
 123

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XLN

CS
 8

22
0

Abdelkader Hameurlain • Josef Küng • Roland Wagner
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e Stephen W. Liddle Klaus-Dieter Schewe Xiaofang Zhou
Guest Editors

Special Issue on Database-
and Expert-Systems Applications

Lecture Notes in Computer Science 8220
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Abdelkader Hameurlain Josef Küng
Roland Wagner Stephen W. Liddle
Klaus-Dieter Schewe Xiaofang Zhou (Eds.)

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems X

Special Issue on Database-
and Expert-Systems Applications

13

Editors-in-Chief

Abdelkader Hameurlain
Paul Sabatier University, IRIT, Toulouse, France
E-mail: hameur@irit.fr

Josef Küng
Roland Wagner
University of Linz, FAW, Austria
E-mail: {jkueng, rrwagner}@faw.at

Guest Editors

Stephen W. Liddle
Brigham Young University, Provo, UT, USA
E-mail: liddle@byu.edu

Klaus-Dieter Schewe
Software Competence Center Hagenberg, Austria
and University of Linz, FAW, Austria
E-mail: kd.schewe@scch.at

Xiaofang Zhou
University of Queensland, Brisbane, QLD, Australia
E-mail: zxf@uq.edu.au

ISSN 0302-9743 (LNCS) e-ISSN 1611-3349 (LNCS)
ISSN 1869-1994 (TLDKS)
ISBN 978-3-642-41220-2 e-ISBN 978-3-642-41221-9
DOI 10.1007/978-3-642-41221-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013948623

CR Subject Classification (1998): H.2.8, H.2, I.2.6, H.3, D.2, C.2, F.2, J.1
© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Following the 23rd International Conference on Database and Expert Systems
Applications (DEXA 2012, proceedings published in LNCS volumes 7446 and
7447) the programme chairs invited the authors of twelve selected papers to sub-
mit original, extended and revised papers to a special issue of the Transactions on
Large-Scale Data- and Knowledge-Centered Systems (TLDKS). Following these
invitations ten papers were submitted, each of which was carefully reviewed by
two experts in the field in two reviewing rounds. Finally, seven papers were
accepted for this special issue.

In their paper “Stepwise Development of Formal Models for Web Services
Compositions” Idir Ait-Sadoune and Yamine Ait-Ameur deal with modelling
and property verification for composed web services. In general, the composition
process for web services is defined by a choreography and orchestration of atomic
services. These compositions are seen as state transition systems describing the
communication protocol between the participating services. The description lan-
guages for service compositions suffer from a lack of formal semantics and from
ambiguities in the definition of their constructors, and the associated tools ne-
glect formal verification and validation of the behaviour and the properties of
the composed services. The article focuses on the modelling and verification of
composed web services described by BPEL standard using the Event-B method.
The static and dynamic parts of BPEL are formalised by Event-B, and formal
refinement is used to structure the development with BPEL. A one-to-one link
is guaranteed between BPEL elements and their Event-B formalisation. This
correspondence provides assistance for developers to improve the quality of the
obtained BPEL process. Properties are verified by proving theorems, and the
whole approach is implemented in the BPEL2B tool.

The article “Computing Skyline Incrementally in Response to Online Prefer-
ence Modification” by Tassadit Bouadi, Marie-Odile Cordier and René Quiniou
is dedicated to skyline queries, which are understood as queries retrieving the
most interesting objects from a database with respect to multi-dimensional pref-
erences. The presented EC2Sky approach focuses on how to answer efficiently
skyline queries in the presence of dynamic user preferences and large volumes of
data. The approach exploits the fact that the skyline associated with any prefer-
ence on a particular dimension can be computed without domination tests from
the skyline points associated with first-order preferences on that particular di-
mension. This can be supported by IPO-Trees (Implicit Preference Order Trees),
a data structure that supports the materialisation of skyline points associated
with the most preferred values. However, the size of an IPO-tree grows expo-
nentially with the number of dimensions. Therefore, the authors developed an
incremental method for calculating the skyline points related to several dimen-
sions associated with dynamic preferences. For this purpose a materialisation of

VI Preface

linear size is sufficient, which permits greater flexibility for updates of dimension
preferences and improves the execution time and storage size of queries. Exper-
iments on synthetic data highlight the relevance of EC2Sky compared with the
IPO-Tree method.

The third article in this collection by Flavio Ferrarotti, Sven Hartmann, Se-
bastian Link, Mauricio Marin and Emir Muñoz handles foundations, applications
and performance issues of ‘The finite Implication Problem for Expressive XML
Keys”. The theoretical contribution is the definition of a new fragment of XML
keys that keeps the right balance between expressiveness and efficiency of main-
tenance. More precisely, they characterise the associated implication problem
axiomatically and develop a low-degree polynomial time decision algorithm. In
comparison to previous work this new fragment of XML keys enhances the possi-
bility of capturing properties of XML data that are significant for an application
at hand. The practical contribution includes an efficient implementation of this
decision algorithm and a thorough evaluation of its performance, demonstrating
that reasoning about expressive notions of XML keys can be done efficiently in
practice, and scales well. The results promote the use of XML keys on real-world
XML practice, where a little more semantics makes applications a lot more ef-
fective. To exemplify this potential, the decision algorithm is used to calculate
non-redundant covers for sets of XML keys. In turn, this permits a significant
reduction of the the time required to validate large XML documents against keys
from the proposed fragment.

In their article “ALACRITY: Analytics-Driven Lossless Data Compression
for Rapid In-Situ Indexing, Storing, and Querying” John Jenkins and his co-
authors present ALACRITY, an approach to effectiveness of a fused data and
index encoding of scientific, floating-point data in generating lightweight data
structures that are amenable to common types of queries used in scientific data
analysis. The authors exploit the representation of floating-point values by ex-
tracting significant bytes, using the resulting unique values to bin the remaining
data along fixed-precision boundaries. To optimise query processing an inverted
index is used mapping each generated bin to a list of records contained within,
which optimises query processing with attribute range constraints. Overall, the
storage footprint for both index and data is shown to be below numerous configu-
rations of bitmap indexing while matching or outperforming query performance.

The article “A Declarative Approach to View Selection Modeling” by Imene
Mami, Zohra Bellahsene and Remi Coletta deals with the important view se-
lection problem in database and data warehousing systems. Given a database
(or a data warehouse) schema and a query workload, the view selection problem
is to choose an appropriate set of views to be materialised such that the total
query costs are optimised under constraints such as limited amount of resources
and total view maintenance costs. The view selection problem is known to be
NP-complete. The new contribution of the authors is a declarative approach
that involves a constraint programming technique known for its efficiency for

Preface VII

the resolution of NP-complete problems. The view selection problem is modeled
as a constraint satisfaction problem in an easy and declarative way, and its
resolution is performed automatically by the constraint solver. The approach
guarantees more flexibility and is extensible, as it can model and handle new
constraints and new heuristic search strategies to reduce the solution space. The
authors show that the performance outperforms genetic algorithms, which are
known to provide the best trade-off between quality of solutions in terms of cost
saving and execution time.

In the article “A Framework for Modeling, Computing and Presenting Time-
Aware Recommendations” Kostas Stefanidis and his co-authors deal with rec-
ommendation systems. While many existing approaches recommend items of
potential interest to users by completely ignoring the temporal aspects of rat-
ings, the authors argue that time-aware recommendations need to be pushed to
the foreground. Therefore, they introduce an extensive model for time-aware rec-
ommendations from two perspectives. From a fresh-based perspective, the use of
different aging schemes for decreasing the effect of historical ratings and increas-
ing the influence of fresh and novel ratings is proposed. From a context-based
perspective, the focus is on the provision of different suggestions under different
temporal specifications. In addition, to facilitate user browsing, an effective pre-
sentation layer for time-aware recommendations based on user preferences and
summaries for the suggested items has been developed.

Finally, the last article in this collection is “Incremental Mining of Top-k
Maximal Influential Paths in Network Data” by Enliang Xu, Wynne Hsu, Mong
Li Lee and Dhaval Patel dealing with information diffusion, which refers to the
spread of abstract ideas and concepts, technical information, and actual prac-
tices within a social system. The spread denotes flow or movement from a source
to an adopter, typically via communication and influence. While a lot of research
on information diffusion analysis has focused on discovering “influential users”
and “who influences whom” neglecting the continuity of influence among users,
the authors develop a new method for inferring top-k maximal influential paths
capturing the continuity of influence. For this a generative influence propaga-
tion model is defined based on the independent cascade model and the linear
threshold model, which mathematically models the spread of certain information
through a network. The top-k maximal influential path inference problem is for-
malised giving rise to an efficient algorithm called TIP to infer the top-k maximal
influential paths. TIP makes use of the properties of top-k maximal influential
paths to dynamically increase the support and prune the projected databases. In
order to address database evolution over time an incremental mining algorithm
IncTIP has been developed in addition to maintain top-k maximal influential
paths. Effectiveness and efficiency of both TIP and IncTIP are evaluated by a
case study on both synthetic and real-world datasets.

VIII Preface

We would like to thank all authors for their contributions to this special issue.
We are grateful to all reviewers for their invaluable work in reviewing the papers
and ensuring the high quality of this collection of articles. Finally, without the
editorial assistance by Gabriela Wagner, who handled all the communication
with the authors and the reviewers, this volume would not have been possible.

July 2013 Stephen W. Liddle
Klaus-Dieter Schewe

Xiaofang Zhou

Editorial Board

Reza Akbarinia INRIA, France
Stéphane Bressan National University of Singapore, Singapore
Francesco Buccafurri Università Mediterranea di Reggio Calabria,

Italy
Yuhan Cai A9.com, USA
Qiming Chen HP-Lab, USA
Tommaso Di Noia Politecnico di Bari, Italy
Dirk Draheim University of Innsbruck, Austria
Johann Eder Alpen Adria University Klagenfurt, Austria
Stefan Fenz Vienna University of Technology, Austria
Georg Gottlob Oxford University, UK
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Theo Härder Technical University of Kaiserslautern,

Germany
Dieter Kranzlmüller Ludwig-Maximilians-Universität München,

Germany
Philippe Lamarre University of Nantes, France
Lenka Lhotská Technical University of Prague, Czech Republic
Vladimir Marik Technical University of Prague, Czech Republic
Mukesh Mohania IBM India, India
Tetsuya Murai Hokkaido University, Japan
Gultekin Ozsoyoglu Case Western Reserve University, USA
Torben Bach Pedersen Aalborg University, Denmark
Günther Pernul University of Regensburg, Germany
Klaus-Dieter Schewe University of Linz, Austria
Makoto Takizawa Seikei University Tokyo, Japan
David Taniar Monash University, Australia
A. Min Tjoa Vienna University of Technology, Austria
Chao Wang Oak Ridge National Laboratory, USA

Reviewers

Annalisa Appice Università degli Studi di Bari Aldo Moro, Italy
Stéphane Bressan National University of Singapore, Singapore
Silvana Castano Università degli Studi di Milano, Italy
Max Chevalier IRIT - SIG, Université de Toulouse, France
David Embley Brigham Young University, USA
Flavio Ferrarotti Victoria University of Wellington, New Zealand
Bernhard Freudenthaler Software Competence Center Hagenberg,

Austria

X Editorial Board

Theo Härder Technical University of Kaiserslautern,
Germany

Yu Hua Huazhong University of Science and
Technology, China

Gabriele Kern-Isberner Technical University of Dortmund, Germany
Sang-Wook Kim Hanyang University, South Korea
Meike Klettke University of Rostock, Germany
Sebastian Link The University of Auckland, New Zealand
Hui Ma Victoria University of Wellington, New Zealand
Sofian Maabout Université de Bordeaux, France
Atif Mashkoor Software Competence Center Hagenberg,

Austria
Jovan Pehcevski European University, Macedonia
Elvinia Riccobene Università degli Studi di Milano, Italy
Leonid Sokolinsky South Ural State University, Russia
Qing Wang The Australian National University, Australia

Table of Contents

Stepwise Development of Formal Models for Web Services Compositions:
Modelling and Property Verification . 1

Idir Ait-Sadoune and Yamine Ait-Ameur

Computing Skyline Incrementally in Response to Online Preference
Modification . 34

Tassadit Bouadi, Marie-Odile Cordier, and René Quiniou

The Finite Implication Problem for Expressive XML Keys:
Foundations, Applications, and Performance Evaluation 60

Flavio Ferrarotti, Sven Hartmann, Sebastian Link,
Mauricio Marin, and Emir Muñoz

ALACRITY: Analytics-Driven Lossless Data Compression for Rapid
In-Situ Indexing, Storing, and Querying . 95

John Jenkins, Isha Arkatkar, Sriram Lakshminarasimhan,
David A. Boyuka II, Eric R. Schendel, Neil Shah, Stephane Ethier,
Choong-Seock Chang, Jackie Chen, Hemanth Kolla, Scott Klasky,
Robert Ross, and Nagiza F. Samatova

A Declarative Approach to View Selection Modeling 115
Imene Mami, Zohra Bellahsene, and Remi Coletta

A Framework for Modeling, Computing and Presenting Time-Aware
Recommendations . 146

Kostas Stefanidis, Eirini Ntoutsi, Mihalis Petropoulos,
Kjetil Nørv̊ag, and Hans-Peter Kriegel

Incremental Mining of Top-k Maximal Influential Paths in Network
Data . 173

Enliang Xu, Wynne Hsu, Mong Li Lee, and Dhaval Patel

Author Index . 201

Stepwise Development of Formal Models

for Web Services Compositions: Modelling
and Property Verification

Idir Ait-Sadoune1 and Yamine Ait-Ameur2

1 E3S - Supelec, Gif-Sur-Yvette, France
idir.aitsadoune@supelec.fr

2 IRIT - ENSEEIHT, Toulouse, France
yamine@n7.fr

Abstract. The ability to compose existing services to provide more
complex features is one of the main benefits of Service Oriented Architec-
ture (SOA). This services composition process, especially Web services,
is generally defined by a choreography or an orchestration of atomic
services. These compositions are seen as a state transition system de-
scribing the communication protocol between the participating services.
The services description languages, expressing these compositions, suffer
from the lack of formal semantics and the ambiguities in the definition of
their constructors in the standards defining these languages. The tools
associated with these languages do not offer the possibility to formally
verify and validate the behaviour and the properties of the obtained
composed service.

Our work focuses on the formal modelling and verification of the web
services composition described by the BPEL standard using the Event-B
method. The proposed approach formalizes the static and the dynamic
parts of BPEL, and uses the refinement to structure a BPEL develop-
ment. The theorem-proving technique is set-up to verify the properties.
A one-to-one link is guaranteed between BPEL elements and their Event-
B formalization. This correspondence provides assistance for developers
to improve the quality of the obtained BPEL process. This approach is
implemented in the BPEL2B tool.

