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Abstract. The cloud computing revolution has emphasized the need
to execute programs in private using third party infrastructure. In this
work, we investigate the application of One Instruction Set Comput-
ing (OISC) for processing encrypted data. This novel architecture com-
bines the simplicity and high throughput of OISC with the security of
well-known homomorphic encryption schemes, allowing execution of en-
crypted machine code and secure computation over encrypted data.

In the presented case study, we choose addleq as the OISC instruction
and Paillier’s scheme for encryption, and we extensively discuss the archi-
tecture and security implications of encrypting the instructions and mem-
ory accesses. Preliminary results in our implemented hardware–cognizant
software simulator indicate an average execution overhead of 26 times for
1024–bit security parameter, compared to unencrypted execution of the
same OISC programs.

Keywords: Encrypted processor, homomorphic encryption, Paillier,
cloud computing.

1 Introduction

In the modern era of computing, the ability to process encrypted data and exe-
cute encrypted programs is widely regarded as the holy grail of cloud computing
[31,34]. Whether in the form of a private cloud, or in public infrastructures, the
confidentiality of the data or the confidentiality of the algorithm itself are of the
highest value. Contemporary cloud service providers vouch themselves for the
privacy of the user data, as well as the security of the computed results. This is
essentially the only foundation for the users’ trust. Hence, at their current form,
cloud infrastructures are in practice prohibitive for applications where privacy
is mandatory and the risk of compromise is unacceptable.

The latest solution to cloud security issues is to use an encryption scheme in
order to make the private data unreadable by curious entities or even the cloud
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providers themselves. Not all encryption schemes, however, provide the ability
to manipulate encrypted data and then decrypt to something meaningful; this
property is called homomorphism and only specific schemes support it. Until
recently, all known homomorphic encryption schemes supported only specific
manipulations over encrypted data, and the ability to apply arbitrary manip-
ulations remained unsolved. A very important step towards the solution was
made in the recent years with the invention of Fully Homomorphic Encryption
(FHE), and more specifically the Gentry scheme [13,35,37,16]. Since then, there
has been significant progress on the FHE frontier: The authors of [5] propose an
approach for secret program execution, based on fully homomorphic encrypted
circuits. On the theoretical front, the authors of [6] provide theoretical proof of
the correctness of an encrypted processing unit.

While several large corporations, like IBM, invest in such research [7], an
encrypted processor based on FHE is not yet available. Some argue that these
fully homomorphic schemes are not yet practical for everyday use or even for
arbitrary manipulation of encrypted data, due to the tremendous overhead of the
scheme [33,15]. The release of HELib [18,4] is a step towards the reduction of this
overhead. The alternative approach would be to emulate the desired arbitrary
manipulation of encrypted data (which is essentially equivalent to encrypted
computation) using ordinary partially homomorphic encryption schemes, which
are significantly faster and practical, compared to fully homomorphic schemes.

Even though homomorphic encryption seems to be very promising, none of
the existing computer architectures can leverage the power of developed homo-
morphic schemes. A major reason for this is that existing computer architectures
(including both RISC and CISC) are in fact designed towards efficiency and speed
and not towards the security of the computation. Therefore, architecture speci-
fications need to be redefined to include the security of computation.

To address this problem, our contribution in this paper is a novel idea for
an encrypted computer architecture, able to perform arbitrary computation on
encrypted data, using encrypted instructions, and thus preserving the security
and privacy of both the data and the algorithm. The proposed solution in this
paper is based on a Turing complete flavor of a One Instruction Set Computer
(OISC) [25,22]. OISC architectures are very appealing for computation of en-
crypted data, since the stripped design provides great flexibility to incorporate
support for homomorphic encryption. Without loss of generality, in this work
we focus on addleq-based OISC [27,11], which requires a basic computational
unit that supports the addition operation. This requirement drives the selection
of an additive homomorphic encryption scheme as our candidate method for
protecting data and program instructions.

