
Algorithms for Switching between Boolean

and Arithmetic Masking of Second Order

Praveen Kumar Vadnala and Johann Großschädl

University of Luxembourg,
Laboratory of Algorithmics, Cryptology and Security (LACS),

6, rue Richard Coudenhove-Kalergi, 1359 Luxembourg
{praveen.vadnala,johann.groszschaedl}@uni.lu

Abstract. Masking is a widely-used countermeasure to thwart Differ-
ential Power Analysis (DPA) attacks, which, depending on the involved
operations, can be either Boolean, arithmetic, or multiplicative. When
used to protect a cryptographic algorithm that performs both Boolean
and arithmetic operations, it is necessary to change the masks from one
form to the other in order to be able to unmask the secret value at the
end of the algorithm. To date, known techniques for conversion between
Boolean and arithmetic masking can only resist first-order DPA. This
paper presents the first solution to the problem of converting between
Boolean and arithmetic masking of second order. To set the context, we
show that a straightforward extension of first-order conversion schemes
to second order is not possible. Then, we introduce two algorithms to
convert from Boolean to arithmetic masking based on the second-order
provably secure S-box output computation method proposed by Rivain
et al (FSE 2008). The same can be used to obtain second-order secure
arithmetic to Boolean masking. We prove the security of our conversion
algorithms using similar arguments as Rivain et al. Finally, we provide
implementation results of the algorithms on three different platforms.

Keywords: Differential power analysis, Second-order DPA, Arithmetic
masking, Boolean Masking, Provably secure masking.

1 Introduction

Side-channel cryptanalysis exploits information leakage from the execution of a
concrete implementation of a cryptographic algorithm [12]. Therefore, this kind
of attack is methodically very different from “traditional” cryptanalysis, which
essentially focuses on finding secret keys in a black box model given only pairs
of plaintexts and ciphertexts. The first form of side-channel attacks discussed in
the literature are timing attacks, i.e. attacks exploiting measurable differences
in the execution time of a cryptographic algorithm or a specific operation it is
based upon [13,11]. A more sophisticated class of attacks are power analysis
attacks, which aim to deduce information about the secret key from the power
consumption of the device while a certain operation is carried out [15]. A third

B. Gierlichs, S. Guilley, and D. Mukhopadhyay (Eds.): SPACE 2013, LNCS 8204, pp. 95–110, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

96 P.K. Vadnala and J. Großschädl

class are electromagnetic (EM) attacks, which exploit the relationship between
secret data and EM emanations produced by the device [1].

Power analysis attacks received extensive attention from the cryptographic
community ever since Kocher and his team published them for the first time in
their seminal paper Differential Power Analysis [14]. These attacks allow one to
recover the full secret key with relatively few measurements and it is close to
impossible to totally circumvent them with current semiconductor technologies
[15]. While Simple Power Analysis (SPA) attacks try to recover a secret value
by directly “comparing” the power measurements with the corresponding oper-
ations, Differential Power Analysis (DPA) attacks are much more sophisticated
and aim to reveal a secret value by applying statistical techniques on multiple
measurements of the same operation. Masking is a widely-used countermeasure
to thwart DPA attacks, which involves using random variables, called masks, to
reduce the correlation between the secret value and the obtained leakage [2]. In
order to circumvent first-order DPA attacks [15] that involve a single operation
using masking, we divide the secret value into two shares: a mask generated
randomly and the masked value of the secret. However, this approach can still
be attacked via a second-order DPA involving two operations corresponding to
the two shares of the secret [16,19]. In general, a d-th order masking scheme is
vulnerable to a (d + 1)-th order DPA attack involving all d + 1 shares of the
secret. These attacks are called Higher-Order DPA attacks (HODPA).

Depending on the operation to be protected, a masking scheme can either be
Boolean (using logical XOR), arithmetic (using modular addition/subtraction)
or multiplicative (using modular multiplication). To successfully “unmask” the
variable at the end of the algorithm, one has to track the change of the masked
secret value during the execution of the algorithm. If an algorithm contains two
of the three afore-mentioned operations (i.e. XOR, modular addition/subtrac-
tion, modular multiplication), the masks have to be converted from one form
to the other, keeping this conversion free from any leakage. Goubin introduced
secure methods to convert between first-order Boolean and arithmetic masks in
[10]. Coron and Tchulkine improved the method for switching from arithmetic
to Boolean masking in [5], which was recently further improved by Debraize in
[6]. While solutions exist for converting between arithmetic and multiplicative
masking of higher order [7,8,9], the conversion between Boolean and arithmetic
masking is currently limited to first order. We aim to fill this gap by presenting
algorithms to switch between Boolean and arithmetic masks of second order.

In the context of second-order masking, a sensitive variable x is represented
by three shares; these are x1 = x ⊕ x2 ⊕ x3, x2 and x3 in the case of Boolean
masking, and A1 = x − A2 − A3, A2 and A3 for arithmetic masking [15]. The
problem is to convert between Boolean and arithmetic masking without intro-
ducing any first-order or second-order leakage. Unfortunately, it is not possible
to extend the existing first-order secure conversion schemes to second order as
we will show later. Therefore, we employ techniques proposed by Rivain et al in
[21] to arrive at the first solution for converting second-order masks from one
form to the other. In [21], the authors describe two provably secure methods to

Algorithms for Switching between Boolean and Arithmetic Masking 97

compute S-box outputs without first or second-order leakage. By applying these
methods, we present a total of four algorithms, two for each conversion type.

