not IND-CCA2
secure (by Theorem 3.3 in [2]).

Lemma 8. Π, when instantiated with Paillier Scheme (say) as Π, is not NM-
CPA secure.

Proof. Recall that a Paillier ciphertext looks like c = gm·rn mod n2. Formally we
can specify an adversary A that breaks NM-CPA security of Π with probability
1. Given a ciphertext 0||c of a message m, A outputs (R, 0||c′) where c′ =
c · gm′

mod n2 is the ciphertext of m +m′ and R describes the binary relation
defined by R(m1,m2) = 1 iff m2 = m1 +m′ mod n2.

Corollary 5. Π, as in Lemma 8, is not IND-RCCA2 secure.

Proof. By Lemma 8,Π is not NM-CPA secure and hence not NM-RCCA2 secure.
In [5], authors showed that NM-RCCA2 and IND-RCCA2 are equivalent for
super-polynomial size message space, which is the case for the message space of
Π . Thus, Π is not IND-RCCA2 secure.

Construction-IV: Let Π = (Gen,Enc,Dec) be an IND-CCA2 secure cryp-
tosystem with message space M = {0, 1}k+k0 and ciphertext space {0, 1}l. We
construct another cryptosystemΠ = (Gen,Enc,Dec) (See Figure 5) with message
space {0, 1}k and ciphertext space as {0, 1}l+k3+1, usingΠ , an one-way permuta-
tion f on {0, 1}k and a pseudo-random function family G : {0, 1}k1 ×{0, 1}k2 →
{0, 1}k3, where k0 = k1 + k2.

Lemma 9. Π is not IND-CCA1.5 secure.

Proof. We construct an IND-CCA1.5 adversary A against Π . A queries the
decryption oracle, OΠ in the first phase with 1||1l+k3 to get Mweak. Now, in
the challenge phase, A sets m0 = Mweak and m1 ∈ M \ {Mweak} and sends it
to the challenger. Once it receives the challenge ciphertext c∗, A first checks if
c∗ = 1||1l+k3 or not. If it is, A outputs m0. If not, A just flips the last bit of c∗ to
get c′ and queries the verification oracle with c′. If it returns valid, A returns m1

and if it returns invalid, A returns m0. The correctness of the attack is obvious.
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Gen : 1n Enc : m ∈ {0, 1}k, pk Dec : c, sk

Gen(1n)→ (pk, sk) If Y = f(m) Parse c = u||c||α, u ∈ {0, 1}
f,G are as above Choose β ∈R {0, 1}t c ∈ {0, 1}l, α ∈ {0, 1}k3

Mweak ∈R {0, 1}k If β = 0t, c = (1||1l+k2) If u = 1, c||α = 1l+k3 ,

Y = f(Mweak) else, c = (0||c||G(r′, r′′)) output Mweak

pk = (pk, f, Y,G) where r′ ∈R {0, 1}k1 , If u = 0, Dec(c) �=⊥,
sk = (sk,Mweak) r′′ ∈R {0, 1}k2 , Set (m||r′||r′′) = Dec(c)

c = Enc(m||r′||r′′) If m �= Mweak, output m
If Y �= f(m) If m = Mweak &
c = (0||c||α) α = G(r′, r′′)

where α ∈R {0, 1}k3 output Mweak

and c is as above Else output ⊥
Output c

Fig. 5. Construction-IV

Lemma 10. Π is IND-CCVA2 secure if

1. Π is IND-CCA2 and
2. f is one-way.

Proof. Let A be an IND-CCVA2 adversary against Π . We construct either an
IND-CCA2 adversary A against Π or an inversion algorithm If for f using A
as a subroutine. As an input, A takes pk and an oracle access to the decryption
oracle of Π . If takes as input f, Y . A chooses a pseudo-random function family
G : {0, 1}k1 × {0, 1}k2 → {0, 1}k3 and simulates A with pk = (pk, f, Y,G).
The verification queries of A are responded as follows: In the query phase, if A
queries 1||1l+k3 , simulator returns “valid”. If A queries a ciphertext of the form
c = (u||c||α), A queries its decryption oracle with c to get either (m||r′||r′′) or ⊥.
Now, if f(m) = Y , A stops the game and If outputs m. If f(m) �= Y , simulator
returns “valid”. If ⊥ occurs, simulator returns “invalid”. In the challenge phase,
A outputs two k-bit strings m0 and m1 to A. If either of f(m0) or f(m1) equals
Y , A aborts the game and If returns m0 or m1 accordingly. If not, A randomly
chooses r0, r1 ∈ {0, 1}k0 and sends m0||r0,m1||r1 to the IND-CCA2 challenger
C. C randomly chooses a bit b ∈ {0, 1} and encrypts mb||rb to output c∗ =
Enc(mb||rb) as the challenge ciphertext for A. A returns c∗ = (0||c∗||α) to A as
the challenge ciphertext, where α ∈R {0, 1}k3. Second verification query phase
is simulated as that of the first one. Finally in the guess phase, A returns a bit
b′ and A outputs the same bit b′ as its guess to C.

Lemma 11. Π is IND-CCA1 secure if

1. Π is IND-CCA2,
2. G is a pseudo-random function family.

Proof. See Appendix A.3.
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Theorem 3. IND-CCVA2 + IND-CCA1 �⇒ IND-CCA1.5.

Proof. It follows immediately from Lemma 9, 10 and 11.

Cramer-Shoup Lite: We show that the Cramer-Shoup lite scheme (Figure 6)
which was previously known to be IND-CCA1 and IND-CCVA2 secure is also
IND-CCA1.5 secure.

Gen : 1k Enc : m ∈ G, pk Dec : (u, v, e,w), sk,

Choose a prime q of length k Choose r ∈R Zq If w = uavb,

Choose G = 〈g1〉 = 〈g2〉 Compute output e/(uxvy)
of order q u = g1

r, v = g2
r, Else output ⊥

Choose x, y, a, b ∈R Zq e = hr ·m,w = cr

Set h = g1
xg2

y, c = g1
ag2

b Output (u, v, e, w)
Set pk = (g1, g2, h, c),

sk = (x, y, a, b)

Fig. 6. Cramer-Shoup Lite

Lemma 12. Cramer-Shoup lite is not IND-CCA2 secure.

Proof. See Lemma 1 of Section 4.1 of [20].

Theorem 4. Cramer-Shoup lite is IND-CCA1.5 secure if DDH assumption holds
in G.

Proof. See Appendix A.1.

Theorem 5. IND-CCA1.5 �⇒ IND-CCA2.

Proof. It follows immediately from Lemma 12 and Theorem 4.

AnotherCramer-ShoupLiteVariant: In this construction (Figure 7),we show
that class of IND-CCA1.5 secure schemes contains non-homomorphic schemes too.

Lemma 13. Cramer-Shoup lite variant is not IND-CCA2 secure.

Proof. Similar to that of Lemma 12.

Theorem 6. Cramer-Shoup lite variant is IND-CCA1.5 secure if DDH assump-
tion holds in G.

Proof. Similar to that of Theorem 4.
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Gen : 1k Enc : m ∈ G, pk Dec : (u1, u2, e, v), sk,

Choose G = 〈g1〉 = 〈g2〉 Choose r ∈R Zq Compute α = H(u1, u2)
as before & a hash fn Compute u1 = g1

r, If v = u1
x1u2

x2dα,

H : {0, 1}∗ → Zq u2 = g2
r, e = hr ·m, output e/u1

z

Choose x1, x2, y1, y2, z ∈R Zq α = H(u1, u2) Else output ⊥
Set c = g1

x1g2
x2 , v = crdα

d = g1
y1g2

y2 , h = g1
z Output (u1, u2, e, v)

Set pk = (g1, g2, c, d, h,H),
sk = (x1, x2, y1, y2, z)

Fig. 7. Cramer-Shoup Lite Variant

4 Conclusion and Open Issues

The idea of chosen ciphertext verification attack was introduced in [16] to find
marriage between practical methods of cryptographic attack, such as the Ble-
ichenbacher’s attack [4], and theoretical definitions of security, as presented in [2].
This work provides the complete picture of chain of inter-relationships among
CCVA, CCA1.5 attacks and existing attacks, like CPA, CCA1, RCCA2 and
CCA2, from indistinguishability point of view for better understanding of these
security notions. However, the notion of non-malleability under this new at-
tack and the relationships among NM-CCVA1, NM-CCVA2, NM-CCA1.5 and
IND-CCVA1, IND-CCVA2, IND-CCA1.5 are still unaddressed and can be an
interesting topic for future research.
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A Appendix: Proofs

A.1 Proof of Theorem 4

The proof goes exactly on the same line as the proof of CCA1 security of Cramer-
Shoup lite or CCA2 security of Cramer-Shoup scheme [7], i.e., if an adversary is
able to break the IND-CCA1.5 security, then it can be used to solve the DDH
problem. We therefore give only the description of the simulator.

Let us assume, there is an adversary A which can break the IND-CCA1.5
security of the scheme. Using A, we can construct an algorithm B that solves
the DDH problem. B takes as input a tuple (g1, g2, u, v). B solves the DDH
problem by interacting with A in IND-CCA1.5 game as follows:

1. Simulation of Gen
– Choose x, y, a, b ∈R Zq and set h = g1

xg2
y, c = g1

ag2
b.

– Set public key as (g1, g2, h, c) and make it available toA and keep x, y, a, b
secret.

2. Simulation of Decryption Oracle (Phase-I) and Verification Oracle
(Phase II)
– Knowledge of x, y, a, b enables B to answer the queries of A in both the

phases.
3. Simulation of Challenge Ciphertext

– A chooses m0,m1 and sends it to B.
– B chooses a bit β ∈R {0, 1} and sets e = uxvy ·mβ, w = uavb.
– B returns (u, v, e, w) as the challenge ciphertext to A.

4. Guess Phase
– A returns a bit β′ to B.
– If β = β′, B declares the instance to be a valid DDH tuple, else declares

it to be an invalid tuple.

This completes the description of B. It is clear that the simulation is almost
perfect and hence the result follows.

A.2 Proof of Lemma 4

Let A be an IND-CPA adversary against Π. Using A as a subroutine, we con-
struct either an IND-CPA adversaryA againstΠ or an algorithm I which inverts
Y under f (i.e., find Mweak from Y, f).

As an input, A takes pk of Π and I takes Y and f . A is simulated with
pk = (pk, f, Y ). In the challenge phase, A outputs two messages m0,m1 to A.
If either f(m0) or f(m1) is equal to Y , then A aborts the game and I outputs
the corresponding mi for which f(mi) = Y and thereby inverting f . If neither
of f(m0) and f(m1) equals Y , A sends m0,m1 to the IND-CPA challenger C
of Π as the challenge plaintexts. C randomly chooses a bit b ∈ {0, 1} and sends
c∗ = Enc(pk,mb) to A and A passes c∗ = (0||c∗) to A as the challenge ciphertext.
Finally, in the guess phase, A returns the answer b′ given by A to C.

Let E denote the event that either f(m0) or f(m1) is equal to Y . Then prob-
ability that I successfully inverts f is Pr[E] i.e., AdvI = Pr[E]. Hence, it follows
that

AdvA = AdvA + AdvI .
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A.3 Proof of Lemma 11

Let δ be the maximum probability with which a p.p.t. adversary can distinguish
between a random string and a particular output of G. Let A be an IND-CCA1
adversary against Π . We construct an IND-CCA2 adversary A against Π using
A as a subroutine. As an input, A takes pk and an oracle access to the decryption
oracle of Π . A chooses an one-way permutation f on {0, 1}k, a pseudo-random
function family G : {0, 1}k1 ×{0, 1}k2 → {0, 1}k3 and Mweak ∈R {0, 1}k and sets
Y = f(Mweak). A is fed with pk = (pk, f, Y,G). The queries of A are answered
as follows: In the first phase, when A queries a ciphertext c = (u||c||α), usual
decryption algorithm Dec is run to return the corresponding plaintext. (Note
that simulator queries the decryption oracle of Π to decrypt c.) In the challenge
phase, A outputs two k-bit strings m0 and m1 to A. Now, two cases may arise:

– Case 1: (Neither of m0 and m1 is Mweak) In this case, A randomly
chooses r0, r1 ∈ {0, 1}k0 and sends m0||r0,m1||r1 to the IND-CCA2 chal-
lenger C. C randomly chooses a bit b ∈ {0, 1} and encrypts mb||rb to output
c∗ = Enc(mb||rb) as the challenge ciphertext for A. A returns c∗ = (0||c∗||α)
to A as the challenge ciphertext, where α ∈R {0, 1}k2.

– Case 2: (One of m0 and m1 isMweak) In this case,A randomly chooses r ∈
{0, 1}k0 and sends m0||r,m1||r to the IND-CCA2 challenger C. C randomly
chooses a bit b ∈ {0, 1} and encrypts mb||r to output c∗ = Enc(mb||r) as the
challenge ciphertext for A. A returns c∗ = (0||c∗||α) to A as the challenge
ciphertext, where α = G(r′, r′′), r = r′||r′′.

Finally in the guess phase, A returns a bit b′ and A outputs the same bit b′ as
its guess to C.

Now, if Case 1 occurs, then c∗ is indeed a valid ciphertext for A, and clearly
AdvA = AdvA.
Let us consider A’s view in this simulated game, if Case 2 occurs.

If mb = Mweak, i.e., Mweak||r is encrypted by C, then c∗ is indeed a valid
ciphertext. But, in A’s view, c∗ is a valid ciphertext with probability 1− 1

2t . (As,
1||1l+k3 is also a valid ciphertext for Mweak occuring with probability 1

2t .)
On the other hand, if mb �= Mweak, then α (the last k3 bit of c∗) should have

been a random string, instead of a particular output of G. So, in A’s view, c∗ is
a valid ciphertext with probability (1− δ).

Thus, if Case 2 occurs, in any case, c∗ is a valid ciphertext in A’s view with
probability

=
1

2
(1− 1

2t
) +

1

2
(1− δ) = 1− δ

2
− 1

2t+1
.

Now, we define
H be the event that c∗ is a valid ciphertext in A’s view;
Awin be the event that A wins the IND-CCA2 game;

Asim
win be the event that A wins the simulated game and

Areal
win be the event that A wins the real IND-CCA1 game.

Note that Pr[Asim
win|H ] = Pr[Areal

win ]. Thus we have,
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Pr[Awin] = Pr[Asim
win ∧H ] = Pr[Asim

win|H ] · Pr[H ] = Pr[Areal
win ] · Pr[H ].

Thus, AdvA = 2Pr[Awin]− 1 = 2Pr[Areal
win ] · Pr[H ]− 1 = Pr[Areal

win ] ·
(
2− δ − 1

2t

)
− 1

=
(
2Pr[Areal

win ]− 1
)
−

(
δ + 1

2t

)
Pr[Areal

win ] = AdvA −
(
δ + 1

2t

)
Pr[Areal

win ]

≥ AdvA −
(
δ + 1

2t

)
Combining both Case 1 and Case 2, we have AdvA ≥ AdvA −

(
δ + 1

2t

)
.
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Abstract. We define a new primitive, input-aware equivocable commitment, bar-
ing similar hardness assumptions as plaintext-aware encryption and featuring
equivocability. We construct an actual input-aware equivocable commitment pro-
tocol, based on a flavor of Diffie-Hellman assumptions allowing adversarially
chosen domain parameters. On a parallel front, and since our commitment is ex-
tractable and equivocable in a straight-line way, we show that our commitment
enjoys UC-security, when atomic exchanges are available as a UC setup. We fur-
ther compare our protocol and our UC setup with similar, existing ones (i.e., in
terms of efficiency, assumptions needed, etc.). Finally, we show that cryptography
becomes UC-realizable in a natural way when participants are able to have “close
encounters” or when atomic exchanges can be enforced onto the communication.

1 Introduction

An attractive, neat way to prove security of a protocol is to show that it realizes an ideal
functionality [26,1,3,19] modelling a primitive. In this sense, a normal starting point
is the well-known framework of Canetti’s, i.e., the universal composability (UC) [7].
There are several versions of the UC framework (from [7] to [8]); slight differences are
operated in the communication model, the order of quantifiers in the UC proofs, etc. In
this paper, we will follow the original universal composability model, i.e., the one in [7],
summarised below.

At a high level, a UC proof that a protocol is secure (in the bare UC model) means
to show that no environment machine, Z, can distinguish between the execution in
the “real world” from the execution in the “ideal world”. The “ideal world” contains
“dummy” parties, the “target” ideal functionality (that the protocol is emulating) and
the “ideal” adversary, I . These “dummy” parties simply send their inputs to the ideal
functionality and wait for the response which they write on their output tapes. The envi-
ronment Z gives the inputs to the parties and reads their local outputs and can commu-
nicate with I . The “real world” contains actual protocol participants, the environment
Z, the “real adversary” A . The “ideal” adversary I or the “real” adversary A can cor-
rupt protocol-parties, in which case the adversary will see the input of such a party, all
communication sent to it, and A can decide its output. The communication channels
between participants is assumed to be secure. So far, this perfectly describes the bare
UC model which is often referred to as the UC plain model. In the UC plain model, sev-
eral essential cryptographic protocols (e.g., commitments) are not realizable. Thus, the
formalism is enhanced with some extra functionality, i.e., a setup functionality. Such an
“empowering” add-on to the UC plain models yields the so-called UC hybrid models.
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UC Plain Models and Commitments. In the context of UC, we recall that if multiple
commitments are UC-realized, then any multiparty computation can be UC-realized [11].
The UC functionality for single commitment is normally referred to as FCOM and can be
assimilated to an ideal safe where to store the commitment. Another common function-
ality FMCOM can deal with multiple commitments. Note that the general impossibility
result of realizing UC commitment in the plain UC model is strongly linked to the
notion of relay attacks.

UC Hybrid Models & Commitments. To achieve UC-secure (multiple) commitments,
different UC setups have been used. We recall that UC-secure multi-commitment are
generally realizable as follows: with a common reference string (CRS) setup [11], or
with a public-key infrastructure (PKI) using a trusted party to manage the correct knowl-
edge of respective public/secret keys [2], or with Katz’s tamper-resistant hardware to-
ken [23] (under the computational Diffie-Hellman assumption and a static adversarial
model), or with similar tokens to Katz’s but susceptible to more powerful attacks [12],
or with hardware tokens similar to those in [23], but used in a “receiver-empowering”
fashion to minimize the computational assumptions. More recently, Damgård et al. [15]
UC-realized multiple commitments by using a setup assumption that relaxes the tamper-
resistant hardware token to a functionality that models the partial isolation and limited
communication-power of a party. Unlike previous protocols, the protocol of Damgård’s
et al. [15] is in fact a general construction, relying on the following fact: if a functionality
of isolated parties is available, then witness indistinguishable proofs of knowledge (WI
PoK) can be realized, which further provide a PKI and make UC multiple commitments
possible. In this setting, the UC-realization relies on the existence of one-way permuta-
tions and dense public key, IND-CPA secure encryption schemes with pseudorandom
ciphertexts, but the adversarial model is strong (i.e., active and adaptive). In their pa-
per, Damgård et al. [15] fully compare their functionality with that of tamper-evident
hardware devices; we refer the reader to [15] for this comparison.

UC Augmented Models & Commitments. In fact, a UC-like scenario that made com-
mitment possible is that of a communication augmented with pre-specified delays: i.e.,
the timing model of Kalai’s et al. [22]. The assumptions under which multi-party com-
putation becomes possible in this model are similar to some of the aforementioned
assumptions for UC commitments with setups, i.e., the existence of enhanced trapdoor
permutations and dense cryptosystems. However, whilst commitment in itself is not an
issue anymore (i.e., the relay is prevented), Kalai’s et al. [22] state that their model
has the drawback of not being usable with protocols that employ time themselves (e.g.,
distance-bounding protocols [6]). But this may be unfortunate: as we will see further
(i.e., in Section 3.2), time-sensitive protocols can in fact be themselves tightly linked to
UC-secure protocols and their realization.

Our Justification for UC Hybrid Models with Atomic Exchanges. Summing up the
above paragraphs, we can see that the �-isolated parties of Damgård’s et al. [15] can
clearly be viewed as a restriction of the UC communication, as much as Kalai’s et
al. [22] model can. Thus, the former can also prevent relay attacks; moreover, �-isolated
parties do allow (and, in fact, facilitate) the composition of/with protocols that involve
time themselves. And, as we envisage the usage of timed protocols (e.g., distance-
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bounding protocols [6]), thus setting à la Kalai with delayed messages would be dif-
ficult to handle in our context. So, we embark on the approach of using UC setups,
rather than augmentation of models with time/delays. In order to realize UC (multiple)
commitments (and thus all multi-party computation as per [11]), we will invoke a UC-
setup similar to the recent �-isolated parties of Damgård’s et al. To this end, we put
forward a UC setup called Fatomic. By atomic exchanges we mean the communication
between protocol parties produced via their interaction with Fatomic.

Our functionality Fatomic is similar to the “�-isolated parties” setup of Damgård et
al. [15]. The intuition behind is that the Fatomic functionality allows two parties to have
an elementary, “fully isolated” exchange of just one message each. This can be viewed
as a specialization of the F�-isolated functionality of Damgård’s et al. [15] (namely, with
�= 0 and an exchanges limited to two messages in “one-round”). On the one hand, it is
not clear how to realize F0-isolate using Fatomic. Intuitively, we need several instances of
Fatomic and it would mean to pass information from one to the other using non-malleable
encryption. So, Fatomic may be weaker than F0-isolate. On the other hand, Fatomic may be
simpler to implement. For instance, the responder may be subject to several constraints
such as time-bound to respond (like in NFC tags in distance-bounding [6]), or may be
in a tamper proof token (such as the one by Katz [23]), or may result from a “close
encounter”.

Extrapolating PAW. In parallel, in this paper, we will define input-aware equivocable
commitments (outside the UC model), a scheme akin in its characteristics to plaintext-
aware encryption [14,21,31]. Our definition also includes equivocability, which is cru-
cial for UC-security. We propose a specific protocol that implements this scheme under
special types Diffie-Hellman assumptions. I.e., one such assumption is an extension
of the DH regular knowledge assumption to be required to hold in any group [17]. In
our case, the DH knowledge assumption needed is supposed to hold further in any ad-
versarially chosen group (which is a weaker assumption than assuming it holds in any
group). Also, in our UC setting, such a scheme can be employed in, e.g., concurrent
RFID/NFC-based contactless payment protocols [25] where some computation is to
be done atomically (i.e., by the RFID/NFC tag alone) and the final result needs to be
“independent” for other simultaneous such computations.

UC Commitments and Their Assumptions. UC multiple commitments are possible
under the different UC-setups. A short list of such setups is as follows: 1. Katz’s tamper-
resistant hardware tokens [23] (where under the computational Diffie-Hellman assump-
tion and a static adversarial model); 2. similar tokens to Katz’s but susceptible to more
powerful attacks [12]; 3. hardware tokens similar to those in [23], but used in an asym-
metric fashion to minimize the computational assumptions [28]; 4. the more recent [15]
relaxation of the tamper-resistant hardware tokens to a functionality modelling the par-
tial isolation and limited communication power of a party (under the assumptions of
one-way permutations and dense public key, IND-CPA secure encryption schemes with
pseudorandom ciphertexts, but the adversarial model is strong (i.e., active and adaptive).

There are some UC lines [10,16] in which the ideas underlying the ideal-world sim-
ulation of (multiple) commitment can be loosely linked to the one that we are going to
put forward. Firstly, in [10], Canetti et al. achieve a FMCOM-realization with
non-erasing parties, in the CRS-hybrid model using an encryption scheme obviously
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samplable[14]. In this case, the trick that allows I to run its simulations (i.e., that gives I
the oblivious-sampling coins for its ciphertext) is to sample ciphertexts without running
the encryption algorithm. Note that an encryption obviously samplable (with respect to
chosen-ciphertext attacks) [14] is possible under the Decisional Diffie-Hellman (DDH)
assumption. Similarly, our protocol is possible if some special Diffie-Hellman assump-
tions are used.

Using several instances of FCOM , ZK is UC-realized in the FCOM-hybrid model [10]
by mainstream ideas: by repeating t times, in parallel, Blum’s protocol for Hamiltonian-
Cycles (HC) [4], where the commitments of the provers are calls to FCOM . Damgård and
Nielsen [16] construct ZK more efficiently, but in a similar way, using the SAT protocol
which proves satisfiability of boolean circuits. Along similar lines, our one-bit commit-
ment can be used to Fatomic-UC realize ZK in the same complexity as the Canetti’s et
al. [10]. In Appendix A we included a discussion about some further, “unconventional”
commitments.

Our Contribution. In this paper, we introduce the notion of input-aware equivocable
commitment, i.e., commitments that include both extractability and equivocability. We
further propose some extensions of the Diffie-Hellman hardness assumptions or of the
discrete logarithm hardness assumption, for the case where the adversary can mali-
ciously select the group structure. We call it an adversarially-chosen group extension
of the DH assumption. We propose the Fatomic functionality as a new setup assumption.
This is a new, easy to implement UC setup, drawing upon un-aided local computation.
Finally, we propose an input-aware equivocable commitment in the plain model, which
we then prove to UC-realize FCOM in presence of the Fatomic setup.

2 Input-Aware Commitments in Classical Cryptography

In this section, we formalize the notion of input-aware equivocable commitments and
present one protocol. On our way to doing so, we specify different flavors of Diffie-
Hellman (DH) assumptions.

2.1 Commitment Scheme

The following definition reiterates the usual meaning of a commitment scheme in con-
formity with traditional (i.e., non-composable) cryptography.

Definition 1 (Commitment Scheme). A bit-commitment scheme in terms of a secu-
rity parameter λ is a pair of polynomially bounded protocols
((SCOM,RCOM),(SOPEN ,ROPEN)) where SCOM has an input bit b, and ROPEN has an
output bit b̄. The protocols may abort. The

SCOM(1λ,b;rS)↔ RCOM(1λ;rR)

execution1 is called the commitment phase. For simplicity, 1λ is omitted from the nota-
tion. Let ViewS, respectively ViewR, denote the view of SCOM, respectively the view of
RCOM. The

SOPEN(ViewS;r′S)↔ ROPEN(ViewR;r′R)

1 This execution is understood as any standard interactive system [20].
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execution is called the opening phase. It produces the final output from R, i.e., b̄. A
commitment scheme is expected to be correct: i.e., when correctly executed, no protocol
aborts and b̄ = b.

The following definition completes the above by formalizing the usual requirements
of a commitment scheme in conformity with traditional (i.e., non-composable) cryptog-
raphy.

Definition 2 (The Hiding Property). A commitment scheme is said to be hiding if
the following holds. For any polynomially bounded R∗

COM, if SCOM(b;rS)↔ R∗
COM(rR)

ends up with the final view ViewR for R∗
COM, then ViewR|b = 0 and ViewR|b = 1 are

computationally indistinguishable.

In the above, ViewR|b = x (with x ∈ {0,1}) denotes the marginal distribution (over all
random coins and inputs) of ViewR as a random variable, conditioned to the event b = x.
Note that we can assume without loss of generality that R∗

COM is deterministic (since rR

could be hard-coded in it).

Definition 3 (The Binding Property). A commitment scheme is said to be binding if
the following holds. For any polynomially bounded S∗COM and S∗OPEN, if the S∗COM(rS)↔
RCOM(rR) and then the S∗OPEN(ViewS;r′S)↔ ROPEN(ViewR;r′R) experiment occur, then
min(Pr[b = 0|rS,rR],Pr[b = 1|rS,rR]) = negl(λ), where this probability is taken in the
random choices of S∗OPEN and ROPEN.

This means that once the commitment is made (i.e., rS and rR are fixed), S∗OPEN cannot
open to both b̄ = 0 and b̄ = 1. We recall that f (λ) = negl(λ) means that for all c > 0,
we have f (λ) = O(λ−c).

2.2 Diffie-Hellman Assumptions

In this subsection, we specify several Diffie-Hellman assumptions.

Definition 4 (DH Key Generator). A DH key is a tuple K = (G,q,g) such that G is
a group, q is a prime dividing the order of G, g is an element of G of order q. A DH
key-generator is a ppt. algorithm Gen producing DH keys K such that |K|= Poly(logq)
and the operations (i.e., multiplication, comparison, and membership checking in the
group 〈g〉 generated by g) over their domain can be computed in time Poly(logq). We
say that (S,S′) is a valid K-DH pair for gσ if S ∈ 〈g〉 and S′ = Sσ, where σ ∈ Zq. Given
K = (G,q,g), we define a function DHK with a variable number of inputs from G by
DHK(gx1 , . . . ,gxn) = gx1···xn .

An example of a DH key is (Z∗
p,q,g) where p and q are primes and p = 2q+ 1, g ∈

QR(p), g �= 1.
We now strengthen the Decisional Diffie-Hellman (DDH) assumption. Below, we

use an arbitrary ppt. algorithm B generating some coins ρ and a state state. Such coins
ρ and/or state state will be sometimes used as auxiliary inputs to some ITMs in the
security games formalized below.
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Definition 5 (DDH Asmpt. in an Adversarially-Chosen Group (ag-DDHGen)). The
ag-DDHGen assumption over a domain of DH keys K states that for any ppt. algorithms
A and B in the next game, Pr[b = b]− 1

2 = negl(λ):
1: (ρ,state) := B(1λ;rB)
2: K := Gen(1λ;ρ)
3: define (G,q,g) from K
4: pick α,β,γ ∈U Zq

5: A := gα; B := gβ; C0 := gγ; C1 := gαβ

6: pick b ∈U {0,1}
7: b := A(1λ,state,A,B,Cb;r)

The probability stands over the random coins rB , r, b ∈U {0,1} and α,β,γ ∈U Zq and
is negligible in terms of logq. A (and B) run in ppt. in terms of logq.

It should be clear that ag-CDHGen, the computational version of this problem can be
defined as well.

Definition 6 (CDHn Asmpt. in an Adversarially-Chosen Group (ag-CDHn
Gen)). The

ag-CDHn
Gen assumption over a domain of DH keys K states that for any ppt. algorithms

A and B in the next game, the probability that S0 = DHK(A,B,S1, . . . ,Sn) and that
Si �= 1 for i = 1, . . . ,n is negligible:

1: (ρ,state) := B(1λ;rB)
2: K := Gen(1λ;ρ)
3: define (G,q,g) from K
4: pick α,β ∈U Zq

5: A := gα; B := gβ

6: (S0,S1, . . . ,Sn) := A(1λ,state,A,B;r)

The probability stands over the random coins rB , r, and α,β ∈U Zq. The probability is
negligible in terms of logq. A (and B) run in ppt. in terms of logq.

The standard Diffie-Hellman computational problem corresponds to the CDH0 prob-
lem. Clearly, the CDHn assumption implies the CDHn−1 assumption for all n > 0, but
the opposite implication is an open problem. In what follows, we will use the CDH1

assumption.
We now similarly strengthen the Diffie-Hellman knowledge (DHK0) assumption (for

a summary the latter, refer to [17]).

Definition 7 (DHK0 Asmpt. in an Adversarially-Chosen Group (ag-DHK0Gen)). The
ag-DHK0Gen assumption over a domain of DH keys K states that for any ppt. algorithm
A and B in the next game, there is a polynomially bounded algorithm E such that the
probability of the below experiment outputting 1 is negligible:

1: (ρ,state) := B(1λ;rB)
2: K := Gen(1λ;ρλ)
3: define (G,q,g) from K
4: pick σ ∈U Zq

5: (S,S′) := A(1λ,state,gσ;r)
6: if (S,S′) is not a valid K-DH pair for gσ, then return 0



Input-Aware Equivocable Commitments and UC-secure Commitments 127

7: s := E(1λ,state,gσ,r)
8: if S = gs, then return 0
9: return 1

The probability stands over the random coins rB , r and σ ∈U Zq and is negligible in
terms of logq. The running time of E (and B) is ppt. in terms of logq.

This assumption means that whatever the algorithm producing valid DH pairs for a
random gσ with σ unknown, this algorithm must know the discrete logarithm of their
components except for some negligible cases.

The algorithm B used in the games above is denoted as the biotope algorithm.
What distinguishes these assumptions from the mainstream DDH and DHK0 assump-

tions [17] is that these should hold for all K selected by a ppt. biotope algorithm (even
by a malicious one) and not only for some K which is randomly selected by an honest
participant. In fact, when selecting a DH key without a CRS in a two party protocol, the
above assumption must hold for any maliciously selected K (since we ignore a priori
which party is honest). Hence, the name we use: DH assumptions in an adversarially-
chosen group. As we mentioned in the introduction, the latter assumption is a special
case of the DH knowledge assumption required to hold in any group, or, equivalently,
for any B and rB . Such assumptions were originally introduced by Dent in [17]. Here,
we do not require the assumption to hold in any group, but rather in those groups G for
which we can produce a seed for Gen to use in generating G, or equivalently, for any, B
on average over rB .

In the next, for readability purposes, we will omit the additional-input 1λ from the
inputs of the machines that take it, its presence being implicit.

2.3 Input-Aware Equivocable Bit-Commitment

Definition 8 (Input-Aware Equivocable Commitment Scheme). An input-aware
equivocable bit-commitment (IAEC) scheme is a commitment scheme
((SCOM,RCOM),(SOPEN ,ROPEN)) as per Def. 1, with the following additional proper-
ties. Let b denote the input of SCOM, b̄ be the output of ROPEN or R∗

OPEN, and ViewS,
respectively ViewR, be the view of SCOM or S∗COM and, respectively, of RCOM or R∗

COM
in the commitment phase.

– (sender input-awareness aka extractability) For any polynomially bounded algo-
rithms S∗COM and S∗OPEN, there is a polynomially bounded algorithm Extract such
that the following holds. When running the commitment phase

S∗COM(rS)↔ RCOM(rR),

followed by the opening phase

S∗OPEN(ViewS;r′S)↔ ROPEN(ViewR;r′R),

the next holds with probability 1−negl(λ), taken over the random rS,r′S,rR,r′R:
– b̄ = Extract(ViewS) and no protocol aborts,
– or Extract(ViewS) aborts and the commitment phase as well,
– or the opening phase aborts.
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– (receiver self-equivocability) For any polynomially bounded algorithm R∗
COM and

R∗
OPEN, there is a polynomially bounded algorithm Equiv such that the following

holds. When running the commitment phase

SCOM(b;rS)↔ R∗
COM(rR),

followed by the flipping a coin b′ to run the opening phase{
SOPEN(ViewS;r′S)↔ R∗

OPEN(ViewR;r′R), if b′ = b
Equiv(b′,ViewR;r′S)↔ R∗

OPEN(ViewR;r′R), if b′ = 1− b,

it all results in a final view View′
R of R∗

OPEN and this is such that View′
R|b = 0 and

View′
R|b = 1 are computationally indistinguishable over the random rS, rR, r′R, r′S

and b′.

The above definition implies the classical notions of security (i.e., notions of hiding and
binding commitments as per Defs. 2, 3). Equivocability already says that ViewR|b = 0
and ViewR|b = 1 are indistinguishable since ViewR is included in View′

R; so the com-
mitment is hiding. Furthermore, a malicious sender who could open a commitment
to both b = 0 and b = 1 with a probability which is negligible would contradict b̄ =
Extract(ViewS); so, the commitment is binding.

We will now construct an IAEC based on the ag-DHK0Gen, the ag-DDHGen and the
ag-CDH1

Gen assumptions. We denote it as protocol ΠGen (see Fig. 1). As per Section 3.2,
the label “atomic” in Fig. 1, applies only in the context of the use of a UC functionality
for atomic exchanges when building the protocol to be UC-secure. It shall be ignored
in the current section.

Protocol ΠGen

The commitment phase (i.e., to be described by the SCOM and RCOM protocols) works
as follows.

1. S generates ρ for Gen, i.e., it does K := Gen(ρ), and S sends ρ to R.
2. Then, R also computed K :=Gen(ρ) and R selects2 some α∈Z∗

q and sends X0 := gα

to S.
3. S verifies3 that X0 ∈ 〈g〉, selects x ∈ Z∗

q, calculates X := gx and X ′ := Xx
0 , and sends

X ,X ′ to R. S picks β ∈ Z∗
q and calculates Y0 := gβ. S sends Y0 to R.

4. R verifies that X ∈ 〈g〉, X ′ = Xα, and that Y0 ∈ 〈g〉. Then, R selects y ∈ Z∗
q and

calculates Y := gy and Y ′ := Y y
0 . Then, R sends Y , Y ′, and α to S. Then, R selects

some z0,z1 ∈ Z∗
q and calculates Z0 and Z1 as follows: Zi := gzi , for i ∈ {0,1}. The

R party sends Z0 and Z1 to S.
5. The party S verifies that Y,Z0,Z1 ∈ 〈g〉, that Y ′ = Y β, and that X0 = gα. S further

selects r ∈ Zq and sends U := gr, V := ZbXr and β to R, where b is the bit that S is
in the process of committing to.

6. R verifies that U,V ∈ 〈g〉 and that Y0 = gβ.

2 All occurrences of “selects” in this description denote “picks uniformly”.
3 If a verification fails, then the party running it aborts.
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Sender Receiver

commitment phase
input: b

pick ρ and set K := Gen(1λ,ρ)
ρ−−−−−−−−−−−−−−−−→ set K := Gen(1λ,ρ)

X0
?
∈ 〈g〉 atomic: X0←−−−−−−−−−−−−−−−− α ∈U Z∗

q, X0 := gα

x ∈U Z∗
q, X := gx, X ′ := Xx

0
X ,X ′

−−−−−−−−−−−−−−−−→ X
?
∈ 〈g〉, X ′ ?

= Xα

β ∈U Z∗
q, Y0 := gβ atomic: Y0−−−−−−−−−−−−−−−−→ Y0

?
∈ 〈g〉

Y
?
∈ 〈g〉, Y ′ ?

= Y β, X0
?
= gα Y,Y ′,α←−−−−−−−−−−−−−−−− y ∈U Z∗

q, Y := gy, Y ′ :=Y y
0

Z0,Z1
?
∈ 〈g〉 Z0,Z1←−−−−−−−−−−−−−−−− z0,z1 ∈U Z∗

q, Z0 := gz0 , Z1 := gz1

r ∈U Zq, U := gr, V := ZbXr U,V,β−−−−−−−−−−−−−−−−→ U,V
?
∈ 〈g〉,Y0

?
= gβ

opening phase

set b′ := b
b′−−−−−−−−−−−−−−−−→

γ ∈U Z∗
q

U ′,V ′
←−−−−−−−−−−−−−−−− s ∈U Zq, U ′ :=Uygs, V ′ :=V yXs

W := gγ, W ′ :=
(

V ′U ′−x
)γ W,W ′

−−−−−−−−−−−−−−−−→

U ′ ?
= Y rgs,

(
V ′Y−xrX−s

)γ ?
=W ′ s←−−−−−−−−−−−−−−−−

γ−−−−−−−−−−−−−−−−→ W
?
= gγ, W ′ ?

= Zyγ
b′

Fig. 1. Input-aware Equivocable Commitment Protocol ΠGen

The opening phase (i.e., to be described by the SOPEN and ROPEN protocols) works
as follows.

1. S sends a bit b′ with b′ = b.
2. Then, R selects s ∈ Zq and calculates U ′ :=Uygs and V ′ :=V yxs. Then, R sends U ′

and V ′ to S.
3. S selects γ ∈ Z∗

q and calculates W := gγ and W ′ := (V ′U ′−x)γ. Then, S sends W,W ′

to R.
4. R sends s to S.
5. S verifies that U ′ = Y rgs and (V ′Y−xrX−s)

γ
=W ′. Then, R sends γ to S.

6. S verifies that W = gγ, W ′ = Zyγ
b′ and outputs b̄ := b′.

The commitment is an ElGamal encryption (U,V ) of Zb with a self-made public
key X . The opening uses the homomorphic properties of the encryption to transform
(U,V ) into an encryption of Zy

b such that the following holds: if Zb′ were not the correct
decryption of (U,V ), then decrypting Zy

b′ would require to know y or zb′ (since Zy
b′ =

(gzb′ )y is equal to the “public” W ′ 1
γ ). The trick is that keys X and Y are declared in such

a way that the DHK0 assumption would make the corresponding secret-keys x and y
extractable by using input-aware equivocable techniques when given the appropriate
coins. Indeed, x would allow to extract b from the commitment and y would allow to
equivocate.

Theorem 9. Under the ag-CDH1
Gen, DDHGen, and ag-DHK0Gen assumptions, the pro-

tocol ΠGen above is an input-aware equivocable bit-commitment.
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Proof (space-constrained sketch). Since the polynomial-time bound and the correct-
ness are trivial, we only have to construct Extract and Equiv.

Sender Input-Awareness. Let S∗COM and S∗OPEN be some malicious commitment and
opening algorithms, respectively. We define two algorithms A and B as follows. The
algorithm B simulates the experiment S∗COM(rS)↔ RCOM(rR) up to the moment before
S∗COM receives X0, when B stops. Then, as per dictated by the ag-DHK0Gen game, B
sets ρ and state according to the experiment he just took part in. That is ρ would be as
generated in S∗COM(rS)↔ RCOM(rr) and state would be the current view of S∗COM with
its coins limited to its run so far, i.e., limited to a prefix rs of the whole set of coins rs

(rs := rs||rs). Then the output (X ,X ′) of S∗COM with input state, augmented with the mes-
sage X0 and the coins rs defines A(state,X0;rs). By the ag-DHK0Gen assumption, there
must exist some algorithm E(state,X0;rs) such that —except for negligible cases—
E(state,X0;rs) outputs x satisfying that X = gx, or RCOM rejects (X ,X ′).

Now, let rs = rs||rs be the coins in ViewS and state,X0,Z0,Z1 as above be in
ViewS. We now define Extract(ViewS) as follows. Let ρ := S∗COM(rS) and (X ,X ′) :=
S∗COM(X0;rS). Except in negligible cases, x = E(1λ,state,X0;rS) is such that X = gx. If
(U,V ) is valid, Extract can compute Z =VU−x and compare Z to Z0 and to Z1. If there
is no match, then we return ⊥. Otherwise, we return b as per the match Zb = Z. Note
that Pr[Z0 = Z1] is negligible, so there is a unique match.

Now, we need to show the soundness of this procedure, i.e., S∗OPEN cannot open to
something different from b = Extract(ViewS). For this, we show that S∗COM and S∗OPEN

could define an adversary for ag-CDH1
Gen. We will use a rewinding technique to define

this adversary. (Note that extraction is straight-line. It is only the adversary showing
that extraction is sound which is using rewinding.)

To define the adversary (using the created ρ) receiving A and B from outside, we
first simulate the experiment until we get β. Then, we rewind it but inject Y = A instead
of some Y with a known discrete logarithm. We can also compute Y ′ = Y β thanks to
getting β. Similarly, we flip a coin b̃ and inject Zb̃ = gzb̃ with zb̃ random and Z1−b̃ = B.
Clearly, β is bound to be unchanged. Since ViewS has a correct distribution, we can still
run b = Extract(ViewS) and x = E(1λ,state,X0,rS). If b �= b̃, this is bad luck and we
restart. Since S∗COM sees no information about b̃, bad luck happens with probability 1

2
and we do not have to restart too much until we are in the lucky b = b̃ case.

Then, the adversary continues to simulate the opening. If b′ = b, the adversary
aborts. Otherwise, the adversary must simulate some genuine (U ′,V ′). We know that
V = gzbUx. The regular receiver would send a random U ′ =Uygs and some V ′ = Y yXs

connected to U ′ with the relation V ′ = Y zb(U ′)x. So, the simulator could just pick U ′ at
random and compute V ′ =Y zb(U ′)x since he knows zb = zb̃ and x. He then obtains from
S∗OPEN some (W,W ′). With a genuine receiver sending s, we obtain γ such that

DH(A,B,W ) = DH(Y,Z1−b,g
γ) = Zyγ

1−b

So, to make the receiver accept, the (W,W ′) pair we must satisfy DH(A,B,W ) = W ′

even before providing s. Due to the ag-CDH1
Gen assumption, this happens with negli-

gible probability. So, in the genuine experiment, either the experiment aborts, or b′ =
Extract(ViewS), or W ′ �= DHK(Y,Z1−b′ ,W ), thus making ROPEN aborts.
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Receiver Self-Equivocability. Let R∗
COM and R∗

OPEN be some malicious commitment
and opening algorithms. We define two algorithms A and B as follows. The algorithm
B simulates the experiment SCOM(rS) ↔ R∗

COM(rR) until the moment before R∗
COM re-

ceives Y0 and then B stops. As before, B will produce his needed ρ as in the experiment
SCOM(rS)↔ R∗

COM(rR) and state as the current view of R∗
COM , limiting his coins rR to rR,

i.e., to those used so far, where rR := rR||rR. Then the output (Y,Y ′) of R∗
COM with input

state, augmented with the message Y0 and the coins rR defines A(state,Y0;rR). Due to
the ag-DHK0Gen assumption, there must exist some algorithm E such that, except for
negligible cases, E(state,Y0;rR) produces y satisfying Y = gy, or SCOM rejects (Y,Y ′).

We define all messages as in the SCOM(b;rS)↔ R∗
COM(rR) experiment from the view

ViewS. Note that running SCOM(b;rS) also defines ρ.
We define Equiv(b′,ViewR;r′S) by sending out b′, receiving U ′,V ′, computing y =

E(state,Y0;rR) constructed like above, computing Zy
b′ and producing the pair (W,W ′)

such that W ′ = DHK(Y,Zb′ ,W ), by W = gγ and W ′ =
(
Zy

b′
)γ

.
The view of R includes ρ, X ,X ′, Y0, U,V,β, b′, W,W ′, γ. In all cases, W,W ′,γ can

be simulated by R with the same distribution, as well as Y0,β. Since α is produced
by R, X ′ can be simulated as well. Finally, the view reduces to (ρ,X ,U,V,b′). Indeed,
distinguishing b = 0 from b = 1 with b′ random reduces to the semantic security of the
ElGamal cryptosystem. As proven in [5], this reduces to the Decisional Diffie-Hellman
(DDH) problem. 
�

3 UC-Secure (Input-Aware Equivocable) Commitment with a
“Mild” Setup

In Subsection 3.1, we introduce the UC functionality called Fatomic, which is needed as
UC setup for the UC-realization of our (IAEC) commitment. The actual UC-realization
of commitment is shown in Subsection 3.2; some discussions about this realization and
its relationships with existing lines of UC-realization of commitment are also included.

3.1 UC Setup Functionality for Atomic Exchanges

We will now present a UC functionality that models one exchange of messages between
two parties, one of which is in complete isolation; hence, the name atomic exchange.
The restriction to one exchange makes this functionality a specialization of the F�−isolate

of Damgård’s et al. [15]. Also, differently from [15], the functionality below draws
strictly upon the user on which the limited communication is enforced; in that sense,
in the functionality below, this user can update its algorithm sent to the functionality
several times before the actual computation is made.

The Fatomic Functionality of Atomic Exchanges. Let poly be a polynomial. Assume
two parties A and B that would like to have an atomic exchange, i.e., A would normally
send m to B and, without outside help, B would have to respond with m′. Mainly, this
lack of outside help and the one exchange are the core of the Fatomic functionality.

Request for Atomicity. The participant B sends a message (atomic,A,B,M) to Fatomic,
where M denotes description of the Turing machine4 run by B. The functionality Fatomic

4 We assume that this machine is deterministic.
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parses the message and stores (A,B,M). Any other tuple including the same (A,B) is
erased.5 A special case is where the participant B sends the message (atomic,A,B,⊥),
which counts for an abortion of the atomic session.

Challenge an Atomic Response. The participant A can send the command
(challenge,A,B,m) to Fatomic. In this case, the functionality verifies the existence of
a tuple (A,B,M). If the corresponding register is empty or if M = ⊥, then the function-
ality sends a reject message to A and to the ideal adversary. Otherwise, the machine
proceeds as follows. It runs M(m) for no more than poly(|m|) steps, finally storing the
result in m′. Then, it sends (challenge-issued,A,B,m) to B and (response,A,B,m′) to
A. The (A,B,M) tuple is then erased.

Again, this functionality models the fact that B does not communicate with another
participant in between receiving m and producing his response m′, that before “being
asked” to compute m in isolation the participant can update his machine and that this
computation/communication is supposed to capture one exchange only. As we said in
the introduction and in the related-work, this functionality is a specialization of the
F�−isolated in [15], where �= 0, the exchange is reduced to one message per each of the
two parties involved and where the machine of the “computing-party” can be updated
before the need for the computation is imminent. In that sense, one cannot say clearly
if our functionality is weaker or stronger than the F�−isolated functionality in [15].

Further, we note that this sort of setup is sufficient for bypassing a relay attack of the
sort that lead to the impossibility of UC-commitments in the plain model. In the same
time, especially for the cases where only two parties are involved (e.g., the aforemen-
tioned mutually independent commitments [24]), this sort of setup is suitable to bypass
the known malleability problems.

In practice, a possible way to implement such an atomic-exchange functionality is
given by distance-bounding protocols [6]. This is one of the actual methods imple-
mented to prevent relay attacks [18]. Namely, to achieve the atomic-exchange, the two
concerned parties can use –in an initial/certain part of the communication– a distance-
bounding protocol (or a slight modification of such a protocol, which still considers
the time-of-flight of the messages in accepting/rejecting them). I.e., the correct an-
swer could have been produced only and solely by the close-by partner, otherwise the
distance-bound would be broken.

To easily specify protocols using atomic exchanges, the (challenge,A,B,m) query
by A it simply denoted “atomic: m”. It is followed by the message answering M(m)
by B, due to an abuse of notation. This implicitly means that B must have committed M
to Fatomic before.

3.2 UC-realization of Commitment in the Fatomic-hybrid Model

It is easy to see that any input-aware equivocable commitment UC-realizes commitment
using F0-isolate: we just have to run S and R in isolation. Here, we strengthen the result
by relying on Fatomic only. The ΠGen protocol, presented in Fig. 1 also requires some
messages to be exchanged atomically, i.e., using the Fatomic functionality. This means

5 Note that –by the above– B can resend this command to Fatomic, possibly with a different
machine-description M.
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that if R wants S to compute X ,X ′ on his own based upon S’s view and the fresh receipt
of X0, then they establish an atomic exchange: S cooperates in this and sends (several)
(atomic,R,S,algo_of_S) to Fatomic, where algo_of_S computes (X ,X ′) from the (hard-
coded) partial view of S and the input X0. We consider only the last deposited algo_of_S.
Then, R sends (challenge,R,S,X0) to Fatomic, which will eventually send X0 to S and
X ,X ′ to R, with (X ,X ′) := algo_of_S(X0) with algo_of_S running up to poly(|X0|) in
time. The same goes for the Y0  → (Y,Y ′) atomic exchange.

We are now going to prove that the ΠGen protocol UC-realizes commitment.

Theorem 10. Under the ag-CDH1
Gen, DDHGen, and ag-DHK0Gen assumptions, in the

Fatomic-hybrid UC model in the presence of static, non-adaptive adversaries, the proto-
col ΠGen UC-realizes FCOM.

The proof is very similar to the one of Th. 9. We construct an ideal adversary I by
using the straight-line extraction of b (when the sender is corrupted) or the straight-line
equivocation (when the receiver is corrupted). In the first case, we use the extracted b
to commit to it. In the latter case, I simulates the commitment to a dummy bit b to
R∗

COM , then we use the equivocation once b′ is opened by the functionality to simulate
the opening to b′.

We note that the constructed I does not require rewinding. However, to prove that I
works well, we do rewind algorithms, but this is allowed. The (sketch of) proof is given
in Appendix B.

Discussions about the UC-realization of FCOM by ΠGen. We underline that, as per Fig. 1,
after the initialization phase, the two parties involved are in the position where they
share (amongst other things) the tuple (X ,Y ). This part can be separated and viewed
realizing itself a particular key-sharing functionality (call it G) in a Fatomic-hybrid UC
model. Then, the UC-realization in Th. 10 can be cast as follows: “in the G-hybrid
UC model in the presence of static, non-adaptive adversaries, the protocol Π′

Gen (i.e.,
ΠGen without its init phase exchanging X and Y ) UC-realizes FCOM (if the ag-DHK0Gen
assumption, the ag-DDHGen and the ag-CDH1

Gen assumption hold).”
The formulation above renders our result visibly closer to the result in [15]. Namely,

if a setup functionality restricting the communication is available, then this leads to
some key-establishment, which then leads to the UC-realization of commitment. How-
ever, the difference between our approach here and the one in [15] is that secret extrac-
tion is integrated based on input-awareness, and we do not need to run a multi-round
protocol in isolation: only an elementary challenge-response one. Finally, this indicates
that cryptography becomes UC-realizable in a natural way when participants are able
to have “close encounters” to exchange public-key material.

ZK is UC-realized in the FCOM-hybrid model [10] by mainstream ideas: by repeat-
ing t times, in parallel, Blum’s protocol for Hamiltonian-Cycles (HC) [4], where the
commitments of the provers are calls to FCOM . Thus, our one-time one-bit-commitment
can be used to UC realize ZK in the same complexity as the Canetti’s et al.

Damgård and Nielsen UC-realize a commitment UC-functionality called FHCOM [16],
for homomorphic commitment. This functionality is slightly different from the original
FMCOM ; there the difference stems from the increased efficiency sought and, most im-
portantly, from the way to achieve equivocability and extractability for the ideal adver-
sary I . In the introduction, we recalled the so-called UC-“mixed commitments” [16]
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by Damgård and Nielsen, which achieve their equivocability and extractability for the
ideal adversary I by basing their commitment on two, disjoint sets of keys: the E-keys
(for the perfectly hiding property and equivocability by I ), and on the X-keys (for the
perfectly binding property and extractability by I ). For the simulation to work, only
a part of the key (formed of E-keys [16], used for the perfectly hiding property and
equivocability by I ) is placed in the reference string. The Damgård and Nielsen com-
mitments are inherently based on non-erasure Σ-protocols and their security against
lunchtime opening [16], i.e., roughly, an adversary is unable to produce an arbitrary
opening for a commitment, even if he sees several fake commitments under E-keys
and can adaptively specify how these ones should be opened. One such commitment
protocol is based on the p-subgroup assumption [29] and another assumes hardness of
the decisional composite residuosity problem [30] used in Paillier’s cryptosystem. We
believe that our construction can be extended also exploiting the Paillier encryption, to
commit to more than one bit. Damgård and Nielsen [16] construct ZK efficiently using
their commitments on top of the SAT protocol which proves satisfiability of boolean
circuits.

Using our approach, we can further realize a PKI in a natural way. What we need
is to establish a link between each participant and a central authority, then UC-realize
key registration based on commitment using standard proof-of-knowledge techniques.
Based on the PKI, we can realize multiparty computation. Our technique also makes it
easier to realize 2-party computation is a light way.

4 Conclusions

In this paper, we formalized two special kinds of Diffie-Hellman assumptions, for-
malized an input-aware equivocable scheme and exhibits a protocol ΠGen that prov-
ably implements the scheme under the aforementioned assumptions. These objects and
proofs have been done along traditional lines, i.e., outside of a particular framework
like Canetti’s UC model.

We presented a UC (setup) functionality called Fatomic (which allows two parties to
have a short, “fully isolated” exchange of just one message each). We gave the neces-
sary proofs to show that a slight modification of our protocol ΠGen UC-realizes commit-
ments. This is possible without the need of a PKI, i.e., with the mere separation of an
initialization phase (using just 2 atomic exchanges) and allows the two parties involved
to establish two private, public key-pairs.

Finally, we also herein discussed the relevance and efficiency of our protocol, on a
stand-alone basis as well as a protocol realizing other primitives, e.g., ZK.
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A “Unconventional” Commitments: A Comparison

The notion of input-aware commitments (IAC) was studied before under the name of
extractable commitments [13]. This was carried mainly in the CRS model, in [27,13],
as part of zero-knowledge proofs. Unlike the scheme to follow, these commitments did
not contain an explicit notion of equivocability, in the standard lines, i.e., outside the
UC framework. Thus, we sometimes refer to them as IAC (input-aware commitments)
as opposed to IAEC (input-aware equivocable commitments).

Canetti et al. [9] applied known commitment-constructions from injective one-way
functions and from pseudorandom generators to get extractable commitments (i.e., IAC)
when the underlying primitives used are extractable. We dissociate ourselves from this
method and rely instead on hardness assumptions6.

In the above sense, we use a stronger knowledge guarantee, which brings us closer to
an (unpublished) result by Ventre and Visconti [32] in which they construct extractable
commitments (i.e., IAC) from plaintext-aware encryption schemes, using certain hard-
ness assumptions. However, our construction is not from PAW encryption directly, yet
it bears similar assumptions to such encryption schemes [14], but it is also equivocable,
i.e., it is an IAEC.

6 Extractable functions abstract away from specific e.g., number-theoretic assumptions like the
knowledge of exponents and are cast in a complexity-theoretic setting.
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Further, we mention that primitives similar to input-aware equivocable commitments
have been explored before by Damgård and Nielsen (i.e., mixed commitments) inside
the UC framework, UC-realizing an ideal functionality FHCOM of homomorphic com-
mitment [16] in the CRS-hybrid UC model. Here, the formalization is different, the
protocol more specific, the scheme is initially cast upon traditional lines. We only even-
tually show that we UC-realize the normal, ideal functionality of commitment, i.e., not
the homomorphic version, using not a CRS, but a different setup. Namely, we show that
our specialized commitment protocol is UC-realizable in the UC hybrid model with
the Fatomic setup. More precisely, we will show that the thus-wise realized protocol
UC-emulates the ideal functionality of commitment FCOM (not FHCOM ). The protocol
from Damgård and Nielsen [16] is sometimes extractable, sometimes equivocable, but
not both. This depends on what the simulator needs in UC-security. (See more techni-
cal details on page 134.) In the plain model, Damgård and Nielsen’s commitment is
therefore not extractable nor equivocable. This is essentially different from the protocol
advanced herein. Indeed, one of the ideas in this paper also lies in introducing new tech-
niques of extractability of the “real” committed bit by the ideal adversary. Our protocol
enjoys both extractability and equivocability, at the same time, even outside of the UC
framework.

When compared to constructions from Damgård et al. [15], one advantage of our
input-aware equivocable commitment is that it integrates the secret key extraction and
becomes feasible with Fatomic efficiently. (In [15], the entire prover protocol of a WI �-
PoK scheme must be run in isolation.)

Another notion to thwart relay attack in commitment protocols is the notion of mu-
tually independent commitments [24].

B Proof of Th. 10
Proof (sketch). Given a real-world adversary A in the UC model with atomic-exchange
setup, we construct a UC ideal adversary I as follows.

A. We first treat the case where only S is corrupted by A and it is denoted as S∗. I
simulates S∗, Fatomic and RCOM internally, and I lets S∗ interact with Z externally (so
that Z cannot distinguish I ’s run from the real-world experiment).

The simulation by I together with Z defines an algorithm B , which stops before
Fatomic receives X0 from RCOM (as per the games defining the DDH and DHK0 assump-
tions). The algorithm B defines ρ and state, the latter being the current view of S∗.
Like before, in state, we restrict to the coins rA that S∗ has used so far. Let the unused
coins by S∗ be denoted rA . The next step of the simulation defines from state the last
algorithm that S∗ would have sent to Fatomic such that A(state,X0;rA ) would produce
(X ,X ′), using solely on the view of A since in fact X ,X ′ should be the output m′ of
Fatomic. By the assumptions we use, we now have another algorithm E(state,X0;rA )
that yields x such that X = gx or RCOM aborts7. Thus, our constructed I can simply run
E(state,X0;rA ) by using the view of S∗. As I goes on in the simulation of RCOM , it can
extract the committed bit b from (U,V ) thanks to x and send this bit to FCOM . As in
Th. 9, we can show that the opening to 1− b would contradict the assumptions.

B. When R is corrupted by A , we denote it as R∗. The simulation works as follows.
I simulates R∗, Fatomic and SCOM(b0) (for an arbitrary bit b0) internally, and I lets R∗

7 If M aborts in real life, we assume it outputs a special value such that the protocol itself finishes.
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interact with Z externally (so that Z cannot distinguish I ’s run from the real-world
experiment).

The simulation by I together with Z defines an algorithm B , which runs until the
moment before Fatomic receives Y0 from SCOM and then B stops. As before, B will pro-
duce ρ and state as the current view of R∗, limiting his coins rA to rA , i.e., to those used
so far, where rA := rA ||rA . Then the output (Y,Y ′) of Fatomic (on the algorithm sent to it
by R∗) can be seen as the output of A with input state. Augmented with the message Y0

and the coins rA , it defines A(state,Y0;rA ). Due to the ag-DHK0Gen assumption, there
must exist some algorithm E such that, except for negligible cases, E(state,Y0;rA ) pro-
duces y satisfying Y = gy, or SCOM rejects (Y,Y ′). Note that as before, the pair (Y,Y ′) is
produced by using solely on the view of R∗ (since the message Y0 is tagged as atomic).
So, our constructed I can again simply run E(state,Y0;rA ). Then, the adversary I can
either simulate SOPEN (if b=b0) or, otherwise, simulate Equiv using y.

The argument of the indistinguishability between the two worlds (the real one
and the simulated one by I ) follows the exact same arguments as those in the proof
of Th. 9. 
�
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Abstract. Key escrow is a major drawback of identity-based encryption
(IBE). The key generation centre (KGC) can generate the user secret key
of any user by using the master secret key and the user’s identity. This
paper presents a systematic study of what it takes to prevent a malicious
KGC from decrypting a ciphertext encrypted for an honest user, which
covers the case for certificateless encryption, and shows the impossibility
of ideal escrow-free IBE, unless there is uncertainty in the user’s identity.

Our study also explains the underpinning idea of anonymous cipher-
text indistinguishability (ACI), formalized by Chow in PKC 2009. An
ACI-secure IBE prevent a KGC (or any logical entity which get holds of
the master secret key, such as the collusion of a number of authorities
holding the sufficient number of master secret’s shares) from decrypting
if it does not know the intended recipient of the ciphertext, a guarantee
that none of the existing attempts in the literature can provide.

The notion of ACI crucially relies on the privacy of user’s identity
in the eyes of the KGC. The only privacy leakage allowed in Chow’s
model is via querying an embedded-identity encryption oracle. In this
paper, we strengthen his model to allow arbitrary bounded leakage of
the recipient’s identity. We also give a generic construction on how to
achieve this notion when the identity has enough entropy.
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keys with their identities, from a trusted certificate authority. A certificate can
be used to verify that a public key belongs to an individual.

In 1984, Shamir [1] introduced the concept of identity-based cryptography. In
an identity-based cryptosystem, the user public key is the identity, which can
be the name of a person, an email address, the name of an organisation, etc.
Comparing with traditional public key cryptography, the advantage of identity-
based cryptography is to avoid the distribution of public key certificates. The
person who wants to encrypt a message or to verify a signature only needs to
know the identity of the other party.

In identity-based cryptography, the identity-based secret key is generated by
a trusted third party called key generation centre (KGC) who holds a master se-
cret key. In most identity-based signatures or encryption schemes, a high trust is
placed on the KGC. This condition is not appropriate in some real world scenar-
ios. A malicious KGC can sell users’ identity-based secret keys, sign messages or
decrypt ciphertexts on behalf of users without being confronted in a law court.
This is known as the key escrow problem.

1.1 Impossibility Result

Ideally, an identity-based encryption that is free from the escrow problem is one
such that a malicious KGC cannot decrypt any ciphertext when it is given the
ciphertext and its identity of its intended recipient. We call this IBE as the ideal
escrow-free IBE. By the original definition of IBE [2], an ideal escrow-free IBE
does not exist intuitively. However, to the best of the authors’ knowledge, there
is no formal proof that such a system does or does not exist. This paper gives
the impossibility result of an ideal escrow-free IBE.

We first formalize the notion for an ideal escrow-free IBE. Subsequently, we
provide a weak security model for ideal escrow-free IBE. Finally, we prove that
ideal escrow-free IBE is not secure even in a weak security model. Therefore it
is not possible to construct an ideal escrow-free IBE scheme secure in a model
which is stronger than our proposed model.

To circumvent this impossibility result, we need to look into the encryption
process or the key generation process. The inclusion of auxiliary information
for the encryption process is one possible approach, which matches with several
attempts in the literature. Cryptosystems such as certificateless cryptosystems
[3,4,5], certificate-based cryptosystems [6] and self-certified cryptosystems [7] are
proposed to solve the key-escrow problem. They can be viewed as a combina-
tion of public key cryptography and identity-based cryptography. Unfortunately,
these cryptosystems are no longer identity-based — the encryptor or the verifier
has to know the user public key in addition to the user identity.

1.2 Towards Escrow-Free Identity-Based Encryption

The second possibility to circumvent the impossibility result is to consider the
omission of information required for the identity-based secret key generation
process. Different from prior attempts to be reviewed in the next subsection,
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the security model of Anonymous Ciphertext Indistinguishability (ACI-KGC)
proposed by Chow in 2009 [8] aims to disallow any adversary with the master
secret key from decrypting the ciphertext. The guarantee provided by ACI is
that, without the knowledge of the challenge identity ID∗, the adversary is still
not able to distinguish the encrypted message.

An immediate concern is that the KGC in traditional identity-based cryp-
tosystem must need to know all users’ identity to perform its job. To address
this problem, Chow put forth an anonymous key-issuing architecture (with an
accompanying protocol for his proposed ACI-KGC secure IBE scheme) which
separates the tasks of authenticating the users and issuing the identity-based
secret keys to the users. Now, there is a certificate authority (known as identity-
certifying authority, or ICA [8]) who authenticates the user and issues a blinded
form of certificate. Subsequently, this blinded certificate can be presented to
the KGC to obtain an identity-based secret key, without the KGC learning the
identity involved.

Under the assumption that the KGC will not collude with the ICA, the normal
function of an identity-based cryptosystem is not affected even we do not want
the KGC to learn the users’ identities. However, partial information about the
target identity may still be known to the malicious KGC via other means. For
the case of using email address as the identity, the KGC may easily guess the
alias of “xxx@ie.cuhk.edu.hk” or “yyy@cs.hku.hk” as its target, given only the
second half of the identity.

Correspondingly, we introduce the identity leakage oracle which leaks about
the target identity, on top of the embedded-identity encryption oracle of existing
ACI-KGC notion. In the security game, the adversary can additionally query an
arbitrary function f and obtains f(ID∗), where f is reasonably restricted. It
models the case that the adversary may obtain partial information of the target
identity, other than the form of ciphertext provided by the encryption oracle.
In other words, we are consider the indistinguishability of partially anonymous
ciphertexts. Finally, we propose an efficient and generic construction built from
any normal ACI-KGC secure IBE scheme.

1.3 Related Solutions of the Key-Escrow Problem

Boneh and Franklin [2] proposed a threshold extension of identity-based encryp-
tion (IBE) scheme in which multiple KGCs jointly compute the master secret
key. No single KGC has the knowledge of the master secret key and hence users
are protected unless a large number of KGCs are corrupted. However, this ap-
proach requires extra communication cost between users and different KGCs.
Also note that the new privacy-preserving key-issuing architecture proposed by
Chow can be actually built on top of this threshold KGC structure.

Goyal [9] proposed a different approach for the identity-based secret key gen-
eration, which is done via the interaction between the KGC and the user. When
the key generation procedure is run twice, the outputs will be different with a
high probability. Therefore, the KGC can be caught when there exist two dif-
ferent identity-based secret keys for the same identity. Au et al. [10] further
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proposed an extension that the secret key of the KGC can even be extracted
when the user secret keys are generated honestly. However, it is possible for a
malicious KGC to create a working user secret key which is in a format differ-
ent from what produced by an honest execution of secret key generation [10].
There is also no measure preventing the KGC from selling a signed message /
decrypted ciphertext, without being detected. To address this issue, Goyal et
al. [11] proposed the black-box accountable-authority IBE to blame a malicious
KGC selling a decoder box which can decrypt a ciphertext with non-negligible
probability; Yuen et al. [12] proposed the escrow-free identity-based signature to
blame a malicious KGC selling a signed message.

Roadmap
In the next section, we provide the basic framework and security notions of IBE.
In §3, we present our definition of ideal escrow-free IBE. We demonstrate that
it is not possible to achieve ideal escrow-free IBE by showing an adversary that
can always win in a weak security model. In §4, we survey on what is the best
possible protection for users if such ideal escrow-free IBE is not achievable. In
§5, we demonstrate the gap between the ideal (but not instantiable) security
model and the existing models. We give a new security model and a generic
construction. Finally, §6 concludes the paper.

2 Backgrounds

We first review the security model of identity-based encryption in [2].

2.1 Identity-Based Encryption

An IBE scheme has four polynomial-time algorithms, namely Setup, Extract,
Enc, Dec.

– Setup: On input a security parameter 1λ, it generates a master public key
mpk (including the message spaceM, and the identity space I), and a master
secret key msk.

– Extract: On input mpk, msk and an identity ID, the KGC outputs the
identity-based secret key skID.

– Enc: On input mpk, ID and a message m, it outputs a ciphertext C.
– Dec: On input mpk, ID, skID and C, it outputs a message m or outputs ⊥

if the ciphertext is not valid.

2.2 Security Notions

Correctness. The correctness is defined as follows:

Dec(mpk, ID, skID,Enc(mpk, ID,m)) = m.

where skID is the output ofExtract(mpk,msk, ID), and (mpk,msk) ← Setup(1λ).
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Confidentiality. The common security model of IBE is the indistinguishabil-
ity against adaptive identity, adaptive chosen ciphertext attack (IND-ID-CCA)
security. An adversary A is given the master public key and the access to two
oracles: Extract Oracle and Dec Oracle. The adversary A picks two challenge
messages and a challenge identity. The challenger encrypts one of the messages
under the challenge identity. The adversary A has to distinguish which message
the challenger encrypted.