To the best of our knowledge, this is the first effort towards an encrypted
computer architecture that can be used in practice and is not based on the very
expensive fully homomorphic encryption schemes. We combine the simplicity
and high-throughput of OISC with an effective partially homomorphic encryp-
tion scheme, as presented in Section 2. Section 3 describes the architecture of the
proposed addleq computer in the encrypted domain as well as theoretical and
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practical design considerations. The rest of this paper is organized as follows:
Section 4 presents technical details and our experimental setup, while Section 5
provides performance results of the proposed solution. Section 6 features a dis-
cussion on the security properties of the proposed solution and future directions,
followed by conclusions in Section 7.

2 The OISC Architecture

One Instruction Set Computers (also called Ultimate RISC computers) are ar-
chitectures that support only one instruction. A careful selection of the afore-
mentioned instruction can provide OISC architectures the capability of Turing–
complete computation [12]. OISC computers are very simple but powerful; given
their clean design and high throughput at certain configurations [26], they can
be proper alternatives to ordinary RISC computers. In addition, having a single
instruction renders the instruction operation code unnecessary, and thus only
the instruction arguments are required to define a meaningful OISC program.

There are several types of OISC computers, depending on the single instruc-
tion supported. Common Turing–complete variants include the following: Re-
verse subtract and skip if borrow, Subtract and branch unless positive, Plus one
and branch if equal and Add and branch unless positive. While these variants are
seemingly different in terms of the operations performed by the single instruc-
tion, they share a common pattern: a simple mathematical operation (addition
or subtraction) between instruction arguments, followed by a binary decision
based on a condition. This straightforward format, as well as the existence of a
single addition or subtraction, makes these OISC variants an excellent match to
homomorphic encryption schemes, which are capable of preserving these math-
ematical operations in the encrypted domain.

In order to demonstrate how the OISC architecture can be modified to support
encrypted data and encrypted instructions (using homomorphic encryption), and
in order to investigate potential design or security issues, we focus on the addleq
variant. Addleq’s single instruction has three arguments (namely A, B and C)
and is defined as follows:

1. add the contents of two memory locations defined by arguments A and B,
2. put the results of the addition in the memory location defined by B, and
3. if the result of the addition is not positive, then jump to the instruction that

starts at the memory location determined by argument C of the current
instruction.

More formally, addleq performs the following:

Mem[B] = Mem[B] + Mem[A];

if Mem[B] ≤ 0 then goto C

else goto next instruction

From the description above, there are three important observations about
addleq:
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(a) addleq uses indirect addressing (i.e. instruction arguments are the memory
addresses of the memory contents to be added, and the arguments are not
actually added themselves),

(b) each instruction requires comparison with zero and
(c) arguments A, B and C should be grouped together.

2.1 Benefits of Using OISC

A major challenge towards an efficient architecture that processes encrypted
data is the privacy of the algorithm and the instructions. Depending on the
key, the encryption of the same instruction would be different each time. This
means that any implementation of an encrypted computer (either in hardware
or in software) would always require the decryption key in order to decrypt the
instruction operation code (opcode) in order to decide what is the next operation
(for example, to determine if the next instruction is a read, write, add etc).
Providing the decryption key, however, defies the purpose of requiring encrypted
computation.

The major contribution of this paper is the use of an OISC architecture to
solve this problem; the benefit of this approach is that any implementation of
the encrypted computer would not be required to decrypt the opcode of the
next instruction: All instructions are the same and only the instruction argu-
ments would be different (and still encrypted). Essentially, this proposed solution
overcomes the problem of how to discriminate different instructions, while hav-
ing the entire program in encrypted format. An attacker that may try to guess
the algorithm (i.e. the instruction stream) being executed in the ultimate RISC
computer, would gain no information, since all instructions are the same and the
instruction arguments are already encrypted.

