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Abstract. Skyline queries retrieve the most interesting objects from
a database with respect to multi-dimensional preferences. Identifying
and extracting the relevant data corresponding to multiple criteria pro-
vided by users remains a difficult task, especially when the dataset is
large. EC2Sky, our proposal, focuses on how to answer efficiently sky-
line queries in the presence of dynamic user preferences and despite large
volumes of data. In 2008-2009, Wong et al. showed that the skyline asso-
ciated with any preference on a particular dimension can be computed,
without domination tests, from the skyline points associated with first
order preferences on that same dimension. Consequently, they propose to
materialize skyline points associated with the most preferred values in a
specific data structure called IPO-tree (Implicit Preference Order Tree).
However, the size of the IPO-tree is exponential with respect to the num-
ber of dimensions. While reusing themerging property proposed by Wong
et al. to deal with the refinements of preferences on a single dimension,
we propose an incremental method for calculating the skyline points re-
lated to several dimensions associated with dynamic preferences. For this
purpose, a materialization of linear size which allows a great flexibility
for dimension preference updates is defined. This contribution improves
notably the execution time and storage size of queries. Experiments on
synthetic data highlight the relevance of EC2Sky compared to IPO-Tree.

1 Introduction

Skyline queries represent a powerful tool for decision-making. Such queries aim
at retrieving the most interesting objects from a database with respect to given
criteria. In a multidimensional space where the dimension domains are ordered,
skyline queries return the points which are not dominated by any other point. A
point p dominates a point q if p is strictly better than q on at least one dimension
and p is better or equal than q on the remaining dimensions. Identifying and
extracting relevant data is often a difficult task especially when dealing with
large volumes of data that can be compared according to many criteria. Several
studies [15, 20, 22, 24, 18, 11, 10, 4] were carried out on skyline analysis as
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a retrieval tool in a decisional context. Skyline queries can formulate multi-
criteria queries [16] and obtain the top answers, for example to find the cheapest
hotels close to the beach. In the 60s, the search for skyline points was known as
the problem of finding admissible points [3] or maximum vectors [2] or Pareto
sets. These algorithms have been proved to be ineffective in the case of large
databases with many points and many dimensions. Moreover, most of the work
mentioned above assume that there exists a predefined order on the domain of
each dimension.

An interesting problem arises when users are allowed to define or to change
their own preferences online. Thus, on some dimensions the order may change
dynamically. This problem is challenging when there are many data points in
the dataset and it has attracted the attention of recent work [20, 22]. In fact, the
skyline evolves when the preferences change. A naive solution is to recalculate the
skyline from scratch for each dynamic preference that has changed. However, it
is too expensive on large databases of high dimensionality. The challenge is thus
the following: how to efficiently recalculate the least amount of skyline points
while minimizing the required memory space.

The solutions proposed by Wong et al. in [22, 20] develop semi-materialization
methods to support online query answering for skyline queries involving dynamic
preferences. Precisely, the authors of [20] introduced the concept of n-th order
preference. They showed that the skyline associated with any preference on a
particular dimension can be computed from first order preferences on that same
dimension. Relying on this merging property, they propose to materialize the
skyline associated with first order preferences in a specific data structure, called
IPO-tree, to speed up online query computations. However, to cope with the
multiple dimension case they propose to store every possible combination of first-
order preferences in an IPO-tree and, so, the size of an IPO-tree is inO(cm) where
m is the number of dimensions with dynamic preferences and c the cardinality
of a dimension. In the context of large volume of multidimensional data, this
can be intractable. In [22], Wong et al. propose another structure, called CST
(Compressed ordered Skyline Tree), to materialize all possible preference orders.
However, this method turns to be incomplete and very complex and, so, it cannot
be used. An erratum will be published in [21] for this issue.

The merging property of Wong et al. works on one dimension at a time and,
thus, is of limited interest. We investigate the case of an arbitrary number of di-
mensions. Our proposition, EC2Sky, focuses on how to answer efficiently skyline
queries in the presence of several dynamic user preferences despite of large vol-
ume of data. This work improves and extends the contribution presented in [5].
Indeed, we extend the related work, introduce three new algorithms related to
the EC2Sky approach, prove the consistency and completeness of the EC2Sky
theorem, and conduct new extensive experiments on large-scale datasets with
higher cardinality dimensions and higher dimensional space than the latest ex-
periments presented in [5].

The main idea relies on the incremental addition of dynamic dimensions when
computing the skyline. As a side effect, EC2Sky can return the most relevant
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knowledge by emphasizing the compromises associated with the specified prefer-
ences. The benefits of this proposition are twofold. On the one hand, complexity
in space of the materialization of precomputed skyline reduces to O(c∗m) where
m is the number of dimensions and c is the size of dimension domains. On the
other hand, the number of dominance tests decreases significantly. Some extra
memory space and additional runtime is needed to compute skyline related to
first-order preferences with respect to Wong et al.’s method. But we proved ex-
perimentally that the total computation cost is much lower than in Wong et al.’s
method. This contribution enables an incremental computation of skyline points
associated with a set of preferences as well as make the interactive modification
of preferences easier.

The rest of the paper is organized as follows. In Section 2, we discuss related
work on the problem of searching skyline points in the presence of dynamic
preferences. In Section 3, we introduce the basic concepts related to skyline
queries and dynamic preferences. We develop the formal aspects of our new
approach EC2Sky in Section 4 and present its implementation in Section 5.
In Section 6, we present the results of the experimental evaluation performed
on synthetic datasets and highlight the relevance of the proposed solution by
comparing it to references in the field. We conclude the paper in Section 7.

2 Related Work

Much work has been done on skyline computation. Börzsönyi et al. [4] first
investigate and introduce the skyline computation problem in the context of
databases, and also propose a block-nested loops (BNL) method and a divide-
and-conquer method. Since this pioneering work, many algorithms have been
developed for efficient skyline computation. Especially, index-based techniques
were proposed in several works to further accelerate skyline queries. The first
skyline algorithm incorporated with B-tree or R-tree indexes is proposed in [4].
Then, two progressive processing methods, Bitmap and Index, were proposed in
[17]. Skyline queries have been studied in different computational environments,
such as full-space skyline retrieval [8, 9, 13, 23] which computes the skyline in a
space of a fixed dimensionality, or subspace skyline retrieval [15, 14, 10, 11, 24]
where different users may issue skyline queries regarding different subspaces of
different dimensions. Skyline queries have also been investigated with various
constraints as ranking skyline [18, 6] that enables the user to retrieve the top-K
skyline points instead the whole skyline, or metric skyline [7] which retrieves
skyline points with dynamic dimensions in the metric space. There have been
a considerable number of methods on skyline computation in the context of
databases with totally ordered dimensions. However, in real applications, data
may include dimensions that are partially ordered in nature, such as categorical
(i.e. nominal) dimensions, etc. Some recent studies consider partially ordered
dimensions on skyline computation [1], and provide a way to verify dominance
among incomparable points over the partial order.
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However, most of the work mentioned above assume that there exists only
one predefined order on the domain of each dimension. In particular, users can-
not express online preferences between dimensions nor customize the preferences
between the elements of a given dimension and search the skyline points associ-
ated with these preferences. Therefore, other types of skyline queries have been
proposed to handle:

– inter-dimension preferences allowing the user to specify the importance of
various dimensions and thus to rank the skyline by order of preferences [12].
For example, the price can be considered more important than the distance
to the beach. Instead of returning the whole set of skyline points resulting
from a query, only the best K points, the top K [6], with respect to the
defined inter-dimensions preferences are returned,

– intra-dimension preferences used in [20, 22], allowing each user to express
preferences on the different values of a dimension. This kind of preferences
is especially attractive for nominal dimensions where there is no evidence of
consensual ordering. For example, a user may prefer an hotel of the group
Tulips to those of the group Horizon while another user prefers hotels of
the group Mozilla to all others.