It is defined as the following game:

1. Setup. The challenger C runs (mpk,msk) ← Setup(1λ). The adversary A is
given mpk from the challenger C.

2. A is allowed to query the following oracles adaptively:
– Extract Oracle: On input an identity ID, the oracle returns skID ← Extract

(mpk,msk, ID).
– Dec Oracle: On input an identity ID and a ciphertext C, the oracle returns

m/⊥ ← Dec(mpk, ID, skID, C).
3. Challenge. A picks two messages of equal length m∗

0,m
∗
1 ∈ M and an identity

ID∗ ∈ I and sends them to C. C picks a random bit b ∈ {0, 1}. C computes
the challenge ciphertext C∗ ← Enc(mpk, ID∗,m∗

b) and send C∗ to A.
4. A is allowed to query the above oracles adaptively.
5. Output. Finally A outputs a bit b′.

We require that ID∗ has never been submitted to the Extract Oracle, and (ID∗, C∗)
has never been submitted to the Dec Oracle. A wins the game if b′ = b∗. We say
that the advantage of A is the probability of A winning minus half. We say that
an IBE is IND-ID-CCA secure if no polynomial time adversary wins the above
game with non-negligible advantage.

Weaker Security Models. There are a few security models proposed for IBE
which are weaker than the IND-ID-CCA security. If the adversary A is not
allowed to query the Dec Oracle, then the model is changed from the CCA
(chosen ciphertext attack) to CPA (chosen plaintext attack).

If the adversary A is required to give the challenge identity ID∗ at the Setup
phase of the game, then the model is changed from the adaptive identity (ID)
attack to selective identity (sID) attack.

3 Systematic Study of Ideal Escrow-Free IBE

In order to avoid the key escrow problem from a powerful KGC who knows all
public information, ciphertexts, identities and the master secret key, a user must
have a private sequence of random coin toss which is not known by the KGC.
Otherwise, the KGC can just play the role of the user and runs the Extract and
Dec algorithms completely by himself. We suppose the user computes a private
secret usk and an optional public auxiliary information upk from the random
coin toss in the UserSetup algorithm. We define an “ideal escrow-free IBE” as
an IBE scheme which a malicious KGC cannot decrypt any ciphertext even if
he knows the master secret key and the recipient identity.
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3.1 Ideal Escrow-Free IBE

An ideal escrow-free IBE scheme has five polynomial-time algorithms, namely
Setup, UserSetup, Extract, Enc, Dec.

– Setup: On input a security parameter 1λ, it generates a master secret key
msk and a master public key mpk (including the message space M, and the
identity space I).

– UserSetup: On input the master public key mpk, and (optionally) an iden-
tity ID, a user generates a secret usk and an (optional) public auxiliary
information upk. This algorithm is probabilistic, i.e., the user has his own
secret randomness.

– Extract: This is an efficient interactive protocol (Extractp,Extractu) be-
tween the KGC and the user. The common input are mpk, upk, and an
identity ID. The KGC’s algorithm Extractp has a private input which is
msk. Additionally, the KGC may use a sequence of random coin tosses as
private input.
At the end of the protocol, the user will receive an identity-based secret key
skID from the KGC. The user’s algorithm Extractu has a private output of
uskID, which is generated from usk and skID. The output can also be ⊥ if the
secret key that he receives is not valid.

– Enc: On input mpk, ID and a message m, it outputs a ciphertext C.
– Dec: On input mpk, ID, uskID, and C, it outputs a message m or outputs ⊥

if it is not valid.

Our current definition of ideal escrow-free IBE defines that the Enc algorithm
does not take upk as the input. Since upk is the public information which is only
determined after the user’s involvement, it would violates the concept of IBE if
the Enc algorithm takes upk as the input. As a result, we define the correctness
as follows:

Correctness.

Dec(mpk, ID, uskID,Enc(mpk, ID,m)) = m.

where uskID is the output of Extractu(mpk, upk, ID, usk) interacting with the
algorithm Extractp(mpk, upk, ID,msk), and (usk, upk) ← UserSetup(mpk, ID),
and (mpk, msk) ← Setup(1λ).

3.2 Security Notions

We define our “KGC one-wayness” (OW-KGC) security model where an adver-
sary A wants to decrypt a challenge ciphertext. A acts as the role of a malicious
KGC. In the security game, the adversary A is given the master public key, mas-
ter secret key and the auxiliary information of the challenger user. The challenger
C picks a challenge message and a challenge identity. The challenger encrypts
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the message under the challenge identity. The adversary A is given the cipher-
text and the challenge identity. A has to output the message that the challenger
encrypted. More formally, consider the following OW-KGC game:

1. Setup. The challenger C computes (mpk,msk) ← Setup(1λ) and (usk, upk) ←
UserSetup(mpk). A is given (mpk, msk, upk) from the challenger C.

2. Challenge. C picks a randommessagem∗ ∈ M and a random identity ID∗ ∈ I.
C computes the challenge ciphertext C∗ ← Enc(mpk, ID∗,m∗).

3. Output. A is given ID∗ and C∗. Finally A outputs a message m′.

A wins the game if m′ = m∗. We say that an ideal escrow-free IBE is OW-KGC
secure if no polynomial time adversary wins the above game with non-negligible
probability.

3.3 Comparison

Chow’s Definition. In Chow’s IBE framework [8], the Setup algorithm is
divided into two sub-algorithms. One is a trusted initialization algorithm which
takes into a security parameter and outputs some public parameters, such as the
elliptic curve and the bilinear map context to be used by the cryptosystem. The
master secret key and the master public key pair will be generated by another
algorithm which takes the public parameters as input. This separation is needed
for proving his IBE scheme to achieve ACI-KGC security.

The reason of defining our version of OW-KGC model is that we want to
show that a probabilistic polynomial time adversary A can always wins in this
model. Hence, we consider a weaker model where the adversary is given the
master secret key, instead of having the flexibility to generate the master secret
key by its own. Another difference from Chow’s OW-KGC notion [8] is that we
additionally equip A with upk.

Standard Users Attacks. We compare the above OW-KGC security with the
common security model of IBE. Except that the master secret key is given to the
adversary, the above OW-KGC game is a relatively weak model when compared
with the IND-ID-CCA model in §2.2:

– All parameters are chosen by the challenger, but not the adversary A.
– A is not given any oracle access.
– A has to output m∗ instead of distinguishing between two messages.

We compare the security models in Table 1. If we extended the existing mod-
els, e.g. the IND-ID-CPA model, from users attack to KGC attack, i.e., the
adversary is given the master secret key msk (in order to model the key escrow
problem), we can see that our OW-KGC model is the weakest model among
possible extension of existing models.
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Table 1. Different security models of IBE: we compare whether msk is given to the
adversary; what can the adversary or the challenger select in the game; which oracle
can the adversary access or what it can learn; and what does the adversary output

Models msk Adversary Challenger Adversary Output
selects selects knows/can access

IND-ID-CCA × m0,m1, ID
∗ mpk,msk in Setup Extract Oracle b′

in Challenge b∗ in Challenge Dec Oracle
IND-sID-CCA × ID∗ in Setup, m0, mpk,msk in Setup Extract Oracle b′

m1 in Challenge b∗ in Challenge Dec Oracle
IND-ID-CPA × m0,m1, ID

∗ mpk,msk in Setup Extract Oracle b′

in Challenge b∗ in Challenge
OW-KGC

√ × mpk,msk in Setup ID∗ m′

ID∗,m∗ in Challenge

3.4 Impossibility Result

Now, we are ready to show that all ideal escrow-free IBE schemes are not OW-
KGC secure. Therefore ideal escrow-free IBE is not secure in any security model
which are stronger than the OW-KGC security model, including the IND-ID-
CPA, IND-sID-CCA and IND-ID-CCA if the master secret key is given to the
adversary.

Theorem 1. All ideal escrow-free IBE schemes are not OW-KGC secure.

Proof. Recall our correctness definition,

Dec(mpk, ID∗, uskID∗ ,Enc(mpk, ID∗,m)) = m.

While uskID is supposed to be the private output of Extractu, recall that
Enc does not take upk as part of the input, any uskID which is the output of
Extractu(mpk, upk, ID, usk) interacting with Extractp(mpk, upk, ID,msk) should
satisfy the correctness of decryption for every possible (usk, upk) generated by
UserSetup. Therefore, the adversary A can just firstly run UserSetup, then
run both Extractu and Extractp by himself and get a working
uskID∗ . Hence, A always wins the OW-KGC game.

3.5 Exceptional Case

The above proof simply falls apart when Enc is allowed to take upk as part of
the input. For example, we let E be a public key encryption scheme and let pk be
a public key. The user sets the upk as (E , pk). During Enc, the “message” of the
ideal escrow-free IBE is the output of Epk(m), therefore a malicious KGC cannot
obtainm without the corresponding secret key of (E , pk). This covers the cases of
certificateless encryption[3,4,5] and certificate-based encryption [6]. For example,
some existing generic constructions of certificateless encryption carefully utilized
such a multi-encryption approach [13,5]. Unfortunately, encryption is no longer
identity-based.
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4 Alternative Methods to Protect the IBE Users

Apart from changing the framework of IBE, another possible approach is to
further restrict the adversary’s power in OW-KGC. Looking into the security
definition again, A is given mpk, msk, upk, ID∗ and C∗. Clearly, mpk and C∗

must be given to A. To model KGC attack, A should also be equipped with msk.
One may consider restricting the knowledge of msk, as in the leakage attack and
related key attack. The only other possibility we may hope for is withholding ID∗

(and upk) from the adversary’s knowledge. That leads to the notion of anony-
mous ciphertext indistinguishability [8].

4.1 Anonymous Ciphertext Indistinguishability

One may ask if the malicious KGC does not know the recipient identity, can
it distinguish the encrypted message? If the KGC cannot distinguish the en-
crypted message and the number of possible identities are exponential to the
security parameter, then the KGC cannot generate all identity-based secret keys
to decrypt it in polynomial time. Therefore, the encrypted message is protected
as long as the recipient identity is anonymous. Then, the ciphertext can be sent
by anonymous network like Tor to ensure the recipient anonymity in practice.

Chow [8] formalized the above idea by proposing a new security notion called
“anonymous ciphertext indistinguishability” against the KGC (ACI-KGC). It is
similar to the traditional IND-ID-CCA security that the adversary has to distin-
guish between two messages from the challenge ciphertext. In the definition of
ACI-KGC, the adversary is allowed to choose the master secret key, instead of
the challenge identity in the IND-ID-CCA. The challenge identity is unknown to
the adversary. Nevertheless, the adversary has accesses to an embedded-identity
oracle, which creates ciphertext for adversarially chosen message, for this un-
known identity.

4.2 Leakage-Resilient IBE

A possible attack to the IBE is the side-channel leakage of the master secret key
and the identity-based secret keys. Side-channel attacks are practical attacks on
the physical implementation of the cryptosystems. In the case of IBE, a honest
KGC may leak some (partial) information about the master secret key, by timing
attack, differential power analysis, cold boot attack, etc. Leakage-Resilient IBE
was proposed to provide certain degree of protection under side-channel attacks.

Lewko et al. [14] proposed the first leakage-resilient identity-based encryption
(LR-IBE) with master secret key leakage. In the security game, the adversary
is allowed to ask a leakage oracle with an arbitrary function f , and the oracle
outputs f(msk). In order to avoid trivial attacks, the length of overall leakage bits
are bounded (which is strictly less than the size of msk). They also proposed the
continual leakage model, such that periodic updates on the master secret key
is possible. Then the leakage bound only applies on the leakage size between
updates, and the overall leakage is unbounded throughout the lifetime of the
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Table 2. Different leakage models of IBE: we compare whether the msk is given to the
adversary; what can the adversary select in the game; what can the challenger select
in the game; which oracle can the adversary access or what it learns; and what does
the adversary output. For LR-IBE, some part of the msk is known to the adversary
by the leak oracle, but no polynomial time adversary should be able to calculate the
entire msk with non-negligible probability.

Models msk Adversary Challenger Adversary Output
selects selects knows/asks

OW-KGC
√ × mpk,msk in Setup ID∗ m′

ID∗,m∗ in Challenge

ACI-KGC
√

m0,m1 mpk,msk in Setup Enc Oracle b′

in Challenge b∗, ID∗ in Challenge

LR-IBE ? m0,m1, ID
∗ mpk,msk in Setup Leak Oracle f(msk), b′

in Challenge b∗ in Challenge Extract, Update Oracle

RKA-IBE × m0,m1, ID
∗ mpk,msk in Setup Extract Oracle, b′

in Challenge b∗ in Challenge Extract(mpk, ID, φ(msk))

system. The adversary may even obtain the leakage of the randomness used in
the update process.1

Yuen et al. [15] further proposed the LR-IBE with auxiliary input model. It
means that the adversary can obtain the leakage f(msk) as long as f is an hard-
to-invert function. Therefore, even if the leakage f is a one-way permutation,
which information-theoretically leaks the entire entropy of the msk, the IBE
scheme remains secure. They also extends the model to continual auxiliary in-
put, such that the “hard-to-invert” restriction only applies between the periodic
updates of the msk.

4.3 Related-Key-Attack-Secure IBE

Another possible attack on the KGC is fault injection [16,17]. It can induce
modifications in a hardware-stored key, such that the KGC may run the normal
key extraction protocols with modified keys. The Φ-related-key attack (RKA)
model was proposed to offer protection against these malicious modification. In
this model, the adversary is allowed to ask the Extract Oracle with input ID and a
function φ. The oracle outputs Extract(mpk, ID, φ(msk)). All functions φ must
belong to a set of pre-defined function Φ. The adversary is not allowed to ask
the oracle with input ID = ID∗ and φ is the identity map.

Bellare et al. [18] proposed a method to convert some IBE schemes into RKA-
secure IBE schemes, including the Boneh-Franklin IBE and the Waters IBE. The
set of functions Φ is the Affine space and the set of polynomials respectively.

1 Note that the above statements also holds for the identity-based secret keys in
leakage-resilient IBE. Since we now only interested in the leakage of msk, we ig-
nore the discussion about the leakage of identity-based secret keys.
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5 Partially-Anonymous Ciphertext Indistinguishability

From the result of previous section, we showed that OW-KGC secure IBE is
impossible to construct. The LR-IBE and RKA-IBE notions only consider the
case that adversary is attacking a honest KGC instead of being a malicious
KGC by itself. The only notion which considers active and malicious KGC is the
ACI-KGC security. We investigate if there exists a reasonable security model
which is in the spirit of ACI-KGC, and yet allows achievable construction unlike
OW-KGC.

5.1 Generalized ACI-KGC Model

We consider the assumption underlying ACI-KGC model a bit too strong in
the sense that the challenge identity is completely unknown to the KGC. For
example, the KGC is responsible to generate identity-based secret keys to users
having identities as their email address. If the malicious KGC is interested in
stealing some research results or grant proposals from a university, it will try
to decrypt ciphertext using identities like “zzz@uni.edu”. Therefore, the partial
identity information, like the last part of the email address may be known or
easily guessed by the KGC. In this case, the ciphertext can at most be partially
anonymous.

We propose the new notion of identity leakage with the existing ACI-KGC
model. Like the leakage-resilient IBE, the adversary is allowed to obtain a leak-
age of the challenge identity. For simplicity, we consider bounded leakage in
this model. Even the adversary can obtain partial information about this chal-
lenge identity, it cannot win the ACI-KGC security game. We give the formal
construction as follows:

1. Setup. The challenger C computes (mpk,msk) ← Setup(1λ) and picks a
random identity ID∗ ∈ I. A is given (mpk, msk) from the challenger C.

2. Oracle. A is allowed to ask:

(a) Enc Oracle: On input a message m, the oracle returns C ← Enc(mpk,
ID∗,m).

(b) LeakID Oracle: On input f , the oracle returns f(ID∗).

3. Challenge. A sends two messages m∗
0,m

∗
1 ∈ M to C. C picks a random bit b

and returns the challenge ciphertext C∗ ← Enc(mpk, ID∗,m∗
b) to A.

4. Output. Finally A outputs a bit b′.

A wins the game if b′ = b and the size of Leak Oracle output |f(ID∗)| is less
than some parameter �. The advantage of A is

AdvA(λ, �) = |Pr[A wins]− 1/2|.

We say that an IBE is �-identity-leakage secure against ACI-KGC attack if
for all polynomial time adversary A it is true that AdvA(λ, �) ≤ negl(λ).
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Selective Security. We also propose a weaker variant of the selective security
model such that the adversary must submit the set of possible LeakID Oracle
query before the Setup phase. We call this �-identity-leakage selective security
against ACI-KGC attack.

5.2 Construction

We propose a generic construction which can convert an ACI-KGC secure IBE
to additionally allow identity-leakage. Suppose (Setup,Extract,Enc,Dec) is
an ACI-KGC and IND-ID-CPA secure IBE with identity space as a cyclic group
G with prime order p. We give a new IBE scheme as:

– Setup’: On input 1λ, the KGC runs (mpk,msk) ← Setup(1λ) and picks a
random n group elements h1, h2, . . . , hn ∈ G. The master public key mpk′ =
(mpk, h1, . . ., hn) and the master secret key msk′ = msk. The new identity
space is Zn

p
2.

– Extract’: On input (mpk′,msk′) and an identity ID = (I1, . . . , In) ∈ Zn
p , the

KGC computes Y =
∏n

i=1 h
Ii
i and outputs skID ← Extract(mpk,msk, Y ).

– Enc’: On input mpk′, ID and a message m, it computes Y =
∏n

i=1 h
Ii
i and

outputs C ← Enc(mpk, Y,m).

– Dec’: On input mpk′, skID and a ciphertext C, it outputs m ← Dec(mpk,
skID, C).

A possible instantiation is the Boneh-Franklin IBE [2], in which the identity
space is an arbitrary string. This scheme is also proven to be ACI-KGC secure
in Chow’s PhD thesis [19].

Theorem 2. Our scheme is �-identity-leakage selective secure against ACI-KGC
attack if (n−1) log p− � = ω(logλ) and the underlying IBE scheme is ACI-KGC
secure.

Proof. We prove the security of our scheme by the transition between two secu-
rity games:

– Game 0: It is the same as the �-identity-leakage ACI-KGC security game.

– Game 1: It is the same as Game 0, except the Enc Oracle output and the
challenge ciphertext is encrypted under the same identity uniformly chosen
from random, and is independent to the identity leaked in LeakID Oracle.

We first show that no probabilistic polynomial time adversary can distinguish
between the two games. We use the following simplified lemma based on Lemma
B.7 in [20], while considering a single row vector only, instead of a matrix in [20].

2 Note that the identity space is larger than a typical one of a traditional IBE.
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Lemma 1. Let the integer n be polynomial in the security parameter λ. Let
Leak : {0, 1}∗ → {0, 1}� be an arbitrary function with �-bit output. For randomly
sampled A,V ∈ Zn

p and U ∈ Zp, the statistical distance between:

(Leak(A),V , 〈A,V 〉), (Leak(A),V , U),

is negligible as long as (n− 1) log p− � = ω(logλ).

Consider the simulator B is given the selective LeakID Oracle query f (which
can be composed of all leak function input) by the adversary A. B obtains
f(A),V and T which is either 〈A,V 〉 or a random element U in Zp.

Denote V = (v1, . . . , vn). B picks a generator g ∈ G and sets hi = gvi for
i ∈ [1, n] in thempk. When the LeakID Oracle is asked,B answers it by using f(A).

B computes Enc(mpk, gT , ·) to answer the Enc Oracle and to calculate the
challenge ciphertext. If T is the inner product 〈A,V 〉, then B simulates the
Game 0. Otherwise, B simulates the Game 1 since gU corresponds to some random
challenge identity I∗ which is unknown to B. As long as (n−1) log p−� = ω(logλ),
no probabilistic polynomial time adversary can distinguish between these two
games.

Lemma 2. The advantage of A in the Game 1 is negligible if the underlying
IBE scheme is ACI-KGC secure.

Proof. The simulator B is given mpk′ from the challenger of the underlying IBE
scheme. B randomly picks h1, . . . hn ∈ G and returns mpk = (mpk′, h1, . . . , hn)
to the adversary A. B randomly picks ID∗ ∈ Zn

p . For all Enc Oracle queries, B
forwardsA’s query to its challenger and forwards the answer to A. For all LeakID
Oracle queries, B can answer it using ID∗.

In the challenge phase, A submits two messages m∗
0 and m∗

1. B sends them to
its challenger and obtains a challenge ciphertext C∗. B returns C∗ to A. Note
that C∗ is independent of ID∗. Finally, B uses the answer from A to reply to
its challenger. If A has non-negligible advantage in Game 1, then B breaks the
ACI-KGC security of the underlying IBE. 
�
Theorem 3. Our scheme is IND-ID-CPA secure if the underlying IBE scheme
is IND-ID-CPA and the discrete logarithm assumption holds in G.

Proof. Suppose the discrete logarithm of g1 ∈ G to the base g2 ∈ G is hard. The
simulator B is given mpk′ from the challenger of the underlying IBE scheme.
B randomly picks αi, βi ∈ Zp for i ∈ [1, n]. B sets hi = gαi

1 gβi

2 . B returns
mpk = (mpk′, h1, . . . , hn) to the adversary A.

For all Extract Oracle queries, B forwards A’s query to its challenger and
forwards the answer to A. Observe that if A can query two different identities

ID1 = (I1, . . . , In) and ID2 = (I ′1, . . . , I
′
n) such that Y =

∏n
i=1 h

Ii
i =

∏n
i=1 h

I′
i

i ,
then B can solve the discrete logarithm as follows. Note that

n∏
i=1

(gαi
1 gβi

2 )Ii =

n∏
i=1

(gαi
1 gβi

2 )I
′
i

⇒g
∑n

i=1 αi(Ii−I′
i)

1 = g
∑n

i=1 βi(I
′
i−Ii)

2
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Since Ii �= I ′i for some i ∈ [1, n], the discrete logarithm of g1 and g2 can be
computed.

In the challenge phase, A submits two messages m∗
0 and m∗

1 and a challenge
identity ID∗. B sends them to its challenger and obtains a challenge cipher-
text C∗. B returns C∗ to A. Finally, B uses the answer from A to reply to its
challenger. If A has non-negligible advantage, then B breaks the IND-ID-CPA
security of the underlying IBE.

6 Conclusion

In this paper, we presented the model for an ideal escrow-free identity-based
encryption. We defined a weak security model OW-KGC. If we model the key-
escrow problem as “giving the master secret key to the adversary”, then we can
extend the existing IBE security models easily. These extended IBE models are
all stronger than our OW-KGC model.

Subsequently, we demonstrated that all IBE schemes are insecure in this weak
model. Therefore, we conclude that an ideal escrow-free IBE scheme is insecure
in any model that is stronger than the OW-KGC model.

After that, we review the existing alternative methods to provide protection
against malicious KGC or honest KGC under attacks. We identify a gap between
the existing ACI-KGC model and the ideal escrow-free IBE model.

Finally, we formalize the identity-leakage model for ACI-KGC and give an
efficient and generic construction. However, this construction can only achieve
selective-leakage security. It is easy to come up with a leakage-query after seeing
the master public key which will render the scheme totally insecure. Moreover, it
requires the identity to have enough entropy. Indeed, if the identity has enough
entropy, one may consider a slightly more secure model in which the user secret
key is also given to the adversary, since we can extract the entropy from the
identity to perform another layer of encryption. We left the construction in the
full security model as an interesting open problem.
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Abstract. Proxy signature, which allows an original signer to delegate
his/her signing right to another party (or proxy signer), is very useful in
many applications. Conventional proxy signature only allows the original
signer to specify in the warrant the validity time period of the delegation
but not the number of proxy signatures the proxy signer can generate.
To address this problem, in this paper, we provide a formal treatment for
k-time proxy signature. Such a scheme allows a designated proxy signer
to produce only a fixed number of proxy signatures on behalf of the
original signer. We provide the formal definitions and adversary models
for k-time proxy signature, and propose an efficient construction which
is provably secure against different types of adversaries.

Keywords: proxy signature, restricted delegation, secret sharing.

1 Introduction

Proxy signature is a special type of digital signature, and is very useful in many
real-world applications. In a proxy signature scheme, an original signer (or dele-
gator) can delegate his/her signing right to a proxy signer. Thereafter, the proxy
signer can sign documents on behalf of the original signer.

The first proxy signature scheme was proposed by Mambo, Usuda and
Okamoto in 1996 [14]. In their work they classified proxy signatures into three
main categories, namely full delegation, partial delegation, and delegation by
warrant. Partial delegation proxy signature schemes can be further divided into
proxy-protected and proxy-unprotected schemes according to whether a verifier
can decide the proxy signature is generated by a proxy signer or the original
signer. Shortly after that, Kim et al. [10] proposed a new type of proxy signa-
ture combining partial delegation and warrant. They further showed that such
a combination can provide a higher level of security. Since then many proxy
signature schemes based on partial delegation and warrant have been proposed
(e.g., [12,24,20,23,25]).

Many extensions on proxy signature have also been proposed according to
different application needs, such as threshold proxy signature [28,26,13], blind
proxy signature [27,4,2], one-time proxy signature [15,21], ring proxy signature
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[22,1,7], and so on. Threshold proxy signature, also known as multi-proxy sig-
nature, enables an original signer to delegate his signing right to multiple proxy
signers. The proxy signers need to work together in order to produce a valid
proxy signature on behalf of the original signer. One-time proxy signature puts
strict restrictions on the signing capability of a proxy signer, who is only allowed
to generate one valid proxy signature on behalf of the original signer. Blind proxy
signature allows a user to obtain a valid signature on a message in a way that
the proxy signer learns neither the message nor the resulting signature, and ring
proxy signature allows a proxy signer to hide his/her identity among a group of
possible signers.

Proxy signature and its extended variants have been found very useful in many
practical applications, such as distributed systems [16], grid computing [6], and
mobile agent applications [12]. However, one of the key issues in proxy signature
is to ensure that a proxy signer will not misuse the signing right obtained from
an original signer. In the seminal work by Mambo et al. [14], a validity period is
specified in a warrant in order to restrict the signing capability of a proxy signer.
This approach has been used in almost all the following works on proxy signature.
However, if the proxy signer is malicious, even in a very short time, the malicious
proxy signer can still produce as many proxy signatures as he/she wishes. To
address this problem, in this paper, we provide a formal and comprehensive
treatment for k-time proxy signature where the proxy signer can only generate
a fixed number of proxy signatures on behalf of the original signer.

There have been a number of works (e.g., [3,9,18,11]) on restricting the signing
capability of a signer in normal digital signature schemes. In [9], Hwang et al.
proposed a multiple-time digital signature scheme, which gives an upper bound
on the number of signatures a signer can produce. Shortly after that, Pieprzyk
et al. [18] proposed a more general multiple-time signature scheme based on one-
way functions and cover-free families. Kim et al. [11] then extended multiple-time
signature to a new primitive named metered signature, which allows a signer to
produce a fixed number of signatures in a designated time period.

However, a formal and complete treatment for multi-time (or k-time) proxy
signature is still missing. In [15], Mehta and Harn proposed a one-time proxy
signature scheme, which is less useful than a more general k-time proxy signature
scheme. There is a multi-time proxy signature scheme presented in [5], however,
no formal security model or proof has been provided. In [8], Hong and Chen
presented a multiple-time proxy signature scheme based on a binary hash tree.
However, their security analysis is incomplete since it does not cover all the
possible attacks against a multiple-time proxy signature scheme.

In this paper, we provide a formal and complete treatment for multi-time
(or k-time) proxy signature schemes. We first provide a formal security model
for such schemes. In our model, we will consider three types of adversaries,
namely outsiders, proxy signer, and original signer. Our model aims to capture
the exact security goal of a k-time proxy signature scheme, that is only a proxy
signer, who has been delegated the signing right from an original signer, can
produce at most k valid proxy signatures. We then propose a new k-time proxy
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signature scheme based on the Schnorr signature scheme and verifiable secret
sharing. In our scheme, the original signer can specify in the warrant the number
of proxy signatures a proxy signer can produce. If the proxy signer produces
more than predetermined number of proxy signatures, his/her private key can
be computed by the public. That means the original signer does not need to
monitor the behavior of the proxy signer. It is worth noting that such a feature
is not supported in Hong and Chen’s scheme [8]. In their scheme, the proxy
signer’s private key can only be computed by the original signer rather than by
any third party verifier when the proxy signer misbehaves.

Paper Outline. The rest of the paper is organized as follows. We introduce the
definition of k-time proxy signature in Section 2. A formal security model for
k-time proxy signature is presented in Section 3. We then give our new proxy
signature scheme in Section 4 and prove its security in Section 5. The paper is
concluded in Section 6.

2 k-time Proxy Signature

A k-time (or multi-time) proxy signature scheme consists of a tuple of algorithms
(ST ,KG,DSK PKG,PS,PV,R):

– Setup–(ST ): This algorithm takes 1κ as input where κ is a security parameter
and returns the public parameters params.

– KeyGen–(KG): The Key Generation algorithm takes params as input and
outputs a user key pair (pk, sk).

– DskGen–(DKG): This algorithm takes (sko, pko, pkp,mw) as input and out-
puts a delegation key dsk. Here mw denotes a warrant which specifies the
predetermined number of proxy signatures that can be generated by the
proxy signer.

– PskGen–(PKG): This algorithm takes dsk and skp as input and outputs a
proxy signing key psk.

– ProSig–(PS): The proxy signing algorithm takes the proxy signing key psk
and a message m in the message space M as input, and outputs a proxy
signature σ.

– ProVer–(PV): The proxy signature verification algorithm takes the public
keys pko and pkp, a warrant mw, a message m, and a proxy signature σ as
input, and outputs either 1 or 0.

– Reveal–(R): Given pko, pkp, a warrant mw, and k+ 1 different message and
proxy signature pairs, where k is the number specified in the warrant mw,
this algorithm either outputs a private key skp of the proxy signer or a special
symbol ‘⊥’.

Correctness. We require that for any message space M ⊆ {0, 1}∗ and
any security parameter κ ∈ N, if params ← ST (1κ), (sko, pko) ←
KG(params), (skp, pkp) ← KG(params), dsk ← DKG(sko, pko, pkp,mw), psk ←
PKG(dsk, skp), then

PV(pko, pkp,mw,m,PS(psk,m)) = 1.
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3 Security Model

In a k-time proxy signature scheme, the security consideration is different from
that for the traditional proxy signature [25] or k-time signature [9]. According
to the definition, the security of a k-time proxy signature should be defined in
three aspects, which are summarized below.

1. Type I: the Type I attacker AI (an outsider) possesses the public keys of the
original signer and the proxy signer, and tries to forge a proxy signature.

2. Type II: the Type II attacker AII (proxy signer) possesses the public keys
of the original signer and the proxy signer. In addition, he also possesses the
private key skp. We can further divide AII into AII1 and AII2. AII1 tries to
forge a valid proxy signature without obtaining delegation from the original
signer, and AII2 has a valid delegation from the original signer and tries to
produce more than predetermined number of proxy signatures.

3. Type III: the Type III attackerAIII (the original signer) possesses the public
keys of the original signer and the proxy signer. In addition, he has the private
key sko of the original signer. AIII tries to forge a valid proxy signature
without knowing the private key skp of the proxy signer.

It is obvious that if a k-time proxy signature scheme is secure against AII

and AIII , it is also secure against AI . So we will only focus on the adversarial
models with regards to AII and AIII in the rest of this paper.

Before we formally define each adversarial model, we first introduce two types
of queries that may appear in the models:

– Delegation query: A can query the delegation oracle ODKG(sko, pko, pkp, ·)
with any warrant mw. The corresponding delegation key dsk is then gener-
ated and returned to A.

– Proxy signing query: A can query the proxy signing oracle OPS(psk, ·) with
any message m of his choice. A valid proxy signature on m is generated and
returned to A.

3.1 Type II1 Adversary

We define the adversarial game between a Type II1 adversary AII1 and an
simulator S as follows:

– Setup: The Simulator S runs ST to generate public parameters params.

– KeyGen The Simulator S runs KG to generate the key pairs of the original
signer (sko, pko) and a proxy signer (skp, pkp). S sends pko, pkp and skp to
the adversary AII1.

– Delegation queries: AII1 chooses any warrant mw of his/her choice and
queries the delegation oracle ODKG. S generates the delegation key dsk ←
DKG(sko, pko, pkp,mw) and returns dsk to AII1.
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– Proxy signing queries: AII1 chooses a warrant mw and a message m,
and queries the proxy signing oracle OPS . If mw has appeared in a Delega-
tion Query, a special symbol ‘⊥’ is returned to A. Otherwise, S generates
dsk ← DKG(sko, pko, pkp,mw), psk ← PKG(dsk, skp), σ ← PS(psk,m),
and returns σ to AII1.

– Finally, AII1 outputs (m∗
w,m

∗, σ∗). We say AII1 wins the game if

• PV(pko, pkp,m∗
w,m

∗, σ∗) = 1;

• AII1 did not make a query to ODKG on m∗
w;

• AII1 did not make a query to OPS on (m∗
w,m

∗).

Define the advantage of a Type II1 adversary as

Advcwcma
AII1

(κ) = Pr[AII1 Wins the game].

Definition 1. We say a k-time proxy signature scheme is secure against the
Type II1 chosen warrant and chosen message attacks if for any probabilistic
polynomial time AII1, Adv

cwcma
AII1

(κ) is negligible in κ.

3.2 Type II2 Adversary

We define the adversarial game between a Type II2 adversary AII2 and an
simulator S as follows:

– Setup: The Simulator S runs ST to generate public parameters params.

– KeyGen The Simulator S runs KG to generate the key pairs of an original
signer (sko, pko) and a proxy signer (skp, pkp). S sends pko, pkp and skp to
the adversary AII2.

– Delegation queries: AII2 chooses any warrant mw of his/her choice and
queries the delegation oracle ODKG. S generates the delegation key dsk ←
DKG(sko, pko, pkp,mw) and returns dsk to AII2.

– Finally, AII2 outputs a warrant mw which contains a predetermined number
k, and k+1 message-signature pairs (mi, σi) (1 ≤ i ≤ k+1) where mi �= mj

for i �= j. We say AII2 wins the game if

• PV(pko, pkp,mw,mi, σi) = 1 for all i ∈ [1, k + 1];

• R(pko, pkp,mw, (m1, σ1), · · · , (mk+1, σk+1)) = ⊥.

Define the advantage of a Type II2 adversary as

Advcwa
AII2

(κ) = Pr[AII2 Wins the game].

Definition 2. We say a k-time proxy signature scheme is secure against the
Type II2 chosen warrant attacks if for any probabilistic polynomial time AII2,
Advcwa

AII2
(κ) is negligible in κ.
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3.3 Type III Adversary

The adversarial game between a Type III adversary AIII and an simulator S is
defined as follows:

– Setup: The Simulator S runs S to generate public parameters params and
gives params to the adversary.

– KeyGen The Simulator S runs KG to generate the key pairs of the original
signer (sko, pko) and a proxy signer (skp, pkp). S sends sko, pko and pkp to
the adversary AIII .

– Proxy signing queries: AIII queries the proxy signing oracle OPS by
providing a warrant mw generated according to the scheme, a valid delega-
tion key dsk for mw, and a message m. S generates psk ← PKG(dsk, skp),
σ ← PS(psk,m), and returns σ to AIII .

– Finally, AIII outputs (m∗
w,m

∗, σ∗). We say AIII wins the game if
• PV(pko, pkp,m∗

w,m
∗, σ∗) = 1;

• For any warrant mw with a predetermined number k, AIII makes at
most k proxy signing queries;

• AIII did not make a query to OPS on (m∗
w,m

∗).

Define the advantage of a Type III adversary as

Advcma
AIII

(κ) = Pr[AIII Wins the game].

Definition 3. We say a k-time proxy signature scheme is secure against the
Type III chosen message attacks if for any probabilistic polynomial time AIII ,
Advcma

AIII
(κ) is negligible in κ.

4 A New k-time Proxy Signature Scheme

In this section, we present a new k-time proxy signature scheme based on the
Discrete Logarithm Problem and secret sharing.

Discrete Logarithm Problem (DLP): Let G denote a group of prime order
q, and g a generator of G. Given a random element y ∈ G, compute x ∈ Zq such
that y = gx.

Our k-time proxy signature scheme works as follows:

1. ST : given a security parameter κ ∈ N, generate the parameters params =
(G, g, q) such that |q| = κ and a hash function H : {0, 1}∗ → Zq.

2. KG: randomly choose x ∈ Zq and compute y = gx. Output (sk, pk) = (x, y).
3. DKG: given a warrant mw = (k,B = {b1, b2, · · · , bk})1, where k is a number

selected by the original signer and bi = gai (1 ≤ i ≤ k) are generated by
the proxy signer and sent to the original singer via a secure channel, the
original signer first chooses a random number ko ∈ Zq, and then computes
Ko = gko , σo = sko · h(mw‖Ko) + ko mod q. The original signer then sets
dsk = (Ko, σo) as the delegation key for mw.

1 It is worth noting that we can put additional information, such as the validity time
period and the type of message the proxy signer is allowed to sign, in the warrant.
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4. PKG: given a delegation key dsk = (Ko, σo) for a warrant mw, the proxy
signer computes Sp = σo + skp mod q and outputs the proxy signing key
psk = (Ko, Sp, skp).

5. PS: given a message m to be signed, and a proxy signing key psk =
(Ko, Sp, skp), the proxy signer chooses a random number kp ∈ Zq, and com-
putes Kp = gkp and σp = Sp · h(h(mw‖Ko)‖m‖Kp) + kp mod q. The proxy
signer also computes f(ω) = skp + a1ω + a2ω

2 + ... + akω
k mod q where

ω = h(mw,m, σp). The proxy signature is σ = (Ko,Kp, σp, f(ω)).
6. PV: given public keys pko and pkp, a warrantmw = (k,B = {b1, b2, · · · , bk}),

a messagem and a proxy signature σ = (Ko,Kp, σp, f(ω)), the verifier checks
if the following equation holds

– gσp = Kp · (pkp ·Ko · pkh(mw‖Ko)
o )h(h(mw‖Ko)‖m‖Kp);

– gf(ω) = pkp · bω1 · bω2

2 · · · bωk

k .
If both equations hold, output 1; otherwise, output 0.

7. R: given pko, pkp,mw = (k,B = {b1, b2, · · · , bk}), and k + 1 message signa-
ture pairs (mi, σi), solve the following equations

f(ω1) = skp + a1ω1 + a2ω
2
1 + ...+ akω

k
1

f(ω2) = skp + a1ω2 + a2ω
2
2 + ...+ akω

k
2

· · ·
f(ωk+1) = skp + a1ωk+1 + a2ω

2
k+1 + ...+ akω

k
k+1

for variables (skp, a1, · · · , ak). If a solution is found, output skp, otherwise,
output ‘⊥’.

The correctness of the scheme can be verified as follows

gσp = gSp·h(h(mw‖Ko)‖m‖Kp)+kp

= (gσo+skp)h(h(mw‖Ko)‖m‖Kp) · gkp

= (gsko·h(mw‖Ko)+ko · gskp)h(h(mw‖Ko)‖m‖Kp) ·Kp

= (pkh(mw‖Ko)
o ·Ko · pkp)h(h(mw‖Ko)‖m‖Kp) ·Kp

gf(ω) = gskp+a1ω+a2ω
2+...+akω

k

= pkp · (ga1)ω · (ga2)ω
2 · · · (gak)ω

k

= pkp · bω1 · bω2

2 · · · bωk

k

5 Security Analysis

In this section we analyse the security of the above k-time proxy signature scheme
against AII and AIII adversaries.

Theorem 1. The proposed k-time proxy signature scheme is secure against the
Type II1 chosen warrant and chosen message attacks if the Discrete Logarithm
Problem is hard.
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Proof. The proof is by contradiction. Given an adversary AII1 that can win the
Type II1 game, we construct another algorithm B that can solve the DLP.

Given (g, y∗ = gx
∗
) for some unknown x∗ ∈ Zq, B simulates the Type II1

game for AII1 as follows. B sets the original signer’s public key as pko = y∗

and maintains a H-table to record all the hash queries and the corresponding
answers.

Hash Queries: For each hash query with an input message msg, B first checks
the H-table:

– If there exists an item (msg, h) in the H-table,where msg refers to the mes-
sages queried before, B returns h as the answer to AII1.

– Otherwise, B chooses a random h ∈ Zq, sends h to AII1 as the answer for
the hash query, and adds (msg, h) into the H-table.

Delegation Queries: When AII1 makes a delegation query on a warrantmw =
(k,B = (b1, b2, · · · , bk)), B answers the query as follows.

– Choose randomly ho, σo ∈ Zq, computeKo = gσo/pkho
o , and set h(mw‖Ko) =

ho by adding (mw‖Ko, ho) into the H-table.
– Return (Ko, σo) as the delegation key to AII1.

Proxy Signing Queries:When AII1 makes a proxy signing query on a warrant
mw = (k,B = (b1, b2, · · · , bk)), and a message m, B responds the query as
follows:

– Generate a delegation key dsk = (Ko, σo) for the warrant mw by applying
the same approach as described in answering delegation queries.

– Use the derived dsk and skp to produce the proxy signing key psk by running
the PKG algorithm, and then use psk to generate the proxy signature for
message m by running the PS algorithm.

Assume AII1 can forge a valid proxy signature σ∗ = (K∗
o ,K

∗
p , σ

∗
p , f(ω

∗)) for
a warrant m∗

w and a message m∗ such that

gσ
∗
p = K∗

p · (pkp ·K∗
o · pkh(m

∗
w‖K∗

o )
o )h(h(m

∗
w‖K∗

o )‖m∗‖K∗
p ).

Then according to the Forking Lemma [19], by rewinding the adversary and
providing a new hash value for h(m∗

w‖K∗
o )‖m∗‖K∗

p , B can obtain S∗
p = σ∗

o + skp
mod q and σ∗

o = S∗
p − skp mod q which satisfies

gσ
∗
o = K∗

o · pkh∗
o

where h∗ = h(m∗
w‖K∗

o ).
After that, B repeats the above simulation for AII1 except that a new value

ĥ∗ is chosen as the hash value for m∗
w‖K∗

o . Again, due to the Forking Lemma,
B can obtain a new σ̂∗

o which satisfies

gσ̂
∗
o = K∗

o · pkĥ∗
o .

B can then compute x∗ = sko = (σ∗
o − σ̂∗

o)/(h
∗ − ĥ∗) and solve the Discrete

Logarithm Problem. This completes the proof for Theorem 1.
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Theorem 2. The proposed k-time proxy signature scheme is secure against the
Type II2 chosen warrant attacks.

Proof. According to our scheme, if a signature σ = (Ko,Kp, σp, f(ω)) is valid
with regards to a warrant mw = (k,B = (b1, b2, · · · , bk)) and message m , then

gf(ω) = pkp · b1ω · b2ω
2

· · · bkω
k

.

Suppose an adversaryAII2 have produced k+1 proxy signatures with regards
to a warrant mw and different messages {m1,m2, · · · ,mk+1}, then we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(ω1) = skp + a1ω1 + a2ω
2
1 + ...+ akω

k
1

f(ω2) = skp + a1ω2 + a2ω
2
2 + ...+ akω

k
2

...

f(ωk+1) = skp + a1ωk+1 + a2ω
2
k+1 + ...+ akω

k
k+1

where ωi = h(mw,mi, σpi) for 1 ≤ i ≤ k+1. Since the hash function is modelled
as a random oracle, each ωi is a random element in Zq. Therefore, with over-
whelming probability, the reveal algorithm R can recover the unique solution
(skp, a1, a2, · · · , ak) that satisfies the above equations.

Theorem 3. The proposed k-time proxy signature scheme is secure against the
Type III chosen message attacks if the Discrete Logarithm Problem is hard.

Proof. The proof is similar to the proof for Theorem 1, that is, if there exists
an adversary AIII which can win the Type III game, we can construct another
algorithm B which can solve the Discrete Logarithm Problem.

Given (g, y∗ = gx
∗
) where x∗ ∈ Zq is randomly chosen from Zq, B simulates

the Type III game for AIII as follows. B generates sko, pko and sets the proxy
signer’s public key as pkp = y∗. B answers hash queries by maintaining aH-table
as in the proof of Theorem 1.

When a new warrant mw with a predetermined number k is to be created,
B generates the values of B = (b1, b2, · · · , bk) as follows. B randomly chooses
ωi, si ∈ Zq for 1 ≤ i ≤ k. Then based on the result in [17], B can calculate

bi(1 ≤ i ≤ k) ∈ G that satisfies gsi = y∗ ·
∏k

j=1 b
ωj

i

j for all 1 ≤ i ≤ k. B saves the
values of {ωi, si}1≤i≤k with regards to mw for later use.

Proxy Signing Queries: To answer the �-th (1 ≤ � ≤ k) proxy signing query
on a warrant mw, B first finds out the values of (ω�, s�) that have been com-
puted when generating the warrant mw. B then computes the proxy signature
as follows:

– Randomly choose σp, τ ∈ Zq;

– Compute Kp = gσp/(pkp ·Ko · pkh(mw‖Ko)
o )τ ;

– Set h(h(mw‖Ko)‖m‖Kp) = τ ;
– Set h(mw‖m‖σp) = ω�;
– Return σ = (Ko,Kp, σp, s�).

It is easy to verify that σ can successfully pass the signature verification.
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Suppose AIII outputs a forgery (m∗
w,m

∗, σ∗ = (K∗
o ,K

∗
p , σ

∗
p , s

∗)) which satis-
fies

gσ
∗
p = K∗

p · (y∗ ·K∗
o · pkh(m

∗
w‖K∗

o )
o )h(h(m

∗
w‖K∗

o )‖m
∗‖K∗

p )

where dsk∗ = (K∗
o , σ

∗
o) is the delegation key provided by AIII for the warrant

m∗
w. According to the Forking Lemma, by rewinding AIII and providing a new

hash value of h(h(m∗
w‖K∗

o )‖m∗‖K∗
p), B can obtain another valid signature σ̂∗ =

(K∗
o ,K

∗
p , σ̂

∗
p , ŝ

∗)) for (m∗
w,m

∗). Then B can derive

S∗
p = (σ∗

p − σ̂∗
p)/(h

∗ − ĥ∗) mod q

where h∗ and ĥ∗ are the hash values for h(m∗
w‖K∗

o )‖m∗‖K∗
p in the two execu-

tions. Finally, B can compute x∗ = S∗
p − σ∗

o mod q and solve the DLP.

6 Conclusion

In this paper, we presented a formal security model and an efficient construction
of k-time proxy signature scheme. Our model has considered different types of
potential adversaries against a k-time proxy signature scheme, and is to date
the first complete formal security model for such schemes. We then presented
a practical k-time proxy signature scheme based on the Schnorr signature and
verifiable secret sharing. One interesting feature of our scheme is that the proxy
signer’s secret key can be discovered by the public if the proxy signer misbehaves.
We also provided formal security proofs to demonstrate that the proposed scheme
is provably secure in the proposed security model. We leave the problem of
constructing a secure k-time proxy signature scheme without random oracles as
our future work.
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Abstract. A related-key attack (RKA) occurs when an adversary
tampers the private key stored in a cryptographic hardware device and
observes the result of the cryptographic primitive under this modified
private key. In this paper, we concentrate on the security of anony-
mous signcryption schemes under related-key attacks, in the sense that a
signcryption system should contain no information that identifies the
sender of the signcryption and the receiver of the message, and yet be
decipherable by the targeted receiver. To achieve this, we consider our
anonymous signcryption scheme being semantically secure against chosen
ciphertext and related-key attacks (CC-RKA), existentially unforgeable
against chosen message and related-key attacks (CM-RKA), and anony-
mous against chosen ciphertext and related-key attacks (ANON-RKA).
Specifically, we require that an anonymous signcryption scheme remains
secure even when an adversary is allowed to access the signcryption or-
acle and the designcryption oracle on linear shifts of the private keys
of the sender and the receiver, respectively. After reviewing some basic
definitions related to our construction, based on the existing work on
cryptographic primitives in the setting of related-key attacks, we give a
concrete anonymous signcryption scheme from BDH which achieves CC-
RKA security, CM-RKA security, ANON-RKA security in the random
oracle model.

Keywords: Signcryption, CC-RKA, CM-RKA, Anonymity.

1 Introduction

In recent decades, physical attacks like side channel attacks [29] that exploit
information leakage from the implementation of an algorithm are becoming in-
creasingly popular and come in a large variety, where an adversary observes some
“physical output” of a computation (such as radiation, power, temperature, run-
ning time), in addition to the “logical output” of the computation. In some of
these situations, the adversary might get some partial information about private
key through certain physical methods, which are referred to as key-leakage at-
tacks. However, such attacks are not anticipated by the designer of the system
and, correspondingly, not taken into account when arguing its security. Since
modern notions of security, such as semantic security [17] and CCA security [30]
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in encryption systems, is formulated in a very desired way that the adversary
can fully control almost all aspects of the system (that is, the adversary is able
to encrypt messages and decrypt ciphertexts at its choice), but have no access
to the private keys of the entities in the communication. Unfortunately, this
assumption is too ideal to satisfy in the above scenarios.

To achieve such security requirements, it requires to capture security under the
context where some information of the private key are leaked to the adversary. In
this paper, we consider a special case of such attacks, where an adversary tampers
the private key stored in a cryptographic hardware device and observes the result
of the cryptographic primitive under this modified private key, called related-
key attack (RKA) [16,8]. The key here could be a signing key of a certificate
authority or a decryption key of an encryption scheme. In related-key attacks,
the adversary attempts to break a cryptographic system by invoking it with
several private keys satisfying some known relations.

Although the RKA security has been achieved in various cryptographic prim-
itives, there are few considering anonymity, which requires that the identities of
participants should not be leaked during the communication [1]. With this in
mind, in this work, we propose an approach for anonymous signcryption secure
against related-key attacks. Suppose the signcryption system is composed of al-
gorithms, public parameters, as well as private and public key pairs of the sender
and the receiver respectively, of which the private and public keys are subject
to related-key attacks, and the public parameters are system-wide, i.e., they are
set beforehand and independent of users. In a protocol run, all these parameters
are possible to be tampered when distributed via a public channel.

For an anonymous signcryption system, the designcryption needs the private
key of the receiver while the signcryption needs the private key of the sender,
hence we consider related-key attacks on private keys of both sides: chosen ci-
phertext attack security under related-key attack (CC-RKA), chosen message
attack security under related-key attack (CM-RKA), as well as anonymity un-
der chosen ciphertext attack and related-key attack (ANON-RKA). The design-
cryption oracle is forbidden when the signcryption is equal to the challenged
signcryption and the derived receiver’s private key matches the original one.
Also, the signcryption oracle will not be executed if the given plaintext is equal
to the challenged plaintext and the derived sender’s private key matches the
original one. Note that we define our model on the basis of the definitions in
[7,8,33].

To begin with, we need to solve a problem how to designcrypt a signcryp-
tion C with the private key φ(skR), where φ denotes a linear shift. This can be
achieved with key homomorphism [33], which can reduce a signcryption scheme
against related-key attacks with chosen ciphertext attack security and anonymity
to a general chosen ciphertext attack secure and anonymous signcryption scheme
with additional properties that the designcryption of a signcryption C with the
private key φ(skR) equals the designcryption of another signcryption C′ with
the original private key skR. To consider the security one step further, key ho-
momorphism fails when the signcryption C′ equals the challenge signcryption in
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the chosen ciphertext attack security and anonymity games. Anyway, with the
adaptive trapdoor relations mentioned in [22,32,33], this event will never happen,
which can simply formulate that the challenge signcryption is an invalid sign-
cryption for any receiver’s private key sk′R �= skR, such that a valid signcryption
with the public parameters decides a consistent private key uniquely. Next, we
should consider to signcrypt a plaintext m with the private key φ(skS), where φ
denotes a linear shift, yet the case where the plaintext m in the signcryption C′

equals the plaintext in the output signcryption where φ(skS) �= skS . We adopt
a collision resistant hash function in the signcryption, which disables the adver-
sary to output a valid signcryption for any sender’s private key sk′S �= skS . In
this way, a valid signcryption with public parameters can only be constructed
by a correct private key.

1.1 Related Work

Signcryption, introduced by Zheng [35] in 1997, is a cryptographic primitive
“Signcryption” to combine the functions of digital signature and encryption in
a single step with a cost lower than that required by signature-then-encryption
approach. In 2002, Baek, Steinfeld, and Zheng [5] formalized and defined secu-
rity notions for signcryption, which are similar to the chosen ciphertext attack
security and chosen message attack security. The notion was first defined by Jee
Hea An, Yevgeniy Dodis, Tal Rabin [3], where an adversary not only access the
public keys of both the sender and the receiver but also know the private key of
the sender, which later was extended to the security properties of signcryption
[28,25]. Malone-Lee [28] proposed the first identity-based signcryption scheme,
and claimed that their scheme achieves both privacy and unforgeability. Libert
and Quisquater [25] pointed out that the scheme in [28] is not semantically se-
cure in privacy as the signature of the message is not hidden in the signcrypted
message, and proposed a signcryption scheme with ciphertext anonymity [26]
based on gap Diffie-Hellman assumption, but Yang, Wong and Deng [34] found
that it is not secure. Chow et al. [15] designed an identity-based signcryption
scheme with public verifiability and forward security. Concurrently, Boyen [14]
extended the security model in [28] via adding three new security notions: ci-
phertext unlinkability, ciphertext authentication and ciphertext anonymity. In
addition, there are also some works concentrating on efficiency [6,23,24]. Bar-
reto et al. [6] constructed an identity-based signcryption scheme which greatly
improves the efficiency. Chung et al. [23] described a key privacy preserving sign-
cryption scheme with high efficiency and simple design, and then they extended
it to a ring signcryption scheme based on the technique due to Boneh et al. [13].

In 2004, Micali and Reyzin [29] put forward a comprehensive framework for
modeling security against side-channel attacks, which relies on the assumption
that there is no leakage of information in absence of computation. Halderman
et al. [19] in 2008 described a set of attacks violating the assumption of the
framework of Micali and Reyzin. Specially speaking, their “cold boot” attacks
showed that a significant fraction of the bits of a cryptographic key can be recov-
ered if the key is ever stored in memory, of which the framework was modeled by
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Akavia, Goldwasser and Vaikuntanathan [2]. Similarly, fault injection techniques
can be used to falsify, inducing the internal state of the devices being modified,
if given physical access to the hardware devices [11]. Bellare and Kohno [9] in-
vestigated related-key attacks from a theoretical point of view and presented
an approach to formally handle the notion of related-key attacks. Followed the
approach in [9], Lucks [27] presented some constructions for block ciphers and
pseudorandom function generators. To solve the open problem in related-secret
security whether or not related-key secure blockciphers exist, in 2010, Bellare
and Cash [7] provided the first constructions to create related-secret pseudoran-
dom bits. On the basis of the work in [7], Applebaum, Harnik, and Ishai [4] put
forward some RKA secure symmetric encryption schemes, which can be used in
garbled circuits in secure computation. In [8], Bellare, Cash and Miller found
the approaches to build high-level primitives secure against related-key attacks
like signatures, CCA secure public-key encryption, identity-based encryption,
based on RKA secure pseudorandom functions. So far, efforts have been made
to achieve RKA security about cryptographic systems such as signatures [18,10],
CCA secure public-key encryption [33,10], identity-based encryption [10], in the
setting of related-key deriving function being a class of constant functions, linear
functions, affine functions, and polynomial functions.

The remainder of this paper is organized as follows. In Section 2, we briefly
present the concepts associated to this work and our defined security model
of RKA secure signcryption. In Section 3, we review the bilinear pairs and the
complexity assumptions. In Section 4, we propose a specific construction of RKA
secure signcryption from BDH, and prove its security in the random oracle model.
Finally, we conclude this paper in Section 5.

2 Preliminaries

Firstly, we briefly describe the framework of signcryption, and some concepts
related to RKA security. Then we details the security definitions of signcryption
schemes with anonymity in the setting of related-key attacks.

2.1 Signcryption

Let M be the message space. An signcryption scheme is composed of the fol-
lowing four algorithms [24]: Setup, Keygen, Signcrypt, Designcrypt.

– Setup(1λ) → params: Taking a security parameter λ as input, this algorithm
outputs the public parameters params.

– Keygen(1λ, params) → (skR, pkR),(skS , pkS): Taking a security parameter
λ and the public parameters params as input, this algorithm outputs two
private and public key pairs (skR, pkR), (skS , pkS).

– Signcrypt(1λ, params, m, skS , pkR) → C: Taking a security parameter λ,
the public parameters params, a plaintext m ∈ M, the private key skS and
the public key pkR as input, this algorithm outputs a signcryption C.
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– Designcrypt(1λ, params, C, skR, pkS) → m/⊥: Taking a security parameter
λ, the public parameters params, a signcryption C, the private key skR,
and the public key pkS as input, this algorithm first computes a message
and signature pair (m, σ) with skR, and checks its validity with pkS . Then
it outputs either m ∈ M for a valid signcryption, or ⊥ in case of a invalid
signcryption.

We require that a signcryption system is correct, meaning that if params ←
Setup(1λ), (skR, pkR),(skS , pkS)←Keygen(1λ, params) and C ← Signcrypt(1λ,
params, m, skS , pkR), then m ← Designcrypt(1λ, params, C, skR, pkS).

2.2 RKA Security

Related-Key Deriving Functions. Our definition follows the notion of
related-key deriving functions given in [9]. Briefly speaking, a class Φ of related-
key deriving functions φ: sku → sku is a finite set of functions with the same
domain and range, which map a key to a related key. Additionally, Φ should
allow an efficient membership test, and φ should be efficiently computable. Note
that in this paper, we only consider the class Φ+ as linear shifts.

The family Φ+. Any function φ : Z∗
q → Z∗

q in this class is indexed by # ∈ Z∗
q ,

where φ	(sku) : = sku +#.
Informally, we consider a secure anonymous signcryption scheme against

related-key attacks to be semantically secure against chosen ciphertext and
related-key attacks (CC-RKA), existentially unforgeable against chosen message
and related-key attacks (CM-RKA), and anonymous against related-key attacks
in the sense that a signcryption should contain no information that identifies the
sender of the signcryption and the receiver of the message (ANON-RKA), and
yet be decipherable by the targeted receiver.

CC-RKA Security. A signcryption scheme is semantically secure against cho-
sen ciphertext and related-key attacks (CC-RKA security) if no probabilis-
tic polynomial-time adversary has a non-negligible advantages in the following
game.

– Initialization. The challenger algorithm B runs params ← Setup(1k), and
(skR, pkR),(skS , pkS) ← Keygen(1λ, params). Algorithm B gives the public
parameters params, the private and public key pair (skS , pkS), and the
public key pkR to the adversary algorithm A.

– Phase 1. Algorithm A issues a series of queries to RKA.Designcrypt oracle.
On input a signcryption C, and a related-key deriving function φ ∈ Φ, algo-
rithm B runs (m, σ) ← Designcrypt(1λ, params, C, φ(skR)), and sends (m,
σ) to algorithm A. Note that as skS is given to algorithm A, we remove the
queries to RKA.Signcrypt oracle.

– Challenge. Algorithm A outputs two messages M∗
0 , M

∗
1 ∈ M, |M∗

0 | = |M∗
1 |,

on which it wishes to be challenged. Algorithm B chooses a random d ∈
{0, 1}, and runs C∗ ← Signcrypt(1λ, params, md, skS , pkR). Algorithm B
sends C∗ as the designcryption to algorithm A.



170 H. Cui, Y. Mu, and M. Ho Au

– Phase 2. Algorithm A continues to adaptively issue queries to
RKA.Designcrypt oracle. On input a signcryption C, and a related-key deriv-
ing function φ ∈ Φ, with the constraint (φ(skR), C) �= (skR, C

∗), algorithm
B responds as in Phase 1.

– Output. Algorithm A outputs its guess d′ ∈ {0, 1} for d and wins the game
if d′ = d.

We define algorithm A’s advantage in this game to be

AdvCC-RKA
A (λ)

def
= |Pr[d = d′]− 1/2|.

CM-RKA Security. A signcryption scheme is existentially unforgeable against
chosen message and related-key attacks (CM-RKA security) if no probabilis-
tic polynomial-time adversary has a non-negligible advantages in the following
game.

– Initialization. The challenger algorithm B runs params ← Setup(1k), and
(skR, pkR),(skS , pkS) ← Keygen(1λ, params). Algorithm B gives the public
parameters params, the private and public key pair (skR, pkR), and the
public key pkS to the adversary algorithm A.

– Phase 1. Algorithm A issues a series of queries to RKA.Signcrypt oracle.
On input a message m ∈ M, and a related-key deriving function φ ∈ Φ,
algorithm B runs C ← Signcrypt(1λ, params, m, φ(skS), pkR), and sends
C to algorithm A. Note that as skR is given to algorithm A, we remove the
queries to RKA.Designcrypt oracle.

– Output. Algorithm A outputs a signcryption C∗, and wins the game if (m∗,
σ∗) ← Designcrypt(1λ, params, C∗, skR), and true ← Verify(1λ, params,
m∗, σ∗).

ANON-RKA Security. A signcryption scheme is anonymous against cho-
sen ciphertext and related-key attacks (ANON-RKA security) if no probabilis-
tic polynomial-time adversary has a non-negligible advantages in the following
game.

– Initialization. The challenger algorithm B runs params ← Setup(1k), and
(skR,0, pkR,0),(skS,0, pkS,0) ← Keygen(1λ, params), (skR,1, pkR,1),(skS,1,
pkS,1) ← Keygen(1λ, params), respectively. Algorithm B gives the public
parameters params, the private and public key pairs (skS,0, pkS,0), (skS,1,
pkS,1), and the public keys pkR,0, pkR,1 to the adversary algorithm A.

– Phase 1. Algorithm A issues a series of queries to RKA.Designcrypt oracle.
On input skS ∈ {skS,0, skS,1}, pkR ∈ {pkR,0, pkR,1}, a signcryption C,
and a related-key deriving function φ ∈ Φ, algorithm B runs (m, σ) ←
Designcrypt(1λ, params, C, φ(skR)), and sends (m, σ) to algorithm A.
Note that as skS,0, skS,1 are given to algorithm A, we remove the queries to
RKA.Signcrypt oracle.

– Challenge. Algorithm A outputs a message M∗ ∈ M on which it wishes
to be challenged. Algorithm B chooses random d, e ∈ {0, 1}, and runs C∗

← Signcrypt(1λ, params, m, skS,d, pkR,e). Algorithm B sends C∗ as the
designcryption to algorithm A.
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– Phase 2. Algorithm A continues to adaptively issue queries to
RKA.Designcrypt oracle. On input skS ∈ {skS,0, skS,1}, pkR ∈ {pkR,0,
pkR,1}, a signcryption C, and a related-key deriving function φ ∈ Φ, with the
constraint (φ(skR,d), C) �= (skR,d, C

∗), algorithm B responds as in Phase 1.

– Output. Algorithm A outputs its guess d′, e′ ∈ {0, 1} for d, e, and wins the
game if d′ = d and e′ = e.

We define algorithm A’s advantage in this game to be

AdvANON-RKA
A (λ)

def
= |Pr[d = d′ ∧ e = e′]− 1/4|.

3 Bilinear Maps and Complexity Assumptions

In this section, we review a few facts related to groups with efficiently computable
bilinear maps, and the security assumptions that our new schemes based on.

3.1 Bilinear Maps

Let G and GT be two multiplicative cyclic groups of prime order q. Let g be
a generator of G, and ê : G × G → GT be a bilinear map with the following
properties [12,20,21]: (1) Bilinear: for all g ∈ G and a, b ∈ Z∗

q , we have ê(ga, gb)

= ê(g, g)ab; (2) Non-degenerate: ê(g, g) �= 1.
We say that G is a bilinear group if the group action in G can be computed

efficiently and there exists a group GT and an efficiently computable bilinear
map ê : G×G → GT as above.

3.2 Complexity Assumptions

Computational DL. The computational Discrete Logarithm (DL) problem is
that for any probabilistic polynomial-time algorithm, it is difficult to compute b
given (g, gb), where g ∈ G, b ∈ Z∗

q are chosen independently and uniformly at
random.

Computational BDH. The computational bilinear Diffie-Hellman (BDH) prob-
lem is that for any probabilistic polynomial-time algorithm, it is difficult to
compute ê(g, g)abc given (g, ga, gb, gc), where g ∈ G, a, b, c ∈ Z∗

q are chosen
independently and uniformly at random.

Decisional BDH. The decisional bilinear Diffie-Hellman (BDH) problem is
that for any probabilistic polynomial-time algorithm, it is difficult to distinguish
(g, ga, gb, gc, ê(g, g)abc) from (g, ga, gb, gc, Z), where g ∈ G, Z ∈ GT , a, b,
c ∈ Z∗

q are chosen independently and uniformly at random.
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4 Anonymous Signcryption from RKA Security

In this section, we propose a specific anonymous signcryption scheme in the
setting of related-key attacks, and analyze its CC-RKA, CM-RKA and ANON-
RKA security.

4.1 Techniques in Our Solution

To achieve key homomorphism [33], we make use of a class of functions with an
additional input (namely tag), called adaptive trapdoor relations [22,32], which
is easy to compute and invert with tag, but hard to invert without tag.

More specifically, our adaptive trapdoor relation Fpku satisfies the following
features.

– Generation. This is a randomized algorithm G that outputs a pair (pku, sku)
on input a security parameter λ.

– Sampling. On input pku and tag, this randomized algorithm F outputs (θ,
Fpku(tag , θ)) for a random θ.

– Inversion. For all tag, y and (pku, sku), this efficient algorithm F ′ computes
F ′(sku, tag, y) = F−1

pku
(tag, y).

– One-wayness. For a stateful adversary A, it holds that

Pr

⎡⎢⎢⎣θ = θ′

∣∣∣∣∣∣∣∣
tag∗ ← A(1λ).
(pku, sku) ← G(1λ).
(θ, y) ← F (pku, tag

∗).

θ′ ← AF−1
pku

(·,·)(pku, y).

⎤⎥⎥⎦
is a negligible function in λ, where adversary A is allowed to query F−1

pku
(·, ·)

on any tag different from tag∗.

Key Homomorphism. Let Φ be a set of related-key deriving functions. We
say that Fpku is Φ-key homomorphic if there is a probabilistic polynomial-time
algorithm T such that F ′(φ(sku), tag, y) = F ′(sku, tag, T (φ, tag, y)) holds with
overwhelming probability for all φ ∈ Φ, sku, tag and y.

4.2 Construction

Let ê : G × G → GT be a bilinear map over a bilinear group G of prime order
q with a generator g ∈ G. The scheme is described as follows.

– Setup. To generate the system public parameters, this algorithm works as
follows.
1. Chooses random β, γ ∈ Z∗

q , and computes g1 = gβ , g2 = gγ .
2. Chooses collision resistant hash functions H0 : G2 → G, H : G2 → Z∗

q ,
H ′ : G5 ×G2

T → Z∗
q .

3. Outputs the public parameters (g, g1, g2, H0, H , H ′).
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– Keygen. To generate two private and public key pairs for receiver R and
sender S respectively, the system chooses random xR, xS ∈ Z∗

q as the private
keys, and computes YR = gxR , YS = gxS as the public keys.

– Signcrypt. To signcrypt a message m ∈ GT for receiver R, sender S runs as
follows.

1. Chooses a random r ∈ Z∗
q , and computes μ = gr, θ = g1

r.
2. Chooses a random e ∈ Z∗

q , and computes tag = ge.
3. Computes ψ = ê(θ, g2) ·m, and

τ = (YR · g1H(μ,tag))r ·H0(μ, YR
r),

σ = e− xS ·H ′(μ, τ, ψ, YR
r, YR

xS , tag,m),

4. Outputs the signcryption C = (μ, τ , ψ, tag, σ).

– Designcrypt. To designcrypt a signcrypiton C from sender S, receiver R runs
as follows.

1. Computes θ as θ = ( τ
H0(μ,μxR ) · μ−xR)

1
H(μ,tag) . If ê(θ, g) = ê(μ, g1), com-

putes m = ψ/ê(θ, g2), and outputs (μ, τ , ψ, m, tag, σ). Otherwise, it
outputs ⊥.

2. Check the validity of σ via tag = gσ · YS
H′(μ,τ,ψ,μxR ,YS

xR ,tag,m). If the
equation holds, it outputs m. Otherwise, it outputs ⊥.

4.3 Proof of Security

We analyze the security of our proposed signcryption scheme against related-key
attacks by reducing its CC-RKA security, CM-RKA security, and ANON-RKA
security under the security games defined in Section 2.

Theorem 1. Assume that the decisional BDH assumption holds in G,GT , the
computational BDH problem holds in G,GT , then our signcryption scheme is
CC-RKA secure regarding linear related-key deriving functions φ+ in the random
oracle model.

Let (μ∗, τ∗, ψ∗, tag∗, σ∗) be the challenge signcryption of the message Md

given to algorithmA by algorithm B. Denote Failure by the event that algorithm
A issues (μ∗, τ∗, ψ∗, Y1, Y2, M0) or (μ

∗, τ∗, ψ∗, Y1, Y2, M1) to random oracle
H ′, and (μ, Y1) to random oracle H0, where ê(Y1, g) = ê(YR, μ

∗).
In what follows we prove that if the event Failure does not occur, then our

signcryption scheme is CC-RKA secure. We conclude this proof by showing that
the event Failure has a negligible probability to occur.