The rest of the paper is organized as follows. We review some of the existing
solutions for a first-order conversion as well as the paper of Rivain et al in Sec-
tion 2. Then, we show that a straightforward application of Goubin’s method is
insecure for second-order conversion in Section 3. We introduce our algorithms
for Boolean to arithmetic conversion in Section 4. The algorithms to convert in
the opposite direction (i.e. arithmetic to Boolean) can be derived similarly and
are described in Section 5. We prove the security of our algorithms in Section 6
for a device leaking in the Hamming weight model. Section 7 summarizes some
implementation results and, finally, Section 8 concludes the paper.

2 Previous Work

This section provides an overview of recent results that will be used later in the
paper. We first summarize existing methods for switching between arithmetic
and Boolean masking of first order. Then, we describe two techniques proposed
by Rivain et al at FSE 2008 to compute S-box outputs secure against second-
order DPA attacks [21].

2.1 Securing Conversions against First-Order DPA

The first solution to the problem of Boolean to arithmetic mask conversion was
presented by Messerges in [17], which was later proven to be insecure by Coron
and Goubin in [4]. At CHES 2001, Goubin proposed an algorithm for switching
between Boolean and arithmetic masks secure against first-order DPA attacks
[10]. His algorithm to convert from Boolean to arithmetic masking is based on
the following fact: for I = {0, 1, . . . , 2n − 1} with n ≥ 1 and x′ ∈ I, the function
φx′(r) : I → I defined as φx′(r) = (x′ ⊕ r) − r mod 2n is affine over the field
GF(2). Therefore, the function ψx′ = φx′ ⊕ φx′(0) is linear over GF(2) and, as
a result, x = x′ ⊕ r with Boolean shares (x′, r) can be converted to the equiva-
lent arithmetic shares (A, r) for any random γ via the following relation:

A = φx′(r) = ψx′(r) ⊕ x′

= ψx′(γ)⊕ ψx′(r ⊕ γ)⊕ x′

= [(x′ ⊕ γ)− γ]⊕ x′ ⊕ [(x′ ⊕ (r ⊕ γ))− (r ⊕ γ)]

This method is highly efficient, requiring only a constant number of elementary
operations. Goubin’s arithmetic to Boolean conversion is based on the following
fact: x′ = (A+ r) ⊕ r is equivalent to x′ = A⊕ un−1, where{

u0 = 0
ui+1 = 2[ui ∧ (A⊕ r) ⊕ (A ∧ r)] ∀ i ≥ 0

Unfortunately, this method is far less efficient since the number of operations is
proportional to the size of the registers.

98 P.K. Vadnala and J. Großschädl

Algorithm 1. Secure second-order S-box output computation: First variant

Input: Three input shares: (x1 = x ⊕ x2 ⊕ x3, x2, x3) ∈ F2n , two output shares:
(y1, y2) ∈ F2m , and an (n,m)-bit S-box lookup function S

Output: Masked S-box output: S(x)⊕ y1 ⊕ y2
1: Randomly generate n-bit number r
2: r′ ← (r ⊕ x2)⊕ x3

3: for a from 0 to 2n − 1 do
4: a′ ← a⊕ r′

5: T [a′]← ((S(x1 ⊕ a)⊕ y1)⊕ y2)
6: end for
7: return T [r]

In 2003, Coron and Tchulkine proposed a new algorithm for conversion from
arithmetic to Boolean masking [5]. To convert two n-bit (n = p · k) arithmetic
shares A and R with x = A + R mod n into two Boolean shares x′ and R such
that x = x′ ⊕R, the algorithm works on each k-bit word independently. There-
fore, A and R are divided into p words of k bits: A = A1 ||A2 || . . . ||Ap−1 and
R = R1 ||R2 || . . . ||Rp−1. Now, the Boolean share equivalent to the i-th word
of the arithmetic share Ai is computed as x′i = (Ai + Ri + ci+1) ⊕ Ri, where
ci+1 is the carry bit produced from the previous k-bit word. The algorithm pre-
computes two small tables of 2k entries each, and reuses them several times in the
course of the conversion. The first table serves to convert each arithmetic-share
word independently to the equivalent Boolean-share word. This table contains
the entries (z + r) ⊕ r for all possible values of z ∈ [0, 2k − 1] and the random
value r ∈ [0, 2k − 1]. The correct value for the i-th word can be obtained when
z = (Ai − r+Ri) + ci+1. The second table is used to mask the carry that needs
to be passed from one word to the next-higher. Even though this increases the
memory requirements, the conversion time is reduced significantly. Neiße and
Pulkus [18] modified the algorithm so as to reduce the memory needed to store
the tables. At CHES 2012, Debraize discovered a bug in the Coron-Tchulkine
algorithm and devised a new variant that is also more efficient [6].

2.2 Generic Countermeasure against Second-Order DPA

At FSE 2008, Rivain et al proposed two algorithms to protect the computation
of S-box outputs against second-order attacks [21]. Given three input shares
of a secret value x, namely x1 = x ⊕ x2 ⊕ x3, x2, and x3 (which are all in F2n)
and two output shares y1, y2 ∈ F2m along with an (n,m) S-box lookup function
S, they compute the third share y3 such that y1 ⊕ y2 ⊕ y3 = S(x). Hence, we
have y3 = S(x)⊕ y1 ⊕ y2. The algorithms compute (S(x1 ⊕ a)⊕ y1)⊕ y2 for all
possible values of a (i.e. 0 ≤ a ≤ 2n−1), among which the correct value can be
obtained when a = x2 ⊕ x3. We recall these algorithms below.