In this paper, we are particularly interested in skyline queries with dynamic
intra-dimension preferences. A naive solution would be to enumerate all possible
combinations of preferences and to store the associated skyline. However, the
preprocessing burden and the storage induced by a complete materialization of
these preferences are prohibitively expensive on large databases. Therefore, other
materialization methods have been proposed to support online query answering
with dynamic intra-dimensions preferences.

Wong et al. [20] proposed a semi-materialization method based on a specific
data structure called IPO-tree (Implicit Preference Order Tree). An IPO-tree
stores partial useful results corresponding to every combination of first order
preferences. A first order preference states that one value is most preferred in
some dimension and that the other values are left unordered. An n-th order
preference specifies an order over n values from some dimension, whereas the
other values are less preferred and left unordered. Wong et al. also introduced
a property called the merging property which makes possible to derive skyline
of any n order preference by simple operations on the first order preferences on
the same dimension. However, this approach has a main drawback. The merging
property is applicable to only one dimension at a time. The size of an IPO tree
is thus in O(cm) (where m is the number of dimensions associated with dynamic
preferences and c is the cardinality of a dimension). In the context of large
databases of high dimensionality this structure becomes very complex.

In [22], Wong et al. proposed another structure, called CST (Compressed
Ordered skyline Tree), to materialize all the preference orders. They store the
skyline with respect to various refinement orders in a compact data structure.
However, a CST tree is very complex. This makes updating preferences a dif-
ficult task that requires extensive maintenance and changes in the CST tree.
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Also, the method is not complete. In fact, the CST tree is constructed gradually
by adding dimensions associated with dynamic preferences one by one. During
this construction, some points are disqualified from the skyline when adding a
new dimension, while they should be in the skyline. An erratum will be published
in [21] for this issue.

While reusing the merging property proposed by Wong et al. to deal with
the refinements of preferences on a single dimension, we propose an incremental
method, named EC2Sky, for calculating the skyline points related to several di-
mensions associated with dynamic preferences. Indeed, the skyline may change
due to dimension preference updates, and hence should be incrementally main-
tained to avoid re-evaluation from scratch. Unlike the IPO-tree method, the
EC2Sky structure facilitates and allows a great flexibility for updating dimen-
sions and dynamic preferences.

3 Basic Concepts

In this section, we present the necessary concepts and definitions related to
skyline queries. Many are borrowed from [20, 22]. The notations are summarized
in Table 1.

The various definitions are illustrated using the example of Table 2 which
describes proposals for travels according to the dimensions Price, Distance from
the beach, Hotel group (Gr) and Airline (Air).

Table 1. Summary of notations

Notation Description
E Dataset
|E| Cardinality of E

D = S
⋃
Z Data space of E

S Subspace with static preferences
Z Subspace with dynamic preferences
|D| Cardinality of D
di One dimension of D ( 1 ≤ i ≤ |D| )
D′ Subspace of D: D′ ⊆ D
Di Subspace of D: Di = Di−1

⋃{di}
P(E) Power set of E
p, q Data points
p(di) Value of p on dimension di

dom(di) Dimensional domain of di
℘ Preferences on Z
℘i Preferences on di
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Table 2. A set of hotels

Hotel ID Price Distance Hotel group Airline
a 1600 4 T (Tulips) G(Gonna)
b 2400 1 T(Tulips) G(Gonna)
c 3000 5 H(Horizon) G(Gonna)
d 3600 4 H(Horizon) R(Redish)
e 2300 2 T(Tulips) R(Redish)
f 3000 3 M(Mozilla) W(Wings)
g 3600 4 M(Mozilla) R(Redish)
h 3000 3 M(Mozilla) R(Redish)

Example 1. E = (a, b, c, d, e, f, g, h) is a dataset defined in a 4-dimensional
space D = (Price, Distance, Hotel group, Airline), |E| = 8, |D| = 4. The value
of point p on dimension Price is denoted by p(Price) = 1600.

Definition 1. (Preference order) A preference order on the domain of a
dimension di is defined by a partial order ≤di . For two values p(di) and q(di) in
the domain of di, we write p(di) ≤di q(di) if the value p(di) is preferred to the
value q(di). We denote p(di) <di q(di) if p(di) ≤di q(di) and q(di) �di p(di),

Example 2. In Table 2, both dimensions, Price and Distance, are totally
ordered by the relation ≤di, which corresponds to the order relation ≤ indicating
the smallest of two real numbers. The preference means that the lower the price
and the distance, the more preferable a hotel. No order is given a priori on
the dimensions Hotel group and Airline. It is up to users to express their own
preferences among values belonging to these dimensions.

Definition 2. (Preference type) We distinguish two types of preferences:

– static preferences: they correspond to a predefined order relation,
– dynamic preferences: they correspond to an order relation that can vary from

one user to another or from one user session to another.

By abuse of language we use dynamic (resp. static) dimension instead of
dimension associated with dynamic (resp. static) preferences. In the rest of this
paper, we denote by S the subspace associated with static preferences and by Z
the subspace associated with dynamic preferences, with D = S

⋃
Z and S

⋂

Z = ∅.
Example 3. S = {Price,Distance}: the values of these two dimensions follow
the order relation ≤ specifying that the lower the price (resp. the distance), the
more preferable the hotel (ex: a(Price) <Price d(Price)). This order is accepted
by any user, so it is static. For Z = {Gr,Air} no order relation is defined a
priori (i.e., in a static way) on these dimensions. The definition of an order is
left to users and may vary from one user to another.
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Definition 3. (Dominance relation) p dominates q on D′ ⊆ D, denoted by
p ≺D′ q, if p is preferred or equal to q on any dimension of D′ and p is preferred
to q on at least one dimension:
∀di ∈ D′, p(di) ≤di q(di) ∧ ∃di ∈ D′, p(di) <di q(di).
p =D′ q denotes the fact that p is equally preferred to q on any dimension of

D′. When D′ = D, p ≺D′ q is simply noted p ≺ q.

Example 4. Let a customer looking for a hotel that is both close to the beach
and affordable. In this case hotel a dominates hotel d (a ≺(Price,Distance) d) since
a(Price) <Price d(Price) and
a(Distance) =Distance d(Distance).
Hotel a does not dominate hotel b (a ⊀(Price,Distance) b) since
b(Distance) <Distance a(Distance).

The following definitions concern a subspace D′ ⊆ D. Obviously, these def-
initions can be generalized to the full dimension space D. The skyline set, or
simply the skyline, of a dataset on a subspace contains the points in the dataset
that are not dominated by any other point in that dataset.