Lemma 1. If the decisional BDH assumption holds in G,GT , and the event
Failure does not happen, then our signcryption scheme is CC-RKA secure.

Proof. Suppose that algorithm A is an adversary algorithm against the CC-RKA
security of our signcrypiton scheme, then we can construct a challenger algorithm
B that solves the decisional BDH problem, which is given input a BDH instance
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(g, ga, gb, gc, Z) and outputs 1 (Z is ê(g, g)abc) or 0 (Z is a random element in
GT ).

Initialization. To simulate the system parameters, algorithm B runs as follows.

1. Chooses a collision resistant hash function H : G2 → Z∗
q .

2. Chooses a random e∗ ∈ Z∗
q , computes tag∗ = ge

∗
.

3. Chooses a random xS ∈ Z∗
q , computes computes YS = gxS .

4. Chooses a random xr ∈ Z∗
q , computes YR = (gb)−H(gc ,tag∗)gxr . Note that

xR = logg YR = −b ·H(gc, tag∗) + xr is unknown to algorithm B.
5. Sends the public parameters (g, g1, g2, H0, H , H ′) of which g1 = gb, g2 = ga,

H0, H
′ are the random oracles controlled by algorithm B, receiver R’s public

key YR, and sender S’s public and private key pair (xS , YS) to algorithm A.

H0-query. At any time algorithm A can query the random oracle on (μ, Y1).
Algorithm B maintains a list LH0 of tuples ((μ, Y1), H0(μ, Y1)) which is initially
empty. When algorithm A issues a hash query on Y , algorithm B responds as
follows.

– If (μ, Y1) already appears in list LH0 , algorithm B responds with H0(μ, Y1).
– Otherwise, algorithm B chooses a random ti ∈ Z∗

q , sets H0(μ, Y1) = ti, and
adds ((μ, Y1), ti) to list LH0 .

H ′-query. At any time algorithm A can query the random oracle on (μ, τ , ψ,
Y1, Y2, tag, m). Algorithm B maintains a list LH′ of tuples ((μ, τ , ψ, Y1, Y2,
tag, m), H ′(μ, τ , ψ, Y1, Y2, tag, m)) which is initially empty. When algorithm A
issues a hash query on (μ, τ , ψ, Y1, Y2, tag, m), algorithm B responds as follows.

– If (μ, τ , ψ, Y1, Y2, tag, m) already appears in list LH′ , algorithm B responds
with H ′(μ, τ , ψ, Y1, Y2, tag, m).

– Otherwise, algorithm B chooses a random si ∈ Z∗
q , sets H

′(μ, τ , ψ, Y1, Y2,
tag, m) = si, sends si to algorithm A, and adds ((μ, τ , ψ, Y1, Y2, tag, M),
si) to list LH′ .

Phase 1. Algorithm A adaptively issues the RKA designcryption queries to
algorithm B. For a query (C, φ) to RKA.Designcrypt oracle where C = (μ, τ ,
ψ, tag, σ), algorithm B responds as follows.

1. Algorithm B computes θ′ with φ(xR). To see how algorithm B obtains θ
without xR, we rewrite τ such that

τ

ti
= (YR · g1H(μ,tag))r = μ−b·H(gc,tag∗)+xr+b·H(μ,tag)

= (μb)H(μ,tag)−H(gc ,tag∗) · μxr = θH(μ,tag)−H(gc ,tag∗) · μxr

⇒ θ = (
τ

ti · μxr
)

1
H(μ,tag)−H(gc ,tag∗) .
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On the other hand,

θ′ = (
τ

ti
· μ−(xR+	))

1
H(μ,tag) = ((

τ

ti
· μ−	) · μ−xR)

1
H(μ,tag)

= θ · (μ−	)
1

H(μ,tag) .

Note that this reflects how key homomorphism works in the adaptive trap-
door relation [33].

2. If ê(θ′, g) = ê(μ, g1), algorithm B outputs m = ψ/ê(θ′, g2). Otherwise, it
outputs ⊥.

Challenge.AlgorithmA outputs two messagesM0,M1 ∈ GT on which it wishes
to be challenged. Algorithm B chooses random s∗, t∗ ∈ Z∗

q , a random d ∈ {0, 1},
sets μ∗ = gc, and computes

τ∗ = (gc)xr · t∗, ψ∗ = Z ·Md, σ∗ = e∗ − xS · s∗.

Algorithm B outputs the signcryption C∗ = (μ∗, τ∗, ψ∗, tag∗, σ∗), and adds
((μ∗, τ∗, ψ∗, YR

c, YR
xS , Md), s

∗) to list LH′ , ((μ, YR
c), t∗) to list LH0 .

Phase 2. Algorithm A adaptively issues the RKA designcryption queries to
algorithm B. For a query (C, φ) to RKA.Designcrypt oracle where C = (μ, τ ,
ψ, tag, σ), algorithm B responds as follows.

– H(μ, tag) �= H(gc, tag∗). Algorithm B responds as in Phase 1.
– H(μ, tag) = H(gc, tag∗), and (μ, τ , ψ, σ) �= (μ∗, τ∗, ψ∗, σ∗). If algorithm

B accepts this signcryption, it means algorithm A breaks the security of the
CM-RKA security of our scheme, which we will analyze later. Therefore,
algorithm B outputs ⊥ except with negligible probability.

– H(μ, tag) =H(gc, tag∗), and (μ, τ , ψ, σ) = (μ∗, τ∗, ψ∗, σ∗) and φ(xR) �= xR.
If algorithm B accepts this signcryption, it means algorithm A can output

φ ∈ Φ such that ( τ
∗

t∗ · (μ∗)−φ(xR))
1

H(gc,tag∗) �= ⊥. That is, ê(θ′, g) = ê(μ, g1),
to guarantee this,

(
τ∗

t∗
· (μ∗)−xR)

1
H(gc,tag∗) = (

τ∗

t∗
· (μ∗)−φ(xR))

1
H(gc,tag∗) ⇒ xR = φ(xR)

should hold. Therefore, algorithm B outputs ⊥ except with negligible prob-
ability.

In fact this is the one-wayness property of the adaptive trapdoor relation,
which on the other hand reflects how the key fingerprint property, which is
indispensable according to the definitions given in [7,4,33], works in our
construction.

Note that (C, φ) satisfying H(μ, tag) = H(gc, tag∗), (μ, τ , ψ, σ) = (μ∗, τ∗, ψ∗,
σ∗) and φ(xR) = xR, is not allowed by the definition of the CC-RKA security
game.
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Output. Algorithm A outputs a guess d′ ∈ {0, 1}. If d = d′, algorithm A
wins the game, and algorithm B outputs 1 indicating Z = ê(g, g)abc. Otherwise,
algorithm B outputs 0 indicating Z is random in GT .

Let ε be the advantage that algorithm A breaks the CC-RKA security of the
above game. We can see that if algorithm B’s input tuple is (g, ga, gb, gc, Z)
where Z = ê(g, g)abc, then algorithm A’s view of this simulation is identical to
the real attack, thus algorithm A’s probability in outputting d′ = d must satisfy
Pr[d = d′] = 1/2+ ε. On the other hand, if algorithm B’s input tuple (g, ga, gb,
gc, Z) where Z ∈ GT , then algorithm A’s advantage is nil and thus Pr[d′ = d] =
1/2. To sum up, algorithm B’s probability in solving the decisional BDH problem
is

Pr[B(g, ga, gb, gc, Z)] = 1/2 · (1/2 + ε) + 1/2 · 1/2 = 1/2 + ε/2.

In the following, we prove that the event Failure has a negligible probability
to occur due to the security of the computational DH problem hiding in hash
function H ′.

Lemma 2. If the computational BDH problem holds in G,GT , then the event
Failure happens with a negligible probability.

Proof. Given algorithm A for which the event Failure happens with a noticeable
probability, we construct an algorithm B′ that solves the computational BDH
problem. Specifically, we consider the following game where algorithm B′ solves
the computational BDH problem. Suppose that algorithm B′ is given a random
tuple (g, ga, gb, gc) as input and outputs ê(g, g)abc.

Initialization. The same as in Lemma 1.

H0-query. At any time algorithm A can query the random oracle on (μ, Y1).
Algorithm B maintains a list LH0 of tuples ((μ, Y1), H0(μ, Y1)) which is initially
empty. When algorithm A issues a hash query on (μ, Y1), algorithm B responds
as follows.

– If ê(Y1, g) = ê(YR, g
c), algorithm B solves the computational BDH problem

immediately. To see this, we have

Y1 = YR
c = (gbc)−H(gc,tag∗)gc·xr

⇒ gbc = (
Y1

gc·xr
)−

1
H(gc,tag∗) ⇒ ê(g, g)abc = ê(ga, gbc).

– If (μ, Y1) already appears in list LH0 , algorithm B responds with H0(μ, YR
r).

– Otherwise, algorithm B chooses a random ti ∈ Z∗
q , sets H0(μ, Y1) = ti, and

adds ((μ, Y1), ti) to list LH0 .

H ′-query. At any time algorithm A can query the random oracle on (μ, τ , ψ,
Y1, Y2, tag, m), Algorithm B maintains a list LH′ of tuples ((μ, τ , ψ, Y1, Y2,
tag, m), H ′(μ, τ, ψ, Y1, Y2, tag,m)) which is initially empty. When algorithm A
issues a hash query on (μ, τ , ψ, Y1, Y2, tag, m), algorithm B responds as follows.
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– If ê(Y1, g) = ê(YR, g
c), the same as that in H0 query.

– If (μ, τ , ψ, Y1, Y2, tag, m) already appears in list LH′ , algorithm B responds
with H ′(μ, τ , ψ, Y1, Y2, tag, m).

– Otherwise, algorithm B chooses a random si ∈ Z∗
q , sets H

′(μ, τ , ψ, Y1, Y2,
tag, m) = si, sends si to algorithm A, and adds ((μ, τ , ψ, Y1, Y2, tag, m),
si) to list LH′ .

Phase 1. The same as in Lemma 1.

Challenge.AlgorithmA outputs two messagesM0,M1 ∈ GT on which it wishes
to be challenged. Algorithm B′ chooses random r∗, s∗, t∗ ∈ Z∗

q , and computes

μ∗ = gr
∗
, τ∗ = (YR · g1H(μ∗,tag∗))r

∗ · t∗,
ψ∗ = ê(g1, g2)

r∗ ·Md, σ∗ = e∗ − xS · s∗,

Algorithm B outputs the signcryption C∗ = (μ∗, τ∗, ψ∗, tag∗, σ∗), and adds

((μ∗, τ∗, ψ∗, YR
r∗ , YR

xS , tag∗, Md), s
∗) to list LH′ , (YR

r∗ , t∗) to list LH0 .

Phase 2. The same as in Lemma 1.

Lemma 1 makes sure that as long as the event Failure does not happen, then our
signcryption scheme preserves CC-RKA security. Lemma 2 guarantees that as
long as the event Failure does not happen, algorithm B′ is the same as algorithm
B such that algorithm A cannot differentiate between algorithm B and algorithm
B′.

This completes the proof of CC-RKA security of our signcryption scheme.

Theorem 2. Assume that the computational DL problem holds in G, then our
signcryption scheme is CM-RKA secure regarding linear related-key deriving
functions φ+ in the random oracle.

Proof. Suppose that algorithmA is an adversary breaks the CM-RKA security of
our signcrypiton scheme, we construct algorithm B that solves the computational
DL problem which is given input a random tuple (g, gb) and outputs b.

Initialization. To simulate the system parameters, algorithm B runs as follows.

1. Chooses collision resistant hash functions H0 : G2 → G, H : G2 → Z∗
q ,

2. Chooses a random a ∈ Z∗
q , computes g2 = ga, and then chooses a random

xR ∈ Z∗
q , computes YR = gxR , and a random xs ∈ Z∗

q , computes YS = (gb)xs .
Note that xS = logg YS = b · xs, which is unknown to algorithm B.

3. Sends the public parameters (g, g1, g2, H0, H , H ′) of which g1 = gb, where
H ′ is a random oracle controlled by algorithm B, receiver R’s public and
private key pair (xR, YR), and sender S’s public key YS to algorithm A.
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H ′-query. At any time algorithm A can query the random oracle on (μ, τ , ψ,
Y1, Y2, tag, m). Algorithm B maintains a list LH′ of tuples ((μ, τ , ψ, Y1, Y2,
tag, m), H ′(μ, τ , ψ, Y1, Y2, tag, m)) which is initially empty. When algorithm A
issues a hash query on (μ, τ , ψ, Y1, Y2, tag, m), algorithm B responds as follows.

– If (μ, τ , ψ, Y1, Y2, tag, m) already appears in list LH′ , algorithm B responds
with H ′(μ, τ , ψ, Y1, Y2, tag, m).

– Otherwise, algorithm B chooses a random si ∈ Z∗
q , sets H

′(μ, τ , ψ, Y1, Y2,
tag, m) = si, sends si to algorithm A, and adds ((μ, τ , ψ, Y1, Y2, tag, m),
si) to list LH′ .

Phase 1. Algorithm A adaptively issues the RKA signcryption queries to algo-
rithm B. Once algorithm A queries (m, φ) to RKA.Signcrypt oracle, algorithm
B responds as follows.

1. Chooses a random r ∈ Z∗
q , and computes μ = gr.

2. Chooses random σ, si ∈ Z∗
q , and computes tag = gσ · YS

si , τ = (YR ·
g1

H(μ,tag))r ·H0(μ, YR
r), and ψ = ê(g1

r, g2) ·m.
3. Outputs the signcryption C = (μ, τ , ψ, tag, σ), and adds ((μ, τ , ψ, YR

r,
YR

xS+	, tag, m), si) to list LH′ .

Output. Algorithm A outputs a signcryption C∗ = (μ∗, τ∗, ψ∗, tag∗, σ∗), and
algorithm B designcrypts it following the designcryption algorithm. If this is a
valid signcryption, from the Forking Lemma in [31], after a polynomial replay
attack of algorithm A, we obtain two valid signcryption (μ∗, τ∗, ψ∗, tag∗, σ∗)
and (μ∗, τ∗, ψ∗, tag∗, σ) with si �= s∗, from which we have

tag∗ = gσ
∗ · YS

s∗ = gσ · YS
si ⇒ YS = g

σ−σ∗
s∗−si ⇒ b =

σ − σ∗

xs · (s∗ − si)
.

That is, algorithm B solves the computational DL problem.

This completes the proof of CM-RKA security of our signcryption scheme.

Theorem 3. Assume that the computational BDH assumption holds in G,GT ,
then our signcryption scheme is ANON-RKA secure regarding linear related-key
deriving functions φ+ in the random oracle model.

Proof. This part is similar to that of Theorem 1. Denote Failure by the event
that algorithm A issues (μ∗, τ∗, ψ∗, Y1, Y2, M

∗) to random oracle H ′, and (μ,
Y1) to random oracle H0, where ê(Y1, g) = ê(YR, μ

∗). We firstly prove that if the
event Failure does not occur, our signcryption scheme is ANON-RKA secure;
then conclude it by that the event Failure has a negligible probability to occur.

Suppose there is an adversary algorithm A against the anonymity of our RKA
secure signcryption scheme. We construct a challenge algorithm B that solves
the computational BDH problem, which is given a random tuple (g, ga, gb, gc)
as input and outputs Z = ê(g, g)abc.
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Initialization. To simulate the system parameters, algorithm B runs as follows.

1. Chooses a collision resistant hash function H : G2 → Z∗
q .

2. Chooses a random e∗ ∈ Z∗
q , computes tag∗ = ge

∗
.

3. Chooses random xS,0, xS,1 ∈ Z∗
q , computes YS,0 = gxS,0 , YS,1 = gxS,1 .

4. Chooses random xr,0, xr,1 ∈ Z∗
q , computes YR,0 = (gb)−H(gc ,tag∗)gxr,0, YR,1

= (gb)−H(gc ,tag∗)gxr,1.

5. Sends (g, g1, g2, H0, H , H ′, (xS,0, YS,0), (xS,0, YS,1), YR,0, YR,1) to algorithm
A, where g1 = gb, g2 = ga, H0, H

′ are the random oracles controlled by
algorithm B.

H0-query. At any time algorithm A can query the random oracle on (μ, Y1).
Algorithm B maintains a list LH0 of tuples ((μ, Y1), H0(μ, Y1)) which is initially
empty. When algorithm A issues a hash query on (μ, Y1), algorithm B responds
as follows.

– If ê(Y1, g) = ê(YR,e, g
c) for e ∈ {0, 1}, algorithm B solves the computational

BDH problem immediately. To see this, we have

Y1 = YR,e
c = (gbc)−H(gc,tag∗)gc·xr

⇒ gbc = (
Y1

gc·xr
)−

1
H(gc,tag∗) ⇒ ê(g, g)abc = ê(ga, gbc).

– If (μ, Y1) already appears in list LH0 , algorithm B responds with H0(μ, Y1).

– Otherwise, algorithm B chooses a random ti ∈ Z∗
q , sets H0(μ, Y1) = ti, and

adds ((μ, Y1), ti) to list LH0 .

H ′-query. At any time algorithm A can query the random oracle on (μ, τ , ψ,
Y1, Y2, tag, m). Algorithm B maintains a list LH′ of tuples ((μ, τ , ψ, Y1, Y2,
tag, m), H ′(μ, τ , ψ, Y1, Y2, tag, m)) which is initially empty. When algorithm A
issues a hash query on (μ, τ , ψ, Y1, Y2, tag, m), algorithm B responds as follows.

– If ê(Y1, g) = ê(YR,e, g
c) for e ∈ {0, 1}, the same as that in H0 query.

– If (μ, τ , ψ, Y1, Y2, tag, m) already appears in list LH′ , algorithm B responds
with H ′(μ, τ , ψ, Y1, Y2, tag, m).

– Otherwise, algorithm B chooses a random si ∈ Z∗
q , sets H

′(μ, τ , ψ, Y1, Y2,
tag, m) = si, sends si to algorithm A, and adds ((μ, τ , ψ, Y1, Y2, tag, m),
si) to list LH′ .

Phase 1. Algorithm A chooses (xS , YR), where xS ∈ {xS,0, xS,1}, YR ∈ {YR,0,
YR,1}, and adaptively issues the RKA designcryption queries to algorithm B.
For a query (C, φ) to RKA.Designcrypt oracle where C = (μ, τ , ψ, tag, σ),
algorithm B responds as follows.
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1. Algorithm B computes θ′ with φ(xR). To see how algorithm B obtains θ
without xR, we rewrite τ such that

τ

ti
= (YR · g1H(μ,tag))r = μ−b·H(gc,tag∗)+xr+b·H(μ,tag)

= (μb)H(μ,tag)−H(gc ,tag∗) · μxr = θH(μ,tag)−H(gc ,tag∗) · μxr

⇒ θ = (
τ

ti · μxr
)

1
H(μ,tag)−H(gc ,tag∗) .

On the other hand,

θ′ = (
τ

ti
· μ−(xR+	))

1
H(μ,tag) = ((

τ

ti
· μ−	) · μ−xR)

1
H(μ,tag)

= θ · (μ−	)
1

H(μ,tag) .

2. If ê(θ′, g) = ê(μ, g1), algorithm B outputs m = ψ/ê(θ′, g2). Otherwise, it
outputs ⊥.

Challenge. Algorithm A outputs a message M∗ ∈ GT on which it wishes to be
challenged. Algorithm B chooses random s∗, t∗ ∈ Z∗

q , d, e ∈ {0, 1}, Z ∈ GT , sets
μ∗ = gc, and computes

τ∗ = (gc)xr,e · t∗, ψ∗ = Z ·M∗, σ∗ = e∗ − xS,d · s∗.

Algorithm B outputs the signcryption C∗ = (μ∗, τ∗, ψ∗, tag∗, σ∗), and adds
((μ∗, τ∗, ψ∗, (YR,e)

c, YR,e
xS,d , tag∗, M∗), s∗) to list LH′ , ((gc, (YR,e)

c), t∗) to
list LH0 .

Phase 2. Algorithm A chooses (xS , YR), where xS ∈ {xS,0, xS,1}, YR ∈ {YR,0,
YR,1}, and adaptively issues the RKA designcryption queries to algorithm B.
For a query (C, φ) to RKA.Designcrypt oracle where C = (μ, τ , ψ, tag, σ),
algorithm B responds as follows.

– H(μ, tag) �= H(gc, tag∗). Algorithm B responds as in Phase 1.
– H(μ, tag) = H(gc, tag∗), and (μ, τ , ψ, σ) �= (μ∗, τ∗, ψ∗, σ∗). If algorithm

B accepts this signcryption, it means algorithm A breaks the security of the
CM-RKA security of our scheme. Therefore, algorithm B outputs ⊥ except
with negligible probability.

– H(μ, tag) = H(gc, tag∗), (μ, τ , ψ, σ) = (μ∗, τ∗, ψ∗, σ∗) and φ(xR) �= xR.
If algorithm B accepts this signcryption, it means algorithm A can output

φ ∈ Φ such that ( τ
∗

t∗ · (μ∗)−φ(xR))
1

H(gc,tag∗) �= ⊥. That is, ê(θ′, g) = ê(μ, g1).
To guarantee this,

(
τ∗

t∗
· (μ∗)−xR)

1
H(gc,tag∗) = (

τ∗

t∗
· (μ∗)−φ(xR))

1
H(gc,tag∗) ⇒ xR = φ(xR)

should hold. Therefore, algorithm B outputs ⊥ except with negligible prob-
ability.
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Analysis. Algorithm A has negligible probability to issue (gc, Y1) to random ora-
cle H0 such that ê(Y1, g) = ê(gc, YR,e) for e ∈ {0, 1}. If so, algorithm B can solve
the computational BDH problem immediately. On the other hand, without the
value of H0(μ, YR,e

c), algorithm A has no idea about the identity of receiver R
from the challenge signcryption C∗. Likewise, algorithm A has negligible proba-
bility to issue (μ∗, τ∗, ψ∗, Y1, Y2, M

∗) to random oracle H ′ such that ê(Y1, g) =
ê(gc, YR,e); otherwise, algorithm B can solve the computational BDH problem
immediately. Obviously, without the value of H ′(μ∗, τ∗, ψ∗, YR,e

c, YR,e
xS,d ,M∗),

algorithm A cannot distinguish the identity of sender S from the challenge sign-
cryption C∗ via verification.

This completes the proof of ANON-RKA security of our signcryption scheme.

5 Conclusions

With the development of information technology, there has been a great interest
in anonymous systems. On the other hand, traditional security notions cannot
meet the requirements in the scenarios where the adversaries might get some
partial information about private keys through certain physical methods. Mo-
tivated by the above, following the work in [8,33], in this paper, we focus on
the construction of anonymous signcryption schemes secure against related-key
attacks. We put forward a specific anonymous signcryption scheme from BDH
under the setting of related-key attacks, where an adversary can subsequently
observe the outcome of the signcryption and designcryption algorithms under
a series of modified private keys of the sender and the receiver (related to the
original private keys of the sender and the receiver), respectively. On the basis
of the work in [10,33], we define the security model for anonymous signcryption
systems which can resist related-key attacks while maintaining chosen ciphertext
attack security (CC-RKA security), chosen message attack security (CM-RKA
security) and anonymity, in the sense that a signcryption should contain no in-
formation that identifies the sender of the signcryption and the receiver of the
message (ANON-RKA), where an adversary is allowed to issue queries to design-
cryption oracle on linear shifts of the private key of the receiver, and signcryption
oracle on linear shifts of the private key of the sender.
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Abstract. EAX is a mode of operation for blockciphers to implement an
authenticated encryption. The original paper of EAX proved that EAX is
unforgeable up to O(2n/2) data with one verification query. However, this
generally guarantees a rather weak bound for the unforgeability under
multiple verification queries, i.e., only (2n/3) data is acceptable.

This paper provides an improvement over the previous security proof,
by showing that EAX is unforgeable up to O(2n/2) data with multiple
verification queries. Our security proof is based on the techniques ap-
peared in a paper of FSE 2013 by Minematsu et al. which studied the
security of a variant of EAX called EAX-prime. We also provide some
ideas to reduce the complexity of EAX while keeping our new security
bound. In particular, EAX needs three blockcipher calls and keep them
in memory as a pre-processing, and our proposals can effectively reduce
three calls to one call. This would be useful when computational power
and memory are constrained.

Keywords: Authenticated encryption, EAX, security bound.

1 Introduction

EAX [5] is a mode of operation for blockciphers proposed by Bellare, Rogaway
and Wagner at FSE 1994. It implements an authenticated encryption with asso-
ciated data, AEAD for short. EAX has been standardized by ISO/IEC [2] and
included in some popular software libraries [1,8,9]. In FSE 2013, Minematsu,
Lucks, Morita, and Iwata [13] investigated a variant of EAX defined by ANSI
C12.22, called EAX-prime. They showed that EAX-prime is totally broken if the
‘cleartext’ part of the input is as short as a single block or shorter. At the same
time, the authors proved EAX-prime is secure if cleartexts are required to be
longer than a single block.

In this paper, we study the implications of [13] to the original EAX. Though
the original EAX has already been proved to be secure, the security bound pro-
vided by [5], in particular the authenticity bound, does not show the standard
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birthday-type security when the adversary is allowed to make multiple verifi-
cation queries. More formally, the original bound is O(σ2/2n + 1/2τ) where σ
denotes the total input blocks, n denotes the block size, and τ denotes the tag
length, if the number of verification queries is one. From the well-known result
of [3], this bound generally implies O(qvσ

2/2n+ qv/2
τ ) when the number of ver-

ification queries is qv ≥ 1, hence the provable security is degraded, roughly from
2n/2 to 2n/3, assuming qv ≈ σ. We note that, since many systems in practice do
accept multiple verification queries, the analysis for this case is relevant. Based
on the idea of [13], we provide an improved authenticity bound for EAX, namely
O(σ2/2n+qv/2

τ), hence the security up to 2n/2 data. When n = 128, this means
that the provable security is improved from 43 bits to 64 bits. In addition, we
prove our new bound in a slight more general setting than the original specifi-
cation, in the sense that the empty header is acceptable, which is plausible in
practice.

We note that the technical difficulty in handling the multiple verification
queries comes from the fact that the reject symbol returned from the decryption
oracle may leak some information about the secret key, and hence this may
have impact on the choice of the subsequent encryption and decryption queries.
Furthermore, nonces used in encryption queries can be reused for decryption
queries, or vice versa. In this case, we may not have “fresh” randomness in order
to show that the success probability of the last decryption query is small.

We also provide ideas to reduce the computation overhead of EAX, which
we assume the primal goal of EAX-prime. In EAX, three blockcipher calls are
required in advance to the actual processing, and this may make it less attrac-
tive to constrained devices. In our proposals, the overhead is reduced to one
blockcipher call while keeping the security bound that we proved for the original
EAX. This also achieves a more memory-efficient, faster operation than the orig-
inal. In this respect our proposal can be seen as a provably-secure alternative to
EAX-prime having no input-length restriction.

The main technical point in our proposals is the generation of five mask
values, originally generated from three blockcipher calls. We propose three mask-
generation methods, where the first one is based on the constant Galois field
multiplication similar to [14], and the second and third ones are based on the
word permutation and XOR. The underlying problem has a relationship to word-
oriented LFSR [18] discussed by Chakraborty and Sarkar [7] and by Krovetz and
Rogaway [11].

2 Preliminaries

Notations. For a binary string X , |X | denotes the bit length of X . For a

positive integer n we define |X |n def
= max{1, �|X |/n�}. The first s bits of X for

|X | ≥ s is written as msbs(X). Let ε denote the empty string, which is a binary
string of length 0. Thus we have |ε| = 0 and |ε|n = 1. The set of all finite-
length binary strings, including ε, is denoted by {0, 1}∗. Let N = {0, 1, . . .}.
If X ∈ X is uniformly chosen from X we write X

$← X . For X,Y ∈ {0, 1}∗,
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their concatenation is denoted by X‖Y or XY . A sequence of a zeros (ones) is
denoted by 0a (1a). Following [5], let [i]n denote a standard n-bit encoding of
integer i ≥ 0, e.g., [2]n denotes 0n−210. Let ({0, 1}n)>0 denote the set of strings
of length n, 2n, . . . . For X,Y ∈ {0, 1}n, X+Y or X−Y is defined as an addition
or a subtraction modulo 2n.

For X ∈ {0, 1}∗, let X [1]‖X [2]‖ . . .‖X [m]
n← X denote the partition into n-

bit blocks, i.e., we have m = |X |n and |X [i]| = n for i < m and |X [m]| ≤ n. For
X,Y ∈ {0, 1}∗, let X ⊕end Y be the XOR of the shorter variable into the end
of the longer one: i.e. X ⊕end Y = (0|Y |−|X|‖X)⊕ Y if |Y | ≥ |X | and otherwise
X ⊕end Y = X ⊕ (0|X|−|Y |‖Y ).

Random Function. The set of all functions {0, 1}n → {0, 1}m is denoted by
Func(n,m). We will write Func(n) to mean Func(n, n). The set of all permuta-
tions over {0, 1}n is denoted by Perm(n). Following [13], we define a uniform ran-
dom function (URF) as a random function uniformly distributed over Func(n,m)
for some n and m. A URF is denoted by R, assuming n and m are clear from the
context. In a similar manner we define a uniform random permutation (URP) as
a random permutation uniformly distributed over Perm(n) for some n. A URP
is denoted by P.

Field with 2n Points. We may view X ∈ {0, 1}n as a coefficient vector of the
polynomial of GF(2n), yielding a one-to-one mapping. By writing 2X we mean
the multiplication of the generator of GF(2n) and X over GF(2n). Here, 2(2L)
is denoted by 4L or 22L. The operation 2X is called doubling, and is efficiently
implemented by one-bit shift with constant XOR, see e.g. [10].

3 Provable Security of EAX

3.1 Specification of EAX

We first define the authenticated encryption, AE in short (or more formally, AE
with associated data (AEAD)). The encryption function of an AE scheme accepts
the nonce N , the header (also called associated data) H , and the plaintext M
and generates the ciphertext C and the tag T . The decryption (verification)
function accepts N , H , C, and T , and generates the decrypted plaintext M if
(N,C, T ) is valid, or the flag ⊥ if invalid.

The specification EAX is shown in Fig. 1. EAX is based on an n-bit block-
cipher, E, where the key of E is written as K. EAX taking a blockcipher E
and using the τ -bit tag for τ ≤ n is denoted by EAX[E, τ ]. The encryption and
decryption functions are written as EAX-EK,τ and EAX-DK,τ , or EAX-EK and
EAX-DK if τ is clear from the context.

In EAX[E, τ ], we assume that N,H,M ∈ {0, 1}∗ with N �= ε. In the original
specification, N and H are assumed to be non-empty (see Section 6 of [4]).
However, this paper slightly generalizes the setting, allowing H to be empty1.

1 This setting allows (N,H,M) with H = ε and M = ε as a valid, though artificial,
input to the encryption function.
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Algorithm EAX-EK,τ (N,H,M)

1. N ← CMAC
(0)
K (N)

2. H ← CMAC
(1)
K (H)

3. C ← CTRK(N,M)

4. T ← N ⊕ H ⊕ CMAC
(2)
K (C)

5. T ← msbτ (T )
6. return (C, T )

Algorithm EAX-DK,τ (N,H, C, T )

1. N ← CMAC
(0)
K (N)

2. H ← CMAC
(1)
K (H)

3. T ← N ⊕ H ⊕ CMAC
(2)
K (C)

4. T̂ ← msbτ (T )

5. if T̂ �= T return ⊥
6. else M ← CTRK(N,C)
7. return M

Algorithm CMAC
(i)
K (M) (for i ∈ {0, 1, 2})

1. L ← EK([0]n), L
′ ← EK([1]n), L

′′ ← EK([2]n)
2. D ← 2L, Q ← 4L
3. if M = ε return EK([i]n ⊕ D)
4. else
5. if i = 0 return CBCK(L, pad(M ;D,Q))
6. if i = 1 return CBCK(L′, pad(M ;D,Q))
7. if i = 2 return CBCK(L′′, pad(M ;D,Q))

Algorithm CTRK(N,M)

1. m ← |M|n
2. S ← EK(N)‖EK(N + 1)‖ · · · ‖EK(N + m − 1)
3. C ← M ⊕ msb|M|(S)
4. return C

Algorithm CBCK(I,M)

1. M [1]‖M [2]‖ · · · ‖M [m]
n← M

2. C[0] ← I
3. for i ← 1 to m do

C[i] ← EK(M [i] ⊕ C[i− 1])
4. return C[m]

Algorithm pad(M ;B1, B2)

1. if |M| ∈ {n, 2n, 3n, . . . , }
2. then return M ⊕end B1

3. else return
(M‖10n−1−(|M| mod n)) ⊕end B2

Fig. 1. (Upper) The encryption and decryption algorithms of EAX[E, τ ]. Here H and
M can be the empty string, ε, while H �= ε was originally required in [5]. (Lower)
Component algorithms of EAX[E, τ ]. For CBCK , |M | ∈ {n, 2n, . . . }.

The plaintext M can be empty, and in that case the corresponding C is also
empty. The ciphertext C has the same length as the corresponding plaintext,
M , and the tag T is τ bits.

In [5] the definition of CMAC
(i)
K (M) is simpler than ours, namely

CMAC
(i)
K (M)

def
= CMACK([i]n‖M). Here, CMACK(M) denotes the original

CMAC, defined as CBCK(pad(M ;D,Q)). Our definition is equivalent and we
employ it to emphasize the three redundant EK calls, L, L′, and L′′, and make

explicit the computation of CMAC
(i)
K (ε) with them.

3.2 Security Notions

The security of AE can be defined by two notions, privacy and authenticity [5,15].
In defining them, let AO1,O2,...,Oc denote the adversary A accessing c oracles,
O1, . . . , Oc, in an arbitrarily order. IfOi andOj are oracles having the same input
and output domains, we say they are compatible. Let AE[τ ] be an AE compatible
with EAX having τ -bit tag. The encryption and decryption algorithms are AE-Eτ
and AE-Dτ . If A is a CPA-adversary against AE[τ ], it accesses AE-Eτ . The en-
cryption queries made by A are written as (N1, H1,M1), . . . , (Nq, Hq,Mq), where

the number of queries, q, is a parameter of A. We also consider σX
def
=

∑q
i=1 |Xi|n
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Fig. 2. The encryption algorithm of EAX. The specification is extended to accept
H = ε. In the figure, bp(x) = x if |x| = n and bp(x) = x‖10n−1−(|x| mod n) if |x| < n.

for X ∈ {N,H,M}, and assume a parameter list (q, σN , σH , σM ) to define the
resource of A.

Let $ denote the random-bit oracle, which takes (N,H,M) and returns

(C, T )
$← {0, 1}|M| × {0, 1}τ . Then the privacy of AE for CPA-adversary A

is defined as

Adv
priv

AE[τ ](A)
def
= Pr[K

$← K : AAE-Eτ ⇒ 1]− Pr[A$ ⇒ 1]. (1)

Here, A is nonce-respecting, i.e., all Nis chosen by A are distinct.
To define the authenticity, we assume a CCA-adversary A against AE[τ ].

It accesses AE-Eτ and AE-Dτ . The set of encryption queries is denoted
by (N1, H1,M1), . . . , (Nq, Hq,Mq), and the set of decryption queries is de-

noted by (Ñ1, H̃1, C̃1, T̃1), . . . , (Ñqv , H̃qv , C̃qv , T̃qv). We assume a parameter
list (q, qv, σN , σH , σM , σÑ , σH̃ , σC̃) to define the attack resource, where σY =∑qv

i=1 |Yi|n for Y ∈ {Ñ, H̃, C̃}, in addition to σN , σH , and σM . The authenticity
of AE is defined as

AdvauthAE[τ ](A)
def
= Pr[K

$← K : AAE-Eτ ,AE-Dτ forges ], (2)
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where A forges if it receives a bit string (not ⊥) from AE-Dτ for a non-trivial

query (Ñi, H̃i, C̃i, T̃i) for some 1 ≤ i ≤ qv. Here (Ñi, H̃i, C̃i, T̃i) is non-trivial if
any encryption query-response pair (Nj , Hj ,Mj , Cj , Tj) obtained before satisfies

(Ñi, H̃i, C̃i, T̃i) �= (Nj , Hj , Cj , Tj). We remark that CCA-adversary is always
nonce-respecting with respect to encryption queries. This implies that, we can
have Ni = Ñj or Ñi = Ñj for some i and j. In the security proofs we use
the following notion. Let FK and GK′ be two compatible keyed functions with
K ∈ K and K ′ ∈ K′. Then

Adv
cpa
F,G(A)

def
= Pr[K

$← K : AFK ⇒ 1]− Pr[K ′ $← K′ : AGK′ ⇒ 1]. (3)

Note that this definition can be naturally extended when GK′ is substituted
with the random-bit oracle compatible to FK .

3.3 Security Bounds

Original Bounds. We denote EAX using an n-bit URP as a blockcipher by
EAX[Perm(n), τ ] and the corresponding encryption and decryption functions
by EAX-EP and EAX-DP. Similarly, the subscript K in the component algo-

rithms is substituted with P, e.g. CMAC
(i)
P . We focus on the security bounds for

EAX[Perm(n), τ ] as the computational counterparts for EAX[E, τ ] are trivial.
In [5], Bellare et al. introduced data complexity denoted by σ, which is slightly

different from our parameters2. The provided bounds are as follows. Note that
these theorems assume H �= ε.

Theorem 1 ([5]). Fix τ ∈ {1, . . . , n}. Let A be the CPA-adversary against
EAX[Perm(n), τ ] with data complexity σ. Then the privacy is bounded as
Adv

priv

EAX[Perm(n),τ ](A) ≤ 9.5σ2/2n.

Theorem 2 ([5]). Fix τ ∈ {1, . . . , n}. Let A be the CCA-adversary against
EAX[Perm(n), τ ] with data complexity σ and qv = 1. Then the authenticity is
bounded as AdvauthEAX[Perm(n),τ ](A) ≤ 11σ2/2n + 1/2τ .

Our Bounds. The privacy bound of Theorem 1 is the standard birthday bound
security. The bound is tight in the sense that there is an adversary that meets
the stated security bound up to a constant factor. However, the authenticity
bound of Theorem 2 is not satisfactory as it requires qv = 1. There is a known
result [3] proving that, if authenticity bound of a scheme for one verification
query is ε, authenticity bound for c verification queries is bounded by cε, for
any c > 1. Applying this result to Theorem 2, we have AdvauthEAX[Perm(n),τ ](A) ≤
11qvσ

2/2n+qv/2
τ for qv ≥ 1, implying that the security is guaranteed up to 2n/3

data when qv ≈ σ. Now we show an improved authenticity bound for EAX that
provides security up to 2n/2 data even for qv ≥ 1, with an extended specification
allowing H = ε.

2 According to [5], σ is defined as “the sum of the lengths of all strings encoded in the
adversary’s oracle queries, plus the total number of all of these strings”.



190 K. Minematsu, S. Lucks, and T. Iwata

Theorem 3. Fix τ ∈ {1, . . . , n}. Let A be the CCA-adversary against
EAX[Perm(n), τ ] with parameter list (q, qv, σN , σH , σM , σÑ , σH̃ , σC̃). Let σauth =
σN + σH + σM + σÑ + σH̃ + σC̃ . Then we have

AdvauthEAX[Perm(n),τ ](A) ≤ 18.5σ2
auth + 4.5

2n
+

qv
2τ

.

Note that σauth is largely the same as the plain σ of Theorems 1 and 2. Theorem
3 shows that EAX preserves birthday-type security in the authenticity notion
for any qv ≥ 1, rather than for qv = 1, only.

As we extended the specification to allow H = ε, a corresponding privacy
bound should also be given in principle. For completeness we show the privacy
bound in this extended specification.

Theorem 4. Fix τ ∈ {1, . . . , n}. Let A be the CPA-adversary against
EAX[Perm(n), τ ] who has parameter list (q, σN , σH , σM ). Let σpriv = σN +σH +

σM . Then we have Adv
priv

EAX[Perm(n),τ ](A) ≤ (18.5σ2
priv + 4.5)/2n.

The proofs of the above theorems are provided in Section 5.1.

4 Refinements of EAX

EAX needs three blockcipher calls in advance to the actual processing, namely
L = EK([0]n), L

′ = EK([1]n), and L′′ = EK([2]n). They are used as masks
for the initial block of CMAC. In addition, CMAC itself needs two masks for
the last block, namely 2L and 4L, hence five mask values in total. To achieve
the fastest operation, these mask values, at least the first three ones, must be
kept in memory while processing. This fact implies that EAX is not ultimately
optimized, in particular for short messages, when the amount of pre-processing
is critical. This is possible due to some practical reasons, e.g., a huge number of
keys, or frequent key changes. In addition retaining many mask values in memory
may not be desirable for constrained devices, such as low-end micro-controllers
or tiny hardware.

We propose a refinement of EAX, which we call EAX+, to minimize these
drawbacks. We note that EAX seems to have a design philosophy for keeping
the algorithm of CMAC intact, and our proposal does not follow this design
philosophy in return for the efficiency gain.

Specifically, EAX+ changes the definitions of five mask values so that they
are simple functions of L = EK([0]n). EAX

+ also sets some initial counter bits
off to suppress carry bit propagation. This is the technique used by SIV [16] and
EAX-prime to simplify the implementation of the counter mode. These changes
affect the definitions of two internal components, CMAC(i) and CTR. EAX+

uses CMAC+(i)
and CTR+, as shown in Fig. 3, instead of CMAC(i) and CTR

of Fig. 1. For simplicity Fig. 3 assumes n = 128 for fixing the constant adjusting

the initial counter, however other values of n are possible. In CMAC+(i)
, the five

mask values are denoted by A(0), A(1), A(2), D, and Q, and they are functions
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of L = EK([0]n) denoted by gA(0), gA(1), and so on. In the following, we give
three concrete masking schemes.

Scheme 1: Use GF Doubling. The first scheme, which we call EAX+
1 , uses

the following masks. Here, 3L denotes 2L⊕ L.

A(0) = 3L, A(1) = 2 · 3L, A(2) = 22 · 3L,
D = 2L, Q = 22L

This keeps the definitions of CMAC masks for the last blocks (D and Q). Note
that we have A(0) = 2L⊕L, A(1) = 22L⊕2L, and A(2) = 23L⊕22L. Any mask
is efficiently computed by holding X = L and Y = 22L, as we have A(0) = 2X⊕X,
A(1) = Y ⊕ 2X, A(2) = 2Y ⊕ Y, D = 2X, and Q = Y. Each mask computation
requires at most one doubling and one XOR.

Scheme 2: Use Sum of Four Quarters of L. The second scheme, which we
call EAX+

2 , assumes that n is divisible by 4, and uses operations over GF((2n/4)4).
We write L = (L1, L2, L3, L4) where Li ∈ GF(2n/4). The masks are as follows.

A(0) = (L1, L2, L3, L4), A(1) = (L∗, L1, L2, L3), A(2) = (L4, L∗, L1, L2),

D = (L3, L4, L∗, L1), Q = (L2, L3, L4, L∗),

where L∗ = L1 ⊕ L2 ⊕ L3 ⊕ L4. The scheme is efficient, in particular for soft-
ware, since it is merely a combination of n/4-bit word permutations and XORs.
Specifically, any mask can be efficiently computed by holding L and L∗, which
are 5n/4 bits in total.

Scheme 3: Use Two Sums. The third scheme, which we call EAX+
3 , is another

instance using word permutation and XOR. The masks are;

A(0) = (L1, L2, L3, L4), A(1) = (L2, L�, L4, L�), A(2) = (L�, L1, L�, L3),

D = (L3, L�, L2, L1), Q = (L4, L3, L�, L2),

where L� = L1 ⊕ L2 and L� = L3 ⊕ L4. The mask generation is a simple word
permutation by holding L, L�, and L�. Even if we only hold L, each mask is
computed by at most 2 XORs of words and a permutation, and the number of
word XORs required for generating all masks from L is 6.

The following theorem shows the security of these schemes.

Theorem 5. For j ∈ {1, 2, 3}, let EAX+
j [Perm(n), τ ] be EAX+

j using n-bit
URP. For any j we have

Adv
priv

EAX+
j [Perm(n),τ ]

(A) ≤
15σ2

priv

2n
, and

Advauth
EAX+

j [Perm(n),τ ]
(A) ≤ 15σ2

auth

2n
+

qv
2τ

.
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Algorithm CMAC+(i)
K (M)

1. L← EK([0]n)
2. for i = 0, 1, 2 do A(i)← gA(i)(L)
3. D← gD(L), Q← gQ(L)
4. if M = ε return EK([i]n ⊕D)
5. else return

CBCK(A(i),pad(M ;D,Q))

Algorithm CTR+
K(N,M)

1. m← |M |n
2. N∧ ← N ∧ (1n−64‖0131‖0131)
3. S ← EK(N∧)‖EK(N∧ + 1)‖
· · · ‖EK(N∧ +m− 1)

4. C ←M ⊕msb|M|(S)
5. return C

Fig. 3. Our refinement of EAX, EAX+. Here, CMAC+(i)
for i ∈ {0, 1, 2} and CTR+

are used instead of CMAC(i) and CTR, and other functions are not changed. The
definitions of gA(i), gD, and gQ are written in Section 4, yielding the three versions.

The proof idea of Theorem 5 is given in Section 5.2. The complete proof will be
given in the full version [12]. We can build variants of these schemes by applying
a permutation P that commutes with respect to XOR, i.e. P(x)⊕P(y) = P(x⊕y),
to all masks. An example is a regular matrix over GF(2n/a)a for a being a factor
of n, and a variant using such masks will have the same bounds as Theorem 5.

We note that [13] suggested some variants of EAX-prime that are provably
secure without input-length restriction. However the proposals of [13] focuses on
the black-box usage of EAX-prime. As a result the proposals of [13] are not as
efficient as ours, or require a stronger security assumption on the blockcipher.

5 Security Proofs

5.1 Proofs of Theorem 3 and Theorem 4

OMAC-Extension. In proving Theorems 3 and 4, we observe that the most
part are quite the same as those given for EAX-prime [13], which is based on
the original proof of EAX [5] with extensions taken from [10].

We therefore concentrate on the most involved part: the pseudorandomness
of OMAC-extension. Other parts will be briefly described.

OMAC-extension is a set of functions obtained by decomposing EAX [5,13].
Formally, we define OMAC-extension3 as a set of three functions using an n-
bit URP, P, obtained from EAX[Perm(n), τ ]. It is denoted by OMAC-e[P] =
(OMAC-e[P](0),OMAC-e[P](1),OMAC-e[P](2)). See Figs. 4 and 7 in Appendix B.
Here, OMAC-e[P](0) is a function that takes (N, d), where d = |M |n (d = |C|n)
for encryption (decryption), and produces N and the d-block keystream before
truncation, i.e., S of Fig. 1. Similarly, OMAC-e[P](1) takes H , and OMAC-e[P](2)

takes C. We may view OMAC-e[P] as single function taking (t,X, d) as input and

3 Our OMAC-extension does not need the auxiliary output mask as in the proof of
EAX-prime [13]. This is because of the difference in the processing for one-block
inputs.
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outputs OMAC-e[P](t)(X, d) when t = 0 and OMAC-e[P](t)(X) when t = 1, 2,
assuming d is a default value.

Similarly to Proposition 1 of [13], we have the following proposition.

Proposition 1. For any fixed τ , there exist deterministic procedures, fe(·)
and fd(·), that use OMAC-e[P] as a black-box and perfectly simulate EAX-EP
and EAX-DP. That is, we have EAX-EP ≡ fe(OMAC-e[P]) and EAX-DP ≡
fd(OMAC-e[P]).

Here, F ≡ G means the equivalence of the output probability distribution
functions for F and G, i.e. Pr[F (x1) = y1, . . . , F (xq) = yq] = Pr[G(x1) =
y1, . . . , G(xq) = yq] for any fixed possible x1, . . . , xq and y1, . . . , yq.

Then we need to evaluate the indistinguishability between OMAC-e[P] and

a set of three random functions RND = (RND(0),RND(1),RND(2)), where

RND(i) is compatible with OMAC-e[P](i). Here RND(0)(X, d) samples Y
$←

({0, 1}n)dmax+1 and outputs msbn(d+1)(Y ) if X is new, where dmax is the largest
possible value of d determined by the game we consider.

To bound the indistinguishability, we further break down OMAC-e[P] into a
set of 19 small functions, Q = {Qi}i=1,...,19.

Definition 1. Let Qi : {0, 1}n → {0, 1}n for i ∈ {1, 2, . . . , 19} \ {3, 4, 5, 6} and
let Qj : {0, 1}n × N → ({0, 1}n)>0 for j = 3, 4, 5, 6. We define

Q1(x)
def
= P(L ⊕ x)⊕ Rnd1, Q2(x)

def
= P(Rnd1 ⊕ x)⊕ Rnd1,

Q3(x, d) Q4(x, d)
def
= GP(P(2L⊕ Rnd1 ⊕ x), d),

def
= GP(P(4L⊕ Rnd1 ⊕ x), d),

Q5(x, d)
def
= GP(P(L⊕ 2L⊕ x), d), Q6(x, d)

def
= GP(P(L⊕ 4L⊕ x), d),

Q7(x)
def
= P(L′ ⊕ x)⊕ Rnd2, Q8(x)

def
= P(Rnd2 ⊕ x)⊕ Rnd2,

Q9(x)
def
= P(2L⊕ Rnd2 ⊕ x), Q10(x)

def
= P(4L⊕ Rnd2 ⊕ x),

Q11(x)
def
= P(L′ ⊕ 2L⊕ x), Q12(x)

def
= P(L′ ⊕ 4L⊕ x),

Q13(x)
def
= P(L′′ ⊕ x)⊕ Rnd3, Q14(x)

def
= P(Rnd3 ⊕ x)⊕ Rnd3,

Q15(x)
def
= P(2L⊕ Rnd3 ⊕ x), Q16(x)

def
= P(4L⊕ Rnd3 ⊕ x),

Q17(x)
def
= P(L′′ ⊕ 2L⊕ x), Q18(x)

def
= P(L′′ ⊕ 4L⊕ x),

Q19(x)
def
= P(2L⊕ x),

where P is an n-bit URP, and L = P([0]n), L
′ = P([1]n), and L′′ = P([2]n). Also,

Rnd1, Rnd2 and Rnd3 are independent n-bit random sequences, and GP(v, d) is
v if d = 0 and (v‖P(v)‖P(v + 1)‖ · · · ‖P(v + (d − 1))) if d > 0. The sampling
procedures for P, Rndj for j = 1, 2, 3 are shared for all Qis.

We treat Q as a tweakable function with tweak t ∈ {1, . . . , 19} by writing
Q(t, x, d) = Qt(x, d) when t ∈ {3, 4, 5, 6} and otherwise Q(t, x, d) = Qt(x).
We observe that OMAC-e[P] can be simulated with black-box accesses to Q.
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Algorithm OMAC-e[P] :
Initialization
00 L ← P([0]n), L

′ ← P([1]n), L
′′ ← P([2]n)

On query (t,X, d) ∈ {0, 1, 2} × {0, 1}∗ × N

10 X[1]‖X[2]‖ · · · ‖X[m]
n← X

11 if |X| mod n �= 0 or X = ε then w ← 1, else w ← 0
12 if t = 0
13 if 1 ≤ |X| ≤ n then Y ← P(bp(X) ⊕ L⊕ 2w+1L); return Y
14 else Y [1] ← P(L⊕ X[1])
15 for i = 1 to m − 2 do Y [i + 1] ← P(Y [i] ⊕ X[i+ 1])

16 Y ← P(Y [m − 1] ⊕ bp(X[m])⊕ 2w+1L)
17 if d = 0 return Y
18 for j = 0 to d − 1 do S[j + 1] ← P(Y + j)
19 return Y ‖S[1]S[2] · · ·S[d]
20 if t = 1
21 if |X| = 0 then Y ′ ← P(2L ⊕ [1]n); return Y ′

22 if 1 ≤ |X| ≤ n then Y ′ ← P(bp(X) ⊕ L′ ⊕ 2w+1L); return Y ′

23 else Y ′[1] ← P(L′ ⊕ X[1])
24 for i = 1 to m − 2 do Y ′[i+ 1] ← P(Y ′[i] ⊕ X[i + 1])

25 Y ′ ← P(Y ′[m − 1] ⊕ bp(X[m])⊕ 2w+1L)
26 return Y ′

27 if t = 2
28 if |X| = 0 then Y ′′ ← P(2L ⊕ [2]n); return Y ′′

29 if 1 ≤ |X| ≤ n then Y ′′ ← P(bp(X) ⊕ L′′ ⊕ 2w+1L); return Y ′′

30 else Y ′′[1] ← P(L′′ ⊕ X[1])
31 for i = 1 to m − 2 do Y ′′[i+ 1] ← P(Y ′′[i] ⊕ X[i+ 1])

32 Y ′′ ← P(Y ′′[m− 1] ⊕ bp(X[m]) ⊕ 2w+1L)
33 return Y ′′

Fig. 4. OMAC-extension using an n-bit URP, P

For example, when we want to simulate the computation of OMAC-e[P](0, N, 2)
for |N | = 3n, we first parse N into n-bit blocks, i.e., N [1]‖N [2]‖N [3]

n← N
and then proceed as Y [1] ← Q1(N [1]), and Y [2] ← Q3(N [2] ⊕ Y [1]), and
Y [3]‖S[1]S[2] ← Q5(N [3] ⊕ Y [2], 2). Note that, Q19 is only used to simulate

CMAC
(1)
K given H = ε, or CMAC

(2)
K given C = ε, i.e., to compute P(2L⊕ [1]n)

or P(2L⊕ [2]n).

We next define Q̃ = {Q̃i}i=1,...,19. For all i = 1, . . . , 19, Q̃i is compatible to
Qi.

Definition 2. Let Pi for i = 1, 2, 7, 8, 13, 14 be six independent n-bit URPs, and
let Rj for j ∈ {9, . . . , 19} \ {13, 14} be nine independent n-bit URFs, and let Rj

for j = 3, 4, 5, 6 be four independent URFs with n-bit input and (dmax + 1)n-bit
output. Using them we define

Q̃i(x)
def
= Pi(x), for i = 1, 2, 7, 8, 13, 14

Q̃j(x, d)
def
= Rd+1

j (x), for j = 3, 4, 5, 6

Q̃h(x)
def
= Rh(x), for h = 9, . . . , 12, 15, . . . , 19,

where Rd+1
i (x) = msbn(d+1)(Ri(x)) for i = 3, 4, 5, 6. Here dmax is the maximum

possible value of queried d, which will be determined by the underlying game and
adversary’s parameter.
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Algorithm CBC (given dmax):
Initialization

00 for i = 1, 2, 7, 8, 13, 14 do Pi
$← Perm(n)

01 for j = 3, 4, 5, 6 do Rj
$← Func(n, dmax)

02 for k = 9, 10, 11, 12, 15, 16, 17, 18, 19 do Rk
$← Func(n)

On query (t,X, d) ∈ {0, 1, 2} × {0, 1}∗ × N

10 X[1]‖X[2]‖ · · · ‖X[m]
n← X

11 if |X| mod n �= 0 or X = ε then w ← 1, else w ← 0
12 if t = 0
13 if m = 1 and d = 0 return Y ← R1

5+w(bp(X))

14 if m = 1 and d > 0 return Y ‖S[1]‖S[2]‖ · · · ‖S[d] ← Rd+1
5+w(bp(X))

15 Y [1] ← P1(X[1])
16 for i = 1 to m − 2 do Y [i + 1] ← P3(Y [i] ⊕ X[i+ 1])
17 if d = 0 then Y ← R1

5+w(Y [m − 1] ⊕ bp(X[m])); return Y

18 else Y ‖S[1]‖S[2]‖ · · · ‖S[d] ← Rd+1
5+w(Y [m− 1] ⊕ bp(X[m]))

19 return Y ‖S[1]‖S[2]‖ · · · ‖S[d]
20 if t = 1
21 if X = ε then Y ′ ← R19([1]n); return Y ′

22 else if m = 1 then Y ′ ← R11+w(bp(X)); return Y ′

23 else Y ′[1] ← P7(X[1])
24 for i = 1 to m − 2 do Y ′[i+ 1] ← P8(Y

′[i] ⊕ X[i+ 1])
25 Y ′ ← R9+w(Y ′[m− 1]⊕ bp(X[m]))
26 return Y ′

27 if t = 2
28 if X = ε then Y ′′ ← R19([2]n); return Y ′′

29 else if m = 1 then Y ′′ ← R17+w([2]n); return Y ′′

30 else Y ′′[1] ← P13(X[1])
31 for i = 1 to m − 2 do Y ′′[i+ 1] ← P14(Y

′′[i] ⊕ X[i+ 1])
32 Y ′′ ← R15+w(Y ′′[m − 1] ⊕ bp(X[m]))
33 return Y ′′

Fig. 5. Modified CBC-MAC

A function compatible to Q is said to have Q profile. An adversary querying
a function of Q profile is characterized by the number of queries, q, and the
number of total output n-bit blocks for t ∈ {3, 4, 5, 6}, σout. The next lemma

shows the CPA-advantage in distinguishing Q and Q̃.

Lemma 1. Let A be the adversary querying a function of Q profile with param-
eter list (q, σout). Then we have

Adv
cpa

Q,Q̃
(A) ≤ (4.5q2 + 10σoutq + σ2

out + 4.5)

2n
.

The proof is in Appendix A.
The remaining part of the proof is almost the same as the proof of EAX-prime.

We define the Modified CBC-MAC, CBC, which is compatible with OMAC-e[P]
and consists of three functions shown in Fig. 5. Here, Ri

j(X) for j = 3, 4, 5, 6
denotes msbn·i(Rj(X)). Then, we obtain the following proposition and lemma
as counterparts of Proposition 2 and Lemma 2 of [13]. The proofs are similar,
thus omitted.

Proposition 2. There exists a procedure h(·) that uses Q as a black box and
perfectly simulates OMAC-e[P], i.e. h(Q) ≡ OMAC-e[P]. Moreover, we have

h(Q̃) ≡ CBC for this h(·).
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Lemma 2. Let A be an adversary querying a function of OMAC-e profile,
and let σin denote the number of total blocks of queries made by A. Then,
Adv

cpa
CBC,RND(A) ≤ 3σ2

in/2
n.

Our PRIV bound is derived by combining Propositions 1 and 2 and Lemma
2 in the same manner to [13]. In proving AUTH bound, let EAX be the AE
algorithm compatible to EAX[Perm(n)] using fe(RND) and fd(RND) for the
encryption and decryption algorithms. We let A be the CCA-adversary with
parameter list (q, qv, σN , σH , σM , σÑ , σH̃ , σC̃). Then we have

AdvauthEAX(A) ≤ qv/2
τ . (4)

with almost the same proof as Eq. (14) of [13].
In the last step, we combine Propositions 1 and 2, and Lemmas 1 and 2, and

Eq. (4) in the same way as Eq. (15) to (22) of [13], and obtain the AUTH bound
of Theorem 3. To give an idea, the coefficient of σauth comes from a sum of
coefficients in Lemmas 1 and 2, i.e. (4.5 + 10 + 1) + 3.

5.2 Proof Idea of Theorem 5

The proof of Theorem 5 is quite the same as those of Theorems 3 and 4. The
difference is in Lemma 1. To have a counterpart of Lemma 1, we change the
definitions of OMAC-e[P] and Q, and evaluate the indistinguishability of Q from

Q̃, where the definition of Q̃ does not change (though we skip the definitions of
modified functions : see the full version [12]). Let A(i) = gA(i)(L) for i = 0, 1, 2,
D = gD(L) and Q = gQ(L) be the mask functions using L ∈ {0, 1}n. Let
M1 = {A(0), A(1), A(2)} and M2 = {D,Q} and M = M1 ∪ M2. It turns

out that the modified version of Q and Q̃ are indistinguishable if the following
conditions are satisfied;

1. maxX∈M,c∈{0,1}n Pr[X = c] ≤ 1/2n

2. maxX,X′∈M,X �=X′,c∈{0,1}n Pr[X ⊕X ′ = c] ≤ 1/2n

3. maxX,X′∈M1,X �=X′,c∈{0,1}n Pr[X ⊕X ′ ⊕D = c] ≤ 1/2n

4. maxX,X′∈M1,X �=X′,c∈{0,1}n Pr[X ⊕X ′ ⊕Q = c] ≤ 1/2n

5. maxX,X′∈M1,X �=X′,c∈{0,1}n Pr[X ⊕X ′ ⊕D ⊕Q = c] ≤ 1/2n

Here all probabilties are defined over L
$← {0, 1}n.

In fact, for any instance of EAX+, we observe that all five conditions are
satisfied.

Proposition 3. For any j = 1, 2, 3, the mask-generation of EAX+
j satisfies the

above five conditions.

Here is the rough proof sketch. For EAX+
1 , the first and second conditions hold

true, as X and X ⊕X ′ (for X �= X ′) can be written as an element of GF(2n),
c · L, with a non-zero constant c. We then observe that A(0)⊕A(1) = 22L⊕ L,
A(0)⊕A(2) = 23L⊕ 22L⊕ 2L⊕ L, and A(1)⊕A(2) = 23L⊕ 2L. Any of these
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sums is not included in {D,Q,D⊕Q}, which is {2L, 22L, 22L⊕2L}. This shows
that the third to fifth conditions are satisfied.

For EAX+
2 and EAX+

3 , each mask generation function can be defined as a

matrix-vector multiplication with a 4 × 4 matrix over GF(2n/4). For instance,
gA(1) of EAX

+
2 is a GF(2n/4) multiplication with⎛

⎜⎜⎝
1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ .

The five conditions can be verified by computing the rank (over GF(2n/4)) of
the corresponding sums of the matrices, and seeing that the rank is full. We
confirmed this by software.

6 Conclusion

In this paper, we have presented an improved authenticity bound for EAX,
an authenticated encryption mode proposed by Bellare, Rogaway and Wagner.
While the original bound guarantees the standard birthday-type security in the
case of one verification query, we proved the birthday-type security in the case
of multiple verification queries. We also showed refinements of EAX for reducing
the amounts of pre-processing blockcipher calls and working memory, which will
be useful for constrained devices.

Acknowledgments. The authors thank the anonymous reviewers for helpful
comments.

References

1. Bouncy Castle, http://www.bouncycastle.org/
2. Information technology - Security techniques - Authenticated encryption. ISO/IEC

19772:2009 (2009)
3. Bellare, M., Goldreich, O., Mityagin, A.: The Power of Verification Queries in Mes-

sage Authentication and Authenticated Encryption. Cryptology ePrint Archive,
Report 2004/309 (2004), http://eprint.iacr.org/

4. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation (A Two-
Pass Authenticated-Encryption Scheme Optimized for Simplicity and Efficiency),
http://www.cs.ucdavis.edu/~rogaway/papers/eax.pdf

5. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, Meier
(eds.) [17], pp. 389–407

6. Black, J.A., Rogaway, P.: CBC MACs for Arbitrary-Length Messages: The Three-
Key Constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp.
197–215. Springer, Heidelberg (2000)

7. Chakraborty, D., Sarkar, P.: A general construction of tweakable block ciphers and
different modes of operations. IEEE Transactions on Information Theory 54(5),
1991–2006 (2008)

http://www.bouncycastle.org/
http://eprint.iacr.org/
http://www.cs.ucdavis.edu/~rogaway/papers/eax.pdf


198 K. Minematsu, S. Lucks, and T. Iwata

8. Dai, W.: Crypto++ Library, http://www.cryptopp.com/

9. Gladman, B.: http://www.gladman.me.uk/

10. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

11. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption
Modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

12. Minematsu, K., Lucks, S., Iwata, T.: Improved Authenticity Bound of EAX, and
Refinements. Full-version of Provable Security 2013 (2013),
http://eprint.iacr.org/

13. Minematsu, K., Lucks, S., Morita, H., Iwata, T.: Attacks and Security Proofs of
EAX-Prime. Pre-proceedings of Fast Software Encryption 2013 (2013), full-version
available at http://eprint.iacr.org/2012/018

14. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

15. Rogaway, P.: Nonce-Based Symmetric Encryption. In: Roy, Meier (eds.) [17], pp.
348–359

16. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap
Problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

17. Roy, B., Meier, W. (eds.): FSE 2004. LNCS, vol. 3017. Springer, Heidelberg (2004)

18. Zeng, G., Han, W., He, K.: High Efficiency Feedback Shift Register: σ-LFSR. Cryp-
tology ePrint Archive, Report 2007/114 (2007), http://eprint.iacr.org/

A Proof of Lemma 1

Let Qr = {Qr
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Adv
cpa
Q,Qr(A) ≤ (q + σout + 3)2/2n+1, (5)
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sponds to Qi(x) when i �= 3, 4, 5, 6 and msbn(Qi(x, d)) when i = 3, 4, 5, 6. From
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i = 1 2 3 4 5 6 7

L Rnd1 2L⊕ Rnd1 4L⊕ Rnd1 L⊕ 2L L⊕ 4L L′

i = 8 9 10 11 12 13 14

Rnd2 2L⊕ Rnd2 4L⊕ Rnd2 L′ ⊕ 2L L′ ⊕ 4L L′′ Rnd3

i = 15 16 17 18 19

2L⊕ Rnd3 4L⊕ Rnd3 L′′ ⊕ 2L L′′ ⊕ 4L 2L

the property of Galois field it is easy to see that

max
1≤i<j≤19,δ∈{0,1}n

Pr[mask(i)⊕mask(j) = δ] ≤ 1/2n (6)

max
1≤i≤19,δ∈{0,1}n

Pr[mask(i) = δ] ≤ 1/2n (7)

where both probabilities are defined by the independent uniform samplings of
L, L′, L′′, and Rndi for i = 1, 2, 3.

For any adversary queryingQr or R, let (ti, Xi, di) be the i-th query. Without
loss of generality, we assume di is fixed to 0 whenever ti �∈ {3, 4, 5, 6}, and
all queries are distinct, i.e. (ti, Xi, di) �= (tj , Xj , dj) for any 1 ≤ i < j ≤ q,
and when ti = 19, Xi is fixed to [1]n or [2]n. For query (t,X, d), we define
XE = X ⊕mask(t) which is an actual input to the underlying random function
when Qr is queried.

Fig. 6 in Appendix B defines two games, GameQr and GameR, and it is easy
to observe that GameQr perfectly simulates Qr. Note that GameR behaves
identically to R, as Y is V ⊕ omask(t, Rnd1, Rnd2, Rnd3) and V is uniform and
independent of Rnd1, Rnd2. Because a collision in (t,X, d) is not allowed the
output of GameR is always independent and uniformly random. We define the
flag bad and set it when two inputs with input maskings collide. Then both
games are identical until bad gets set to true, thus AdvcpaQr,R(A) is bounded by

Pr[AGameQr

⇒ 1]− Pr[AGameR ⇒ 1] ≤ Pr[AGameR sets bad ]. (8)

That is, what we need is to bound the last probability.
We first focus on bad at line 13. The probability of this event is not increased

by an adaptive choice of queries, since outputs are completely random and inde-
pendent of XE for both games until bad sets. The existence of omask(t) in the
output does not help, since it is XORed to a perfectly random value. Thus we
fix all queries and measure the probability of bad .

Let us assume bad first occurs at line 13 with the i-th query, (ti, Xi, di). We

define XEi and Yi,h
def
= Yi + h as the corresponding internal variables appeared

in the i-th run of the game (where the latter only appears when ti ∈ {3, 4, 5, 6}
and di ≥ 1). We must have one of the three sub-events,

– XEi = XEj for i ≤ q, j < i, or
– XEi ∈ {[0]n, [1]n, [2]n} for i ≤ q or
– XEi = Yj + h for i ≤ q and j < i and 0 ≤ h ≤ dj − 1.
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From Eqs. (6) and (7) the first and the last sub-events occur with probability
at most 1/2n, and the middle one with probability at most 3/2n. We next focus
on bad at line 18, which implies the occurrence of one of the three sub-events
(when ti, tj ∈ {3, 4, 5, 6}),

– Yi + h = XEj for some i ≤ q, j ≤ i, 0 ≤ h ≤ di − 1 or
– Yi + h ∈ {[0]n, [1]n, [2]n} for some i ≤ q and 0 ≤ h ≤ di − 1, or
– Yi + h = Yj + h′ for some (i, h) �= (j, h′), i, j ≤ q and 0 ≤ h ≤ di − 1 and

0 ≤ h′ ≤ dj − 1.