Keywords: Formal modelling, Verification, Refinement and proof, Event-
B, Composition operators, Services composition.

1 Introduction

With the development of the web, a huge number of services available on the web
have been published. These web services operate in several application domains
like concurrent engineering, semantic web, system engineering or electronic com-
merce. Moreover, due to the ease of use of the web, the idea of composing these
web services to build composite ones defining complex workflows arose. Even if
several industrial standards providing specification and/or design XML-oriented

A. Hameurlain et al. (Eds.): TLDKS X, LNCS 8220, pp. 1–33, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 I. Ait-Sadoune and Y. Ait-Ameur

languages for web services compositions description, like BPEL [27], CDL [35],
OWL-S [33], BPMN [28] or XPDL [36] have been proposed, the activity of com-
posing web services remains a syntactically based approach. Due to the lack of
formal semantics of these languages, ambiguous interpretations remain possible
and the verification of the compositions is left to the testing and deployment
phases. From the business point of view, customers do not trust these services
nor rely on them. As a consequence, building correct, safe and trustable web
services compositions is a major challenge.

This paper presents an extended version of the work addressed in [8, 10]. It
gives a detailed, integrated and complete description of the approach consist-
ing in formally interpreting web services compositions described with BPEL.
Moreover, it covers new concepts related to the methodology advocated by our
proposal. From the methodological point of view, the refinement based approach
defined in [10] is extended by defining four good candidates scenarios that formal-
ize the BPEL decomposition operator. As a consequence, a stepwise methodology
based on decomposition is described in this paper. Our objective is not to change
the design process mastered by the web services compositions designers, but it
is to enrich this process with a formal modelling and verification activity by
providing formal models beside each web services composition description. More
precisely, our approach consists in deriving an Event-B model from each BPEL
web service compositions and encode the decomposition relationship, offered by
BPEL, by an Event-B refinement relationship. Therefore, it becomes possible to
enrich the Event-B models by the relevant properties in order to check not only
the correctness of the web services compositions described in the BPEL designs
but also to check the correctness of the decomposition encoded by the sequence
of BPEL models linked by the decomposition relationship. Regarding the formal
modelling activity, the complexity of the proofs is reduced thanks to refinement.

From a technical point of view, we are aware that several work addressed the
problem of formal web services verifications [11]. These approaches use model
checking as a verification procedure facing the state number explosion prob-
lem. Abstraction techniques are used in order to reduce the complexity of the
verification. The consequence of this abstraction is the loss of relevant prop-
erties modelling and verification like data interpretation properties or message
exchanges. We claim that, thanks to the Event-B method, we are capable to
overcome this limitation by supplying a technique supporting data interpreta-
tions. In this paper, we develop the idea that consists in providing a single and
formal interpretation of WSDL/BPEL constructs by Event-B models, by giving
different Event-B encodings that formalize WSDL/BPEL elements.

This paper is structured as follows. Section 2 presents the Event-B method.
Section 3 is devoted to a brief description of web services composition and BPEL
standard. Then, Section 4 describes our approach for formalizing any BPEL de-
sign by an Event-B model. In Section 5, we show how the refinement offered
by Event-B can be used to encode the BPEL decomposition operation. As a
result, we obtain an incremental development of both the BPEL design and the
Event-B models. Section 6 discusses the properties verification capabilities that

Stepwise Development of Formal Models for Web Services Compositions 3

result from this approach and Section 7 presents the BPEL2B tool that imple-
ments the proposed approach. In section 8, we discuss the existing approaches
for formal verification of web services compositions and we compare them with
our proposal. Finally, a conclusion and some perspectives are outlined.

2 The Event-B Method

The Event-B method [3] is a recent evolution of the B method [2]. This method
is based on the notions of pre-conditions and post-conditions of Hoare [21], the
weakest pre-condition of Dijkstra [14] and the substitution calculus [2]. It is
a formal method based on mathematical foundations: first order logic and set
theory.

2.1 Event-B Model

An Event-B model is defined by a set of variables, defined in the VARIABLES
clause that evolve thanks to events defined in the EVENTS clause. It encodes
a state transition system where the variables represent the state and the events
represent the transitions from one state to another.

An Event-B model is made of several components of two kinds : Machines
and Contexts. The Machines contain the dynamic parts (states and transitions)
of a model whereas the Contexts contain the static parts (axiomatization and
theories) of a model. A Machine can be refined by another one, and a Context
can be extended by another one. Moreover, a Machine can see one or several
Contexts (figure 1).

A Context is defined by a set of clauses (figure 2) as follows.

– CONTEXT represents the name of the component that should be unique in
a model.

– EXTENDS declares the Context extended by the described Context.
– SETS describes a set of abstract and enumerated types.
– CONSTANTS represents the constants used by a model.

Fig. 1. MACHINE and CONTEXT relationships

4 I. Ait-Sadoune and Y. Ait-Ameur

CONTEXT context identifier1
EXTENDS context identifier2
SETS

s
CONSTANTS

c
AXIOMS

axm : A(s, c)
THEOREMS

thm : T(s, c)
END

MACHINE machine identifier1
REFINES machine identifier2
SEES

context identifier1
VARIABLES

v
INVARIANTS

inv : I (s, c, v)
THEOREMS

thm : T(s, c, v)
VARIANT

V (s, c, v)
EVENTS

< event list >
END

Fig. 2. The structure of an Event-B development

– AXIOMS describes, in first order logic expressions, the properties of the
attributes defined in the CONSTANTS clause. Types and constraints are
described in this clause as well.

– THEOREMS are logical expressions that can be deduced from the axioms.

Similarly to Contexts, a Machine is defined by a set of clauses (figure 2).
Briefly, the clauses mean.

– MACHINE represents the name of the component that should be unique in
a model.

– REFINES declares the Machine refined by the described Machine.
– SEES declares the list of Contexts imported by the described Machine.
– VARIABLES represents the state variables of the model of the specification.

Refinement may introduce new variables in order to enrich the described
system.

– INVARIANTS describes, by first order logic expressions, the properties of the
variables defined in the VARIABLES clause. Typing information, functional
and safety properties are usually described in this clause. These properties
shall remain true in the whole model. Invariants need to be preserved by
events. It also expresses the gluing invariant required by each refinement.

– THEOREMS defines a set of logical expressions that can be deduced from
the invariants. They do not need to be proved for each event like for the
invariant.

– VARIANT introduces a decreasing natural number which states that the
”convergent” events terminate.

– EVENTS defines all the events (transitions) that occur in a given model.
Each event is characterized by its guard and is described by a body thanks
to actions. Each Machine must contain an ”Initialisation” event. The events
occurring in an Event-B model affect the state described in VARIABLES
clause.
An event consists of the following clauses (figure 3):

• status can be ”ordinary”, ”convergent” (the event has to decrease the
variant), or ”anticipated” (the event must not increase the variant).

• refines declares the list of events refined by the described event.

Stepwise Development of Formal Models for Web Services Compositions 5

• any lists the parameters of the event.
• where expresses the guard of the event. An event is fired when its guard
evaluates to true. If several guards evaluate to true, only one is fired with
a non deterministic choice.

• then contains the actions of the event that are used to modify variables.

Event evt =̂
Status convergent
any

x
where

grd : G(s, c, v , x)
then

act : v : |BA(s, c, v , x , v ′)
end

Fig. 3. Event structure

Event-B offers three kinds of actions that can be deterministic or not (figure 4).
For the first case, the deterministic action is represented by the ”assignment”
operator that modifies the value of a variable. This operator is illustrated by the
action [1]. For the case of the non-deterministic actions, the action [2] represents
the ”before-after” operator acting on a set of variables whose effect is represented
by a predicate, expressing the relationship between the contents of variables
before and after the triggering of the action. Finally, the action [3] represents
the indeterministic choice operator, acting on a variable, by modifying its content
with an undetermined value in a set of values.

< variable identifier > := < expression > [1]
< variable identifier list > : | < before after predicate > [2]
< variable identifier > :∈ < set expression > [3]

Fig. 4. The kinds of actions of an event

Proof obligations (PO) are associated to any Event-B model. They are au-
tomatically generated. The proof obligation generator plugin in the Rodin plat-
form [29] is in charge of generating them. These OP need to be proved in order
to ensure the correctness of developments and refinements. The rules for gener-
ating proof obligations are given in [3], they follow the substitutions calculus [2]
close to the weakest precondition calculus [14].

2.2 Refinement of Event-B

The refinement operation [4] offered by Event-B encodes model decomposition.
A transition system is decomposed into another transition system with more
and more design decisions while moving from an abstract level to a less abstract
one. A refined Machine is defined by adding new events, new state variables and
a gluing invariant. Each event of the abstract model is refined in the concrete

6 I. Ait-Sadoune and Y. Ait-Ameur

model by adding new information expressing how the new set of variables and
the new events evolve. All the new events appearing in the refinement refine the
skip event of the refined Machine. Refinement preserves the proved properties
and therefore it is not necessary to prove them again in the refined transition
system, usually more complex. The preservation of the properties results from
the proof of the gluing invariant in the refined machine.

2.3 Semantics of Event-B Models

The new aspect of the Event-B method, in comparison with classical B, is re-
lated to the semantics. Indeed, the events of a model are atomic events of a state
transitions systems. The semantics of an Event-B model is trace based semantics
with interleaving. A system is characterized by the set of licit traces correspond-
ing to the fired events of the model which respects the described properties. The
traces define a sequence of states that may be observed by properties. All the
properties will be expressed on these traces.

This approach proved the capability to represent event based systems like
railway systems, embedded systems or web services. Moreover, decomposition
(thanks to refinement) supports building of complex systems gradually in an in-
cremental manner by preserving the initial properties thanks to the preservation
of a gluing invariant.

3 Services Composition Description Languages

One of the key ideas arising from the use of SOA architecture based on web
services is the ability to create a new web service by combining, composing and
interacting other pre-existing services. There exists important standardization
efforts towards providing specification languages for web services composition.
Our work deals with the formal verification of the composition of web services.
We focus on verification of behavioural requirements, the properties that a ser-
vice composition shall satisfy in order to achieve its functional goal. Currently,
languages dedicated to the web services composition description like BPEL [27],
CDL [35], OWL-S [33], BPMN [28] or XPDL [36] are not equipped with ver-
ification procedures that cover the whole languages. In order to illustrate our
proposal, we use BPEL for describing web services compositions.

3.1 Services Composition Description Languages

The web services composition description languages are XML-based languages.
The most popular languages are BPEL, CDL, OWL-S, BPMN or XPDL. If these
languages are different from the description point of view, they share several
concepts in particular the service composition. Among the shared concepts, we
find the notions of activity for producing and consuming messages, attributes
for instance correlation, message decomposition, service location, compensation

Stepwise Development of Formal Models for Web Services Compositions 7

in case of failure, events and event handling. These elements are essential to
describe services compositions and their behaviour.

However, due to their XML-based definition, these languages suffer from a
lack of semantics. It is usually informally expressed in the standards that de-
scribe these languages using natural language or semi-formal notations. Hence
the need of a formal semantics expressing this semantics emerged. Formal de-
scription techniques and the corresponding verification procedures are very good
candidates for expressing the semantics and for verifying the relevant properties.

The formal approach we develop in this paper uses BPEL as a service compo-
sition description language and Event-B as a formal description technique. The
proposed approach can be extended to be used with other service composition
description language.

3.2 Overview of BPEL

BPEL (Business Process Execution Language [27]) is a standardized language
for specifying the behaviour of a business process based on interactions between
a process and its service partners (partnerLink). It defines how multiple service
interactions, between these partners, are coordinated to achieve a given goal.
Each service offered by a partner is described in a WSDL document through a
set of operations and of handled messages.

WSDL (Web Service Description Language [34]) is a standardized language
for describing the published interface (input and output parameters types) of
the web service. It provides with the the address of the described service, its
identity, the operations that can be invoked, the operation parameters and their
types. Thus, WSDL describes the function provided by web service operations. It
defines the exchanged messages the envelop the exchanged data and parameters.
The composition of such web services is described in languages, like BPEL,
supporting such composition operators.

A BPEL process uses a set of variables to represent the messages exchanged
between partners. They also represent the state of the business process. The
content of these messages is amended by a set of activities which represent the
process flow. This flow specifies the operations to be performed, their ordering,
activation conditions, reactive rules, etc. Figure 5 shows the XML structure of
a WSDL description and a BPEL process.

BPEL offers two categories of activities: 1) atomic activities representing the
primitive operations performed by the process. They are defined by the invoke,
receive, reply, assign, terminate, wait and empty activities, they correspond to
basic web services 2) and, structured activities obtained by composing prim-
itive activities and/or other structured activities using the sequence, if, while
and repeat Until composition operators that model traditional sequential control
constructs. Three other composition operators are defined by the pick operator
defining a non-deterministic choice, the flow operator defining the concurrent
execution and the scope operator defining sub-processes execution. BPEL also
introduces systematic mechanisms for fault handling by defining a set of activi-
ties to be executed for handling possible errors anticipated by the web services

8 I. Ait-Sadoune and Y. Ait-Ameur

<definitions name="PurchaseOrder" ...>

<!--the messages declaration--------------------- -->
<wsdl:message name="POMessage">

<wsdl:part name="customerInfo" type="sns:customerInfoType" />
<wsdl:part name="purchaseOrder" type="sns:purchaseOrderType" />

</wsdl:message>

<wsdl:message name="InvMessage">
<wsdl:part name="IVC" type="sns:InvoiceType" />

</wsdl:message>

...
<!-- the operations description --------------------- -->
<wsdl:portType name="purchaseOrderPT">

<wsdl:operation name="sendPurchaseOrder">
<wsdl:input message="pos:POMessage" />
<wsdl:output message="pos:InvMessage" />

</wsdl:operation>
</wsdl:portType>

</definitions>

<process name="purchaseOrderProcess" ... >
...
<!-- the state variables declaration -- -->
<variables>

<variable name="PO" messageType="lns:POMessage"/>
<variable name="Invoice" messageType="lns:InvMessage"/>
<variable name="shippingRequest" messageType="lns:shippingRequestMessage"/>
<variable name="shippingInfo" messageType="lns:shippingInfoMessage"/>
<variable name="shippingSchedule" messageType="lns:scheduleMessage"/>

</variables>
<!-- the fault handler behavior description -------------------------------------- -->
<faultHandlers>

<catch faultName="lns:cannotCompleteOrder"
faultVariable="POFault" faultMessageType="lns:orderFaultType">

<reply ... operation="sendPurchaseOrder" variable="POFault" />
</catch>

</faultHandlers>
<!-- a main behavior of a purchase order process ---------------------------------- -->
<sequence name="PurchaseOrderProcess">

<receive name="ReceiveOrder" ... operation="sendPurchaseOrder" variable="PO"/>
<flow name="PurchaseOrderProcessing">

<sequence name="ArrangeLogistics">
<assign name="AssignCustomer Info"...