Definition 4. (Skyline) The skyline set of the dataset E on the subspace D′

with Z being the subspace associated with the dynamic preferences ℘ is the set
of points that are not dominated by any point in E:
Sky(D′, E)(Z,℘) = {p ∈ E| ∀q ∈ E, q ⊀D′ p}.

If ℘ = ∅, Sky(D′, E)(Z,℘) is simply written Sky(D′, E).

Example 5. Sky({Price,Distance}, E) = {a, b, e}.
Sky({Price,Distance,Gr,Air}, E) = {a, b, e, c, d, f, h} when no preferences are
given on dimensions Gr and Air. The points c, d, f and h are no longer domi-
nated by the skyline points {a, b, e} since no point can dominate on the unordered
dimensions Gr and Air. The point g is dominated by the point h on the static
dimensions and have the same values on the dynamic dimensions and so is not
in the skyline.

The set Sky(D′, E) contains points, denoted by MaxSky(D′, E), that are the
best along at least one dimension. It also contains, and this is a major interest
of this approach, points denoted CompSky(D′, E) that are not dominant on
any dimension of D′ while being better than any point of E on at least one
dimension. These points represent interesting compromise solutions for the user
from a decision making point of view.

Definition 5. (Partition of skyline sets)
The skyline set of the subspace D′ ⊆ D can be decomposed into two sets of points,
MaxSky and CompSky.
Sky(D′, E) = MaxSky(D′, E)

⋃
CompSky(D′, E) with :

– MaxSky(D′, E) = {p ∈ Sky(D′, E)| ∃D′′ ⊆ D′, ∀q ∈ E, p �D′′ q},
– CompSky(D′, E) = {p ∈ Sky(D′, E)| ∀q ∈ E, q �= p, ∃D′′ ⊆ D′, p ≺D′′ q}.
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When D′ is restricted to only one dimension (D′ = {di}),
Sky(D′, E) = MaxSky(D′, E).

Example 6. Let D′ = {Price,Distance}.
Sky({Price,Distance}, E) = {a, b, e}.
MaxSky({Price,Distance}, E) = {a, b} since a(Price) (resp. b(Price)) is the
most preferred value on dimension Price (resp. Distance).
CompSky({Price,Distance}, E) = {e} since the value of e is not the most
preferred either on Price or on Distance. However, e(Price) is preferred to
b(Price) on dimension Price and e(Distance) is preferred to a(Distance) on
dimension Distance. So, e is better than any MaxSky point on at least one
dimension.

Various kinds of skyline queries can be formulated. Conventional skyline
queries retrieve the most interesting objects of a multidimensional dataset. Our
goal is to aid a user explore his dataset by letting him express various preferences
on dynamic dimensions and assess the consequences of such choices by retrieving
the most preferred points i.e. the skyline points. For example, let Hotel group be
a dimension with dynamic preferences. Different users may have different pref-
erences on that dimension. If a customer prefers the Hotel group Horizon to all
the other hotels, c, d, f and h are added in Sky({Price,Distance,Gr}, E) since
they become the best along the Hotel group dimension. However, for another
customer preferring Tulips to all the others, c, d, f and h do not belong to the
skyline since they are dominated by a, b and e. An interesting observation is
that hotels associated with a, b and e are always in the skyline no matter which
preference order on the Hotel group is chosen (because a is the only one with
the best price, b is the only one with the best distance from the beach and e
represent a compromise for dimensions Price and Distance).

When a user formulates a query involving a dimension di with dynamic prefer-
ences, she/he can specify the preference order on the |di| values of this dimension.
The order is total if all these values are ordered. But this is not always possible
and the user may order only n of the |di| values. Implicitly, she/he considers
that they are more preferred than the (|di| − n) remaining values which are
left unordered. This corresponds to the notion of n-th order implicit preference
introduced in [20].

Definition 6. (n-th order preference) Let di ∈ Z and |di| = m. ℘i is an
n-th order preference on di iff :

– ℘i = v1 <di . . . <di vn <di ∗, with v1 ∈ dom(di), . . . , vn ∈ dom(di) and
n ≤ m,

– ∀k ∈ {n+ 1, ..,m}, vn <di vk.

When n = 1, ℘i = v1 <di ∗ is called a first order preference.

Thus <di is a total order on the values {v1 . . . vn} of di, and a partial order
on the whole dimensional domain of di.
Note the importance of first order preferences: they are sufficient to determinate
the dominant points of a dimension.
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Example 7. For the dimension Hotel group in Table 2, a user prefers T (Tulips)
to M(Mozilla), T to H(Horizon) and M to H (i.e., T <Gr M <Gr H). This
preference is a third order preference and defines a total order. Some other user
could prefer Hotel group T to any other group (i.e., T <Gr ∗). In this case, the
preference is a first order preference which defines the partial order {T <Gr M ,
T <Gr H}.

℘i = v1 <di . . . <di vn <di ∗ denotes the set of binary preferences ℘i =
{v1 <di v2, v2 <di v3, . . . , vn <di ∗}. The absence of preference on dimension di
is denoted by ℘i = ∅. In the sequel, we use both notations for ℘i.

Example 8. Let Z = {Gr}, ℘ = {H <Gr ∗} (equivalent to {H <Gr M,H <Gr

T }).
Then Sky(D,E)(Z,H<Gr∗) = {a, b, e, c, d, f, h}. The points c and d are no longer
dominated by the skyline points {a, b, e} since they have the best values on the
dimension Gr. The values M and H of the dimension Gr are left unordered, so
the points f and h become compromise skyline points because they are no longer
dominated by the skyline points {a, b, e} on the dimension Gr.

We give below some useful properties of the preference relationship. These
properties will be used later to reduce the number of domination tests during

skyline computation. In the following, ℘ =
⋃|Z|

i=1 ℘i denotes the set of dynamic
preferences associated with Z ⊆ D combined implicitly with the set of static
preferences associated with S ⊆ D.

Definition 7. (Preference inclusion) Let |Z| = m, ℘ = {℘1, .., ℘m} and
℘

′
= {℘′

1, .., ℘
′
m}, where every ℘i and ℘′

i are sets of binary preferences associated
with the dimension di ∈ Z.
Then, ℘ ⊆ ℘

′
if and only if ℘i ⊆ ℘

′
i for 1 ≤ i ≤ m.

Definition 8. (Preference refinement) Let ℘′ and ℘′′ two preferences sets
on the subspace Z. ℘′′ is a refinement of ℘′ if ℘′ ⊆ ℘′′ .

Property 1. (Monotonicity of preference refinement) Let ℘′ and ℘′′

two preferences sets on Z. If ℘′′ is a refinement of ℘′ then Sky(D,E)(Z,℘′′ ) ⊆
Sky(D,E)(Z,℘′ ).

The following example illustrates property 1.

Example 9. Let Z = {Gr},
℘′ = {H <Gr ∗} and ℘′′ = {H <Gr T <Gr ∗}.
℘′′ is a refinement of ℘′ since ℘′ ⊂ ℘′′ .
Sky(D,E)(Z,℘′ ) = {a, b, c, d, e, f, h} and Sky(D,E)(Z,℘′′ ) = {a, b, c, d, e}.
We have Sky(D,E)(Z,℘′′ ) ⊂ Sky(D,E)(Z,℘′ ).