As Yi is random and independent of all previous variables, we have

Pr[Yi + h = Xj] = max
δ

Pr[Yi = δ − h] = 1/2n. (9)

Now we have Pr[Yi+h ∈ {[0]n, [1]n, [2]n}] ≤ 3/2n and Pr[Yi+h = Yj+h′] ≤ 1/2n.
By counting the number of sub-events, we have

Pr[AGameR sets bad ] ≤
(
q

2

)
1

2n︸ ︷︷ ︸
XEi=XEj

+
3q

2n︸︷︷︸
XEi∈{[0]n,[1]n,[2]n}

+
σoutq

2n︸ ︷︷ ︸
XEi=Yj+h

for both i < j and j ≤ i

+
3σout

2n︸ ︷︷ ︸
Yi+h∈{[0]n,[1]n,[2]n}

+

(
σout

2

)
1

2n︸ ︷︷ ︸
Yi+h=Yj+h′

(10)

≤ (0.5q2 + 6σoutq + 0.5σ2
out)

2n
. (11)

We also need to evaluate the distinguishing advantage of R and Q̃. The dif-
ference between them is that R uses n-bit URFs when t is in {1, 2, 7, 8, 13, 14}
while Q̃ uses n-bit URPs. For other values of t their behaviors are identical and
independent of the responses obtained when t = 1, 2, 7, 8, 13, 14. Combining this
observation and the PRP/PRF switching lemma we have

Adv
cpa

R,Q̃
(A) ≤ q2/2n+1. (12)

Combining Eqs. (5), (12), (11), and (8), we have

Adv
cpa

Q,Q̃
(A) ≤ Adv

cpa
Q,Qr(A) + Adv

cpa
Qr,R(A) + Adv

cpa

R,Q̃
(A) (13)

≤ (q + σout + 3)2

2n+1
+

0.5q2 + 6σoutq + 0.5σ2
out

2n
+

q2

2n+1
(14)

≤ 4.5q2 + 10σoutq + σ2
out + 4.5

2n
, (15)

which concludes the proof.
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B Supplemental Figures

Initialization

00 L ← ρ([0]n)
$← {0, 1}n, L′ ← ρ([1]n)

$← {0, 1}n, L′′ ← ρ([2]n)
$← {0, 1}n

01 Rnd1
$← {0, 1}n, Rnd2

$← {0, 1}n, Rnd3
$← {0, 1}n

On query (t,X, d) ∈ {0, 1, 2} × {0, 1}∗ × N

10 XE ← mask(t, L,L′, L′′, Rnd1, Rnd2, Rnd3) ⊕ X

11 Y
$← {0, 1}n

12 V ← Y ⊕ omask(t, Rnd1, Rnd2, Rnd3)
13 if XE ∈ Dom(ρ) then bad ← true,

V ← ρ(XE), Y ← V ⊕ omask(t, Rnd1, Rnd2, Rnd3)

14 else ρ(XE) ← V
15 if t �∈ {3, 4, 5, 6} or t ∈ {3, 4, 5, 6} and d = 0 then return Y
16 for i = 0 to d− 1 do

17 S[i+ 1]
$← {0, 1}n

18 if V + i ∈ Dom(ρ) then bad ← true, S[i + 1] ← ρ(V + i)

19 else ρ(V + i) ← S[i+ 1]
20 return Y ‖S[1]‖S[2]‖ · · · ‖S[d]

Fig. 6. GameQr contains the boxed arguments, while GameR does not

+1 +1
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Fig. 7. OMAC-extension in the proofs of Theorems 3 and 4
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Abstract. OCB is an efficient, rate-1, single-key block-cipher mode of
operation for nonce-based authenticated encryption. The OCB mode uses
the block-cipher inverse for decryption, and existing security proofs of
OCB are all based on the assumption that the underlying cipher is a
strong pseudo-random permutation (SPRP). In this work, this assump-
tion is substantially weakened. Namely, we show that, for the security of
OCB, we only need to assume that the cipher is a) secure as a plain PRP
(under chosen-plaintext attacks), and b) unpredictable, which is a notion
strictly weaker than being pseudo-random, under chosen-ciphertext at-
tacks. We also point out that, in the case of tag truncation, our security
reduction would become “better” (in the sense of assumptions we have
to make) if OCB were equipped with two independent block-cipher keys.
To our knowledge, in the area of authenticated encryption, our result is
the first example to show that the number of keys makes a fundamental
difference in the essential requirements of the underlying cipher.

Keywords: SPRP, PRP, unpredictability, authenticated decryption, in-
tegrity, nonce, forward-only attempt, backward attempt, tag truncation,
key separation.

1 Introduction

Authenticated encryption simultaneously provides confidentiality and integrity
of digital data. Numerous schemes have been proposed for this purpose, many
of which use a block cipher in iteration, including CCM [12,22,27], EAX [4] and
GCM [18, 21]. The ongoing CAESAR competition [7] represents the fact that
nowadays it is still a main area of research to construct fast and secure schemes
of authenticated encryption.

To date, of these modes of operation based on a block cipher, OCB [13,24,25],
proposed by Rogaway et al., stands out as one of the most efficient constructions.
OCB is rate-1, calling the underlying cipher only once per message block. The
computational overhead of OCB is kept minimal, as compared to confidentiality-
only modes such as ECB [20]. Outside block-cipher computations, OCB requires
just a few xors and mask incrementation for each block. The mask incrementation
can be done efficiently either via Gray code or via “doubling” in the binary field.
The original OCB [25] and the latest OCB3 [13] employ Gray code, whereas
OCB2 [24] uses doubling.
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Unfortunately OCB has its drawbacks. One of its major disadvantages is that
its security has to rely on a relatively strong assumption about the underlying
block cipher—namely, that of strong pseudo-random permutation (SPRP). The
notion of SPRP requires the cipher to behave like a random permutation under
chosen-plaintext and chosen-ciphertext attacks. This contrasts sharply with some
rate-2 constructions such as GCM [18, 21] whose security can be proven under
the plain PRP assumption [11, 18], which requires the cipher to behave like a
random permutation under just chosen-plaintext attacks.

Motivation and Intuition behind Our Work. At the first glance the dif-
ference in the requirements between OCB and GCM seems “natural,” as OCB
utilizes the block-cipher inverse for decryption but GCM never calls the block-
cipher inverse. This would have been indeed “natural” if the block-cipher in-
verse were used for the purpose of making the decryption process of OCB “look
random.”

However, that is not the case. Actually, the decryption of OCB does not need
to look random at all; it only needs to ensure the integrity of the ciphertext.
This pertinent observation raises the following question:

Is SPRP absolutely necessary for the Security of OCB?

The motivation behind the current work is to answer this question. Our answer
is negative. The strong requirement of SPRP is not essential for the security
of OCB. The intuition is that, in the syntax of authenticated encryption, the
decryption process always outputs just the reject symbol “⊥” unless the tag in-
tegrity is verified. Note that ⊥ does not leak any information about the plaintext.
Therefore, it seems that the inverse cipher EK(·) does not have to be so strong
but needs to be just “sufficiently secure” to ensure integrity. We demonstrate
that such an intuition is indeed correct.

Our Contributions. In this work, we show that the SPRP requirement can be
considerably relaxed. Specifically, we show that OCB is secure if the underlying
cipher is:

1. secure as a plain pseudo-random permutation (PRP) under chosen-plaintext
attacks, and

2. unpredictable under chosen-plaintext and chosen-ciphertext attacks.

Recall that unpredictability is the very notion of integrity. Roughly speaking,
we are assuming the integrity of the underlying primitive in order to prove the
integrity of the OCB mode of operation, which seems a natural and reasonable
reduction of security.

We do not “lose” security by weakening the assumptions about the underlying
block cipher. We obtain an integrity bound which ensures essentially the same
birthday security as the previous bound based on SPRP.
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Furthermore, in the paper we explore deeper implications of our security re-
sults. These are:

• Tag Truncation. The unpredictability assumption needs to be “enhanced” if
the tag is truncated; that is, we have to assume that the truncated function
(rather than the cipher itself) is unpredictable.

• Key Separation. However, if we are allowed to use independent keys for
encryption and authentication, then we can prove the security of the (two-
key) OCB without the enhanced assumption, even when the tag is truncated.
We only need to assume that the cipher is unpredictable.

The reason behind the key separation is as follows. We use a key K1 for en-
cryption and another key K2 for tag generation. Then since K2 is never used in
decryption, the inverse E−1

K2(·) is never invoked. This means that we can treat
EK2(·) as a random permutation (by the PRP assumption). Then the security
is “preserved” even if we truncate tag output (up to degradation). We believe
that, in the field of authenticated encryption, this is the first result to show that
the number of keys may make a fundamental difference in the assumptions we
have to make about the underlying cipher.

Organization of the Paper. In Sect. 2, we explain the technical background
to this paper. We review the OCB mode of operation in Sect. 3. Security notions
are defined in Sect. 4, and security proofs are given in Sect. 5. In Sect. 6, we
describe how to handle associated data while keeping our security results valid.
In Sect. 7 we provide discussions on our integrity bound, on the tag truncation,
and on the key separation. We conclude the paper in Sect. 8.

2 Background

In this section, we describe the technical background to the current work. In
particular, we focus on revealing the differences between the security notions,
which help us grasp clearly the full significance of our results.

Gap between PRP and SPRP. There exists a significant gap separating the
notion of PRP from that of SPRP. We give several examples that illustrate the
gap.

Luby and Rackoff [16, 17] showed that three-round Feistel Network (using
random round functions) is sufficient to construct a PRP, while four rounds are
necessary to construct an SPRP. That is, such a three-round Feistel cipher is
secure in the sense of PRP but insecure in the sense of SPRP.

To highlight the gap, we construct a block cipher that is PRP but certainly
not SPRP. Let EK : {0, 1}n → {0, 1}n be a block cipher with K ∈ {0, 1}k. Put
X0 := E−1

K (0n). Given a random string r ∈ {0, 1}n/2, set Y0 := EK

(
0n/2‖r

)
. We

define a block cipher E′
K,r : {0, 1}n → {0, 1}n as

E′
K,r(X) :=

⎧⎪⎨⎪⎩
0n if X = 0n/2‖r,
Y0 if X = X0, and

EK(X) otherwise.
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We see that E′
K,r(·) is a secure PRP up to about 2n/2 queries if EK(·) is a

secure PRP. However, it is absolutely not an SPRP, since an adversary can
easily distinguish it from a random permutation by just making a single query
0n to the inverse oracle.

The gap between PRP and SPRP does not remain theoretical but appear in
cryptanalysis of actual block ciphers. For example, Wagner [26] introduced the
boomerang attack on block ciphers. The boomerang attack is a framework based
on differential cryptanalysis. The framework is inherently an adaptive chosen-
ciphertext attack. Indeed, the full AES-192 and AES-256 (with the full key space)
were first cryptanalyzed using the boomerang attack [5]. The attack shows that
AES-192/256 are not SPRP (though in the related-key setting). However, AES-
192/256 remains as a secure PRP, because the attack has to make inverse queries.

Gap between Pseudo-Randomness and Unpredictability. We explain
the substantial gap between being pseudo-random and being just unpredictable.
First, observe that the former implies the latter, with a loss of 1/2n, where n
is the output size of the function [2]. The latter does not imply the former,
and efficiently constructing the former from the latter is not easy [19]. There
are numerous efficient modes of operation whose security proof relies on the
pseudo-randomness of the underlying block cipher. On the other hand, modes of
operation whose security relies on the unpredictability of the underlying cipher
seem harder to construct (e.g. [8–10, 14]).

Here, the aforementioned counterexample E′
K,r(·) is also instructive. Assume

that EK(·) is an SPRP, rather than just a PRP. Still, E′
K,r(·) is not a secure

SPRP; the same attack applies. However, we notice that E′
K,r is unpredictable

under chosen-ciphertext attacks, meaning that an adversary cannot output a
pair (X∗, Y ∗) satisfying Y ∗ = E′

K,r(X
∗) such that the query X∗ has not been

made to the E′
K,r(·) oracle and the query Y ∗ has not been made to the E′−1

K,r(·)
oracle.

This counterexample serves to clarify the importance of our results. According
to previous proofs, the security of the OCB mode constructed of such a non-
SPRP block cipher E′

K,r(·) could not be guaranteed. On the other hand, our
proof demonstrates that the OCB with such E′

K,r(·) actually generates a secure
scheme of authenticated encryption.

Tweakable Ciphers. Recalling the previous security proofs of OCB modes [13,
24, 25], we see that, to a greater or less extent, these proofs can be recaptured
by the framework of tweakable ciphers [15]. Tweakable ciphers are tightly tied
together with the notion of pseudo-randomness, namely PRP and/or SPRP.

Our proofs also use techniques from the framework of tweakable ciphers, but
we do so carefully, so that we separate the block-cipher inverse E−1

K (·) from
the framework of tweakable ciphers. In other words, we are forced to restrict
the usage of tweakable ciphers to PRP, because we do not assume SPRP about
the cipher. Whenever we have to deal with the block-cipher inverse, we use the
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Fig. 1. OCB2 Encryption

Algorithm 1. OCB2 Encryption EK(N,M)

Input: a nonce N ∈ {0, 1}n, a message M ∈ {0, 1}∗, a key K ∈ {0, 1}k
Output: a ciphertext C ∈ {0, 1}∗, a tag T ∈ {0, 1}n

1 (C,R)← Enc+1
K (N,M); T ← AuthK(N,M,C,R)

2 return (C, T )

framework of message authentication codes. This is made possible owing to the
unpredictability that we assume about the underlying block cipher.

3 Review of OCB

In this section we review the OCB mode of operation. For the sake of simplicity,
we choose OCB2 (our results apply to other versions of OCB). At the moment
we assume that the tag size is not truncated. Algorithms 1 and 2 define the
encryption and decryption processes of the OCB2 mode, respectively. The al-
gorithms call an n-bit block cipher EK : {0, 1}n → {0, 1}n with K ∈ {0, 1}k.
The subroutines are defined in Algorithms 3 and 4. Figure 1 describes the OCB2
encryption.

We choose an appropriate irreducible polynomial. For example, when n = 128,
we can choose f(u) := u128 ⊕ u7 ⊕ u2 ⊕ u⊕ 1 ∈ GF(2)[u] to represent the finite
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Algorithm 2. OCB2 Decryption DK(N,C, T )

Input: a nonce N ∈ {0, 1}n, a ciphertext C ∈ {0, 1}∗, a tag T ∈ {0, 1}n,
a key K ∈ {0, 1}k

Output: a message M ∈ {0, 1}∗ or a special symbol ⊥
1 (M,R)← Enc−1

K (N,C); T ′ ← AuthK(N,M,C,R)
2 if T = T ′ then return M else return ⊥

Algorithm 3. Enc±1
K (N,X) Subroutine

Input: a nonce N ∈ {0, 1}n, data X ∈ {0, 1}∗, a key K ∈ {0, 1}k
Output: data Y ∈ {0, 1}∗, a mask R ∈ {0, 1}n

1 L← EK(N)
2 if X = ε then /* empty data */

3 Y ← ε

4 Δ← 2 · L
5 R← EK(Δ⊕ 0)

6 else /* non-empty */

7 X[1]
∥∥ X[2]

∥∥ · · · ∥∥ X[x]
n←− X

8 for i = 1 to x− 1 do
9 Δ← 2i · L /* multiplication in GF(2n) */

10 Y [i]← E±1
K

(
Δ⊕X[i]

)⊕Δ

11 end
12 Δ← 2x · L
13 r ← len

(
X[x]

)
14 R← EK(Δ⊕ r)
15 Y [x]← msbr(R)⊕X[x]
16 Y ← Y [1]

∥∥ Y [2]
∥∥ · · · ∥∥ Y [x]

17 end
18 return (Y,R)

field GF(2128). The dot · represents a multiplication in the field. Multiplica-
tion by ‘2’ means that by u, and multiplication by ‘3’ means that by u ⊕ 1. A
non-negative integer is represented as a bit string using a natural conversion.
The leftmost bit is the most significant bit. The function msbi(X) outputs the
leftmost (significant) i bits of the string X .

Given a non-empty string X , the notation X [1]‖X [2]‖ · · · ‖X [x]
n←− X repre-

sents the partitioning operation into n-bit strings; we have

X [1]‖X [2]‖ · · ·‖X [x] = X,

where
∣∣X [i]

∣∣ = n for 1 ≤ i ≤ x − 1 and 1 ≤
∣∣X [x]

∣∣ ≤ n. The function len(X)
returns the bit length of a string X ∈ {0, 1}∗. The returned value is a non-
negative integer.

Given a string X , the notation X‖0∗ means padding a minimum number of
zero bits so that the bit length of the resulting string becomes divisible by n. No
bit is padded if X is the null string ε.
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Algorithm 4. AuthK(N,M,C,R) Subroutine

Input: a nonce N ∈ {0, 1}n, a message M ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗,
a mask R ∈ {0, 1}n, a key K ∈ {0, 1}k

Output: a tag T ∈ {0, 1}n
1 if M = ε then /* empty message */

2 Σ ← R

3 else /* non-empty */

4 M [1]
∥∥ M [2]

∥∥ · · · ∥∥ M [m]
n←− M

5 C[1]
∥∥ C[2]

∥∥ · · · ∥∥ C[m]
n←− C

6 Σ ←M [1]⊕M [2]⊕ · · · ⊕M [m− 1]⊕ (
C[m]

∥∥ 0∗
)⊕R

7 end
8 Δ← 2m · 3 · L
9 T ← EK(Δ⊕Σ)

10 return T

4 Security Definitions

Basically, we follow the security notions used in the work of OCB [13, 24, 25].
The notion of PRP and that of unpredictability are the standard ones used in,
for example, [8, 24].

PRP Assumption. We assume that our underlying block cipher E is a pseudo-
random permutation (PRP). We give an adversary A (an oracle machine) access
either to the cipher oracle EK(·) or to the random permutation oracle π(·), where
the key K is chosen at random from the key space {0, 1}k and the permutation
π is chosen at random from the set of permutations over {0, 1}n. We write AO(·)

for the value returned by A after its interaction with oracle O(·). We define

AdvprpE (A) := Pr
K

[
AEK(·) = 1

]
− Pr

π

[
Aπ(·) = 1

]
,

where the probabilities are taken over the random coins used by the oracles
and also over internal coins of A, if any. We fix a model of computation and a
method of encoding in order to measure the time complexity of an adversary A.
We define AdvprpE (t, q) := maxA AdvprpE (A), where max is taken over adversaries
A whose time complexity is at most t and whose query complexity is at most q
queries to the oracle.

Similarly, we define the SPRP advantage Advprp±1
E (A), where the adver-

sary is given access also to the inverse oracle, E−1
K (·) or π−1(·). The quantity

Advprp±1
E (t, q) is defined in the same way, where q denotes the maximum num-

ber of oracle queries. Sometimes we write Advprp±1
E (t, q+1, q−1), where q+1 is the

maximum number of forward queries and q−1 that of inverse queries (so we have
q = q+1 + q−1).

Unpredictability under Chosen-Ciphertext Attacks. This is the other
property that we need to assume about the cipher. We give an adversary A
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access to the forward oracle EK(·) and to the inverse oracle E−1
K (·). We often

write AE±1
K (·) to mean AEK(·),E−1

K (·). We demand the adversary to output a

forgery attempt (X∗, Y ∗) ← AE±1
K (·) after its interaction with oracles. We define

Advmac±1
E (A) := Pr

[
AE±1

K (·) forges
]
,

where “forges” means that EK(X∗) = Y ∗ where X∗ has not been asked to the
EK(·) oracle and Y ∗ not to the E−1

K (·) oracle. The quantity Advmac±1
E (t, q) is

defined similarly.

Confidentiality Definition. We give an adversary A access either to the en-
cryption oracle EK(·, ·) or to the random oracle $(·, ·). The EK(·, ·) oracle takes
(N,M) as its input and returns (C, T ). The $(·, ·) oracle takes (N,M) as its
input and returns a random string of the length |M |+ n. The adversary needs
to be nonce-respecting; we demand that an adversary A never repeats the same
N in its queries. We define the privacy advantage as

AdvprivE (A) := Pr
K

[
AEK(·,·) = 1

]
− Pr

$

[
A$(·,·) = 1

]
.

We define AdvprivE (t, σ) := maxA AdvprivE (A), where the max runs over adver-
saries A who consumes time at most t, the total length of queries being at most
σ blocks. A block is n bits, and the length of a query (N,M) is 1 + �|M |/n�
blocks.

Integrity Definition. Again we give an adversary A access to the encryption
oracle EK(·, ·). The adversary needs to be nonce-respecting. We demand the ad-
versary to output a forgery attempt (N∗, C∗, T ∗) ← AEK(·,·) after its interaction
with the oracle. The value N∗ can be old. We define

AdvintE (A) := Pr
K

[
AEK(·,·) forges

]
,

where “forges” means that DK(N∗, C∗, T ∗) returns some M∗ �= ⊥ and the query
(N∗,M∗) has not been made to the EK(·) oracle. The quantity AdvintE (t, σ) is
defined similarly, except that this time the total length of queries σ contains the
length of (N∗, C∗, T ∗).

Security of Tweakable Ciphers. We give an adversary A access either to
the tweakable-cipher oracles EK,i(·) or to an ideal oracles πi(·), where the key
K is chosen at random from the key space {0, 1}k and the tweaks i are specified
by the adversary A within the tweak space T . The permutations πi (i ∈ T ) are
independently chosen at random from the set of permutations over {0, 1}n. We
define

Advp̃rpE (A) := Pr
K

[
AEK,i(·) = 1

]
− Pr

πi

[
Aπi(·) = 1

]
,



210 K. Aoki and K. Yasuda

where the probabilities are taken over the random coins used by the oracles and
also over internal coins of A, if any. We define Advp̃rpE (t, q) := maxA Advp̃rpE (A),
where max is taken over adversaries A whose time complexity is at most t and
whose query complexity is at most q queries to the oracle.

Similarly, we define the SPRP version Advp̃rp±1
E (A), where the adversary is

given access also to the inverse oracles, E−1
K,i(·) or π−1

i (·). Also, the quantity

Advp̃rp±1
E (t, q) is defined in the same way as before, where q denotes the maxi-

mum number of oracle queries. Again, we may write Advp̃rp±1
E (t, q+1, q−1), where

q+1 is the maximum number of forward queries and q−1 that of inverse queries.

5 Security Proofs of OCB without SPRP

This section is devoted to security proofs. We prove the security of OCB based
on the weaker-than-SPRP assumptions.

5.1 Confidentiality of OCB without SPRP

The original proofs of confidentiality of OCB [25], OCB2 [24], OCB3 [13] all
rely on the sole assumption that the underlying block cipher is a PRP. This is
strongly related to the fact that the definition of confidentiality does not involve
the block-cipher inverse E−1

K (·). Specifically, the following theorem holds:

Theorem 1 (Confidentiality of OCB2 Based on PRP). We have

AdvprivOCB2[E](t, σ) ≤ AdvprpE (t′, 2σ) +
9.5σ2

2n
,

where t′ is about t plus 2σ times the time to compute EK(·).

Proof. For the sake of completeness, here we include the proof of OCB2’s privacy
based on just the PRP (rather than SPRP) assumption. Recall that Rogaway [24]
proves OCB2’s privacy in the case of ideal tweakable ciphers:

Lemma 1 (Confidentiality of OCB2 Based on an Ideal Tweakable Ci-
pher). Let π be an ideal tweakable cipher yielding independently random permu-
tations πN

i,j : {0, 1}n → {0, 1}n for tweaks (N, i, j) ∈ {0, 1}n × {1, 2, . . . , 2n/2} ×
{0, 1}. Then we have

AdvprivOCB2[π](t, σ) = 0,

where t is arbitrary and σ ≤ 2n/2. The CPA security is required when π is
replaced with an actual tweakable cipher.

Therefore, it remains to prove the CPA security of the XEX[E] construction,
based on the PRP assumption of the block cipher E. The following guarantees
this:
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Lemma 2 (XEX CPA-Security Based on PRP). We have

Advp̃rpXEX[E](t, q) ≤ AdvprpE (t′, 2q) +
9.5q2

2n
,

where t′ is about t plus 2q times the time to compute EK(·).

Proof. Rogaway [24] proves that the XEX construction is a CCA-secure tweak-
able cipher if the underlying block cipher is a secure SPRP. More specifically,
Rogaway [24] proves

Advp̃rp±1
XEX[E](t, q+1, q−1) ≤ Advprp±1

E (t′, 2q+1 + q−1, q−1) +
9.5(q+1 + q−1)

2

2n
,

where q+1 denotes the maximum number of forward queries and q−1 that of
inverse queries (Rogaway [24] gives an inequality in terms of q = q+1 + q−1, but
his proof [24] directly implies the above refined inequality). Now setting q−1 := 0
yields the desired inequality. 
�

Now, by setting q = σ, we obtain Theorem 1 by combining the above two
lemmas. 
�

5.2 Integrity of OCB without SPRP

We now prove the integrity of OCB. For the sake of easy presentation, we prove
our results for OCB2 [24] without tag truncation. Similar results apply to other
versions of OCB.

Before we proceed, we give some definitions. These definitions play important
roles in our proofs.

Forward-Only Attempts and Backward Attempts. Let (N∗, C∗, T ∗) be
the adversary’s output (forgery attempt). Write C∗ = C∗[1]‖C∗[2]‖ · · · ‖C∗[c∗].
We call (N∗, C∗, T ∗) forward-only if the blocks C∗[1], C∗[2], . . ., C∗[c∗ − 1] are
the values returned by the oracle on a previous query (N∗,M◦) with some M◦ ∈
{0, 1}∗. That is, if we write (C◦, T ◦) for the value returned by the oracle on this
query (N∗,M◦) and C◦ = C◦[1]‖C◦[2]‖ · · · ‖C◦[c◦], then forward-only means
c∗ ≤ c◦ and C∗[1] = C◦[1], C∗[2] = C◦[2], . . ., C∗[c∗ − 1] = C◦[c∗ − 1]. We
also define any (N∗, C∗, T ∗) with a single-block C∗ as a forward-only attempt.
We call (N∗, C∗, T ∗) backward otherwise. If (N∗, C∗, T ∗) is a backward attempt,
then C∗ must contain at least two blocks.

“Index α.” Let (N∗, C∗, T ∗) be a backward attempt, so that C∗ consists of
two or more blocks. Let us write C∗ = C∗[1]‖C∗[2]‖ · · · ‖C∗[c∗]. We shall define
an index α as follows. If N∗ is new, then set α := 1. If N∗ is old, then let
(N∗,M◦) be the previous query and (C◦, T ◦) the value returned by the oracle.
Write C◦ = C◦[1]‖C◦[2]‖ · · · ‖C◦[c◦]. We define α to be the smallest index such
that C∗[α] �= C◦[α]. Note that α ≤ c∗ − 1.
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Algorithm 5. Verification of Backward Attempt (N∗, C∗, T ∗)

1 if N∗ is new and N∗ ∈ input(E) then
2 NonceColl← 1; return 1 /* let adversary win */

3 end

4 L∗ ← EK(N∗); C∗[1]
∥∥ C∗[2]

∥∥ · · · ∥∥ C∗[c∗] n←− C∗

5 for each i( �= α) ∈ {1, 2, . . . , c∗ − 1} do
6 Δ← 2i · L∗; add Δ⊕ C∗[i] to output(E)
7 end

8 Δ← 2c
∗ · L∗; r ← len

(
C∗[c∗]

)
; R← EK(Δ⊕ r)

9 add T ∗ to output(E)
10 if 2α · L∗ ⊕ C∗[α] ∈ output(E) then
11 OutColl← 1; return 1 /* let adversary win */

12 end
13 for i = 1 to c∗ − 1 do
14 Δ← 2i · L∗; M∗[i]← E−1

K

(
Δ⊕ C∗[i]

)⊕Δ /* inverse cipher */

15 end

16 Δ← 2c
∗ · 3 · L∗; Σ ←M∗[1]⊕M∗[2]⊕ · · · ⊕M∗[c∗ − 1]⊕ (

C∗[c∗]
∥∥ 0∗

)⊕R

17 if Δ⊕Σ ∈ input(E) then
18 SumColl← 1; return 1 /* let adversary win */

19 end
20 T ′ ← EK(Δ⊕Σ)
21 if T ∗ = T ′ then /* successful forgery */

22 TagColl← 1; return 1
23 end
24 return 0

Theorem 2 (Integrity of OCB2, without Tag Truncation). We have

AdvintOCB2(t, σ) ≤ 3AdvprpE (t′, 2σ) + 3σAdvmac±1
E (t′, 2σ) +

24.5σ2

2n
,

where t′ is about t plus 2σ times the time to compute E±1
K (·).

Proof. The proof of this theorem is a mixture of information-theoretic notions
(related to PRP) and complexity-theoretic notions (mainly related to MAC±1).
This is unlike usual proofs of block-cipher-based modes of operation, where the
two kinds of notions are clearly separated in two stages. The mixture might look
strange but is the core of our proofs.

Let A be an adversary trying to break the integrity of OCB2. Adversary A
may be adaptive and/or randomized. We assume that the total length of queries
made by A is at most σ. Let (N∗, C∗, T ∗) be adversary A’s output. Let q ≤ σ
denote the number of queries that A has made at this point.

If (N∗, C∗, T ∗) is a forward-only attempt, then the verification process of
(N∗, C∗, T ∗) does not involve the block-cipher inverse E−1

K (·). So we can bound
the forgery probability as follows. We first replace the block-cipher calls with
random permutations πN

i,j , which costs us AdvprpE (t′, 2σ)+9.5σ2/2n by Lemma 2.
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The random permutation πN∗
i,1 producing T ∗ in response to the forward-only

attempt (N∗, C∗, T ∗) has been never invoked before, and hence for any value T ∗

the probability that the output value becomes equal to T ∗ is at most 1/2n. In
total, the success probability of a forward-only attempt is bounded by

AdvprpE (t′, 2σ) +
9.5σ2

2n
+

1

2n
,

where t′ is, throughout the paper, about t plus 2σ times the time to com-
pute E±1

K (·).
Hence, it remains to treat the case where (N∗, C∗, T ∗) is a backward attempt.

We run the adversary as (N∗, C∗, T ∗) ← AEK(·), maintaining two sets input(E)
and output(E). The set input(E) records all input values to EK(·) and output
values from E−1

K (·). Vice versa for output(E). We then verify the integrity of
(N∗, C∗, T ∗) according to Algorithm 5. We let the adversary win if she success-
fully sets one of the four flags. Obviously we have

Pr
[
TagColl

]
≤ Pr

[
TagColl ∧ SumColl

]
+ Pr

[
SumColl∧OutColl

]
+ Pr

[
OutColl ∧NonceColl

]
+ Pr

[
NonceColl

]
,

and we shall evaluate each of these probabilities.

• NonceColl. This is an event in which the adversary outputs a fresh N∗

such that N∗ collides with some previous input value to EK(·). Note that
this event can be described without calling the block-cipher inverse E−1

K (·).
Therefore, it turns out that we can bound this probability, within the frame-
work of tweakable ciphers [24, Theorem 7], based on the assumption that E
is a PRP. We become generous and let A win if it causes a collision of input
values, not only at the time of a backward attempt but at any time during the
game, even while making queries to oracle EK(·). We first replace EK(·) with
a random permutation π, and then replace π with a random function ϕ. This
costs us AdvprpE (t′, σ+q)+0.5(σ+q+1)(σ+q)/2n ≤ AdvprpE (t′, 2σ)+4σ2/2n,
by the PRP-PRF switching lemma (e.g. [3]). Observe that there are at most
σ+q ≤ 2σ calls to ϕ (for encrypting nonces, for encrypting messages and for
producing tags). A collision of input values are one of the following events:

• N ′ = 2i · 3j · L⊕X ,

• 2i
′ · 3j′ · L′ ⊕X ′ = N , or

• 2i
′ · 3j′ · L′ ⊕X ′ = 2i · 3j · L⊕X ,

where the query with N ′ is made after the one with N . Note that L and
L′ are random values not seen by the adversary as long as NonceColl,
and N, i, j,X,N ′, i′, j′, X ′ are independent from L and L′. Under the event
NonceColl, what A observes is the output values of a random function ϕ,
and these returned values do not affect the probability that one of the above
three equations holds. Therefore, we may assume that A is non-adaptive,
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Algorithm 6. Forger B attacking E±1
K (·)

1 initialize input(E) /* record input of EK(·) and output of E−1
K (·) */

2 run (N∗, C∗, T ∗)← AEK(·,·) /* simulate A’s oracle using EK(·) */

3 if (N∗, C∗, T ∗) is not a backward attempt then
4 abort
5 else

6 L∗ ← EK(N∗); C∗[1]
∥∥ C∗[2]

∥∥ · · · ∥∥ C∗[c∗] n←− C∗

7 for each i( �= α) ∈ {1, 2, . . . , c∗ − 1} do
8 compute M∗[i] by making a query to E−1

K (·)
9 end

10 compute R by making a query to EK(·)
11 choose uniformly at random X ← input(E) /* reduction degrades */

12 M∗[α]← X ⊕ 2c
∗ · 3 · L∗ ⊕ (

C∗[c∗]
∥∥ 0∗

)⊕R⊕⊕
i�=α,i<c∗ M∗[i]

13 return
(
2α · L⊕M∗[α], 2α · L⊕ C∗[α]

)
/* forgery attempt on E±1

K (·) */

14 end

and the overall probability of an input collision (after becoming generous to
the adversary) is at most

2σ∑
α=1

α

2n
≤ 4σ2

2n
.

• OutColl∧NonceColl. This is an event in which 2α ·L∗⊕C∗[α] collides with
some previous output value of EK(·). Again, similarly to the previous case,
note that this event can be described without the block-cipher inverseE−1

K (·).
We can first replace EK(·) with a random permutation π(·) and then with
a random function ϕ(·). This costs us AdvprpE (t′, 2σ) + 4σ2/2n. We can then
observe that the previous output values must be either a) L ← EK(N),
b) 2i · L ⊕ C[i] or c) T ← EK(2m · 3 · L ⊕ Σ). In any event, under the
condition NonceColl, even though adversary A may well be adaptive (and
may have chosen C∗ adaptively), adversary A has learned nothing about the
value L∗. The values returned by the random function ϕ do not affect the
probability of guessing L∗. So the probability is at most

�∗∑
α=1

2σ

2n
≤ 2σ2

2n
,

where �∗ denotes the block length of C∗.
• SumColl∧OutColl. Using A as a subroutine, we shall construct a forger B

that attacks the unpredictability of E±1
K (·). See Algorithm 6 for the definition

of adversary B. Under the eventOutColl, we see that 2α ·L⊕C∗[α] must be
a new output value. We can compute its preimage by making queries to the
E±1

K (·) oracle, which yields a forgery. Note that there is a loss factor of 1/(σ+
q), because B has to make a guess of the value X . Overall, we can bound
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the probability as Pr
[
SumColl∧OutColl

]
≤ (σ+ q)Advmac±1

E (t′, σ+ q) ≤
2σAdvmac±1

E (t′, 2σ).
• TagColl∧SumColl. This event directly implies a forgery of the block cipher.

We can easily compute Pr
[
TagColl ∧ SumColl

]
≤ Advmac±1

E (t′, 2σ).

We can now sum up the probabilities as

AdvintOCB2(A) ≤ AdvprpE (t′, 2σ) +
9.5σ2

2n
+

1

2n

+AdvprpE (t′, 2σ) +
4σ2

2n
+

4σ2

2n

+AdvprpE (t′, 2σ) +
4σ2

2n
+

2σ2

2n

+ 2σAdvmac±1
E (t′, 2σ)

+ Advmac±1
E (t′, 2σ)

≤ 3AdvprpE (t′, 2σ) + 3σAdvmac±1
E (t′, 2σ) +

24.5σ2

2n
,

as desired. 
�

6 AEAD (AE with Associated Data)

Rogaway [23] discusses a generic way (“ciphertext translation”) to handle asso-
ciated data (AD) A ∈ {0, 1}∗ with an AE scheme that does not have an AD
input. Specifically, given a MAC FK′ : {0, 1}∗ → {0, 1}n which is PRF-secure
(indistinguishable from a random function Φ : {0, 1}∗ → {0, 1}n, where {0, 1}∗
is treated as the set of strings whose length is at most 2n/2 blocks; the quantities
AdvprfF (A) and AdvprfF (t, σ) are defined in the natural way) with a secret key K ′,
we can construct an AEAD scheme OCB2[E]-F as follows:

OCB2[E]-FN
K,K′(A,M) :=

{
(C, T ) if A = ∅,

(C, T ⊕ V ) otherwise,

where (C, T ) ← OCB2[E]NK(M) and V ← FK′(A). Here, K and K ′ are assumed
to be independent. Regarding the security of this combined scheme, we have

AdvprivOCB2[E]-F (t, σ) ≤ AdvprivOCB2[E](t
′, σ) + AdvprfF (t′, σ), (1)

AdvintOCB2[E]-F (t, σ) ≤ AdvintOCB2[E](t
′, σ) + AdvprfF (t′, σ), (2)

where t′ is about t plus the time to compute OCB2 and F on these inputs. Now,
if we realize F using for example PMAC [6] based on the block cipher E, then
our results carry over to this AEAD scheme, because the PRF security of PMAC
can be proven based on the PRP assumption of the underlying cipher E [6].

Rogaway [24] introduces PMAC1 and combines it with OCB2 via ciphertext
translation. This results in a single-key AEAD scheme, The definition of PMAC1
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Algorithm 7. PMAC1K(A)

Input: associated data A( �= ∅) ∈ {0, 1}∗, a key K ∈ {0, 1}k
Output: a value V ∈ {0, 1}n

1 L← EK(0)
2 Σ ← 0

3 A[1]
∥∥ A[2]

∥∥ · · · ∥∥ A[a]
n←− A

4 for i = 1 to a− 1 do
5 Δ← 2i · 32 · L /* multiplication in GF(2n) */

6 B[i]← EK

(
Δ⊕ A[i]

)
7 Σ ← Σ ⊕B[i]

8 end
9 if

∣∣A[a]
∣∣ = n then

10 Δ← 2a · 33 · L
11 Σ ← Σ ⊕ A[a]

12 else
13 Δ← 2a · 34 · L
14 Σ ← Σ ⊕ (

A[a]
∥∥ 10∗

)
15 end
16 V ← EK

(
Δ⊕Σ

)
17 return V

is given in Algorithm 7. For the single-key OCB2+PMAC1 (using the same block-
cipher keyK), (1) is relatively easily proven, as we can apply the tweakable cipher
framework which essentially separates the key between OCB2 and PMAC1. On
the other hand, unfortunately, (2) for OCB2+PMAC1 is not immediate. The
difficulty lies in the fact that we are unable to completely separate the PRP
part (which goes down to information-theoretic notion) from the MAC± 1 part
(which remains within the complexity-theoretic notion). However, the integrity
of OCB2+PMAC1 can be proven (without SPRP) in essentially the same way
as our proof of integrity of OCB2. The proof would not need much modification
and hence is omitted.

7 Further Discussion

In this section we dicuss the implications of our security results. We first closely
compare our integrity bound with the previous one that is based on the SPRP
assumption. We then explore the problem of tag truncation and the separation
of block-cipher keys.

Comparison with the Previous Bound. Table 1 compares our integrity
bound with the one obtained in [24] for OCB2 based on the SPRP assumption.
One might wonder that our bound is qualitatively worse, because of the constant
3σ in front of Advmac

E (·). This is not the case, because in general Advmac
E (·)

is significantly smaller than AdvprpE (·). Essentially, our bound gives a birthday
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Table 1. Comparison of OCB2 integrity bounds, where τ denotes the tag length. Note
that the work [24] allows only a single attempt of forgery, whereas we allow multiple
attempts.

Assumptions Bounds Source

SPRP AdvsprpE (t′, 2σ) +
9.5σ2

2n
+

2n−τ

(2n − 1)
[24]

PRP + MAC 3Advprp
E (t′, 2σ) + 3σAdvmac

E (t′, 2σ) +
24.5σ2

2n
This work

security comparable to the previous bound that is based on SPRP. We refer to [1,
9,19] for detailed discussion on the difference between Advmac

E (·) and AdvprpE (·).

Tag Truncation. If one wants to prove the security of OCB2 based on the
weaker-than-SPRP assumptions for the cases where the tag size is truncated to
τ < n bits, then one needs to assume that the function E′

K : {0, 1}n → {0, 1}τ
defined naturally from EK is unpredictable when given access to the oracles
E±1

K (·). This assumption, of course, is stronger than assuming that the cipher
EK : {0, 1}n → {0, 1}n itself is unpredictable. The stronger assumption seems
inevitable, since we are reducing the event TagColl ∧ SumColl directly to the
unpredictability of the truncated function E′

K : {0, 1}n → {0, 1}τ .

Two-Key OCB2. Interestingly, however, we could circumvent the aforemen-
tioned stronger assumption if we are allowed to use two different keys. Figure 2
describes a two-key version of OCB2 (note that the mask is just Λ, not 2m ·3 ·Λ).
The security proof becomes a bit easier for this construction, and the bound be-
comes slightly better (by a constant factor). Moreover, since the inverse E−1

K2(·)
is never used in the algorithm, we can replace EK2(·) with a random permuta-
tion π2, independent of the key K1. Therefore, for this two-key construction, we
do not need to assume the stronger unpredictability; we can prove the security of
the two-key OCB2 based on the original weaker-than-SPRP assumption about
the underlying cipher.

The trick is that we are able to measure the degradation of security caused
by truncating the output of a PRP function. We cannot do the same for an
unpredictable function. This seems to be the first example of an authenticated-
encryption mode in which the number of keys makes a fundamental difference
in the assumptions about the underlying block cipher.

We are not proposing the two-key version over the original OCB. There is
of course performance issues with the two-key version. The two-key OCB2 is
expected to perform asymptotically the same as compared to OCB2, since the
main operation is the same and the other operations are done in a constant time.
On the other hand, there exist engineering issues. The two-key version obviously
needs twice the size of secure memory. Also, the two-key version needs to redo
the key scheduling of the underlying cipher when changing to the second key.
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Fig. 2. Two-key OCB2 encryption: Places in gray are the differences from the original
OCB2

Moreover, the nonce N needs to be kept till the end of encryption process, in
order to compute the tag. Nonetheless, the two-key OCB2 is both practically
efficient and theoretically intriguing at the same time.

8 Conclusion

In this paper, we have proven that the OCB mode of operation is secure if the
underlying cipher is a PRP and unpredictable. The original proof of privacy
carries over. For integrity, we have provided a new proof, in which we applied
the framework of tweakable ciphers to forward evaluation of ciphers and the
framework of message authentication codes to backward evaluation.

Our integrity bound is essentially the same as the birthday bound obtained
in the previous work based on the SPRP assumption. So we do not “lose” secu-
rity for assuming less about the underlying cipher. Moreover, we have presented
a number of examples to illustrate the gap between our assumptions and the
conventional SPRP, thereby clarifying the significance of our new security re-
duction.

Lastly, we pointed out that we would need a stronger assumption in case of
tag truncation. However, we also presented a two-key version of OCB2, which
circumvents the stronger assumption and remains secure based on the PRP
and unpredictability of the underlying cipher. The two-key OCB2 is practically
efficient and might deserve extra attention for its added security.
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Abstract. In this paper we propose a new universal hash function based
on bit rotation. The proposed scheme, called Circulant hash, is a vari-
ant of the classical random matrix-based hash of Carter and Wegman,
called H3, and Toeplitz hash by Krawczyk. However, Circulant hash has
a smaller key space and the proved differential probability is not implied
by the previous analyses on these functions.

Since Circulant hash is an almost XOR-universal hash function for
balanced input/output, it may not be a perfect substitute for H3 and
Toeplitz hash. However, we show that Circulant hash is a useful tool for
blockcipher modes, specifically as an alternative to Galois field constant
multiplications. We provide some illustrative examples of the construc-
tions of tweakable blockcipher and vector-input pseudorandom function
using Circulant hash. Our schemes are as efficient as previous ones using
GF constant multiplications, and provide some unique features.

Keywords: Bit rotation, Toeplitz hash, Blockcipher Mode.

1 Introduction

Bit rotation is one of the most basic operations appearing in numerous fields of
computer science. In case of cryptography, bit rotation mainly serves as a basic
tool for building cryptographic primitives [4,6,14,31,40]. This paper shows that
bit rotation also offers a powerful tool in the field of provable security. We propose
a simple bit rotation-based function, called Circulant hash, and show that it is
ε-almost XOR universal (ε-AXU) hash function if the length of input vector
satisfies certain conditions. As the name suggests, it is basically a matrix-vector
product of a random circulant matrix over GF(2) and the input vector. Circulant
hash can be seen as a variant of classical randommatrix-based hash of Carter and
Wegman [10], called H3, or Toeplitz hash by Krawczyk [19], with a restriction to
square matrix. One can also take it as an extension of Data-dependent rotation
(DDR) by Rivest [29]. However, Circulant hash has a smaller key space than H3

and Toeplitz hash, while much larger input space than DDR of the same key
length.

Despite the simple look, proving the differential probability (i.e. the AXU bias)
of Circulant hash is non-trivial. We prove that, for Circulant hash using κ-bit key

W. Susilo and R. Reyhanitabar (Eds.): ProvSec 2013, LNCS 8209, pp. 221–238, 2013.
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and (κ−1)-bit input and κ-bit output, the differential probability is at most 2/2κ,
if κ is a special prime (see Definition 1 and Lemma 1). This result is not implied
by the previous analyses on H3, Toeplitz hash, and DDR [10, 11, 19, 30, 37, 38].
In fact, our finding is based on an old paper by Daykin [12] discussing how to
derive the rank of a matrix over a finite field, which has been overlooked by the
cryptography community, to the best of our knowledge.

Circulant hash realizes an ε-AXU hash function having almost balanced input
and output. When compared with square Toeplitz hash, Circulant hash has a
reduced key length and hardware complexity, hence is a better substitute when
(almost) square Toeplitz hash has been used, such as [9,22,23]. In contrast, even
though we can basically extend the input length via tree hashing [10], it may
not be appropriate for very long inputs.

We then show that Circulant hash provides a powerful tweaking tool for block-
cipher modes. In the field of blockcipher modes, the constant multiplication over
a Galois Field (GF) has been widely used as a tweaking tool [13, 16, 28, 33, 35].
We provide some illustrative examples showing that, Circulant hash can be an
alternative to GF constant multiplication, or even more useful in some cases. We
choose two illustrative applications. The first application is tweakable blockci-
pher (TBC) [21] based on a blockcipher. A previous TBC scheme called XEX [33]
utilizes constant GF multiplications for efficient sequential tweak update. We
build TBC using Circulant hash instead of constant GF multiplication. It allows
efficient sequential tweak update as well, and also effectively handles certain non-
sequential tweak update without using a precomputation, which may be useful
in the real-world applications of TBC.

The second application is vector-input pseudorandom function (PRF). Rog-
away and Shrimpton [35] proposed a concrete instantiation of vector-input PRF,
called S2V, using a string-input PRF with a post-processing based on constant
GF multiplications. In S2V, the computations of string-input PRFs are par-
allelizable, however the post-processing is logically serial. We show that, the
post-processing can be replaced with (an decomposed form of) Circulant hash,
which is essentially bit rotations and is fully parallelizable. Our proposal keeps
the most features of S2V while achieves a faster parallel computation. Moreover,
it enables powerful incremental update using the previous output (i.e., it is an
incremental message authentication code (MAC) [5]), which is impossible with
S2V. One can also use our result to build a fast, parallelizable short-input PRF.

These two examples imply that we can build a Circulant hash-based counter-
parts for the most of previous blockcipher modes utilizing GF constant multipli-
cations, and the each of the resulting scheme exhibits some unique advantages.

2 Preliminaries

Let {0, 1}n be the space of n-bit strings, and let {0, 1}∗ be the space of all
binary strings, including the empty string, ε. A bit length of a binary string

X is written as |X |. We define |X |n def
= �|X |/n�. Here |ε| = 0. The first

(last) c bits of X is denoted by msbc(X) (lsbc(X)). We write Nc to denote
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{1, 2, . . . , c}. A concatenation of two strings, X and Y , is written as X‖Y
or simply XY . A sequence of i zeros is written as 0i. An i-bit left rota-
tion of n-bit string X = (X [1]‖X [2]‖ . . .‖X [n]) is written as X ≪ i =
(X [i + 1]‖ . . . ‖X [n]‖X [1]‖ . . .‖X [i]). For X,Y ∈ {0, 1}∗ with |X | ≤ |Y |, let
X⊕endY be the XOR of X into the end of Y , i.e. X⊕endY = (0|Y |−|X|‖X)⊕Y .
For X ∈ {0, 1}∗, let X [1]‖X [2]‖ . . .‖X [m]

n← X denote the n-bit block parti-
tioning of X , i.e., X [1]‖X [2]‖ . . .‖X [m] = X where m = |X |n, and |X [i]| = n
for i < m and |X [m]| ≤ n.

If X is uniformly distributed over set X , we write X
$← X . The set of all

functions having n-bit inputs and m-bit outputs is denoted by Func(n,m) and
the set of all n-bit permutations is denoted by Perm(n). A keyed function F with
key K ∈ K, input domain X , and output domain Y is written as F : K×X → Y.
We may write FK : X → Y if the existence of key is obvious. A pair of two keyed
functions, F : K × X → Y and G : K′ ×X → Y, are said to be compatible (the
key spaces are not necessarily the same).

We define the uniform random function (URF) R : {0, 1}n → {0, 1}m as the
keyed function with a key being uniform over Func(n,m). The n-bit uniform
random permutation (URP), P : {0, 1}n → {0, 1}n is a keyed permutation with
a key being uniform over Perm(n). Note that the notion of URF can be extended
to the case that input domain is an infinite set, say, {0, 1}∗, by using the lazy
sampling. The inverse of keyed permutation EK (P) is written as E−1

K (P−1).
We define the two classes of universal hash function.

Definition 1. For HK : X → Y, if Pr[HK(x) = HK(x′)] ≤ ε for any distinct
x, x′ ∈ X , HK is ε-almost universal (ε-AU). If Y = {0, 1}n and Pr[HK(x) ⊕
HK(x′) = c] ≤ ε for any distinct x, x′ ∈ X and c ∈ {0, 1}n, HK is ε-almost
XOR universal (ε-AXU).

Note that if HK is ε-AXU it is also ε-AU.

Pseudorandom Function. For a pair of compatible keyed function F : K ×
X → Y and G : K′ × X → Y and an adversary A who performs (possibly
adaptive) chosen-plaintext queries and makes a binary output, we write

Adv
cpa
F,G(A)

def
= Pr[K

$← K : AFK ⇒ 1]− Pr[K ′ $← K′ : AGK′ ⇒ 1]

where K
$← K : AFK ⇒ 1 denotes the event that A outputs 1 by querying

FK , when K
$← K is the underlying key sampling. Using URF compatible to

FK : {0, 1}n → {0, 1}m, R, we write Adv
prf
FK

(A) to denote Adv
cpa
FK ,R(A), which

means Pr[K
$← K : AFK ⇒ 1]− Pr[R

$← Func(n,m) : AR ⇒ 1].
The definition of Adv

prf
FK

(A) may be extended when FK takes variable-length
input in {0, 1}∗. In this case the underlying R is replaced with $ oracle that
outputs independent and random value for any new input; for colliding inputs,
the outputs are the same.
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3 Universal Hash Function from Bit Rotation

3.1 Constructions Based on Matrix-Vector Product

In [10], Carter and Wegman introduced the idea of universal hash function and
provided several examples. Among them a function called H3 is particularly
relevant to our proposal. Suppose we need a universal hash function of η-bit
input and κ-bit output. The key of H3 is a binary κ × η matrix, M, whose
elements are independent and random. Hence the key length is η · κ bits. For
input vector x ∈ {0, 1}η, the output ofH3 is a matrix-vector product over GF(2),
written as M · xT , where xT denotes the column vector of x.

Clearly H3 provides 1/2κ-AXU1 for any positive κ and η. Krawczyk [19]
showed a variant of H3 with reduced key bits, called Toeplitz hash. In Toeplitz
hash the key is randomly sampled to specify the κ×η Toeplitz matrix over GF(2),

M(κ,η)
T . For input x ∈ {0, 1}η the κ-bit output is computed as the matrix-vector

product over GF(2), i.e. y = M(κ,η)
T · xT . As M(κ,η)

T has (κ+ η − 1) independent
bits to be specified (i.e. the first column and row vectors), the key length is
reduced to (κ+η−1) bits. This keyed function has η-bit input and κ-bit output,
and is 1/2κ-AXU [19].

In this paper, we present a new variant of H3 having even reduced key space
from Toeplitz, applicable when η is close to κ. The idea is to use a random
circulant matrix, which requires only key of κ bits.

Definition 2. Let κ be a positive integer. The Circulant hash (CLH for short)
is a keyed function : {0, 1}κ × {0, 1}κ−1 → {0, 1}κ defined as

CLHκ(K,x) =
⊕

1≤i≤κ−1: x[i]=1

(K ≪ (i− 1)),

where x = (x[κ − 1]‖ . . .‖x[1]) and x[i] ∈ {0, 1}.

For example, CLHκ(K, 0κ−1) = 0κ, and CLHκ(K, 0κ−4‖101) = K ⊕ (K ≪ 2).
It is easy to see that CLHκ(K,x) is equivalent to a matrix-vector product over

GF(2), represented as M(κ,κ−1)
C · xT , where M(κ,κ−1)

C denotes the first κ − 1
columns of circulant matrix of order κ whose first column vector is the key K
and xT ∈ {0, 1}κ−1 is the transposed input of x = (x[1]‖ . . . ‖x[κ− 1]).

Despite the simple look, proving ε-AXU for CLHκ turns out to be quite non-
trivial. The fact that random matrix works fine with H3 does not necessarily
mean the goodness of reduced-key variants. For example, when κ = 5, we can see
(by an exhaustive search) that CLH5(K,x)⊕CLH5(K,x′) for any x �= x contains
at least 4 independent bits of K, resulting in 1/24-AXU, which is close to the
theoretical minimum, 1/25. However, when κ = 8, CLH8(K,x) ⊕ CLH8(K,x′)
has only 2 independent bits when x⊕x′ = (1, 0, 1, 0, 1, 0, 1), thus the probability
is 1/22. When κ = 7, CLH7(K,x) ⊕ CLH7(K,x′) with x ⊕ x′ = (1, 1, 1, 0, 1, 0)
has 3 independent bits. This arises a natural question on the condition of κ that
assures ε-AXU for a small ε. The following lemma shows the answer.

1 [10] only proved that it is 1/2κ-AU, but it is easily extended to AXU.
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Lemma 1. Let K
$← {0, 1}κ. We have

max
c∈{0,1}κ,

x,x′∈{0,1}κ−1, x �=x′

Pr
K
[CLHκ(K,x) ⊕ CLHκ(K,x′) = c] ≤ 2

2κ
, and

max
c∈{0,1}κ, x∈{0,1}κ−1\{0κ−1}

Pr
K
[CLHκ(K,x) = c] ≤ 2

2κ
,

when κ is prime and 2 is the primitive root modulo κ, which we call p-prime.

Proof. We first observe that CLHκ(K,x) ⊕ CLHκ(K,x′) = CLHκ(K,x ⊕ x′),
hence the first claim is proved by showing the maximum of probability
Pr[CLHκ(K,x) = c] for all c ∈ {0, 1}κ and x ∈ {0, 1}κ−1 \ {0κ−1}, i.e. prov-
ing the second claim also proves the first. Now, let R be κ × κ GF(2)-matrix
defined as

R =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0
0 0 1 . . . 0
...
...
...

...
...

0 0 0 . . . 1
1 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦ . (1)

Then we have (K ≪ i)T = Ri·KT , where · is the matrix-vector multiplication
over GF(2), and Ri denotes the matrix exponentiation over GF(2) (i.e. R3 =
R × R × R with matrix multiplication ×). Here we define R0 as the identity
matrix, thus R0 ·KT means (K ≪ 0) = K.

From the theory of linear systems, we have

Pr[CLHκ(K,x) = c]

= Pr
K

⎡⎣ ∑
1≤i≤κ−1:x[i]=1

Ri ·K = c

⎤⎦ = Pr
K

⎡⎣⎛⎝ ∑
1≤i≤κ−1:x[i]=1

Ri

⎞⎠ ·K = c

⎤⎦
=

∣∣∣k ∈ {0, 1}κ :
(∑

i:x[i]=1 R
i
)
· k = c

∣∣∣
2κ

(2)

≤ 2κ−rank(
∑

i:x[i]=1 R
i)

2κ
=

1

2rank(
∑

i:x[i]=1 Ri)
, (3)

where K is uniform over {0, 1}κ and the matrix sums are over GF(2), and
rank(M) denotes the rank of matrix M over GF(2). Hence, we have to prove
that rank(

∑
i∈I R

i) ≤ κ− 1 for any nonempty I ⊆ {0, . . . , κ− 2}.
For a finite field F , let M be the matrix over F . Let F [M] be the set of

all (nonempty) univariate polynomials for M with coefficients in F . For in-
stance F [M] contains a · M2 + b · M1 + c · M0, where a, b, c ∈ F and addi-
tion and multiplication are defined over F . The corresponding F -polynomial is
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f(x) = ax2 + bx+ c. Specifically, we let F = GF(2) and M = R, then
∑

i∈I R
i

is a member of GF(2)[R]. We then apply a useful formula of Daykin [12] which
provides the F -rank of a square matrix in F [M] for any field F and matrix M.
Using Theorem 1 and Section 5 of [12], for any f [R] ∈ GF(2)[R] we have

rank(f(R)) = κ−DegL(xκ − 1, f(x)) (4)

where DegL(g(x), g′(x)) denotes the degree of largest common factor of GF(2)-
polynomials, g and g′. Here, xκ−1 is factored into (x−1)(xκ−1+xκ−2+· · ·+x+1),
where addition and subtraction are XOR, for any n. The latter factor is called
the all-one polynomial (AOP). Because the degree of f(R) we consider is at
most κ − 2, if AOP of degree κ − 1 is irreducible over GF(2), rank(f(R)) is at
least κ − 1. Here, Wah et al. [39] proved that over GF(2)-AOP of degree m is
irreducible if and only if m+1 is prime and 2 is the primitive root modulo m+1.
This proves the second claim, and thus concludes the proof. 
�

Lemma 1 shows that if κ satisfies the conditions, CLHκ with K
$← {0, 1}κ is

2/2κ-AXU, and that CLH+
κ : {0, 1}κ × ({0, 1}κ−1 × {0, 1}κ) → {0, 1}κ defined

as CLH+
κ (K, (x1, x2)) = CLHκ(K,x1)⊕ x2 is 2/2κ-AU. As a slight extension of

the lemma, if K is not uniform but maxk Pr[K = k] ≤ 1/2p holds for some p,
then the resulting CLH is 2/2p-AXU.

For example, 3, 5, 11, 13, and 19 are p-primes. Larger values can be easily de-
rived (e.g.) from the table [2] or by using software. Table 1 shows some examples,
where κ<2i (κ<2i) denotes the largest (smallest) κ being p-prime smaller (larger)
than 2i. It is worth noting that for many cases there exists a p-prime close to a
power of two.

Table 1. Examples of p-primes

κ<25 κ>25 κ<26 κ>26 κ<27 κ>27 κ<28 κ>28 κ<29 κ>29 κ<210 κ>210 κ<211 κ>211

29 37 61 67 107 131 227 269 509 523 1019 1061 2029 2053

3.2 Useful Variants

The output and key lengths of CLH are prime, however we frequently need a
function of n-bit output with n-bit key, for n being a power of two. For this
purpose, we define two variants of CLH.

Definition 3. Let κ ≤ n ≤ λ. Let f1
n,κ : {0, 1}n × Nκ−1 → {0, 1}n and f2

n,λ :
{0, 1}n × Nλ−1 → {0, 1}n, where

f1
n,κ(K, i) = (msbκ(K) ≪ i)‖0n−κ,

f2
n,λ(K, i) = msbn(K‖0λ−n ≪ i),
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and we define CLH′
n,κ : {0, 1}n × {0, 1}κ−1 → {0, 1}n and CLH′′

n,κ : {0, 1}n ×
{0, 1}λ−1 → {0, 1}n as

CLH′
n,κ(K,x)

def
=

⊕
1≤i≤κ−1: x[i]=1

f1
n,κ(K, i), for x = (x[κ− 1]‖ . . . ‖x[1]),

and

CLH′′
n,λ(K,x)

def
=

⊕
1≤i≤λ−1: x[i]=1

f2
n,λ(K, i), for x = (x[λ − 1]‖ . . . ‖x[1]).

Note that CLH′
n,κ(K,x) and CLH′′

n,λ(K,x) are respectively equivalent to

CLHκ(msbκ(K), x)‖0n−κ and msbn(CLHλ(K‖0λ−n, x)), and when κ = n = λ,
they are the same as the original CLHκ. Both f1

n,κ(K, i) and f2
n,λ(K, i) can be

computed with two shifts and one logic operation.
We have the following lemma.

Lemma 2. Let K be uniform over {0, 1}n. For κ ≤ n ≤ λ we have

max
c∈{0,1}n,

x,x′∈{0,1}κ−1, x �=x′

Pr
K
[CLH′

n,κ(K,x) ⊕ CLH′
n,κ(K,x′) = c] ≤ 2

2κ
, and

max
c∈{0,1}n,

x∈{0,1}κ−1\{0κ−1}

Pr
K
[CLH′

n,κ(K,x) = c] ≤ 2

2κ
,

max
c∈{0,1}n,

x,x′∈{0,1}λ−1, x �=x′

Pr
K
[CLH′′

n,λ(K,x) ⊕ CLH′′
n,λ(K,x′) = c] ≤ 2

22n−λ
, and

max
c∈{0,1}n,

x∈{0,1}λ−1\{0λ−1}

Pr
K
[CLH′′

n,λ(K,x) = c] ≤ 2

22n−λ
,

when κ and λ are p-primes.

The proof of Lemma 2 is a simple extension of the proof of Lemma 1 (the bound
of the last two claims are obtained as (2/2n) · 2λ−n = 2/22n−λ), hence omit-
ted. For example, CLH′

64,61(K,x) and CLH′′
64,71(K,x) implement about 64-bit

input/output space with differential probability 1/260, and CLH′′
128,131(K,x) im-

plements 130-bit input, 128-bit output space with differential probability 1/2124.

3.3 Notes

Relation to DDR. The keyed DDR, defined as DDR(K,x)
def
= (K ≪ x) for

x ∈ {0, . . . , κ − 1} with |K| = κ, is 2/2κ-AXU if κ is prime [11]. However, the
log |K| input space is too small for most practical applications. With CLH, we
can extend the input space from log |K| to |K|/2.
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Toeplitz Hash with LFSR. In generation of κ×η Toeplitz matrix, Krawczyk
[19] also suggested to use the (κ+ η− 1)-bit output of κ-bit linear feedback shift
register (LFSR). If the initial seed of LFSR is uniformly chosen from {0, 1}κ
and the feedback polynomial is uniformly chosen from the set of all irreducible
polynomials, the resulting Toeplitz hash is 2η/2κ-AXU [3, 19]. In this case the
key can be represented as a pair of κ-bit strings, K1 and K2, where K1 specifies
the coefficients of feedback polynomial and K2 specifies the initial seed of LFSR.
The hardware implementation requires an κ-bit accumulator register and an κ-
bit LFSR [19]. As pointed out by [26, 36] the K1’s distribution is not uniform
over {0, 1}κ and is hard to determine if κ is large, say, 80.

Compared with κ × κ square Toeplitz hash, CLH can roughly halve the key
bits. Table 2 provides a comparison of Toeplitz and Circulant hashs for the
accumulator-based hardware implementation. It shows that, as an AXU hash
function of balanced I/O, CLH provides a smaller footprint while keeping the
small differential probability (DP). This will be useful for some applications,
e.g. [9, 22, 23].

Extending Input Length. When we want to extend input length, we can use
Tree hashing [10] with CLH+

κ of Section 3.1, in a similar manner to Badger [8].
At the cost of logarithmic key increase, we can process a long input with small
circulant matrices. Effectiveness of such implementation is an interesting future
topic.

Table 2. Comparison of Toeplitz and Circulant hashs for accumulator-based hardware
implementation. DP = ε means that the function is ε-AXU. For Circulant hash we
require κ to be a p-prime.

Function I/O (bit) Key (bit) ShReg (bit) ShReg Feedback DP
Toeplitz (LFSR) [19] κ/κ 2κ κ Key-dep. IRPoly 2κ/2κ

Toeplitz (Naive) [19] κ/κ 2κ − 1 2κ − 1 Nothing 1/2κ

Circulant (This paper) κ − 1/κ κ κ Rotation 2/2κ

4 Tweakable Blockcipher

We describe how to use CLH for blockcipher modes of operations. Our first
target is tweakable blockcipher (TBC), proposed by Liskov et al. [21].

4.1 Definition of Tweakable Blockcipher

TBC is a keyed permutation with auxiliary input called tweak. Formally, a ci-
phertext of a TBC, ẼK : M×T → M, is C = ẼK(M,T ) for plaintext M ∈ M
and tweak T ∈ T . The encryption, ẼK , must be a keyed permutation over
M for every T ∈ T , and the decryption is defined as Ẽ−1

K (C, T ) = M with

Ẽ−1
K : M × T → M. We here assume M = {0, 1}n for some fixed n and T

is a certain finite set. TBC works as a building-block of blockcipher modes for
various purposes [13, 15, 21, 27, 33].
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To define the security, let Perm(T , n) be the set of all mappings from T
to n-bit permutations. The size of Perm(T , n) is |Perm(n)||T |. The sampling

P̃
$← Perm(T , n) implements a set of independent n-bit URPs indexed by T ∈

T , where P̃ and P̃
−1

have the same interfaces as ẼK and Ẽ−1
K . The security

notion for ẼK is the indistinguishability from P̃ under a chosen-ciphertext attack
(CCA), that is,

Adv
tsprp

Ẽ
(A)

def
= Pr[K

$← K : AẼK ,Ẽ−1
K ⇒ 1]− Pr[P̃

$← Perm(T , n) : AP̃,P̃
−1

⇒ 1], (5)

where AO1,O2 denotes the adversary A querying two oracles, O1 and O2, in an
arbitrary order.

4.2 Previous Constructions

Liskov et al. [21] showed how to build a secure TBC in the sense of Eq. (5),
using EK : M → M and an ε-AXU hash, HL : T → M, for independent keys,
K and L. Extending the idea of [21], Rogaway proposed a one-key variant called
XEX [33] using GF(2n) constant multiplications. Let α1, . . . , αk be the distinct
non-zero elements of GF(2n) called bases. For each αi we define the set of allowed
indices, Ii ⊆ Z, which is an integer interval (e.g. Ii = [0 . . . 10]). The tweak space
of (basic) XEX is T = T1 × T2 with T1 = I1 × · · · × Ik, T2 = {0, 1}n, and it is
defined as

XEX[EK ](M,T ) = EK(M ⊕ Γ · EK(T2))⊕ Γ · EK(T2), (6)

where tweak is T = (T1, T2) with T1 = (i1, . . . , ik) and Γ = αi1
1 ·αi2

2 · · · ·αik
k , and

the multiplications are over GF(2n). The multiplication Γ · EK(T2) is also over
GF(2n) by seeing EK(T2) as a coefficient vector of a polynomial in GF(2n). The
security in terms of Eq. (5) is proved when bases and T1 satisfy some conditions
(see [33]). The point of such construction is that the sequential update of a
component index of T1, i.e., ij → ij + 1 for some j, can be quite efficient if
we cache the previous value of Γ , because it is essentially the multiplication of
the cached Γ by αj . Typically we set α1 = 2 (the primitive element) since the
multiplication by 2 is particularly simple. In this case the update procedure is
called “doubling”.

Alternatively, based on [21], we could simply use GF multiplication. Assuming
n-bit tweak T and n-bit second key2 L, we take a multiplication of L and T ,
denoted by L · T , and encrypt as EK(M ⊕ L · T )⊕ L · T . By precomputing all
powers of L, i.e. L,2L, . . . ,2n−1L, L · T is computed as L · T = ⊕i:T [i]=12

i−1L,
where T [i] denotes the i-th bit of T for i = 1, . . . , n. Thanks to the precomputed
powers of L, this scheme enables an efficient incrementation of T using Gray
code (see Section 4.3).

2 With a slight modification one can generate L from K in a similar manner to XEX,
see [25] (Section 5).
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4.3 Tweakable Blockcipher Using CLH

We present a single-key TBC based on CLH, in a similar manner to XEX.

Definition 4. Let κ ≤ n ≤ λ. Let EK be an n-bit blockcipher. The single-key
TBCs, XEX-R1[EK ] and XEX-R2[EK ], are defined as

XEX-R1[EK ](M,T )
def
= EK(M ⊕ Γ1)⊕ Γ1, and ,

XEX-R2[EK ](M,T )
def
= EK(M ⊕ Γ2)⊕ Γ2,

where Γ1 = CLH′
n,κ(EK(T2), T1) and Γ2 = CLH′′

n,λ(EK(T2), T1).
Here, a tweak is T = (T1, T2) ∈ T = T1 × T2 with T2 = {0, 1}n. XEX-R1 has

T1 = {0, 1}κ−1 \ {0κ−1, 0κ−21}. XEX-R2 has T1 = {0, 1}λ−1 \ {0λ−1, 0λ−21}.

When the underlying blockcipher is a URP, the security of our schemes are
proved as follows. The computational counterparts are trivial.

Theorem 1. Suppose κ and λ are p-primes. Let P be an n-bit URP, and let A
be an adversary against TBC, using q CCA-queries. Then we have

Adv
tsprp

XEX-R1[P](A) ≤
(

6

2κ
+

4

2n

)
q2, Adv

tsprp

XEX-R2[P](A) ≤
(

8

22n−λ
+

2

2n

)
q2.

Proof. See Appendix A.

When n = 128, XEX-R1 with κ = 107 provides about 52-bit security with
106-bit tweak, and XEX-R2 with λ = 131 provides about 61-bit security with
130-bit tweak.