Algorithm 1 uses a table of 2n entries to store (S(x1 ⊕ a) ⊕ y1) ⊕ y2 for all
possible values of a. Here, the value (x2 ⊕ x3) is masked via a random variable
r, the result of which is assigned to r′. Thereafter, the entry corresponding to

Algorithms for Switching between Boolean and Arithmetic Masking 99

Algorithm 2. Secure second-order S-box output computation: Second variant

Input: Three input shares: (x1 = x ⊕ x2 ⊕ x3, x2, x3) ∈ F2n , two output shares:
(y1, y2) ∈ F2m , and an (n,m)-bit S-box lookup function S

Output: Masked S-box output: S(x)⊕ y1 ⊕ y2
1: Randomly generate one bit b
2: for a from 0 to 2n − 1 do
3: cmp← compareb(x2 ⊕ a, x3)
4: Rcmp ← ((S(x1 ⊕ a)⊕ y1)⊕ y2)
5: end for
6: return Rb

(S(x1 ⊕ a) ⊕ y1) ⊕ y2 will be stored at location a′ = a ⊕ r′. The correct value
of the third share y3 can be retrieved by accessing the value stored in the table
at location T [r]. As r = a′, the value of a becomes a = r ⊕ r′ = x2 ⊕ x3, thus
yielding the desired result.

The security of Algorithm 1 can be proven by showing that it is impossible
to recover x by combining any pair of intermediate variables computed by the
algorithm. We refer the interested reader to Section 3.1 in [21] for the complete
proof. In Section 6, we will use the same approach to prove the security of our
conversion techniques. Algorithm 1 requires a table of 2n words (each having a
length of m bits) in RAM, and is, therefore, not suitable for low-cost devices. To
overcome this issue, Rivain et al introduced another algorithm consuming less
memory at the expense of executing more operations.

Algorithm 2 specifies the second solution proposed by Rivain et al in [21] to
securely compute an S-box output. In this variant, they use a function called
compareb(x, y), which returns b if x = y and b̄ otherwise. A first-order secure
implementation of compareb is necessary to guarantee the security of the algo-
rithm. To this end, Rivain et al [21] presented a method for implementing the
compareb function, shown in Algorithm 3. The secure S-box computation works
as follows: First, a random bit b is generated, which is one of the inputs to the
compareb function. Then, for each possible value of a, the algorithm computes
(S(x1 ⊕ a) ⊕ y1) ⊕ y2, which will be written to either Rb or Rb̄, depending on
the actual output of the compareb function. The inputs to the compareb function
are x2 ⊕ a and x3. When a = x2 ⊕ x3, compareb(x2 ⊕ a, x3) returns b, thus the
result is stored in Rb. In all other cases, the returned value is b̄, so the result is
stored in the register Rb̄. At the end of the algorithm, the value stored in Rb is
S(x)⊕ y1 ⊕ y2, which is exactly what we wanted to achieve.

Note that Algorithm 2 needs only 2n bits in RAM, namely for the function
compareb. Thus, it requires m times less memory than Algorithm 1, though the
execution time is longer due to multiple calls to the compareb function.

3 Applying Goubin’s Conversion to Second Order

In this section, we demonstrate that a straightforward application of Goubin’s
conversion technique [10] to the second order does not work. Assume we have

100 P.K. Vadnala and J. Großschädl

Algorithm 3. Computation of the compareb function

Input: x, y, b, n
Output: b if x = y, b̄ otherwise
1: r3 ← rand(n)
2: T [0 : 2n − 1]← b̄, b̄, . . . , b̄
3: T [r3]← b
4: return T [(x⊕ r3)⊕ y]

three Boolean shares x1, x2, x3 whereby x = x1 ⊕ x2 ⊕ x3. We need to find the
arithmetic shares A1, A2, and A3 such that x = A1 + A2 + A3 mod 2n. To do
so, we can iteratively compute A1, A2, A3 as follows:

x = A1 + (x2 ⊕ x3)

x = A1 +A2 + x3

A1 = x− (x2 ⊕ x3)

A2 = (x2 ⊕ x3)− x3

A3 = x3

Based on the above, we can compute A1 in the following way:

A1 = x1 ⊕ (x2 ⊕ x3)− (x2 ⊕ x3) = φx1(x2 ⊕ x3)

= φx1(x2)⊕ φx1(x3)⊕ x1.

One could try to securely compute φx1(x2) and φx1(x3) as follows:

φx1(x2) = φx1(x2 ⊕ r) ⊕ φx1(r) ⊕ x1

φx1(x3) = φx1(x3 ⊕ r) ⊕ φx1(r) ⊕ x1.

This means,

A1 = φx1(x2 ⊕ r) ⊕ φx1(r)⊕ φx1(x3 ⊕ r)⊕ φx1(r) ⊕ x1

= φx1(x2 ⊕ r) ⊕ φx1(x3 ⊕ r) ⊕ x1

= ((x1 ⊕ x2 ⊕ r) − (x2 ⊕ r)) ⊕ ((x1 ⊕ x3 ⊕ r)− (x3 ⊕ r)) ⊕ x1.