<copy><from>$PO.customerInfo</from>
<to>$shippingRequest.customerInfo</to></copy>

</assign>
<invoke name="RequestShipping"... operation="requestShipping"

inputVariable="shippingRequest" outputVariable="shippingInfo"/>
<receive name="ReceiveSchedule"...

operation="sendSchedule" variable="shippingSchedule"/>
</sequence>
<sequence name="ComputePrice">

<invoke name="initiatePriceCalculation"...
operation="initiatePriceCalculation" inputVariable="PO"/>

<invoke name="ReceiveShipping Price"...
operation="sendShippingPrice" inputVariable="shippingInfo"/>

<receive name="ReceiveInvoice"...
operation="sendInvoice" variable="Invoice" />

</sequence>
<sequence name="ProductionScheduling">

<invoke name="InitiateProductionScheduling"...
operation="requestProductionScheduling" inputVariable="PO" />

<invoke name="CompleteProductionScheduling"...
operation="sendShippingSchedule" inputVariable="shippingSchedule"/>

</sequence>
</flow>
<reply name="ReplyInvoice"... operation="sendPurchaseOrder" variable="Invoice"/>

</sequence>
<process/>

Fig. 5. The XML description of the Purchase Order process

Stepwise Development of Formal Models for Web Services Compositions 9

composition designer. A compensation handler can be associated to the fault
handler, it starts from the erroneous process itself to undo some steps that have
already been completed and return the control back at the identified checkpoints.

3.3 Case Study

The example used in the following sections are based on the well known case
study of the PurchaseOrder BPEL specification presented in [27]. This example,
issued from electronic commerce, describes a service that processes a purchase
order.

On receiving the purchase order from a customer, the process initiates three
paths concurrently: calculating the final price for the order, selecting a shipper,
and scheduling the production and shipment for the order. When some processes
are concurrent, they induce control and data dependencies between the three
paths. In particular, the shipping price is required to finalize the price calculation,
and the shipping date is required for the complete fulfilment schedule. When the
three concurrent paths are completed, invoice processing can proceed and the
invoice is sent to the customer.

Figure 5 shows how the public interface of the PurchaseOrderProcess pro-
cess is described by the PurchaseOrder Web service. This service publishes the
sendPurchaseOrder operation that defines the received message (POMessage
message) containing the customer and the purchase order information, and the
replied message (InvMessage message) containing the invoice.

The behavior of the PurchaseOrderProcess process is described as a sequence
ofReceiveOrder, PurchaseOrderProcessing andReplyInvoice activities. Purchase-
OrderProcessing is itself decomposed as a flow of ProductionScheduling, Com-
putePrice and ArrangeLogistics activities. ProductionScheduling is a sequence
of InitiateProductionScheduling and CompleteProductionScheduling activities.
ComputePrice is a sequence of InitiatePriceCalculation, CompletePriceCalcu-
lation and finally ReceiveInvoice activities. ArrangeLogistics is a sequence of
AssignCustomerInfo, RequestShipping and ReceiveSchedule activities.

3.4 Decomposition Operator of BPEL

Structured activities represent the mechanism used by the BPEL language to
describe the behaviour of each service composition operator in a BPEL process.
A structured activity monitors and/or defines the execution order of activities
a BPEL process is composed of. Thus, a structured activity can be decomposed
into sub-activities (decomposition operation), which themselves can be decom-
posed into other sub-activities. This decomposition process can be repeated until
simple activities are reached.

On figure 6, the decomposition of structured activities into other structured
activities or simple ones is materialized by dashed vertical lines. The same figure
shows how a BPEL process behaviour is described after decomposition. Initially,
the bpel1 process contains one structured activity. When a bpeli process contains
one or more structured activities, they are decomposed into others activities and

10 I. Ait-Sadoune and Y. Ait-Ameur

Fig. 6. Decomposition operator of BPEL applied to the Purchase Order process

we get another bpeli process with more detail in behaviour. As stated above, the
decomposition process stops when no structured activity remains in the process
description.

When designing the web services composition corresponding to this case study,
graphical editors tools [13] are set up by the designers. These tools offer two
design capabilities.

1. A one shot web services composition description. Here the designer produces
the whole services composition in a single graphical diagram.

2. A stepwise web services composition design. In this case, the designer uses the
decomposition operator offered by BPEL and encoded in graphical BPEL ed-
itors. This operator makes it possible to incrementally introduce more con-
crete services composingmore abstract ones. Figure 6 shows a sequence of four
decomposed BPEL models namely PurchaseOrder 1, PurchaseOrder 2,
PurchaseOrder 3 and PurchaseOrder 4.

Stepwise Development of Formal Models for Web Services Compositions 11

Nowadays, it is well accepted that formal methods are useful to establish the
relevant properties at each step. The association of refinement and decomposition
would help to ensure the correctness of this decomposition. We claim that the
Event-B method is a good candidate to bypass these insufficiencies.

3.5 BPEL and the Event-B Semantics

The study of the BPEL language and the standard describing its semantics [27]
has revealed several links between this language and Event-B. In this section,
we discuss the structural and the behavioural links.

Structural link. A BPEL description contains two main parts: the first part con-
cerns data type, messages and operations description used by the web services
that implement the composed service. This part is a static part of BPEL, it is
described in WSDL and XSD files. The second part deals with variables descrip-
tion handled by the BPEL process, process behaviour description and different
fault and events handlers associated with the described BPEL process. This part
is a dynamic part of BPEL described in a BPEL file.

For the Event-B method, a model consists of two main components, Con-
text and Machine. A Context contains abstract and enumerated sets definitions,
constants declarations and properties related to the constants. This is a static
part of an Event-B model. A Machine contains variables declarations, invariant
properties and events that describe the model behaviour. This is a dynamic part
of an Event-B model.

Behavioural link. BPEL describes a composed service as a process. The be-
haviour of this process is described himself by a main structured activity. This
activity is interpreted as a state transition system. The activities controlled by
the main activity represent the transitions. The messages and the data, described
by a variables element in BPEL, represent the state of a BPEL process. The ex-
ecution of the BPEL activities has as effect, to modify the messages contents
and the state variables.

In the Event-B method, a Machine component encodes a state transition
system where the state of the model is formalized in the VARIABLES clause,
and the transitions are formalized by the events of the Event-B Machine. The
events are guarded and the triggering of an event has an effect on state variables.

From this interpretation, formal modelling of BPEL by Event-B is based on
the observation that a BPEL process is interpreted as a state transition system.
A state is represented in both languages by a variables element in BPEL and by
the VARIABLES clause in Event-B. The various activities of BPEL represent
the transitions. They are formalized by the events of the EVENTS clause in
Event-B.

4 From BPEL Process to Event-B Model

Our proposal consists in formally expressing the semantics of a BPEL process
by an Event-B model in order to check the relevant properties defined in the

12 I. Ait-Sadoune and Y. Ait-Ameur

Event-B models by the services designers. A formal representation of a BPEL
description by an Event-B model is driven by the BPEL process structure. Each
BPEL element has a corresponding interpretation in Event-B. In the proposed
interpretation rules, a one-to-one link between each BPEL element and its cor-
responding Event-B interpretation is guaranteed. As a result, when a proof obli-
gation is generated in the Event-B model, it is uniquely linked to the associated
BPEL element. The identification of the BPEL code part that generates this
proof obligation becomes possible. This characteristic is important because it
links the Event-B modelling directly in the BPEL description.

According to the separation of static and dynamic parts in BPEL description,
the interpretation of a BPEL description by an Event-B model is obtained in
two steps.

– The first step interprets the WSDL code that describes the various web
services, their data types and operations into the different data types and
functions offered by Event-B. This part is encoded in the Context of an
Event-B model which is devoted to the description of the different data
types and sets required for the definition of the Event-B model. Most of the
related approaches omit this part. It is abstracted to reduce the size of the
explored graph (Static part).

– The second step concerns the description of the composition of the activities
appearing in a BPEL description. They are formalized as events. This com-
position is controlled by the synchronization of the events in the Event-B
Machine (Dynamic part).

The process associated to these two steps is presented in the following sub-
sections.

4.1 Formal Modelling of WSDL Service Description by an Event-B
Context

A WSDL specification usually contains the declaration of data types, messages,
port types (the profile of supported operations), bindings and services. Since a
BPEL process references only the data types, the messages and the operations
of the port types, solely the rules for interpreting these elements by an Event-B
Context are defined.

<complexType name=CTypeName>
<sequence>
<element name=ElementName

type=TypeName/>+
</sequence>

</complexType>

SETS
CTypeName

CONSTANTS
ElementName

AXIOMS
axm1 : CTypeName �= ∅

axm2 : ElementName ∈ CTypeName → TypeName

Fig. 7. An Event-B formalization of an XML complexType

Stepwise Development of Formal Models for Web Services Compositions 13

Data Type. We chose to present the most often used constructor in the data
type and messages declarations manipulated by a WSDL Web services definition.
We have treated the sequence of elements in the case of a complexType XML
definition. The XML complexType is represented by an abstract set and each
element of a complexType is represented by a functional relation corresponding
to the template ElementName ∈ CTypeName → TypeName (figure 7).

<message name=messageName>
<part name=partName

type=typeName/>*
</message>

SETS
messageName

CONSTANTS
partName

AXIOMS
axm1 : messageName �= ∅

axm2 : partName ∈ messageName → typeName

Fig. 8. An Event-B formalization of a WSDL message type

Message Type. The WSDL message element is formalized by an Event-B
abstract set. Each part attribute of a message is represented by a functional re-
lation corresponding to the template partName ∈ messageName→ typeName
from the message type to the part type (figure 8).

<portType > *
<operation name=operationName>

<input message=inputMessage/>
<output message=outputMessage/>

</operation>
</portType>

CONSTANTS
operationName

AXIOMS
axm1 : operationName ∈ inputMessage →

outputMessage

Fig. 9. An Event-B formalization of a WSDL operation type

Operation Profile. Each operation of a portType is represented by a func-
tional relation corresponding to the template operationName ∈ inputMessage
→ outputMessage from the message type of the input element to the message
type of the output element (figure 9).

The portType element is not represented in the Context, because the compo-
sition process refers only to the operation offered by the port. As a consequence,
only the operation is represented. Notice that the rest of the WSDL elements is
not used in BPEL.

Application to the Case Study. For example, consider the purchaseOrder-
Type type shown in figure 10. A set named purchaseOrderType is defined in the
SETS clause. For the CID element, describing the customer identifier, the CID
set is introduced in the AXIOMS clause as a functional relation (axiom axm1
in Figure 10). The POMessage message element is formalized by a POMessage
abstract set defined in the SETS clause. For the customerInfo attribute of the
POMessage message, the customerInfoPOMessage set is introduced in the AX-
IOMS clause as a functional relation (axiom axm5 in Figure 10). Finally, the

14 I. Ait-Sadoune and Y. Ait-Ameur

sendPurchaseOrder operation of the purchaseOrderPT portType is encoded by
the functional relation described in the axiom axm9.

The previous translation rules define the static part of an Event-B model,
namely the Context. It encodes the whole definitions of WSDL description rel-
evant for defining Event-B models. This part may be extended with AXIOMS
and THEOREMS that express properties on the defined data elements. The
formalization of this part is relevant for checking data oriented properties.

<complexType name="purchaseOrderType">
<element name="CID" type="int"/>
<element name="order" type="int"/>
...

</complexType>
...
<message name="POMessage">

<part name="customerInfo"
type="customerInfoType"/>

<part name="purchaseOrder"
type="purchaseOrderType"/>

</message>
...
<portType name="purchaseOrderPT">

<operation name="sendPurchaseOrder">
<input message="POMessage"/>
<output message="InvMessage"/>

</operation>
</portType>

CONTEXT PurchaseOrderServices
SETS

POMessage
CustomerInfoType
PurchaseOrderType
...

CONSTANTS
CID order ... customerInfoPOMessage
purchaseOrderPOMessage ...
sendPurchaseOrder

AXIOMS
axm1 : CID ∈ PurchaseOrderType → Z
axm2 : order ∈ PurchaseOrderType → Z
axm : ...
axm5 : customerInfoPOMessage ∈

POMessage → CustomerInfoType
axm6 : purchaseOrderPOMessage ∈

POMessage → PurchaseOrderType
axm : ...
axm9 : sendPurchaseOrder ∈ POMessage →

InvMessage
axm : ...

Fig. 10. An Event-B Context for complex Types, messages and operations

4.2 Formal Modelling of BPEL Variables and Activities by Event-B
Variables and Events

This section addresses the description of the dynamic part of a BPEL process
definition. The formalization process is inductively defined on the structure of
the BPEL definition. Each BPEL variable corresponds to a state variable of
the Event-B model in the VARIABLES clause, each simple activity becomes
an event of the Event-B model and each structured activity is translated to a
specific events construction. The following interpretation rules are set-up.

Variables. The BPEL variable element is represented by a variable in the
VARIABLES clause in an Event-B Machine. This variable is typed in the IN-
VARIANTS clause using type BPEL attribute. Each variableName is represented
by a set of size one, initialized to the empty set (figure 11). This interpretation
makes it possible to check if a state variable is empty or not (case of message
for example).

For example, the POMessage message of the PO variable is represented by
the invariants inv1 and inv2 in Figure 12.

Stepwise Development of Formal Models for Web Services Compositions 15

<variables>?
<variable name=variableName

type=typeName
</variable>

</variables>

VARIABLES
variableName

INVARIANTS
inv1 : variableName ⊆ typeName
inv2 : card(variableName) ≤ 1

Fig. 11. An Event-B formalization of a BPEL variables

<variables>?
<variable name="PO"

messageType="POMessage"/>
<variable name="Invoice"

messageType="InvMessage"/>
<variable name="shippingRequest"

messageType="shippingRequestMessage"/>
...

</variables>

VARIABLES
PO Invoice shippingRequest ...

INVARIANTS
inv1 : PO ⊆ POMessage
inv2 : card(PO) ≤ 1
inv3 : Invoice ⊆ InvMessage
inv4 : card(Invoice) ≤ 1
inv5 : shippingRequest ⊆

ShippingRequestMessage
inv6 : card(shippingRequest) ≤ 1
inv : ...

Fig. 12. BPEL variables modelled in the VARIABLES clause

Simple Activities. Each BPEL simple activity [27] is interpreted by a specific
event in the EVENTS clause of the Event-B Machine. The invoke activity is
used to invoke a Web service, the receive activity is used to receive a message
from outside environment of the process, the reply activity is used to return an
answer to a service partner, the assign activity is used to change the content of
variables, the wait activity is used as a temporization to wait for a given period
of time or up to a given point in time, and the terminate activity is used to end
the process.