Properties. Our proposals enable efficient sequential updates of T1. For sim-
plicity, let us assume κ = n. Then, since CLHκ is XOR-linear, the computation
of CLHκ(L, T

′
1) using CLHκ(L, T1) (for L = EK(T2)) is easy if the hamming

weight of T1 ⊕ T ′
1 is small. To fully utilize this property we can use Gray code

in a similar manner to the previous works [20, 34], which is as follows. We first
take T1 ∈ T1 as a positive integer, thus 2 ≤ T1 ≤ 2κ−1 − 1, and we modify
Definition 4 so that the input to CLH is Gray code of T1, gc(T1). This causes no
security degradation since Gray code is a permutation and gc(0κ−1) = 0κ−1 and
gc(0κ−21) = 0κ−21. Let Z = CLHκ(L, gc(T1 − 1)) and Z ′ = CLHκ(L, gc(T1)).
We want to compute Z ′ using Z. From the property of Gray code we have

Z ′ = Z ⊕ CLHκ(L, gc(T1)⊕ gc(T1 − 1))

= Z ⊕ CLHκ(L, (0 . . . 01 � ntz(T1))) = Z ⊕ (L ≪ (ntz(T1) + 1)),

where ntz(v) denotes the number of trailing zero for v (e.g. ntz(0100) = 2).
This can be quite efficient; most CPUs natively support an ntz instruction
and there exist fast generic methods [1]. Moreover, this does not require any
precomputation on L or additional blockcipher calls. In general, the computa-
tion of CLHκ(L, gc(T

′
1)) from CLHκ(L, gc(T1)) is fast as long as the weight of
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gc(T1)⊕ gc(T ′
1) is small. That is, we can easily “jump” to such T ′

1. Though con-
ceptually a similar operation is possible with XEX using multiple bases, ours
seems to have more flexibility. The above method can be easily extended to the
case κ < n or n < λ, using CLH′

n,κ or CLH′′
n,λ, where the latter needs to keep

κ-bit output before truncation. We remark that jump operation with Gray code
trick is also possible with a TBC construction described in the last of Section 4.2,
that is, mask is generated by GF(2n) multiplication based on the precomputed
powers, {2iL}i=0,...,n−1.

In summary, our CLH enables incremental tweak update and certain non-
incremental (jump) update without precomputation, while the basic form of
doubling enables only incremental update. GF multiplication using precomputed
powers enables both incremental and non-incremental updates, though the cost
of precomputation and memory can be problematic, in particular for constrained
devices.

If our TBCs replace blockcipher modes where internal tweak update is mostly
sequential (e.g. OCB, PMAC [33], and XTS [13]), ours enable additional func-
tionalities, such as selective decryption, without harming the efficiency of normal
operation. If we built an online cipher using TBC [27], internal TBC has ran-
dom tweaks. In [27], using GF multiplication is suggested, however using CLH′

or CLH′′ may be another option.

Software Results. According to our experiments, even random input to CLH is
manageable. We implement CLH′

64,61 on Intel Xeon E5620 (2.4GHz) and 64-bit
Windows OS, using C with ntz instruction, called BitScanForward. It processes
random inputs using 22 cycles per byte (cpb). For random inputs with weight
16 it runs at about 7.5 cpb, and for sequential update with Gray code, it runs
at below 0.5 cpb. The same performance can be obtained for parallel comput-
ing of two CLH′

64,61 functions by using XMM registers and SSE intrinsics. For

reference, a naive C implementation of doubling function, dblL(i) = 2iL for
L ∈ GF(264), runs at 1.38 cpb for i = 1, 18.6 cpb for i = 10, and 52.5 cpb for
i = 30 on the same platform.

5 Vector-Input PRF

5.1 Construction of S2V-R

For string X [i] ∈ {0, 1}∗ with i = 1, . . . , �, we call X = (X [1], . . . , X [�]) a

vector. Let {0, 1}∗∗ def
=

⋃
�=0,1,2,...{(X [1], . . . , X [�]) : X [i] ∈ {0, 1}∗}, i.e. the set

of all vectors. Note that {0, 1}∗∗ includes the empty vector (which contains no
string) which is denoted by εv. Rogaway and Shrimpton [35] called a PRF of
input domain {0, 1}∗∗ a vector-input PRF (vPRF). They showed how to build
vPRF: {0, 1}∗∗ → {0, 1}n from a string-input PRF, sPRF: {0, 1}∗ → {0, 1}n
such as CMAC [16]. Their construction, called S2V, is used as a component of a
deterministic AE (DAE) called SIV. S2V uses GF constant multiplications in a
different way from XEX of Section 4. For reference it is presented in Appendix
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Algorithm S2V-R[f, FK ](X[1], . . . , X[�]), 0 ≤ � ≤ t− 1

1. S ← 0n, L← FK(0n)
2. if � = 0 then return FK(f(L, t))
3. for i← 1 to �− 1 do S ← S ⊕ f(FK(X[i]), i)
4. if |X[�]| ≥ n then V ← (S ⊕ f(L, t− 1))⊕end X[�]
5. else V ← S ⊕ f(L, t)⊕X[�]‖10∗
6. return FK(V )
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Fig. 1. Vector-input PRF using FK : {0, 1}∗ → {0, 1}n and post-processing f :
{0, 1}n × Nt → {0, 1}n. In the lower figure, the box with i = 1, 2, . . . denotes the
post-processing f(∗, i).

B. Building a vPRF from an sPRF is basically possible by first applying an
invertible function (encoding) g : {0, 1}∗∗ → {0, 1}∗ to the input vector then
applying the sPRF to the encoded string. However, as explained by [35], S2V
has a number of practical advantages over this naive construction.

This section shows a new S2V-like vPRF. Our vPRF, which we call S2V-R,
can be based on any sPRF, FK : {0, 1}∗ → {0, 1}n. The pseudo-code and the
figure are given in Fig. 1, where X [i]‖10∗ denotes the padding, X [i]‖10n−1−|X[i]|

for 0 ≤ |X [i]| ≤ n−1. The key component of our proposal is the post-processing
function, f : {0, 1}n×Nt → {0, 1}n, applied to the outputs of underlying sPRF.
Here, t denotes the maximum post-processing variations and each vector can
contain at most t − 1 strings. We show that, f can be a (variant of ) unit
computation of CLHκ, i.e., a bit rotation of the input.

Let R∗∗ : {0, 1}∗∗ → {0, 1}n be the vector-input URF. For security notion of
a vector-input keyed function, FK : {0, 1}∗∗ → {0, 1}n, we write Adv

prf
FK

(A) to
mean the indistinguishability of FK from R∗∗ under a CPA-adversary A. The
security bound of our proposal is as follows.

Theorem 2. Let f : {0, 1}n × Nt → {0, 1}n be a post-processing function satis-
fying

max
I⊆Nt,I�=∅,c∈{0,1}n

Pr

[
U

$← {0, 1}n :
⊕
i∈I

f(U, i) = c

]
≤ pf

for 1/2n ≤ pf ≤ 1. Let R : {0, 1}∗ → {0, 1}n be URF, and let S2V-R[f,R]
be S2V-R using f and R. Let A be an adversary querying S2V-R[f,R] with q
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chosen-plaintext queries and the total number of component strings among q
queries being σs. Then we have

Adv
prf

S2V-R[f,R](A) ≤ (2qσs + q2)pf .

Corollary 1. For n = 128, we define S2V-R1[FK ] and S2V-R2[FK ] as
S2V-R[f1

128,107, FK ] and S2V-R[f2
128,131, FK ] using f1

128,107 and f2
128,131 of Defi-

nition 3. Then, S2V-R1 can accept a vector of 105 strings, with security bound
(4qσs + 2q2)/2107, and S2V-R2 can accept a vector of 129 strings, with security
bound (2qσs + q2)/2124.

The proof of Theorem 2 will be given in the full version. The proof of Corollary
1 is obtained by Theorem 2 and Lemma 2.

5.2 Properties of S2V-R

Basic Points. We could implement S2V-R with FK being (e.g.) CMAC-AES
or HMAC-SHA2. If L = FK(0n) is precomputed S2V-R[f, FK ] requires one FK

invocation to process one string. These features are shared with the original S2V.
The acceptable number of component strings in a vector is largely the same as
S2V, which accepts at most n− 1 strings. One can build a DAE using S2V-R in
the same manner as SIV.

In sequential computation, the computation cost of S2V-R is basically the
same as S2V. A difference arises in parallel computation. As well as S2V, the
computations of FK(X [i]) in S2V-R are parallelizable. Moreover, S2V-R allows
the parallel computation of the post-processing after FK(X [i]), namely bit ro-
tations, while those of S2V is sequential constant multiplications (See Appendix
B). This implies that our proposal enables a faster parallel computation. We re-
mark that a variant using a powering-based post-processing, e.g., f(x, i) = 2ix, is
also possible. This has the same parallelizability as S2V-R1 or S2V-R2, however
the computation cost is much higher.

Short-Input PRF. When we implement FK by an n-bit blockcipher, EK , the
resulting S2V-R[f, EK ] is a PRF accepting short inputs, i.e. at most n(t−1) bits.
For instance, S2V-R2 of Corollary 1 accepts 16 · 128 = 2Kbyte inputs, which is
enough for most of the packet communications3. In case of the parallel process-
ing, S2V-R2 with blockcipher is advantageous compared to PMAC, as PMAC
needs serial mask computation of 2iEK(0n) for i = 1, . . . , 128, or, needs 2Kbyte
memory to store the precomputed masks. In hardware (parallel) implementa-
tion, the post-processing of S2V-R1 and S2V-R2 are just wires, hence quite fast
and small.

Incremental Update. One unique feature of S2V is that it efficiently han-
dles static (invariant) strings. More generally, once we have computed the

3 For example IPSec authenticates packets of 43 to 1.5K Bytes.
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output for an input vector (X [1], . . . , X [�]) and cached the outputs of F ,
{FK(X [1]), . . . , FK(X [� − 1])}, the output computation for the next input,
(X ′[1], . . . , X ′[�′]), requires only the computations of FK(X ′[i]) for all X ′[i] �∈
{X [1], . . . , X [�− 1]}. That is, a restricted form of incremental update. An incre-
mental update for vPRF is particularly valuable when component strings can
be long. Our S2V-R shares this feature. Moreover, if the post-processing is com-
mutative (i.e. f(f(x, i), j) = f(f(x, j), i) = f(x, i+ j)), as with S2V-R1, we can
say much more about the incremental operation. Suppose the last string is at
most n bits and FK is invertible for n-bit inputs, which is satisfied with (e.g.)
CMAC. Then, S2V-R allows the incremental update from previous outputs,
without caching the internal FK outputs. As well as PMAC [7], this update is
secure under the basic security notion for incremental update defined by [5]. For
example, suppose we have Y = S2V-R[f, FK ](X) for X = (X [1], . . . , X [�]) with
X [i] ∈ {0, 1}∗ for i ≤ �−1 and |X [�]| ≤ n. Let us write X<i = X [1]‖ · · · ‖X [i−1]
and X>i = X [i+ 1]‖ · · · ‖X [�]. Then, the output computation for a new vector,
(X<i‖X ′[i]‖X>i) for some X ′[i] �= X [i], can be done as

1. V ′ ← F−1
K (Y )

2. V ′ ← V ′ ⊕ f(FK(X [i]), i)⊕ f(FK(X ′[i]), i)
3. Y ′ ← FK(V ′),

where F−1
K denotes the inversion for n bits. Namely, we can handle the replace

operation written as X → (X<i‖X ′[i]‖X>i). Similarly, truncate, X → X<�,
and append, X → X‖X ′[� + 1], are efficiently handled. We remark that the
same (block-wise) update operations are also supported by PMAC [7,33].

Thanks to the nature of rotation, we can do even more. When X |[�]| = n,
insert operation, X → X ′[1]‖X , is also possible as

1. V ′ ← F−1
K (Y )⊕ f(L, t− 1)⊕X [�]

2. V ′ ← f(V ′, 1)⊕ f(FK(X [1]), 1)⊕ f(L, t− 1)⊕X [�]
3. Y ′ ← FK(V ′),

where L = FK(0n). Generally, if we insert a string X ′[i] before X [i], the update
requires min{i, � − i} FK calls with few additional FK and F−1

K calls, thus we
can save at least the half of FK calls. One more example, merge operation,
which means the output computation for X‖X ′ using Y1 = S2V-R[f, FK ](X)
and Y2 = S2V-R[f, FK ](X ′), also possible with few FK calls. There should be
more examples of practical, application-specific incremental operations that can
be handled by S2V-R, and the set of these update operations can offer a very
powerful incremental vPRF beyond the ability to handle static strings.

6 Conclusion

This paper has presented Circulant hash, a simple keyed hash function consist-
ing of bit rotations and XORs. We showed that it is ε-AXU for ε close to the
minimum if the length of rotated vectors satisfies certain conditions. Circulant
hash can be a good alternative to the famous Toeplitz hash in case we need an
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ε-AXU hash of balanced I/O lengths. We also showed that Circulant hash works
as a powerful tweaking tool for blockcipher modes, and presented two illustrative
examples for tweakable blockcipher and vector-input PRF.

Acknowledgments. The author would like to thank Norifumi Kamiya for the
discussion on the work of Daykin. The author also would like to thank Mo-
hammad Reza Reyhanitabar for constructive suggestions, and the anonymous
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A Proof of Theorem 1

We use a result of Minematsu [25]4. We first show the proof for XEX-R1. Let
us write h(V, t1) = CLH′

n,κ(V, t1) for V ∈ {0, 1}n and t1 ∈ T1. Then the

tweakable encryption of Theorem 1 can be written as ẼK(M,T ) = EK(M ⊕
h(EK(T2), T1)) ⊕ h(EK(T2), T1), which fits into the model discussed by [25].
First, we have to bound

γ
def
= max

t1∈T1,c∈{0,1}n
Pr[h(V, t1) = c],

ε
def
= max

t1 �=t′1∈T1,c∈{0,1}n
Pr[h(V, t1)⊕ h(V, t′1) = c], and

ρ
def
= max

t1∈T1,c∈{0,1}n
Pr[h(V, t1)⊕ V = c],

where probabilities are defined over V
$← {0, 1}n and T1 = {0, 1}κ−1 \

{0κ−1, 0κ−21}. For γ, the probability is at most the maximum point probability
of CLH′

n,κ(V, t1) for t1 �= 0κ−1. As V is uniform, we have γ = 2/2κ from Lemma
1. Then, ε is equivalent to Pr[msbκ(h(V, t1) ⊕ h(V, t′1)) = msbκ(c)], which is at
most 2/2κ from Lemma 1. For ρ, let V = Vl‖Vr and c = cl‖cr with |Vl| = |cl| = κ
and |Vr | = |cr| = n− κ. Then we have

Pr[h(V, t1)⊕ V = c] = Pr[CLHκ(Vl, t1)⊕ CLHκ(Vl, 0
κ−2‖1) = cl, Vr = cr].

Since T1 does not contain 0κ−2‖1 and that Vl and Vr are independent and ran-
dom, the probability of the right hand side is at most 2/2κ · 1/2n−κ = 2/2n

from Lemma 2. Combining Lemma 2 and Theorem 4 of [25] with the result
(γ, ε, ρ) = (2/2κ, 2/2κ, 2/2n), we obtain the bound of TSPRP-advantage being
(2ε+ γ + ρ+ 2/2n)q2 = (6/2κ + 2.5/2n)q2.

For proving the bound for XEX-R2, we similarly have γ, ε ≤ 2/22n−λ from
Lemma 2. For ρ, since V = CLH′′

n,λ(V, 0
λ−2‖1) and t1 = 0λ−2‖1 is excluded, we

obtain ρ ≤ 2/22n−λ.

4 This result is obtained by using Maurer’s random system method [24], and the result
does not suffer from a flaw of a theorem of [24] recently found by Jetchev et al. [17].
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B String-to-Vector (S2V) PRF

Fig. 2 shows the String-to-Vector (S2V) PRF [35]. Here 2S denotes the GF
doubling over GF(2n).

Algorithm S2V[FK ](X[1], . . . , X[�])

1. if � = 0 then return FK(0n−11)
2. S ← FK(0n)
3. for i← 1 to �− 1 do S ← 2S ⊕ FK(X[i])
4. if |X[�]| ≥ n then V ← S⊕endX[�] else V ← 2S⊕X[�]‖10∗
5. return FK(V )
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Fig. 2. S2V vector-input PRF using FK : {0, 1}∗ → {0, 1}n. The box with “d” in the
lower figure denotes the GF doubling.
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Abstract. To improve the decapsulation efficiency of HK09 (proposed
by Hofheinz and Kiltz in Eurocrypt 2009), we propose a new skill to re-
move the exponent GCD operation. In the proposed scheme, the decapsu-
lation efficiency is improved by 38.9% (instantiated over the semi-smooth
subgroup) and the efficiency of encapsulation is dropped by 5.7%.
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1 Introduction

Based on the Blum-Goldwasser encryption (BG84) [2], Hofheinz and Kiltz pro-
posed the first practical IND-CCA (Chosen Ciphertext Attack) secure public
key encryption scheme from the factoring assumption [7](HK09) in the standard
model. The BG84 scheme is IND-CPA (Chosen Plaintext Attack) secure under
the factoring assumption. To achieve IND-CCA security, Hofheinz and Kiltz used
the famous All-But-One skill [6,3,4,8], which was widely used in the construction
of IND-CCA secure encryption schemes.

The skill of HK09 was later generalized to the extractable hash proof system
by Wee in [13]. In [13], Wee also proposed a conceptually simpler variant of
HK09 which is more modular but less efficient (there is a linear blow-up in both
ciphertext overhead and public key size over HK09).

The efficiency of HK09 was later improved by Mei [11] and Lu [9,10]. In [11],
the authors instantiated HK09 over the semi-smooth subgroup and also proposed
an ElGamal style variant of HK09. Briefly, semi-smooth subgroup consider the
modulus of N = PQ = (2p′p+1)(2q′q+1), where (p′, q′) are prime numbers large
enough but much smaller than (P,Q), and (p, q) are product of distinct prime
numbers smaller than a bound. The unique subgroup of QRN (the quadratic
residuosity group) with order p′q′ is called semi-smooth subgroup. Since p′q′ is
much smaller than the order of QRN , schemes instantiated over semi-smooth
subgroup are more efficient. In [9] the authors proposed a tradeoff between the
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efficiency of encapsulation and decapsulation of HK09. The efficiency of decap-
sulation was improved by 38.9% and the efficiency of encapsulation was dropped
by 11.4% (instantiated over the semi-smooth subgroup). In [10] the authors im-
proved the decapsulation efficiency at the price of a slightly increased key size.
The decapsulation efficiency is improved by 32% (instantiated over the quadratic
residuosity group) or 57.6% (instantiated over the semi-smooth subgroup) and
the encapsulation efficiency remains the same.

1.1 Motivation

The ciphertext of HK09 is (R = gμ2
lK+lH , S = |gμtXμ|), the encapsulated key

is K = BBSr(g
μ2lH ), where lK is the length of K, lH is the length of the hash

value t = H(R), BBSr() is a Blum-Blum-Shub pseudorandom generator [1]. Since
the exponent inversion can not be computed directly for hidden order group,

the decapsulation algorithm computes gμ2
lH

by using Shamir’s GCD (greatest
common divisor) in the exponent algorithm [12].

One of the skills to improve the efficiency of HK09 is to remove the exponent
GCD operation in the decapsulation. In [9] the authors derive the encapsulated

key from gμt2
lH and compute K = BBSr((S/R

ρ)
2lH

) directly. In [10] the authors
remove the computation of exponent GCD by hiding gμ instead of gμt into S.

The above skills to remove the exponent GCD operation also have some draw-
backs. The skill used in [9] causes a loose security reduction and the skill used
in [10] increases the size of the key.

An interesting question is, how can we remove the exponent GCD operation
while maintain the key size and the security reduction complexity?

1.2 Our Contribution

We propose a new method to remove the exponent GCD operation in HK09. The
decapsulation efficiency is improved by 38.9% (instantiated over the semi-smooth
subgroup) and the efficiency of encapsulation is dropped by 5.7%.

Our main idea is to directly embed gμ into S. Concretely, the ciphertext

is (R = gμ2
lK , S = |gμXμt|), the encapsulated key is K = BBSN (gμ), where

g ∈ QRN , X = gx2
lK , x ∈ [(N−1)/4] is the private key. Thus, the decapsulation

computes gμ = S/Rxt directly.
One of the main difficulties in the security proof is the construction of the

challenge ciphertext. According the All-But-One skill, the simulator needs to set

X = gx2
lK g−1/t∗ . Unfortunately, the simulator can not compute 1/t∗ since he

does not know the factoring of N . Our solution is to choose h ∈ QRN and set

g = ht∗ . Thus the simulator can set X = gx2
lK h−1.

The other difficulty in the security reduction is the simulation of the decap-

sulation operation. When the adversary submits a ciphertext (R = gμ2
lK , S =

|gμXμt|), the simulator can compute (S/Rxt)t
∗
= gμ(t

∗−t) and then get gμ2
c

,
where 2c = gcd(2lK , (t∗ − t)). If c ≥ 1 , the simulator can not compute gμ. To
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solve this problem we use the same skill as in [7]. Briefly, the simulator sets

R = gμ2
lK+lH

and computes K = BBSN (gμ2
lH
).

Compared with the scheme in [9], the encapsulation of our new scheme is more
efficient and the efficiency of decapsulation remains the same. More importantly,
the security reduction of our new scheme is tighter. Compared with the scheme
in [10], their scheme is more efficient, while the key of our new scheme is shorter.

We remark that our new variant can be instantiated over the semi-smooth
subgroup using the technique in [11]. The resulting scheme is more efficient than
that over the QRN group.

1.3 Outline

In section 2 we review the definition of key encapsulation mechanism and target
collision resistant hash function. In section 3 we propose our new variant of
HK09. Finally we give the conclusion in section 4.

2 Definitions

In describing probabilistic processes, x
R← X denotes that x is sampled according

to the distribution X. If S is a finite set, s
R← S denotes that s is sampled from the

uniform distribution on S. If A is a probabilistic algorithm and x an input, then

A(x) denotes the output distribution of A on input x. Thus, we write y
R← A(x)

to denote of running algorithm A on input x and assigning the output to the
variable y.

2.1 Key Encapsulation Mechanism

A key encapsulation mechanism consists of the following algorithms:

– KEM.KeyGen(1k): A probabilistic polynomial-time key generation algo-
rithm takes as input a security parameter (1k) and outputs a public key
PK and a secret key SK. We write (PK, SK) ← KEM.KeyGen(1k)

– KEM.Enc(PK): A probabilistic polynomial-time encapsulation algorithm
takes as input the public key PK, and outputs a pair (K,ψ), where
K ∈ KD(KD is the key space) is a key and ψ is a ciphertext. We write
(K,ψ) ← KEM.Enc(PK)

– KEM.Dec(SK, ψ): A decapsulation algorithm takes as input a ciphertext ψ
and the secret key SK. It returns a key K. We write K ← KEM.Dec(SK, ψ).

We require that for all (PK,SK) output by KEM.KeyGen(1k), all (K,ψ) ∈
[KEM.Enc(PK)], we have KEM.Dec(SK, ψ)=K.

Now we review the IND-CCA (Indistinguishability against adaptive chosen
ciphertext attack) security of KEM. Note that we use the definition in [8] which
is simpler than the original definition in [5].
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Definition 1. A KEM scheme is secure against adaptive chosen ciphertext at-
tacks if the advantage of any adversary in the following game is negligible in the
security parameter k.

1. The adversary queries a key generation oracle. The key generation oracle
computes (PK, SK) ← KEM.KeyGen(1k) and responds with PK.

2. The adversary queries an encapsulation oracle. The encapsulation oracle
computes:

b
R← {0, 1}, (K1, ψ

∗) ← KEM.Enc(PK),K0
R← KD,

and responds with (Kb, ψ
∗).

3. The adversary makes a sequence of calls to the decapsulation oracle. For each
query the adversary submits a ciphertext ψ, and the decapsulation oracle
responds with KEM.Dec(SK, ψ). The only restriction is that the adversary
can not request the decapsulation of ψ∗.

4. Finally, the adversary outputs a guess b′.

The adversary’s advantage in the above game is AdvccaA (k) = |Pr[b′ = 1|b =
1] − Pr[b′ = 1|b = 0]|. If a KEM is secure against adaptive chosen ciphertext
attacks defined in the above game we say it is IND-CCA secure.

2.2 Target Collision Resistant Hash Function

Now we review the definition of target collision resistant (TCR) hash function.
We say that a function H : X → Y is a TCR hash function, if given a random
preimage x ∈ X , it is hard to find x′ �= x with H(x′) = H(x). Concretely, the
advantage of an adversary A is defined as:

AdvtcrA (k) = Pr[x
R← X, x′ ← A(x) : x �= x′ ∧ H(x) = H(x′)].

We say H is a TCR hash function if AdvtcrA (k) is negligible.

3 New Variant of HK09

Our new variant of HK09 is described as follows.

– KeyGen: The key generation algorithm chooses uniformly at random a Blum
integer N = PQ = (2p+1)(2q+1), where P,Q, p, q are prime numbers, then
computes:

g
R← QRN , x

R← [(N − 1)/4], X ← gx2
lK+lH

,

pk ← (N, g,X), sk ← x,

where H : QRN → {0, 1}lH is a TCR hash function, lH is the bit length of
the output value of H, lK is the bit length of the encapsulated key K, .
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– Encapsulation: Given pk, the encapsulation algorithm computes:

μ
R← [(N − 1)/4], R ← gμ2

lK+lH
, t ← H(R), S ←

∣∣(gXt
)μ∣∣ ,

K ← BBSN (gμ2
lH
),

where BBSN (α) = LSB(α), · · · ,LSB(α2lK−1

), LSB(α) denotes the least sig-
nificant bit of α.

– Decapsulation: Given a ciphertext (R,S) and sk, the decapsulation algo-
rithm verifies R ∈ Z∗

N , S ∈ Z∗
N ∩ [(N − 1)/2], then computes:

t ← H(R), ρ ← xt,

if

(
S

Rρ

)2lK+lH

= R then computes K ← BBSN

(
S2lH

Rρ2lH

)
,

else returns the rejection symbol ⊥ .

The correctness of the scheme above can be verified as follows:

(
S2lH

Rρ2lH

)
=

(
|(gXt)μ|2lH

(gμ2
lK+lH )xt2

lH

)
=

(
|(g(gx2lK+lH )t)μ|2lH

(gμ2
lK+lH )xt2

lH

)
= gμ2

lH
.

We remark that, similar to [10], if pq is added to the private key, the efficiency
of decapsulation can be improved by computing ρ = xt mod pq. It is clear that
our new variant above can also be instantiated over semi-smooth subgroup using
the technique in [11]. In this case, x is selected from 2lp′+lq′+λ, where lp′ is the
length of p′, lq′ is the length of q′, λ is a parameter for security level. If p′q′ is
added to the private key, the efficiency of decapsulation can be further improved
by selecting x from [p′q′] instead of 2lp′+lq′+λ.

3.1 Security Proof

Theorem 1. If factoring N is hard and H is a TCR hash function, then the
new variant is IND-CCA secure.

The proof is similar to that of HK09, in which the reduction is divided into
two phases. First, the BBS distinguisher is reduced to the factoring assumption.
Then, the IND-CCA security of the scheme is reduced to the BBS distinguisher.
The experiment for the BBS distinguish problem is defined as:

AdvBBS
A = |Pr[A(N, z,BBSN (u)) = 1]− Pr[A(N, z, U) = 1]|,

where N is a Blum integer (N = PQ,P = 2p + 1, Q = 2q + 1, p and q are

prime numbers), u ∈ QRN , z = u2lK , U is a random bit string of length lK .
Given Theorem 2 in [7], it is clear that we only need to prove the following

theorem.
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Theorem 2. If it is hard to distinguish (N, z,BBSN (u)) from (N, z, U) and H
is a TCR hash function, then the new variant is IND-CCA secure.

Proof. Suppose that an adversary A can break the IND-CCA security of the
new variant. To prove the theorem, we construct an adversary B to distinguish
(N, z,BBSN (u)) from (N, z, U). The construction of B is described as follows.

Setup: On receiving (N, z, V ), where V = U or V = BBSN (u), the adversary
B computes:

t∗ ← H(z), h
R← QRN , g ← ht∗ , x

R← [(N − 1)/4],

X ← gx2
lK+lH

h−1, pk ← (N, g,X).

The adversary B sends pk to adversary A.
Challenge: The adversary B constructs the challenge ciphertext as follows.

R∗ ← z, S∗ ←
∣∣∣R∗xt∗

∣∣∣ ,K∗ ← V.

Let R∗ = gμ
∗2lK+lH , the correctness of the challenge ciphertext can be verified

as follow:

S∗ =
∣∣R∗xt∗ ∣∣

=
∣∣∣gμ∗2lK+lH (xt∗)

∣∣∣
=

∣∣∣gμ∗
gμ

∗2lK+lHxt∗g−μ∗
∣∣∣

=
∣∣∣gμ∗

(gx2
lK+lH h−1)μ

∗t∗
∣∣∣

=
∣∣gμ∗

Xμ∗t∗
∣∣

=
∣∣(gXt∗)μ

∗ ∣∣ .
(1)

Decapsulation: On receiving the decapsulation query (R,S), the adversary B
verifies R ∈ Z∗

N , S ∈ Z∗
N ∩ [(N − 1)/2], then computes:

t ← H(R).

Then the adversary B considers three cases:

Case 1: t �= t∗. In this case, the adversary B acts as:

if

(
S

Rxt

)t∗2lK+lH

= R(t∗−t) computes:

2c = gcd(t∗ − t, 2lK+lH ) = a(t∗ − t) + b2lK+lH ,

returns K ← BBSN

(((
SR−xt

)t∗a
Rb

)2lH−c)
,

else returns the rejection symbol ⊥ .



How to Remove the Exponent GCD in HK09 245

Since t �= t∗ we have 0 < c < lH . Let R = gμ2
lK+lH , the correctness of the

verification equation can be verified as follows:

(
S

Rxt

)t∗2lK+lH

=
(

(gXt)μ

gμxt2lK+lH

)t∗2lK+lH

=

(
(ggxt2lK+lH

h−t)μ

gμxt2lK+lH

)t∗2lK+lH

= ((gh−t)μ)
t∗2lK+lH

=
(
gt

∗
g−t

)μ2lK+lH

= g(t
∗−t)μ2lK+lH

= R(t∗−t).

(2)

The correctness of K can be verified as follows:

K = BBSN

((
(SR−xt)

t∗a
Rb

)2lH−c)
= BBSN

(((
(gXt)μ

gμxt2lK+lH

)t∗a
Rb

)2lH−c)

= BBSN

⎛⎝((
(ggxt2lK+lH

h−t)μ

gμxt2lK+lH

)t∗a

Rb

)2lH−c⎞⎠
= BBSN

((
((gh−t)μ)

t∗a
Rb

)2lH−c)
= BBSN

((
gμ(t

∗−t)agμ2
lK+lH b

)2lH−c)
= BBSN

((
gμ(a(t

∗−t)+b2lK+lH )
)2lH−c)

= BBSN

((
gμ2

c)2lH−c
)

= BBSN

(
gμ2

lH
)
.

(3)

Case 2: t = t∗, R �= R∗. Denote this case as an event badtcr. Since H is a TCR
hash function, we have Pr[badtcr] ≤ AdvtcrC .

Case 3: t = t∗, R = R∗, S �= S∗. In this case, if S2 �= R2xt return the rejection
symbol ⊥. If S2 = R2xt, we have |S| = S �= S∗ = |S∗| and S2 = R2xt = R∗2xt∗ =
S∗2. Then, S �= ±S∗ and S2 − S∗2 = (S + S∗)(S − S∗) = 0. Thus B can factor
N directly by computing gcd(N,S + S∗) or gcd(N,S − S∗).

Guess: On receiving b′ from adversary A, the adversary B outputs b′.
This finishes the construction of the adversary B. We claim that the distribu-

tion of simulated public key and the challenge ciphertext are almost identical in
the simulation above and the IND-CCA game.

Lemma 1. There exists an event badkey such that, conditioned on ¬badkey the
public key and the challenge ciphertext are identically distributed in simulation
and the IND-CCA game. Concretely,
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Pr[badkey] ≤
5

2k−1
,

where k is the parameter of security level.

Since the proof of the lemma above is very similar to that of lemma 1 in [7], we
omit the detail.

It is clear that, unless badtcr or badkey occurs, B perfectly simulates the real
IND-CCA game. To be concrete:

AdvBBS
B = AdvccaA − Pr[badtcr]− Pr[badkey]

≥ AdvccaA −AdvtcrC − 5
2k−1 .

(4)

This completes the proof of theorem 2. 
�

3.2 Efficiency

In this section, we analyze the efficiency of our new variant and compare it
with the previous schemes in [7,11,9,10]. Note that, all of these schemes can be
instantiated over the QRN group or the semi-smooth subgroup. For the sake of
clarity, these two cases are discussed respectively.

The Case of QRN Group. The efficiency of schemes in [7,11,9,10] and our
variant is listed in table 1, where HK09 is the scheme in [7], E-HK is the ElGamal
style variant of HK09 in [11], LLML2011 is the variant of HK09 in [9], LLML2012
is the variant of HK09 in [10] and NEW is the proposed variant. The parameters
are the same as those in [7,11,9,10], lN = 1024, lK = lH = 80.

Table 1. Schemes instantiated over the QRN group

Encapsulate(mul) Decapsulate(mul) SK (bits) PK (bits)

HK09 3272(3lN + lK + 1.5lH ) 2376(1.5lN + 4lK + 6.5lH ) lN 2lN
E-HK 4808(4.5lN + lK + 1.5lH ) 2043(1.5 × 1.2lN + 2.5lH ) 2lN 3lN
LLML2011 3432(3lN + 2lK + 2.5lH ) 1816(1.5lN + lK + 2.5lH) lN 2lN
LLML2012 3272(3lN + lK + 1.5lH ) 1736(1.5lN + lK + 1.5lH) 2lN 3lN
NEW 3352(3lN + lK + 2.5lH ) 1816(1.5lN + lK + 2.5lH) lN 2lN

The encapsulation of our variant can first compute A = gμ, which requires
1.5lN multiplications. Then, the computation of B = Xμt requires 1.5lN +1.5lH
multiplications. Finally, the computations of R = A2lK+lH = g2

lK+lHμ and

K = BBSN (A2lK ) require lK + lH multiplications. Thus, the encapsulation re-
quires 3lN + lK + 2.5lH multiplications. The decapsulation computes D = Rρ,
which requires 1.5lN + 1.5lH multiplications (the length of ρ = xt is lN + lH).

Then computes (S/D)2
lK+lH and K = BBSN ((S/D)2

lH ), which require lK + lH
multiplications. We have that the decapsulation requires 1.5lN + lK + 2.5lH
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multiplications. Note that, the decapsulation can be improved by adding pq to
the private key and computing ρ = xt mod pq. As a result, the decapsulation
requires 1.5lN + lK + lH multiplications.

The Case of Semi-smooth Subgroup Group. The efficiency of schemes in
[7,11,9,10] and our variant is listed in table 2, where S-HK is the instantiation of
HK09, S-E-HK is the instantiation of E-HK, S-LLML2011 is the instantiation of
LLML2011, S-LLML2012 is the instantiation of LLML2012 and S-NEW is the
instantiation of our new variant. The parameters are the same as those in [7,11,9],
lK = lH = 80, lp′ = lq′ = 160, λ = 80, le = lp′ + lq′ +λ = 400, le′ = lp′ + lq′ = 320.

Table 2. Schemes instantiated over the semi-smooth subgroup

Encapsulate(mul) Decapsulate(mul) SK (bits) PK (bits)

S-HK 1400(3le + lK + 1.5lH) 1440(1.5le + 4lK + 6.5lH ) le 2lN
S-E-HK 2000(4.5le + lK + 1.5lH ) 920(1.5 × 1.2le + 2.5lH) 2le 3lN
S-LLML2011 1560(3le + 2lK + 2.5lH ) 880(1.5le + lK + 2.5lH ) le 2lN
S-LLML2012 1400(3le + lK + 1.5lH) 800(1.5le + lK + 1.5lH ) 2le 3lN
S-NEW 1480(3le + lK + 2.5lH) 880(1.5le + lK + 2.5lH ) le 2lN

Note that, the private key of schemes instantiated over semi-smooth subgroup
is selected from [2lp′+lq′+λ]. When p′q′ is added to the private key, the decapsu-
lation efficiency can be improved by selecting the private key from [p′q′].

4 Conclusion

We proposed a new method to remove the exponent GCD operation in HK09,
which improves the decapsulation without increasing the key size. The decapsu-
lation efficiency is improved by 38.9% (instantiated over the semi-smooth sub-
group) and the efficiency of encapsulation is dropped by 5.7%. Compared with
previous skill in [9] to remove the exponent GCD operation, the security reduc-
tion of our new scheme is tighter. Compared with the skill in [10], their scheme
is more efficient, while the key of our new scheme is shorter. We proved that the
proposed variant is IND-CCA secure under the factoring assumption.
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Abstract. This work continues the search for viable intractability as-
sumptions over infinite groups. In particular, we study the possibility
of phrasing random self-reducibility properties for infinite groups in an
analogous manner to the case of finite groups with the uniform distri-
bution. As a first step, it is natural to look for distributions which are
translation-invariant, i.e., the probability of an event and its translate by
a group element are the same (as is the case for the uniform distribution).
Indeed, this approach has been considered in cryptographic literature
by Lee [18], who introduced the concept of right invariance. However,
we argue a number of shortcomings for its applicability to cryptogra-
phy, showing in particular that any computational problem defined on a
right-invariant distribution will not yield a better (weaker) intractabil-
ity assumption than some problem defined over a finite group with the
uniform distribution.

Perhaps the problem is simply that translation invariance is too strong
of a property to ask of a distribution over an infinite group. Any such
distribution is necessarily non-atomic, and the atomic approximations in-
troduced by [18] (universally right invariant distributions) are still insuf-
ficient to deliver the desired complexity reductions. However, if a family
of distributions is randomizable via translation, this may in fact suffice:
one could translate an arbitrary instance by a sample from a known dis-
tribution, and obtain a related instance distributed according to a desired
base distribution (or something statistically close) – highly analogous to
the mode of operation of many random self reductions in cryptography.

Using a novel approach based on random walks, we construct families
of such distributions, which are translation-randomizable over infinite
groups. The main ingredients in our construction are recurrence (mean-
ing a random walk will invariably return to its origin), and shortcut
sampling, which asserts the existence of an efficient method for sampling
a long (super-polynomial length) walk. Given a suitable group with these
properties (for instance Z), we demonstrate how one may formulate prob-
lems with random self reducibility properties akin to the familiar setting
of finite groups and the uniform distribution.
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1 Introduction

Motivation. The modern approach to cryptography builds an array of proto-
cols and functionalities for which violating security requires the solving of an
instance of a computational problem that is believed to be intractable. Early
works exhibiting this approach include the famous results of [9] and [25]. Yet as
vitally important as cryptography has become, we still have but a small handful
of intractability assumptions on which the majority of our protocols rely. With-
out alternate assumptions, a breakthrough in factoring algorithms, or perhaps
in quantum computing could be devastating. Hence, efforts are underway in the
community to find new sources of computationally difficult problems upon which
cryptographic protocols can be built.

In spite of what seems to be an abundance of difficult computational problems
(cf. the theory of NP-completeness), we are still suffering from a shortage of
viable intractability assumptions. But perhaps the reason is simple: problems
which are difficult in the worst case are generally not sufficient for cryptographic
use. Cryptography demands problems with a difficult average case. Indeed, one of
the crucially important observations of [13] that led to a proper formalization of
security was that probabilistic modeling is a necessary ingredient for any sensible
definition.

Background. One intriguing approach that’s been offered is the use of group
theoretic problems to fill the gap. There are many difficult computational prob-
lems in group theory (as well as many algorithmically unsolvable problems),
yet very few group-theoretic cryptographic schemes have withstood scrutiny by
the community. As noted in the work of Lee [18], part of the difficulty is that
many such problems involve infinite groups. Once infinite sets are involved, it
is no longer clear how to proceed with probabilistic modeling, since the dis-
crete uniform distribution does not make sense on an infinite set. One especially
troubling consequence of not having a uniform distribution is that one must
forgo one of the key tools used by cryptographers for reasoning about average
case hardness—random self reducibility. The uniform distribution was assumed
in nearly all definitions of random self-reducibility, e.g., [1, 7, 10], and unfortu-
nately does not make sense on an infinite set.

To address this problem, [18] attempts to provide an analog of the uniform
distribution which makes sense for infinite groups. The author began by intro-
ducing the notion of a right-invariant distribution, for which the probability of
any event was unchanged by translation by a group element. The idea is that
this would in some sense allow for random sampling by translating an arbitrary
instance by a sample from the distribution—a process found in many random self
reductions for number-theoretic problems. However, clearly such a distribution
on an infinite group must be non-atomic. Thus, [18] also considered some relax-
ations of this notion termed universally right-invariant distributions which, up to
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finite quotients, are randomizable by right translations. The hope was that this
concept would provide a framework for reasoning about the average case com-
plexity of problems in the theory of infinite groups, and more importantly, to
lead the way toward new computational problems with random self-reducibility
properties, and ultimately, viable intractability assumptions.

Our Contributions. Our work continues the search for intractability assumptions
based on problems in infinite groups. We give both positive and negative results:
on the negative side, we show some major obstacles to applying right invariance
towards formulating random self reducibility on infinite groups; on the positive
side, we develop and analyze an altogether new approach using random walks
on recurrent groups, which provides families of translation-randomizable distri-
butions which could make the foundation for a rigorous approach to proving
random self-reducibility properties over infinite domains. We explain in more
detail below.

The first of our main contributions is the observation that the concept of
right-invariance is unlikely to produce intractability assumptions that are better
(i.e., weaker) than an assumption involving a problem on finite groups with the
uniform distribution. In particular, we show (Observation 1) that

1. Right-invariant distributions on an infinite group do not provide sufficient
basis to even reason about the average-case hardness of a problem, unless
one imposes additional assumptions.

2. Furthermore, if one imposes these additional assumptions, then the new
problem will yield an intractability assumption that is no weaker than a
related assumption regarding a problem on a finite group with the uniform
distribution.

Thus, it seems unlikely that right-invariance will aide cryptographers in leverag-
ing the complexity of infinite groups — at least not directly.1 Perhaps this helps
explain why we’ve not seen right-invariance appear in the literature for some
time now, in spite of how intriguing an idea it is.

As such, we explore alternative solutions to the problem. The second of
our main contributions is a new approach based on random walk distributions
which provides translation-randomizable distributions on certain classes of infi-
nite groups. Indeed, a number of researchers have already considered employing
random walks toward cryptographic ends (e.g., [16, 18]), yet in many ways, our
approach is fundamentally different. We take a moment now to highlight these
differences. Note that most prior work has considered groups in which the n-balls
(in the metric space defined by the Cayley graph) grow quickly, e.g., free groups.
While at first glance this seems sensible, as it provides an efficient method to
sample from a high-entropy distribution on the group, it is not without issues. In
particular, the multiplication operation in such groups is somewhat transparent,
and perhaps this has been an important factor leading to the cryptanalysis of

1 It may nevertheless be the case that the corresponding assumption over a finite
group is novel in itself.
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many such schemes. See for example [4,11,19], and in particular work on “length
based attacks”, e.g., [15,22]. Colloquially, one might say that there’s usually “not
enough cancellation”, or in terms of the Cayley graph, they are too “tree-like”.
Following this intuition, we look toward groups with a more opaque operation
on elements. One class of groups which in some sense may be thought of as a
closer relative to finite groups, are those which carry recurrent random walks
(see [27] for an in-depth survey). In contrast to braid groups and free groups,
random walks on the generators of a recurrent group will invariably return to the
identity element. Intuitively, this gives some sense as to the opaqueness of the
group operation,2 and similarity to the finite case. However, there is one glaring
issue with recurrent groups: the n-balls in the Cayley graph of such a group
will generally grow polynomially (in fact, quadratically; see [27, Prop. 3.23]).
Thus, to sample from a set of cryptographically significant size, we cannot ac-
tually take the steps of the random walk, leading us to the notion of “shortcut
sampling”, which we present in Section 4.2. We show (Proposition 3) that this
property, combined with recurrence, yields a family of translation-randomizable
distributions on an infinite group, which in some sense was one of the main goals
that right-invariance failed to achieve. While we do show explicit examples of
groups which satisfy the above properties, we remark that this merely sets the
stage for generalized random self reducibility; we do not as of yet have candidate
problems to offer.

Organization. Section 2 contains a review of the notion of right invariance
from [18]. Section 3 contains some elementary results on the role of right in-
variance in formulating computational problems. In particular, we illustrate a
number of its shortcomings as a tool in the search for new intractability assump-
tions based on group theory. Section 4 studies the concept of shortcut sampleable
random walks, and their potential for reasoning about average care hardness of
computational problems on infinite groups. Section 5 concludes with a discussion
of future work. A reference of basic notation and ideas from the measure-theoretic
approach to probability can be found in the appendix (Section A).

2 Review of Right Invariance

Here we review the basic concept of right invariance, introduced in [18]. We begin
with a high-level overview, and then present the ideas more formally in 2.2.

2.1 High-Level Remarks

In some sense, the work of [18] tries to find a suitable analogue of the uniform
distribution on an infinite group. Motivated by random self reducibility proper-
ties (abbr. “RSR”) of a number of computational problems over finite groups3,

2 Such a strong property is certainly not necessary, but it may be sufficient.
3 Classic examples in finite groups include the discrete log problem and the RSA
problem.
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the author is in search of distributions on groups that are preserved under right
translation. The uniform distribution U on a finite group G has the following
useful property: for any x, r ∈ G,

Pr [U = r] = Pr [U = rx] . (1)

Lee tries to find an analog of this property for infinite groups. Roughly put, a
distribution P on a group G has the property of right invariance if for any event
E ⊂ G which has a defined probability, and for any x ∈ G, we will have that

P(E) = P(Ex). (2)

A few remarks are in order. First, note that the distribution is not necessarily
atomic. In fact, if P were to define a probability for every element, then Equa-
tion (2) would be impossible to satisfy for an infinite group. Furthermore, on a
finite group, this property uniquely determines the uniform distribution. Hence,
more general probability distributions defined for some σ-algebra over G are
studied. Second, notice that in the finite case, Equation (1) actually says more:
it gives a way convert an arbitrary instance into a random instance, and more-
over, in a “lossless” manner. That is, given an arbitrary instance x, by sampling
r

$← U and multiplying, the translated element rx is distributed uniformly, and
given r, x is recoverable from rx. The analog of this property for the infinite case
does not immediately follow from right invariance—after all, the distribution on
G will in general not be atomic! We’ll return to this idea later on, but first we
review the work of [18] in more detail, and put formal definitions in place for
the main objects of our discussion.

2.2 Details of Right Invariance

In what follows, G denotes a group, and G will denote a σ-algebra on G. The
basic definition of right invariance is the following.

Definition 1. Let (G,G,P) be a probability space. An event E ∈ G is called
right invariant if for all x ∈ G it holds that Ex ∈ G and P(E) = P(Ex). The
space (G,G,P) is called right invariant if every event in G is right invariant.

This property can be expressed a little more cleanly using random variables.
For an element x ∈ G, define a random variable Tx from the measure space
to itself by right translation.4 Right invariance simply asserts that all of these
random variables are equivalent; that is, for all x, x′ ∈ G we have Tx ≡ Tx′ . As it
turns out, just the required closure property (i.e., that translation is measurable)
already imposes some interesting restrictions. [18] makes the following definition
and observation.

Definition 2. A σ-algebra G is called Right-Closed if for every E ⊂ G and
for every x ∈ G, E ∈ G =⇒ Ex ∈ G.
4 Note that this requires the translation of every measurable set to be measurable; see
Definition 2.
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Lemma 1 ( [18]). Let MG =
⋂

{E∈G | 1∈E} E. Then MG � G.

The above lemma states that the closure in the algebra of the identity element
is always a normal subgroup. The significance of this is that one can always
find a nice generating set for a right-closed σ-algebra over a group: the cosets
of MG partition the space, and hence there is nothing smaller. The rest of the
algebra can be built up from countable unions of these cosets. Notice also that
a group acts transitively on the cosets of any subgroup via translation. Hence
if you are interested in finding a probability distribution P on this algebra that
is invariant under translation, you have essentially one choice: all cosets must
have weight equal to the inverse of the index. I.e., for every coset K we must
have P(K) = 1/[G : MG ]. Thus, we have a bijection between right-invariant
probability distributions and finite index normal subgroups of G.

This makes the difficulties arising from infinite groups a little more clear. One
seems to have very limited choices for right-invariant probability distributions: if
the subgroup MG has infinite index, then you can not assign any right-invariant
distribution on the algebra, and if it is finite, then you have only one choice for
the distribution which may not be very natural. Moreover, no such distribution
on an infinite group is atomic, so if one plans to sample individual elements as
problem instances, numerous technical problems arise (this is discussed in detail
in Section 3). [18] tries to remedy this unfortunate state of affairs by introducing
the concept of universally right invariant distributions. Roughly speaking, these
are atomic distributions that are well-behaved with respect to all finite quotients.
More formally, we have:

Definition 3. An atomic probability distribution P on a group G is called Uni-

versally Right Invariant if for every H < G with [G : H ] < ∞ and for
every x ∈ G one has that P(H) = P(Hx).

Although a universally right invariant distribution would produce right invari-
ant distributions for every finite quotient, it is still not clear how this applies to
probabilistic modeling, since it leaves no apparent way to randomize actual in-
stances – only cosets. Moreover, it is shown that any finitely generated group G
with an infinite number of finite index subgroups will fail to have such an atomic
distribution, which ruled out many of the infinite groups which have been exper-
imented with in cryptography. To resolve the latter problem, a relaxation of the
definition is considered which demands only statistical closeness to a right in-
variant measure. The motivation is a result of [8] regarding random walks on free
groups, which states that

∑
Hx∈F/H

∣∣μ̄k(Hx)− [F : H ]−1
∣∣ ∈ o(c−k). Here, μ̄k is

a distribution on the free group coming from random walks of length bounded
below by k. See [18] for the precise definition of “random-walk”—essentially one
stops with probability s, and otherwise takes a random step along X∪X−1 (but
not in the direction from which you just came) where each of the remaining
2|X | − 1 generators are taken with equal probability 1−s

2|X|−1 . Hence for small

enough s, (i.e., for long enough walks) this distribution gives you something
close to a universally right invariant measure on a free group.
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3 Right Invariance and Computational Problems

Keeping in mind the goal of finding new intractability assumptions based on
the theory of infinite groups, we explore in more detail the ways in which right
invariance might be of use, but mainly we focus on several ways in which it will
not. As we will see shortly, there are some intrinsic problems with formulating
the notion of “difficult on average” in a setting that involves general probability
distributions.

3.1 A Definitional Observation

Average-case complexity has been studied in the literature in a number of con-
texts, for example [3,5,6,14,20], yet none of these works adequately address the
situation we face in formulating cryptographic assumptions from the theory of
infinite groups. To begin, much of the literature focused on problems which are
tractable on average, whereas cryptography is concerned more with problems
that are not tractable, and in a strong sense.5 The work of [12] does provide a
formulation of the desired cryptographic notion of hard on average for a number
of specific settings, however, this formulation does not consider problems which
are defined on infinite instance sets, but rather problems that are defined on an
infinite family of finite sets.6 As such, all problems are defined over the uniform
distribution; there is no need to consider more general probability distributions.
Unfortunately, our premise does not afford us the convenience of the uniform
distribution, since our sets of instances are infinite.7 We investigate here the
possibility of extending the definition of [12] to more general settings.

For our more general notion of average-case hardness to be the object of
rational study, we would hope that, at a minimum, the notion is well-defined.
We’ll first present natural (although somewhat minimalistic) definitions which
are analogues of those found in, for example [14,20], and are required to formulate
the idea of average-case hardness in our setting. We then demonstrate that right
invariant distributions are not sufficient to formulate computational problems
for which the average-case hardness is even well defined.

The first required definition is that of a randomized computational problem.
Several variations have appeared in the literature (e.g., Levin’s distributional

5 Here, “intractable” is not just the negation of “tractable”, but rather specifies that
for sufficiently large instances, the probability of any efficient adversary succeeding
is bounded by a negligible function. The negation of being tractable would just state
that there is some infinite sequence of instance sizes which are difficult.

6 The set of all finite length strings is naturally partitioned by length into finite sets,
and instances of a specific length are generated according to the uniform distribution.

7 Note that in number-theoretic settings, it is usually the size of the group that de-
termines the size of instances (i.e., the security parameter). However, most infinite
groups which have been considered for cryptographic use have been finitely gener-
ated, and thus are all of the same size in terms of cardinality (they are all countably
infinite). Thus, a different metric must be used for infinite groups; often it is the size
of a generating set that is used for the security parameter.
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problems, and Gurevich’s randomized decision problems), and each definition
consisted of some coupling of a traditional search or decision problem with a
probability distribution on the instances. We remark that the distribution on
the instances was required to satisfy certain properties; either the cumulative
distribution function had to be efficiently computable, or efficiently sampleable
(the latter asserts the existence of an efficient procedure that produces elements
of the instance set with the desired probability distribution). Our main departure
from these works is in the types of distributions we consider. In particular, the
prior works always considered atomic distributions, and in one way or another,
involved the discrete uniform distribution. Here is yet another variation, molded
into our context. It is intentionally oversimplified, as it serves primarily as a
“straw man” for our discussion.

Definition 4. We define a randomized decision problem to be a family of
(distribution, language) pairs ((Ωn,Bn,Pn), αn) where

– The sets {Ωn}n∈N
correspond to the problem instances.

– (Ωn,Bn,Pn) are probability distributions on the sets of instances , such that
the distributions (Ωn,Bn,Pn) are efficiently sampleable.

– αn : Ωn −→ {0, 1} is a family of functions describing the “yes” instances.

A few remarks are in order:

– We consider “abstract” problems, in which we do not demand that the in-
stances are encoded as binary strings. This is intentional, as it simplifies the
discussion, and is not needed to illustrate the main results.

– The distributions on instances are of the more general measure theoretic
variety, and are efficiently sampleable. The latter requirement states that
there exists S ∈ PPT such that S generates elements of the sample space
according to the specified distribution.

– We follow the definitions of [12], and use a parameterized set of instance
distributions, as opposed to having a single universe of instances with a
size function, for example as is the work of [14]. However, such a space of
instances could be viewed as the disjoint union of all the sets Ωn.

We will use the term atomic randomized computational problem to refer to the
usual case in which the distribution on instances is atomically defined. Next, we
attempt a definition of what it means to be difficult on average in our context,
and then explore some of the inherent issues. One natural extension in the spirit
of [12] is the following.

Definition 5. Let ((Ωn,Bn,Pn), αn) be a randomized decision problem, as in
Definition 4. We say that ((Ωn,Bn,Pn), αn) is hard on average if for every
algorithm A ∈ PPT, and for every polynomial p, then for all sufficiently large n,

Pr [A(Pn) = αn(Pn)] <
1

2
+

1

p(n)
.
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Consider the following observation, which states that allowing non-atomic
distributions in the definition of a randomized computational problem necessarily
introduces problems for which the average case hardness is not well defined.

Observation 1. If there exists any atomic randomized computational problem
which is hard on average, then the notion of hard on average for general
(non-atomic) randomized computational problems is not well defined.

Put another way, to assert the average-case hardness of a randomized computa-
tional problem, then the σ-algebra B must be 2Ω, the full σ-algebra on the set of
instances. Failing to do so will either (1) leave the problem underspecified, or (2)
require an additional assumption that, irrespective of the sampling algorithm,
every version of the problem is polynomial-time equivalent.

The gist of Observation 1 is that in the non-atomic case, there may in fact
be many efficient procedures to sample elements according to Pn, and differ-
ent sampling algorithms may have complete influence over the difficulty of the
problem. The following example, while indeed contrived, illustrates the potential
issues.

Example 1. For concreteness, we’ll use the Quadratic Residuosity problem [13],
although the following construction is fairly generic. The set of instances is the
subgroup H < ZN of index 2, consisting of all elements with Jacobi symbol +1,
where N = pq is the product of two primes. We’ll let α : H −→ {0, 1} denote the
“answer map” that takes each instance to a binary value indicating whether or
not the input has a square root modulo N . Now modify the original problem so
that the set of instances is H ′ = H ×Z2, and for a pair (x, b), the answer is just
that of the first coordinate: α(x, b) = α(x). We’ll now define a right invariant,
non-atomic probability distribution on H ′ as follows. Let B denote the σ-algebra
generated by the sets

{{x} × Z2 | x ∈ H} .

Define a natural probability space over B by setting P({x}×Z2) =
1

|H| for every

x ∈ H . Right invariance of the distribution follows easily from the fact that
translation by a group element (x, b) ∈ H ′ will permute the first and second
coordinates individually.

We now specify two different sampling algorithms on H ′ that will completely
determine the difficulty of the problem, and yet produce the same probability
distribution on the events in B. Moreover, both of these sampling algorithms
are efficiently computable with only public information. As in the cryptosys-
tem application of [13], let η ∈ H be a quadratic non-residue which is publicly

known. The first algorithm samples a uniform y
$← H and uniform b

$← {0, 1}
and then outputs the instance (y2ηb, b). The second algorithm samples y and
b identically to the first, yet outputs the instance (y, b). It is easy to see that
the first coordinate in uniformly distributed in both cases, and thus both algo-
rithms efficiently sample according to P. However, the computational difficulty
of the corresponding problems is completely different (assuming that quadratic
residuosity is hard).
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In summary, we see that in order to make an assertion about the average case
hardness of a computational problem, the definition must include an atomic
probability distribution on the instances. Else, additional assumptions are re-
quired regarding the computational equivalence of different sampling algorithms
that yield the same overall distribution Pn. The following section discusses ap-
plications of this observation to right-invariance.

3.2 Consequences for Right Invariance

One aim of right invariance was to express random self reducibility properties
for computational problems over infinite groups, which would hopefully enrich
the sources of intractability assumptions available for cryptographic use. In light
of the above observation, right invariance seems unlikely to succeed in this goal.
To begin, note that you can never have an atomic distribution on an infinite
group that is right invariant. So, any right invariant distribution is necessarily
non-atomic, and thus is not suitable for discussing average case complexity or
random self reducibility. There is also the concept of universally right invariant
(Definition 3), which is an atomic distribution that approximates a right invari-
ant distribution, but this too is not without issues. In the following, we consider
3 potential use-cases of right invariant, or universally right invariant distribu-
tions for formulating cryptographic intractability assumptions, and highlight the
issues with each. We’ll stick with the notation of the previous section, and let
(Ω = I,B,P) denote the set of instances, the σ-algebra, and the probability
measure respectively. G will denote the group over which the problem is defined.

(B,P) is Right Invariant, G = I. Since the sample space is the same as the set
of instances, this will fit nicely with the formulation of most problems in com-
putational group theory. However, as shown in Example 1, this will leave you
with either an underspecified distribution, and no way to discuss average case
complexity, or it will require the additional assumption that all efficient sam-
pling algorithms are equivalent. In the former case, the detraction is obvious,
so let us consider the latter case: Even if the assumption holds and all efficient
sampling algorithms are indeed equivalent, right invariance still does not yield
intractability assumptions which are weaker than assumptions on a finite group
with the uniform distribution. Consider the following: if all sampling methods
are equivalent, then we may select a single representative of each coset of MG
(the closure in B of the identity of G) and define our sampling algorithm to
return each of these designated representatives with probability 1/[G : MG ]. We
can now view the situation not as a problem defined over G, but rather defined
over the quotient group8 G/MG , which is finite, with the uniform distribution
on instances. Thus, the assumption on the infinite group is in fact no weaker of
an assumption than some assumption over a finite group with the uniform dis-
tribution, and therefore seems unlikely to produce new sources of intractability
assumptions.

8 We can redefine multiplication if necessary.
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(B,P) is Right Invariant, instances are no longer elements. If the instances
are identified with the cosets that generate the σ-algebra, then this approach
provides the benefit that you are able to randomize the instances. However,
there are a number of obvious drawbacks. To begin with, this does not seem to
be compatible with the description of many problems in computational group
theory. Moreover, if the instances are identified with cosets, then it seems that the
problem is actually defined on a finite quotient group, G/MG , with the uniform
distribution being used for sampling the instances. This is of course the familiar
setting for cryptography, and thus does not seem to be useful in providing new
sources of intractability assumptions.

(B,P) is Universally Right Invariant, I = G. Since the σ-algebra is now atomic,
there are no concerns about differences in sampling algorithms, however, this
comes at a very steep price: any universally right-invariant distribution, is not
actually right-invariant, and thus the instances cannot be randomized via trans-
lation, leaving no apparent way to express random self reducibility. The only
kind of randomization property that is guaranteed is relative to finite quotients,
which again does not yield new assumptions, as discussed in the prior cases.

Moreover, it was shown that very few of the infinite groups which have been
considered for cryptographic use will have a universally right invariant distribu-
tion to begin with. The work of [16] shows that certain random walk distributions
will be very close approximations to universally right invariant distributions,
however this result applies only to free groups, which as we have noted do not
seem suitable for cryptography.

4 Random Walks, Recurrence, and Shortcut Sampling

Given the apparent difficulties of applying right-invariance to the search for
intractability assumptions, we explore here the idea of using random walk dis-
tributions to phrase generalized random self-reductions on groups. We begin by
defining a new notion (shortcut-sampleable) and then show how that property,
on a suitable (yet possibly infinite) group yields a family of distributions which
are randomizable via translation. Such distributions could provide a framework
for proving random self-reductions on an infinite group, much in the same way
as the uniform distribution on a finite group. We begin with some basic facts
and definitions about random walks.

4.1 Random Walks and Recurrence

Generalities. A Random Walk is simply a Markov chain, which can be spec-
ified by a (finite, or countable) state space X , an initial state, and a matrix
of probabilities P : X × X → [0, 1] which, via the (x, y) entry, determines the
probability of moving from x to y in a single step. Following [27], we will de-
note the (x, y) entry of the matrix by the lower case p(x, y). Note that the n-th
matrix power Pn corresponds to the n-step random walk; i.e., the probability
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of reaching y from x after n steps is the (x, y) entry of Pn, which we denote
by p(n)(x, y). A Markov chain is called Irreducible if ∀x, y ∈ X, ∃n ∈ N such
that p(n)(x, y) > 0. We consider only irreducible chains. We denote by Zn the
X-valued random variable describing the position of the walk after n steps. We
define the Green function as follows:

G(x, y|z) =
∞∑

n=0

p(n)(x, y)zn. (3)

The Green function has the following interpretation: G(x, y|1) = G(x, y) is the
expected number of visits to y when starting at x.

Definition 6. A Markov chain is called Recurrent if G(x, y) = ∞ for some
x, y ∈ X. If the chain is not recurrent, it is said to be Transient.

It is also useful to consider the random variable describing the number of steps
until y is reached from x. We define sy = min {n ≥ 0 | Zn = y} as the Stopping
Time, and set f (n)(x, y) = Pr [sy = n], and F (x, y|z) =

∑∞
n=0 f

(n)(x, y)zn. We
denote F (x, y|1) by F (x, y). Recurrence may also be formulated in terms of F : it
is equivalent to the condition F (x, y) = 1. As it turns out, recurrence / transience
is well defined, independent of the points x, y.

Fact 2. If a chain is recurrent, then in fact we have G(x, y) = ∞ and F (x, y) =
1 ∀x, y ∈ X.

Walks on Graphs and Groups. There are several natural ways to adapt random
walks to a graph structure. Suppose X is the vertex set of a graph, and let us
denote adjacency in the graph by x ∼ y.

Definition 7. The Simple Random Walk on X is defined by

p(x, y) =

⎧⎨⎩
1

deg(x)
if x ∼ y

0 else.

Now suppose that G is a discrete group, with S ⊂ G a finite set of generators.
Recall the Cayley Graph of G relative to S is a natural graph structure on
G which places an edge between x, y if and only if x−1y ∈ S. In this way, we
can consider random walks on finitely generated groups in the same terms as we
have for graphs. Unless stated otherwise, it will be understood that a random
walk on (G,S) refers to the simple random walk on the corresponding Cayley
graph, starting at 1G.

Definition 8. A simple random walk on the Cayley graph of a group G relative
to the set of generators S is called Lazy if 1G ∈ S.

Laziness is useful for sidestepping situations in which the random walks are
periodic (that is, when elements are only connected by paths of the same modular
character, e.g., all paths from x to y in Zd have the same length modulo 2). Note
that a walk is recurrent if and only if its corresponding lazy version is.
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4.2 Shortcut Sampling

The idea of using random walks for sampling group elements in a cryptographic
context has been considered in a number of prior works, e.g., [16, 18]. However,
generally speaking these attempts have only considered using random walks
on groups for which the n-balls in the Cayley graph grow very quickly. Our
intuition is that many of these groups are fundamentally unsuitable for cryp-
tography, primarily due to a lack of “opacity” in the group operation. Roughly
speaking, we mean that if given a fixed, random generating set, and a product
of the generators, there are very few ways to factor an element in terms of those
generators. Colloquially, one might say that there’s usually “not enough cancel-
lation”, or in terms of the Cayley graph, they are too “tree-like”. Following this
intuition, we look towards groups with smaller growth rates; more specifically,
recurrent groups, which (see [27, Prop. 3.23]) have n-balls that are quadrati-
cally bounded.9 As a consequence of this small rate of growth, we must forgo
the ability to efficiently sample from a set of cryptographically significant size
by actually taking the steps of a random walk, and must find an alternative.
Intuitively, our idea is simple: a random walk is shortcut-sampleable if one can
efficiently (poly-logarithmic time in the walk’s length) sample the distribution.
More formally, we have the following, whereΔ represents the statistical distance.

Definition 9. A Markov chain X is said to be Shortcut-Sampleable if there
exists a probabilistic algorithm W such that Δ(W (n, k), Zn) < 2−k, and such that
W runs in polynomial time in both logn and k.

Remark 1. Note that Definition 9 will generally preclude chains corresponding
to simple random walks on groups for which the n-balls (and hence supp(Zn))
have super-polynomial growth: in this case the log n time constraint won’t leave
time to even write the output.

The notion is general, but for some familiar examples, this will concretely amount
to “sampling exponents” of generators according to a specific distribution, rather
than walking along the generators themselves. We will study the specific case
of the integers in some detail, as what happens there illustrates much of our
intuition.

Consider the random walk on Z over the symmetric generating set {±1}. In
this case

Pr [Zn = i] =

⎧⎪⎪⎨⎪⎪⎩
(

n

(n+ i)/2

)
2n

, if i ≡ n mod 2

0, else.

(4)

Proposition 1. The random walk on Z is shortcut-sampleable according to def-
inition 9.

9 We remark however, that there are irregular trees which both exhibit exponential
growth and carry a recurrent walk. See [27, Ex. 6.16] for example.
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(a) Random walk distributions on Z
with different means converge with
increasing length.

(b) Illustration of �1 distance in terms
of CDF’s. L1 of normal approxima-
tion shown above for clarity.

Fig. 1. Convergence of walk distributions on Z: long walks can “forget” their starting
point.

Proof. Due to space constraints, we defer the proof to the full version [17].
However, the result can be accomplished via a fairly straightforward application
of inverse transform sampling.

Remark 2. At first glance, the walk from Eq. 4 appears less than perfect for
sampling cryptographic instances, as it seems too clumped around 0. However,
as we take longer walks, the variance will grow linearly (Zn will have variance
n
4 ) and since we are able to shortcut-sample very long walks, we can flatten the
distribution quite effectively in a sizable neighborhood around 0. This point,
among others, is illustrated in figure 1a.

Remark 3. The above distribution will assign no mass to points k for which k �≡ n
mod 2. As we’ve noted above, this can be remedied by using a lazy walk, or
alternatively by only considering n of the same parity. We will generally take the
latter approach, as the lazy walk approach complicates the analysis somewhat,
and since for application of the results this presents no major obstacles.

4.3 Translation-Randomizable Distributions

Here we demonstrate families of translation-randomizable distributions, which
may form a foundation for generalized random self reducibility. We show an
explicit example (the integers), and then demonstrate randomization via trans-
lation properties for any shortcut-sampleable random walk on a recurrent group
(although certain rates of convergence will vary from group to group).

Intuition. The first observation is that a random walk is, by definition, a Markov
process. Thus, it has no “memory” and its future depends only on its current
state. For example, the distribution of Zn conditioned upon returning to the
origin after k steps is precisely Zn−k. Now suppose that we are given an arbitrary
state x ∈ X , corresponding to some problem instance. We would hope that by
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taking a long walk away from x, we could (statistically) drown out all information
about x, and be left with a random instance—that is, an instance distributed as
a random walk from the origin. The intuition is that if the group is recurrent,
then with good probability, you will hit the origin somewhere10 early in the walk
(see Fact 2), and thus the resulting distribution must be close to the walk from
the origin, as the only difference between the two is a (relatively) small amount of
length. As we show below (Proposition 3), this is indeed what happens, although
in general it seems difficult to bound the rates of convergence. We do, however,
show tight bounds for the random walk on Z. Finally, we note the similarity
with the notion of ergodicity, which would indeed be highly applicable here. The
issue is of course that almost none of the random walks over infinite groups are
positive recurrent11 which is a requisite property for ergodicity. As we’ll see, in
spite of the integers being null recurrent (the expected time of a walk to return
to the origin is infinite), they very much meet our needs in terms of their random
walk distributions.

Example: the integers. Let Zn denote the distribution after n steps starting at
0, and let Zx

n denote the n-step walk distribution starting at x, and suppose12

that x ≡ 0 mod 2.

Proposition 2. For Zn, Z
x
n as above, limn→∞ Δ(Zn, Z

x
n) = 0. Moreover, set-

ting n = Ω(|x|4) gives Δ(Zn, Z
x
n) = O(1/|x|).