But we can combine the leakages from x1 ⊕ x2 ⊕ r and x3 ⊕ r to get x1 ⊕ x2 ⊕
x3 = x, inducing a second order attack. Similarly, we can combine the leakages
from x1 ⊕ x3 ⊕ r and x2 ⊕ r to get x1 ⊕ x2 ⊕ x3 = x. Now, let us consider the
case where we use a different random ri for computing each φxi(xj), i.e.

φx1(x2) = φx1(x2 ⊕ r1)⊕ φx1(r1)⊕ x1

φx1(x3) = φx1(x3 ⊕ r2)⊕ φx1(r2)⊕ x1.

This means,

A1 = φx1(x2 ⊕ r1)⊕ φx1(r1)⊕ φx1(x3 ⊕ r2)⊕ φx1(r2)⊕ x1.

Algorithms for Switching between Boolean and Arithmetic Masking 101

Now, when computing A1, regardless of what sequence we choose, we would be
leaking the secret x while combining the results. For example, assume that we
calculate according to the following sequence:

φx1(r1)⊕ φx1(x3 ⊕ r2)⊕ φx1(r2) = φx1(x3 ⊕ r1)

= ((x1 ⊕ x3 ⊕ r1)− (x3 ⊕ r1))

Let us further assume that φx1(x2 ⊕ r1) is calculated as follows:

φx1(x2 ⊕ r1) = ((x1 ⊕ x2 ⊕ r1)− (x2 ⊕ r1))

Then, we can combine the leakages from x1 ⊕ x2 ⊕ r1 and x3 ⊕ r1 to find the
value of x. From this, we conclude that the straightforward application of the
method of Goubin does not work for second order.

4 Second-Order Boolean to Arithmetic Masking

This section addresses the problem of securely converting second-order Boolean
shares to the corresponding arithmetic shares without any second-order or first-
order leakage. To start with, we are given three Boolean shares x1, x2, x3 such
that x = x1 ⊕ x2 ⊕ x3 where x is a sensitive variable. The goal is to find three
arithmetic shares A1, A2, A3 satisfying x = A1 + A2 + A3 without leaking any
information exploitable in a first or second-order DPA attack. We propose two
algorithms to achieve this goal; one is based on Algorithm 1 and the second on
Algorithm 2. Both of our algorithms use the secure S-box output computation
of Rivain et al [21], which simplifies the security proofs.

The first of our variants is given in Algorithm 4; we devised this conversion
by modifying Algorithm 1 appropriately. The algorithm generates two shares
A2, A3 randomly from [0, 2n − 1] and computes the third share via the relation
A1 = (x − A2) − A3. The aim of Algorithm 1 was to output S(x) ⊕ y1 ⊕ y2 as
result. Hence, it computed (S(x1 ⊕ a)⊕ y1) ⊕ y2 for every possible value of the
variable a from 0 to 2n − 1, and then obtained the correct value for the case
a = x2 ⊕ x3. But here, our aim is to compute (x −A2)− A3, which requires us
to modify the table entries to ((x1 ⊕ a) − A2) − A3 so that we can obtain the
correct value when a = x2 ⊕ x3. Note that the subtractions are modulo 2n.

Correctness: When a′ = r, a becomes r ⊕ r′ = x2 ⊕ x3. Thus, T [a
′] = T [r] =

((((x1 ⊕ x2)⊕ x3)− A2)− A3) = (x − A2) −A3, from which follows that A1 =
(x−A2)−A3 and finally x = A1 +A2 +A3.

We devised Algorithm 5 by appropriately adapting Algorithm 2. Again, we
first compute the value of ((x1 ⊕ a) − A2) − A3 for all possible values of a and
store the result in Rb or Rb̄, depending on the return value of compareb. When
a = x2 ⊕ x3, the value of x2 ⊕ a and x3 become equal, hence compareb returns
b. Consequently, the correct value of A1 = (x − A2)− A3 is stored in Rb. In all
other cases (i.e. a 	= x2 ⊕ x3), the value ((x1 ⊕ a)−A2)−A3 is stored in Rb̄.

102 P.K. Vadnala and J. Großschädl

Algorithm 4. Boolean to arithmetic conversion of 2nd order: First variant

Input: Boolean shares: x1 = x⊕ x2 ⊕ x3, x2, x3

Output: Arithmetic shares: A1 = (x− A2)−A3, A2, A3

1: Randomly generate n-bit numbers r, A2, A3

2: r′ ← (r ⊕ x2)⊕ x3

3: for a from 0 to 2n − 1 do
4: a′ ← a⊕ r′

5: T [a′]← ((x1 ⊕ a)− A2)− A3

6: end for
7: A1 = T [r]
8: return A1, A2, A3

Algorithm 5. Boolean to arithmetic conversion of 2nd order: Second variant

Input: Boolean shares: x1 = x⊕ x2 ⊕ x3, x2, x3

Output: Arithmetic shares: A1 = (x− A2)−A3, A2, A3

1: Randomly generate n-bit numbers A2, A3

2: Randomly generate one bit b
3: for a from 0 to 2n − 1 do
4: cmp← compareb(x2 ⊕ a, x3)
5: Rcmp ← ((x1 ⊕ a)− A2)− A3

6: end for
7: A1 = Rb

8: return A1, A2, A3

5 Second-Order Arithmetic to Boolean Masking

In this section, we briefly introduce two algorithms to securely convert second-
order arithmetic shares into the “corresponding” Boolean shares, whereby the
conversion does not introduce any second-order (or first-order) leakage. More
precisely, given three arithmetic shares A1, A2, A3 of a sensitive variable x such
that x = A1 + A2 + A3, both of these algorithms compute the Boolean shares
x1, x2, x3 satisfying x = x1 ⊕ x2 ⊕ x3 without second or first-order leakage.