One may envision this architecture, as a standard Harvard architecture, where
the instruction memory only contains the instruction arguments in encrypted
format (no opcodes are required, since we only have a single instruction code),
and a data memory that also contains encrypted data. This idea, however, also
works if the architecture uses a unified memory where instruction arguments
and data coexist and the code is self-modifying (i.e. instruction arguments and
data are treated indistinguishably and instructions are allowed to modify other
instruction arguments as well as data). Before analyzing the encrypted addleq

architecture any further, however, it is necessary to provide basic background
information on the homomorphic encryption scheme that is used to protect the
privacy of the program data and instructions.

2.2 Homomorphic Encryption Background

Any encryption scheme that allows applying a specific function on encrypted
data, so that the output of the function is an encryption of the result that
comes from applying the same function directly on unencrypted data, is called
homomorphic [23,36]. Essentially, the homomorphic property allows applying a
function after encrypting the data, and the decryption of the result equals the
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output, if the function was applied on plaintext data. Some existing encryption
schemes that support homomorphic properties are the following [14]: the RSA
scheme [32], the El Gamal scheme [10], the Paillier scheme [30], the Goldwasser-
Micali scheme [17], as well as recent schemes such as the Gentry scheme [15] and
variants like the BGV scheme [4] and others [13,35,37].

From those schemes above, some of them only support a single function (ei-
ther addition, or multiplication but not both) and are referred to as partially
homomorphic, while only the Gentry scheme (and its variants) support both ad-
dition and multiplication and are referred to as fully homomorphic. The schemes
that support a single function are either additive homomorphic (like Paillier and
exponential El Gamal [8,24]) or multiplicative homomorphic (like RSA, standard
El Gamal etc). Informally, this means that the applied function yields an output
that is a preimage of the addition of the plaintexts (for the additive case) or
a preimage of the product of the plaintexts (for the multiplicative case). More
formally, homomorphism is defined as follows [23]:

Encrypt[m1] �Encrypt[m2] = Encrypt[m1 ◦m2] (1)

where (◦) usually is addition (+) or multiplication (∗) depending on the scheme.
In this paper, without loss of generality, we focus on addleq OISC, which

uses the addition operation for the purposes of performing arbitrary compu-
tation. Addition operation in the encrypted domain is supported by partially
homomorphic schemes like the Paillier and exponential El Gamal schemes, as
well as fully homomorphic variants of the Gentry scheme. As mentioned earlier
in this paper, because fully homomorphic schemes have tremendous overheads
(several orders of magnitude [15,33]) and since the exponential El Gamal scheme
suffers from high decryption overhead [8,24], we focus on the Paillier encryption
scheme.

2.3 Paillier Scheme

The Paillier scheme is the first efficient additive homomorphic scheme [30]. The
Paillier scheme is based on the decisional composite residuosity assumption,
which states the following:

Given a composite number n and an integer z, it is hard to decide whether
there exists y such that

z ≡ yn (mod n2) (2)

The Paillier scheme is a public key cryptographic scheme and is defined as
follows [23]:

Let p and q be two large prime numbers of equal length, randomly and inde-
pendently chosen of each other, and n = pq the product of these numbers (where
log2 n is the security parameter of the scheme); the knowledge of p and q would
be part of the private key and n would be part of the public key. In addition, let

φ(n) = (p− 1)(q − 1) (3)
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be Euler’s Totient function for n. Then, using the Paillier scheme, the encryption
of a plaintext message “m”, and the decryption of ciphertext “c” are defined as
follows:

Encrypt[m] = (n+ 1)m ∗ rn (mod n2) (4)

for random r in the multiplicative group Z
∗
n.

Decrypt[c] =
(cφ(n) (mod n2))− 1

n
φ(n)−1 (mod n) (5)

where φ(n)−1 is the modular multiplicative inverse of φ(n) in Z
∗
n.

The scheme supports the following additive homomorphic properties:

Encrypt[m1] ∗ Encrypt[m2] = Encrypt[m1 +m2 (mod n)] (6)

which essentially means that the multiplication of the encryptions of two mes-
sages is a preimage of the encryption of the addition of these messages. Therefore,
the encryption of the sum of two plaintexts equals the result of multiplying the
ciphertexts.