Property 1 indicates that when preferences are refined, the skyline may be-
come smaller and so, some skyline points may be disqualified. Also, if a point
is not in the skyline related to some preference, it won’t belong to the skyline
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related to a refined preference. We will use property 1 later to reduce the number
of domination tests in our approach.

The following theorem formulates an important property called the merging
property that was introduced by Wong et al. [20]. This property provides a means
to derive the skyline related to any possible n-th order preference by operations
on first order preferences on the same dimension.

Theorem 1. (Merging property) Let ℘
′
and ℘

′′
be two preferences differing

only on dimension di, i.e. ℘
′
j = ℘

′′
j for all j �= i. Let ℘

′
i = v1 <di . . . < vk−1 <di ∗

and ℘
′′
i = vk <di ∗. Let PSky(D,E)(Z,℘′ ) be the set of points in Sky(D,E)(Z,℘′ )

with di values in {v1 . . . vk−1}. Let ℘′′′
be a preference differing from ℘

′
and ℘

′′

only on dimension di and ℘
′′′
i = v1 < . . . < vk−1 < vk < ∗. Then the skyline

associated with ℘
′′′

is:

Sky(D,E)(Z,℘′′′ ) = (Sky(D,E)(Z,℘′ )
⋂

Sky(D,E)(Z,℘′′ ))
⋃

PSky(D,E)(Z,℘′ ).

Example 10. Let ℘
′
= {M <Gr ∗}, ℘′′

= {H <Gr ∗},
℘

′′′
= {M <Gr H <Gr ∗} and Z = {Group}.

Sky(D,E)(Z,℘′′′ ) = (Sky(D,E)(Z,℘′ )
⋂

Sky(D,E)(Z,℘′′ ))
⋃

PSky(D,E)(Z,℘′ )
= ({a, b, e, f, h}⋂{a, b, e, c, d, f, h}) ⋃{f, h}
= {a, b, e, f, h}

Wong et al. have proposed successively two interesting methods, IPO-tree
[20] and CST [22], for skyline computation based on the properties and theorem
1 presented above. However, the implementation based on these two proposals
raises several problems:

– The size of the IPO-Tree structure is in O(cm) where m is the number of
dimensions with dynamic preferences and c the cardinality of a dimension.
So it is intractable in the context of large databases with high dimensionality
and does not allow scaling. It is worth-noting that the merging property is
applicable to only one dimension at a time,

– The CST method does not solve the IPO-Tree problems because its algo-
rithm is incomplete (it disqualifies points which should be in the skyline).

The second proposal (CST) is incomplete [21], thus we focus on the first pro-
posal (IPO-Tree). The IPO-Tree method supports the refinement of preferences.
However, it addresses the treatment of one dynamic dimension at a time (merg-
ing property). To cope with several dynamic dimensions, Wong et al. propose
to store every combination of the first order preferences related to these dimen-
sions. So, the size of the proposed materialization structure is exponential, which
is prohibitive when dealing with several dimensions. We propose in Section 4 an
incremental method which makes possible to introduce dynamic dimensions one
by one. It relies on a structure that enables an effective materialization of dy-
namic preferences.
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4 EC2Sky: An Incremental Skyline Computation

In this section we introduce the proposed incremental method and the theorem
that grounds the method.

Let us examine how the addition of a dynamic dimension di impacts the sky-
line that was previously computed for the dimension subspace Di−1. Intuitively,
the computation of the new skyline for Di = Di−1

⋃
di is a two-step process.

First, compute the skyline associated to the new dynamic dimension union the
static dimensions di

⋃
S, as if it were independent of the other dynamic dimen-

sions. Second, take into account the correlations between the new dimension di
and the previous dimensions Di−1 to update the new computed skyline. This
second task consists in, i) removing from the skyline independently computed
for di

⋃
S the points that are disqualified i.e. are dominated on the dynamic di-

mensions of Di−1, ii) removing the set of old skyline points that are disqualified
i.e. are dominated on the new dimension di, iii) completing the resulting skyline
with points that are new compromises for Di−1

⋃
di.

In the following, we assume that the subset of dimensions Di is such that
Di = Di−1

⋃
di, with di ∈ Z, i ∈ {1, .., |Z|}, Di ⊆ D and D0 = S. This no-

tation represents the incremental addition of dimensions in skyline computation.

Consider the addition of a dynamic dimension di to a set Di−1 of i− 1 dynamic
dimensions. As sketched above, the first task is to compute Sky(di

⋃
S,E)(Z,℘),

the skyline related to dimension di as if it were independent of the other dy-
namic dimensions. Wong et al.’s method can be used to achieve this task.
However, this set may contain skyline points that are disqualified i.e. they
are dominated on the dynamic dimensions of the subspace Di−1. Precisely,
let p, q ∈ Sky(di

⋃
S,E)(Z,℘) be two skyline points with the same values on

every dimension of di
⋃
S. If q is preferred on Di−1 it will dominate p and

disqualify it from the skyline Sky(Di, E)(Z,℘). This set of points is denoted
CutSky(di

⋃
S,E).

Definition 9. (Disqualified skyline points from di
⋃
S) The set of skyline

points related to the subspace di
⋃
S that are disqualified by the introduction of

the subspace Di−1 is defined by CutSky(di
⋃
S,E) =

{p ∈ Sky(di
⋃
S,E)(Z,℘) | ∃q ∈ Sky(di

⋃
S,E)(Z,℘), p =di

⋃
S q ∧ q ≺Di−1 p}.

Example 11. Let Di−1 = D1 = {Price,Distance,Air}, di = Gr, the new
dimension, and the preferences:
{M <Gr H <Gr T } and {W <Air ∗}.
Sky(D1, E)(Z,℘) = {a, b, e, f}and Sky({Gr}⋃S,E)(Z,℘) = {a, b, e, f, h}.
CutSky({Gr}⋃S,E) = {h} as the point h should be removed from the skyline
Sky(D2, E)(Z,℘) since it is dominated by the point f on the subspace D1.

On the other hand, the old skyline Sky(Di−1, E)(Z,℘)may contain points that
are disqualified by dominant points brought by the new dimension di. Precisely,
let p, q ∈ Sky(Di−1, E)(Z,℘) be two skyline points with the same values on every
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dimension of Di−1. If q is preferred on the new dimension di, it will dominate p
and disqualify it from the skyline Sky(Di, E)(Z,℘). This set of points is denoted
CutSky(Di−1, E).

Definition 10. (Disqualified skyline points from Di−1) The set of skyline
points related to the subspace Di−1 that are disqualified by the introduction of
dimension di is defined by
CutSky(Di−1, E) =
{p ∈ Sky(Di−1, E)(Z,℘) | ∃q ∈ Sky(Di−1, E)(Z,℘), p =Di−1 q ∧ q ≺di

⋃
S p}.

Example 12. Let Di−1 = D1 = {Price,Distance,Gr}, di = Air, the new
dimension, and the preferences {M <Gr H <Gr T } and {G <Air R <Air W}.
Sky(D1, E)(Z,℘) = {a, b, e, f, h}, CutSky({Air}⋃S,E) = {} and
CutSky(D1, E) = {f} as the point f should be removed from the skyline
Sky(D2, E)(Z,℘) since it is dominated by the point h on the new dimension
di = Air.