In next paragraphs, we give three Event-B models that formalize the invoke,
receive and reply activities. The rest of simple activities corresponds to a simple
Event-B action: an affectation action formalizes the assign activity and an action
that sets the value of the Event-B variant to zero formalizes the terminate
activity. Regarding the wait activity, it can be formalized by adding a decreasing
integer variable encoding a discrete time period.

The invoke activity, named activityName, invokes an operationName opera-
tion of a web service with inputV ariableName variable as input and outputVari-
ableName variable as output. This activity is formalized by the activityName
event (figure 13). The guard of the activityName event expresses the guard to
be checked for using an operation: the input message must be non-empty (grd1).

The receive activity, named activityName, receives a message, stored in the
variableName variable, sent by a partner web service to execute the opera-
tionName operation. This activity is interpreted by the activityName event
(figure 14). The guard of the activityName event expresses the conditions to
be checked before receiving the message: the received message belongs to the
domain of the operationName function (grd1).

The reply activity, named activityName, sends a message, stored in the
variableName variable, to a partner web service after executing the opera-
tionName operation. This activity is interpreted by the activityName event

16 I. Ait-Sadoune and Y. Ait-Ameur

<invoke ... name=activityName
operation=operationName
inputVariable=inputVariableName?
outputVariable=outputVariableName?

.../>

Event activityName =̂
any

msg
where

grd1 : inputVariableName �= ∅

grd2 : msg ∈ inputVariableName
grd3 : msg ∈ dom(operationName)

then
act1 : outputVariableName :=

{operationName(msg)}
end

Fig. 13. An Event-B formalization of a BPEL invoke activity

<receive ... name=activityName
operation=operationName
variable=variableName?

.../>

Event activityName =̂
any

receive
where

grd1 : receive ∈ dom(operationName)
then

act1 : variableName := {receive}
end

Fig. 14. An Event-B formalization of a BPEL receive activity

<reply ... name=activityName
operation=operationName
variable=variableName?

.../>

Event activityName =̂
any

reply
where

grd1 : variableName �= ∅

grd2 : reply ∈ ran(operationName)
then

act1 : variableName := variableName/{reply}
end

Fig. 15. An Event-B formalization of a BPEL reply activity

(figure 15). The guard of the activityName event expresses the conditions to be
checked before sending the message: the sent message must be non-empty (grd1)
and belonging to the range of the operationName function (grd2).

In all these cases, the status of the obtained event depends on the struc-
tured activity that composes the corresponding activity. This is addressed in the
following section.

Structured Activities. Each BPEL structured activity (flow, sequence, fore-
ach, if then else...) is modelled by an Event-B construction which encodes the
corresponding composition operator (see Table 1). modelling composition op-
erations in Event-B follows the formal modelling rules formally defined in [5].
We have introduced the use of explicit decreasing variant for defining the con-
trol flow.

To illustrate our approach, we show the Event-B templates associated to se-
quence, concurrency, choice and iteration of table 1.

Stepwise Development of Formal Models for Web Services Compositions 17

Table 1. The composition operators corresponding to the structured activities

BPEL activity Operator name Operator symbol

sequence Sequence >> or ;
while

repeat until Iteration ∗
forEach
flow Concurrency ||

if then else Choice []

Sequence. Let us consider the action A0 corresponding to the activation in se-
quence of A1 and A2 actions. The Event-B Machine formalizing the sequence
operator contains three events evt0, evt1 and evt2 formalizing the three actions
A0, A1 and A2 (figure 16). This Machine uses a variant expressed by the varSeq
variable initialized to the value 2. The evt1 and evt2 events are declared ”conver-
gent” and once the guard of evt1 is evaluated to ”true” (varSeq = 2∧G1(var1)),
the event is fired and the variant is decreased (the value of varSeq is set to 1).
The evt2 event can be fired after evt1 event, when its guard is evaluated to true
(varSeq = 1 ∧ G2(var1)), and the value of varSeq is set to 0. The evt0 event
ends the sequence operation of A1 and A2 actions (varSeq = 0).

MACHINE M1
VARIABLES

var1 varSeq
INVARIANTS

inv1 : I (var1)
inv2 : varSeq ∈ {0 , 1 ,2}

VARIANT
varSeq

EVENTS
Initialisation

begin
act1 : Init(var1)
act2 : varSeq := 2

end
Event evt0 =̂

when
grd1 : G′(var1)
grd2 : varSeq = 0

then
act : A′(var1)

end

Event evt1 =̂
Status convergent
when

grd1 : G1 (var1)
grd2 : varSeq = 2

then
act1 : A1 (var1)
act2 : varSeq :=

varSeq − 1
end

Event evt2 =̂
Status convergent
when

grd1 : G2 (var1)
grd2 : varSeq = 1

then
act1 : A2 (var1)
act2 : varSeq :=

varSeq − 1
end

Fig. 16. Encoding sequence operator in Event-B

Concurrency. Let us consider the activation ofA0 action as concurrent activation
of A1 and A2 actions. The associated semantics is interleaving, imposes to de-
scribe all the possible behaviours (all the possible traces). It uses the interleaving
underlying Event-B semantics. Three events evt0, evt1 and evt2 corresponding
to the three actions A0, A1 and A2 are defined in the Event-B Machine formal-
izing the parallel operator (figure 17). This Machine uses a variant expressed
by the sum of varPar1 and varPar2 variables that are both initialized to the

18 I. Ait-Sadoune and Y. Ait-Ameur

value 1. evt1 and evt2 events are declared ”convergent” and if the two events
evt1 and evt2 have their guard evaluated to ”true” (varPar1 = 1∧G1(var1) and
varPar2 = 1 ∧ G2(var1)), they are fired in parallel in an interleaving manner
and the substitutions A1(var1) and A2(var1) are performed and the value of the
variant is set to the value 0 (the values of varPar1 and varPar2 are set to 0).
The evt0 event ends the parallel operation of evt1 and evt2 events.

MACHINE M1
VARIABLES

var1 varPar1 varPar2
INVARIANTS

inv1 : I (var1)
inv2 : varPar1 ∈ {0 , 1} ∧ varPar2 ∈ {0 , 1}

VARIANT
varPar1 + varPar2

EVENTS
Initialisation

begin
act1 : Init(var1)
act2 : varPar1 , varPar2 := 1 , 1

end
Event evt0 =̂

when
grd1 : G′(var1)
grd2 : varPar1 = 0
grd3 : varPar2 = 0

then
act : A′(w)

end

Event evt1 =̂
Status convergent
when

grd1 : G1 (var1)
grd2 : varPar1 = 1

then
act1 : A1 (var1)
act2 : varPar1 :=

varPar1 − 1
end

Event evt2 =̂
Status convergent
when

grd1 : G2 (var1)
grd2 : varPar2 = 1

then
act1 : A2 (var1)
act2 : varPar2 :=

varPar2 − 1
end

Fig. 17. Encoding concurrency or parallel operator in Event-B

Choice. Let us consider action A0 corresponding to the non deterministic choice
between A1 and A2 actions (either A1 and A2 is fired). The Event-B model
formalizing the choice operator contains three events evt0, evt1 and evt2 for-
malizing the three actions A0, A1 and A2 (figure 18). This Machine uses a
variant expressed by the varCho variable initialized arbitrarily to either 1 or
2 (varCho :∈ {1, 2}). The evt1 and evt2 events are declared ”convergent” and
according to the guard value of each event, one of evt1 and evt2 events is fired.
Each event decreases immediately the variant to value 0 forbidding the other
events to be fired. The evt0 event ends the firing of choice operation between
evt1 and evt2 events (varCho = 0).

Iteration. Let us consider the action A0 as a loop execution of the A1 action.
The principle of encoding a loop in Event-B consists in firing, N times (N being
an arbitrary natural number), the event corresponding to the action A1. The
Event-B model formalizing the loop operator contains two events evt0 and evt1
formalizing the actions A0 and A1 (the body of the loop) (figure 19). This Ma-
chine uses a variant expressed by the varLoop variable initialized to the value N
corresponding to an arbitrary number of iterations. The evt1 event is declared
”convergent” and according to the initial value of the varLoop variable, the evt1
event is fired N times. At each iteration, the evt1 event decreases the variant

Stepwise Development of Formal Models for Web Services Compositions 19

MACHINE M1
VARIABLES

var1 varCho
INVARIANTS

inv1 : I (var1)
inv2 : varCho ∈ {0 , 1 , 2}

VARIANT
varCho

EVENTS
Initialisation

begin
act1 : Init(var1)
act2 : varCho :∈ {1 ,2}

end
Event evt0 =̂

when
grd1 : G′(var1)
grd2 : varCho = 0

then
act : A′(var1)

end

Event evt1 =̂
Status convergent
when

grd1 : G1 (var1)
grd2 : varCho = 1

then
act1 : A1 (var1)
act2 : varCho :=

varCho − 1
end

Event evt2 =̂
Status convergent
when

grd1 : G2 (var1)
grd2 : varCho = 2

then
act1 : A2 (var1)
act2 : varCho :=

varCho − 2
end

Fig. 18. Encoding choice operator in Event-B

MACHINE M1
VARIABLES

var1 varLoop
INVARIANTS

inv1 : I (var1)
inv2 : varLoop ∈ N

VARIANT
varLoop

EVENTS
Initialisation

begin
act1 : Init(var1)
act2 : varLoop :∈ N1

end

Event evt0 =̂
when

grd1 : G′(var1)
grd2 : varLoop = 0

then
act : A′(var1)

end

Event evt1 =̂
Status convergent
when

grd1 : G1 (var1)
grd2 : varLoop �= 0

then
act1 : A1 (var1)
act2 : varLoop :=

varLoop − 1
end

Fig. 19. Encoding loop operator in Event-B

until the value 0. When the loop terminates (varLoop = 0), the evt0 event is
fired, it ends the loop operator.

The initial value of the variant is arbitrary fixed by the :∈ operator. The
advantage of such an approach is the possibility to encode an arbitrary number
of loop steps without increasing the complexity of the proof process. Compared
to model checking techniques, increasing the number of loop steps may lead to
the combinatorial explosion problem.

In Figure 20, we show the Event-B model for a sequence of three simple
BPEL activities described in Figure 5: first the invoke activity formalized by
the initiatePriceCalculation event, second the other invoke activity formalized
by the sendShippingPrice event and last the receive activity formalized by the
sendInvoice event. These events are synchronized by a sequence through the

20 I. Ait-Sadoune and Y. Ait-Ameur

MACHINE PurchaseOrder
...

VARIABLES
... varSeq ...

INVARIANTS
inv : ...
inv11 : varSeq ∈ {0 , 1 , 2 , 3}
inv : ...

VARIANT
varSeq + ...

EVENTS
Initialisation

begin
act : ...
act2 : varSeq := 3
act : ...

end
Event ... =̂
Event InitiatePriceCalculation =̂

any
msg

where
grd1 : PO �= ∅

grd2 : msg ∈ PO
grd3 : msg ∈

dom(initiatePriceCalculation)
grd4 : varSeq = 3

then
act2 : varSeq := varSeq − 1

end

Event ReceiveShippingPrice =̂
any

msg
where

grd1 : shippingInfo �= ∅

grd2 : msg ∈ shippingInfo
grd3 : msg ∈ dom(sendShippingPrice)
grd4 : varSeq = 2

then
act1 : varSeq := varSeq − 1

end
Event ReceiveInvoice =̂

any
receive

where
grd1 : receive ∈ dom(sendInvoice)
grd2 : varSeq = 1

then
act1 : Invoice := {receive}
act2 : varSeq := varSeq − 1

end
Event ComputePrice =̂

when
grd1 : varSeq = 0
grd2 : ...

then
act1 : ...

end
Event ... =̂
END

Fig. 20. A sequence of BPEL activities in Event-B

varSeq variable playing the role of a variant on the PurchaseOrder Machine. The
ComputePrice event ends the sequence structured activity.

5 A Refinement Based Methodology

The previous section addressed the interpretation of BPEL descriptions to Event-
B models. This interpretation process is qualified as horizontal interpretation
produces an Event-B model from any BPEL description whatever is the reached
level of the design on the BPEL side. This approach may lead to complex Event-
B models with complex proof obligations requiring interactive proofs. It neither
takes into account the stepwise decomposition, shown in figure 6, supported
by the BPEL descriptions and encoded by the decomposition operator, nor the
refinement capability offered by the Event-B method.

5.1 Methodology: Vertical Decomposition

An incremental construction of the BPEL specification using process decompo-
sition operations (figure 6) will help to build reusable BPEL specifications and
less complex Event-B models. Our claim is to encode each BPEL decomposi-
tion operation (adding new activities) by a refinement in Event-B (adding new
events). This decomposition corresponds to a vertical decomposition.

To define this vertical decomposition process, we use the two following
definitions.

Stepwise Development of Formal Models for Web Services Compositions 21

Fig. 21. Different scenarios for vertical decomposition of BPEL description

1. When a bpeli BPEL process contains structured activities, they are decom-
posed into sub-activities and we get by this operation a bpeli+1 new BPEL
process. Each bpeli BPEL process interacts with a set of partners web ser-
vices described in a wsdli WSDL document.

2. Each mi Event-B Machine imports a ci Event-B Context. When mi+1 Ma-
chine refines a mi Machine, the ci Context is extended by the ci+1 Context.

As depicted in figure 21, the beginning of each scenario is performed from a
bpel1 BPEL process containing a main structured activity or from a m1 Machine
containing an Event-B event. Four scenarios are associated with this vertical
decomposition process.

1. Scenario 1
– The bpeli process is translated into a mi Machine and the wsdli docu-

ment is translated into a ci Context.
– The bpeli+1 process is obtained by decomposition of the bpeli process.

The web services invoked by the bpeli+1 process are described in the
wsdli+1 document.

– The bpeli+1 process is translated into a mi+1 Machine and the wsdli+1

document is translated into a ci+1 Context.
– The obtainedmi+1 Machine refines themi Machine and the ci+1 Context

extends the ci Context.

22 I. Ait-Sadoune and Y. Ait-Ameur

2. Scenario 2
– The bpeli process is translated into a mi Machine and the wsdli docu-

ment is translated into a ci Context.
– The mi Machine is refined by the mi+1 Machine and the ci Context

is extended by the ci+1 Context by adding definitions of the services
introduced by the MACHINE mi+1.

– The bpeli+1 process is obtained from the mi+1 Machine and the wsdli+1

document is obtained from the ci+1 Context.
– The obtained bpeli+1 process decomposes the bpeli process and it invokes

the web services described in the wsdli+1 document.
3. Scenario 3

– The bpeli process is obtained from the mi Machine and the wsdli docu-
ment is obtained from the ci Context.

– The obtained bpeli+1 process decomposes the bpeli process and it invokes
the web services described in the wsdli+1 document.