3 Addleq in the Encrypted Domain

As already discussed in the introduction section of this paper, our goal is to
define an architecture for a computer that is capable of performing computa-
tions on encrypted data, as well as executing encrypted instructions, in order to
protect the privacy of the algorithm and the program itself. We investigate an
architecture that exploits the simplicity of addleq OISC computer as well as the
additive homomorphic properties of the Paillier encryption scheme.

3.1 Basic Components of the Design

A starting point in designing an encrypted addleq computer would be to deter-
mine all necessary components. Since addleq supports self–modifying code by
design, a single main memory is necessary. This main memory would contain
both data and instructions, and would incorporate a memory control unit re-
sponsible for addressing, as well as for reading and writing bytes. In addition,
the design should have an ALU unit, that will be used for performing modular
multiplication in the encrypted domain (equivalent to normal addition in the
unencrypted domain). Program execution is controlled by a control finite state
machine (FSM) responsible for execution and fetching operations, as well as the
program counter. For storing memory data and addresses, a temporary register is
also necessary. Since addleq needs to branch if the ALU output is not positive,
a sign identification unit is required as well.

These basic components are presented in Fig. 1 and the addleq datapath is
described in Section 3.2.
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Fig. 1. Basic components and datapath of the addleq OISC computer

3.2 Addleq Datapath

The datapath of addleq is inherently simple, as seen in Fig. 1. In order to execute
a single addleq instruction (that has three arguments), these steps are followed:

i. Initially, the program counter address is used to read from main memory and
the returned value is stored to the temporary register (fetching of argument
A).

ii. The contents of temporary register are used as the address sent to main
memory for reading, and the returned value is stored back to the temporary
register (fetching of memA, which is the ALU input referenced in memory
by argument A).

iii. Through a demultiplexer controlled by the control FSM, the contents of the
temporary register are stored in the first input register of the ALU.

iv. The program counter value goes through the increment unit and a multi-
plexer, and the address of the next memory location is written back to the
program counter.

v. The program counter address is used to read from main memory and the
returned value is stored to the temporary register (fetching of argument B).

vi. The contents of the temporary register are used as the address sent to main
memory for reading, and the returned value is stored again to temporary
register (fetching of memB, which is the ALU input referenced in memory
by argument B).

vii. Through a demultiplexer controlled by the control FSM, the contents of the
temporary register are stored in the second input register of the ALU.

viii. The modular multiplication ALU uses the two register inputs and generates
a result that is then sent back to the temporary register as well as to the
sign identification unit.

ix. The contents of the temporary register are sent to the main memory to
be stored at the same location where memB was fetched from, as the pro-
gram counter still points to that address (location referenced in memory by
argument B).
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x. The program counter value goes through the increment unit and a multi-
plexer, and the address of the next memory location is written back to the
program counter.

xi. The program counter address is used to read from main memory and the
returned value is stored to the temporary register (fetching of argument C).

xii. The sign identification unit determines if the last ALU result is positive and
configures the program counter multiplexer. The program counter value goes
through the increment unit and the multiplexer selects between the incre-
mented program counter and the contents of the temporary register (essen-
tially argument C) and the selected value is written back to the program
counter.

3.3 Design Challenges

Encrypted Memory Addressing. Since instruction arguments and data are
in a unified memory, then memory addressing should also be encrypted. Instruc-
tion arguments and program counters would obviously require to reference data
locations or other arguments (for self-modifying code, as discussed in Section
2.1), and the same program should be oblivious of the encryption key (i.e. every
encryption of the instruction arguments and the data should be able to refer-
ence any memory location). Since any implementation of the encrypted computer
would not have access to the decryption key, the architecture should work on en-
crypted memory addressing. Our proposed architecture, however, also addresses
this concern and allows encrypted addressing and encrypted program counters.