Finally, some new points should appear in the new skyline. Precisely, before
taking into account the new dimension di, some points may be dominated on
every dimension of Di−1

⋃
S and, so, are not in the skyline. But, when dimen-

sion di is introduced, being better on di than some skyline points they were
dominated by, they may well be no longer dominated by any skyline point from
Sky(Di−1, E)(Z,℘) on some dimensions from Di−1: they are new compromise
skyline points. This set of points is denoted NewCompSky(Di, E).

Definition 11. (New compromise skyline)
Let C = Sky(Di−1, E)(Z,℘)

⋃
Sky(di

⋃
S,E)(Z,℘).

The set of new compromise skyline points is defined by
NewCompSky(Di, E) = {p ∈ E − C | ∀q ∈ E, ∃dk ∈ Di, p ≺dk

q} .
Example 13. Let Di−1 = D1 = {Price,Distance,Gr}, di = Air, the new
dimension, and the preferences:
{M <Gr H <Gr T } and {G <Air R <Air W}.
Sky(D1, E)(Z,℘) = {a, b, e, f, h}, Sky({Air}

⋃
S,E)(Z,℘) = {a, b, e},

CutSky({Air}⋃S,E) = {} and CutSky(D1, E) = {f}. But, if we consider
simultaneously the two dimensions Gr and Air then c is no longer dominated by
f . As f was the only point c was dominated by, c becomes a new skyline point.
Since c is the only such “promoted” point, NewCompSky(D2, E) = {c}.

Suppose we want to extend a dimensional subspace Di−1 with a new dimen-
sion di. The following theorem states that the skyline of the extended subspace
can be computed by removing disqualified skyline points from the old skyline and
by adding the new skyline points brought by the preference on the new dimen-
sion. The new skyline points are either dominant points on the new dimension
or new compromise skyline points introduced by the new preference.

Theorem 2. (Incremental skyline)
Let E be a |D|-dimensional dataset, Z ⊆ D the subspace of size |Z| = m with
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dynamic preferences ℘ = {℘j}j=1,..,m on D, Sky(di
⋃
S,E) the skyline of the

subspace S
⋃

di and Di = Di−1
⋃
di, with i = {1, ..,m}.

Sky(Di, E)(Z,℘) = (Sky(Di−1, E)(Z,℘)

⋃
Sky(di

⋃
S,E)(Z,℘)) −(CutSky(Di−1)⋃

CutSky(di
⋃
S))

⋃
NewCompSky(Di, E).

Example 14. (Illustration of Theorem 2) Let D1 = {Price,Distance,Gr},
D2 = {Price,Distance,Gr,Air} and we consider the preferences of the previous
example.
Sky(D2, E)(Z,℘) =
(Sky(D1, E)(Gr,H<GrM<GrT )

⋃
Sky({Air}⋃S,E)(Air,G<AirW<AirR))

−((CutSky(D1, E)
⋃
CutSky({Air}⋃S,E))

⋃
NewCompSky(D2, E)=

({a, b, e, f, h}⋃{a, b, e}) - ({f}⋃{})⋃{c}=
{a, b, c, e, h}.
Proof. (Theorem 2) Here follows a sketch of the proof of theorem 2. We con-
sider successively the points that are disqualified from the skyline and the points
that are added to the skyline. Let Di ⊆ D and Di = Di−1

⋃{di}. Let Z be the
subspace of D with dynamic preferences and Sky(Di, E) be the skyline of the
subspace Di.

– Any element of CutSky must be disqualified from the resulting skyline.
If p ∈ (CutSky(Di−1)

⋃
CutSky(di

⋃
S)) then there exists some

q ∈ Sky(Di, E) such that
(q =Di−1 p and q ≺di

⋃
S p) or (q =di

⋃
S p and q ≺Di−1 p).

This means that q ≺Di p. Thus, p should not be in Sky(Di, E)(Z,℘).
– Any element of Sky(Di, E)(Z,℘) must belong to
{ (Sky(Di−1, E)(Z,℘)

⋃
Sky(di

⋃
S,E)(Z,℘)) −(CutSky(Di−1)

⋃

CutSky(di
⋃
S))

⋃
NewCompSky(Di, E)}.

Any p ∈ Sky(Di, E)(Z,℘) is such that:
• either there exists a dimension dj ∈ Di such that ∀q ∈ E, p �dj q.
In this case, p ∈ (Sky(Di−1, E)(Z,℘)

⋃
Sky(di

⋃
S,E)(Z,℘))

• or for every q ∈ E, there exists a di ∈ Z such that p ≺di q. In this case,
p ∈ NewCompSky(Di, E) and p /∈ (CutSky(Di−1)

⋃

CutSky(di
⋃
S)

In both cases p belongs to Sky(Di, E)(Z,℘)

Theorem 2 provides a scheme for an incremental computation of skyline
queries associated with several dynamic dimensions. In the following, we de-
scribe more precisely our proposal.

5 EC2Sky Implementation

In this section, we present the implementation of incremental skyline computa-
tion. We introduce some definitions to characterize the points that are involved
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in the incremental computation of skyline points and facilitate the specification
of the algorithms and of the materialization structure. To ensure an efficient and
online computation of skyline, we provide an effective materialization structure
detailed in the sequel. We propose a trade-off between (i) materialize all the
skyline points for all possible preferences and (ii) calculate, for each user query,
the skyline points associated with the preferences formulated in the query. Our
approach is based on three steps:

1. compute and store the skyline on static dimensions. One can adopt any
existing algorithm (e.g. [1]) that computes the skyline for partially ordered
domains;

2. for each dimension with dynamic preferences, compute and store the candi-
date skyline points according to any possible first order preference;

3. rely on the information stored in step 1 and 2 to compute the skyline points
related to user preferences on incrementally introduced dynamic dimensions.

5.1 Skyline Associated with Static Dimensions

In step 1 we compute all the skyline points corresponding to the defined static
preferences of D. Two concepts introduced by Wong et al. in [22] are helpful.
They decompose the set Sky(D,E), corresponding to the defined static prefer-
ences ofD and denoted by ℘∅, into two subsets: the global skyline set GSky(D,E)
and the order-sensitive skyline set OsSky(D,E).

The points in the global skyline set GSky(D,E) remain in the skyline when-
ever any preference on any dimension of Z is added.

Definition 12. (Global skyline points)
The global skyline set of the space D = S

⋃
Z on the dataset E, is defined by

GSky(D,E) =
{p ∈ Sky(D,E) | ∀ q ∈ Sky(D,E), � di ∈ Z, p =S q ∧ p(di) �=di q(di)}

Some skyline points are qualified order-sensitive because, depending on the
preferences associated with dynamic dimensions, these points may be skyline or
not. Note first that no global skyline points is order sensitive. Second, CutSky
points have to be searched among order sensitive skyline points.

Definition 13. (Order-sensitive skyline points) The order-sensitive sky-
line set of the space D on the dataset E, is defined by
OsSky(D,E) = {p ∈ Sky(D,E) | p /∈ GSky(D,E)} or equivalently
OsSky(D,E) = Sky(D,E)−GSky(D,E).