– The bpeli+1 process is translated into a mi+1 Machine and the wsdli+1

document is translated into a ci+1 Context.
– The obtainedmi+1 Machine refines themi Machine and the ci+1 Context

extends the ci Context.
4. Scenario 4

– The bpeli process is obtained from the mi Machine and the wsdli docu-
ment is obtained from the ci Context.

– The mi Machine is refined by the mi+1 Machine and the ci Context
is extended by the ci+1 Context by adding definitions of the services
introduced by the MACHINE mi+1.

– The bpeli+1 process is obtained from the mi+1 Machine and the wsdli+1

document is obtained from the ci+1 Context.
– The obtained bpeli+1 process decomposes the bpeli process and it invokes

the web services described in the wsdli+1 document.

So, we obtain on the one hand a sequence of abstract BPEL specifications,
one being the decomposition of the other, and on the other hand a sequence of
proved Event-B refinements corresponding to the abstract BPEL specification.
Then a formal stepwise refinement of a BPEL specification is obtained. From
the methodological point of view, the last obtained BPEL process description is
the one that is deployed for execution by the orchestrator in charge of execution
(see figure 6).

The interpretation of an Event-B model into a BPEL description is not con-
sidered in our work. Therefore, the study of scenarios 2, 3 and 4 is not discussed
in this paper. Defining and writing generalized rules for Event-B to generate
BPEL description from Event-B models, makes it possible to support scenarios
2, 3 and 4. The study of these scenarios is left for of future work. In the following,
only the scenario 1 is taken into account in the vertical decomposition process.

5.2 The Application of Scenario 1 to the Case Study

When applied to our case study, the proposed methodology leads to a devel-
opment of a sequence of 4 Event-B machines. Each one refining the previous

Stepwise Development of Formal Models for Web Services Compositions 23

one. As depicted on the right hand side of figure 22, the Event-B Machines
PurchaseOrder 1, PurchaseOrder 2, PurchaseOrder 3 and PurchaseOrder 4
define the development of our case study. In order to show the benefits of this
approach, we have chosen to comment below the machines obtained after the
third refinement.

Fig. 22. The application of the scenario 1 to the Purchase order case study

Figure 23 shows part of the PurchaseOrder 3 Machine obtained after refine-
ment. The event ComputePrice computes the total amount of the invoice to
be produced at the end of shipping. This machine is completed by the relevant
resources needed to ensure the correct computation of the total amount of the
invoice. The invariants inv17, inv18 and inv19 and the action act1 are interac-
tively added by the developer. There is no way to generate them from the BPEL
code since they are not available.

24 I. Ait-Sadoune and Y. Ait-Ameur

MACHINE PurchaseOrder 3
REFINES PurchaseOrder 2

...
VARIABLES

...
INVARIANTS

inv : ...
inv17 : amountOfInvoice ∈ N
inv18 : initAmountOfPO ∈ N
inv19 : shippingPrice ∈ N

EVENTS
Initialisation

begin
act : ...
act14 : amountOfInvoice := 0
act15 : initAmountOfPO :∈ N
act16 : shippingPrice :∈ N

end
Event ... =̂
Event ComputePrice =̂

when
grd1 : varSeq 1 = 2
grd2 : varPar 2 = 1

then
act1 : amountOfInvoice := initAmountOfPO + shippingPrice
act2 : varPar 2 := varPar 2 − 1

end
Event ... =̂

END

Fig. 23. A PurchaseOrder 3 Event-B Machine

Machine PurchaseOrder 4 refines the Machine PurchaseOrder 3 as shown
in figure 24. Again, some information are completed by the developer in or-
der to ensure the correctness of the development. The concrete variables SP ,
IAOP and AOI of the invariant inv11 together with the gluing invariant inv12
and the guards grd5 are introduced. The introduction of the grd5 guards of
the InitiatePriceCalculation and ReceiveShippingPrice events, ensures that
the concrete variables introduced for defining the gluing invariant are correctly
related to the exchanged messages produced by the functions carried by the
specific services.

The actions modifying these variables are also defined by introducing the act2
and act3 in the InitiatePriceCalculation and ReceiveShippingPrice events.
They show how the variables evolve. The sequencing of the events InitiatePrice-
Calculation, ReceiveShippingPrice and ReceiveInvoice supplying the result
amo− untOfInvoice to the ComputePrice refined event remains automatically
produced.

6 Verification of Services Properties

When the Event-B models formalizing a BPEL description are obtained, we
have seen in the previous section that they may be enriched by the relevant
properties that formalize the user requirements and the soundness of the BPEL
defined process. In Event-B, these properties are defined in the AXIOMS, IN-
VARIANTS and THEOREMS clauses. Preconditions and guards are added to
define the correct event triggering. Our work considers arbitrary sets of values

Stepwise Development of Formal Models for Web Services Compositions 25

MACHINE PurchaseOrder 4
REFINES PurchaseOrder 3

...
INVARIANTS

inv : ...
inv10 : varSeq 12 ∈ {0 , 1 , 2 , 3}
inv11 : SP ∈ N ∧ IAOP ∈ N ∧AOI ∈ N
inv12 : AOI + IAOP + SP = initAmountOfPO + shippingPrice

EVENTS
Initialisation

begin
act : ...
act13 : varSeq 12 := 3
act14 : amountOfInvoice,AOI := 0 , 0
act15 : initAmountOfPO, IAOP : |(...IAOP = initAmountOfPO)
act16 : shippingPrice, SP : |(...SP = shippingPrice)

end
Event ... =̂
Event InitiatePriceCalculation =̂

any
msg

where
grd1 : PO �= ∅

grd2 : msg ∈ PO
grd3 : msg ∈ dom(initiatePriceCalculation)
grd4 : varSeq 12 = 3
grd5 : IAOP = Price(msg)

then
act1 : varSeq 12 := varSeq 12 − 1
act2 : AOI := AOI + IAOP
act3 : IAOP := 0

end
Event ReceiveShippingPrice =̂

any
msg

where
grd1 : shippingInfo �= ∅

grd2 : msg ∈ shippingInfo
grd3 : msg ∈ dom(sendShippingPrice)
grd4 : varSeq 12 = 2
grd5 : SP = shippingPrice(msg)

then
act1 : varSeq 12 := varSeq 12 − 1
act2 : AOI := AOI + SP
act3 : SP := 0

end
Event ReceiveInvoice =̂

any
receive

where
grd1 : receive ∈ dom(sendInvoice)
grd2 : varSeq 12 = 1
grd3 : AOI = amount(receive)

then
act1 : Invoice := {receive}
act2 : varSeq 12 := varSeq 12 − 1

end
Event ComputePrice =̂

refines ComputePrice
when

grd1 : varSeq 12 = 0
grd2 : ...

then
act : ...
act3 : amountOfInvoice := AOI

end
END

Fig. 24. A PurchaseOrder 4 Event-B Machine

26 I. Ait-Sadoune and Y. Ait-Ameur

for parameters defining their types. There is no abstraction related to the pa-
rameters, preconditions, postconditions nor join operations. The expressions are
represented as they appear in BPEL.

The proof based approach we propose does not suffer from the growing number
of explored states. More precisely, regarding the formal verification of properties,
our contribution is summarized in the following points.

- BPEL type control. Static properties are described in the Context of the Event-
B model. They concern the description of services, messages and their corre-
sponding types (WSDL part). Event-B ensures a correct description of the
types and function composition.

- Orchestration and services composition. Dynamic properties are described in
the Machine of an Event-B model, they concern the variables (messages
exchanged between services) and the BPEL process behaviours (BPEL part).
The introduction of variants guarantees the correct services triggering order
and message passing.

- Deadlock freeness. It is always possible to trigger at least one event. This prop-
erty is ensured by asserting (in the THEOREMS clause) that the disjunction
of all the abstract events guards implies the disjunction of all the concrete
events guards. It ensures that if at least one guard of the abstract Event-B
model is true, then at least one guard of the refined model is true.

- No LiveLock. A decreasing variant is introduced for the purpose of the defi-
nition of each refinement corresponding to the encoding of a composition
operator. When this variant reaches the value 0, another event may be
triggered.

- Pre-condition for calling a service operation: input message is not empty. In
the orchestration tools, the condition for triggering a BPEL activity is the
correct reception of the message used by this activity. Our representation
of the call of a service operation takes into account this condition in the
events guards corresponding to this activity and an invariant guarantees the
existence of this state.

- Data transformation. Data properties are expressed in the in the INVARI-
ANTS and AXIOMS clauses. They are checked for each triggered event.
This ensures a correct manipulation and interpretation of data and of mes-
sages exchanged between all the participants (partners).

- Transactional properties. When modelling fault and compensation handlers by
a set of events, it becomes possible to model and check properties related to
transactional web services. The idea was discussed in [9] and we will extend
it in our future work by defining a methodology for designing a transactional
BPEL process.

Table 2 summarizes the number of PO generated by the RODIN platform [29]
for the Event-B model associated to the Purchase Order process. For the pur-
chaseOrder Machine, obtained from the Purchase Order process without decom-
position/refinement, 67 POs were generated with 53 POs automatically proven
by the prover of the RODIN platform and 14 POs required interaction with the

Stepwise Development of Formal Models for Web Services Compositions 27

designer for performing an interactive proof. For the case of scenario 1 using
decomposition/refinement, 67 POs were generated with 56 POs automatically
proven by the prover of the RODIN platform and 11 POs required interaction
with the designer for performing an interactive proof.

Table 2. The obtained PO from the Event-B model of the Purchase Order process

Event-B Machine Total of PO Automatic proof Interactive proof %Pr

purchaseOrder 67 53 14 100

PurchaseOrder 1 0 0 0 100
PurchaseOrder 2 16 16 0 100
PurchaseOrder 3 12 9 3 100
PurchaseOrder 4 39 31 8 100

total 67 56 11 100

From the point of view of the number of proof obligations proved interactively
in the case of Scenario 1, we record less interactive proof (11 against 14) with
the decomposition and simplification of expressions of properties at different
refinements. In addition, for the 11 POs proved interactively, 7 required a single
proof step i.e. only 4 required proving efforts.

But, one of the major interests of the proposed methodology is error reporting.
Indeed, when an Event-B model cannot be proved due to an erroneous BPEL
design and/or decomposition, it is possible to report, on the BPEL code, the oc-
curred error issued from the Event-B verification step, in the concerned activity.
This functionality is very helpful for designers that are usually non specialists of
formal methods.

Since each BPEL concept is attached to a single Event-B element preserving
the same name as in the original BPEL design, it becomes possible to identify,
localize and visualize the BPEL concept that corresponds to the Event-B element
whose proof obligations cannot be discharged. Notice, that this reporting is only
possible for the Event-B parts generated from the BPEL design.

This approach of tracing the proof obligations to the source BPEL code is
very useful. it allows the developer to localize the possible errors in its devel-
oped service composition. Particularly, we have exploited this facility to identify
transactional parts in web services composition. Briefly, the approach is based
on the definition of transactional invariants. The transactional properties and
the properties related to the consistencies of resources used by the BPEL pro-
cess are expressed in the form of consistency invariants (Consistency property).
Once the enrichment of the generated Event B models is performed, POs are
generated. Some of these POs, related to invariants involving the transactional
properties, are unprovable because triggering some events separately violates
the consistency invariants. Then, BPEL activities related to the events source
of these improvable POs are detected and isolated in a BPEL scope element.
our approach for handling transactional BPEL parts recommends to set up the
mechanisms for fault and compensation handling to the scope element. As a

28 I. Ait-Sadoune and Y. Ait-Ameur

consequence, the execution of this part is isolated by the orchestration tools
(Isolation property), and at the same time consistency of the resources used by
these activities is guaranteed. Transactional properties may require a re-design
of the defined BPEL process. Due to space limitations, this approach is not
presented in this paper.

7 BPEL2B Tool

With the aim to provide a complete tool for the web services compositions veri-
fication, we have integrated various plug-ins in a single platform. This platform
is based on the Eclipse core and contains the WSDL and BPEL editors plug-ins
[13], the BPEL2B [7] and B2EXPRESS [6] developed plugins and the various
plugins of the RODIN platform [29]. Different views are offered by this platform
(figure 25): WSDL and BPEL editors (a) to describe different web services and
their orchestration graphically or using the XML syntax, BPEL2B plug-in (1,2)
to interpret the WSDL/BPEL specifications by Event-B models (b), the different
plug-ins of RODIN (c) to perform web services composition verification on the
obtained Event-B model and the B2EXPRESS plug-in to animate the obtained
Event-B model.

Fig. 25. The BPEL2B interface

Stepwise Development of Formal Models for Web Services Compositions 29

The Event-B based approach, proposed for BPEL processes verification [8, 10],
defines different interpretation rules from a BPEL description to an Event-B
model. These rules are based on the interpretation of an element or an attribute
of BPEL by a specific clause in an Event-B model. We have automated this
interpretation process in the BPEL2B plug-in. This plug-in builds a RODIN
project from WSDL and/or BPEL files. A RODIN project consists essentially
of two types of components: Context and Machine. As described in section 4,
the Context is obtained from the WSDL description and the Machine from the
BPEL specification. The implementation of the transformation rules are based
on the Event-B meta-model provided by RODIN platform and WSDL/BPEL
meta model provided by the BPEL editor.

The transformation process has been encoded using JAVA and using a model
transformation describing a generic transformation between both RODIN and
BPEL meta-models. As a consequence, following a model driven engineering
approach, the BPEL models, instances of the corresponding meta-model are
automatically transformed to instances of the RODIN meta-model.

Moreover, this transformation process preserves a link between the source and
target models, so that it is possible to report in the source BPEL model, the
errors that may occur while proving the Event B model.

The RODIN platform uses as input the obtained RODIN project, containing
both Machine and Context components. When the Event-Bmodels, formalizing a
BPEL description are obtained, they may be enriched by the relevant properties
that formalize the user requirements and the soundness of the BPEL defined
process (for example adding a gluing invariant). In Event-B, these properties are
defined in the INVARIANTS and the THEOREMS clauses. The proof activity
is performed using the prover of the RODIN platform.

8 Related Work

Various approaches have been proposed to model and to analyze web services
and services compositions, especially formal modelling and verification of BPEL
processes. In this section, we overview the formal approaches used for formal
verification of services composition descriptions.

Petri nets were often used to model web service compositions. They have been
set up by Hinz et. al [20] to encode BPEL processes and to check standard Petri
nets properties, and some other properties formalized in CTL logic. van der
Aalst et. al [1, 32] have defined specific Petri nets called workflow nets to check
some properties like termination of a workflow net, and detection of unreachable
nodes. Recently, Lohmann [22] has completed the BPEL semantics with Petri
nets by encoding the new elements appeared in the version 2.0 of BPEL.

Classical transitions systems were also applied to specify web service compo-
sitions, especially BPEL processes. We quote the work of Nakajima [25, 26] who
mapped a BPEL activity part to a finite automaton encoded in Promela with
the model checker SPIN to analyze behavioral aspects and to detect potential
deadlocks that may occur in the Promela description. In [23, 24], Marconi et.