Algorithm 6 employs a lookup table similar to Algorithm 4. Here, the value
of r′ is (A2 − r) + A3, where r is a random value in the range [0, 2n − 1]. The
table entries corresponding to a′ = a− r′ are now ((A1 + a)⊕ x2) ⊕ x3 instead
of ((x1 ⊕ a) − A2) − A3. Similar to Algorithm 4, the two shares x2 and x3 are
generated randomly from [0, 2n − 1], while the third share x1 is T [r].

Correctness: When a′ = r, a becomes r + r′ = A2 +A3. Thus, T [a
′] = T [r] =

((((A1 + A2) + A3) ⊕ x2) ⊕ x3) = (x ⊕ x2) ⊕ x3, from which follows that x1 =
(x⊕ x2)⊕ x3 and finally x = x1 ⊕ x2 ⊕ x3.

Algorithm 7 shows the other method to convert arithmetic shares of second
order to “equivalent” Boolean shares. Among the three Boolean shares, x2 and
x3 are generated randomly within the range [0, 2n−1]. One of the two registers
R0, R1 serves to store the correct value of x1 and the other is used for storing

Algorithms for Switching between Boolean and Arithmetic Masking 103

Algorithm 6. Arithmetic to Boolean conversion of 2nd order: First variant

Input: Arithmetic shares: A1 = (x− A2)− A3, A2, A3

Output: Boolean shares: x1 = x⊕ x2 ⊕ x3, x2, x3

1: Randomly generate n-bit numbers r, x2, x3

2: r′ ← (A2 − r) +A3

3: for a from 0 to 2n − 1 do
4: a′ ← a− r′

5: T [a′]← ((A1 + a)⊕ x2)⊕ x3

6: end for
7: x1 = T [r]
8: return x1, x2, x3

Algorithm 7. Arithmetic to Boolean conversion of 2nd order: Second variant

Input: Arithmetic shares: A1 = (x− A2)− A3, A2, A3

Output: Boolean shares: x1 = x⊕ x2 ⊕ x3, x2, x3

1: Randomly generate n-bit numbers x2, x3

2: Randomly generate one bit b
3: for a from 0 to 2n − 1 do
4: cmp← compareb(a− A2, A3)
5: Rcmp ← ((A1 + a)⊕ x2)⊕ x3

6: end for
7: x1 = Rb

8: return x1, x2, x3

the incorrect value. The compare instruction compares (a−A2) with A3; when
they are equal, compareb returns b and, thus, the result is stored in Rb. In this
case, the result is the correct value of x1, which means ((A1 +A2 +A3)⊕ x2)⊕
x3 = (x⊕ x2)⊕ x3. Otherwise, the result is incorrect and stored in R′

b.

6 Security Analysis

We first review the security model introduced in [21]. Then, based on the same
model, we present the security proofs of all our four algorithms against second-
order attacks. We assume that the device leaks in the Hamming weight model
(i.e. the leakage is proportional to the Hamming weight of the data processed
on the device). Below we summarize some basic definitions and results that are
used in the proofs for quick reference (partly taken from [21]).

– Sensitive variable: An intermediate variable obtained by applying a certain
function on a known value (e.g. plaintext) and the secret key.

– Primitive random variable: An intermediate variable generated by a random
number generator with uniform distribution.

– Functional dependence: If an intermediate variable is obtained by applying
a discrete function on some other variable X , then it is said to be function-
ally dependent on X . Otherwise, it is functionally independent.

104 P.K. Vadnala and J. Großschädl

– Statistical dependence: If the statistical distribution of an intermediate vari-
able varies according to some other variable X , then it is said to be statis-
tically dependent on X . Otherwise, it is statistically independent.

– Functional independence implies statistical independence, but the converse
is false.

– In second-order DPA, leakages from at most two intermediate variables are
allowed to be exploited simultaneously. So, for a cryptographic algorithm to
be called second-order secure, it is important that every pair of intermediate
variables is statistically independent of any sensitive variable.

– A set of intermediate variables is statistically independent from a variable
X if, and only if, all intermediate variables belonging to the set are statis-
tically independent of X .

– Given two sets A and B, A×B is statistically independent from a variable
X if, and only if, all pairs in A×B are statistically independent of X .

– Lemma 1. For statistically independent random variables X and Y , it holds
that for every measurable function f, f(X) is statistically independent of the
variable Y .

– Lemma 2. Let X and Y be statistically independent random variables where
Y is uniformly distributed, and Z a variable that is statistically independent
of Y and functionally independent of X. In this case, the pair (Z,X⊕ Y) is
statistically independent of X.