Example 15. Let S = {Price, Distance} and Z = {Gr, Air}.
Then GSky(D,E) = {a, b, e} and OsSky(D,E) = {c, d, f, h}, because all the
skyline points are distinct.

5.2 Skyline Associated with Dynamic Dimensions

This section details step 2 of our approach. In this step, we pre-compute the
useful information that does not depend on the dynamic preferences provided
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by users. For each dimension di with dynamic preferences, we introduce the can-
didate skyline point (CPdi), the new skyline point set (NewSky(di,℘

j
i )
) and the

compromise candidate point set (CandComp(di,℘
j
i )
).

The set CPdi represents the points that may become skyline points over the
dimension di. It is the set of points from OsSky(D,E)

(1) having on di ∈ Z a value different from any point of GSky(D,E) that
dominates them,
(2) having the same value on the static dimensions but different values on

di ∈ Z.

In the sequel, p ≺j
di

⋃
S q indicates that p dominates q on the subspace di

⋃
S

according to the first order preference ℘j
i of the dimension di.

Definition 14. (Candidate skyline points) The candidate skyline point set
of the dynamic dimension di, is defined by
CPdi =
{p ∈ OsSky(D,E) | ∃ q ∈ GSky(D,E), q ≺S p, p(di) �=di q(di)}

⋃

{p ∈ OsSky(D,E) | ∃ q ∈ OsSky(D,E), q =S p, p(di) �=di q(di)}
Example 16. Let S= {Price,Distance} anddi = {Gr}.ThenCPGr = {c, d, f, h}.

To find the new skyline after the introduction of the new dimension di, it is
sufficient to test the points in CPdi instead of all non-skyline points. This can
significantly reduce the number of domination tests.

NewSky(di,℘
j
i )

(Algorithm 1) represents the set of points in CPdi that are

preferred to the points in GSky(D,E) according to the first order preference
℘j
i = vj <di ∗ such that vj ∈ dom(di). Intuitively, NewSky points are equivalent

to MaxSky points on di according to the preference ℘j
i

Definition 15. (New skyline points)
The new skyline point set of the dynamic dimension di, is defined by
NewSky(di,℘

j
i )

= {p ∈ CPdi | ∀ q ∈ GSky(D,E)
⋃ { CPdi − p}, q ⊀j

di

⋃
S p}

Example 17. NewSky(Gr,H<Gr∗) = {c, d, f, h}.
Finally, CandComp(di,℘

j
i )

(Algorithm 2) represents the set of points that

may become skyline compromises (i.e. compromise candidates) when considering
a new dimension. They are computed for each first order preference ℘j

i on di.

Definition 16. (Compromise candidate points)
Let E′ = (CPdi - NewSky(di,℘

j
i )
) and E′′ = (GSky(D,E)

⋃
NewSky(di,℘

j
i )
).

The compromise candidate points associated with the preference ℘j
i is a set of

pairs (p, Setp) defined by
CandComp(di,℘

j
i )

=

{(p, Setp) ∈ E′ ×P(E′′) | ∀q ∈ P(E′′), ∃dk ∈ {di}
⋃
S, p ≺j

dk
q}.
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Algorithm 1. Calculate NewSky(di,℘
j
i )

input : di: a dimension, ℘j
i : a first order preference on di, GSky(D,E):

global skyline set, CPdi : candidate skyline set over di
output: NewSky(di,℘

j
i )

NewSky(di,℘
j
i )
← ∅1

foreach p ∈ CPdi do2

bool ← true3

foreach q ∈ GSky(D,E)
⋃ { CPdi − p} do4

if q ≺j
di

⋃
S p then5

bool← false6

exit7

if bool then8

NewSky(di,℘
j
i )
← NewSky(di,℘

j
i )

⋃{p}9

Example 18
CandComp(Air,R<Air∗) = {(f, {a, b})} where the notation {(f, {a, b})} means
that f belongs to CandComp(Air,R<Air∗) because f dominates a (resp. b) on at
least one dimension from {Air}⋃S (here Distance (resp. Airline))).

5.3 The EC2Sky Structure

Now, let us consider how to construct an EC2Sky data structure to store ef-
ficiently all the precomputed information. Our aim is to avoid building a data
structure containing all the combinations of the dynamic preferences on all di-
mensions as proposed in [20] . In section 5.1 and 5.2 and thanks to theorem 2, we
have shown that the skyline of an extended dimensional subspace can be com-
puted by taking into account first order preferences only. We propose to store in
EC2Sky structure all the sets NewSky and CandComp associated to any first
order preference in each dimension.

For each dimension di, we compute and store CPdi and for each first or-
der preference on di, we compute and store the two sets: NewSky(di,℘

j
i )

and

CandComp(di,℘
j
i )

related to the first order preference j on dimension di. The

sets NewSky(di,℘
j
i )

and CandComp(di,℘
j
i )

associated with any possible first or-

der preference on dimension Hotel group or dimension Airline are presented in
Table 3.

Now, we evaluate the space complexity of the EC2Sky structure. Let m be
the number of dimensions associated with dynamic preferences and c be the
maximal cardinality of a dimension associated with dynamic preferences. The
space complexity of the EC2Sky structure is given by:
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Algorithm 2. Calculate CandComp(di,℘
j
i )

input : di: a dimension, ℘j
i : a first order preference on di,

NewSky(di,℘
j
i )
: skyline points added by di for ℘

j
i , GSky(D,E):

global skyline set, CPdi : candidate skyline set
output: CandComp(di,℘

j
i )

CandComp(di,℘
j
i )
← ∅1

foreach p ∈ {CPdi −NewSky(di,℘
j
i )
} do2

Setp ← ∅3

foreach q ∈ {GSky(D,E)
⋃
NewSky(di,℘

j
i )
} do4

foreach dk ∈ {di}
⋃
S do5

if p ≺j
dk

q then6

Setp ← Setp
⋃
q7

CandComp(di,℘
j
i )
← CandComp(di,℘

j
i )

⋃{(p, Setp)}8

Table 3. Illustration of an EC2Sky structure with two dynamic dimensions and three
first order preferences for each dimension

GSky = {a, b, e}
CPGr = {c, d, f, h} CPAir = {f}

℘ = M <Gr ∗ ℘ = T <Gr ∗ ℘ = H <Gr ∗ ℘ = R <Air ∗ ℘ = G <Air ∗ ℘ = W <Air ∗
NewSky{Gr,℘} NewSky{Air,℘}

{f, h} {} {c, d, f, h} {} {} {f}
CandComp{Gr,℘} CandComp{Air,℘}

{(c, {a, b, e}),
(d, {a, b, e})}

{(f, {a}),
(h, {a})}

{} {(f, {a, b})} {(f, {a, e})} {}

m∑

i=0

(c) = O(c.m)

We can note that the size of the EC2Sky structure is significantly smaller than
the number of possible n-th order preferences given by:

(

c−1∑

i=0

(Pi(c)))
m = O((c.c!)m)

Where Pi(c) is the number of permutations of ordering i elements from c ele-
ments. The space complexity of the EC2Sky structure is also significantly smaller
than the space complexity of IPO-tree structure given by:

m∑

i=0

(c+ 1)i = O(cm)
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Algorithm 3. Calculate CutSky(Di−1)

input : Sky(Di−1, E), Sky(Di, E) and Sky(di
⋃
S,E)

output: CutSky(Di−1)

CutSky(Di−1)← ∅1

foreach p ∈ Sky(Di, E) do2

foreach q ∈ Sky(Di−1, E)
⋃
Sky(di

⋃
S,E) do3

if p =Di−1 q and q ≺di
⋃

S p then4

CutSky(Di−1) ← CutSky(Di−1)
⋃{p}5

break6

For example, when m = 3 and c = 40, the number of stored preferences in
EC2Sky structure is 123 only, while in IPO-tree structure is 70, 644, and the
number of all possible n-th order preferences (n ∈ 1, .., c) is 4.1 ∗ 109. This is
574.35 times smaller than the IPO-tree and 714, 502, 572 times smaller than the
number of all possible n-th order preferences. The difference is more obvious
when the number of dimensions m is high.