Matching Instruction Arguments. Porting addleq to the encrypted do-
main, raises another issue: Since addleq uses a single memory space for instruc-
tion arguments and data (indistinguishable to each other), it is required to match
arguments A, B and C. This issue can be solved by storing inside the program
memory the encryptions of each element (either instruction argument or datum)
along with the encrypted address of the next encrypted element. Essentially,
each element also points to the next one, by using encrypted references.

For example, without loss of generality, we assume that the program counter
contains the encrypted address of a memory location that contains instruction
argument A and the encrypted address of the next element (i.e. the address
of instruction argument B). The addleq computer retrieves from memory the
contents of the memory location pointed by argument A and then the program
counter loads the encrypted address of the next element. The addleq computer
then retrieves the memory contents pointed by argument B similarly. The addleq
ALU multiplies the retrieved memory contents (pointed by arguments A and B)
and if Paillier encryption has been used, due to additive homomorphism this
corresponds to simply adding these two values in the unencrypted domain. The
result is stored to the memory location pointed by argument B, and the addleq
computer decides if a branch is required or not. If a branch is required, the
program counter becomes equal to argument C, otherwise the program counter
becomes equal to the address of the next argument.
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Fig. 2. Overflow correction for homomorphic addition of representations of negative
numbers

Addition Overflow Detection. In this paper, for our addleq case study, we
are investigating 16–bit memory addressing for the unencrypted programs. This
implies that the size of each memory location would be 16 bits, equal to the size
of a memory address. For representing negative numbers, the standard two’s
complement approach is used and the proposed range of supported numbers is
set from −215 to (215 − 1). One reason why the use of two’s complement to
represent negative numbers is mandatory, is the fact that Paillier’s scheme only
supports the encryption of positive values (for example, using two’s complement
for a range of 216 numbers, it means that –1 is represented as (216 − 1)).

Due to subtle homomorphic addition properties, however, adding the represen-
tations of two negative numbers in the encrypted domain, would cause a result
out of range. For example, adding –42 with –1, which corresponds to adding
(216 − 42) with (216 − 1), would result to the encryption of (217 − 43) instead
of the encryption of (216 − 43) (the representation of signed number –43). This
inconsistency occurs because in the encrypted domain the range of numbers is
much higher (e.g. with 1024–bit security parameter size, the encrypted range is
2048 bits), compared to 216 in the unencrypted domain. The issue is addressed,
however, by homomorphically subtracting the encryption of 216 (or equivalently,
by adding the modular multiplicative inverse of the encryption of 216, which is
always the same and can be precomputed) to get the correct result (i.e. (216−43)
in the previous example). An elaboration of this example is shown in Fig. 2.

In order to detect an overflow, an overflow lookup table is introduced. This
lookup table matches the encryption of numbers from 0 to (217−1) with one bit
that indicates “over (216−1)” or “not over (216−1)”. If the ALU result matches
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Fig. 3. Percentage of encryption keys with 0% collisions in 217 encryptions for given
memory addressing sizes

a value in this overflow lookup table, then a correction by “subtracting” 216 is
performed.

Memory Addressing Size. Given a security parameter of 1024 bits and en-
crypted memory addressing, the actual implementation of the proposed archi-
tecture would require memory addresses of 2048 bits, as shown by Eq. 4. Such
memory, besides its prohibitive cost, is also unnecessary as in the unencrypted
domain we only need 16-bit memory addressing. In this work, we propose to use
a fraction of this 2048 bit address to successfully identify the requested memory
address. Specifically, we seek to identify how many bits are required to dis-
criminate memory addresses with high probability and for a high percentage of
different encryption keys. As previously discussed, for 16–bit memory addressing
in the unencrypted domain, a total of 217 unique encryptions are addressed in
the overflow lookup table, while up to 216 unique encryptions are addressed in
the main program memory.