Limitations of the Security Proofs: The algorithms in [21], though proven
secure against “standard” DPA attacks, suffer from two problems. Firstly, the
algorithm not using table computations, i.e. Algorithm 2, is only secure in the
Hamming weight model. At COSADE 2012, Coron et al have shown that this
algorithm is not secure when the device leaks in the Hamming distance model
[3]. They also demonstrated that a straightforward conversion of a proof from
the Hamming weight model to Hamming distance model by initializing the bus
(resp. register) with 0 before every write operation has a second-order flaw. As
a consequence, the proof of Algorithm 2 from [21] is not valid anymore in the
Hamming distance model. The conversion of a security proof from one leakage
model to another is still an open issue. Since Algorithm 5 and Algorithm 7 are
similar to Algorithm 2, they suffer from said limitation too. However, a solution
to the conversion problem for Rivain et al’s generic countermeasure for secure
S-box computation would, of course, also apply to our algorithms.

Secondly, some current developments in side-channel cryptanalysis indicate
that masking might succumb to a so-called horizontal side-channel attack (see
e.g. [20,22]). By targeting the table generation phase of a masking scheme, an
attacker may succeed to recover the secret key when the signal-to-noise ratio is
low. However, these attacks are generic in the sense that they are applicable to
essentially any practical masking scheme; our algorithms are no exception. The
problem of securely generating the masked table is still an open challenge and
requires further attention. Any solution to this problem can be readily applied
to our algorithms as well to help them resist horizontal attacks. Hence, despite
these limitations, our algorithms are still practically relevant.

Algorithms for Switching between Boolean and Arithmetic Masking 105

Proposition 1. Algorithm 4 is secure against second-order DPA.

Proof. We follow the notation of [21] for the sake of simplicity. Each interme-
diate variable of the algorithm can be seen as a result of applying the function
Ij on the loop index a. Assume that Iindex = Iindex(a) for 0 ≤ a ≤ 2n − 1 and
I =

⋃num
index=0 Iindex, whereby num specifies the total number of intermediate

variables. We list all intermediate variables used in Algorithm 4 in Table 1.

Table 1. Intermediate variables used in
Algorithm 4

index Iindex

1 x2

2 x3

3 A2

4 A3

5 r
6 r ⊕ x2

7 r ⊕ x2 ⊕ x3

8 a
9 a⊕ r ⊕ x2 ⊕ x3

10 x⊕ x2 ⊕ x3

11 x⊕ x2 ⊕ x3 ⊕ a
12 (x⊕ x2 ⊕ x3 ⊕ a)− A2

13 ((x⊕ x2 ⊕ x3 ⊕ a)− A2)− A3

14 (x− A2)− A3

Table 2. Intermediate variables used in
Algorithm 5

index Iindex

1 x2

2 x3

3 A2

4 A3

5 b
6 a
7 x2 ⊕ a
8 δ0(x2 ⊕ a⊕ x3)⊕ b
9 x⊕ x2 ⊕ x3

10 x⊕ x2 ⊕ x3 ⊕ a
11 (x⊕ x2 ⊕ x3 ⊕ a)− A2

12 ((x⊕ x2 ⊕ x3 ⊕ a)− A2)− A3

13 (x− A2)− A3

We recall that, for an algorithm to be secure against second-order DPA, no
pair of intermediate variables should be statistically dependent on a sensitive
variable. Consequently, we need to prove that I × I is statistically independent
of x. To simplify matters, we divide the set of intermediate variables into three
subsets: E1 = I1 ∪ I2 ∪ . . . ∪ I9, E2 = I10 ∪ I11 ∪ . . . ∪ I13, and E3 = I14. The
objective now is to prove that all possible combinations of these three sets are
statistically independent of x.

1. E1 ×E1: All the intermediate variables in E1 are functionally independent
of x. Hence, E1 × E1 is statistically independent of x.

2. E2 ×E2: It can be seen that I10 = x ⊕ x2 ⊕ x3 is statistically independent
of x. As all elements in E2 ×E2 are functions of I10, it can be inferred that
E2 × E2 is statistically independent of x by applying Lemma 2.

3. E3 ×E3: It is also straightforward to see that E3 × E3 is statistically inde-
pendent of x since x− (A2 −A3) is statistically independent of x.

4. E1 ×E2: E1 is statistically independent of (x2 ⊕ x3) and functionally inde-
pendent of x. According to Lemma 2, E1 × {x⊕ x2 ⊕ x3} is statistically in-
dependent of x. Hence, according to Lemma 1, E1 ×E2 is statistically inde-
pendent of x.

106 P.K. Vadnala and J. Großschädl

5. E1 ×E3: Since E1 is statistically independent of A2 −A3, the combination
E1 ×{x− (A2 −A3)} (i.e. E1 ×E3) is statistically independent of x. As the
pair (x ⊕ x2 ⊕ x3, (x − A2) − A3) is statistically independent of x, it holds
that (I10 ∪ I11 ∪ I12)×E3 is statistically independent of x because all these
can be expressed as a function of (x ⊕ x2 ⊕ x3, (x−A2)−A3).

6. E2 ×E3: We need to prove that I13 ×E3 is statistically independent of x to
establish that E2 × E3 is statistically independent of x. Suppose that v1 =
(x−A2)−A3 and v2 = (x⊕ x2 ⊕ x3 ⊕ a). It can be seen that v1 and v2 are
statistically independent of each other as well as of variable x. We can write
I13 × E3 as {v1 + v2 − x} × v1, which is statistically independent of x.

From all this it can be concluded that Proposition 1 holds.

Proposition 2. Algorithm 5 is secure against second-order DPA.