Proof. First note that by symmetry, we can assume without loss of generality
that x ≥ 0. In this case, observe that again by symmetry in the distributions
about their means, we have

Δ(Zn, Z
x
n) = Ψ(x/2)− Ψ(−x/2) (5)

where Ψ denotes the cumulative distribution function of Zn. See figure 1b. Noting
that Zn(y) is maximized at y = 0, to bound the difference in Ψ values from (5),
it suffices to bound Zn(0). Using Stirling’s approximation to the factorial:

Δ(Zn, Z
x
n) = Ψ(x/2)− Ψ(−x/2) ≤ xZn(0) (6)

= x

(
n

n/2

)
2n

(7)

≈
x(ne )

n

2n( n
2e)

n
√
πn

(8)

=
x√
πn

. (9)

10 Since the walk is too long to actually take the steps, one cannot be sure precisely
where this happened; and indeed if this were possible, it would of course imply an
efficient algorithm for solving the problem.

11 That is, the expected number of steps to return to the origin is finite.
12 If not, then of course the statistical distance will be 1. However, this is easily remedied

in applications, for example by using lazy random walks.
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It is easy to show that the error in the final expression (introduced by the use
of Stirling) will be at most a factor of e. The proposition then follows at once
from Equation (9). 
�

Towards more general results. We show here that the above proposition (2) re-
garding the integers generalizes to some extent. In particular, we show (Propo-
sition 3) that any recurrent group has the property that a long random walk
is able to “statistically drown-out” its starting point. We remark that although
there are fairly powerful local limit theorems which demonstrate asymptotic con-
vergence of the values of p(n)(x, y) (see [27, Ch. III]), these do not suffice for our
purposes, since they do not necessarily yield convergence in �1.13 Ultimately, we
would like tight bounds on the rate of convergence. Our result does not imme-
diately yield such bounds, however, the hypotheses of the proposition are rather
mild. It may of course be possible to say more in specific cases of interest (e.g.,
Proposition 2). For convenience, we first introduce the following property, which
as it turns out, is satisfied by the lazy random walk on any finitely generated
group.

Definition 10. We say that a sequence {sn}∞n=0 in a metric space is Window-

Cauchy if for every c, ε > 0, ∃n0 ∈ N such that

n > n0 =⇒ sup
0≤i<j≤c

d(sn+i, sn+j) < ε.

Lemma 2. Let {Zn}∞n=0 be the distributions of n-step, lazy random walks on
any finitely-generated group X. Then {Zn}∞n=0 is window-Cauchy.

Proof. Due to space constraints, we defer the proof to the full version [17].

Using the window-Cauchy property, we now show that in any recurrent group,
a sufficiently long walk is always able to “forget” its starting point. Note: when
it is clear from context, we will omit braces when writing the inverse image of a
singleton set, for example π−1({y}) will be written as π−1(y).

Proposition 3. Let Zn, Z
x
n be the distributions of the n-step, lazy random walks

on a recurrent group X, starting at the identity element and x, respectively. Then
limn→∞ Δ(Zn, Z

x
n) = 0.

We sketch the proof below; the full details can be found in [17].

Proof sketch: Note that while Zx
n is naturally defined on the set of states X ,

we can also view Zx
n in terms of the trajectory space, XN0 and the product σ-

algebra induced by 2X . The distribution Px on XN0 is given by the Kolmogorov
extension theorem. In this case, the mass function for Zx

n can be expressed as

Pr [Zx
n = y] = Px(π

−1
n (y)) (10)

13 The convergence is proved only point-wise, and if rates of convergence are given,
they usually hold only for a small neighborhood of the mean.
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where πn : XN0 −→ X denotes the nth projection. While we are primarily
interested in the Zx

n distributions, defined onX , it will be convenient to condition
on the actual steps of the walk that led to a particular outcome. Thus, for any
event E ⊆ XN0 and any n ∈ N0, we define a distribution Pn

x(· | E) on X as
follows:

Pr [Pn
x(· | E) = y] = Px(E ∩ π−1

n (y))/Px(E). (11)

That is, Pn
x(· | E) represents the probability of arriving at y after n steps, given

some conditions E on the actual steps taken. Now consider the set Ak = (X \
{1X})k×X×· · · corresponding to all walks which have avoided 1X after k steps.
Since X is recurrent, we know that F (x, 1X) = 1, and hence limk−→∞ Px(s

1X >
k) = 0 so that limk→∞ Px(Ak) = 0. Let Bk denote the complement of Ak: that
is, the walks which have passed through 1X at some point in the first k steps.
Partition Bk as Bk =

∨k
j=0 Fj where Fj = Aj ∩π−1

j (1). Now for m > k, we may
condition Zx

m on Ak, Bk:

Zx
m = Pm

x = Pm
x (· | Ak)Px(Ak) + Pm

x (· | Bk)Px(Bk) (12)

= Pm
x (· | Ak)Px(Ak) + Px(Bk)

k∑
j=0

Pm
x (· | Fj)Px(Fj | Bk). (13)

Notice that Pm
x (· | Fj) = Zm−j . Thus, we’ve expressed the distribution Pm

x (· |
Bk) as a convex combination of {Zm−i}i≤k. From the window-Cauchy property
and a straightforward application of Jensen’s inequality, the last sum in (13) will
in fact be close to Zm. Finally, since the contribution from the Ak prefixes is
small, it follows (again using convexity of the norm) that Zm is close to Zx

m for
sufficiently large m. Complete details can be found in [17]. 
�

Note that while Lemma 2 shows that lazy walks of differing lengths will rapidly
converge in �1 (see equation (9)), this does not necessarily give us a strong rate
of convergence for walks with different origins (Proposition 3), which depends
also on the rate of convergence for limk→∞ Px(Ak) towards 0. For cryptographic
application, stronger results on the rates of convergence, similar to equation (9),
are generally desirable. However, looking ahead towards random self-reducibility,
such a strong rate of convergence may not always be necessary: if for example,
we are using the framework to argue a random self reduction for a search prob-
lem, then we may have an efficient procedure to check the results of an oracle
(think DLP or RSA), and thus if given a polynomial lower bound for sampling
the correct distribution, the oracle will work often enough. Moreover, for such
problems this may also allow one to side-step the recurrence requirement.

Towards generalized random self-reducibility. We now outline some definitions
for generalized random self-reducibility, as well as sufficient conditions to ar-
gue such a property over suitable random walk distributions. We begin with
distributional problems, reminiscent of those in the works of [5, 6, 14, 20].
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Definition 11. A Distributional Problem is a tuple (I, A, α : I −→ A)
together with a size function |·| : I −→ N, and a family of distributions {IN}∞N=0

on I such that supp(IN ) ⊆ {x ∈ I | |x| ≤ N}.

In the above, I represents the set of instances, A, the space of answers (A = {0, 1}
for a decision problem), and α maps each instance to its answer.

Remark 4. Note that the notation | · | used for the size function is being re-
purposed; up until this point, it was frequently used to denote the Cayley graph
metric, or the length of a walk; it is now being used in the complexity theoretic
sense as the length of a binary representation.

Definition 12. For a distributional problem as above, we’ll define the Advan-

tage of an algorithm A to be

AdvA(N) =

∣∣∣∣∣∣∣ Pr
x

$←IN,

coins(A)

[A(x) = α(x)] − 1

|α(supp(IN )|

∣∣∣∣∣∣∣ .
Definition 13. Let (I, A, α) be a distributional problem as above. The problem
is said to be Quasi Random Self-Reducible if there exists τ, ξ ∈ PPT such
that

1. (Randomization) ∀x ∈ I, the distribution of τ(x) is statistically close to
I|τ(x)|.

2. (Reconstruction) With high probability, ξ(x, r, α(τ(x))) = x, where r denotes
auxiliary information used by τ to construct its sample.

The idea for proving random self reductions in this framework is simple, and
highly analogous to the way things work over finite groups and the uniform
distribution. Suppose that we are given an oracle Ω which solves a distributional
problem with polynomial advantage ε(N). Suppose also that the IN are shortcut
sampleable random walk distributions, and moreover, that by keeping track of
the random selections in the algorithm, we’re able to sample instances with
known answers. Lastly, suppose that the problem has a sort of “homomorphic”
property; say the answer function commutes with the group operation. If given an
arbitrary instance x, we could effectively randomize it by taking a long walk away
from it, thus creating an element xr which is distributed statistically close to IN
for some N > |x|. Now invoke the oracle on xr, and with good probability, it will
return α(xr) = α(x)α(r), from which we can solve for α(x). There are a few small
concessions in contrast to the finite case: we lose some of Ω’s advantage since the
distribution isn’t exactly the same as what it expects, and the reduction will cost
some extra time, since we are invoking Ω on a larger input than x. Nevertheless,
the conclusions are essentially identical: an efficient procedure solving instances
according to some fixed distribution implies an efficient procedure for solving
arbitrary instances.
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5 Conclusions and Future Work

In the continued search for viable intractability assumptions from combinatorial
group theory, we have made progress in several directions: both positive, and
negative. On the negative side, we have demonstrated a number of substantial
obstacles to using right-invariance toward this end; on the other hand, we have
introduced a new, alternative framework which allows one to phrase random self-
reductions for computational problems over infinite groups in a way that’s highly
analogous to the finite case and the uniform distribution. While these preliminary
results do not immediately yield cryptographic application, they nevertheless
seem to take a small step towards understanding this difficult and important
problem. Along the way, we have also demonstrated interesting properties of
random walk distributions for recurrent groups (Proposition 3) which, to the
best of our knowledge, were not known prior to this work. In addition to the
obvious question of finding a cryptographically interesting instantiation of our
construction, other directions for future work may include the following topics:

– Is the converse of Proposition 3 true?
– Right-invariance, as well as our new notion of shortcut-sampleable distribu-

tions, both focus on a particular type of randomization procedure: translation
by a group element. Perhaps by considering other types of self-mappings
on the instances, one could formulate more general “randomizable distribu-
tions” over infinite groups to attain the desired effect (that the probability
of the image under this mapping is the same as the preimage).

– Although right-invariance may not produce weaker intractability assump-
tions than a corresponding problem on a finite group, it may be the case
that this corresponding problem nevertheless turns out to be novel and in-
teresting. [18] has already provided some work in characterizing such groups,
but it may be useful to explore their finite quotients. Furthermore, if one re-
laxes the distribution to be statistically close (as illustrated in Section 2.2),
then there seems to be a rich class of groups and distributions to study.
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A Notation, Terminology, Etc.

Here we review some common notation and concepts from probability. We as-
sume some familiarity with the standard measure-theoretic view of probability.

σ-algebras. A collection B of subsets of a sample space Ω is a σ-algebra in Ω
if it satisfies the following:

1. Ω ∈ B
2. If E ∈ B then Ω − E ∈ B.
3. If E1, E2, ...,∈ B then ∪∞

i=1Ei ∈ B.

A pair (Ω,B) is called a measurable space. Each E ∈ B is called a mea-

surable set. The special case in which B = 2Ω, is referred to as the atomic

σ-algebra.

Probability Spaces. We define a Probability Space as a triple (Ω,B,P) con-
sisting of a sample space Ω, a σ-algebra B ⊂ 2Ω and a probability measure P
which maps events E ∈ B to real numbers in [0, 1], such that P is countably
additive, and such that P(Ω) = 1.

Distributions and Random Variables. Let (Ω,B,P) be a probability space, and
let (R,R) be a measurable space (R is a σ-algebra on the set R). We define a
Random Variable simply to be a measurable map X : Ω −→ R.14 That is to
say, for every S ∈ R, we have X−1(S) is an event. We remark that this definition
generalizes the definition typically found in statistics (in which random variables
are constrained to take values in R).

For a random variable X : Ω −→ R, we define the Distribution of X
(denoted μX) as the induced probability measure on (R,R). That is, μX(S) =
P(X−1(S)). We consider two random variables X,Y to be equivalent (written
X ≡ Y ) if they induce the same distribution; that is, if μX = μY . When there is
no risk of confusion, we will often write X(S) to denote μX(S), the probability
of S under the induced distribution.

14 Recall that a measurable map is just a function f for which f−1(S) is measurable
for every measurable S in the range.
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Unless otherwise stated, U(S) will denote the uniform distribution on a finite
set S, or more simply, just U when the set is clear from the context. In a
probabilistic statement, we will denote that a variable x is sampled according to
the distribution X by writing x

$← X . For a finite set S, x
$← S is shorthand for

x
$← U(S). It is important to note that this only applies to atomic distributions ;

we will at times consider probability spaces for which singleton sets are not
measurable, and thus there is no clear meaning for “sampling an element”.

When random variables appear in probability statements, it will be under-
stood that the probability is taken over selection of an element from that distri-
bution. For example, Pr [U = x] is synonymous with

Pr
r

$←U

[r = x] .

Again, we stress that this only applies to the atomic setting, in which a proba-
bility is defined for each element of the sample space.
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1 Introduction

Since “cold-boot” attacks demonstrated a practical threat to cryptography sys-
tems [13], researchers have contributed much effort to constructing schemes
against side channel attacks. Among these attacks there is one kind called re-
lated key attacks (RKA), which means that attackers can modify keys stored in
the memory and observe the outcome of the cryptographic primitive under this
modified key [10,8].

In this work we study public key encryption (PKE) schemes against chosen
ciphertext RKA (CC-RKA), which is formulated by Bellare et al. [4]. Following
the original theory given by Bellare and Kohoo [5], the definition is parameterized
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by the class of Φ functions that the adversary can apply to the secret key. As
denoted by Bellare et al. [7], let S be the secret key space. If S is a group,

Φlin = {φa}a∈S is used to denote the class of linear functions; if S is a ring,

Φaffine = {φa,b}a,b∈S is used to denote the class of affine functions; Φpoly(d) is
used to denote the class of polynomial functions bounded by degree d.

Bellare, Cash and Miller [4] showed that CC-RKA secure PKE can be trans-
formed from RKA secure pseudorandom functions (PRF) and RKA secure iden-
tity based encryption (IBE) separately for the same class of Φ. In [3] Bellare

and Cash gave a framework of building RKA secure PRFs for Φ = Φlin. In [7]
Bellare, Paterson and Thomson gave a framework of building RKA secure IBE

for Φ = Φpoly(d). So by combining [4] and [3] we can get Φ-CC-RKA secure PKE

for Φ = Φlin; and by combining [4] and [7] we can get Φ-CC-RKA secure PKE

for Φ = Φpoly(d). In [19] Wee proposed a framework of constructing Φ-CC-RKA

secure PKE from adaptive trapdoor relations for Φ = Φlin.
In [19] Wee pointed out that the Cramer-Shoup CCA secure construction [11]

can not achieve CC-RKA security through their approach, since the property
that the secret key has some residual entropy given only its evaluation on a non-
DDH tuple makes it impossible to fulfill “finger-printing”. However, whether all
variants of the Cramer-Shoup construction can not achieve CC-RKA secure is
still an open problem. Is “finger-printing” a necessary condition of CC-RKA
security for PKE?

Our Result. In this work we prove the Φ-CC-RKA security of two PKE schemes

for Φ = Φaffine in the standard model.

– The first scheme is based on the DDH assumption, and it achieves Φ-CC-
RKA security by making a modification to the CCA secure PKE proposed
by Kiltz et al. [16], which is a variant of the Cramer-Shoup construction.
As in [16], here we use 4-wise independent hash functions as a randomness
extractor. In the appendix we give a successful RKA attack on the PKE
scheme in [16] when Φ includes affine functions. By applying the 4-wise
independent hash function to more group elements, we get a PKE scheme

that is secure against Φ-CC-RKA for Φ = Φaffine.

– The second scheme is presented by Hofheinz and Kiltz [15] based on the HR
assumption. The scheme is an instantiation in the group QR+

N of “Diffie-
Hellman integrated encryption scheme” (DHIES) [2], which is contained in
several standard bodies, e.g. in IEEE P1363a, SECG and ISO 18033-2.

In the security proof, queries of the form (C, φ) are easy to answer since the
simulator holds the secret key. Although there exists many sk′ �= sk correspond-
ing to which the challenge ciphertext C∗ is valid, it is difficult for any PPT
adversary A to submit a φ such that φ(sk) �= sk and C∗ is valid corresponding
to φ(sk) under reasonable intractable assumptions.

Table 1 shows a comparison of known CC-RKA secure PKE schemes in the
standard model. Take the second row for example: by combining [4] and [3], we

can get Φ-CC-RKA secure schemes for Φ = Φlin separately based on the DDH
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and DLIN assumption. From the table we can see that [4]+[3] and [19] can only

achieve Φ-CC-RKA security for Φ = Φlin. Although [4]+[7] can achieve Φ-CC-

RKA security for Φ = Φpoly(d), it is based on a q-type hardness assumption
which is not so standard. Only [4]+[7] and our result can achieve Φ-CC-RKA

security for Φ = Φaffine under widely accepted assumptions like BDDH, DDH
and HR in the standard model.

Table 1. A comparison of known CC-RKA secure PKE schemes

Works Φ Assumptions

[4]+[3] lin DDH,DLIN

[4]+[7] affine BDDH

[4]+[7] poly(d) q-EBDDH

[19] lin factoring,BDDH,LWE

Ours affine DDH,HR

The rest of our paper is organized as follows: in section 2 we give definitions
and preliminaries; in section 3 we give complexity assumptions; in section 4 we
describe the PKE constructions and prove the security; section 5 is the conclusion
of the whole paper.

2 Definitions and Preliminaries

2.1 Notation

We use PPT as the abbreviation of probabilistic polynomial time. Let l(X)
denote the length of X . Let X and Y be probability spaces on a finite set S,
the statistical distance SD(X,Y ) between X and Y is defined as SD(X,Y ) :=
1
2Σα∈S |PrX [α]−PrY [α]|, The min-entropy of a random variable X is defined as
H∞(X) = − log2(maxx∈D Pr[X = x]), wherein D is the domain of X .

2.2 Security Definition

Here we give the security definition of Φ-CC-RKA security. The security of a
PKE scheme is defined using the following game between an adversary A and a
challenger.

Setup: Thechallenger runs thekeygenerationalgorithmKeygen(pp)→ (pk, sk),
sends pk to the adversaryA, and keeps the secret key sk to itself.

Phase 1: A adaptively issues queries (φ,C) where φ ∈ Φ, the challenger re-
sponds with Dec(φ(sk), C).

Challenge: A submits two messages (m0,m1) to the challenger. The challenger
picks a random bit b and responds with Encrypt(pk,mb).

Phase 2: A adaptively issues additional queries as in Phase 1, with the restric-
tion that (φ(sk), C) �= (sk, C∗).
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Guess: A outputs a guess b′ of b.

The advantage of A is defined as AdvA,Φ =
∣∣∣Pr[b′ = b]− 1

2

∣∣∣.
Definition 1 (Φ-CC-RKA Security). A PKE scheme is Φ-CC-RKA secure
if for all PPT adversary A, AdvA,Φ is negligible in λ.

Here our security definition follows the definition given by Bellare et al. [4].
However, in [4] it is required that the public key is completely determined by
the secret key, while in our paper part of the elements in the public key can be
randomly chosen and irrelevant to the secret key.

Symmetric Encryption. A symmetric encryption scheme consists of two poly-
nomial time algorithms: (E ,D). Let KSE be the secret key space. The encryption
algorithm E takes as input a messagem and a secret keyK and outputs a cipher-
text χ, E(K,m) = χ; the decryption algorithm D takes as input the ciphertext
χ and a secret key K and outputs a message m or ⊥,D(K,χ) = m or ⊥. Here
we require both algorithms are deterministic. For correctness we require that
D(K, E(K,m)) = m.
Ciphertext Indistinguishability. Let SE = (E ,D) be a symmetric key encryption
scheme, the advantage of an adversary A in breaking the ciphertext indistin-
guishability (IND-OT) of SE is defined as:

AdvIND−OT
A =

∣∣∣∣Pr [b = b′ :
K∗ ←R KSE ; (m0,m1) ← A; b ←R {0, 1};
χ∗ ← E(K∗,mb); b

′ ← A(χ∗)

]
− 1

2

∣∣∣∣
We say that SE is one-time secure in the sense of indistinguishability (IND-OT)
if for every PPT A, AdvIND−OT

A is negligible.
Ciphertext Integrity. Informally, ciphertext integrity requires that it is difficult
to create a valid ciphertext corresponding to a random secret key for any PPT
adversaryA, evenA is given an encryption of a chosen message with the same key
before. Let SE = (E ,D) be a symmetric key encryption scheme, the advantage
of an adversaryA in breaking the ciphertext integrity (INT-OT) of SE is defined
as:

AdvINT−OT
A =

∣∣∣∣Pr [χ �= χ∗ ∧ D(K∗, χ) �= ⊥ :
K∗ ←R KSE ;m ← A;
χ∗ ← E(K∗,m);χ ← A(χ∗)

]∣∣∣∣
We say that SE is one-time secure in the sense of integrity (INT-OT) if for every
PPT A, AdvINT−OT

A is negligible.

Authenticated Encryption. A symmetric encryption scheme SE is secure in the
sense of one-time authenticated encryption (AE-OT) iff it is IND-OT and INT-
OT secure. An AE-OT secure symmetric encryption can be easily constructed
using a one-time symmetric encryption and an existentially unforgeable MAC
[11,6].
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2.3 Primitives

Here we introduce a primitive called 4-wise independent hash family [16] that can
be used as a randomness extractor. A simple construction of 4-wise independent
hash family is shown in [16].

Definition 2 (4-wise Independent Hash Family). Let HS be a family of
hash functions H : X → Y. We say that HS is 4-wise independent if for any
distinct x1, x2, x3, x4 ∈ X , the random variables H(x1), ...,H(x4) are uniform
and independently random, where H ←R HS.

The next two lemmata state that for a 4-wise independent hash function H and
two random variables X, X̃ with Pr[X = X̃] = δ negligible that even related, the
random variable (H,H(X)) and (H,H(X),H(X̃)) is close to uniformly random
as long as the min-entropy of X and X̃ are large enough.

Lemma 1 (Leftover Hash Lemma [14]). Let X ∈ X be a random variable
where H∞(X) ≥ κ. Let HS be a family of pairwise independent hash functions
with domain X and range {0, 1}l. Then for H ←R HS and Ul ←R {0, 1}l,

SD((H,H(X)), (H, Ul)) ≤ 2(l−κ)/2.

Lemma 2 (A Generalization of the Leftover Hash Lemma [16]). Let
(X, X̃) ∈ X × X be two random variables having joint distribution where
H∞(X) ≥ κ,H∞(X̃) ≥ κ and Pr[X = X̃ ] = δ. Let HS be a family of 4-wise in-
dependent hash functions with domain X and range {0, 1}l. Then for H ←R HS
and U2l ←R {0, 1}2l,

SD((H,H(X),H(X̃)), (H, U2l)) ≤
√
1 + δ · 2l−κ/2 + δ.

From the above lemmata we can get the following lemma that will be used in
our security proof. Lemma 3 states that for a 4-wise independent hash function
H and two random variables X, X̃ with Pr[X = X̃] = δ negligible that even
related, the output H(X̃) is close to uniformly random even H(X) is fixed as
long as the min-entropy of X and X̃ are large enough.

Lemma 3. Let δ ≤ 1
2 , l ≤ 6, (X, X̃) ∈ X × X be two random variables having

joint distribution where H∞(X) ≥ κ,H∞(X̃) ≥ κ and Pr[X = X̃] = δ. Let
HS be a family of 4-wise independent hash functions with domain X and range
{0, 1}l. Then for H ←R HS and Ul ←R {0, 1}l,

SD((H,H(X),H(X̃)), (H,H(X), Ul)) ≤ 2l−
κ−1
2 + δ.

Proof. Let Δ be the random variable (H, U2l), we can use the triangle inequality
to get

SD((H,H(X),H(X̃)), (H,H(X), Ul))

≤ SD((H,H(X),H(X̃)), Δ) + SD(Δ, (H,H(X), Ul), (1)
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Since we know that H∞(X) ≥ κ, H∞(X̃) ≥ κ and X �= X̃. By using Lemma
2 we can upper bound the first term of (1) as

SD((H,H(X),H(X̃)), Δ) ≤
√
1 + δ · 2

2l−κ
2 + δ ≤

√
3

2
· 2

2l−κ
2 + δ.

Similarly by using Lemma 1 we can upper bound the second term of (1) as

SD(Δ, (H,H(X), Ul) ≤ 2
l−κ
2 ≤ 1

8
· 2

2l−κ
2 .


�

3 Complexity Assumptions

Decisional Diffie-Hellman Assumption (DDH). To formally define our assump-
tion, we let G denote a group generation algorithm, which takes in a security
parameter λ and outputs p and a group description G of order p.

Run G(1λ) to get (p,G), and randomly choose g1, g2 ∈ G, r �= w ∈ Zp. Set
T0 = (gr1 , g

r
2), T1 = (gr1, g

w
2 ). The advantage of A is defined as

AdvDDH
A =

∣∣∣Pr[A(g1, g2, T1) = 1]− Pr[A(g1, g2, T0) = 1]
∣∣∣.

Definition 3 (DDH). We say that G satisfies the DDH assumption if for all
PPT algorithm A, AdvDDH

A is negligible in λ.

Higher Residuosity Assumption (HR). Next we give the HR assumption as
that in [15]. There are also similar assumptions in literatures [12,17,18]. We let
RSAgen denote a RSA generation algorithm, which takes in a security parame-
ter λ and outputs (P,Q,N, S) such that N = PQ, S|ϕ(N)/4, let GS denote the
unique subgroup of order S of Z∗

N . Generally speaking, HR assumption means
that it is difficult to distinguish a random element in GS from a random element
in JN , where JN = {x ∈ Z∗

N |( x
N ) = 1}.

To formulate this notion precisely, run RSAgen(1
λ) to get (P,Q,N, S), and

randomly choose g, u0 ∈ GS , u1 ∈ JN . The advantage of A is defined as

AdvHR
A =

∣∣∣Pr[A(g, u1) = 1]− Pr[A(g, u0) = 1]
∣∣∣.

Definition 4 (HR). We say that G satisfies the HR assumption if for all PPT
algorithm A, AdvHR

A is negligible in λ.

For λ = 80 bits security one may choose l(N) = 1024, l(S) = 256. Then N may
be chosen as follows: P = 2PSPT + 1, Q = QSQT + 1, N = PQ, S = PSQS ,
where QS , QT , PS , PT are primes and l(PS), l(PT ) ≈ 128.
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4 RKA Secure PKE Schemes

4.1 Construction Based on the DDH Assumption

In this section we describe a RKA secure PKE scheme based on the DDH as-
sumption. The structure of our scheme inherits that in [16]. In the appendix we
will show that the original PKE scheme in [16] is not RKA secure if Φ includes a
function of the form φ∗

a(s) = as. By applying a 4-wise independent hash function
to more group elements, our scheme is Φ-RKA secure for Φ is a family of affine
functions.

Run G(1λ) to obtain (p,G), Let SE be an AE-OT secure symmetric encryption
scheme with secret key space {0, 1}l. Let HS be a family of 4-wise independent
hash functions with domain G3 and image {0, 1}l. Public parameters are set as
pp = (p,G).

Keygen(pp) : The key generation algorithm chooses random g1, g2 ∈ G and
H ∈ HS. It picks random x1, x2 ∈ Zp and computes X = gx1

1 gx2
2 . The public

key is set as pk = (g1, g2, X,H) and the secret key is set as sk = (x1, x2).
Enc(pk,m) : The encryption algorithm chooses random r ∈ Zp and computes

the ciphertext C = (C1, C2, C3) as:

C1 = gr1, C2 = gr2, Y = Xr,K = H(C1, C2, Y ), C3 = E(K,m).

Dec(C, sk) : The decryption algorithm computes the message as:

Y = Cx1
1 Cx2

2 ,K = H(C1, C2, Y ),m = D(K,C3).

Correctness can be easily verified for the correctness of the symmetric encryp-
tion scheme and Y = Cx1

1 Cx2
2 = grx1

1 grx2
2 = Xr. In terms of concrete security,

it requires the image {0, 1}l of H to be sufficiently small, i.e. l ≤ 1
4 log2 p. Con-

sequently for a symmetric cipher with l = 80 bits keys we should use groups of
order log2 p ≥ 4l = 320 bits.

Security Proof

Theorem 1. If the DDH assumption holds, SE is an AE-OT secure symmetric
encryption scheme with secret key space {0, 1}l, HS is a family of 4-wise inde-
pendent hash functions with domain G3 and image {0, 1}l, then our PKE scheme
is Φ-CC-RKA secure for the class of affine functions Φ. In particular, for every
advasary A on CC-RKA security of the above scheme, there exist adversaries
B, C,D, E with

AdvCC−RKA
A ≤ AdvDDH

B + q(2l−(κ−1) +AdvDL
C +AdvINT−OT

SE,D ) +AdvIND−OT
SE,E

where κ = log2(|G|).

First let us introduce two lemmata that will be used in our proof.
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Lemma 4. [11] Let S1, S2, F be events defined on some probability space that
the events S1 ∧ ¬F occurs iff S2 ∧ ¬F occurs, then

|Pr[S1]− Pr[S2]| ≤ Pr[F ].

Lemma 5. [11] Let k, n be integers with 1 ≤ k ≤ n, and let K be a finite

field. Consider a probability space with random variables −→α ∈ Kn×1,
−→
β =

(β1, ..., βk)
T ∈ Kk×1,−→γ ∈ Kk×1 and M ∈ Kk×n such that −→α is uniformly

distributed over Kn×1,
−→
β = M−→α +−→γ , and for 1 ≤ i ≤ k, the i-th row of M and

−→γ are determined by β1, ..., βi−1.
Then conditioning on any fixed values of β1, ..., βk−1 such that the resulting

matrix M has rank k, the value of βk is uniformly distributed over K in the
resulting conditional probability space.

Proof (of Theorem 1). Suppose that the public key is (X,H) and the secret key
is (x1, x2). The challenge ciphertext is denoted by C∗ = (C∗

1 , C
∗
2 , C

∗
3 ). We also

denote by r∗, Y ∗,K∗ the values corresponding with r, Y,K related to C∗. We
say that a ciphertext C is invalid if C1 = gr11 , C2 = gr22 for some r1 �= r2.

Let log(·) denote logg1(·) and ω = log g2, then

logX = x1 + ωx2 (2)

To prove the security of our scheme, we define a sequence of games that any
PPT adversary can not tell the difference between two adjacent games. Let q
denote the number of decryption queries that the adversary makes during the
whole game, here we denote an affine function as φ(sk) = (φ1(sk), φ2(sk)) =
(a1x1 + b1, a2x2 + b2).

Game0: the real security game.
Game1: the same as Game0 except that the challenge ciphertext is generated

using the secret key. That is

Y ∗ = C∗
1
x1C∗

2
x2 .

Game2: the same as Game1 except that the challenge ciphertext is invalid. That

is (C∗
1 , C

∗
2 ) is replaced with a random pair (g

r∗1
1 , g

r∗2
2 ) with r∗1 �= r∗2 .

Game3: the same as Game2 except that the decryption oracle rejects all queries
(φ,C) that satisfy a1r1 �= a2r2, where C1 = gr11 , C2 = gr22 .

Game4: the same as Game3, except that SE encrypts mb using a random key
K+ instead of K∗.

Let AdviA denote A’s advantage in Gamei for i = 0, 1, ..., 4.
Clearly, Adv0A = Adv1A.

Lemma 6. Suppose that there exists a PPT adversary A such that Adv1A −
Adv2A = ε, then there exists a PPT adversary B with advantage ε in breaking the
DDH assumption.
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Proof. B receives

D = (g1, g2, T := (u1, u2))

and its task is to decide whether D is a DDH tuple. B picks random x1, x2 ∈ Zp

and H ∈ HS. B computes X = gx1
1 gx2

2 and sends (pk = (g1, g2, X,H)) to A.
Whenever A submits (φ,C), B simply runs the decryption oracle with the

secret key φ(sk).
When A submits (m0,m1),B randomly chooses b ←R {0, 1}, it sets C∗

1 =
u1, C

∗
2 = u2, Y

∗ = ux1
1 ux2

2 ,K∗ = H(C∗
1 , C

∗
2 , Y

∗), C∗
3 = E(K∗,mb) and responds

with C∗ = (C∗
1 , C

∗
2 , C

∗
3 ).

When A outputs b′, B outputs 1 if b′ = b and 0 otherwise.
Note that when D is a DDH tuple, then the above game perfectly simulates

Game1; when D is not a DDH tuple, the above game perfectly simulates Game2.

�

Lemma 7. Suppose that there exists a PPT adversary A in Game2 and Game3
such that it can submit a query (C, φ) satisfying (C1, C2) = (C∗

1 , C
∗
2 ), φ(sk) �=

sk, Y = Y ∗ with probability δ, then there exists a PPT adversary B with advan-
tage δ in breaking the DL assumption.

Proof. B receives

D = (g, h)

and its task is to compute γ ∈ Zp such that h = gγ . B chooses random s, t ∈ Zp

with the constraint h �= gt and computes g1 = gs, g2 = gt1, so (g1, g2, g, h) is not
a DDH tuple. Then it picks x1, x2 ∈ Zp, H ∈ HS. B computes X = gx1

1 gx2
2 and

sends (pk = (g1, g2, X,H)) to A.
Whenever A submits (φ,C),B simply runs the decryption oracle with the

secret key φ(sk).
When A submits (m0,m1),B randomly chooses b ←R {0, 1}, γ ∈ Zp, it sets

C∗
1 = g, C∗

2 = h, Y ∗ = C∗
1
x1C∗

2
x2 ,K∗ = H(C∗

1 , C
∗
2 , Y

∗), C∗
3 = E(K∗,mb) and

responds with C∗ = (C∗
1 , C

∗
2 , C

∗
3 ).

Whenever A submits (φ,C) satisfying (C1, C2) = (C∗
1 , C

∗
2 ), φ(sk) �= sk, Y =

Y ∗, then we have Cx1
1 Cx2

2 = C
φ1(sk)
1 C

φ2(sk)
2 , and h = gθ, where θ = φ1(sk)−x1

x2−φ2(sk)
,

thus solve the DL problem. 
�

Lemma 8. Assume that the symmetric key encryption scheme is AE-OT se-
cure, HS is a family of 4-wise independent hash functions, the DDH assumption
holds, then Adv2A −Adv3A is negligible.

Proof.

log Y ∗ = r∗1x1 + ωr∗2x2 (3)

Let E be the event that a query (C, φ) is rejected in Game3 but not rejected
in Game2. Then we have |Adv2A −Adv3A| ≤ Pr[E].

Case 1: (C1, C2) = (C∗
1 , C

∗
2 ).
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– φ(sk) = sk. We have(
logX
log Y ∗

)
=

(
1 ω
r∗1 ωr∗2

)
︸ ︷︷ ︸

=:M∗

·
(
x1

x2

)

Since det(M∗) = ω(r∗1 − r∗2) �= 0, as stated by Lemma 5, the distribution
of Y ∗ is randomly distributed in G, so H∞(Y ∗) ≥ κ. From the leftover
hash lemma, we know that K∗ is randomly distributed. From the INT-
OT property of the SE scheme, we can see that it is difficult to generate
a C3 �= C∗

3 s.t. D(K∗, C3) �= ⊥.
– φ(sk) �= sk. Let Γ ∗ be the random variable (C∗

1 , C
∗
2 , Y

∗), Γ be the ran-
dom variable (C1, C2, Y ). From Lemma 7 it can be seen that Pr[Y =
Y ∗] = δ, hence Pr[Γ = Γ ∗] = δ, where δ is negligible assuming DL
problem is hard to solve.(

logX
log Y

)
=

(
1 ω
a1r

∗
1 ωa2r

∗
2

)
︸ ︷︷ ︸

:=M1

·
(
x1

x2

)
+

(
0

b1r
∗
1 + ωb2r

∗
2

)

As analyzed above we have H∞(Γ ) ≥ κ. From Lemma 3 we know:

SD((pk,H,H(Γ ∗),H(Γ )), (pk,H,H(Γ ∗), Ul)) ≤ 2l−(κ−1)/2 + δ.

Here Ul is uniformly random chosen from {0, 1}l. So the distribution of
K looks random to the adversary A, then from the INT-OT property of
the SE scheme, with overwhelming probability Dec(sk, C) = ⊥.

Case 2: (C1, C2) �= (C∗
1 , C

∗
2 ), and a1r1 �= a2r2. In the following we let Γ ∗ be the

random variable (C∗
1 , C

∗
2 , Y

∗), Γ be the random variable (C1, C2, Y ), then
Γ �= Γ ∗. Here we have(

logX
log Y

)
=

(
1 ω
a1r1 ωa2r2

)
︸ ︷︷ ︸

:=M2

·
(
x1

x2

)
+

(
0

b1r1 + ωb2r2

)

Since det(M2) �= 0, we have H∞(Y ) ≥ κ. Similar as Case 1, we have
H∞(Γ ∗) ≥ κ, H∞(Γ ) ≥ κ and Γ ∗ �= Γ . From Lemma 3 we know:

SD((pk,H,H(Γ ∗),H(Γ )), (pk,H,H(Γ ∗), Ul)) ≤ 2l−(κ−1)/2.

Here Ul is uniformly random chosen from {0, 1}l. So the distribution of K
looks random to the adversary A, then from the INT-OT property of the SE
scheme, with overwhelming probability Dec(sk, C) = ⊥.

From the above analysis, we can see that it is difficult to distinguish Game2
and Game3 for any PPT adversary. 
�

Lemma 9. Assume that HS is a family of 4-wise independent hash functions,
then Adv3A −Adv4A is negligible.
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Proof. Since in both Game3 and Game4, all decryption queries are rejected
except those ((C1, C2, C3), φ) satisfying Y = Ca1x1+b1

1 Ca2x2+b2
2 with a1r1 = a2r2,

so for any information-theoretical adversaryA, all it can get from the decryption
queries is :

log Y − θ = arx1 + ωarx2. (4)

Here θ = b1r1+ωb2r2 and ar = a1r1 = a2r2. Since eq. (4) is a linearly correlation
of eq. (1). Conditioned on the the decryption answers, the distribution of Y ∗ is
still randomly distributed in G, then Game3 and Game4 are indistinguishable.


�

Lemma 10. Suppose that there exists a PPT adversary A such that Adv4A = ε,
then there exists a PPT adversary B with the same advantage in breaking the
IND-OT of the SE scheme.

Proof. B chooses random x1, x2 ∈ Zp and H ∈ HS. B computes X = gx1
1 gx2

2 and
sends (pp = (G, p, g1, g2), pk = (X,H)) to A.

Whenever A submits (φ,C),B simply runs the decryption oracle using the
secret key φ(sk).

When A submits (m0,m1),B sends (m0,m1) to its challenger and receives

C∗
3 . Then B chooses random r∗1 �= r∗2 and sets C∗

1 = g
r∗1
1 , C∗

2 = g
r∗2
2 and responds

with C∗ = (C∗
1 , C

∗
2 , C

∗
3 ).

When A outputs b′, B outputs b′. 
�

4.2 Construction Based on the HR Assumption

In this section we prove that the scheme proposed in [15] is Φ-CC-RKA secure for
the class of affine functions Φ. This scheme is contained in several standard bod-
ies, e.g., in IEEE P1363a, SECG and ISO 18033-2 as “Diffie-Hellman integrated
encryption scheme” (DHIES) [2].

In the following we use |u| to denote the absolute value of u, where u is
represented as a signed integer in the set {−(N−1)/2, ..., (N−1)/2}. LetQR+

N :=
{|x| : x ∈ QRN} and G+

S := {|x| : x ∈ GS}.
Let SE be an AE-OT secure symmetric encryption scheme with secret key

space {0, 1}l. Let HS be a family of 4-wise independent hash functions with
domain (QR+

N )2 and range {0, 1}l. In the following we let gx denote |gx mod N |.

Keygen(pp) : The key generation algorithm runs RSAgen(1
λ) to obtain

(P,Q,N, S) and chooses random g ∈ G+
S , it picks random x ∈ [N/4] and

H ∈ HS, it computes X = gx. The public key is set as pk = (N, g,X,H)
and the secret key is set as sk = x.

Enc(pk,m) : The encryption algorithm chooses random r ∈ [N/4] and computes
the ciphertext C = (C1, C2) as:

C1 = gr, Y = Xr,K = H(C1, Y ), C2 = E(K,m).
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Dec(C, sk) : The decryption algorithm first checks whether C1 ∈ QR+
N and

rejects if not. Then it computes the message as:

Y = Cx
1 ,K = H(C1, Y ),m = D(K,C3).

Correctness can be easily verified from the correctness of the symmetric en-
cryption scheme and Y = Cx

1 = grx = Xr.
In the security proof we will use the following assumption HR′ directly.
Run RSAgen(1

λ) to get (P,Q,N, S), and randomly choose g, u0 ∈ G+
S , u1 ∈

QR+
N . The advantage of A is defined as

AdvHR′
A =

∣∣∣Pr[A(g, u1) = 1]− Pr[A(g, u0) = 1]
∣∣∣.

Definition 5 (HR′). We say that G satisfies the HR′ assumption if for all PPT
algorithm A, AdvHR′

A is negligible in λ.

Clearly, the HR′ assumption is implied by the HR assumption.

Theorem 2. If the HR′ assumption holds, SE is an AE-OT secure symmetric
encryption scheme with secret key space {0, 1}l, HS is a family of 4-wise inde-
pendent hash functions with domain G3 and image {0, 1}l, then our PKE scheme
is Φ-CC-RKA secure for the class of affine functions Φ. In particular, for every
advasary A on CC-RKA security of the above scheme, there exist adversaries
B, C,D with

AdvCC−RKA
A ≤ (q + 1)AdvHR

B + q(2l−(κ−1) +AdvINT−OT
SE,C ) +AdvIND−OT

SE,D .

where κ = log2('N/4S().

The proof methodology of Theorem 2 is similar to Theorem 1 and we put the
concrete proof in Appendix B.

5 Conclusion

In this paper, we prove the security against related key attacks of two public key
encryption schemes in the standard model. The first scheme is a variation of the
KYPS09. While KYPS09 has been proved CCA secure under the DDH assump-
tion, we show in the appendix that it is not secure against related key attacks
when the key related function includes affine functions. We make a modification
on KYPS09 and prove that the resulting scheme is Φ-CC-RKA secure for Φ =

Φaffine. We also prove the scheme in [15] is Φ-CC-RKA secure for Φ = Φaffine

based on the HR assumption. The security relies heavily on a randomness extrac-
tor called 4-wise independent hash functions and we use game sequences in the
proof. In the future we will study the CC-RKA security property for universal-1
hash proof systems.
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Appendix A: A RKA attack on KPSY09

The PKE Scheme by KPSY09
The PKE scheme of [16] is given as follows:

Keygen(1λ) : The key generation algorithm chooses random x1, x2 ∈ Zp and
H ∈ HS, it computes X = gx1

1 gx2
2 . The public key is set as pk = (X,H) and

the secret key is set as sk = (x1, x2)
Enc(pk,m) : The encryption algorithm chooses random r ∈ Zp and computes

the ciphertext C = (C1, C2, C3) as:

C1 = gr1, C2 = gr2, Y = Xr,K = H(Y ), C3 = E(K,m).

Dec(C, sk) : The decryption algorithm computes the message as:

Y = Cx1
1 Cx2

2 ,K = H(Y ),m = D(K,C3).

The above scheme is not RKA secure if Φ includes a function φ∗
a1,a2

(x1, x2) =
(a1x1, a2x2). Once the adversary sees the challenge ciphertext C∗

1 , C
∗
2 , C

∗
3 , it can

create a query as (C = (C∗
1

1
a1 , C∗

2

1
a2 , C∗

3 ), φ
∗), and it can get the decryption of

the challenge ciphertext since Y ∗ = C∗
1
x1C∗

2
x2 .

Appendix B: Proof of Theorem 2

Proof. Suppose that the public key is (N, g,X,H) and the secret key is x. The
challenge ciphertext is denoted by C∗ = (C∗

1 , C
∗
2 ). We also denote by r∗, Y ∗,K∗

the values corresponding with r, Y,K related to C∗. We say that a ciphertext C
is invalid if C1 ∈ QR+

N\G+
S . Let log(·) denote logg(·). Then we have

x = logX + t · S, where t ∈ {0, 1, ..., 'N/4S(} (5)

To prove the security of our scheme, we define a sequence of games that any
PPT adversary can not tell the difference between two adjacent games. Let q
denote the number of decryption queries that the adversary makes during the
whole game, here we write an affine function as φ(sk) = ax+ b, a, b ∈ [N/4].
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Game0: the real security game.
Game1: the same as Game0 except that the challenge ciphertext is generated

using the secret key. That is

Y ∗ = C∗
1
x.

Game2: the same as Game1 except that the challenge ciphertext is invalid. That
is C∗

1 ∈ QR+
N\G+

S .
Game3: the same as Game2 except that the decryption oracle rejects all invalid

queries.
Game4: the same as Game3, except that SE encrypts mb using a random key

K+ instead of K∗.

Let AdviA denote A’s advantage in Gamei for i = 0, 1, ..., 4.
Clearly, Adv0A = Adv1A.

Lemma 11. Suppose that there exists a PPT adversary A such that Adv1A −
Adv2A = ε, then there exists a PPT adversary B with advantage ε in breaking the
HR′ assumption.

Proof. B receives
D = (g, T )

and its task is to decide whether T ∈ G+
S . B picks random x ∈ [N/4] and

H ∈ HS. B computes X = gx and sends pk = (N, g,X,H)) to A.
Whenever A submits (φ,C), B simply runs the decryption oracle with the

secret key φ(sk).
When A submits (m0,m1),B randomly chooses b ←R {0, 1}, it sets C∗

1 =
T, Y ∗ = T x,K∗ = H(C∗

1 , Y
∗), C∗

2 = E(K∗,mb) and respondswithC
∗ = (C∗

1 , C
∗
2 ).

When A outputs b′, B outputs 1 if b′ = b and 0 otherwise.
Note that when T ∈ G+

S , then the above game perfectly simulates Game1;
when T /∈ G+

S , the above game perfectly simulates Game2. 
�

Lemma 12. Suppose that there exists a PPT adversary A in Game2 and Game3
such that it can submit a query (C, φ) satisfying C1 = C∗

1 , φ(sk) �= sk, Y = Y ∗

with probability δ, then there exists a PPT adversary B with advantage δ in
breaking the HR′ assumption.

Proof. B receives

D = (g, u)

and its task is to decide whether u ∈ G+
S . Then B picks random x ∈ [N/4],

H ∈ HS. B computes X = gx and sends pk = (N, g,X,H) to A.
Whenever A submits (φ,C),B simply runs the decryption oracle with the

secret key φ(sk).
When A submits (m0,m1),B randomly chooses b ←R {0, 1}, t ∈ QR+

N , then
with overwhelming probabilitywe have ut /∈ G+

S . It setsC
∗
1 = ut, Y ∗ = C∗

1
x,K∗ =

H(C∗
1 , Y

∗), C∗
2 = E(K∗,mb) and responds with C∗ = (C∗

1 , C
∗
2 ).
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Whenever A submits (φ,C) satisfying C1 = C∗
1 , φ(sk) �= sk, Y = Y ∗, then we

have C1 = C
φ(x)
x

1 . Since C∗
1 ∈ QR+

N\G+
S , with overwhelming probability we have

ϕ(N)
4 |ord(C∗

1 ), so
4φ(x)

x is a multiple of ϕ(N), then we can solve the factoring
problem according to the method in [[9],Fact 1.]. 
�

Lemma 13. Assume that the symmetric encryption scheme is AE-OT secure,
HS is a family of 4-wise independent hash functions, the HR′ assumption holds,
then Adv2A −Adv3A is negligible.

Proof. Let F be the event that a query (C, φ) is rejected in Game3 but not
rejected in Game2. Then we have |Adv2A − Adv3A| ≤ Pr[F ]. We consider the
following cases:

Case 1: C1 = C∗
1 .

– φ(sk) = sk. From eq. (5) we can see that t is information-theoretically
hidden for any PPT adversary A, so H∞(Y ∗) ≥ κ. As stated by the left-
over hash lemma, K∗ is randomly distributed. As a result, it is difficult
to generate a C2 �= C∗

2 s.t. D(K∗, C2) �= ⊥ according to the INT-OT
property of the SE scheme.

– φ(sk) �= sk. Let Γ ∗ be the random variable (C∗
1 , Y

∗), Γ be the random
variable (C1, Y ). According to Lemma 12 we know that δ = Pr[Γ =
Γ ∗] = Pr[Y = Y ∗] is negligible. From the choice of sk we know that
H∞(Y ) ≥ κ, so H∞(Γ ∗) ≥ κ, H∞(Γ ) ≥ κ. From Lemma 3 we know:

SD((pk,H,H(Γ ∗),H(Γ )), (pk,H,H(Γ ∗), Ul)) ≤ 2l−(κ−1)/2 + δ.

Here Ul is uniformly random chosen from {0, 1}l. So the distribution of
K looks random to the adversary A, then from the INT-OT property of
the SE scheme, with overwhelming probability Dec(sk, C) = ⊥.

Case 2: C1 �= C∗
1 , and C1 /∈ G+

S . Let Γ
∗ be the random variable (C∗

1 , Y
∗), Γ be

the random variable (C1, Y ), then we have Γ ∗ �= Γ . From the distribution
of sk, we have H∞(Γ ∗) ≥ κ, H∞(Γ ) ≥ κ. Then according to Lemma 3 we
have:

SD((pk,H,H(Γ ∗),H(Γ )), (pk,H,H(Γ ∗), Ul)) ≤ 2l−(κ−1)/2.

Therefore, the distribution of K looks random to the adversary A, then
from the INT-OT property of the SE scheme, with overwhelming probability
Dec(sk, C) = ⊥.

From the above analysis, we can see that it is difficult to distinguish Game2
and Game3 for any PPT adversary. 
�

Lemma 14. Assume that HS is a family of 4-wise independent hash functions,
then Adv3A −Adv4A is negligible.
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Proof. Since in both Game3 and Game4, all queries (C, φ) that are not rejected
satisfy C1 ∈ G+

S , so for any information-theoretical adversary A, all it can get
from the decryption queries is :

log Y = arx + b mod S

= ar logX + b mod S

As a result, t is information-theoretically hidden, H∞(Y ∗) ≥ κ, then according
to the leftover hash lemma we can see that K∗ is randomly distributed, Game3
and Game4 are indistinguishable.

Lemma 15. Suppose that there exists a PPT adversary A such that Adv4A = ε,
then there exists a PPT adversary B with the same advantage in breaking the
IND-OT property of the SE scheme.

Proof. B runs RSAgen(1
λ) to obtain (P,Q,N, S) and choose random g ∈ G+

S .
B computes X = gx and sends pk = (N, g,X,H) to A.

Whenever A submits (φ,C),B simply runs the decryption oracle with the
secret key φ(sk).

When A submits (m0,m1),B sends (m0,m1) to its challenger and receives
C∗

2 . Then B chooses random C∗
1 ∈ QR+

N\G+
S and responds with C∗ = (C∗

1 , C
∗
2 ).

When A outputs b′, B outputs b′. 
�
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Abstract. We propose an efficient dual-policy Attribute Based Encryp-
tion (ABE), a logical combination of key-policy ABE and ciphertext-
policy ABE, with short ciphertext for monotone access structures. We
also present key-policy ABE schemes with constant-size ciphertexts for
monotone as well as non-monotone access structures. While the secret
key in all our schemes has quadratic size in the number of attributes, the
number of bilinear pairing evaluations is reduced to constant. Compared
with the available dual-policy and key-policy ABE schemes, our con-
structions provide better efficiency in terms of computation cost. All our
schemes are provably secure under chosen plaintext attacks in selective-
security model under the decisional n-Bilinear Diffie-Hellman Exponent
assumption over prime order bilinear groups.

Keywords: key-policy, dual-policy, attribute-based encryption, mono-
tone access structure, non-monotone access structure.

1 Introduction

Attribute Based Encryption (ABE) [4–6] is a generalization of Identity Based
Encryption (IBE) [3]. Each user is ascribed a set of descriptive attributes where
either (i) secret key is generated according to an access structure and ciphertext
is associated with a set of attributes, yielding Key-Policy ABE (KP-ABE) [4, 5]
or (ii) ciphertext is created according to an access structure and secret key is
associated with a set of attributes, yielding Ciphertext-Policy ABE (CP-ABE)
[6]. Decryption is successful in KP-ABE (or CP-ABE) only when the attribute
set annotated to ciphertext (or secret key) satisfies the access structure ascribed
to secret key (or ciphertext).

While the first ABE system proposed by Sahai and Waters [4] is considered as
a KP-ABE with threshold access policy, the first CP-ABE system is devised by
Bethencourt et al. [6] for more expressive Monotone Access Structures (MAS).
Several improved CP-ABE schemes [7, 12, 2, 13] are suggested immediately
after that having ciphertext size and bilinear pairing computations linear to
the required attribute set size. The CP-ABE schemes [14, 11, 15, 16] exhibit
constant-size ciphertext, but the access policies exploited in these schemes are
less expressive and restricted to either AND-gate or threshold policy. The first

W. Susilo and R. Reyhanitabar (Eds.): ProvSec 2013, LNCS 8209, pp. 288–308, 2013.
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KP-ABE system for MAS was designed by Goyal et al. [5]. There are quite
a number of KP-ABE schemes [19, 17, 18] that allow Non-Monotone Access
Structure (nonMAS). All the foregoing constructions except [2, 18] are proven to
be selectively secure−the adversary commits to her target before the simulation
is set up. The first fully secure KP-ABE and CP-ABE schemes were presented in
[2] using Linear Secret-Sharing Scheme (LSSS)-realizable MAS in the standard
model over composite order bilinear groups, whereas [18] proposed KP-ABE and
CP-ABE schemes for nonMAS that are fully secure under the Decisional Linear
(DLIN) assumption in the standard model over prime order groups. Attrapadung
et al. [9] proposed the first constant-size ciphertext selectively-secure KP-ABE
for MAS as well as nonMAS over prime order groups with constant number of
bilinear pairings, but secret key size is quadratic in the number of attributes.
Wang and Luo [10] proposed a KP-ABE scheme with constant-size ciphertext
for MAS based on [11], but the security proof relies on random oracles.

Dual-Policy ABE. While the access structure annotated to user’s secret key in
KP-ABE enables what type of ciphertexts she can decrypt, the access structure
associated with the ciphertext in CP-ABE decides what kind of recipients will be
able to decrypt. As outlined in [1], some applications (e.g., Pay-TV system and
body sensor networks), demand simultaneous access control where the message
is encrypted under both a set of objective attributes that annotate the message
itself and a subjective access structure that decides who can or cannot decrypt the
ciphertext. A user obtains a secret key for both a set of subjective attributes that
annotate user’s credentials and an objective access structure that states which
ciphertexts the user can decrypt. Such an ABE is called as Dual-Policy ABE,
wherein the decryption will be successful only when the objective attribute set
satisfies the objective access structure and the subjective attribute set satisfies
the subjective access structure.

Attrapadung and Imai [1] proposed the first dual-policy ABE that is a con-
junctively combined scheme between a KP-ABE [5] and a CP-ABE [7] where
the KP-ABE component deals with objective attribute universe and the CP-
ABE component deals with subjective attribute universe. If one ignores sub-
jective (resp. objective) attributes, their dual-policy scheme becomes KP-ABE
of [5] (resp. CP-ABE of [7]). Both subjective and objective access structures
are monotone LSSS-realizable access structures. However, the size of ciphertext
grows linearly with the number of subjective as well as objective attributes as-
sociated with the ciphertext and the number of bilinear pairing evaluations is
linear to the number of objective attributes used in decryption. The scheme is
proven to be selectively secure against chosen plaintext attacks (CPA) under the
decisional n-Bilinear Diffie-Hellman Exponent (n-BDHE) assumption. Okamoto
and Takashima [18] proposed fully secure dual-policy functional encryption for
general relations using the concept of dual pairing vector spaces over prime or-
der groups. Recently, Miyaji and Tran [8] introduced a dual-policy ABE scheme
with constant number of pairings that exploits only AND-gate access policies.
However, the decryption will not work in the way as described in [8]. The au-
thors also stated that the size of ciphertext is constant as it contains only 3
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Table 1. Computation Costs of LSSS-based dual-policy ABE schemes

Encryption Cost Decryption Cost
Scheme ExG ExGT ExG ExGT Pairings

[1] O(�s + |Wo|) 1 O(|Is|+ |Io|) |Io| |Io|+ 2
[18] O(�s + |Wo|) 1 - |Is|+ |Io| |Is|+ |Io|+ 1
Our O(�s) 1 O(|Is|+ |Io|) - 3

BG (or BGT ) = bit size of an element in G (or GT , resp.), ExG (or ExGT ) = number of
exponentiations in a group G (or GT , resp.), Ls = set of subjective attributes in a user’s
secret key, �o (resp. �s) = number of rows in an objective (resp. subjective) LSSS access
structure associated with secret key (resp. ciphertext), Vo = objective attribute space,
Wo = set of objective attributes per ciphertext, Io (resp. Is) = minimum set of objective
(resp. subjective) attributes used in decryption, n-dBDHE = decisional n-BDHE.

Table 2. Communication overheads of LSSS-based dual-policy ABE schemes

Scheme Secret Key Size Ciphertext Size Assumption Security

[1] O(�o + |Ls|) ·BG (�s + |Wo|+ 1) ·BG +BGT n-dBDHE Selective
[18] O(�o + |Ls|) ·BG (7 · �s + 7 · |Wo|+ 8) · BG +BGT DLIN Full
Our O(�o|Vo|+ |Ls|) · BG (�s + 2) ·BG +BGT n-dBDHE Selective

The meaning of all the symbols in Table 2 are found at the bottom of Table 1.

group elements, but the ciphertext consists of |Wo| + 2 group elements, where
Wo is the set of objective attributes per ciphertext. Hence, ciphertext size is not
constant. To the best of our knowledge, [1, 8, 18] are the only schemes in the
dual-policy setting available in the literature.
Our Contribution. This paper is mainly aimed to construct efficient and secure
dual-policy ABE. We use the CP-ABE framework of [7] to design the CP-ABE
component of our dual-policy ABE and the KP-ABE component is designed by
using the technique of threshold CP-ABE of [16].

Our proposed dual-policy ABE system realizes monotone LSSS access struc-
tures with shortened ciphertext consisting of �s +2 group elements regardless of
the number of objective attributes annotated with the ciphertext, whereas the ci-
phertext in the dual-policy ABE schemes of [1, 18] consist of O(�s+ |Wo|) group
elements, �s being the number of rows in a subjective LSSS access structure
and |Wo| being the number of attributes in an objective attribute set Wo. This
comes at a cost of increasing the (objective attribute) secret key size by a factor
of |Vo|, where Vo is the set of objective attributes used in the system. However,
decryption is much faster in contrast to [1, 18] as our scheme requires only 3
bilinear pairing computations and no pairing exponentiation during decryption,
whereas [1] (resp. [18]) requires |Io| (resp. |Is|+ |Io|) pairing exponentiations and
|Io|+2 (resp. |Is|+ |Io|+1) pairing evaluations, Io and Is respectively being the
minimum number of objective and subjective attributes required for decryption.
Table 1 and 2 compare efficiency of our scheme with the only existing dual-policy
schemes [1, 18] that support LSSS access structures.
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Table 3. Comparison of constant-size ciphertext KP-ABE schemes for MAS

Enc. Cost Dec. Cost
Scheme Secret Key Size Ciphertext Size ExG ExGT ExG Pairings Assumption

[9] O(� · n) ·BG 2 · BG +BGT O(φ) 1 O(|I | · φ) 2 n-dBDHE
[10] O(� · n) ·BG 2 · BG +BGT O(φ) 1 O(|I | · φ) 2 dGDHE
Our O(� · n) ·BG 2 · BG +BGT 2 1 O(|I |) 2 n-dBDHE

BG, BGT ,ExG,ExGT are same as in Table 1 and 2, � = number of rows in the user LSSS
access structure matrix, n = number of attributes used in the system, φ = number of at-
tributes in a ciphertext, n = maximum bound for φ (i.e., φ ≤ n), |I | = number of rows of
LSSS matrix used in the decryption, dGDHE =General Decisional Diffie-Hellman Expo-
nent. (TheKP-ABE in [9, 10] supports large attribute universe with boundn on the number
of attributes per ciphertext and n = n in the small attribute universe setting.)

Table 4. Comparison of constant-size ciphertext KP-ABE schemes for nonMAS

Enc. Cost Dec. Cost
Scheme Secret Key Size Ciphertext Size ExG ExGT ExG Pairings Assumption

[9] O(� · n) ·BG 3 · BG +BGT O(φ) 1 O(|I | · φ) 3 n-dBDHE
Our O(� · n) ·BG 3 · BG +BGT 3 1 O(|I |) 3 n-dBDHE

The meaning of all the symbols in Table 4 are same as the symbols in Table 3.

We separate the KP-ABE component of our dual-policy ABE scheme by ne-
glecting subjective attributes, resulting a KP-ABE scheme for monotone LSSS-
realizable access structure with constant-size ciphertext and constant number of
bilinear pairing evaluations. The size of secret key isO(� ·n) group elements, where
� is the number of rows in the user LSSS matrix and n is the number of attributes
in the attribute space. We emphasize that our KP-ABE needs |I| exponentiations
and 2 pairing computations, where |I| is the number of rows of LSSSmatrix used in
the decryption.On the contrary, the first constant-size ciphertextKP-ABE scheme
[9], which is derived from a particular identity based broadcast encryption scheme,
performs |I| ·φ exponentiations followed by 2 pairing computations to decrypt a ci-
phertext, where φ denotes the number of attributes in a ciphertext. The KP-ABE
scheme of [10] preserves the same functionality as that of [9]. Consequently, our
scheme outperforms the KP-ABE schemes of [9, 10] in terms of exponentiations.
In Table 3, we give a detailed comparison of our schemewith the previous constant-
size ciphertext KP-ABE schemes for MAS.

We further extend our monotone KP-ABE approach to non-monotone KP-
ABE by employing the technique of [19] for transforming a nonMAS over a
set of attributes to a MAS over the same set of attributes and their negation.
The resulting nonMAS KP-ABE construction features constant-size ciphertext,
constant number of bilinear pairing evaluations, |I| exponentiations in decryp-
tion while the secret key size is increased by a factor of n as in the monotone
case. Table 4 compares efficiency of our nonMAS construction with the existing
KP-ABE scheme [9] with constant-size ciphertext that supports nonMAS.
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As the number of attributes in the attribute universe is a factor of the secret
key size, our constructions deal with small attribute universe (the attributes are
fixed at system setup phase as in [2, 4, 5, 7, 9, 11, 12, 14–16]). As the storage
is becoming much cheaper nowadays, these new schemes are of independent in-
terest for applications where the resources have limited computing power and
bandwidth is the primary concern. Our approach is extendable to large universe
setting (see Section 3.2), where the attribute parameters are dynamically com-
puted after the system setup. All our schemes have been proven to be selectively
CPA secure in the standard model under the decisional n-BDHE assumption
over prime order bilinear groups.

2 Background

Notation. Let x ∈R X denote the operation of picking an element x uniformly
at random from the set X. We use the notation [n] to represent the set [n] =
{1, 2, . . . , n} of positive integers. PPT stands for probabilistic polynomial-time.

In this section, we recall necessary background from [1, 7].

Definition 1 (Access Structure). Let U be the universe of attributes and
P(U) be the collection of all subsets of U. Every subset A of P(U) \ {∅} is called
an access structure. An access structure A is said to be monotone access structure
(MAS) if for any C ∈ P(U), with C ⊇ B where B ∈ A implies C ∈ A.

2.1 Linear Secret-Sharing Schemes (LSSS)

Let U be the universe of attributes. A secret-sharing scheme ΠA for the access
structure A over U is called linear (in Zp) if ΠA consists of the following two
polynomial-time algorithms, where M is a matrix of size �× k, called the share-
generating matrix for ΠA and ρ : [�] → IU is a row labeling function that maps
each row of the matrixM to an attribute in A, IU being the index set of attribute
universe U.

(i) Distribute(M, ρ, α): This algorithm takes as input the share-generating ma-
trix M, row labeling function ρ and a secret α ∈ Zp which is to be shared. It
randomly selects z2, z3, . . . , zk ∈R Zp and sets v = (α, z2, z3, . . . , zk) ∈ Zk

p .

It outputs a set {Mi · v : i ∈ [�]} of � shares, where Mi ∈ Zk
p is the i-th row

of the matrix M. The share λρ(i) = Mi · v belongs to an attribute ρ(i).
(ii) Reconstruct(M, ρ,W ): This algorithm will accept as input M, ρ and a set of

attributes W ∈ A. Let I = {i ∈ [�] : ρ(i) ∈ IW }, where IW is the index
set of attribute set W. It returns a set {ωi : i ∈ I} of secret reconstruction
constants such that

∑
i∈I ωiλρ(i) = α if {λρ(i) : i ∈ I} is a valid set of shares

of the secret α according to ΠA.

Lemma 1. [1] Let (M, ρ) be a LSSS for an access structure A over the universe
U of attributes, where M is share-generating matrix of size �× k, and W ⊂ U. If
W /∈ A (in other words, W does not satisfy M), there exists a polynomial time
algorithm that outputs a vector w = (−1, w2, . . . , wk) ∈ Zk

p such that Mi ·w = 0,
for each row i of M for which ρ(i) ∈ IW , IW is the index set of attribute set W.
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2.2 Bilinear Maps and Hardness Assumption

We use multiplicative cyclic groups (G,GT ) of prime order p with an efficiently
computable mapping e : G×G → GT such that e(ua, vb) = e(u, v)ab, ∀ u, v ∈ G,
a, b ∈ Zp and e(g, g) �= 1T , where 1T is the unit element in GT .
Decisional n-BDHE Assumption. An algorithm (or distinguisher) D for
solving the decisional n-BDHE (Bilinear Diffie-Hellman Exponent) problem in
(G,GT ) takes as input a tuple (−→y a,θ, Z) ∈ G2n+1 ×GT , where a, θ ∈R Zp, g ∈R

G, gi = ga
i

, ∀i ∈ [2n],−→y a,θ = (g, gθ, g1, . . . , gn, gn+2, . . . , g2n) and determines
whether Z = e(gn+1, g

θ) or a random element in GT . The advantage of a 0/1-
valued algorithm D in solving the decisional n-BDHE problem in (G,GT ) is
defined to be

Advn-dBDHE
D = |Pr

[
D(−→y a,θ, Z) = 1|Z = e(gn+1, g

θ)
]

−Pr [D(−→y a,θ, Z) = 1|Z is random] |.

Definition 2. The decisional n-BDHE problem in (G,GT ) is said to be (T , ε)-
hard if the advantage Advn-dBDHE

D ≤ ε, for any PPT distinguisher D running in
time at most T .

2.3 Dual-Policy ABE Template

The dual-policy ABE system [1] consists of the following four algorithms:

Setup(κ,Vs,Vo). The Central Authority (CA) takes as input a security param-
eter κ, a subjective attribute universe Vs and an objective attribute universe
Vo, and returns public key PK and master secret key MK. The secret key
MK is kept secret by CA and the public key PK is made public.

KeyGen(PK,MK, Ls,Ao). On input PK,MK, a set Ls of subjective attributes
and an objective access structure Ao, the CA outputs the secret key SK(Ls,Ao)

associated with Ls and Ao.
Encrypt(PK,M,As,Wo). An encryptor executes a message M under a subjec-

tive access structure As and a set Wo of objective attributes by using PK,
and returns a ciphertext CT(As,Wo) associated with As and Wo.

Decrypt(PK, SK(Ls,Ao),CT(As,Wo)). A decryptor takes as input PK, SK(Ls,Ao)

and CT(As,Wo), and outputs the message M encrypted under a subjective
access structure As and a set Wo of objective attributes if Ls ∈ As and
Wo ∈ Ao; otherwise decryption will fail.

2.4 Selective-Security Model for Dual-Policy ABE

Following [1], we describe IND-CPA (ciphertext indistinguishability under cho-
sen plaintext attacks) security model in terms of a game GameIND−CPA carried
out between a challenger and an adversary. The challenger executes the relevant
dual-policy ABE algorithms in order to answer the queries from the adversary.
The game is as follows:
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Init. The adversary announces the target subjective access structure A∗
s and

the target objective attribute set W ∗
o that he wishes to be challenged upon.

Setup. The challenger executes the Setup algorithm and gives public key PK
to the adversary.

Query Phase 1. The adversary is allowed to make secret key queries for pairs
of subjective attribute set and objective access structure (Ls,Ao) subject to
the constraint that Ls �∈ A∗

s or W ∗
o �∈ Ao. The challenger then runs KeyGen

algorithm and returns the corresponding secret key SKLs,Ao to the adversary.
Challenge. The adversary submits two equal length messages M0,M1. The

challenger flips a random coin μ ∈ {0, 1} and runs Encrypt algorithm
in order to encrypt Mμ under the target pair (A∗

s,W
∗
o ) of subjective ac-

cess structure and objective attribute set. The resulting challenge ciphertext
CT∗

(A∗
s ,W

∗
o ) is given to the adversary.

Query Phase 2. Query Phase 1 is repeated.
Guess. The adversary outputs a guess bit μ′ ∈ {0, 1} for the challenger’s secret

coin μ and wins if μ′ = μ.

The advantage of an adversary A in the above IND-CPA game is defined to be
AdvIND−CPA

A = |Pr[μ′ = μ] − 1
2 |, where the probability is taken over all random

coin tosses of both adversary and challenger.

Definition 3. A Dual-Policy ABE scheme is said to be selectively (T , q, ε)-IND-
CPA secure if AdvIND−CPA

A ≤ ε, for any PPT adversary A running in time at
most T that makes at most q secret key queries in the above game.