Fig. 3 demonstrates the number of memory address bits required to discrim-
inate the maximum number of unique encryptions (i.e. 217) with 0% collisions,
for several encryption key sizes (i.e. security parameter sizes). Depending on
the Paillier encryption security parameter size, the actual encrypted values have
twice as many bits (e.g. for 256–bit security parameter, the encrypted value is
512 bits). As the diagram demonstrates, if we use memory addresses of 22 bits,
we can accommodate all 217 different encryptions for at least 90% of the encryp-
tion keys used (the analysis is based on a random sample of 100 keys for each key
size, and for confidence level 95% the confidence interval is ≤ 9.8). Of course, in
this case there is about 10% probability that this addressing size would not be
enough for a specific encryption key, and in this scenario memory re-encryption
with a different key would be required.
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Fig. 4. High level view of additional units of the addleq encrypted computer to address
sign identification and overflow detection in the encrypted domain (security parameter
1024–bits)

Jump Decisions in the Encrypted Domain. An additional problem, al-
ready mentioned in the previous paragraphs, is the problem of determining if
the result of the ALU modular multiplication is less than or equal to zero (i.e.
not positive). Since the computation is performed on encrypted data, there is no
straightforward way of comparing an encrypted value with zero without decrypt-
ing it. There are proposed schemes that allow order-preserving encryption [1],
but these schemes are not additive homomorphic and the Paillier scheme is not
order-preserving either. Furthermore, if an encryption scheme allows comparing
an encrypted value with zero, this would automatically allow decryption, sim-
ply by doing a bit–by–bit binary search. To solve this problem, in this work we
propose the use of a sign lookup table that contains that mathematical sign for
the encryptions of a range of numbers. Essentially, this table matches encrypted
values with the sign of the corresponding decryptions.

The proposed sign lookup table provides matching for the encryptions of
16-bit values with the corresponding sign (0 for less or equal zero, 1 for positives).
In theory, this lookup table would requirememory address size equal to the encryp-
tion of each number in range from 0 to (216 − 1), which depending to the Paillier
security parameter may be up to 2048 bits long. Instead, we propose a trunca-
tion down to 22 bits (similar to the overflow lookup table addressing truncation
described earlier), since as seen in Fig. 3 this is sufficient for discriminating 217

different values for the vast majority of different random encryption keys.
Fig. 4 features a high level view of the encrypted addleq architecture, including

the additional sign and overflow lookup memories.

Memory Space Requirements. From the above description it becomes ev-
ident why a limitation in the possible encrypted values is required. Allowing
216 possible values to be encrypted, ultimately requires two additional memo-
ries (sparsely filled) of 22 bit address size each, to support the encrypted addleq
functionality. So, the addleq main memory (the one that contains encrypted
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instruction arguments and data) can only contain the encryptions of values up
to (216 − 1), as well as addressing for up to (216 − 1) instruction arguments.
This is not a significant problem, however, since addleq programs by nature use
larger values progressively as the program size increases, and the vast majority
of programs can easily fit in this proposed range.

In addition, it should be stressed out that the main memory of addleq needs to
have adequate size to fit the encryptions of data, as well as instruction arguments
A, B and C, along with the truncated address for the next element; in practice,
if the Paillier security parameter is 1024 bits (so each encrypted value would be
2048 bits), and the additional bits for the truncated address of the next element
are 22, this adds to 2060 bits in each memory line (each line is addressed with 22
bits). In order to execute encrypted programs, the owner of the program should
encrypt (using Paillier’s scheme) the main program memory (which is given by
the compiler of the addleq assembly), as well as provide the two mandatory
lookup tables for signs and overflows; all three memories are specific to the
encryption key used each time.

4 Experimental Setup

In order to evaluate the performance of the proposed architecture, a simulator
of the proposed encrypted addleq architecture has been developed. All experi-
ments were performed using Python 2.7.4 on a virtual 64–bit Ubuntu 13.04 host
running at 2.6GHz (2 ∗ i7–3720QM Intel cores) with 2GB of memory. For the im-
plementation of Paillier’s homomorphic encryption scheme, an openly available
educational Python library from [21] was used.