30 I. Ait-Sadoune and Y. Ait-Ameur

al present the approach that translates a BPEL process to a set of state transi-
tion systems. These systems are composed in parallel and the resulting parallel
composition is annotated with specific web services requirements and is given
as input to a set of tools in charge of synthesizing web service compositions ex-
pressed in BPEL. FSP (Finite State Process) and the associated tool (LTSA)
are used by Foster et. al [17–19] to check if a given web service compositions
behaves like a Message Sequence Charts (MSC).

Some work used process algebra for processes and activities formalization.
Indeed, Salaun et. al [30] show how BPEL processes are mapped to processes
expressed by the LOTOS process algebra operations. The same authors in [31]
applied their approach to CCS descriptions to model the activities part of a
BPEL specification.

Abstract State Machines (ASM) have been used by Farahbod et. al [16] to
model BPEL workflow descriptions. They take into account exchanged messages
and some BPEL real time properties like timeouts. This work has been extended
by Fahland [15] to model dead-path-elimination. Borger et. al [12] have also used
ASM for modelling Workflow, specifically, BPMN process.

Other approaches proposed formal models for web service compositions and
the BPEL processes. We did not mention them in the above summary due to
space limitations. An overview of these approaches can be found in [11].

The whole related work outlined above has two major drawbacks. First, it
does not address the description of the static part of BPEL available in the
WSDL descriptions. This is due to the abstraction made by the majority of
the applied formal methods. Indeed, most of these methods abstract parame-
ters, exchanged messages, preconditions, postconditions and join conditions by
Boolean. This abstraction is useful for model checking since it reduces the space
explored during verification but it decreases the accuracy of the obtained formal
BPEL model. Second, all these proposals translate a BPEL process to another
formal model, without offering the capability to decompose BPEL precess. So,
the decomposition operator offered by BPEL is never addressed by the used
formal techniques. The resulting model is often complex to analyze. Thus, the
efficiency of the model checking technique often used by existing approaches for
checking BPEL processes properties is reduced.

Finally, these methods suffer from the absence of error reporting. Indeed,
when errors are detected in the formal model, these approaches do not localize
the source of the error on the original BPEL model.

Our work is proof oriented and translates the whole BPEL language and all
its constructs into an Event-B model. All the Event-B models presented in this
paper have been checked within the RODIN platform.

9 Conclusion

This paper presented a fully formalized and integrated method for designing
correct web services compositions expressed in the BPEL description language.
Our contribution addresses both technical and methodological points of view.

Stepwise Development of Formal Models for Web Services Compositions 31

From the technical point of view, this approach proposes to encode each BPEL
services composition description by an Event-B model in which relevant proper-
ties related to deadlock or livelock, data interpretation, messages consistence or
transactions are modelled. In most of the cases, establishing these properties re-
quires an enrichment (model annotation) of the Event-B models by the relevant
information that are not available in the original BPEL description (no specific
resource for encoding such properties is available in the BPEL language) but
which are extracted by the developer from the informal requirements.

From the methodological point of view, our approach is top-down. It follows
the decomposition process preconized by BPEL. It suggests to encode the de-
composition relationship available in BPEL. As a result, the refinement chain
of Event-B models is structurally linked to the decomposition process offered
by the BPEL description language. The interest of this approach is double. On
the BPEL side it offers a stepwise design approach while it eases the proof ac-
tivity on the Event-B side since the proof obligations become simpler thanks to
refinement.

Moreover, regarding the approaches developed in the literature, our work
covers the whole characteristics of the formal verification of web services com-
positions. Indeed, the generated Event-B models support the verification of the
properties related to both data (interpretation of data) and services (services
orchestration). The BPEL2B tool, presented as an Eclipse Plug-in, encodes the
interpretation process described in this paper and contributes to the dissemina-
tion of formal methods. The details of the formal modelling activities are hidden
to the BPEL designer.

This work opens several perspectives. One of them relates to the transactional
Web services, mentioned at the end of section 6. Indeed, BPEL offers resources
for fault and compensation constructs to handle internal and/or external runtime
errors of the described composed service. These constructs are particularly useful
for describing transactional services. As a further study we propose to define a
complete methodology that extends the one presented in this paper to allow the
users to detect and encode transactional parts in web services compositions.

Another perspective relates to the explicit semantics carried by the services.
For example, composing in sequence a service that produces distances expressed
in centimeters with another one consuming distances expressed in inches should
not be a valid composition. Up to now, our approach handles implicit semantics
only, it does not handle such a composition. Formal knowledge models carried
out by ontologies expressed beside the Event-B models should be investigated.

References

1. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service Interaction: Pat-
terns, Formalization, and Analysis. In: Bernardo, M., Padovani, L., Zavattaro, G.
(eds.) SFM 2009. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009)

2. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University
Press, New York (1996)

32 I. Ait-Sadoune and Y. Ait-Ameur

3. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

4. Abrial, J.R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of Dis-
crete Models: Application to Event-B. Fundamenta Informaticae 77, 1–28 (2007)

5. Ait-Ameur, Y., Baron, M., Kamel, N., Mota, J.M.: Encoding a process algebra
using the Event B method. International Journal on Software Tools for Technology
Transfer (STTT) 11(3), 239–253 (2009)

6. Ait-Sadoune, I., Ait-Ameur, Y.: Animating Event B Models by Formal Data Mod-
els. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 37–55.
Springer, Heidelberg (2008)

7. Ait-Sadoune, I., Ait-Ameur, Y.: From BPEL to Event-B. In: International Work-
shop on Integration of Model-based Methods and Tools at IFM Conference (2009)

8. Ait-Sadoune, I., Ait-Ameur, Y.: A Proof Based Approach for Modelling and Veri-
fying Web Services Compositions. In: 14th IEEE International Conference on En-
gineering of Complex Computer Systems (ICECCS), pp. 1–10. IEEE Computer
Society, Potsdam (2009)

9. Aı̈t Sadoune, I., Aı̈t Ameur, Y.: A proof based approach for formal verification
of transactional BPEL web services. In: Frappier, M., Glässer, U., Khurshid, S.,
Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 405–406. Springer,
Heidelberg (2010)

10. Ait-Sadoune, I., Ait-Ameur, Y.: Stepwise Design of BPEL Web Services Compo-
sitions, An Event B Refinement Based Approach. In: Lee, R., Ormandjieva, O.,
Abran, A., Constantinides, C. (eds.) SERA 2010. SCI, vol. 296, pp. 51–68. Springer,
Heidelberg (2010)

11. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Formal methods for service composi-
tion. Annals of Mathematics, Computing and Teleinformatics 1(5), 1–10 (2007)

12. Börger, E., Thalheim, B.: Modeling Workflows, Interaction Patterns, Web Services
and Business Processes: The ASM-Based Approach. In: Börger, E., Butler, M.,
Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 24–38. Springer,
Heidelberg (2008)

13. Brodt, R.: BPEL Designer Project (April 2012), http://www.eclipse.org/bpel/
14. Dijkstra, E.W.: A Discipline of Programming, 1st edn. Prentice Hall PTR, Upper

Saddle River (1977)
15. Fahland, D., Reisig, W.: ASM-based semantics for BPEL: The negative Control

Flow. In: 12th International Workshop on Abstract State Machines, pp. 131–151
(2005)

16. Farahbod, R., Glässer, U., Vajihollahi, M.: An Abstract Machine Architecture for
Web Service Based Business Process Management. In: Bussler, C.J., Haller, A.
(eds.) BPM 2005 Workshops. LNCS, vol. 3812, pp. 144–157. Springer, Heidelberg
(2006)

17. Foster, H.: A Rigorous Approach to Engineering Web Service Compositions. Ph.D.
thesis, University of London (2006)

18. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based Verification of Web Ser-
vice Compositions. In: 18th IEEE International Conference on Automated Software
Engineering (ASE 2003), pp. 152–163 (2003)

19. Foster, H., Uchitel, S., Magee, J., Kramer, J.: LTSA-WS: A Tool for Model-Based
Verification of Web Service Compositions and Choreography. In: 28th International
Conference on Software Engineering, pp. 771–774 (2006)

20. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to petri nets. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 220–235. Springer, Heidelberg (2005)

http://www.eclipse.org/bpel/

Stepwise Development of Formal Models for Web Services Compositions 33

21. Hoare, C.A.R.: An axiomatic basis for computer programming. ACM 12, 576–580
(1969)

22. Lohmann, N.: A Feature-Complete Petri Net Semantics for WS-BPEL 2.0. In:
Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer,
Heidelberg (2008)

23. Marconi, A.: Automated Process-level Composition of Web Services: from Require-
ments Specification to Process Run. Ph.D. thesis, University of Trento, Italy (2008)

24. Marconi, A., Pistore, M.: Synthesis and Composition of Web Services. In:
Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569,
pp. 89–157. Springer, Heidelberg (2009)

25. Nakajima, S.: Lightweight formal analysis of Web service flows. Progress in Infor-
matics, 57–76 (2005)

26. Nakajima, S.: Model-Checking Behavioral Specification of BPEL Applications.
Electronic Notes in Theoretical Computer Science 151, 89–105 (2006)

27. OASIS: Web Services Business Process Execution Language Version 2.0 (April
2007), http://bpel.xml.org/

28. OMG: Business Process Model and Notation (BPMN) Version 2.0 (June 2010),
http://www.omg.org/spec/BPMN/2.0

29. Rodin: User Manual of the RODIN Platform (October 2007),
http://deploy-eprints.ecs.soton.ac.uk/11/1/manual-2.3.pdf

30. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services
using process algebra. In: IEEE International Conference on Web Services (ICWS
2004), pp. 43–51 (2004)

31. Salaün, G., Ferrara, A., Chirichiello, A.: Negotiation Among Web Services Using
LOTOS/CADP. In: Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250,
pp. 198–212. Springer, Heidelberg (2004)

32. Verbeek, H., van der Aalst, W.M.P: Analyzing BPEL processes using Petri nets.
In: 2nd International Workshop on Applications of Petri Nets to Coordination,
Workflow and Business Process Management (2005)

33. W3C: OWL-S: Semantic Markup for Web Services (November 2004),
http://www.w3.org/Submission/OWL-S/

34. W3C: Web Service Definition Language (WSDL 1.1) (February 2004),
http://www.w3.org/TR/wsdl

35. W3C: Web Services Choreography Description Language Version 1.0 (November
2005), http://www.w3.org/TR/ws-cdl-10/

36. WMC-WS: Process Definition Interface - XML Process Definition Language (Oc-
tober 2008), http://www.wfmc.org/xpdl.html

http://bpel.xml.org/
http://www.omg.org/spec/BPMN/2.0
http://deploy-eprints.ecs.soton.ac.uk/11/1/manual-2.3.pdf
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/ws-cdl-10/
http://www.wfmc.org/xpdl.html

Computing Skyline Incrementally

in Response to Online Preference Modification

Tassadit Bouadi1, Marie-Odile Cordier1, and René Quiniou2

1 IRISA - University of Rennes 1
2 IRISA - INRIA Rennes

Campus de Beaulieu, 35042 RENNES, France
{tassadit.bouadi,marie-odile.cordier}@irisa.fr,

rene.quiniou@inria.fr

Abstract. Skyline queries retrieve the most interesting objects from
a database with respect to multi-dimensional preferences. Identifying
and extracting the relevant data corresponding to multiple criteria pro-
vided by users remains a difficult task, especially when the dataset is
large. EC2Sky, our proposal, focuses on how to answer efficiently sky-
line queries in the presence of dynamic user preferences and despite large
volumes of data. In 2008-2009, Wong et al. showed that the skyline asso-
ciated with any preference on a particular dimension can be computed,
without domination tests, from the skyline points associated with first
order preferences on that same dimension. Consequently, they propose to
materialize skyline points associated with the most preferred values in a
specific data structure called IPO-tree (Implicit Preference Order Tree).
However, the size of the IPO-tree is exponential with respect to the num-
ber of dimensions. While reusing themerging property proposed by Wong
et al. to deal with the refinements of preferences on a single dimension,
we propose an incremental method for calculating the skyline points re-
lated to several dimensions associated with dynamic preferences. For this
purpose, a materialization of linear size which allows a great flexibility
for dimension preference updates is defined. This contribution improves
notably the execution time and storage size of queries. Experiments on
synthetic data highlight the relevance of EC2Sky compared to IPO-Tree.

1 Introduction

Skyline queries represent a powerful tool for decision-making. Such queries aim
at retrieving the most interesting objects from a database with respect to given
criteria. In a multidimensional space where the dimension domains are ordered,
skyline queries return the points which are not dominated by any other point. A
point p dominates a point q if p is strictly better than q on at least one dimension
and p is better or equal than q on the remaining dimensions. Identifying and
extracting relevant data is often a difficult task especially when dealing with
large volumes of data that can be compared according to many criteria. Several
studies [15, 20, 22, 24, 18, 11, 10, 4] were carried out on skyline analysis as

A. Hameurlain et al. (Eds.): TLDKS X, LNCS 8220, pp. 34–59, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Computing Skyline in Response to Online Preference Modification 35

a retrieval tool in a decisional context. Skyline queries can formulate multi-
criteria queries [16] and obtain the top answers, for example to find the cheapest
hotels close to the beach. In the 60s, the search for skyline points was known as
the problem of finding admissible points [3] or maximum vectors [2] or Pareto
sets. These algorithms have been proved to be ineffective in the case of large
databases with many points and many dimensions. Moreover, most of the work
mentioned above assume that there exists a predefined order on the domain of
each dimension.

An interesting problem arises when users are allowed to define or to change
their own preferences online. Thus, on some dimensions the order may change
dynamically. This problem is challenging when there are many data points in
the dataset and it has attracted the attention of recent work [20, 22]. In fact, the
skyline evolves when the preferences change. A naive solution is to recalculate the
skyline from scratch for each dynamic preference that has changed. However, it
is too expensive on large databases of high dimensionality. The challenge is thus
the following: how to efficiently recalculate the least amount of skyline points
while minimizing the required memory space.

The solutions proposed by Wong et al. in [22, 20] develop semi-materialization
methods to support online query answering for skyline queries involving dynamic
preferences. Precisely, the authors of [20] introduced the concept of n-th order
preference. They showed that the skyline associated with any preference on a
particular dimension can be computed from first order preferences on that same
dimension. Relying on this merging property, they propose to materialize the
skyline associated with first order preferences in a specific data structure, called
IPO-tree, to speed up online query computations. However, to cope with the
multiple dimension case they propose to store every possible combination of first-
order preferences in an IPO-tree and, so, the size of an IPO-tree is inO(cm) where
m is the number of dimensions with dynamic preferences and c the cardinality
of a dimension. In the context of large volume of multidimensional data, this
can be intractable. In [22], Wong et al. propose another structure, called CST
(Compressed ordered Skyline Tree), to materialize all possible preference orders.
However, this method turns to be incomplete and very complex and, so, it cannot
be used. An erratum will be published in [21] for this issue.