5.4 Query Evaluation

In this section, we describe step 3 of our proposal (cf. beginning of section 5).
The information precomputed and stored in step 1 and 2 is used in step 3 to
calculate, interactively, the skyline set according to the specified preferences in
the user query.

One dimension with dynamic preferences First, we consider only one dimension
with dynamic preferences in the dimensional space D. According to the user
query, we are faced with two cases:
(i) Query with first order preferences : to compute the skyline associated with a
first-order preference ℘j

i , we use the two sets GSky(D,E) and NewSky(di,℘
j
i )

stored in step 2, as follows : Sky(di
⋃
S,E)(Z,℘j

i )
=GSky(D,E)

⋃
NewSky(di,℘

j
i )
.

Recall that, when dealing with one dimension only, there is no compromise points
(CompSky = ∅).
Example 19. We use the EC2Sky structure in Table 3 to illustrate the dif-
ferent steps of a query evaluation. The skyline associated with the preference
℘ = {M <Gr ∗} (stored in the EC2Sky structure shown in Table 3) is computed
as follow:
Sky({Gr}⋃S,E)(Z,M<Gr∗)= GSky(D,E)

⋃
NewSky{Gr,M<Gr∗}.

Thus, Sky({Gr}⋃S,E)(Z,M<Gr∗) = {a, b, e, f, h}, which is the skyline for ℘.
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Algorithm 4. Calculate NewCompSky(Di, E)

input : EC2Sky structure, GSky(D,E): global skyline points
output: NewCompSky(Di, E)

CandCompSet =

i⋃ j⋃
CandComp(di,℘

j
i )

1

NewCompSky(Di, E)← ∅2

foreach p ∈ CandCompSet do3

// Compute the set of points dominated by p on at least

one dimension of Di

Dominated(p)← {q|∃ di ∈ Di, p ≺di q}4

// Select the set of points that dominate the skyline

points on at least one dimension

if Dominated(p) =5

Sky(Di−1, E)
⋃

Sky(di
⋃
S,E)− (CutSky(Di−1)

⋃
CutSky(di

⋃
S)

then
NewCompSky(Di, E)← NewCompSky(Di, E)

⋃{p}6

Dominance test over all the elements of the set NewCompSky(Di, E)7

(ii) Query with n-th order preferences : in this case we use themerging property
of Wong et al. [20] (see Theorem 1). This is illustrated by the following example.

Example 20. The skyline associated with the preference ℘ = {M <Gr H <Gr

∗} can be computed from the skyline related to the preferences ℘1 = {M <Gr ∗}
and ℘2 = {H <Gr ∗} (stored in the EC2Sky structure shown in Table 3), as
follow:
Sky({Gr}⋃S,E)(Z,M<Gr∗) = {a, b, e, f, h} ( cf. example 19), which is the sky-
line for ℘1.
In the same way, Sky({Gr}⋃S,E)(Z,H<Gr∗) = {a, b, e, c, d, f, h}, which is the
skyline for ℘2.

Finally, to compute ℘ = {M <Gr H <Gr ∗}, we use the merging property
(Theorem 1) :
Sky(D,E)(Z,M<GrH<Gr∗) =
(Sky({Gr}⋃S,E)(Z,M<Gr∗)

⋂
Sky({Gr}⋃S,E)(Z,H<Gr∗))

⋃

PSky(D,E)(Z,M<Gr∗)=
({a, b, e, f, h}⋂{a, b, e, c, d, f, h}) ⋃{f, h}= {a, b, e, f, h}

Several dimensions with dynamic preferences Second, we consider the case of
several dimensions with dynamic preferences which is more complex. According
to definition 10 and 11, some skyline points (CutSky points) may be disqualified
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Algorithm 5. EC2Sky structure construction

input : E: Dataset, D: Data space of E, S: Subspace with static
preferences, Z: Subspace with dynamic preferences

output: EC2Sky structure

// Step 1: computation of static and order sensitive skyline

points

Compute GSky(D,E)1

Store GSky(D,E) in the EC2Sky structure2

Compute OsSky(D,E)3

Store OsSky(D,E) in the EC2Sky structure4

// Step 2: computation of the EC2Sky structure

foreach di ∈ Z do5

Compute and Store CPdi in the EC2Sky structure6

foreach ℘j
i ∈ ℘i do7

Compute NewSky(di,℘
j
i )
; // Algorithm 18

Store NewSky(di,℘
j
i )

in the EC2Sky structure9

Compute CandComp(di,℘
j
i )
; // Algorithm 210

Store CandComp(di,℘
j
i )

in the EC2Sky structure11

when a new dimension is introduced, while new skyline points (CompSky points)
may appear.

The computation of the CutSky set is described by Algorithm 3. We just
show how to compute CutSky(Di−1) because the calculation of CutSky(di

⋃
S)

is performed in the same way.
The compromise skyline points are the set of compromise candidates that

become skyline compromises. The computation of this set is described by Algo-
rithm 4.

We are now in position to detail the EC2Sky method. Algorithm 5 and 6
describe the general process of EC2Sky. Algorithm 5 outlines the required steps
to construct the EC2Sky structure. At the end of step 2 (Algorithm 5, lines 8
and 11), we calculate the skyline sets, stored in the EC2Sky structure. Each of
these sets corresponds to one dimension with dynamic preferences defined in the
user query.