3 Proposed Dual-Policy ABE

Let Vs and Vo be the universes of subjective and objective attributes, respec-
tively. In our construction, both subjective and objective access structures are
LSSS-realizable. We denote a LSSS subjective access structure by (M, ρ) and
a LSSS objective access structure by (N, φ). We assume that ρ is an injective
function, i.e., each attribute is used only once in the row labeling of the sub-
jective access matrix M. However, we can remove such restriction by using a
transformation from single-use to multi-use as described in [2]. We describe now
our dual-policy ABE scheme as a set of the following four algorithms.

Setup(κ,Vs,Vo). On receiving the implicit security parameter κ and the de-
scription of both subjective and objective attribute universes, generate a
prime number p, a bilinear group G, a generator g ∈R G and a bilinear
map e : G × G → GT , where G and GT are multiplicative groups of order
p. Choose α, β ∈R Zp,K0 ∈R G and set Y = e(g, g)α, T0 = gβ . For each
attribute attx ∈ Vs (resp., att′y ∈ Vo), select Tx ∈R G (resp., Ky ∈R G).
The public key and master secret key are PK = 〈p, g, T0,K0, Y, {Tx : attx ∈
Vs}, {Ky : att′y ∈ Vo}〉 and MK = 〈α, β〉, respectively.

KeyGen(PK,MK, Ls,Ao). Here Ls ⊂ Vs and Ao is parsed as (N, φ), where N is
a share-generating matrix of size �o × ko and φ is a mapping from each row
i of N to an attribute att′φ(i).
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– First execute Distribute(N, φ, α+βr), where r ∈R Zp and 1 = (1, 0, . . . , 0)
being a vector of length ko and obtain a set {λφ(i) = Ni · vo : i ∈ [�o]}
of �o shares, where vo ∈R Zko

p such that vo · 1 = α+ βr.
– For each row i ∈ [�o], choose ri ∈R Zp and compute

dOi = gλφ(i)(K0Kφ(i))
ri , dO′

i = gri ,

dO′′
i =

{
dO′′

i,y : dO′′
i,y = Kri

y , ∀ att′y ∈ Vo \ {att′φ(i)}
}
.

Let sk(N,φ) = 〈(N, φ), {dOi, dO
′
i, dO

′′
i : i ∈ [�o]}〉.

– Finally, calculate dS = gr, dS′ = {dSx : dSx = T r
x , ∀ attx ∈ Ls}. Let

skLs = 〈Ls, dS, dS
′〉.

– Return the secret key associated with Ls and (N, φ) as SK(Ls,Ao) =
〈skLs , sk(N,φ)〉.

Encrypt(PK,M,As,Wo). Wo ⊂ Vo and As is parsed as (M, ρ), M is a share-
generating matrix of size �s×ks and ρ is a mapping from each row j ofM to an
attribute attρ(j). Choose a secret θ ∈R Zp. Run Distribute(M, ρ, θ) and obtain

a set {δρ(j) = Mj · vs : j ∈ [�s]} of �s shares, where vs ∈R Zks
p such that

vs · 1 = θ. The ciphertext is CT(As,Wo) = 〈(M, ρ),Wo, C, C
′, ct(M,ρ), ctWo〉,

where

C = M · Y θ, C′ = gθ, ctWo =

⎛⎝K0

∏
att′y∈Wo

Ky

⎞⎠θ

,

ct(M,ρ) =
{
Cj : Cj = T

δρ(j)
0 · T θ

ρ(j), ∀ j ∈ [�s]
}
.

Decrypt(PK, SK(Ls,Ao),CT(As,Wo)). The secret key SK(Ls,Ao) and the cipher-
text CT(As,Wo) are parsed as above. First obtain the corresponding secret
reconstruction constants {ωi : i ∈ Io} = Reconstruct(N, φ,Wo) and {τj :
j ∈ Is} = Reconstruct(M, ρ, Ls), where Io = {i ∈ [�o] : att

′
φ(i) ∈ Wo} and

Is = {j ∈ [�s] : attρ(j) ∈ Ls}. If Ls satisfies the subjective LSSS access struc-
ture (M, ρ) and Wo satisfies the objective LSSS access structure (N, φ), then∑

i∈Io
ωiλφ(i) = α + βr and

∑
j∈Is

τjδρ(j) = θ. Note here that the shares
{λφ(i)}i∈Io and {δρ(j)}j∈Is are not explicitly known to the decryption pro-
cess and hence so are α+ βr and θ. However, these secrets α+ βr and θ can
correctly be recovered in the exponent if Wo satisfies (N, φ) and Ls satisfies
(M, ρ), respectively. Compute E1, E2, F1 and F2 as follows:

E1 =
∏
i∈Io

⎛⎝dOi ·
∏

att′y∈Wo,y �=φ(i)

dO′′
i,y

⎞⎠ωi

, E2 =
∏
i∈Io

(dO′
i)

ωi ,

F1 =
∏
j∈Is

C
τj
j , F2 =

∏
j∈Is

dS
τj
ρ(j).

The message M is recovered by computing

C · e(ctWo , E2) · e(F1, dS)

e(C′, E1F2)
= M.

The correctness is included in Appendix A.
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3.1 Proof of Security

Theorem 1. If the objective attribute universe Vo has n attributes then our
dual-policy ABE scheme is (T , q, ε)-IND-CPA secure in the selective IND-CPA
security model (given in Section 2.4) with a challenge subjective access structure
matrix of size �∗s × k∗s , where k∗s ≤ n, assuming that the decisional n-BDHE
problem in (G,GT ) is (T ′, ε′)-hard, where T ′ = O(n2 + |Vs|) · q · Te and ε′ = ε/2.
Here, Te denotes the running time of one exponentiation in G.

Proof. Suppose that an adversary A can (T , q, ε)-break our dual-policy ABE
scheme in the selective IND-CPA security model, we will show that the decisional
n-BDHE problem in (G,GT ) is not (T ′, ε′)-hard.

Suppose a distinguisherD is given the decisional n-BDHE challenge (−→y a,θ, Z),

where −→y a,θ = (g, gθ, g1, . . . , gn, gn+2, . . . , g2n), gi = ga
i

, and Z = e(gn+1, g
θ)

or Z is a random element of GT . Now, the distinguisher D plays the role of a
challenger in GameIND−CPA and interacts withA in order to solve the decisional n-
BDHE problem (i.e., D attempts to output 1 if Z = e(gn+1, g

θ) and 0 otherwise)
as follows. By our assumption |Vo| = n. Let Vo = {att′1, . . . , att′n}.
Init. The adversary A outputs a target subjective LSSS-realizable access struc-
ture (M∗, ρ∗) and a target objective attribute set W ∗

o , where the size of LSSS
matrix M∗ is �∗s × k∗s with k∗s ≤ n. Let M∗ = (M∗

j,l)j∈[�∗s ],l∈[k∗
s ]
.

Setup. The distinguisher D selects a random value α′ ∈R Zp and implicitly sets

α = α′ + an+1 by letting Y = e(g, g)α = e(g, g)α
′
e(ga, ga

n

).
The distinguisher D then programs the parameters {Ky : y ∈ [n]} as follows.

For y ∈ [n], D chooses a random value γy ∈R Zp and computes Ky = gγygn+1−y.
Furthermore, to program K0, the distinguisher selects a random γ0 ∈R Zp and
computesK0 = gγ0

∏
att′y∈W∗

o
K−1

y .We note that the parametersK0,K1, . . . ,Kn

are distributed randomly due to the factor gγ0 , gγ1 , . . . , gγn , respectively.
The distinguisher D programs the other parameters T0, {Tx : attx ∈ Vs} as

follows. Set T0 = g1 = ga. For each attribute attx ∈ Vs, D randomly picks
tx ∈R Zp. For attx ∈ Vs, if there exists a j ∈ [�∗s] such that ρ∗(j) = x, then

set Tx = gtx ·
∏

l∈[k∗
s ]
g
−M∗

j,l

l (this is well defined since k∗s ≤ n). Otherwise, set

Tx = gtx , ∀ attx ∈ Vs \ {attρ∗(j) : j ∈ [�∗s]}.
We point out that the parameters Tx are randomly distributed due to the gtx

factor. By our restriction that ρ∗ is an injective function, for any x there is at
most one j such that ρ∗(j) = x, so that our assignment is unambiguous.

Query Phase 1. The adversary A queries for secret keys corresponding to
objective access structure and subjective attribute set pairs ((N, φ), Ls) subject
to the restriction that Ls does not satisfy M∗ or W ∗

o does not satisfy N. The
distinguisher then responds according to one of the following two cases.

Case 1: W ∗
o does not satisfy N�o×ko .

The distinguisher D picks r ∈R Zp and sets dS = gr and dS′ = {dSx : dSx =
T r
x , ∀ attx ∈ Ls}.
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Since W ∗
o does not satisfy N�o×ko , by Lemma 1, there exists a vector w =

(−1, w2, . . . , wko ) ∈ Zko
p such that Ni ·w = 0, for all rows i where att′φ(i) ∈ W ∗

o .
The distinguisher randomly selects σ2, σ3, . . . , σko ∈R Zp and implicitly sets

vo = (α′+an+1+ar,−(α′+an+1+ar)w2+σ2, . . . ,−(α′+an+1+ar)wko +σko) ∈
Zko
p , which will be used for generating shares of α+ar as in the original scheme.

Note that vo can be written as vo = −(α′ + an+1 + ar)w + v′
o, where v′

o =
(0, σ2, . . . , σko). Observe that λφ(i) = N i · vo contains the term an+1 and hence

gλφ(i) contains terms of the form ga
n+1

= gn+1 which is unknown toD. Therefore,
D must make sure that there are no terms of the form gn+1 involved in secret key
components. To this end, the distinguisher implicitly creates suitable ri values in
such a way that the unknown terms will be canceled out automatically. Now, the
secret key corresponding to each row Ni, i ∈ [�o], of N is computed as follows:

Subcase 1(i): For i where att′φ(i) ∈ W ∗
o .

In this case, the distinguisher randomly chooses r′i ∈R Zp and implicitly sets
ri = r′i−aφ(i). Since att′φ(i) ∈ W ∗

o , Ni ·w = 0 and hence Ni ·vo = −(α′+an+1+

ar)Ni ·w +Ni · v′
o = Ni · v′

o. Then the distinguisher computes

dOi = gNi·v′
o(K0Kφ(i))

r′ig−γ0

φ(i)

∏
att′y∈W∗

o , y �=φ(i)

(
g
γy

φ(i) · gn+1−y+φ(i)

)
,

dO′
i = gr

′
ig−1

φ(i), dO′′
i =

{
dO′′

i,y : dO′′
i,y = K

r′i
y g

−γy

φ(i) g
−1
n+1−y+φ(i), ∀y ∈ [n] \ {φ(i)}

}
.

Subcase 1(ii): For i where att′φ(i) �∈ W ∗
o , i.e., φ(i) �= y, for all att′y ∈ W ∗

o .

Note that Ni ·vo = Ni ·(v′
o−α′w)−(Ni ·w)an+1−a(rNi ·w). In this case the

distinguisher selects a random r′i ∈R Zp and implicitly sets ri = r′i+(Ni ·w)aφ(i).
Then the secret key components are computed as

dOi = gNi·(v′
o−α′w)g

−(rNi·w)
1 (K0Kφ(i))

r′ig
(Ni·w)γ0

φ(i)

×

⎛⎝ ∏
att′y∈W∗

o

(
g
−(Ni·w)γy

φ(i) · g−(Ni·w)
n+1−y+φ(i)

)⎞⎠ g
(Ni·w)γφ(i)

φ(i) ,

dO′
i = gr

′
igNi·w

φ(i) ,

dO′′
i =

{
dO′′

i,y : dO′′
i,y = K

r′i
y g

(Ni·w)γy

φ(i) gNi·w
n+1−y+φ(i), ∀y ∈ [n] \ {φ(i)}

}
.

Since 1 ≤ φ(i) ≤ n and y �= φ(i), the secret key components dOi, dO
′
i and

dO′′
i do not contain any term which implicitly contains gn+1 and hence the

distinguisher can correctly distribute the secret key components. Therefore, the
distribution of the secret key in this case is identical to that of the original
scheme.

Case 2: W ∗
o satisfies N�o×ko .

In this case, Ls must not satisfy the subjective access structure matrix M∗ of

size �∗s × k∗s . Then, by Lemma 1, there exists a vector z = (−1, z2, . . . , zk∗
s
) ∈ Z

k∗
s

p

such that M∗
j · z = 0, for each row j for which attρ∗(j) ∈ Ls.
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The distinguisher randomly picks r′ ∈R Zp and implicitly sets r = r′ +
(−1)an + z2a

n−1 + · · · + zk∗
s
an−k∗

s+1. Note that for zk∗
s
, k∗s ≥ 2. Now, the dis-

tinguisher calculates dS = gr
′ ∏

j∈[k∗
s ]
g
zj
n−j+1 = gr. From the definition of r, we

have

α+ ar = α′ + an+1 + a(r′ + (−1)an + z2a
n−1 + · · ·+ zk∗

s
an−k∗

s+1)

= α′ + an+1 + ar′ + (−1)an+1 + z2a
n + · · ·+ zk∗

s
an−k∗

s+2

= α′ + ar′ + z2a
n + · · ·+ zk∗

s
an−k∗

s+2.

Now, α + ar does not contain the term an+1. It picks ξ2, . . . , ξko ∈R Zp and
implicitly sets vo = (α+ ar, ξ2, . . . , ξko) similar to original scheme. It also picks
ri ∈R Zp, for each row i ∈ [�o] of the matrix N. Now, the secret key components
corresponding to each ith row Ni, parsed as (Ni,1, Ni,2, . . . , Ni,ko), of N are
computed as follows:

dO′
i = gri, dO′′

i =
{
dO′′

i,y : dO′′
i,y = Kri

y , ∀y ∈ [n] \ {φ(i)}
}
,

dOi =

⎛⎝gα
′
gr

′
1

k∗
s∏

l=2

gzln−l+2

⎞⎠Ni,1

·
ko∏
ν=2

gξνNi,ν ·
(
K0Kφ(i)

)ri
.

It can be seen that dOi = gλφ(i)
(
K0Kφ(i)

)ri
because of the fact that λφ(i) =

Ni · vo = (α′ + ar′ + z2a
n + · · ·+ zk∗

s
an−k∗

s+2)Ni,1 + ξ2Ni,2 + · · ·+ ξkoNi,ko .
Finally, the distinguisher computes dSx for all attx ∈ Ls as follows. Any

attribute attx ∈ Ls for which there is no j such that ρ∗(j) = x, set dSx = dStx =
grtx = T r

x . Now, consider the case that an attribute attx ∈ Ls for which there is
some j such that ρ∗(j) = x. Then M∗

j · z = 0. In this case

dSx = dStx ·
∏

l∈[k∗
s ]

⎛⎝gr
′

l

∏
u∈[k∗

s ],u�=l

gzun+1−u+l

⎞⎠−M∗
j,l

,where z1 = −1.

Therefore, the distribution of the secret key in this case is identical to that of
the original scheme as well.

Challenge. The adversary A submits two equal length messages M0 and M1

to the distinguisher D. Now, the distinguisher flips a random coin μ ∈ {0, 1}
and encrypts Mμ under the target subjective access structure (M∗, ρ∗) and the
target objective attribute set W ∗

o . The distinguisher first computes

C = MμZ · e(gθ, gα′
), C′ = gθ, ctW∗

o
= (gθ)γ0 .

It now picks η2, . . . , ηk∗
s
∈R Zp. Let η = (0, η2, . . . , ηk∗

s
). It will then implicitly

share the secret θ using the vector vs = (θ, θa+ η2, θa
2 + η3, . . . , θa

k∗
s−1 + ηk∗

s
),

by setting

Cj =

⎛⎝ k∗
s∏

l=2

g
M∗

j,l·ηl

1

⎞⎠ ·
(
gθ

)tρ∗(j)
, for each j ∈ [�∗s] such that attρ∗(j) = attx.
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Let ct(M∗,ρ∗) = {Cj : j ∈ [�s]} . The challenge ciphertext

CT((M∗,ρ∗),W∗
o ) =

〈
(M∗, ρ∗),W ∗

o , C, C
′, ct(M∗,ρ∗), ctW∗

o

〉
is given to adversary.

We now show that if Z = e(gn+1, g
θ), then the challenge ciphertext is a

valid encryption of the message Mμ under the target subjective access structure
(M∗, ρ∗) and the target objective attribute set W ∗

o .
For,

C = MμZ · e(gθ, gα
′
) = Mμ · e(gn+1, g

θ) · e(gθ, gα
′
) = Mμ · e(g, g)(α

′+an+1)θ,

ctW∗
o
= (gθ)γ0 = (gγ0)θ = (K0

∏
att′y∈W∗

o

Ky)
θ,

for each j ∈ [�∗s] such that attρ∗(j) = attx,

Cj = T
M∗

j ·vs

0 · T θ
ρ∗(j) = gaM

∗
j ·vs ·

⎛⎝gtρ∗(j) ·
∏

l∈[k∗
s ]

g
−M∗

j,l

l

⎞⎠θ

= g
θ
∑

l∈[k∗
s ] a

lM∗
j,l+a

∑k∗
s

l=2 M∗
j,l·ηl

(
gθ

)tρ∗(j)
g
−θ
∑

l∈[k∗
s ] a

lM∗
j,l

= g
∑k∗

s
l=2 M∗

j,l·ηl

1

(
gθ

)tρ∗(j)
=

⎛⎝ k∗
s∏

l=2

g
M∗

j,l·ηl

1

⎞⎠ ·
(
gθ

)tρ∗(j)
.

This concludes our claim.
If Z is a random element in GT , then the challenge ciphertext is independent

of μ in the adversary’s view.

Query Phase 2. D proceeds exactly as it did in Query Phase 1.

Guess. The adversary A outputs his guess μ′ ∈ {0, 1} on μ. If μ′ = μ, then
D outputs 1 in the decisional n-BDHE game to guess that Z = e(gn+1, g

θ);
otherwise it outputs 0 to indicate that Z is a random element in GT .

If Z = e(gn+1, g
θ), then the adversary’s view in the above game is identical

to that in a real attack. In that case |Pr[μ = μ′]− 1/2| > ε. On the other hand,
if Z is a random element in GT , then A cannot obtain any information about
Mμ and hence Pr[μ = μ′] = 1/2. Since the events Z = e(gn+1, g

θ) and Z is

random element in GT are equiprobable, it is easy to see that Advn-dBDHE
D > ε/2.

Thus, the decisional n-BDHE problem in (G,GT ) is not (T ′, ε′)-hard, where
T ′ = O(n2 + |Vs|) · q · Te and ε′ = ε/2. 
�

3.2 Large Universe Extension

With the symbols and notations used in Section 3, we sketch below the large
universe realization of our dual-policy ABE construction. Similar to [7], the pub-
lic parameters of subjective and objective attributes are generated dynamically



300 Y.S. Rao and R. Dutta

by using algebraic functions Fs : Zp → G and Fo : Zp → G, respectively. Let
an attribute attx ∈ Vs (resp. att′y ∈ Vo) be an element x (resp. y) of Zp. De-

fine Tx = Fs(x) =
∏ds

i=1 P
xi

i and Ky = Fo(y) =
∏do

i=1 Q
yi

i , where Pi, Qi ∈R G
are fixed public parameters. Anyone can compute Tx and Ky using Pi, Qi. We

replace K0, {Tx} and {Ky} by {Pi}ds

i=1, {Qi}do

i=1 in the public key PK. Conse-
quently, the public key consists only of O(ds + do) group elements (as opposed
to O(|Vs|+ |Vo|) group elements in the small universe setting), whereas ds and
do become bounds on the number of subjective and objective attributes that
can associate with a secret key and ciphertext, respectively. However, one can
remove these bounds, as in [7], by modeling Fs and Fo as random oracles.

Instead of including |Vo| group elements for each row of the objective LSSS
matrix in the secret key, the key generation algorithm now includes only |IN|
(where |IN| ≤ �o ≤ |Vo|) group elements, IN being the index set of distinct
objective attributes in the objective LSSS matrix N of size �o × ko. The secret
key also includes one group element for each subjective attribute associated with
it. Thus, the secret key contains maximum O(�2o + |Ls|) group elements of the
form

dOi = gλφ(i)Fo(φ(i))
ri , dO′′

i =
{
dO′′

i,y : dO′′
i,y = Fo(y)

ri , ∀ y ∈ IN \ {φ(i)}
}
,

dO′
i = gri , dS = gr, dS′ = {dSx : dSx = Fs(x)

r , ∀ attx ∈ Ls}.

On the other hand, the encryption algorithm replaces the single aggregate ele-
ment for all the objective attributes associated with the ciphertext in small uni-
verse construction by a set of group elements one for each objective attribute.
The subjective attribute ciphertext component is unchanged. Consequently, the
ciphertext contains O(�s+ |Wo|) group elements, as in [1], which are of the form

C = M · Y θ, C′ = gθ, ctWo = {cty : cty = Fo(y)
θ, ∀ att′y ∈ Wo},

ct(M,ρ) =
{
Cj : Cj = T

δρ(j)
0 · Fs(ρ(j))

θ, ∀ j ∈ [�s]
}
.

Finally, the decryption algorithm aggregates the required objective attribute
components of secret key and ciphertext, and computes EW o

and ctWo
as follows:

EW o
=

∏
i∈Io

⎛⎜⎝dOi ·
∏

att′y∈W o,y �=φ(i)

dO′′
i,y

⎞⎟⎠
ωi

, ctW o
=

∏
att′y∈Wo

cty,

where E2, F1, F2 are same as in the decryption algorithm of Section 3 and
W o = {att′y ∈ Wo : ∃ i ∈ Io such that φ(i) = y}. The message is recovered
by computing C · e(ctW o

, E2) · e(F1, dS)/e(C
′, EW o

F2). The ctWo
component in-

creases |Io| of modular multiplications over the decryption in Section 3. However,
decryption requiresO(|Is|+|Io|) exponentiations in G and 3 bilinear pairing eval-
uations, as opposed to O(|Is| + |Io|) exponentiations in G, |Io| exponentiations
in GT and |Io| + 2 pairing evaluations in [1], to decrypt any ciphertext in the
system.
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4 KP-ABE Variant for Monotone Access Structures

In this section, we present a KP-ABE system with constant-size ciphertext for
monotone access structure by isolating the KP-ABE component of our dual-
policy ABE system.

Let U be the attribute universe. The CA manages all the attributes and
its keys, and is responsible for issuing secret keys to users according to access
structure of user attributes. An encryptor encrypts a message under a set of
attributes and returns the corresponding ciphertext so that only the user with
access structure satisfied by the attribute set associated with the ciphertext can
decrypt it. The access structure associated with secret key is any MAS which
is LSSS-realizable. We describe our KP-ABE scheme for MAS as a set of the
following four algorithms.

Setup(κ, U). The CA generates a tuple (p,G, g,GT , e) according to the im-
plicit parameter κ. The description of these parameters is similar to previous
scheme. It then chooses α ∈R Zp,K0 ∈R G and sets Y = e(g, g)α. For each
attribute atty ∈ U, it selects Ky ∈R G. The public key and master secret
key as PK = 〈p, g,K0, Y, {Ky : atty ∈ U}〉 and MK = α, respectively. The
master secret key MK is kept secret by CA and the public key PK is made
public.

KeyGen(PK,MK, (N, φ)). Each row i of the matrix N, the share-generating
matrix of size � × k, is associated with an attribute attφ(i). The CA first
executes Distribute(N, φ, α) and obtains a set {λφ(i) = Ni · v : i ∈ [�]} of �

shares, where v ∈R Zk
p such that v · 1 = α, 1 = (1, 0, . . . , 0) being a vector

of length k. For each row i ∈ [�], it chooses ri ∈R Zp and computes

dOi = gλφ(i)(K0Kφ(i))
ri , dO′

i = gri ,

dO′′
i =

{
dO′′

i,y : dO′′
i,y = Kri

y , ∀ atty ∈ U \ {attφ(i)}
}
.

It returns the secret key SK(N,φ) = 〈(N, φ), {dOi, dO
′
i, dO

′′
i : i ∈ [�]}〉 associ-

ated with (N, φ).
Encrypt(PK,M,W ). To encrypt a message M ∈ GT under a set W of at-

tributes, the encryptor selects θ ∈R Zp and outputs the ciphertext CTW =

〈W,C,C′, ctW 〉, where C = M ·Y θ, C′ = gθ and ctW =
(
K0

∏
atty∈W Ky

)θ

.

Decrypt(PK, SK(N,φ),CTW ). The decryptor first obtains a set {ωi : i ∈ I} =
Reconstruct(N, φ,W ) of secret reconstruction constants, where I = {i ∈ [�] :
attφ(i) ∈ W}.Note that ifW satisfies the LSSS matrix N, then

∑
i∈I ωiλφ(i) =

α. Finally, the decryptor computes

E1 =
∏
i∈I

⎛⎝dOi ·
∏

atty∈W,y �=φ(i)

dO′′
i,y

⎞⎠ωi

, E2 =
∏
i∈I

(dO′
i)

ωi

and recovers the message M by computing C · e(ctW , E2)/e(C
′, E1).
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Theorem 2 (Security Proof). If the attribute universe U has n attributes
then our KP-ABE scheme for MAS is (T , q, ε)-IND-CPA secure in the selective
IND-CPA security model of KP-ABE (which can be derived by ignoring subjective
attributes from the dual-policy selective-security model given in Section 2.4),
assuming that the decisional n-BDHE problem in (G,GT ) is (T ′, ε′)-hard, where
T ′ = T +O(n2) · q · Te and ε′ = ε/2. Here, Te denotes the running time of one
exponentiation in G.

The proof of Theorem 2 (given in Appendix B) can be derived from the proof
of Theorem 1.

5 KP-ABE Variant for Non-Monotone Access Structure

Tobuild aKP-ABE forNon-MonotoneAccess Structure (nonMAS)with constant-
size ciphertext, we employ the moving from MAS to nonMAS technique [19] that
represents non-monotone access structures in terms of monotone access structures
with negative attributes (NOTabe is a negative attribute of the attribute abe). We
discuss here the technique for completeness. For ease of reference, we call the at-
tribute abe, a positive attribute and we denote its negation NOTabe by ¬abe. Let
U be a positive attribute universe.

Given a family F = {ΠA : A ∈ MA} of linear secret-sharing schemes for a set

of possible monotone access structures MA, and Ũ = U
⋃
{¬att : att ∈ U} is

the underlying attribute universe for each monotone access structure A ∈ MA,
a family NM of non-monotone access structures can be defined as follows. For
each access structure A ∈ MA over Ũ , one defines a possibly non-monotone
access structure NA over U in the following way.

– For every set W ⊂ U, form N(W ) = W
⋃
{¬att : att ∈ U \W} ⊂ Ũ .

– Now, define NA by saying that W is authorized in NA if and only if N(W )
is authorized in A, i.e., W ∈ NA iff N(W ) ∈ A.

The family of non-monotone access structures is NM = {NA : ΠA ∈ F}. Note
that the non-monotone access structure NA will have only positive attributes in
its access sets.

We combine the above methodology with our KP-ABE scheme for MAS in
order to construct desired KP-ABE scheme for nonMAS. The scheme consists
of the following four algorithms.

Setup(κ, U). The CA generates a tuple (p,G, g,GT , e) according to the implicit
parameter κ. It then chooses α ∈R Zp,K0, H0 ∈R G and sets Y = e(g, g)α.
For each attribute atty ∈ U, it selects Ky, Hy ∈R G. The public key and
master secret key are PK = 〈p, g,K0, H0, Y, {Ky, Hy : atty ∈ U}〉 and MK =
α, respectively.

KeyGen(PK,MK, Ã). Given a non-monotone access structure Ã such that we

have Ã = NA for some monotone access structure A over Ũ = U
⋃
{¬att :

att ∈ U} and associated with a linear secret sharing scheme ΠA = (N�×k, φ),
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the CA first runs Distribute(N, φ, α) and obtains a set {λφ(i) = Ni ·v : i ∈ [�]}
of � shares, where v ∈R Zk

p such that v · 1 = α. Note that each row i ∈ [�] of

N is associated with an attribute ãttφ(i) ∈ {attφ(i),¬attφ(i)}. For each row
i ∈ [�], it chooses a random exponent ri ∈R Zp and computes

dOi = gλφ(i)(K̃0K̃φ(i))
ri , dO′

i = gri ,

dO′′
i =

{
dO′′

i,y : dO′′
i,y = K̃ri

y , ∀y ∈ IU \ {φ(i)}
}
,

where K̃j =

{
Kj, if ãttφ(i) = attφ(i),

Hj , if ãttφ(i) = ¬attφ(i),
for all j ∈ {0} ∪ IU and IU is

the index set of attribute universe U. It returns the secret key SK
Ã

=

〈Ã, {dOi, dO
′
i, dO

′′
i : i ∈ [�]}〉 associated with the non-monotone access struc-

ture Ã.
Encrypt(PK,M,W ). To encrypt a message M ∈ GT under a set W of at-

tributes, the encryptor selects θ ∈R Zp and outputs the ciphertext CTW =

〈W,C,C′, ctW , ct′W 〉, where C = M ·Y θ, C′ = gθ, ctW =
(
K0

∏
atty∈W Ky

)θ

and ct′W =
(
H0

∏
atty∈W Hy

)θ

.

Decrypt(PK, SK
Ã
,CTW ). The decryptor first checks whether W ∈ Ã. If not,

it outputs ⊥. Otherwise, since Ã = NA for some monotone access structure
A over Ũ associated with a linear secret sharing scheme ΠA = (N�×k, φ),
we have N(W ) ∈ A. It runs Reconstruct(N, φ,N(W )) and obtains a set
{ωi : i ∈ I} of reconstruction constants such that

∑
i∈I ωiλφ(i) = α, where

I = {i ∈ [�] : ãttφ(i) ∈ N(W )}. Let I+ = {i ∈ [�] : ãttφ(i) = attφ(i) ∈ N(W )}
and I− = {i ∈ [�] : ãttφ(i) = ¬attφ(i) ∈ N(W )}. Then I = I+

⋃
I−. It now

computes E1, E2 and E3 as follows:

E1 =
∏
i∈I

⎛⎝dOi ·
∏

atty∈W,y �=φ(i)

dO′′
i,y

⎞⎠ωi

, E2 =
∏
i∈I+

(dO′
i)

ωi , E3 =
∏
i∈I−

(dO′
i)

ωi .

The message is obtained by computing C ·e(ctW , E2) ·e(ct′W , E3)/e(C
′, E1).

Security Proof. The proof of the following theorem can be derived from the
proof of Theorem 2 with the modification that in the simulation, the secret key
generation uses Kj elements for positive attributes and Hj elements for negative
attributes.

Theorem 3. If the attribute universe U has n attributes then our KP-ABE for
nonMAS is (T , q, ε)-IND-CPA secure in the selective IND-CPA security model of
KP-ABE, assuming that the decisional n-BDHE problem in (G,GT ) is (T ′, ε′)-
hard, where T ′ = T +O(n2) · q · Te and ε′ = ε/2. Here, Te denotes the running
time of one exponentiation in G.
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6 Conclusion

In this paper, we proposed an efficient dual-policy ABE system where the size
of ciphertext is independent of objective attributes, thereby reduces ciphertext
size. We also presented constant-size ciphertext KP-ABE schemes for both MAS
and nonMAS. Security of all our schemes against selective adversary has been
proven under the decisional n-BDHE assumption in the standard model. Our
schemes outperform the existing schemes in terms of computation cost during
encryption and decryption.

Acknowledgement. The authors would like to thank the anonymous reviewers
of this paper for their valuable comments and suggestions.
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A Correctness of Decryption in Dual-Policy ABE

E1 =
∏
i∈Io

⎛⎝gλφ(i)(K0Kφ(i))
ri ·

∏
att′y∈Wo,y �=φ(i)

Kri
y

⎞⎠ωi

= g
∑

i∈Io
ωiλφ(i)

∏
i∈Io

⎛⎝Kri
0

∏
att′y∈Wo

Kri
y

⎞⎠ωi

=gα+βr

⎛⎝K0

∏
att′y∈Wo

Ky

⎞⎠
∑

i∈Io
riωi

E2 =
∏
i∈Io

(dO′
i)

ωi =
∏
i∈Io

griωi = g
∑

i∈Io
riωi

F1 =
∏
j∈Is

C
τj
j =

∏
j∈Is

(
T

τjδρ(j)
0 T

θτj
ρ(j)

)
= gβ

∑
j∈Is

τjδρ(j)
∏
j∈Is

T
θτj
ρ(j) = gβθ

∏
j∈Is

T
θτj
ρ(j)

F2 =
∏
j∈Is

dS
τj
ρ(j) =

∏
j∈Is

T
rτj
ρ(j).

The message can then be obtained by computing

e(ctWo , E2) · e(F1, dS)

e(C′, E1F2)
=

e((K0

∏
att′y∈Wo

Ky)
θ, g

∑
i∈Io

riωi)e(gβθ
∏

j∈Is
T

θτj
ρ(j), g

r)

e(gθ, gα+βr
(
K0

∏
att′y∈Wo

Ky

)∑
i∈Io

riωi ∏
j∈Is

T
rτj
ρ(j))

=
e(gβθ, gr)

e(gθ, gα+βr)
=

1

e(gθ, gα)
=

1

Y θ
.

Now, C · 1
Y θ = M · Y θ · 1

Y θ = M.
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B Security Proof of KP-ABE for MAS

Suppose that an adversary A can (T , q, ε)-break our KP-ABE scheme for MAS
in the selective IND-CPA security model, which is derived by ignoring subjective
attributes from the dual-policy selective-security model given in Section 2.4 and
is same as the one in [5]. We will show that the decisional n-BDHE problem in
(G,GT ) is not (T ′, ε′)-hard.

Suppose a distinguisherD is given the decisional n-BDHE challenge (−→y a,θ, Z),

where −→y a,θ = (g, gθ, g1, . . . , gn, gn+2, . . . , g2n), gi = ga
i

, and Z = e(gn+1, g
θ)

or Z is a random element of GT . Now, the distinguisher D plays the role of a
challenger in GameIND−CPA and interacts withA in order to solve the decisional n-
BDHE problem (i.e., D attempts to output 1 if Z = e(gn+1, g

θ) and 0 otherwise)
as follows. By our assumption |U | = n. Let U = {att1, . . . , attn}.
Init. The adversary A outputs the target attribute set W ∗.

Setup. The distinguisher D selects a random value α′ ∈R Zp and implicitly sets

α = α′ + an+1 by letting Y = e(g, g)α = e(g, g)α
′
e(ga, ga

n

).
The distinguisher D then programs the parameters {Ky : y ∈ [n]} as follows.

For y ∈ [n], D chooses a random value γy ∈R Zp and computes Ky = gγygn+1−y.
Furthermore, to program K0, the distinguisher selects at random γ0 ∈R Zp and
computesK0 = gγ0

∏
atty∈W∗ K−1

y .We note that the parametersK0,K1, . . . ,Kn

are distributed randomly due to the factor gγ0 , gγ1 , . . . , gγn , respectively. The
public key PK = 〈p, g,K0, Y,K1,K2, . . . ,Kn〉 will be given to the adversary A.

Query Phase 1. In this phase, the adversary A requests for secret keys corre-
sponding to the LSSS access structures (N, φ) subject to the condition that W ∗

does not satisfy N and then the distinguisher responds as follows.
Let the size of a share-generating matrix N be � × k. Since W ∗ does not

satisfy N, by Lemma 1, there exists a vector w = (−1, w2, . . . , wk) ∈ Zk
p such

that Ni ·w = 0, for all rows i where attφ(i) ∈ W ∗.
The distinguisher randomly selects σ2, σ3, . . . , σk ∈R Zp and implicitly sets

v = (α′ + an+1,−(α′ + an+1)w2 + σ2, . . . ,−(α′ + an+1)wk + σk) ∈ Zk
p,

which will be used for generating shares of α as in the original scheme. Note
that v can be written as v = −(α′ + an+1)w + v′, where v′ = (0, σ2, . . . , σk).
Observe that λφ(i) = N i · v contains the term an+1 and hence gλφ(i) contains

terms of the form ga
n+1

= gn+1 which is unknown to D. Therefore,D must make
sure that there are no terms of the form gn+1 involved in secret key components.
To this end, the distinguisher implicitly creates suitable ri values in such a way
that the unknown terms will be canceled out automatically. Now, the secret key
corresponding to each row Ni, i ∈ [�], of N is computed as follows:

Case 1: For i where attφ(i) ∈ W ∗.
In this case, the distinguisher randomly chooses r′i ∈R Zp and implicitly sets

ri = r′i − aφ(i). Since attφ(i) ∈ W ∗, Ni · w = 0 and hence Ni · v = −(α′ +
an+1)Ni ·w +Ni · v′ = Ni · v′. Then the distinguisher computes
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dOi = gNi·v′
(K0Kφ(i))

r′ig−γ0

φ(i)

∏
atty∈W∗, y �=φ(i)

(
g
γy

φ(i) · gn+1−y+φ(i)

)
,

dO′
i = gr

′
ig−1

φ(i), dO′′
i =

{
dO′′

i,y : dO′′
i,y = K

r′i
y g

−γy

φ(i) g
−1
n+1−y+φ(i), ∀y ∈ [n] \ {φ(i)}

}
.

Case 2: For i where attφ(i) �∈ W ∗, i.e., φ(i) �= y, for all atty ∈ W ∗.
Note that Ni ·v = Ni ·(v′−α′w)−(Ni ·w)an+1. In this case the distinguisher

selects a random r′i ∈R Zp and implicitly sets ri = r′i + (Ni ·w)aφ(i). Then the
secret key components are computed as

dOi = gNi·(v′−α′w)(K0Kφ(i))
r′ig

(Ni·w)γ0

φ(i)

×

⎛⎝ ∏
atty∈W∗

(
g
−(Ni·w)γy

φ(i) · g−(Ni·w)
n+1−y+φ(i)

)⎞⎠ g
(Ni·w)γφ(i)

φ(i) ,

dO′
i = gr

′
igNi·w

φ(i) , dO′′
i =

{
dO′′

i,y = K
r′i
y g

(Ni·w)γy

φ(i) gNi·w
n+1−y+φ(i), ∀y ∈ [n] \ {φ(i)}

}
.

Since 1 ≤ φ(i) ≤ n and y �= φ(i), the secret key components dOi, dO
′
i and dO′′

i do
not contain any term which implicitly contains gn+1 and hence the distinguisher
can correctly distribute the secret key components. Therefore, the distribution
of the secret key in this case is identical to that of the original scheme. Finally,
the distinguisher sends the secret key SK(N,φ) = 〈(N, φ), {dOi, dO

′
i, dO

′′
i : i ∈ [�]}〉

associated with (N, φ).

Challenge. The adversary A submits two equal length messages M0 and M1 to
the distinguisher D. Now, the distinguisher flips a random coin μ ∈ {0, 1} and
encrypts Mμ under the challenge attribute set W ∗. The components of challenge
ciphertext CTW∗ are computed as follows:

C = MμZ · e(gθ, gα′
), C′ = gθ, ctW∗ = (gθ)γ0 .

The challenge ciphertext CTW∗ = 〈W ∗, C, C′, ctW∗〉 is returned to A.
If Z = e(gn+1, g

θ), then the challenge ciphertext CTW∗ is a valid encryption
of the message Mμ under the attribute set W ∗ as

C = MμZ · e(gθ, gα′
) = Mμ · e(gn+1, g

θ) · e(gθ, gα′
) = Mμ · e(g, g)(α′+an+1)θ,

ctW∗ = (gθ)γ0 = (gγ0)θ = (K0

∏
atty∈W∗

Ky)
θ.

On the contrary, if Z is a random element in GT , then the challenge ciphertext
CTW∗ is independent of μ in the adversary’s view.

Query Phase 2. D proceeds exactly as it did in Query Phase 1.

Guess. The adversary A outputs his guess μ′ ∈ {0, 1} on μ. If μ′ = μ, then
D outputs 1 in the decisional n-BDHE game to guess that Z = e(gn+1, g

θ);
otherwise it outputs 0 to indicate that Z is a random element in GT .
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If Z = e(gn+1, g
θ), then the adversary’s view in the above game is identical

to that in a real attack. In that case |Pr[μ = μ′]− 1/2| > ε. On the other hand,
if Z is a random element in GT , then A cannot obtain any information about
Mμ and hence Pr[μ = μ′] = 1/2. Since the events Z = e(gn+1, g

θ) and Z is

random element in GT are equiprobable, it is easy to see that Advn-dBDHE
D > ε/2.

Thus, the decisional n-BDHE problem in (G,GT ) is not (T ′, ε′)-hard, where
T ′ = O(n2) · q · Te and ε′ = ε/2. 
�
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Abstract. Proxy re-encryption (PRE) realizes delegation of decryption rights,
enabling a proxy holding a re-encryption key to convert a ciphertext originally
intended for Alice into an encryption of the same message for Bob, and cannot
learn anything about the encrypted plaintext. To the best of our knowledge, all
of the existing PRE schemes are based on the Diffie-Hellman assumption and
its variants. In this paper, we present the first factoring-based PRE schemes. In
particular, we first propose a bidirectional multi-hop PRE scheme which is secure
against chosen-plaintext attack in the standard model (i.e., without the random or-
acle idealization). We then propose a bidirectional single-hop PRE scheme which
is secure against chosen-ciphertext attack (CCA) in the random oracle model. Fi-
nally, we extend the bidirectional single-hop PRE scheme to obtain a CCA-secure
unidirectional single-hop PRE scheme.

Keywords: proxy re-encryption, factoring, chosen-ciphertext attack.

1 Introduction

1.1 Background

Proxy re-encryption (PRE) introduced by Blaze, Bleumer, and Strauss [4] in EURO-
CRYPT’98, allows a semi-trust proxy to translate a ciphertext intended for Alice into
another ciphertext intended for Bob. The proxy, however, cannot learn anything about
the underlying messages. According to the direction of transformation, PRE can be cat-
egorized to bidirectional PRE, in which the proxy can transform from Alice to Bob and
vice versa, and unidirectional PRE, in which the proxy cannot transform ciphertexts
in the opposite direction. PRE can also be categorized to multi-hop PRE, in which the
ciphertexts can be transformed from Alice to Bob and then to Charlie and so on, and
single-hop PRE, in which the ciphertexts can only be transformed once.

In [4], Blaze et al. proposed the first bidirectional PRE scheme. Ateniese, Fu, Green,
and Hohenberger [1,2] presented unidirectional PRE schemes from bilinear maps in
2005. All of these schemes are only secure against chosen-plaintext attack (CPA).
Canetti and Hohenberger [7] presented the first bidirectional multi-hop PRE scheme
that is secure against replayable chosen-ciphertext attack (RCCA) in the standard model.
Libert and Vergnaud [15] proposed a unidirectional single-hop PRE scheme, which is

� Supported by Ministry of Education, Culture, Sports, Science and Technology.

W. Susilo and R. Reyhanitabar (Eds.): ProvSec 2013, LNCS 8209, pp. 309–329, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



310 T. Isshiki, M.H. Nguyen, and K. Tanaka

also RCCA-secure in the standard model. Recently, Isshiki, Nguyen, and Tanaka [14]
presented a CCA-secure unidirectional single-hop PRE scheme. The above schemes all
rely on bilinear maps. In 2012, Hanaoka, Kawai, Kunihiro, Matsuda, Weng, Zhang, and
Zhao [11] proposed the first generic construction of CCA-secure unidirectional single-
hop PRE. However, since they only gave a concrete example which also uses bilinear
maps, it is unknown whether there is an instantiation without bilinear maps.

All of the above PRE schemes inherently rely on decisional assumptions, e.g., the
decisional Diffie-Hellman (DDH) or the DBDH assumption. In general, decisional as-
sumptions are a much stronger class of assumptions than computational assumptions
based on search problems, such as factoring, finding shortest vectors in lattices, or even
the CDH problem. Indeed, there are groups, such as certain elliptic curve groups with
bilinear pairing map, where the DDH assumption does not hold, but the CDH problem
appears to be hard. As such, schemes based on search problems are generally preferred
to those based on decisional assumptions. However, such schemes seem to be very hard
to obtain.

In 2010, Deng, Weng, Liu, and Chen [9] proposed the first PRE scheme based on a
computational assumption, namely the CDH assumption (in the random oracle model).
Since then, there are several works show how to base CCA-secure PRE on the same
assumption [8,6]. However, there are not any PRE scheme constructed based on the
hardness of the factoring problem, or finding shortest vectors in lattices.

1.2 Our Contributions

In this paper, we propose the first PRE schemes based on the hardness of the factoring
problem. We make the following contributions:

1. We present a CPA-secure bidirectional and multi-hop PRE scheme, under the fac-
toring assumption, in the standard model (i.e., without the random oracle idealiza-
tion). Our scheme based on the public key encryption (PKE) scheme proposed by
Wee [19] which is indistinguishable against chosen-plaintext attack (IND-CPA).
(See Section 5.1).

2. We present a bidirectional and single-hop PRE scheme which is secure against
the chosen-ciphertext attack, under the factoring assumption in the random oracle
model. In order to construct the scheme, we modify the IND-CPA-secure PKE [19]
such that it achieves the IND-CCA security by using Fujisaki-Okamoto transforma-
tion. We also propose a new factoring-based strongly unforgeable signature scheme
which is a variant of the Schnorr scheme [17]. By combining these two primitives,
we obtain a CCA-secure PRE scheme. Our scheme achieves the CCA security on
both second-level and first-level (i.e., the original and transformed, respectively)
ciphertext in the random oracle model. (See Section 5.2).

3. We present a CCA-secure unidirectional and single-hop PRE scheme by using
“token-controlled encryption” technique to extend the above bidirectional and
single-hop PRE scheme. Hence, the security of this scheme is also proven in the ran-
dom oracle model, assuming the hardness of factoring. This scheme also achieves
the CCA security on both second-level and first-level ciphertext. (See Section 5.3).
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See Table 1 for details of the comparison on our results with related previous works.
ROM stands for the random oracle model. “1st-CCA” means that the CCA security
of the first-level ciphertext. “↔” and “→” mean “bidirectional” and “unidirectional”,
respectively.

Table 1. Comparison of our results with previous works

Authors Assumption
Security of

1st-CCA Bilinear Map ROM Direction Hop
2nd-level CT

BBS98 [4] DDH CPA no no no ↔ multi
AFGH05 [1] eDBDH CPA no yes no → single

CH07 [7] DBDH RCCA no yes no ↔ multi
LV08 [15] 3-wDBDHI RCCA no yes no → single

DWLC08 [9] CDH CCA no no yes ↔ single
CWYD10 [8] CDH CCA no no yes → single

CDL11 [6] CDH CCA yes no yes → single
HMY+11 [12] 3-wDBDHI RCCA no yes no → single
HKK+12 [11] DBDH CCA no yes no → single

INT13 [14]
6-AmDBDH

CCA yes yes no → single
& 2-AmCDH

Ours-1 Factoring CPA no no no ↔ multi
Ours-2 Factoring CCA yes no yes ↔ single
Ours-3 Factoring CCA yes no yes → single

1.3 Roadmap

The paper is organized as follows: we give the preliminaries to describe our scheme in
Section 2. In Section 3, we introduce a new factoring-based strongly unforgeable sig-
nature scheme which will be used to construct our schemes. We recall the concept of
bidirectional proxy re-encryption and its security models in Section 4. In Section 5, we
propose the factoring-based PRE schemes. Finally, we conclude this paper in Section 6.

2 Preliminaries

2.1 Notation

We denote by N the set of all integers, and for an integer k ∈ N we denote by [k] the
set {1, . . . , k}. If S is a set then s ←R S denotes the operation of picking an element
s of S uniformly at random. For a probabilistic algorithm A, we denote y = A(x;R)
the process of running A on input x and with randomness R, and assigning y the result.
We write y = A(x; ·) if the randomness R is unknown. We write y ← A(x) for y =
A(x;R) with uniformly chosen R from the randomness space of A. We use negl(n)
to denote a negligible function in n, i.e., it always holds that negl(n) < 1/nc for any
0 < c ∈ Z for sufficiently large n.
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2.2 Factoring

Let N = PQ be a Blum integer for safe primes P,Q, i.e., P,Q ≡ 3 (mod 4) where
p = (P − 1)/2 and q = (Q− 1)/2 are both primes. Let JN denote the subgroup of Z∗

N

with Jacobi symbol +1, and let QRN denote the subgroup of quadratic residues (i.e.
QRN := {x ∈ Z∗

N : ∃y ∈ Z∗
N with y2 = x mod N}). Following [13], we work over

the cyclic group of signed quadratic residues, given by the quotient group QR+
N :=

QRN/ ± 1. QR+
N is a cyclic group of order pq and is efficiently recognizable (by

verifying that the Jacobi symbol is +1). In addition, the map x  → x2 is a permutation
over QR+

N . Furthermore, assuming that factoring Blum integers are hard on average
and that safe primes are dense, the family of permutations SQ : x  → x2 (indexed by N)
acting on the groups QR+

N is one-way.
Factoring Assumption. We assume a probabilistic polynomial time (PPT) algorithm
BlumGen that, on input a security parameter 1k, generates two random safe λ-bit
primes P = 2p+ 1 and Q = 2q + 1, then outputs a Blum integer N = PQ.

Definition 1 (Factoring Assumption [13]). For an algorithmA, we define its factoring
advantage as

AdvFacBlumGen,A(k) := Pr
[
N = PQ : N ← BlumGen(1k),A(N) = (P,Q)

]
.

We say that the (t, ε)-Factoring assumption for BlumGen holds if no t-time algorithm
A has factoring advantage at least ε.

Iterated Squaring. Following [19], in our constructions, we make use of (N, g) as a
part of the public parameter, where N is a random 2λ-bit Blum integer and g is chosen
uniformly from QR+

N . We will henceforth assume g is a generator for QR+
N , which

happens with probability 1 − O(1/
√
N). Assuming that factoring Blum integers are

hard on average and that safe primes are dense, the family of permutations ISQ : x  →
x2λ (indexed by N) acting on the groups QR+

N is one-way. Using the Blum-Blum-Shub
(BBS) pseudorandom generator [5], we may extract λ hard-core bits from x ∈ QR+

N

that are pseudorandom even given x2λ , that is:

BBSN (x) :=
(
lsbN (x), lsbN (x2), . . . , lsbN (x2λ−1

)
)
.

The pseudorandomness of BBS is defined as follows.

Definition 2 (Pseudorandomness of BBS Generator [13]). For an algorithm A, de-
fine

AdvBBS
A (λ) =

∣∣Pr[A(N, z,BBSN (u)) = 1]− Pr
[
A(N, z, U{0,1}λ) = 1

]∣∣ ,
where N ← BlumGen(1λ), u ←R QRN , z = u2λ , and U{0,1}λ ∈ {0, 1}λ is inde-
pendently and uniformly chosen. We say that A (t, ε)-breaks BBS if A’s running time
is at most t = t(λ) and AdvBBS

A (λ) ≥ ε = ε(λ).

The following theorem says that any BBS -distinguisher can be used to factor Blum
integers. See [13] for the detail proof.
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Theorem 1 (BBS -distinguisher ⇒ Factoring Algorithm [5,13]). For every algo-
rithm A that (tBBS , εBBS)-breaks BBS , there is an algorithm B the (tfac , εfac)-factors
Blum integers, where tfac ≈ k4tBBS/ε

2
BBS and εfac = εBBC/λ.

Therefore, since the factoring assumption implies the one-wayness of ISQ, we have the
following trivial theorem.

Theorem 2 ([13]). ISQ is a one way function ⇐⇒ the factoring problem is hard.

3 Strongly Unforgeable Signature Scheme from Factoring

In this section, we first review the models of strongly unforgeable signature scheme
which is an important primitive in the construction of our PRE schemes. We then
present a new factoring-based strongly unforgeable signature scheme.

3.1 Models

The following definitions describe the functionality of a signature scheme, and the se-
curity notion of strong unforgeability that is used in this paper.

Definition 3 (Signature Scheme). A signature scheme is a triplet (SigGen,Sig,Vrf )
of probabilistic polynomial-time algorithms such that:

1. The key generation algorithm SigGen receives as input a security parameter 1n

and outputs a verification key vk and a signing key sk.
2. The signing algorithm Sig receives as input a signing key sk and a message m (in

some implicit message space), and outputs a signature σ.
3. The verification algorithm Vrf receives as input a verification key vk, a message

m, and a signature σ, and outputs a bit b ∈ {0, 1}.
4. For any message m it holds that Vrf (vk,m,Sig(sk,m)) = 1 with overwhelming

probability over the internal coin tosses of SigGen, Sig, and Vrf .

Definition 4 (Strong Unforgeability). A signature scheme (SigGen,Sig,Vrf) is said
to be strongly unforgeable if the success probability of any probabilistic polynomial-
time adversary A in the following interaction is negligible in the security parameter:

1. SigGen(1n) outputs (vk , sk), and A is given vk .
2. A can make signing queries by outputting messages mi and is then given in re-

turn σi = Sig(sk ,mi). If A chooses not to output any message, we set (m,σ) =
(⊥,⊥).

3. A outputs a pair (m∗, σ∗).

We say that A succeeds if Vrf (vk,m∗, σ∗) = 1 and (m∗, σ∗) �= (mi, σi) for any i.
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3.2 The Scheme

The proposed signature scheme is a variant of the Schnorr signature [17]. Its strong
unforgeability is based on the hardness of the factoring problem. We call the scheme
factoring-based Schnorr signature (FB-Schnorr, for short) scheme.

Let param = (1λ, N,QR+
N , g,H) be the public parameter, where N ←

BlumGen(1λ), g ←R QR+
N , and H : {0, 1}∗ → Z∗

2λ is a hash function.
The FB-Schnorr scheme is as follows:

SigGen(param): Choose x ←R [(N − 1)/4]. Set sk := gx, vk := g2
λx.

Output (vk , sk).
Sign(sk ,m): Choose r ←R [(N − 1)/4]. Compute c = g2

λr, t = H(m, c), and s =
gr · sk t. Output σ = (c, s).

Vrf (vk , σ,m): Parse σ = (c, s). Compute t = H(m, c).
If s2

λ

= c · vk t holds, then return 1, else return 0.

Correctness of the scheme is straight-forward.
The strong unforgeability of the above scheme is guaranteed by the following theo-

rem.

Theorem 3. The FB-Schnorr signature scheme is strongly unforgeable in the random
oracle model, if the factoring assumption holds.

Proof (Sketch). We will prove that, if there exists an algorithm A that breaks the strong
unforgeability of the scheme with non-negligible probability ε, then there is an algo-
rithm B that breaks the one-wayness of the permutation ISQ (i.e., the permutation: x  →
x2λacting on the groups QR+

N ) with non-negligible probability.
To construct B, we make use of A as an internal algorithm we are using, in which

we are able to dive into the code of the algorithm and take snapshots of its state after
every step. This way, we can backtrack to any state that the attacker was in at any point
during its execution.

Without the loss of generality we assume that:

– A makes at most qH random oracle queries.
– A never makes the same random oracle query twice.
– If A outputs (m, c, s) then it had previously queried H(m, c).

We build an algorithm B which is, given an instance (N, h), computing an iterated
square root of h (i.e. computing h2−λ

), using the adversary A. Algorithm B is defined
as:

1. Pick i∗ ←R {1, 2, . . . , qH}.
2. Choose a generator g ←R QR+

N , and set vk := h. B provides A the public param-
eter PP := (N, g,H) and the verify key vk , where H is a random oracle simulated
by B as follows.
Random Oracle Simulation. B maintains a hash list H list which is initially empty,
and simulates H as follow:
– H(m, c): If there is a tuple (m, c, t) in H list then return t, otherwise choose
t ←R Z2λ , add the tuple (m, c, t) to H list and return t.
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3. Simulate A:
– When A makes its ith oracle query then response by using the above simulation

of H . In addition, if i = i∗, then B records this state as st1 = (mi∗ , ci∗ , t1).
– When A requests to sign a message m, choose s ←R QR+

N , t ←R Z2λ , com-
pute c = s · vk−t, add the tuple (m, c, t) to H list and return a signature (c, s).

4. After A finishes, it outputs (m∗, c∗, s1). If (m∗, c∗) �= (mi∗ , ci∗), then B outputs
⊥ and halts. Otherwise, it rewinds A from the point that A queries the i∗th oracle
query. B now chooses t2 ←R Z2λ , add the tuple (m, c, t2) to H list and returns
t2. Then B records this state as st2 = (mi∗ , ci∗ , t2). B proceeds exactly the same
as above to simulate A. Finally, A finishes, it outputs (m∗, c∗, s2). Now, since
s2

λ

1 · vk−t1 = c∗ = s2
λ

2 · vk−t2 and vk = h, B obtains(
ht2−t1

)2−λ

= s1 · s−1
2 .

Using Shamir’s GCD in the exponent algorithm [18], B recovers z = h2−λ

as
follows:
(a) Let δ = t2−t1. Since |t2−t1| < 2λ we have that GCD(δ, 2λ) = 1. By Euclid’s

algorithm, B computes integers a, b such that aδ + b2λ = 1.
(b) B obtains

z = h2−λ

=
(
haδ+b2λ

)2−λ

= haδ2−λ · hb = (s1 · s−1
2 )a · hb

Finally, B outputs z as the answer.

This completes the description of the simulation.

Analysis. The index i∗ chosen by B in the first step represents a guess that A will forge
on its i∗th oracle query (i.e. (mi∗ , ci∗)). Since, A queries at most qH random oracle
queries, the probability that B success in breaking the one-time strong unforgeability of
the scheme is at least ε/qH . This is non-negligible if ε is non-negligible. The theorem
follows.

4 Models

In this section, we will review the concept of bidirectional multi-hop PRE and bidirec-
tional single-hop PRE and their security models. Due to the lack of space, we do not
describe here the models of unidirectional single-hop PRE. The details can be found
in [14].

4.1 Bidirectional and Multi-Hop Proxy Re-Encryption

In this section, we first review the definition of bidirectional and multi-hop PRE pro-
posed in [7], and then present its security model.

Definition 5. (Bidirectional and Multi-Hop PRE). A bidirectional and single-hop
PRE scheme is a tuple of algorithms Π = (Setup,KGen,RKGen,Enc,ReEnc,
Dec) for message space M:
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– Setup(1λ) → PP . Given a security parameter 1λ, the setup algorithm outputs a
public parameter PP .

– KGen(PP) → (pk , sk). Given a public parameters PP , the key generation algo-
rithm outputs a public key pk and a secret key sk .

– RKGen(PP , sk i, sk j) → rk ij . Given two secret keys sk i and sk j , the
re-encryption key generation algorithm outputs a bidirectional re-encryption key
rk ij .

– Enc(PP , pk ,m) → CT . On input a public key pk and a message m ∈ M, the
encryption algorithm outputs a ciphertext CT .

– ReEnc(PP , rk ij ,CT i) → CT j . Given a re-encryption key rk ij and a ciphertext
CT i for i, the re-encryption algorithm outputs a ciphertext CT j for j or the error
symbol ⊥.

– Dec(PP , sk ,CT ) → m. Given a secret key sk and a second-level ciphertext CT ,
the decryption algorithm Dec outputs a message m ∈ M or the symbol ⊥.

To lighten notations, from now, we will omit the public parameters PP from the inputs
of the algorithms.

For all m ∈ M and all pair (pk i, sk i), (pk j , sk j), these algorithms should satisfy
the following conditions of correctness:

Dec(sk i,Enc(pk i,m)) = m;

Dec(sk j ,ReEnc(RKGen(sk i, sk j),Enc(pk i,m))) = m.

BM-CPA SECURITY. We present the formal definition of CPA security of bidirectional
and multi-hop PRE, denoted by BM-CPA. The game framework for BM-CPA security
is as follows.

Definition 6 (Game Framework of BM-CPA Security).

Setup. The challenger C takes a security parameter λ and executes the setup algorithm
to get the system parameter PP . C initializes two empty lists Lun and Lcorr , then
maintains it to record all uncorrupted users and corrupted users, respectively, in
the game.

Phase 1. A can adaptively query to the following oracles OunKGen , OcorrKGen ,
ORKGen , and OReEnc:
– OunKGen takes i and returns the error symbol ⊥ if i ∈ Lun ∪ Lcorr ; otherwise

returns (pk i, sk i) ← KGen(PP ) and adds i in Lun .
– OcorrKGen takes i and returns the error symbol ⊥ if i ∈ Lun ∪ Lcorr , otherwise

returns (pk i, sk i) ← KGen(PP ) and adds i in Lcorr .
– ORKGen takes i, j and returns rkij ← RKGen(ski, skj) if i �= j ∈ Lun or

i �= j ∈ Lcorr ; otherwise returns the error symbol ⊥.
– OReEnc takes i, j and a ciphertext CT i. If i �= j ∈ Lun or i �= j ∈

Lcorr , then it computes rk ij ← RKGen(sk i, sk j), and returns CT j ←
ReEnc(rk ij ,CT i); otherwise returns the error symbol ⊥.

Challenge. When A decides that Phase 1 is over, it outputs a target public key pk i∗ (we
require i∗ ∈ Lun for A to win) and two equal-length plaintexts m0,m1 ∈ M. The
challenger C flips a random coin σ ∈ {0, 1}, and sends to A a challenge ciphertext
CT ∗ ← Enc(pk i∗ ,mσ).



Factoring-Based Proxy Re-Encryption Schemes 317

Phase 2. A issues queries as in Phase 1.
Guess. Finally, A outputs a guess σ′ ∈ {0, 1}.

We define A’s advantage in attacking the PRE scheme as AdvBM-CPA
PRE,A (λ) =

∣∣Pr[σ′ =

σ]− 1/2
∣∣, where the probability is taken over the random coins consumed by the chal-

lenger and the adversary. A bidirectional and multi-hop PRE scheme is defined to be
(qrk, qre, qdec)-BM-CPA secure, if for any PPT adversary A who makes at most qrk re-
encryption key generation queries, at most qre re-encryption queries and at most qdec
decryption queries, we have AdvBM-CPA

PRE,A (λ) ≤ negl(λ).

4.2 Bidirectional and Single-Hop Proxy Re-Encryption

In this section, we first review the concept of bidirectional single-hop PRE, and then
present its security model.

Definition 7. (Bidirectional and Single-Hop PRE [15]). A bidirectional single-hop
PRE scheme is a tuple of algorithms Π = (Setup,KGen,RKGen,Enc,ReEnc,
Dec1,Dec2) for message space M:

– Setup(1λ) → PP . On input a security parameter 1λ, the setup algorithm outputs
a public parameters PP .

– KGen(PP) → (pk , sk). On input parameters, the key generation algorithm out-
puts a public key pk and a secret key sk .

– RKGen(PP , sk i, sk j) → rk ij . Given two secret keys sk i and sk j , the
re-encryption key generation algorithm outputs a bidirectional re-encryption key
rk ij .

– Enc(PP , pk ,m) → CT . On input a public key pk and a message m ∈ M, the en-
cryption algorithm outputs a second-level ciphertext CT that can be re-encrypted
into a first-level one (intended for a possibly different receiver) using the suitable
re-encryption key.

– ReEnc(PP , rk ij ,CT i) → CT j . Given a re-encryption key rkij and an original
ciphertext CT i for i, the re-encryption algorithm outputs a first-level ciphertext
CT j for j or the symbol ⊥.

– Dec1(PP , sk ,CT ) → m. Given a secret key sk and a first-level ciphertext CT ,
the decryption algorithm outputs a message m ∈ M or the symbol ⊥.

– Dec2(PP , sk ,CT ) → m. Given a secret key sk and a second-level ciphertext CT ,
the decryption algorithm outputs a message m ∈ M or the symbol ⊥.

To lighten notations, from now, we will omit the public parameters PP as the input of
the algorithms.

For all m ∈ M and all pair (pk i, sk i), (pk j , skj) these algorithms should satisfy the
following conditions of correctness:

Dec2(sk i,Enc(pk i,m)) = m;

Dec1(sk j ,ReEnc(RKGen(sk i, pk j),Enc(pk i,m))) = m.

BS-CCA SECURITY. We present a CCA security (BS-CCA, for short) definition for
bidirectional single-hop PRE, which extends that of [9] by proposing a CCA security
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for the first-level ciphertext. In particular, we allow the adversary to make both first and
second-level decryption queries. In the challenge phase, the adversary will challenge
with either second-level ciphertex or first-level (re-encrypted) ciphertext. This corre-
sponds to the game framework for unidirectional and single-hop PRE which is defined
in [6,14].

Definition 8. (Game Framework of BS-CCA Security).

Setup. The challenger C takes a security parameter λ and executes the setup algorithm
to get the system parameter PP . C initializes two empty lists Lun and Lcorr , then
maintains it to record all uncorrupted users and corrupted users, respectively, in
the game.

Phase 1. A can adaptively query to the following oracles OunKGen , OcorrKGen ,
ORKGen , OReEnc , ODec1

, and ODec2
:

– OunKGen takes i and returns ⊥ if i ∈ Lun ∪ Lcorr ; otherwise returns
(pk i, sk i) ← KGen(PP) and adds i in Lun .

– OcorrKGen takes i and returns ⊥ if i ∈ Lun ∪ Lcorr , otherwise returns
(pk i, sk i) ← KGen(PP) and adds i in Lcorr .

– ORKGen takes i, j and returns rkij ← RKGen(ski, pkj) if i �= j; otherwise
returns the error symbol ⊥.

– OReEnc takes i, j and a ciphertext CT i. If i �= j, then it computes rk ij ←
RKGen(sk i, pk j), and returns CT j ← ReEnc(rk i→j ,CT i); otherwise re-
turns the error symbol ⊥.

– ODec1
takes a public key pk and a ciphertext CT , then returns m ←

Dec1(sk ,CT ).
– ODec2

takes a public key pk and a ciphertext CT , then returns m ←
Dec2(sk ,CT ).

Challenge. When A decides that Phase 1 is over, it also decides which type of ci-
phertext for the challenge is first-level (re-encrypted) or second-level. In the case
that challenge ciphertext is second-level, A outputs a target public key pk i∗ (we
require i∗ ∈ Lun for A to win) and two equal-length plaintexs m0,m1 ∈ M.
Challenger C flips a random coin σ ∈ {0, 1}, and sends to A a challenge ci-
phertext CT ∗ ← Enc(pk i∗ ,mσ). In the case that challenge ciphertext is first-
level, A outputs a (corrupted or not) public key pki′ , a target public key pk i∗ ,
and two “good messages” CT0, CT1 (i.e. the messages which can be re-encrypted
from pki′ to pki∗ ). Challenger C flips a random coin σ ∈ {0, 1}, computes
rk i′→i∗ ← RKGen(sk i′ , pk i∗), and sends to A a challenge ciphertext CT ∗ ←
ReEnc(rki′→i∗ , CTσ).

Phase 2. A issues queries as in Phase 1.
Guess. Finally, A outputs a guess σ′ ∈ {0, 1}.

The precise conditions of the attacks to second and first-level ciphertexts are described
separately as follows.

The Security of Second-Level Ciphertexts. Intuitively speaking, in this model the
adversary A challengs with an untransformed ciphertext encrypted by Enc for a target
user i∗. In a PRE scheme, however,A can ask for the re-encryption of many ciphertexts
or even a set of re-encryption keys. These queries are allowed as long as they would
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not allow A to decrypt trivially. For examples, A should not get the re-encryption key
from user i∗ to user j if the secret key of user j has been compromised; however, A
can certainly get a re-encryption of the challenge ciphertext from user i∗ to user j as
long as j is an honest user and the decryption oracle of user j has not been queried
with the resulting transformed ciphertext. This explains the intuition behind the notion
of derivative and the associated restrictions.

Definition 9 (2nd-BS-CCA Security). For the 2nd-BS-CCA security, the adversary
A plays the CCA game with the challenger C as in Definition 8, where the challenge
ciphertext is formed by CT ∗ ← Enc(pk i∗ ,mσ), and A has the following additional
constraints:

1. ORKGen(i, j) is only allowed if if i �= j ∈ Lun or i �= j ∈ Lcorr .
2. IfA issuesOReEnc(i, j,CT i)where j ∈ Lcorr , (pk i,CT i) cannot be (pki∗ ,CT

∗).
3. ODec1

is only allowed if (pk ,CT ) is not a derivative of (pk i∗ ,CT
∗) (to be defined

later).
We define A’s advantage in attacking the PRE scheme at level 2 as Adv2nd-CCA

PRE,A (λ) =∣∣Pr[σ′ = σ]− 1/2
∣∣, where the probability is taken over the random coins consumed by

the challenger and the adversary. A unidirectional PRE scheme is defined to be 2nd-BS-
CCA secure, if for any PPT adversary A, the advantage Adv2nd-CCA

PRE,A (λ) is negligible.

Definition 10 (Derivative for Chosen-Ciphertext Security [8]). Derivatives of (pk i∗ ,
CT ∗) in the CCA setting is defined as below:

1. Reflexivity: (pk i∗ ,CT
∗) is a derivative of itself.

2. Derivative by re-encryption: IfA has issued a re-encryption query (i∗, j,CT ∗) and
obtained the resulting re-encryption ciphertext CT j , then (pk j ,CT j) is a deriva-
tive of (pk i∗ ,CT

∗).
3. Derivative by re-encryption key: If A directly obtains the re-encryption key rk ij

by issuing a re-encryption key generation query (i∗, j), or indirectly obtains the
re-encryption key rk i∗j from two directly obtained re-keys rk i∗k, rk jk in the case
that the scheme meets the transitivity between re-encryption keys, and computes
CT j ← ReEnc(rk i∗j ,CT

∗), then (pk j ,CT j) is a derivative of (pk i∗ ,CT
∗).