For our experiments, four addleq assembly programs have been used from
[27]; these programs are written directly in assembly language and after being
converted to machine code, they have been homomorphically encrypted for exe-
cution in the simulator (using different security parameter sizes). Furthermore,
for hardware performance figures, we assumed a hardware implementation run-
ning at 200MHz (for example, in an FPGA) and the following estimates have
been used:

(a) memory access delay has been estimated to less than 100ns [19] for memories
up to 16GB (which corresponds to 20 clock cycles at 200Mhz),

(b) modular multiplication has been estimated to (h + 3) cycles for argument
size h [9] (which corresponds to 2051 clock cycles for 2048–bit arguments
using security parameter n = 1024 bits) based on Montgomery algorithm
[29,2,28], and

(c) addition (using Kogge-Stone fast adder design) for 16–bit unencrypted argu-
ments (used for comparison) is estimated to 6ns [20] (which requires 2 clock
cycles at 200Mhz) .
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Table 1. Simulated execution clock cycles (security parameter 1024 bits)

Benchmark Unencrypted Encrypted Overhead

Program 1 4.44 ∗ 105 1.35 ∗ 107 30 x
Program 2 6.28 ∗ 105 1.67 ∗ 107 27 x
Program 3 3.78 ∗ 102 6.99 ∗ 103 19 x
Program 4 4.10 ∗ 104 1.09 ∗ 106 27 x

Table 2. Average overhead for different security parameter sizes

Security Average
Parameter Overhead

32 bits 3 x
64 bits 4 x
128 bits 5 x
256 bits 8 x
512 bits 14 x
1024 bits 26 x

5 Results

As a proof of concept, preliminary results generated using the developed simula-
tor are presented in Tables 1 and 2. The simulator is parameterized to compare
the performance of normal (unencrypted) addleq with the performance that
our proposed encrypted addleq design would have had in a standard FPGA
running at 200MHz, using the figures presented in Section 4. Even though mem-
ory access times are not affected by different security parameter sizes, modular
multiplications have different delays, depending on the size of the arguments.
Table 2 presents the average (over all four assembly programs used) encrypted
execution overhead depending on the security parameter size. The results show
that as the security parameter size increases, the impact of the modular multi-
plication operations in the encrypted OISC computer becomes higher, and the
overall overhead is 26 times for security parameter 1024 bits.

Table 1 provides information on the number of clock cycles required for en-
crypted program execution, compared to unencrypted execution. These results
indicate that encryption requires about 2 orders of magnitude more clock cycles,
primarily due to the multicycle ALU operations and memory lookup operations.

6 Discussion on Security

The proposed encrypted computer is designed to solve the problem of execut-
ing programs and manipulating data in the cloud. It is designed to address honest



34 N.G. Tsoutsos and M. Maniatakos

but curious cloud service providers that would support the proposed architecture
but may try to look inside the processor. Our goal is to protect the confidentiality
of the execution steps as well as the data.

The security of the system is based on the security assumptions of the Paillier
scheme; the proposed architecture works with any program that is the result
of addleq assembly compilation. However, since the Paillier scheme is a proba-
bilistic scheme, it incorporates a random helper value “r” in the encryption of
each plaintext. This helper value is necessary in order to have different encryp-
tions each time, for the same plaintext, and essentially have semantic security in
the cryptographic sense of Indistinguishability against Chosen Plaintext attacks
(IND-CPA) [23]. OISC computers, however, cannot be probabilistic; it would
not be possible to construct an OISC computer where the same plaintext has
different encryptions, all at the same time: when that computer generates a re-
sult that would be used as a reference to a memory location, this reference always
needs to be the same, since there would be only one actual location in memory.
So, it is not possible to use Paillier homomorphic encryption in a probabilistic
fashion, since intermediate values computed by addleq, to be used as memory
address references, should always be the same.