Algorithm 6 is dedicated to step 3, the computation of changing elements of
the skyline. The sets CompSky (Algorithm 6, line 11) and the union of CutSky
(Algorithm 6, line 10) are computed. As stated by the incremental skyline the-
orem (Theorem 2), the final skyline is obtained by eliminating all the CutSky
points and by adding all the CompSky points to the union of skylines related
to queries involving one dynamic preference (Algorithm 6, line 12).
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Algorithm 6. EC2Sky(Sky(D,E)(Z,℘))

input : Sky(D,E)(Z,℘):skyline query
output: Sky(D,E)(Z,℘)

// Step 3: computation of changing points

Sky(D0, E)(Z,℘) ← GSky(D,E)1

for i← 1 to m = |Z| do2

if ℘i = ∅ then3

Sky(di
⋃
S,E)(Z,℘) ← GSky(D,E)

⋃
CPdi4

else5

if isFirstOrderPref(℘i) then6

Sky(di
⋃
S,E)(Z,℘) ← GSky(D,E)

⋃
NewSky(di,℘

j
i )

7

else8

Use the merging property9

Compute CutSky(Di−1) (resp. CutSky(di
⋃
S))10

Compute NewCompSky(Di, E); // Algorithm 411

Sky(Di, E)(Z,℘) ← Sky(Di−1, E)(Z,℘)

⋃
Sky(di

⋃
S,E)(Z,℘)

⋃
12

NewCompSky(Di, E)− (CutSky(Di−1)
⋃
CutSky(di

⋃
S))

Sky(D,E)(Z,℘) ← Sky(Dm, E)(Z,℘)13

Example 21. The skyline associated with the preferences ℘ = {M <Gr H <Gr

∗, G <Air ∗}, can be computed from the skyline associated with the preferences
℘1 = {M <Gr H <Gr ∗} and ℘2 = {G <Air ∗}.
Let D1 = {Price,Distance,Gr} and D2 = {Price,Distance,Gr,Air}. The sky-
line associated to ℘1 and ℘2 is computed in the same way as in example 20.
Sky(D1, E)(Z,M<GrH<Gr∗) = {a, b, e, f, h} and Sky({Air}⋃S,E)(Z,G<Air∗) =
{a, b, e}.

Since, we have two dimensions with dynamic preferences we compute the sets
CutSky(D1), CutSky({Air}⋃S) and NewCompSky(D2, E). For this exam-
ple, CutSky(D1) = ∅,
CutSky({Air}⋃S) = ∅ and NewCompSky(D2, E) = ∅. Finally,
Sky(D2, E)(Z,℘) = Sky(D1, E)(Z,M<GrH<Gr∗)

⋃
Sky({Air}⋃S,E)(Z,G<Air∗)

= {a, b, e, f, h}.
Our proposal provides the user with a way to express preferences and with

the ability to change them without being penalized by long response times. A
good performance is achieved by storing only the minimal amount of information
required to enable quick and easy updates.

The experimental evaluation presented in the following highlight the relevance
of the proposed solution.
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6 Experiments

In this section, we report an experimental evaluation of our algorithm EC2Sky
on synthetic data sets. EC2Sky is implemented in C/C++ and the experiments
were performed on an Intel Xeon CPU at 3GHz and 16 GB of RAM on a Linux
platform. For static dimensions, the data were produced by the generator re-
leased by the authors of [4]. Three kinds of data sets were generated: independent
data, correlated data and uncorrelated data. The description of these data sets
can be found in [4]. Like in [20], we only show the experimental results for the
uncorrelated data sets. The results for independent data sets and correlated data
sets are similar, but the execution times are much shorter for correlated data
sets. The dynamic dimensions were generated according to a Zipfian distribution
[19]. By default, we set the Zipfian θ parameter to 1. We obtained 1, 000, 000
tuples for 6 dimensions with static order. The number of dynamic dimensions
varied from 1 to 40 and the cardinality of these dimensions varied from 2 to
50. We chose a query template such that the most frequent value of some dy-
namic dimension has the highest priority over all other values. This represents
a parameter that becomes more difficult to manage as the skyline tends to be
larger.

Table 4. Default values

Parameter Value
No. of tuples 100K

No. of dimensions with static preferences (prefs) 6
No. of dimensions with dynamic prefs 4

No. of values in dimension with dynamic prefs 4
Zipfian parameter θ 1

In the following experiments, we compare the performance of our algorithm
EC2Sky with the algorithm IPO-tree implemented by [20], in terms of the exe-
cution time and the storage size.

Scalability with Respect to Dimensionality. In the first experiments, the
number of static dimensions was set to 6 and the number of dynamic dimensions
varied from 1 to 40. Figure 1 shows that the execution time and the storage
size of both EC2Sky and IPO-tree increase with the number of dynamic dimen-
sions. However, the increase rate of IPO-tree is greater than the increase rate
of EC2Sky. This comes from the complexity of the preferences tree built by
IPO-tree. The IPO-tree structure contains more nodes, yielding a larger storage
size. Beyond 6 dynamic dimensions, IPO-tree overflows the available memory.
This is due to its tree size in O(cm) (m is the number of dynamic dimensions and
c the cardinality of a dimension), which induces an exponential increase of the
storage size. The table built by EC2Sky has a size in O(c ∗m), which induces a
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Fig. 1. Scalability with respect to dimensionality
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Fig. 2. Scalability with respect to database size

substantial increase of the storage size but which evolves more slowly than the
IPO-tree. The results are similar to those in Figure 1 when the number of static
dimensions is set to 4.

Scalability with Respect to the Database Size. In this experiment, the
number of tuples of the dataset varies from 50, 000 to 1, 000, 000. Figure 2 shows
that the execution time and the storage size of both EC2Sky and IPO-tree
increase with the size of the dataset. This is because the size of the informa-
tion stored and analyzed increases with the increase of the dataset. However,
our method is more efficient than the IPO-tree method. Beyond 800.000 tuples,
IPO-tree overflows the available memory. Indeed, IPO-tree stores all the skylines
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Fig. 3. Scalability with respect to the cardinality of the dynamic dimensions

associated to all possible combinations of the different first order preferences of
all the dynamic dimensions whereas EC2Sky stores only the skyline points cor-
responding to the first order preferences of each dynamic dimension. The skyline
of the various combinations of preferences are derived from simple operations of
intersection and union.

Scalability with Respect to the Cardinality of Dynamic Dimensions.
We vary the cardinality of the dynamic dimensions from 2 to 50. Figure 3 shows
that the execution time and the storage size of both EC2Sky and IPO-tree in-
crease when the cardinality of the dimensions increases. Once more, EC2Sky is
more efficient than IPO-tree. The size of the treestructure of IPO-tree is expo-
nential in O(cm). So, it becomes more complex and larger when the cardinality
of dimensions (c) increases. IPO-tree overflows the available memory for a dy-
namic dimension cardinality above 11. We can also observe a significant increase
of the related execution time.

7 Conclusion

In this paper, we have proposed a new efficient method to compute skyline
queries in the presence of dimensions associated with dynamic user preferences.
We have investigated preferences on dimension values that can be expressed by
any partial or complete order, with a particular focus on the compromise points
which are important in decision making. Our approach, is based on a materializa-
tion of the first order preferences, that can respond efficiently to skyline queries
related to user preferences even in the context of large volumes of data. The ex-
perimentations presented in this paper highlight the performance improvements
of EC2Sky compared to IPO-tree [20].
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Theconsiderationofdimensionswithdynamicpreferences opens several promis-
ing future research directions. First, to demonstrate the usefulness of our method,
we want to experiment our algorithm on a real data set. We are particularly in-
terested in the analysis of simulation results from a biophysical model to extract
the most polluting plots in a watershed with respect to different analysis criteria.
Another possible future direction is to investigate how to compute skyline queries
in the context of hierarchical and aggregated data. The adopted approach would
search the best compromises along the set of axes. However, this approach raises
several problems. One is to define a computation adapted to the level of the ex-
plored hierarchy. Another is to define the semantics of skyline points at different
levels of granularity.

Acknowledgments. This work was funded by the French National Research
Agency (ANR) through the ACASSYA project (ANR-08-STRA-01).
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