Proof. Assume that the Boolean function δ0(x) = 0 only when x = 0. So, the
function compareb(x, y) can be represented as δ0(x⊕ y)⊕ b. For Algorithm 5 to
be secure, it is important that the compareb function is implemented in a way
which prevents any first-order leakage on compare(x, y). One such method is
recalled in Algorithm 3 (originally proposed in [21]) and we can construct the
proof on this method. The intermediate variables appearing in Algorithm 5 are
given in Table 2. It can be easily seen that nearly all intermediate variables are
identical to those in Algorithm 4. Thus, we can prove the security of Algorithm
5 by using the same arguments as given in the proof of Proposition 1.

Table 3. Intermediate variables used in
Algorithm 6

index Iindex

1 x2

2 x3

3 A2

4 A3

5 r
6 A2 − r
7 A2 − r + A3

8 a
9 a− A2 + r − A3

10 x− A2 − A3

11 x− A2 − A3 + a
12 (x− A2 − A3 + a)⊕ x2

13 (x− A2 − A3 + a)⊕ x2 ⊕ x3

14 x⊕ x2 ⊕ x3

Table 4. Intermediate variables used in
Algorithm 7

index Iindex

1 x2

2 x3

3 A2

4 A3

5 b
6 a
7 a− A2

8 δ0((a−A2)⊕A3)⊕ b
9 x− A2 − A3

10 x− A2 − A3 + a
11 (x− A2 − A3 + a)⊕ x2

12 (x− A2 − A3 + a)⊕ x2 ⊕ x3

13 x⊕ x2 ⊕ x3

Proposition 3. Algorithm 6 is secure against second-order DPA.

Algorithms for Switching between Boolean and Arithmetic Masking 107

Proof. Table 3 lists all intermediate variables appearing in Algorithm 6. We can
use similar arguments as in Proposition 1 to prove that no pair of intermediate
variables is statistically dependent on x.

Proposition 4. Algorithm 7 is secure against second-order DPA.

Proof. We show all intermediate variables that appear in Algorithm 7 in Table
4. Again, the security proof can be developed similar to the one of Proposition
1, namely by showing that no pair of the intermediate variables is statistically
dependent on x.

7 Implementation Results

We implemented all algorithms from Section 4 and Section 5 in Matlab and in
ANSI C, whereby we only considered the simplest case of converting between
8-bit masks. The Matlab implementation served as a reference for the C imple-
mentation so that we could easily verify the correctness of the latter. We tested
our four algorithm individually using 100,000 pseudo-random inputs and found
that all of them produce the correct result in all cases. The C implementation
generates the random numbers with help of the rand function of the standard
C library1. Although this is sufficient for testing, a real-world implementation
would need pseudo-random numbers of better quality. Furthermore, it should
be noted that we developed all our implementations primarily for the purpose
of having a proof of concept rather than achieving high performance. The im-
plementations can be further optimized, which means the results we report in
this section should be seen as upper bounds of the execution time. Also, if the
conversions are used in real-world applications, one needs to take care that the
compilation process respects the flow of intermediate variables assumed in the
security proofs given in Section 6. If this is not the case, it becomes necessary
to develop an assembly language implementation.

The implementation of Algorithm 4 and Algorithm 6 is straightforward; we
create a table of 256 bytes and, for each of the 256 possible values of a, store
the corresponding entry in a byte. The indexing of the table is done via a′ and
the correct value of the third share is retrieved by accessing the table entry cor-
responding to r. An optimized implementation of Algorithm 5 and Algorithm
7 has to perform the compareb function as efficiently as possible. We used the
following approach to implement this function. First, we create an array of 32
bytes and initialize all the bits to b̄. We treat the array as a collection of 256
bits, all initialized to b̄. Then, for a random value r3, we set the corresponding
bit position in the array to b. Each call to compareb is now simply replaced by a
single look-up into the array. To give an example, compareb(x, y) is obtained
by retrieving the value at the bit position (x ⊕ r3) ⊕ y. The index of the byte
containing the bit can be obtained through a logical right-shift operation. The
bit itself can be extracted from the byte via a shift operation too.

1 On an 8-bit AVR processor, e.g. ATmega128, calling the rand function takes around
800 clock cycles when using the avr-libc library of the WinAVR tool suite.

108 P.K. Vadnala and J. Großschädl

Table 5. Implementation results on an 8, 16 and 32-bit platform

Algorithm Cycles RAM (bytes)

8-bit architecture (AVR)

Algorithm 4 5769 256

Algorithm 5 6742 32

Algorithm 6 5769 256

Algorithm 7 6742 32

16-bit architecture (MSP)

Algorithm 4 4983 256

Algorithm 5 16706 32

Algorithm 6 4983 256

Algorithm 7 16706 32

32-bit architecture (ARM)

Algorithm 4 793 256

Algorithm 5 1087 32

Algorithm 6 793 256

Algorithm 7 1087 32

In order to assess the execution time of the algorithms, we compiled them
for the 32-bit ARM platform as well as the 8-bit AVR platform and performed
simulations with AVR Studio. In addition, we evaluated our four algorithms on
a low-power 16-bit micro-controller, the TI MSP430, with the help of a cycle-
accurate instruction-set simulator. Table 5 illustrates the simulation results we
obtained on these three platforms. The second column of Table 5 specifies the
execution time (in clock cycles) needed to convert an 8-bit mask from one form
to the other. The third column gives the memory (RAM) requirements of the
algorithms in number of bytes. As we can see, the two algorithms using table
look-ups, i.e. Algorithm 4 and Algorithm 6, are faster than the ones which do
not use tables. This is because of the additional time required to evaluate the
compareb function in the case of Algorithm 5 and Algorithm 7. However, both
algorithms based on the table computation method require exactly eight times
more memory than their counterparts.