The merging property of Wong et al. works on one dimension at a time and,
thus, is of limited interest. We investigate the case of an arbitrary number of di-
mensions. Our proposition, EC2Sky, focuses on how to answer efficiently skyline
queries in the presence of several dynamic user preferences despite of large vol-
ume of data. This work improves and extends the contribution presented in [5].
Indeed, we extend the related work, introduce three new algorithms related to
the EC2Sky approach, prove the consistency and completeness of the EC2Sky
theorem, and conduct new extensive experiments on large-scale datasets with
higher cardinality dimensions and higher dimensional space than the latest ex-
periments presented in [5].

The main idea relies on the incremental addition of dynamic dimensions when
computing the skyline. As a side effect, EC2Sky can return the most relevant

36 T. Bouadi, M.-O. Cordier, and R. Quiniou

knowledge by emphasizing the compromises associated with the specified prefer-
ences. The benefits of this proposition are twofold. On the one hand, complexity
in space of the materialization of precomputed skyline reduces to O(c∗m) where
m is the number of dimensions and c is the size of dimension domains. On the
other hand, the number of dominance tests decreases significantly. Some extra
memory space and additional runtime is needed to compute skyline related to
first-order preferences with respect to Wong et al.’s method. But we proved ex-
perimentally that the total computation cost is much lower than in Wong et al.’s
method. This contribution enables an incremental computation of skyline points
associated with a set of preferences as well as make the interactive modification
of preferences easier.

The rest of the paper is organized as follows. In Section 2, we discuss related
work on the problem of searching skyline points in the presence of dynamic
preferences. In Section 3, we introduce the basic concepts related to skyline
queries and dynamic preferences. We develop the formal aspects of our new
approach EC2Sky in Section 4 and present its implementation in Section 5.
In Section 6, we present the results of the experimental evaluation performed
on synthetic datasets and highlight the relevance of the proposed solution by
comparing it to references in the field. We conclude the paper in Section 7.

2 Related Work

Much work has been done on skyline computation. Börzsönyi et al. [4] first
investigate and introduce the skyline computation problem in the context of
databases, and also propose a block-nested loops (BNL) method and a divide-
and-conquer method. Since this pioneering work, many algorithms have been
developed for efficient skyline computation. Especially, index-based techniques
were proposed in several works to further accelerate skyline queries. The first
skyline algorithm incorporated with B-tree or R-tree indexes is proposed in [4].
Then, two progressive processing methods, Bitmap and Index, were proposed in
[17]. Skyline queries have been studied in different computational environments,
such as full-space skyline retrieval [8, 9, 13, 23] which computes the skyline in a
space of a fixed dimensionality, or subspace skyline retrieval [15, 14, 10, 11, 24]
where different users may issue skyline queries regarding different subspaces of
different dimensions. Skyline queries have also been investigated with various
constraints as ranking skyline [18, 6] that enables the user to retrieve the top-K
skyline points instead the whole skyline, or metric skyline [7] which retrieves
skyline points with dynamic dimensions in the metric space. There have been
a considerable number of methods on skyline computation in the context of
databases with totally ordered dimensions. However, in real applications, data
may include dimensions that are partially ordered in nature, such as categorical
(i.e. nominal) dimensions, etc. Some recent studies consider partially ordered
dimensions on skyline computation [1], and provide a way to verify dominance
among incomparable points over the partial order.

Computing Skyline in Response to Online Preference Modification 37

However, most of the work mentioned above assume that there exists only
one predefined order on the domain of each dimension. In particular, users can-
not express online preferences between dimensions nor customize the preferences
between the elements of a given dimension and search the skyline points associ-
ated with these preferences. Therefore, other types of skyline queries have been
proposed to handle:

– inter-dimension preferences allowing the user to specify the importance of
various dimensions and thus to rank the skyline by order of preferences [12].
For example, the price can be considered more important than the distance
to the beach. Instead of returning the whole set of skyline points resulting
from a query, only the best K points, the top K [6], with respect to the
defined inter-dimensions preferences are returned,

– intra-dimension preferences used in [20, 22], allowing each user to express
preferences on the different values of a dimension. This kind of preferences
is especially attractive for nominal dimensions where there is no evidence of
consensual ordering. For example, a user may prefer an hotel of the group
Tulips to those of the group Horizon while another user prefers hotels of
the group Mozilla to all others.

In this paper, we are particularly interested in skyline queries with dynamic
intra-dimension preferences. A naive solution would be to enumerate all possible
combinations of preferences and to store the associated skyline. However, the
preprocessing burden and the storage induced by a complete materialization of
these preferences are prohibitively expensive on large databases. Therefore, other
materialization methods have been proposed to support online query answering
with dynamic intra-dimensions preferences.

Wong et al. [20] proposed a semi-materialization method based on a specific
data structure called IPO-tree (Implicit Preference Order Tree). An IPO-tree
stores partial useful results corresponding to every combination of first order
preferences. A first order preference states that one value is most preferred in
some dimension and that the other values are left unordered. An n-th order
preference specifies an order over n values from some dimension, whereas the
other values are less preferred and left unordered. Wong et al. also introduced
a property called the merging property which makes possible to derive skyline
of any n order preference by simple operations on the first order preferences on
the same dimension. However, this approach has a main drawback. The merging
property is applicable to only one dimension at a time. The size of an IPO tree
is thus in O(cm) (where m is the number of dimensions associated with dynamic
preferences and c is the cardinality of a dimension). In the context of large
databases of high dimensionality this structure becomes very complex.

In [22], Wong et al. proposed another structure, called CST (Compressed
Ordered skyline Tree), to materialize all the preference orders. They store the
skyline with respect to various refinement orders in a compact data structure.
However, a CST tree is very complex. This makes updating preferences a dif-
ficult task that requires extensive maintenance and changes in the CST tree.

38 T. Bouadi, M.-O. Cordier, and R. Quiniou

Also, the method is not complete. In fact, the CST tree is constructed gradually
by adding dimensions associated with dynamic preferences one by one. During
this construction, some points are disqualified from the skyline when adding a
new dimension, while they should be in the skyline. An erratum will be published
in [21] for this issue.

While reusing the merging property proposed by Wong et al. to deal with
the refinements of preferences on a single dimension, we propose an incremental
method, named EC2Sky, for calculating the skyline points related to several di-
mensions associated with dynamic preferences. Indeed, the skyline may change
due to dimension preference updates, and hence should be incrementally main-
tained to avoid re-evaluation from scratch. Unlike the IPO-tree method, the
EC2Sky structure facilitates and allows a great flexibility for updating dimen-
sions and dynamic preferences.

3 Basic Concepts

In this section, we present the necessary concepts and definitions related to
skyline queries. Many are borrowed from [20, 22]. The notations are summarized
in Table 1.

The various definitions are illustrated using the example of Table 2 which
describes proposals for travels according to the dimensions Price, Distance from
the beach, Hotel group (Gr) and Airline (Air).

Table 1. Summary of notations

Notation Description
E Dataset
|E| Cardinality of E

D = S
⋃
Z Data space of E

S Subspace with static preferences
Z Subspace with dynamic preferences
|D| Cardinality of D
di One dimension of D (1 ≤ i ≤ |D|)
D′ Subspace of D: D′ ⊆ D
Di Subspace of D: Di = Di−1

⋃{di}
P(E) Power set of E
p, q Data points
p(di) Value of p on dimension di

dom(di) Dimensional domain of di
℘ Preferences on Z
℘i Preferences on di

Computing Skyline in Response to Online Preference Modification 39

Table 2. A set of hotels

Hotel ID Price Distance Hotel group Airline
a 1600 4 T (Tulips) G(Gonna)
b 2400 1 T(Tulips) G(Gonna)
c 3000 5 H(Horizon) G(Gonna)
d 3600 4 H(Horizon) R(Redish)
e 2300 2 T(Tulips) R(Redish)
f 3000 3 M(Mozilla) W(Wings)
g 3600 4 M(Mozilla) R(Redish)
h 3000 3 M(Mozilla) R(Redish)

Example 1. E = (a, b, c, d, e, f, g, h) is a dataset defined in a 4-dimensional
space D = (Price, Distance, Hotel group, Airline), |E| = 8, |D| = 4. The value
of point p on dimension Price is denoted by p(Price) = 1600.

Definition 1. (Preference order) A preference order on the domain of a
dimension di is defined by a partial order ≤di . For two values p(di) and q(di) in
the domain of di, we write p(di) ≤di q(di) if the value p(di) is preferred to the
value q(di). We denote p(di) <di q(di) if p(di) ≤di q(di) and q(di) �di p(di),

Example 2. In Table 2, both dimensions, Price and Distance, are totally
ordered by the relation ≤di, which corresponds to the order relation ≤ indicating
the smallest of two real numbers. The preference means that the lower the price
and the distance, the more preferable a hotel. No order is given a priori on
the dimensions Hotel group and Airline. It is up to users to express their own
preferences among values belonging to these dimensions.

Definition 2. (Preference type) We distinguish two types of preferences:

– static preferences: they correspond to a predefined order relation,
– dynamic preferences: they correspond to an order relation that can vary from

one user to another or from one user session to another.

By abuse of language we use dynamic (resp. static) dimension instead of
dimension associated with dynamic (resp. static) preferences. In the rest of this
paper, we denote by S the subspace associated with static preferences and by Z
the subspace associated with dynamic preferences, with D = S

⋃
Z and S

⋂
Z = ∅.
Example 3. S = {Price,Distance}: the values of these two dimensions follow
the order relation ≤ specifying that the lower the price (resp. the distance), the
more preferable the hotel (ex: a(Price) <Price d(Price)). This order is accepted
by any user, so it is static. For Z = {Gr,Air} no order relation is defined a
priori (i.e., in a static way) on these dimensions. The definition of an order is
left to users and may vary from one user to another.

40 T. Bouadi, M.-O. Cordier, and R. Quiniou

Definition 3. (Dominance relation) p dominates q on D′ ⊆ D, denoted by
p ≺D′ q, if p is preferred or equal to q on any dimension of D′ and p is preferred
to q on at least one dimension:
∀di ∈ D′, p(di) ≤di q(di) ∧ ∃di ∈ D′, p(di) <di q(di).
p =D′ q denotes the fact that p is equally preferred to q on any dimension of

D′. When D′ = D, p ≺D′ q is simply noted p ≺ q.

Example 4. Let a customer looking for a hotel that is both close to the beach
and affordable. In this case hotel a dominates hotel d (a ≺(Price,Distance) d) since
a(Price) <Price d(Price) and
a(Distance) =Distance d(Distance).
Hotel a does not dominate hotel b (a ⊀(Price,Distance) b) since
b(Distance) <Distance a(Distance).

The following definitions concern a subspace D′ ⊆ D. Obviously, these def-
initions can be generalized to the full dimension space D. The skyline set, or
simply the skyline, of a dataset on a subspace contains the points in the dataset
that are not dominated by any other point in that dataset.

Definition 4. (Skyline) The skyline set of the dataset E on the subspace D′

with Z being the subspace associated with the dynamic preferences ℘ is the set
of points that are not dominated by any point in E:
Sky(D′, E)(Z,℘) = {p ∈ E| ∀q ∈ E, q ⊀D′ p}.

If ℘ = ∅, Sky(D′, E)(Z,℘) is simply written Sky(D′, E).

Example 5. Sky({Price,Distance}, E) = {a, b, e}.
Sky({Price,Distance,Gr,Air}, E) = {a, b, e, c, d, f, h} when no preferences are
given on dimensions Gr and Air. The points c, d, f and h are no longer domi-
nated by the skyline points {a, b, e} since no point can dominate on the unordered
dimensions Gr and Air. The point g is dominated by the point h on the static
dimensions and have the same values on the dynamic dimensions and so is not
in the skyline.

The set Sky(D′, E) contains points, denoted by MaxSky(D′, E), that are the
best along at least one dimension. It also contains, and this is a major interest
of this approach, points denoted CompSky(D′, E) that are not dominant on
any dimension of D′ while being better than any point of E on at least one
dimension. These points represent interesting compromise solutions for the user
from a decision making point of view.

Definition 5. (Partition of skyline sets)
The skyline set of the subspace D′ ⊆ D can be decomposed into two sets of points,
MaxSky and CompSky.
Sky(D′, E) = MaxSky(D′, E)

⋃
CompSky(D′, E) with :

– MaxSky(D′, E) = {p ∈ Sky(D′, E)| ∃D′′ ⊆ D′, ∀q ∈ E, p �D′′ q},
– CompSky(D′, E) = {p ∈ Sky(D′, E)| ∀q ∈ E, q = p, ∃D′′ ⊆ D′, p ≺D′′ q}.

Computing Skyline in Response to Online Preference Modification 41

When D′ is restricted to only one dimension (D′ = {di}),
Sky(D′, E) = MaxSky(D′, E).

Example 6. Let D′ = {Price,Distance}.
Sky({Price,Distance}, E) = {a, b, e}.
MaxSky({Price,Distance}, E) = {a, b} since a(Price) (resp. b(Price)) is the
most preferred value on dimension Price (resp. Distance).
CompSky({Price,Distance}, E) = {e} since the value of e is not the most
preferred either on Price or on Distance. However, e(Price) is preferred to
b(Price) on dimension Price and e(Distance) is preferred to a(Distance) on
dimension Distance. So, e is better than any MaxSky point on at least one
dimension.

Various kinds of skyline queries can be formulated. Conventional skyline
queries retrieve the most interesting objects of a multidimensional dataset. Our
goal is to aid a user explore his dataset by letting him express various preferences
on dynamic dimensions and assess the consequences of such choices by retrieving
the most preferred points i.e. the skyline points. For example, let Hotel group be
a dimension with dynamic preferences. Different users may have different pref-
erences on that dimension. If a customer prefers the Hotel group Horizon to all
the other hotels, c, d, f and h are added in Sky({Price,Distance,Gr}, E) since
they become the best along the Hotel group dimension. However, for another
customer preferring Tulips to all the others, c, d, f and h do not belong to the
skyline since they are dominated by a, b and e. An interesting observation is
that hotels associated with a, b and e are always in the skyline no matter which
preference order on the Hotel group is chosen (because a is the only one with
the best price, b is the only one with the best distance from the beach and e
represent a compromise for dimensions Price and Distance).

When a user formulates a query involving a dimension di with dynamic prefer-
ences, she/he can specify the preference order on the |di| values of this dimension.
The order is total if all these values are ordered. But this is not always possible
and the user may order only n of the |di| values. Implicitly, she/he considers
that they are more preferred than the (|di| − n) remaining values which are
left unordered. This corresponds to the notion of n-th order implicit preference
introduced in [20].