The Security of First-Level Ciphertexts. The above definition provides adversaries
with a second-level ciphertext in the challenge phase. A complementary definition of
security captures their inability to distinguish first-level ciphertexts as well. The defini-
tion is as follows.

Definition 11 (1st-BS-CCA Security). For the 1st-BS-CCA security, the adversary A
plays the CCA game with the challenger C as in Definition 8, where the challenge
ciphertext is formed by CT ∗ = ReEnc(rk i′i∗ ,CT σ), and A has the following addi-
tional constraints:

1. ORKGen(i, j) is only allowed if i �= j ∈ Lun or i �= j ∈ Lcorr .
2. ODec1(pk i∗ , CT ∗) is not allowed.

We defineA’s advantage in attacking the PRE scheme at level 1 asAdv1st-CCA
PRE,A (λ) =∣∣Pr[σ′ = σ]− 1/2

∣∣, where the probability is taken over the random coins consumed by
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the challenger and the adversary. A unidirectional PRE scheme is defined to be 1st-BS-
CCA secure, if for any PPT adversary A, the advantage Adv1st-CCA

PRE,A (λ) is negligible.

Definition 12 (BS-CCA Security). We say a PRE scheme is BS-CCA secure if the
scheme is 1st-BS-CCA and 2nd-BS-CCA secure.

5 The Proposed Schemes

In this section, we first propose a bidirectional multi-hop PRE scheme and show that it
meets the BM-CPA security under the factoring assumption, in the standard model (i.e.,
without using random oracles). We then present our main scheme which is BS-CCA
secure (in the random oracle model) under the factoring assumption. Finally, we show
how to extend our main scheme to achieve a unidirectional and single-hop PRE scheme
which is secure in the sense of chosen-ciphertext attack.

5.1 BM-CPA Secure PRE

In this section, we first review the IND-CPA secure PKE scheme proposed by Wee [19].
We then show the construction of our BM-CPA secure PRE scheme.

Wee Encryption Scheme [19]. We make use of a public parameter PP = (N, g) for
the scheme, where N is a random 2λ-bit Blum integer and g is chosen uniformly from
QR+

N . The Wee encryption scheme for λ-bit message is as follows.

KGen(PP): Choose x ←R [(N − 1)/4]. Set sk := x, pk := g2
λx. Output (pk , sk).

Enc(PP , pk ,m): Choose r ←R [(N−1)/4]. Output (g2
λr, (pk ·g)r,BBSN (gr)⊕m).

Dec(PP , sk ,CT ): Parse CT = (c1, c2, c3). Output BBSN (c2 · c−sk
1 )⊕ c3.

As shown in [19], the above scheme is IND-CPA secure under the factoring assumption
in the standard model.

Construction. Our PRE scheme is an extension of the Wee encryption, in which the
algorithms KGen, Enc, and Dec are exactly the same as that of the Wee encryption,
the other are as follows:

Setup(1λ): Output a public parameterPP = (N, g, h), whereN ← BlumGen(1λ),

g ←R QR+
N , and h := g2

λ

.
RKGen(PP , sk i, sk j): Output rk ij := sk i − sk j .

ReEnc(PP , rk ij ,CT i): Parse CT i = (c1, c2, c3). Set c′2 := c2 · crkij

1 . Output
(c1, c

′
2, c3).

Security Analysis. The security of the scheme is guaranteed by the following theorem.

Theorem 4. The above PRE scheme is BM-CPA secure under the factoring assump-
tion.

The proof is straight-forward, and follows that of the IND-CPA security of the underly-
ing encryption (i.e., the Wee encryption).
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5.2 BS-CCA Secure PRE

Idea of the Construction. We first observe that the Wee encryption scheme can be
made IND-CCA secure, in the random oracle, thanks to Fujisaki-Okamoto’s technique
[10] (we call it here the modified Wee encryption scheme). We then follow the idea of
constructing bidirectional single-hop PRE proposed by Deng et al. [9]. In particular,
we propose a new (and the first) CCA-secure factoring-based PRE scheme by using the
FB-Schnorr scheme as an one-time strong signature and integrating it with the modified
Wee encryption scheme. Since both the underlying signature and encryption schemes
are secure under the factoring assumption (See Section 3), our scheme achieves the
highest security level (i.e. the BS-CCA security) under the same assumption in the
random oracle model.

Description of the Construction. The proposed scheme PRE = (Setup,KGen,
RKGen,Enc,ReEnc,Dec1,Dec2) is as follows:

Setup(1λ): Generate N ← BlumGen(1λ), g ←R QR+
N , and set h := g2

λ

. Choose
four hash function H1 : {0, 1}∗ × {0, 1}�1 → [(N − 1)/4], H2 : QR+

N →
{0, 1}�0+�1 , H3 : {0, 1}∗ → Z∗

2λ , H4 : {0, 1}∗ → QR+
N × QR+

N × {0, 1}�0+2�1 .
Output a public parameter PP = (N, g, h,H1, H2, H3, H4).

KGen(PP): Choose x ←R [(N − 1)/4]. Set sk := x, pk := hx. Output (pk , sk).
RKGen(PP , sk i, sk j): Output the re-encryption key rk ij = sk j − sk i.
Enc(PP , pk ,m): this algorithm works as follows:

1. Pick v ←R [(N − 1)/4], ω ←R {0, 1}�1, and compute u = H1(m,ω).
2. Compute c0 = hv, c1 = hu, c2 = (pk · g)u, c3 = H2(g

u) ⊕ (m||ω), and
s = gv+ut, where t = H3(c0, c1, c2, c3).

3. Output the ciphertext CT = (c0, c1, c2, c3, s).
ReEnc(PP , rk ij ,CT i): this algorithm works as follows:

1. Parse CT i as CT i = (c0, c1, c2, c3, s).
2. Compute t = H3(c0, c1, c2, c3) and check whether s2

λ

= c0 · ct1 holds. If not,
output ⊥.

3. Otherwise, compute c′2 = c2 · crkij

1 . Let m̄ := (c1, c
′
2, c3).

4. Pick ω2 ←R {0, 1}�1, and compute r = H1(m̄, ω2).
5. Compute A = hr, B = (pk j · g)r, and C = H4(g

r)⊕ (m̄||ω2), and output the
first-level ciphertext CT j = (A,B,C).

Dec2(PP , sk ,CT ): this algorithm works as follows:
1. Parse CT as CT = (c0, c1, c2, c3, s).
2. Compute t = H3(c0, c1, c2, c3) and check whether s2

λ

= c0 · ct1 holds. If not,
output ⊥.

3. Compute m||ω = c3 ⊕ H2(c2 · c−sk
1 ), and return m if c1 = hH1(m,ω) holds,

and ⊥ otherwise.
Dec1(PP , sk ,CT ): this algorithm works as follows:

1. Parse CT as CT=(A,B,C), and compute m̄||ω2 = C⊕H4(B ·A−sk ). Check
whether A = hH1(m̄,ω2) holds. If not, output ⊥. Otherwise, parse m̄ as m̄ :=
(c1, c

′
2, c3).

2. Compute m||ω = c3 ⊕H2(c
′
2 · csk1 ), and return m if c1 = hH1(m,ω) holds, and

⊥ otherwise.
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Security Analysis. The intuition of CCA security of the proposed scheme can be seen
from the following properties.

1. The validity of the original ciphertexts can be publicly verifiable by everyone in-
cluding the proxy; otherwise, it will suffer from an attack as illustrated in [9,16]. For
our scheme, we integrate the FB-Schnorr signature scheme with the CCA-secure
PKE, that is how we get public verifiability. More precisely, the ciphertext com-
ponent c1, s in the original ciphertext CT = (c0, c1, c2, c3, s) can be viewed as a
signature signing the message (c0, c2, c3).

2. It should be impossible for the adversary to transform the second-level ciphertext
to the first-level one without knowledge of delegator’s secret key or re-encryption
key; otherwise, it only yields the RCCA security. In our scheme, the component
c′2 = c2 · crkij

1 is computed using re-encryption key and completely hidden in
C, so the adversary cannot transform the second-level ciphertext to ciphertext re-
encrypted by ReEnc if he has no knowledge of re-encryption key.

3. It should be impossible for the adversary to compute the re-encryption key from
the target user i∗ to itself (i.e., rki∗→i∗ ), otherwise it will suffer from an attack as
illustrated in [14]. In our scheme, it is clear since the re-encryption key rk i→i =
sk i − sk i = 0 for all i.

4. For a first-level ciphertext CTj re-encrypted from a second-level ciphertext CTi,
CTj should not exhibit any component of CTi; otherwise, it will fail in achieving
CCA-security of ReEnc (i.e., 1st-level-CCA security). In our scheme, all of the
components from the original ciphertext are hidden in C. Furthermore, we use a
CCA-secure PKE in the re-encryption algorithm to guarantee the CCA security of
re-encrypted ciphertext.

5. In our scheme, ReEnc and Dec2 use the same algorithm of checking the validity
of the second-level ciphertext CTi. So in the security game, providing the adver-
sary with a second-level decryption oracle is useless. Indeed, ciphertexts encrypted
under public keys from Lun can be re-encrypted for corrupted users by using re-
encryption oracle. Besides, second-level ciphertext under pki∗ can be translated for
other honest users by using rki∗j (where j ∈ Lun ) and the resulting ciphertext can
be queried for decryption at the first-level by using ODec1

. This does not contradict
the observation of Hanaoka et al. [11].

Theorem 5. The above PRE scheme is BS-CCA secure in the random oracle model, if
the factoring assumption holds.

The proof of the above theorem is given in Appendix B.

5.3 Extension to Unidirectional and Single-Hop PRE Scheme

In this section, we show that our BS-CCA-secure PRE scheme can be extended to
achieve a unidirectional and single-hop PRE (US-PRE, for short) scheme which is
secure in the sense of chosen-ciphertext attack. Following [8], by using the “token-
controlled encryption” technique, we obtain the first factoring-based unidirectional and
single-hop PRE scheme. In particular, the US-PRE scheme inherits the algorithms
KGen, Enc, and Dec2 from the original PRE scheme. The other algorithms are as
follows:
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Setup(1λ): This algorithm is almost the same at that of the original PRE scheme,
except that the domain of the hash functionH4 is modified to agree with the new re-
encryption algorithm. Concretely, the hash function now becomes H4 : {0, 1}∗ →
QR+

N × {0, 1}�0+�1 ×QR+
N ×QR+

N × {0, 1}�1.
RKGen(PP , sk i, pk j): Output the re-encryption key rk i→j = (R1, R2, R3, R4),

where R1, R2, R3, and R4 are computed as follows:
1. Pick α ←R [(N − 1)/4], ω1 ←R {0, 1}�1 , and compute r1 = H1(α, ω1).
2. Compute R1 = sk i − α.
3. Compute R2 = hr1 , R3 = (pk j · g)r1 , and R4 = H2(g

r1)⊕ (α||ω1).
ReEnc(PP , rk i→j ,CT i): this algorithm works as follows:

1. ParseCT i asCT i = (c0, c1, c2, c3, s) and rki→j as rk i→j = (R1, R2, R3, R4).

2. Compute t = H3(c0, c1, c2, c3) and check whether s2
λ

= c0 · ct1 holds. If not,
output ⊥.

3. Otherwise, compute c′2 = c2 · cR1
1 . Let m̄ := (c′2, c3, R2, R3, R4).

4. Pick ω2 ←R {0, 1}�1, and compute r = H1(m̄, ω2).
5. Compute A = hr, B = (pk j · g)r, and C = H4(g

r)⊕ (m̄||ω2), and output the
first-level ciphertext CT j = (A,B,C).

Dec1(PP , sk ,CT ): this algorithm works as follows:
1. Parse CT as CT=(A,B,C), and compute m̄||ω2 = C⊕H4(B ·A−sk ). Check

whether A = hH1(m̄,ω2) holds. If not, output ⊥. Otherwise, parse m̄ as m̄ :=
(c′2, c3, R2, R3, R4).

2. Compute α||ω1 = R4 ⊕ H2(R3 · R−sk
2 ). Check whether R2 = hH1(α,ω1) If

not, output ⊥.
3. Compute m||ω = c3 ⊕ H2(c

′
2 · g−α), and return m if c1 = hH1(m,ω) holds,

and ⊥ otherwise.

The CCA security (US-CCA, for short) model of the above scheme is considered in the
framework of that proposed in [14]. We have the following theorem.

Theorem 6. The above PRE scheme is US-CCA secure in the random oracle model, if
the factoring assumption holds.

The proof of the above theorem is similar to that of the original PRE scheme (i.e. the
BS-CCA secure PRE scheme) which is given in Appendix B.

6 Concluding Remarks

In this paper, we have proposed the first factoring-based PRE schemes. In particular,
we have presented three PRE schemes. The first is a CPA-secure bidirectional and
multi-hop PRE scheme. The second is a CCA-secure bidirectional and single-hop PRE
scheme. The last is a CCA-secure unidirectional and single-hop PRE scheme. The for-
mer is in the standard model, and the others are in the random oracle model. In order
to construct the second and the third schemes, we have proposed a new factoring-based
strong signature scheme which is a variant of the Schnorr signature scheme.

It would be interesting to construct a CCA-secure factoring-based PRE scheme with-
out random oracles.
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A Definitions of Primitives

A.1 Public-Key Encryption

The following definition describes the functionality of a public-key encryption scheme:

Definition 13 (Public-Key Encryption). A public-key encryption scheme is a triplet
(KGen,Enc,Dec) of probabilistic polynomial-time algorithms such that:

– KGen(1n) → (pk , sk). On input 1n, the key generation algorithm outputs a pub-
lic key pk and a secret key sk .

– Enc(pk ,m) → c. On input a public key pk and a message m (in some implicit
message space), the encryption algorithm outputs a ciphertext c.

– Dec(sk , c) → m. Given a secret key sk and a ciphertext for c, the decryption
algorithm outputs a message m or the symbol ⊥.

For any message m it holds that Dec(sk ,Enc(pk ,m)) = m with overwhelming prob-
ability over the internal coin tosses of (KGen,Enc,Dec).

In this paper we make use of public-key encryption schemes that are secure against
adaptive chosen-ciphertext attacks, defined as follows.

Definition 14 (Chosen-Ciphertext Security). A public-key encryption scheme
(KGen,
Enc,Dec) is said to be CCA-secure if the advantage of any PPT adversary A in the
following interaction is negligible in the security parameter:

1. KGen outputs (pk , sk), and A is given pk .
2. A may adaptively query a decryption oracle Odec.
3. At some point A outputs two messages m0 and m1 with |m0| = |m1|, and receives

a challenge ciphertext c = Enc(pk ,mb) for a uniformly chosen bit b ∈ {0, 1}.
4. A may continue to adaptively query the decryption oracle Odec on any ciphertext

other than the challenge ciphertext.
5. Finally, A outputs a bit b′.

We say that A succeeds if b′ = b, and denote the advantage of A by AdvIND-CCA
PKE,A (1n).

B Proof of Theorem 5

We split up the proof of Theorem 5 into two parts: we prove that our scheme is 2nd-
BS-CCA secure and 1st-BS-CCA secure. Combining both parts yields Theorem 5.
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Due to the lack of spaces, we leave the latter (i.e. the proof of the 1st-BS-CCA
security) in the full version of this papers. The proof sketch of the 2nd-BS-CCA security
is as follows.

Proof of the 2nd-BS-CCA Security. Since the permutation ISQ (i.e., the permutation :

x  → x2λacting on the groupsQR+
N ) is one-way function if only if the factoring problem

is hard (Theorem 2), it is sufficient to prove that if there exists an adversary A that
breaks the 2nd-BS-CCA security of the scheme with a non-negligible probability, then
there exists an adversary B that breaks the one-wayness of ISQ with an overwhelming
probability. Let AdvISQB (λ) denote the advantage of B in breaking the one-wayness of
ISQ.

Since the fact that the FB-Schnorr scheme is one-time strongly unforgeable under
the factoring assumption, we can assume that the signature scheme used to sign the
challenge ciphertext CT ∗

i (i.e. the scheme with the verify/sign keys pair are (c∗1, h
u∗
))

is one-time strongly unforgeable.
We build an algorithmB which is, given a factoring instance (N, g, g2

λa), computing
(ga), using the 2nd-BS-CCA adversary A. B runs the adversary A simulating its view
as in the 2nd-BS-CCA security game as follows:

Setup. B initializes two empty lists Lun and Lcorr , then maintains it to record all un-
corrupted users and corrupted users, respectively, in the game. B sets h := g2

λ

,
then provides A the public parameter PP := (N, g, h,H1, H2, H3, H4), where
H1, H2, H3, and H4 are the random oracles simulated by B as follows.
Hash Oracles Simulation. At any time A can issue the random oracle queries
H1, H2, H3, and H4. B maintains four hash lists H list

1 , H list
2 , H list

3 , and H list
4 which

are initially empty, and respond as follow:
– H1(m,ω): If there is a tuple (m,ω, r) in H list

1 then return r, otherwise choose
r ←R [(N − 1)/4], add the tuple (m,ω, r) to H list

1 and return r.
– H2(X): If there is a tuple (X, β) in H list

2 then return β, otherwise choose β ←R

{0, 1}�0+�1 , add the tuple (X, β) to H list
2 and return β.

– H3(c0, c1, c2, c3): If there is a tuple (c0, c1, c2, c3, t) in H list
3 then return t, oth-

erwise choose t ←R Z∗
2λ , add (c0, c1, c2, c3, t) to H list

3 , and return t.
– H4(f): If there is a tuple (f, γ) in H list

4 then return γ, otherwise choose γ ←R

QR+
N ×QR+

N × {0, 1}�0+2�1 , add the tuple (f, γ) to H list
4 and return γ.

Find stage (i.e. Phases 1 and 2). B simulates the oracles OunKGen , OcorrKGen ,
ORKGen , OReEnc , and ODec1

to answer the questions issued by A as follows:
– OunKGen(i): B returns ⊥ if i ∈ Lun ∪ Lcorr ; otherwise B chooses randomly

xi ←R [(N − 1)/4], sets and returns pk i := hxi · g−1 (meaning that sk i =
xi − 1

2λ mod |QR+
N |). B adds i to Lun . Note that, B no need to know sk i.

– OcorrKGen(i): B returns ⊥ if i ∈ Lun ∪ Lcorr ; otherwise B chooses randomly
xi ←R [(N − 1)/4], and returns (pk i, sk i), where pk i := hxi , sk i := xi. B
adds i to Lcorr .

– ORKGen(i, j): if i �= j ∈ Lun or i �= j ∈ Lcorr B returns rk ij := xj − xi;
otherwise returns the symbol ⊥.

– OReEnc(i, j,CT i): B parses CT i = (c0, c1, c2, c3, s), and does as follows:
1. If i = j, then return ⊥.
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2. if i �= j ∈ Lun or i �= j ∈ Lcorr B computes the re-encryption key
rk ij := xj − xi. Next, B follows the algorithm ReEnc to compute the
ciphtertext CT j by using rk ij and simulating the hash oracles H1, H3, H4

as follows:

(a) Search in the lists H list
3 to see whether there exist (a0, a1, a2, a3, t) ∈

H list
3 such that (a0 = c0) ∧ (a1 = c1) ∧ (a2 = c2) ∧ (a3 = c3).

If there exists no such tuple, then return ⊥. (This corresponds to the
event ReEncErr1 to be explained).

(b) Check whether s2
λ

= c0 · ct1 holds. If not, then return ⊥.
(c) Search in the lists H list

1 to see whether there exist (m,ω, r) ∈ H list
1

such that hr = c1, (pk i · g)r = c2. If there exists no such tuple, then
return ⊥. (This corresponds to the event ReEncErr2 to be explained).

(d) Compute c′2 = c2 · crkij

1 . Let m̄ := (c1, c
′
2, c3).

(e) Pick ω2 ←R {0, 1}�1, r1 ←R [(N − 1)/4], and add (m̄, ω2, r1) to the
H list

1 .
(f) Compute A = hr1 , B = (pk j · g)r1 ,
(g) Search in the lists H list

4 to see whether there exist (f, γ) such that
f = gr1 . If there exists no such tuple, then pick γ ←R QR+

N×QR+
N×

{0, 1}�0+2�1 , add the tuple (f, γ) to H list
4 .

(h) ComputeC = γ⊕(m̄||ω2), and output the first-level ciphertextCT j =
(A,B,C).

3. If (i = i∗) ∧ (j ∈ Lcorr ) ∧ (c1 = c∗1), then return ⊥. Since c∗1 is the
verify key of the one-time strong signature scheme SIG used to sign the
challenge ciphertext CT ∗, CT i is indeed the challenge ciphertext CT ∗.
Therefore, B should return ⊥.

4. If i ∈ Lcorr , j ∈ Lun or i ∈ Lun , j ∈ Lcorr , then B does as follows:

(a) Search in the lists H list
3 to see whether there exist (a0, a1, a2, a3, t) ∈

H list
3 such that (a0 = c0) ∧ (a1 = c1) ∧ (a2 = c2) ∧ (a3 = c3). If

there exists no such tuple, then return ⊥.
(b) Check whether s2

λ

= c0 · ct1 holds. If not, then return ⊥.
(c) Search whether there exists a tuple (m,ω, r) ∈ H list

1 such that hr =
c1, (pk i · g)r. If there no such tuple, then return ⊥.

(d) Compute c′2 = (pk j · g)r). Let m̄ := (c1, c
′
2, c3).

(e) Pick ω2 ←R {0, 1}�1, r1 ←R [(N − 1)/4], and add (m̄, ω2, r1) to the
H list

1 .
(f) Compute A = hr1 , B = (pk j · g)r1 ,
(g) Search in the lists H list

4 to see whether there exist (f, γ) such that
f = gr1 . If there exists no such tuple, then pick γ ←R QR+

N×QR+
N×

{0, 1}�0+2�1 , add the tuple (f, γ) to H list
4 .

(h) ComputeC = γ⊕(m̄||ω2), and output the first-level ciphertextCT j =
(A,B,C).

– ODec1
(i,CT i): If i ∈ Lcorr , then B does as the algorithm Dec1 to decrypt the

ciphertext CT i by using sk i = xi and hash lists H list
1 , H list

2 , H list
3 , and H list

4 .
Otherwise B parses CT i as CT i = (A,B,C), and does as follows:
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1. Search in the lists H list
1 and H list

4 to see whether there exist (m,ω, r) ∈
H list

1 and (f, γ) ∈ H list
4 such that

hr = A, (pk i · g)r = B, γ ⊕ (m||ω) = C, and f = gr. (1)

If there exists no such tuple, then return ⊥. (This corresponds to the event
DErr1 to be explained).

2. Parse m̄ as m̄ := (c1, c
′
2, c3).

3. Search in the lists H list
1 to see whether there exist (m,ω, r) ∈ H list

1 such
that hr = c1, (pk j · g)r = c′2. If there exists no such tuple, then return
⊥.(This corresponds to the event DErr2 to be explained).

4. Compute m||ω = c3⊕H2(g
r), and returns m if c1 = hH1(m,ω) holds, and

⊥ otherwise.

Challenge. When A decides that Phase 1 is over, it outputs a target public key pk i∗

and two equal-length plaintexts m0,m1 ∈ {0, 1}λ. If i∗ ∈ Lcorr , then B outputs ⊥
and holds, since we require i∗ ∈ Lun for A to win the game. Otherwise, B flips a
random coin σ ∈ {0, 1} and does as follows:

1. Pick s∗ ←R QR+
N , t∗ ←R Z2λ , and compute c∗0 = (s∗)2

λ · (g2λa)−t∗ .

2. Define c∗1 = g2
λa (meaning that u∗ = a).

3. Compute c∗2 = (g2
λa)xi∗ .

4. Pick c∗3 ←R {0, 1}�0+�1 and define H3(c
∗
0, c

∗
1, c

∗
2, c

∗
3) = t∗.

5. Pick ω∗ ←R {0, 1}�1, and implicitly define H2(g
a) = c∗3 ⊕ (mσ||ω∗) and

H1(mσ||ω∗) = a (note that B does not know a and ga).
6. Return CT ∗ = (c∗0, c

∗
1, c

∗
2, c

∗
3, s

∗) as the challenge ciphertext to A.
Observe the following to see that, CT ∗ is identically distributed as the real one
from the construction. Let gv

∗
:= s∗ · g−at∗ and u∗ := a. We have

1. c∗0 = (s∗)2
λ · (g2λa)−t∗ = (s∗ · g−at∗)2

λ

= g2
λv∗

= hv∗
.

2. c∗1 = g2
λa = g2

λu∗
= hu∗

.

3. c∗2 = (g2
λa)xi∗ = (g2

λxi∗ )a = (g2
λski∗+1)u

∗
= (pk i∗ · g)u∗

. (Note that
sk i∗ = xi∗ − 1

2λ mod |QR+
N | since i∗ ∈ Lun ).

4. c∗3 = H2(g
a)⊕ (mσ||ω∗) = H2(g

u∗
)⊕ (mσ||ω∗).

5. s∗ = s∗ · g−at∗ · gat∗ = gv
∗+u∗t∗ = gv

∗+u∗H3(c
∗
0,c

∗
1,c

∗
2 ,c

∗
3).

Guess. Finally, A outputs a guess σ′ ∈ {0, 1}.

Output. If σ′ = σ, then B searches (X, β) from the list H list
2 such that X2λ = g2

λa,
and output X as the solution; otherwise B outputs ⊥ and halts.

This completes the description of the simulation. It remains to related the probabil-
ity for success and the execution time, which will be shown in the following lemma
(Lemma 1).

Before describing the lemma we set q := |QR+
N |, and assume that A issues at

most qH1 , qH2 , qH3 , qH4 , qu, qc, qrk, qre, and qd queries to H1, H2, H3, H4,OunKGen ,
OcorrKGen ,ORKGen ,OReEnc, and ODec1

, respectively.
The lemma is as follows.



Factoring-Based Proxy Re-Encryption Schemes 329

Lemma 1. If A can break the 2nd-BS-CCA security of the scheme with advantage ε
within time t, then B can break the one-wayness of ISQ with advantage ε′ within time t′

where

t′ ≤ t+ (qH1 + qH2 + qH3 + qu + qc + qrk + qre + qd)O(1)

+(qu + qc + (2qH1 + qH4)qre + 5qH1qd)texp,

ε′ ≥ 2ε− qre + qd(qH1 + 2)

q
− qH1

2�1
− qH3

2�0+�1
− qd(qH4 + 1)

q2 · 2�0+2�1
,

texp denotes the running time of an exponentiation in group QR+
N .

The main idea of the proof of the above lemma is borrowed from [9,3]. Due to the lack
of space, we leave the detail proof in the full version of this paper.
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Abstract. Proxy re-encryption (PRE) is an attractive paradigm, which gives good
solutions to the problem of delegation of decryption rights. In proxy re-encryption,
a semi-trusted proxy translates a ciphertext for Alice into a ciphertext of the same
plaintext for Bob, without learning any information of the underlying message. As
far as we know, previous PRE schemes are mainly in traditional public key infras-
tructure or identity-based cryptography, thus they suffer from certificate manage-
ment problem or key escrow problem in practice. In order to solve these practical
problems, we aim at constructing certificateless proxy re-encryption (CL-PRE)
schemes.

In this paper, we first introduce a security definition against (replayable) cho-
sen ciphertext attack (CCA) for certificateless proxy re-encryption. In our security
model, the adversary is allowed to adaptively corrupt users (in a specific pattern).
Then, we give some evidence that it is not easy to construct a secure CL-PRE.
Actually, we present an attack to the chosen plaintext secure CL-PRE scheme
proposed by Xu et al. [1]. We also show a novel generic construction for certifi-
cateless public key encryption (CL-PKE) can not be trivially adapted to CL-PRE
by giving an attack to this generic construction. Finally, we present an efficient
CL-PRE scheme and prove its security in the random oracle model based on
well-known assumptions.

1 Introduction

Proxy re-encryption (PRE) was first proposed by Blaze, Bleumer and Strauss [2] in
1998, which allows the proxy to transform a ciphertext for Alice into a ciphertext of the
same message for Bob. During the transformation, the proxy learns nothing about the
underlying message. Having the proxy transform ciphertext and simultaneously keeping
the message private from the proxy is the main goal for proxy re-encryption.

According to the direction of transformation, PRE schemes can be classified into two
types: unidirectional and bidirectional schemes. In a unidirectional PRE scheme, the
proxy can only transform the ciphertext from Alice to Bob; while in a bidirectional one,
the proxy can transform in both directions. Essentially, we can construct a bidirectional
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PRE scheme by simply combining two unidirectional PRE schemes. In this paper, we
only restrict our attention to unidirectional PRE schemes.

Proxy re-encryption has many applications, such as email forwarding [3], distributed
files systems [4] and revocation systems [5]. Below we take Personal Health Record
(PHR) sharing [6] as an example and explain the importance of constructing CL-PRE
schemes.

A telemedical system involves patients, doctors and electronic medical records servers.
Patients outsource their personal health records, which include various medical data, such
as surgery, family history, laboratory test results, to be stored at the electronic medi-
cal server. Since patients do not hope to expose the records to those electronic medical
records servers or unauthorized parties, they usually choose to encrypt their personal
health records before outsourcing. When a telemedical consultation occurs, the electronic
medical records server re-encrypts related personal health records to the involved doc-
tors. During the process, the patient would not like to expose his secret key to either the
server or any doctor. Proxy re-encryption provides a good solution to this problem.

When we examine the existing schemes, we find the schemes are inappropriate in
the telemedical system. Schemes in [4,3,7] are all of traditional PKI-supported PRE.
Since the amount of patients and doctors are huge, public key management will be the
most costly and cumbersome part that reduces the efficiency of the system. Schemes
in [8,9] are of identity-based proxy re-encryption (IB-PRE) and schemes in [10,11] are
of attribute-based proxy re-encryption (AB-PRE). In IB-PRE or AB-PRE schemes, a
trusted third party computes all private keys and is able to read all messages in the
system, which is contrary to the Health Insurance Portability and Accountability Act
(HIPPA) privacy rules. To avoid the expensive certificates in PKI and the key escrow
problem inherited from IBE or ABE, we resort to certificateless public key cryptogra-
phy (CL-PKC).

CL-PKC was introduced by Al-Riyami and Paterson [12] in 2003. The concept is to
enjoy the advantage of identity-based public key cryptography without suffering from
the key escrow problem. In CL-PKC, a sender needs both the receiver’s identity and
public key to encrypt a message. However, the public key here needs no certificate,
which is different from the public key used in traditional PKI-supported cryptography.
When decrypting, the receiver needs two parts to recover the message: one is called
the partial private key corresponding to his identity which is generated by the key gen-
eration center (KGC); the other is the secret value related to the public key produced
by himself. Therefore, the KGC cannot recover ciphertexts in the system in that the
KGC has no information about the secret values chosen by users. We construct CL-PRE
schemes for the telemedical system to enjoy both the efficiency and security provided
by CL-PKC.

1.1 Related Work

Certificateless Public Key Cryptography. Since the notion CL-PKC was introduced in
2003, a variety of certificateless public key encryption (CL-PKE) schemes have been
proposed. In 2005, Baek et al. [13] proposed the first CL-PKE scheme without pair-
ing in the random oracle model. The formulation for the certificateless encryption is
different from Al-Riyami and Paterson [12]: a user has to receive the partial private
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key before producing their public key. In 2006, Libert et al. [14] and Chow et al’s [15]
proposed the generic construction of certificateless encryption respectively. Libert et al.
presented the generic composition idea : given a CPA IBE scheme and a CPA public
key encryption (PKE) scheme, a CCA CL-PKE scheme can be obtained in the random
oracle model. Chow et al. presented a generic construction for security-mediated certifi-
cateless encryption which provides instant revocation. In 2007, Lai et al. [16] proposed
two variants of Baek et al. scheme [13]. CL-PKE schemes to strengthen the scheme of
Baek et al. [13], respectively. Sun et al. modified the scheme and enabled the Type I ad-
versary to replace the public key associated with the target identity, but still disallowed
the adversary to extract the partial private key of the target identity. While in Lai et al.’s
scheme, the user engages in a protocol with the KGC when computing their full public
and private keys, to allow the Type I adversary to extract the partial private key of the
target identity. Both of the two schemes are secure against chosen ciphertext attacks in
the random oracle model.

Proxy Re-Encryption. In 1998, Blaze et al. [2] proposed the concept of proxy
re-encryption and constructed a bidirectional scheme, which is semantically secure in
the random oracle model. In 2007, Canetti and Hohenberger [3] presented the first bidi-
rectional scheme which is replayable chosen ciphertext secure in the standard model. In
2008, Libert and Vergnaud [7] proposed the first unidirectional single-hop PRE scheme,
which is replayable CCA-secure in the standard model. In 2010, Chow et al. [17] pro-
posed an efficient unidirectional PRE scheme without pairings.

The above schemes are in traditional public key infrastructure, which cannot avoid
the certificate management problem. In 2007, Green and Ateniese [9] introduced the
concept of identity based proxy re-encryption (IB-PRE) and proposed the first IB-PRE
scheme in the random oracle model. In the same year, Chu and Tzeng [8] presented
the first CCA secure IB-PRE scheme in the standard model. In 2010, Luo et al. [11]
proposed an AB-PRE scheme.

IB-PRE and AB-PRE solve the certificate management problem, but bring in the key
escrow problem. In order to solve this problem, we focus on realizing a secure CL-PRE
scheme.

1.2 Our Contribution

In this paper, we introduce the syntax of CL-PRE and formulate a replayable CCA
(RCCA) security model for CL-PRE. Firstly, our model considers both the Type I ad-
versary and the Type II adversary. The Type I adversary represents attacks from out-
siders with the ability to replace user’s public key on his will. The Type II adversary
stands for the honest but curious PKG who has access to the master secret key. Sec-
ondly, in our security model of CL-PRE, the Type I adversary has the ability to set up
the dishonest user’s public key or replace honest user’s public key. Thirdly, our model
allows the Type I adversary to adaptively corrupt honest users in a specific way. For
example, it can replace the public key and query the partial private key of the honest
user.

Then, we give some discussions on constructing RCCA secure CL-PRE schemes.
First we present an attack to Xu et al.’s scheme [1], which was claimed to be secure
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against chosen plaintext attack (CPA) in the random oracle model. Unfortunately, we
show their scheme is insecure by giving a CPA attack. Secondly, we show a novel
generic construction of CL-PRE which is adapted from the generic construction of CL-
PKE in [14] is vulnerable to the Type I adversary under adaptively chosen ciphertext
attacks. Both evidences show that it is difficult to construct a secure (especially RCCA
secure) CL-PRE scheme.

Next, we present a RCCA secure CL-PRE scheme. The idea is to construct a CL-
PRE scheme based on Sun et al.’s CL-PKE scheme [18] (which is the modification
of Baek et al.’s CL-PKE scheme [13]). Firstly, we extend Sun et al.’s scheme into the
pairing based setting. Secondly, in order to allow the adversary to extract challenger’s
partial private key (which is not allowed in Sun et al’s sheme) and reach the RCCA
security, we generate each entity’s public key and private key by engaging a protocol
with the KGC, similar to Lai et al.’s scheme in [16]. In the re-encryption key generation
process, the delegator computes re-encryption keys on input his own private key and
the public key of the delegatee. Finally, we present the security proof of the scheme in
the random oracle model. As far as we know, the proposed scheme is the first CL-PRE
scheme that is RCCA secure against both Type I and Type II adversaries.

2 Preliminaries

In this section, we recall the complexity assumption required in our scheme. In our
paper, we use λ to denote the security parameter.

2.1 Bilinear Maps and Assumptions

In this section, we recall the definitions of the bilinear groups [19,20] and q-wDBDHI
assumption based on the bilinear groups. We write G = 〈g〉 to denote that g generates
the group G. Let G and GT be two cyclic groups of prime order p, a map e: G ×G →
GT is said to be a bilinear map if it satisfies the following conditions:

1. for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. e is non-degenerate (i.e. if G = 〈g〉, then GT = 〈e(g, g)〉).
3. e is efficiently computable.

Let G, GT and e be bilinear groups defined as above, we recall the following hard-
ness assumptions over the groups.

CDH Assumption. For an algorithm B, define its advantage as

AdvCDH
B (λ) = |Pr[B(g, ga, gb) = gab]|

where a, b ← Z∗
p are randomly chosen. We say that the CDH (Computational Diffie-

Hellman) assumption holds, if for any probabilistic polynomial time (PPT) algorithm
B, its advantage AdvCDH

B (λ) is negligible in λ.

q-wDBDHI Assumption. For an algorithm B, define its advantage as

Advq-wDBDHI
B (λ) = |Pr[B(g, ga, . . . , ga

q

, gb, e(g, g)b/a) = 1]
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−Pr[B(g, ga, . . . , gaq

, gb, e(g, g)z) = 1]|
where a, b, z ← Z∗

p are randomly chosen. We say that the q-wDBDHI (q-weak Decision
Bilinear Diffie-Hellman Inversion) assumption holds, if for any PPT algorithm B, its
advantage Advq-wDBDHI

B (λ) is negligible in λ.
In our scheme, we use the 1-wDBDHI assumption (i.e., q = 1), which is slightly

stronger than the DBDH assumption. We note that 1-wDBDHI assumption is also used
in several other interesting cryptographic constructions [7,21].

2.2 Target-Collision Resistant Hash Function

Let F = (TCRs)s∈S be a family of hash functions for security parameter λ and with
seed s ∈ S. For an algorithm A, define its advantage as

AdvTCR
A (λ) = Pr[TCRs(x) = TCRs(x

′) ∧ x �= x′|s ← S,

x ← X, x′ ← A(TCRs, x)].

We define hash function family TCR is target collision resistant if for any PPT algo-
rithm A, its advantage AdvTCR

A (λ) is negligible in λ.

3 Certificateless Proxy Re-Encryption

In this section, we present the syntax of CL-PRE. A certificateless proxy re-encryption
scheme consists of the following algorithms:

Setup(λ) : This is a PPT algorithm run by the KGC, which takes a security parameter
λ as input, outputs a list of public parameter param and a randomly chosen master
secret key msk.

UserKeyGen(param, ID) : This is a PPT algorithm run by the user, which takes a
list of public parameters param as inputs, outputs a secret key sk and a public key
pk.

PKeyExt(param,msk, ID, pk) : This is a PPT algorithm run by the KGC, which
takes a list of public parameters param,msk, a user’s identity ID and pk as inputs,
outputs a partial private key psk and a partial public key ppk.

KeyGen(param, ID, psk, ppk, sk, pk) : This is a PPT algorithm run by the user,
which takes a list of public parameters param, ID, psk, ppk, sk and pk as inputs,
outputs the user’s public key and private key (PK, SK).

ReKeyGen(param, IDi, SKi, PKi, IDj, PKj) : This is a PPT algorithm run by the
user, which takes a list of public parameters param, a user’s IDi, SKi,
PKi and another user’s IDj , PKj as inputs, outputs the re-encryption key rki→j

or an error symbol ⊥.
Enc1(param,m, ID, PK) : This is a PPT algorithm run by the sender, which takes a

list of parameters param, a message m, a receiver’s ID and PK as inputs, outputs
a 1st level ciphertext C which can not be re-encrypted.

Enc2(param,m, ID, PK) : This is a PPT algorithm run by the sender, which takes a
list of parameters param, a message m, a receiver’s ID and PK as inputs, outputs
a 2nd level ciphertext C which can be re-encrypted.
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ReEnc(param,C, IDi, IDj, rki→j) : This is a PPT algorithm run by the proxy, which
takes a list of public parameters param, users’ identity IDi and IDj and a 2nd
level ciphertext C under IDi as inputs, outputs a 1st level ciphertext C′ of IDj or
an error symbol ⊥.

Dec1(param,C, SK) : This is a deterministic algorithm run by the recipient, which
takes a list of public parameters param, a 1st level ciphertext C and SK as inputs,
outputs the plaintext m or an error symbol ⊥.

Dec2(param,C, SK) : This is a deterministic algorithm run by the recipient which
takes a list of public parameters param, a 2nd level ciphertext C and SK as inputs,
outputs the plaintext m or an error symbol ⊥.

Correctness. For any public parameters param generated by Setup(λ), for any mes-
sage m ∈ {0, 1}l0 , in which l0 denotes the length of the message, if SKi and SKj are
corresponding with PKi and PKj , the above algorithms should satisfy the following
requirements:

- Dec2(param,Enc2(param,m, IDi, PKi), SKi) = m.
- Dec1(param,Enc1(param,m, IDi, PKi), SKi) = m.
- If rki→j = ReKeyGen(param, IDi, SKi, IDj , PKj),
C′

j = ReEnc(param,Enc2(param,m, IDi, PKi), IDi, IDj, rki→j), then
Dec1(param, SKj , C

′
j) = m.

3.1 Security Model

In CL-PKC, adversaries are divided into two types: the Type I adversary, who can re-
place user’s public key on his choice; and the Type II adversary, holding the master
secret key of the KGC. The Type I adversary describes the outsider’s attack, while the
Type II adversary stands for the curious but honest KGC, who can generate all the partial
keys with the master secret key. To protect data privacy, we require that the adversary
cannot gain any protected information unless holding both the partial private key and
the secret value at the same time. When we take the two types of adversaries into con-
sideration in the security models of CL-PRE, the circumstances seem to become more
complex.

Unlike previous model in [7], we consider the model where the adversary can adap-
tively choose public keys for malicious users. In addition, we allow the Type I adversary
to (partially) adaptively corrupt users, different from the previous model [7].

To capture the RCCA security notion for single-hop unidirectional CL-PRE schemes,
we consider the security of ciphertexts at both levels against the Type I adversary and
the Type II adversary separately. A denotes a Type I adversary or a Type II adversary.
We associate to a CL-PRE adversary A the following CL-PRE RCCA experiment with
parameters (O′, δ), where O′ is a set of oracles provided to A, and δ ∈ {1, 2} specifies
which level ciphertext that A attacks. Both parameters will be instantiated in Definition
1, 2, 3 and 4.
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Experiment Expclpre,rcca
Πs,A (λ)

param ← Setup(λ),

(m0,m1, ID
∗) ← AO′

(param),
d∗ ← {0, 1},
C∗ = Encδ(md∗ , ID∗),

d′ ← AO′
(param,C∗)

If d′ = d∗ return 1, else return 0

The advantage of A is defined as Advclpre,rcca
Πs,A (λ) = |Pr[Expclpre,rccaΠs,A (λ) = 1]− 1

2 |.

Security against the Type I Adversary. First, we consider the RCCA security notion
against the Type I adversary at the 2nd level ciphertext. Before setting up the oracles,
the challenger creates two lists: the HU list and the L list. The HU list is a list of honest
users’ identities. When a user is corrupted, the challenger removes the user’s identity
from the HU list. The L list is a list of 〈ID, PK, P̂K〉, where ID ∈ HU , PK and P̂K
denote the original public key and the current public key of ID. The list is to record
whether the public key of a specific identity has been replaced. The challenger sets
P̂K = PK initially. In Definition 1 and Definition 2, the Type I adversary is provided
with the following oracles:

– Honest key generation Ohkg: on input ID, compute (sk, pk) ← UserKeyGen
(ID), (psk, ppk) ← PKeyExt(ID, pk) and (PK, SK) ← KeyGen(ID,
ppk, psk). Return PK .

– Delegation Odeleg: on input (IDi, IDj, P̂Kj), where P̂Kj may be an arbi-
trary public key supplied by A, compute the re-encryption key rki→j =

ReKeyGen(IDi, SKi, PKi, IDj, P̂Kj). Return rki→j .

– Re-encryption Orenc: on input (IDi, IDj, P̂Kj ;C), where P̂Kj may be an ar-
bitrary public key supplied by A, compute the re-encrypted ciphertext C′ =

ReEnc(ReKeygen(IDi, IDj , P̂Kj);C). Return C′.
– First level decryption O1-dec: on input a pair (ID;C), compute the plaintext m =
Dec1(ID;C). Return m.

– Second level decryption O2-dec: on input a pair (ID;C), compute the plaintext
m = Dec2(ID;C). Return m.

– Partial key extract oracle Opex: on input a pair (ID, PK), compute (ppk, psk) =

PKeyExt(IDi, pk) (pk can be extracted fromPK). If ID ∈ HU and P̂K �= PK ,
the challenger updates HU = HU\ID. Return (ppk, psk).

– Public key replace oracle Opkr: on input a pair (ID, P̂K), replace the user’s public

key with P̂K and set 〈ID, PK, P̂K〉 on the L list.

Now, let’s consider the RCCA security against the Type I adversary at the 2nd level.

Definition 1 (RCCA Security against the Type I Adversary at the 2nd Level
Ciphertext). For any single-hop unidirectional CL-PRE scheme Πs, we instan-
tiate the CL-PRE RCCA experiment with the Type I adversary AI , O′ =
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{Ohkg,Odeleg,Orenc,O1-dec,O2-dec,Opex,Opkr} and δ = 2. Suppose the challenger ci-

phertext C∗ is generated under ID∗ and P̂K∗, where P̂K∗ denotes the current public
key of ID∗. We require that ID∗ ∈ HU and |m0| = |m1|. If C∗ denotes the challenge
ciphertext, AI can never make following queries:

– Delegation query Odeleg(ID
∗, IDx), if IDx /∈ HU .

– Decryption query O2-dec(ID
∗, C∗), if P̂K∗ = PK∗.

– Re-encryption query Orenc(ID
∗, IDx, C

∗), if IDx /∈ HU and P̂K∗ = PK∗.
– Decryption query O1-dec(ID

′, C′), if Dec1(ID
′, C′) ∈ {m0,m1}.

We say Πs is secure against (replayable) chosen ciphertext attacks at the 2nd level if
for any polynomial time adversary AI , the advantage function
Advclpre,2-rcca

Πs,AI
(λ) is negligible in λ.

When we consider the security notion at the 1st level ciphertext, we remove the restric-
tion of re-encryption key queries. There is no reason to keep any re-encryption keys
from the adversary, even those from the target entity to corrupted entities. Since A can
do arbitrary re-encryption with re-encryption keys, Orenc is unnecessary. Then, we for-
mulate the security definition as follows:

Definition 2 (RCCA Security against the Type I adversary at the 1st Level
Ciphertext). For any single-hop unidirectional CL-PRE scheme Πs, we instan-
tiate the CL-PRE RCCA experiment with the Type I adversary AI , O′ =
{Ohkg,Odeleg,O1-dec,O2-dec,Opex,Opkr} and δ = 1. Suppose the challenger ciphertext

C∗ is generated under ID∗ and P̂K∗, where P̂K∗ denotes the current public key of
ID∗. We require that ID∗ ∈ HU and |m0| = |m1|. If P̂K∗ = PK∗ where PK∗

denotes the original public key of ID∗, A is not allowed to make decryption query
O1-dec(ID

∗, C∗) after seeing the challenge ciphertext C∗. We say Πs is secure against
(replayable) chosen ciphertext attacks at the 1st level if for any polynomial time adver-
sary A, the advantage function Advclpre,1-rcca

Πs,AI
(λ) is negligible in λ.

Remark 1. In our model, when an honest entity’s public key has been replaced, the chal-
lenger will still use his original secret key to decrypt and generate re-encryption keys.
Since the honest entity would not possess the secret key corresponding with the re-
placed public key, we cannot force the honest entity to run algorithms with an unknown
value in reality. Therefore, it is a reasonable assumption that the challenger manages
oracles Odeleg, O1-dec and O2-dec with the secret key related to the original public key.

Remark 2. AdversaryAI could corrupt honest entity in a specific way: first AI replaces
the honest user’s public key; then queries the oracle Opex to gain the partial private key.
Since we do not allow the adversary to directly query the secret key of an honest user,
our model is partially adaptive. With the oracle Opex, the adversary can also generate
secret keys of corrupted users.

Remark 3. In [22], Hanaoka et al. illustrated the adversary with both the 2nd level de-
cryption oracle and the 1st level decryption oracle is strictly stronger than the adversary
who can only access to the 1st level decryption oracle. Therefore, in our model we pro-
vide the adversary with the oracle O2-dec as well as the oracle O1-dec to achieve a higher
level security.
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Security Against the Type II Adversary. Let’s consider the security definition against the
Type II adversary. Since the Type II adversary stands for the curious KGC, we provide
AII with an oracle Omsk to obtain the master secret key. AII could produce arbitrary
partial private key with the master secret key, therefore the oracle Opex is unnecessary
in the security experiment. In Definition 3 and Definition 4, the oracles work as follows:

– Master secret key Omsk : on input the security parameter λ, return the master secret
key msk.

– Honest key generation Ohkg: on input ID, compute (sk, pk) ← UserKeyGen
(ID), (psk, ppk) ← PKeyExt(ID) and (PK, SK) ← KeyGen(param,
ID, ppk, psk). Return PK .

– Delegation Odeleg: on input (IDi, IDj , PKj), compute the re-encryption key
rki→j = ReKeyGen(IDi, SKi, PKi, IDj, PKj). Return rki→j .

– Re-encryption Orenc: on input (IDi, IDj , PKj;C), compute the re-encrypted ci-
phertext C′ = ReEnc(ReKeyGen(IDi, IDj, PKj);C). Return C′.

– First level decryption O1-dec: on input (ID;C), compute the plaintext m =
Dec1(ID;C). Return m.

– Second level decryption O2-dec: on input (ID;C), compute plaintext
m = Dec2(ID;C). Return m.

We define the RCCA security against Type II adversary at the 2nd level ciphertext as
follows:

Definition 3 (RCCA Security against the Type II Adversary at the 2nd Level Ci-
phertext). For any single-hop unidirectional CL-PRE scheme Πs, we instantiate the
CL-PRE RCCA experiment with the Type II adversary AII , the
O′ = {Omsk,Odeleg,Orenc,O1-dec,O2-dec} and δ = 2. We require that ID∗ ∈ HU and
|m0| = |m1|. If C∗ denotes the challenge ciphertext, AII can never make following
queries:

– Delegation query Odeleg(ID
∗, IDx), if IDx /∈ HU .

– Decryption query O2-dec(ID
∗, C∗).

– Re-encryption query Orenc(ID
∗, IDx, C

∗), if IDx /∈ HU .
– Decryption query O1-dec(ID

′, C′), if Dec1(ID
′, C′) ∈ {m0,m1}.

We say Πs is secure against (replayable) chosen ciphertext attacks at the 2nd level
if for any polynomial time adversary A, the advantage function Advclpre,2-rcca

Πs,AII
(λ) is

negligible in λ.

Then, we consider the security notion at the 1st level ciphertext. As Definition 2, the
oracle Orenc is unnecessary. We define the RCCA security against the Type II adversary
at the 1st level ciphertext as follows:

Definition 4 (RCCA Security against the Type II Adversary at the 1st Level
Ciphertext). For any single-hop unidirectional CL-PRE scheme Πs, we in-
stantiate the CL-PRE RCCA experiment with the Type II adversary AII , O′ =
{Omsk,Odeleg,O1-dec,O2-dec} and δ = 1. We require that ID∗ ∈ HU , |m0| = |m1|
and AII is not allowed to make decryption query O1-dec(ID

∗, C∗) after seeing the
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challenge ciphertext C∗. We say Πs is secure against (replayable) chosen ciphertext
attacks at the 1st level if for any polynomial time adversary AII , the advantage function
Advclpre,1-rcca

Πs,AII
(λ) is negligible in λ.

4 Discussion on CL-PRE Scheme

In this section, we first observe and give attack to Xu et al.’s [1] scheme. Then, we
show an insecure generic construction of CL-PRE, to illustrate the key point to present
a RCCA secure CL-PRE scheme.

4.1 Security Analysis of Xu et al.’s Scheme

In order to leverage cloud for encryption based access control and key management, Xu
et al. [1] proposed a certificateless proxy re-encryption scheme in 2012. Their scheme
was claimed to be chosen plaintext secure in the random oracle model. However, the
scheme is vulnerable when facing the Type I adversary.

In their scheme, the public key of user ID is pk = (H(ID), gs·x), where H(·) is
a hash function, s is the master secret key and x is chosen by the user. The encryption
algorithm is C = (gr,m · e(H(ID)r, gs·x)). If the Type I adversary replaces pk =
(H(ID), gs·x) with pk = (H(ID), gt), where t is selected on the adversary’s choice,
the ciphertext would be C = (C1, C2) = (gr,m · e(H(ID)r, gt)). Consequently,
the adversary can successfully decrypt the ciphertext with t by computing m = m ·
e(H(ID)r, gt)/e(H(ID), gr)t = C2/e(H(ID), C1)

t. The Type I adversary breaks
the CPA security of Xu et al.’s scheme.

4.2 An Extension of a Generic Construction Is Vulnerable

Libert et al. [14] proposed a generic construction from a CPA secure PKE scheme and
a CPA secure IBE sheme to a CCA CL-PKE scheme. Intuitively, can we directly com-
bine a CCA PRE scheme and a CCA IB-PRE scheme to obtain a RCCA secure CL-PRE
scheme by using their technique? Unfortunately, we find the resulting scheme is vul-
nerable to the Type I adversary. We will present a Type I attack after the description of
the generic scheme.

Let Π I be a CCA secure IB-PRE scheme and ΠP denote a CCA secure PRE scheme.
Using a CCA secure ΠP and a CCA secure Π I as building blocks, we construct a CL-
PRE scheme Π by Libert et al.’s generic construction technique [14] as follows:

- The key generation algorithm for Π is to run the key generation algorithms
ΠP.KeyGen of ΠP and Π I.KeyExtract of Π I. Return SK = (SKP, SK I) and
PK = PKP.

- The re-encryption key generation algorithm for Π is to run both the re-encryption
key generation algorithms of ΠP and Π I. Return (rk1, rk2) = (rkP, rkI).

- The second level encryption algorithm for Π first split a plaintext m into m =
m1 ⊕ m2. Run the second level encryption of Π I and ΠP to generate ciphertexts
C1 = EP

PK(m1||σ,H(m||σ||pk||ID)) and C2 = E I
ID(m2||σ,H(m||σ||pk||ID)).

Return C = (C1, C2).
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- The second level decryption algorithm Π with input C = (C1, C2) runs ΠP.Dec2
with C1 and runs Π I.Dec2 with C2. If the result is m1 and m2, compute m =
m1 ⊕m2 and return m.

- The re-encryption algorithm for Π with C = (C1, C2) runs ΠP.ReEnc with C1

to obtain re-encrypted ciphertext C′
1 and runs Π I.ReEnc with C2 to obtain re-

encrypted ciphertext C′
2. Return C′ = (C′

1, C
′
2).

- The first level decryption algorithm for Π with C′ = (C′
1, C

′
2) as input runs

ΠP.Dec1 with C′
1 to obtain the plaintext m1 and runs Π I.Dec1 with C′

2 to obtain
the plaintext m2. Compute m = m1 ⊕m2 and return m.

If we just consider the key generation algorithm, the encryption algorithm and the de-
cryption algorithm of Π , the resulting scheme Π ′ = (Π.KeyGen, Π. Enc2, Π.DEC2)
is a CCA CL-PKE according to Libert et al.’s result [14]. However, Π is an insecure
CL-PRE scheme against the Type I adversary. We show that the Type I adversary can
break the 2nd level RCCA security of Π as follows:

1. After receiving the challenge ciphertext C∗ = (C∗
1 , C

∗
2 ), the adversary first queries

the partial private key of ID∗, namely SK I
ID∗ of ID∗. A decrypts C∗

2 with SK I
ID∗

and obtains m2.
2. The adversary replaces an honest user ID’s public key with P̂K on his choice.

Note that he knows the corresponding secret value, i.e. ŜK
P
.

3. The adversary queries the re-encryption of C∗ from ID∗ to ID, and obtains C′ =

(C′
1, C

′
2), where C′

1 = ΠP.ReEnc(C∗
1 ). With the secret value ŜK

P
, he can easily

decrypt C′
1 and obtain m1.

4. The adversary computes m = m1 ⊕m2 and breaks the RCCA security of Π .

A CCA IB-PRE plus a CCA PRE can not trivially make a RCCA CL-PRE using
Libert et al.’s generic construction technique [14]. Why not? Let us have a look at the
re-encryption keys first. A delegator’s private key has two parts, one part is his par-
tial private key, and the other part is the secret value. When the delegator generates a
re-encryption key, he should insert his private key into the re-encryption key. Unfortu-
nately, we find that rk2 is only relevant to his partial private key, and it has no relation
with the secret value, while rk1 is just the reverse. This kind of construction destroys
the bindings of delegator’s identity and public key. Such weakness in the re-encryption
key generation directly results in vulnerability of the scheme.

Informally speaking, the re-encryption key of CL-PRE should integrate the receiver’s
public key and identity tightly to achieve the RCCA security notion. We will present an
efficient solution to this problem in the next section.

5 Replayable CCA Secure CL-PRE Scheme

In this section, we extend Sun et al’s scheme [13] to the pairing based setting and
construct the first RCCA secure CL-PRE. In order to achieve the RCCA security notion,
we derive the re-encryption key in a manner somewhat like that in [23].
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5.1 Construction

Setup(λ) : Let λ be the security parameter, G and GT be groups of prime order p, and
e: G ×G → GT be a bilinear map . It then performs as follows:
1. Choose a group generator g ∈ G.
2. Select x, α ∈ Zp at random and set y = gx.
3. Choose target collision resistant hash functions H0 : {0, 1}∗ → G, H1 :

{0, 1}∗×G×G → Zp, H2 : {0, 1}l0 ×{0, 1}l1 → Zp, H3 : G×G×G → G,
H4 : GT → {0, 1}l and H5 : {0, 1}∗ × G ×G → G, where l = l0 + l1 ∈ N.
Here, l0 and l1 denote the bit-length of a plaintext and a random bit string.

The public parameters are param = (p, g, y, e(g, g)α, H0, H1, H2, H3, H4, H5).
The master secret key is (x, gα). The plaintext space is {0, 1}l0.

UserKeyGen(param, ID) : Pick z ∈ Zp at random and compute μ = gz. Return
user’s key (sk, pk) = (z, μ).

PKeyExt(param,msk, ID, pk) : Pick s, s′ ∈ Zp at random and compute ω = gs,
t = s+ xH1(ID, pk, ω), K = gαH5(ID, pk, ω)s

′
and L = gs

′
. Return the partial

public key ppk = (ω,K,L) and the partial private key psk = t.
KeyGen(param, ID, psk, ppk, sk, pk) : Set public key PK = (μ, ω,K,L) and pri-

vate key SK = sk + psk = z + t. Return (PK, SK).
ReKeyGen(param, IDi, SKi, PKi, IDj, PKj) : On input IDi, SKi, PKi and

IDj , PKj , this algorithm generates the re-encryption key rki→j as follows:
1. Parse PKj as (μj , ωj,Kj , Lj).
2. Check whether e(Kj , g) = e(g, g)αe(H5(IDj , μj, ωj), Lj). If not, return

“⊥”.
3. Select θ ∈ Zp at random.

4. Compute Aij = (μjωjy
H1(IDj ,μj ,ωj))SK−1

i H0(IDi)
θ and Bij =

(μiωiy
H1(IDi,μi,ωi))θ .

5. Return rki→j = (Aij , Bij , PKi).
Note that PKi here is corresponding with the private key SKi.
Enc1(param,m, ID, PK) : On input ID, PK and a message m ∈ {0, 1}l0, this al-

gorithm encrypts m to a 2nd level ciphertext as follows:
1. Parse PK as (μ, ω,K,L).
2. Check whether e(K, g) = e(g, g)αe(H5(ID, μ, ω), L). If not, return “⊥”.
3. Pick σ ∈ {0, 1}l1 at random and compute r = H2(m,σ).
4. Compute c0 = H4(e(g, g)

r)⊕ (m||σ), c′1 = e(μwyH1(ID,μ,ω), g)r.
5. Return the 2nd level ciphertext C′ = (c0, c

′
1).

Enc2(param,m, ID, PK) : On input ID, PK and a message m ∈ {0, 1}l0, this al-
gorithm encrypts m to a 1st level ciphertext as follows:
1. Parse PK as (μ, ω,K,L).
2. Check whether e(K, g) = e(g, g)αe(H5(ID, μ, ω), L). If not, return “⊥”.
3. Pick σ ∈ {0, 1}l1 at random, and compute r = H2(m,σ).
4. Compute c0 = H4(e(g, g)

r) ⊕ (m||σ), c1 = (μωyH1(ID,μ,ω))r, c2 =
H0(ID)r , c3 = H3(c0, c1, c2)

r.
5. Return the 1st level ciphertext C = (c0, c1, c2, c3).

ReEnc(param,C, IDi, IDj, rki→j) : On input re-encryption key rki→j and the ci-
phertext C of IDi, re-encrypt the ciphertext C to IDj as following:
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1. Parse C as (c0, c1, c2, c3), and rki→j as (Aij , Bij , PKi) and PKi as
(μi, ωi,Ki, Li).

2. Check whether e(c3, μiωiy
H1(IDi,μi,ωi)) = e(c1, H3(c0, c1, c2)) and

e(H0(IDi), c3) = e(c2, H3(c0, c1, c2)). If not, return “⊥”.
3. Compute c′1 = e(c1, Aij)/e(c2, Bij).
4. Return the re-encrypted ciphertext C′ = (c0, c

′
1).

Dec1(param,C ′, SK) : On input the ciphertext C′, user ID’s private key SK and
public key PK , recover the plaintext m as follows:
1. Parse C′ as (c′1, c2), and PK as (μ, ω,K,L).

2. Compute m||σ = H4(c
′
1
SK−1

)⊕ c0 and r = H2(m||σ).
3. Check whether c′1 = e(μwyH1(ID,μ,ω), g)r. If not, return “⊥”.
4. Return plaintext m

Dec2(param,C, SK) : On input the ciphertext C ,user ID’s private key SK and pub-
lic key PK , recover the plaintext m as:
1. Parse C as (c0, c1, c2, c3), and PK as (μ, ω,K,L).
2. Compute m||σ = c0 ⊕H4(e(g, c

SK−1

1 )) and r = H2(m||σ).
3. Check whether c1 = (μωyH1(ID,w,μ))r , c2 = H0(ID)r, c3 = H3(c0, c1, c2)

r.
If not, return “⊥”.

4. Return plaintext m.

Correctness. To simplify the computation, we denote μωyH1(ID,μ,ω) as Y . Then we
have Y = μωyH1(ID,μ,ω) = gSK . The CL-PRE scheme satisfies the correctness prop-
erty at each level:

– Decryption of a 2nd level ciphertext is correct. If C = (c0, c1, c2, c3) is a 2nd level
ciphertext, we obtain

c0 ⊕H4(e(g, C
SK−1

1 )) = H4(e(g, g)
r)⊕ (m||σ)⊕H4(e(g,Yr·SK−1

)) = m||σ.

– Decryption of a 1st level ciphertext is correct. If C′ = (c0, c
′
1) is a 1st level cipher-

text, we obtain

H4(c
′
1
(SK)−1

)⊕ c0 = H4(e(Y, g)r·SK−1

)⊕H4(e(g, g)
r)⊕ (m||σ) = m||σ.

– Decryption of a re-encrypted ciphertext is correct. If C′ = (c0, c
′
1) is a re-encrypted

ciphertext ofC = (c0, c1, c2, c3) and rki→j = (Aij , Bij , PKi) is the re-encryption
key, first we obtain

c′1 = e(c1, Aij)/e(c2, Bij) =
e(Yr

i ,Y
SK−1

i

j ·H0(IDi)
θ)

e(H0(IDi)r,Yθ
i )

= e(g,Yj)
r

Then, as the decryption of original ciphertext at level 1, we have H4(c
′
1
SK−1

)
⊕c0 = m||σ.

Remark 4. The scheme is replayable CCA secure at the second level ciphertext which
is arguably sufficient for most practical applications [24]. Since a re-encryption key
rk∗→∗ = (H0(ID

∗)θ, PK∗θ, PK∗) can always be generated by picking θ at random,
the adversary can re-encrypt the challenge ciphertext to ID∗ itself [25], resulting in the
replayable CCA security.
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5.2 Discussions

In our scheme, each user has to generate a secret key using UserKeyGen before query-
ing the partial public key and partial private key. This method enables us to reach a
security proof. Though readers might consider that the partial keys would be indepen-
dently generated from the choice of users in a certificateless scheme, we note that it is
not always the case. Actually, in a survey of certificateless encryption [26,27], the au-
thors classified certificateless schemes into three different infrastructures, namely, the
AP formulation [12], the BSS formulation [13] and the LK formulation [16]. In the
AP formulation, the receiver can generate the public key at anytime. While in the BSS
formulation, the receiver can only generate the public key after receiving the partial
private key from the KGC. In this paper, we have adopted the LK formulation for the
CL-PRE scheme, namely, when generating the public key the receiver should complete
a protocol with the KGC.1 The BSS or LK formulations are the minimum requirements
to achieve denial of decryption security [28] in CL-PKE.

Interestingly, Dent [27] also instantiated the LK formulation of certificateless en-
cryption by the traditional notion of PKI-based encryption as follows: first the receiver
generates encryption key pair and send it to the KGC; then the KGC creates a digi-
tal signature to bind the encryption key to his identity. The receiver’s full public key
contains the public key and the digital certificate. If a sender wishes to encrypt a mes-
sage, he should first checks the certificate. The difference between such a certificateless
scheme and a traditional public-key scheme in the PKI system is the security consider-
ation. Interested readers may refer to [29] for a discussion on self-generated-certificate
encryption versus public-key encryption.

In this paper, we adopted the Dent’s instantiation to the PRE setting. But there are
two main differences in our scheme 1) the full private key of a user is generated from
two resources to protect the users privacy: one part is generated by the user himself
and the other part related to his identity is from the KGC, and 2) the KGC creates a
proof on not only the public key (generated by the user) but also an additional group
element (picked up by KGC itself). The differences let us achieve a strong security with-
out harming the efficiency, which seems optimal for a PRE scheme to the best of our
knowledge. However, we also left the problem of designing a PRE in other formulation
(e.g., the AP formulation) in our future work.

5.3 Security and Efficiency Comparisons

Now, we give some intuitions for the security of the scheme.

1. Public verification. Since the 2nd level ciphertext includes two short signatures, i.e.
(c1, c3) and (c2, c3), everyone in the system can verify its validity. Therefore, the
re-encryption algorithm will not reveal sensitive information to the adversary.

1 The LK formulation is a reasonable relaxed formulation, since ”The Lai-Kou formulation can
be viewed as a generalisation of the BSS formulation. Instead of a single message (the partial
private key) being passed between the receiver and the KGC prior to public key publication,
the receiver and the KGC must undertake a protocol before the receiver can publish its public
key” [27].
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Table 1. Comparisons between the IB-PRE scheme in [9] and our CL-PRE scheme. n(·)
denotes a polynomial function of the security parameter λ. |G|, |GT |, |m| and |ID| denote the
bit-length of an element in G, an element in GT , a plaintext and an identifier of the user. (*: The
scheme is unfortunately vulnerable to a collusion attack [30].)

Shemes IB-PRE scheme in [9] Our CL-PRE scheme

ReKeyGen 1tp 3te
Enc2 3te 4te
Dec1 1te+2tp 2te + 1tp
Dec2 4te + 2tp 4te + 1tp
|C′| |G|+ |GT |+ |m|+ |n(λ)|+ |ID| |GT |+ l

|C| 2|G|+ |GT |+ |m| 3|G|+ l

Secrutiy CCA? * RCCA
Assumption DBDH 1-wDBDHI&CDH

Random oracle Yes Yes
Other property Dec1(·) requires the identifier Dec1(·) does not requires the identifier

of the delegator. of the delegator.

2. RCCA security at level 2 & level 1. Fujisaki and Okamoto [31] transformation
ensures its RCCA security.

Theorem 1. Our CL-PRE scheme is RCCA secure in the random oracle model, assum-
ing that the CDH problem and 1-wDBDHI problem are intractable.

The above theorem is obtained by combining of Lemma 1-4. Due to the space limit,
proofs of Lemma 1- 4 will appear in the full version of this paper.

Lemma 1. Assume H0, H1, H2, H3, H4, H5 are random oracles and the CDH problem
and 1-wDBDHI problem are intractable. The CL-PRE scheme is RCCA secure at the
2nd level ciphertext against the Type I adversary.

Lemma 2. Assume H0, H1, H2, H3, H4, H5 are random oracles and the CDH problem
and 1-wDBDHI problem are intractable. The CL-PRE scheme is RCCA secure at the
1st level ciphertext against the Type I adversary.

Lemma 3. Assume H0, H1, H2, H3, H4, H5 are random oracles and the CDH problem
and 1-wDBDHI problem are intractable. The CL-PRE scheme is RCCA secure at the
2nd level ciphertext against the Type II adversary.

Lemma 4. Assume H0, H1, H2, H3, H4, H5 are random oracles and the CDH problem
and 1-wDBDHI problem are intractable. The CL-PRE scheme is RCCA secure at the
1st level ciphertext against the Type II adversary.

Efficiency. In Table 1, we compare our CL-PRE scheme with the IB-PRE scheme in
[9]. te and tp denote the the computation time for an exponentiation and a bilinear
pairing. In our scheme, we assume μωyH1(ID,μ,ω) is pre-computed and e(K, g) =
e(g, g)αe(H5(ID, μ, ω), L) is pre-checked. The comparison indicates that the efficiency
of our scheme is comparable with the IB-PRE scheme.
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6 Conclusion

We introduced the RCCA security model for CL-PRE. We showed a vulnerable generic
construction to illustrate constructing a RCCA secure scheme is nontrivially and mean-
ingful. Finally, we presented a CL-PRE scheme and proved it to be RCCA secure in the
random oracle model.
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