In practice, this last observation means that for our proposed encrypted
addleq architecture, the used Paillier’s scheme implementation has to be slightly
modified in order to produce the same encrypted value for the same input (i.e.
become partially deterministic). In theory, this essentially makes the processor
susceptible to Chosen–Plaintext Attacks (i.e. the semantic security property is
partially lost), and the scheme has the same security properties as textbook RSA
[3,23], which is also semantically non-secure. However, the threat of a Chosen–
Plaintext Attack is not a major concern in our context of cloud computing, since
the encryption of all values is performed by the program owner who knows all
public key parameters (as well as private key parameters) to be able to encrypt
arbitrary values; using Paillier’s encryption, only the value of n (which is one
half of the public key) is required by the addleq computer ALU to perform mod-
ular multiplication, and only this half needs to be revealed (in the currently
used Paillier’s scheme implementation, the second half of the public key is cor-
related with the first half, however, in general uncorrelated halves can be used
as well). Thus, no third party or even the cloud provider has access to the entire
public key in order to calculate encryptions of known values, and to launch a
Chosen–Plaintext Attack to the processor and the encrypted memory contents.

Another concern comes from the fact the program owner provides 2 lookup
tables with information about the sign of 216 encrypted values as well as informa-
tion if an encrypted value is larger or smaller than 216. In the strict cryptographic
sense, the first lookup table reveals 1 bit of the plaintext and the second table
also reveals “some” information. However, the information revealed in indeed
very little, compared to the entropy of the encrypted value, and in practice the
confidentiality of the information is not threatened. Of course revealing even
1 bit is less than optimal, but any Turing complete computer needs to make
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runtime decisions, and in this case we use the minimum amount of information
to perform this mandatory task.

Finally, one concern relates to the order with which the encrypted instruc-
tion arguments are provided. If these arguments are given in sorted ordering, an
attacker could guess the program counter sequence and thus launch a Chosen–
Plaintext Attack. This means that if the program counter starts from (encryp-
tion of) address 0x0000 for argument A and then goes to (encryption of) address
0x0001, an attacker could potentially guess this and find the encryption of plain-
text “1” and ultimately generate a codebook (using homomorphism, the attacker
finds 1 + 1, 1 + 1 + 1 etc). To prevent this, the proposed architecture supports
“spaghetti” memory: having that each memory location is accompanied by a
reference to the next address, these addresses can be randomly chosen, without
loss of generality. Essentially, the program can start from (encryption of) ad-
dress zero and jump to random locations in a spaghetti code fashion; the trail is
preserved since each location points to the next one, but this looks unintelligible
to any third–party observer.

6.1 Future Directions

In this work we present a novel approach to solve the problem of encrypted com-
putation for protecting the confidentiality of the program and the data. Without
loss of generality of the proposed solution, we use a publicly available implemen-
tation of Paillier’s scheme in Python [21]. Because this particular implementation
is not recommended for “production” use (due to the quality of prime numbers
generated and the randomness sources used), future work will include crypto-
graphically safe implementations of Paillier’s scheme. Our proposed architecture
would work with any other implementation of the Paillier’s encryption scheme,
provided that the implementation is slightly modified to use deterministic en-
cryptions (i.e. for a specific plaintext, the same helper value r is used each time,
instead of a random one each time).

In addition, in this paper, for simplification of a certain subtleties of ho-
momorphic multiplication, the same r value was used for every plaintext. The
proposed architecture, however, supports having a different helper value r for
each different plaintext, with minimal modifications; this option, that provides
extra security, would be explored in future work.

Future directions also include exploring other OISC variants, like subleq;
using a different variant requires only minor technical modifications, as the
proposed architecture is generic. Furthermore, performance improvements us-
ing cache memories, pipelining and incorporating more than one execution units
are also part this continued investigation. A hardware implementation of the
proposed architecture would provide more conclusive performance figures.

7 Conclusion

In this paper we presented a novel idea for an encrypted computer architec-
ture, capable of performing computations on encrypted data as well as executing
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encrypted programs written in addleq machine code. Our key contribution is a
new design that combines OISC computer design with homomorphic encryption,
which is an important step towards achieving privacy in cloud computing. Ex-
perimental results corroborate that the proposed architecture has the potential
to be an effective solution, incurring an average overhead of 26 times compared
to unencrypted OISC computation.
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