Note that the execution times of Algorithm 5 and Algorithm 7 obtained on
the 16-bit platform are somewhat misleading. As can be seen from Table 5, the
execution time on the TI MSP430 is by a factor of roughly 2.5 slower than the
time on the 8-bit AVR. This can be explained through the fact that the used
MSP430 processor does not have a barrel shifter, which means a shift operation
by n bit positions takes n clock cycles. On the other hand, the AVR features a
fast barrel shifter able to execute all shift operations in one cycle, irrespective
of the shift distance.

8 Conclusions

In this paper, we addressed the practical problem of converting between second-
order Boolean and arithmetic masking. We introduced two algorithms secure

Algorithms for Switching between Boolean and Arithmetic Masking 109

against second-order attacks for each direction by applying the generic second-
order secure countermeasure proposed by Rivain et al at FSE 2008. The time
complexity of these algorithms is O(2n), where n is the size of the data to be
converted. All algorithms are proven to be secure when the device leaks in the
Hamming weight model. Our implementation results show that the algorithms
without tables require eight times less memory (i.e. RAM) than the table-based
algorithms, but the saving in RAM footprint comes at the expense of increased
execution time. The proposed algorithms become costly when the length of the
data to be converted exceeds 16 bits. As part of our future research, we aim to
improve the efficiency of the conversion methods by devising algorithms with a
better time-memory trade-off.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

2. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999)

3. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Con-
version of security proofs from one leakage model to another: A new issue. In:
Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81.
Springer, Heidelberg (2012)

4. Coron, J.-S., Goubin, L.: On boolean and arithmetic masking against differential
power analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp.
231–237. Springer, Heidelberg (2000)

5. Coron, J.-S., Tchulkine, A.: A new algorithm for switching from arithmetic to
boolean masking. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS,
vol. 2779, pp. 89–97. Springer, Heidelberg (2003)

6. Debraize, B.: Efficient and provably secure methods for switching from arithmetic
to boolean masking. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS,
vol. 7428, pp. 107–121. Springer, Heidelberg (2012)

7. Genelle, L., Prouff, E., Quisquater, M.: Secure multiplicative masking of
power functions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123,
pp. 200–217. Springer, Heidelberg (2010)

8. Genelle, L., Prouff, E., Quisquater, M.: Montgomery’s trick and fast implementa-
tion of masked AES. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011.
LNCS, vol. 6737, pp. 153–169. Springer, Heidelberg (2011)

9. Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel anal-
ysis with additive and multiplicative maskings. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011)

10. Goubin, L.: A sound method for switching between boolean and arithmetic mask-
ing. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
3–15. Springer, Heidelberg (2001)

11. Handschuh, H., Heys, H.M.: A timing attack on RC5. In: Tavares, S., Meijer, H.
(eds.) SAC 1998. LNCS, vol. 1556, pp. 306–318. Springer, Heidelberg (1999)

110 P.K. Vadnala and J. Großschädl

12. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.)
ESORICS 1998. LNCS, vol. 1485, pp. 97–110. Springer, Heidelberg (1998)

13. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

15. Mangard, S., Oswald, M.E., Popp, T.: Power Analysis Attacks - Revealing the
Secrets of Smart Cards, vol. 54, pp. 1–337. Springer (2007)

16. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

17. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

18. Neiße, O., Pulkus, J.: Switching blindings with a view towards IDEA. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 230–239. Springer,
Heidelberg (2004)

19. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA at-
tacks for masked smart card implementations of block ciphers. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006),
http://dx.doi.org/10.1007/11605805_13

20. Pan, J., Hartog, J.I., Lu, J.: You cannot hide behind the mask: Power analysis on
a provably secure s-box implementation. In: Youm, H.Y., Yung, M. (eds.) WISA
2009. LNCS, vol. 5932, pp. 178–192. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-10838-9_14

21. Rivain, M., Dottax, E., Prouff, E.: Block ciphers implementations provably secure
against second order side channel analysis. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 127–143. Springer, Heidelberg (2008)

22. Tunstall, M., Whitnall, C., Oswald, E.: Masking tables—an underestimated secu-
rity risk. In: Moriai, S. (ed.) Fast Software Encryption, 20th International Work-
shop, FSE 2013, Singapore, March 10-13. LNCS, Springer (2013) (Revised Selected
Papers)

http://dx.doi.org/10.1007/11605805_13
http://dx.doi.org/10.1007/978-3-642-10838-9_14

	Algorithms for Switching between Boolean and Arithmetic Masking of Second Order
	1 Introduction
	2 Previous Work
	2.1 Securing Conversions against First-Order DPA
	2.2 Generic Countermeasure against Second-Order DPA

	3 Applying Goubin’s Conversion to Second Order
	4 Second-Order Boolean to Arithmetic Masking
	5 Second-Order Arithmetic to Boolean Masking
	6 Security Analysis
	7 Implementation Results
	8 Conclusions
	References