Definition 6. (n-th order preference) Let di ∈ Z and |di| = m. ℘i is an
n-th order preference on di iff :

– ℘i = v1 <di . . . <di vn <di ∗, with v1 ∈ dom(di), . . . , vn ∈ dom(di) and
n ≤ m,

– ∀k ∈ {n+ 1, ..,m}, vn <di vk.

When n = 1, ℘i = v1 <di ∗ is called a first order preference.

Thus <di is a total order on the values {v1 . . . vn} of di, and a partial order
on the whole dimensional domain of di.
Note the importance of first order preferences: they are sufficient to determinate
the dominant points of a dimension.

42 T. Bouadi, M.-O. Cordier, and R. Quiniou

Example 7. For the dimension Hotel group in Table 2, a user prefers T (Tulips)
to M(Mozilla), T to H(Horizon) and M to H (i.e., T <Gr M <Gr H). This
preference is a third order preference and defines a total order. Some other user
could prefer Hotel group T to any other group (i.e., T <Gr ∗). In this case, the
preference is a first order preference which defines the partial order {T <Gr M ,
T <Gr H}.

℘i = v1 <di . . . <di vn <di ∗ denotes the set of binary preferences ℘i =
{v1 <di v2, v2 <di v3, . . . , vn <di ∗}. The absence of preference on dimension di
is denoted by ℘i = ∅. In the sequel, we use both notations for ℘i.

Example 8. Let Z = {Gr}, ℘ = {H <Gr ∗} (equivalent to {H <Gr M,H <Gr

T }).
Then Sky(D,E)(Z,H<Gr∗) = {a, b, e, c, d, f, h}. The points c and d are no longer
dominated by the skyline points {a, b, e} since they have the best values on the
dimension Gr. The values M and H of the dimension Gr are left unordered, so
the points f and h become compromise skyline points because they are no longer
dominated by the skyline points {a, b, e} on the dimension Gr.

We give below some useful properties of the preference relationship. These
properties will be used later to reduce the number of domination tests during

skyline computation. In the following, ℘ =
⋃|Z|

i=1 ℘i denotes the set of dynamic
preferences associated with Z ⊆ D combined implicitly with the set of static
preferences associated with S ⊆ D.

Definition 7. (Preference inclusion) Let |Z| = m, ℘ = {℘1, .., ℘m} and
℘

′
= {℘′

1, .., ℘
′
m}, where every ℘i and ℘′

i are sets of binary preferences associated
with the dimension di ∈ Z.
Then, ℘ ⊆ ℘

′
if and only if ℘i ⊆ ℘

′
i for 1 ≤ i ≤ m.

Definition 8. (Preference refinement) Let ℘′ and ℘′′ two preferences sets
on the subspace Z. ℘′′ is a refinement of ℘′ if ℘′ ⊆ ℘′′ .

Property 1. (Monotonicity of preference refinement) Let ℘′ and ℘′′

two preferences sets on Z. If ℘′′ is a refinement of ℘′ then Sky(D,E)(Z,℘′′) ⊆
Sky(D,E)(Z,℘′).

The following example illustrates property 1.

Example 9. Let Z = {Gr},
℘′ = {H <Gr ∗} and ℘′′ = {H <Gr T <Gr ∗}.
℘′′ is a refinement of ℘′ since ℘′ ⊂ ℘′′ .
Sky(D,E)(Z,℘′) = {a, b, c, d, e, f, h} and Sky(D,E)(Z,℘′′) = {a, b, c, d, e}.
We have Sky(D,E)(Z,℘′′) ⊂ Sky(D,E)(Z,℘′).

Property 1 indicates that when preferences are refined, the skyline may be-
come smaller and so, some skyline points may be disqualified. Also, if a point
is not in the skyline related to some preference, it won’t belong to the skyline

Computing Skyline in Response to Online Preference Modification 43

related to a refined preference. We will use property 1 later to reduce the number
of domination tests in our approach.

The following theorem formulates an important property called the merging
property that was introduced by Wong et al. [20]. This property provides a means
to derive the skyline related to any possible n-th order preference by operations
on first order preferences on the same dimension.

Theorem 1. (Merging property) Let ℘
′
and ℘

′′
be two preferences differing

only on dimension di, i.e. ℘
′
j = ℘

′′
j for all j = i. Let ℘

′
i = v1 <di . . . < vk−1 <di ∗

and ℘
′′
i = vk <di ∗. Let PSky(D,E)(Z,℘′) be the set of points in Sky(D,E)(Z,℘′)

with di values in {v1 . . . vk−1}. Let ℘′′′
be a preference differing from ℘

′
and ℘

′′

only on dimension di and ℘
′′′
i = v1 < . . . < vk−1 < vk < ∗. Then the skyline

associated with ℘
′′′

is:

Sky(D,E)(Z,℘′′′) = (Sky(D,E)(Z,℘′)
⋂

Sky(D,E)(Z,℘′′))
⋃

PSky(D,E)(Z,℘′).

Example 10. Let ℘
′
= {M <Gr ∗}, ℘′′

= {H <Gr ∗},
℘

′′′
= {M <Gr H <Gr ∗} and Z = {Group}.

Sky(D,E)(Z,℘′′′) = (Sky(D,E)(Z,℘′)
⋂

Sky(D,E)(Z,℘′′))
⋃

PSky(D,E)(Z,℘′)
= ({a, b, e, f, h}⋂{a, b, e, c, d, f, h}) ⋃{f, h}
= {a, b, e, f, h}

Wong et al. have proposed successively two interesting methods, IPO-tree
[20] and CST [22], for skyline computation based on the properties and theorem
1 presented above. However, the implementation based on these two proposals
raises several problems:

– The size of the IPO-Tree structure is in O(cm) where m is the number of
dimensions with dynamic preferences and c the cardinality of a dimension.
So it is intractable in the context of large databases with high dimensionality
and does not allow scaling. It is worth-noting that the merging property is
applicable to only one dimension at a time,

– The CST method does not solve the IPO-Tree problems because its algo-
rithm is incomplete (it disqualifies points which should be in the skyline).

The second proposal (CST) is incomplete [21], thus we focus on the first pro-
posal (IPO-Tree). The IPO-Tree method supports the refinement of preferences.
However, it addresses the treatment of one dynamic dimension at a time (merg-
ing property). To cope with several dynamic dimensions, Wong et al. propose
to store every combination of the first order preferences related to these dimen-
sions. So, the size of the proposed materialization structure is exponential, which
is prohibitive when dealing with several dimensions. We propose in Section 4 an
incremental method which makes possible to introduce dynamic dimensions one
by one. It relies on a structure that enables an effective materialization of dy-
namic preferences.

44 T. Bouadi, M.-O. Cordier, and R. Quiniou

4 EC2Sky: An Incremental Skyline Computation

In this section we introduce the proposed incremental method and the theorem
that grounds the method.

Let us examine how the addition of a dynamic dimension di impacts the sky-
line that was previously computed for the dimension subspace Di−1. Intuitively,
the computation of the new skyline for Di = Di−1

⋃
di is a two-step process.

First, compute the skyline associated to the new dynamic dimension union the
static dimensions di

⋃
S, as if it were independent of the other dynamic dimen-

sions. Second, take into account the correlations between the new dimension di
and the previous dimensions Di−1 to update the new computed skyline. This
second task consists in, i) removing from the skyline independently computed
for di

⋃
S the points that are disqualified i.e. are dominated on the dynamic di-

mensions of Di−1, ii) removing the set of old skyline points that are disqualified
i.e. are dominated on the new dimension di, iii) completing the resulting skyline
with points that are new compromises for Di−1

⋃
di.

In the following, we assume that the subset of dimensions Di is such that
Di = Di−1

⋃
di, with di ∈ Z, i ∈ {1, .., |Z|}, Di ⊆ D and D0 = S. This no-

tation represents the incremental addition of dimensions in skyline computation.

Consider the addition of a dynamic dimension di to a set Di−1 of i− 1 dynamic
dimensions. As sketched above, the first task is to compute Sky(di

⋃
S,E)(Z,℘),

the skyline related to dimension di as if it were independent of the other dy-
namic dimensions. Wong et al.’s method can be used to achieve this task.
However, this set may contain skyline points that are disqualified i.e. they
are dominated on the dynamic dimensions of the subspace Di−1. Precisely,
let p, q ∈ Sky(di

⋃
S,E)(Z,℘) be two skyline points with the same values on

every dimension of di
⋃
S. If q is preferred on Di−1 it will dominate p and

disqualify it from the skyline Sky(Di, E)(Z,℘). This set of points is denoted
CutSky(di

⋃
S,E).

Definition 9. (Disqualified skyline points from di
⋃
S) The set of skyline

points related to the subspace di
⋃
S that are disqualified by the introduction of

the subspace Di−1 is defined by CutSky(di
⋃
S,E) =

{p ∈ Sky(di
⋃
S,E)(Z,℘) | ∃q ∈ Sky(di

⋃
S,E)(Z,℘), p =di

⋃
S q ∧ q ≺Di−1 p}.

Example 11. Let Di−1 = D1 = {Price,Distance,Air}, di = Gr, the new
dimension, and the preferences:
{M <Gr H <Gr T } and {W <Air ∗}.
Sky(D1, E)(Z,℘) = {a, b, e, f}and Sky({Gr}⋃S,E)(Z,℘) = {a, b, e, f, h}.
CutSky({Gr}⋃S,E) = {h} as the point h should be removed from the skyline
Sky(D2, E)(Z,℘) since it is dominated by the point f on the subspace D1.

On the other hand, the old skyline Sky(Di−1, E)(Z,℘)may contain points that
are disqualified by dominant points brought by the new dimension di. Precisely,
let p, q ∈ Sky(Di−1, E)(Z,℘) be two skyline points with the same values on every

Computing Skyline in Response to Online Preference Modification 45

dimension of Di−1. If q is preferred on the new dimension di, it will dominate p
and disqualify it from the skyline Sky(Di, E)(Z,℘). This set of points is denoted
CutSky(Di−1, E).

Definition 10. (Disqualified skyline points from Di−1) The set of skyline
points related to the subspace Di−1 that are disqualified by the introduction of
dimension di is defined by
CutSky(Di−1, E) =
{p ∈ Sky(Di−1, E)(Z,℘) | ∃q ∈ Sky(Di−1, E)(Z,℘), p =Di−1 q ∧ q ≺di

⋃
S p}.

Example 12. Let Di−1 = D1 = {Price,Distance,Gr}, di = Air, the new
dimension, and the preferences {M <Gr H <Gr T } and {G <Air R <Air W}.
Sky(D1, E)(Z,℘) = {a, b, e, f, h}, CutSky({Air}⋃S,E) = {} and
CutSky(D1, E) = {f} as the point f should be removed from the skyline
Sky(D2, E)(Z,℘) since it is dominated by the point h on the new dimension
di = Air.

Finally, some new points should appear in the new skyline. Precisely, before
taking into account the new dimension di, some points may be dominated on
every dimension of Di−1

⋃
S and, so, are not in the skyline. But, when dimen-

sion di is introduced, being better on di than some skyline points they were
dominated by, they may well be no longer dominated by any skyline point from
Sky(Di−1, E)(Z,℘) on some dimensions from Di−1: they are new compromise
skyline points. This set of points is denoted NewCompSky(Di, E).

Definition 11. (New compromise skyline)
Let C = Sky(Di−1, E)(Z,℘)

⋃
Sky(di

⋃
S,E)(Z,℘).

The set of new compromise skyline points is defined by
NewCompSky(Di, E) = {p ∈ E − C | ∀q ∈ E, ∃dk ∈ Di, p ≺dk

q} .

Example 13. Let Di−1 = D1 = {Price,Distance,Gr}, di = Air, the new
dimension, and the preferences:
{M <Gr H <Gr T } and {G <Air R <Air W}.
Sky(D1, E)(Z,℘) = {a, b, e, f, h}, Sky({Air}

⋃
S,E)(Z,℘) = {a, b, e},

CutSky({Air}⋃S,E) = {} and CutSky(D1, E) = {f}. But, if we consider
simultaneously the two dimensions Gr and Air then c is no longer dominated by
f . As f was the only point c was dominated by, c becomes a new skyline point.
Since c is the only such “promoted” point, NewCompSky(D2, E) = {c}.

Suppose we want to extend a dimensional subspace Di−1 with a new dimen-
sion di. The following theorem states that the skyline of the extended subspace
can be computed by removing disqualified skyline points from the old skyline and
by adding the new skyline points brought by the preference on the new dimen-
sion. The new skyline points are either dominant points on the new dimension
or new compromise skyline points introduced by the new preference.

Theorem 2. (Incremental skyline)
Let E be a |D|-dimensional dataset, Z ⊆ D the subspace of size |Z| = m with

46 T. Bouadi, M.-O. Cordier, and R. Quiniou

dynamic preferences ℘ = {℘j}j=1,..,m on D, Sky(di
⋃
S,E) the skyline of the

subspace S
⋃

di and Di = Di−1
⋃
di, with i = {1, ..,m}.

Sky(Di, E)(Z,℘) = (Sky(Di−1, E)(Z,℘)

⋃
Sky(di

⋃
S,E)(Z,℘)) −(CutSky(Di−1)⋃

CutSky(di
⋃
S))

⋃
NewCompSky(Di, E).

Example 14. (Illustration of Theorem 2) Let D1 = {Price,Distance,Gr},
D2 = {Price,Distance,Gr,Air} and we consider the preferences of the previous
example.
Sky(D2, E)(Z,℘) =
(Sky(D1, E)(Gr,H<GrM<GrT)

⋃
Sky({Air}⋃S,E)(Air,G<AirW<AirR))

−((CutSky(D1, E)
⋃
CutSky({Air}⋃S,E))

⋃
NewCompSky(D2, E)=

({a, b, e, f, h}⋃{a, b, e}) - ({f}⋃{})⋃{c}=
{a, b, c, e, h}.
Proof. (Theorem 2) Here follows a sketch of the proof of theorem 2. We con-
sider successively the points that are disqualified from the skyline and the points
that are added to the skyline. Let Di ⊆ D and Di = Di−1

⋃{di}. Let Z be the
subspace of D with dynamic preferences and Sky(Di, E) be the skyline of the
subspace Di.

– Any element of CutSky must be disqualified from the resulting skyline.
If p ∈ (CutSky(Di−1)

⋃
CutSky(di

⋃
S)) then there exists some

q ∈ Sky(Di, E) such that
(q =Di−1 p and q ≺di

⋃
S p) or (q =di

⋃
S p and q ≺Di−1 p).

This means that q ≺Di p. Thus, p should not be in Sky(Di, E)(Z,℘).
– Any element of Sky(Di, E)(Z,℘) must belong to
{ (Sky(Di−1, E)(Z,℘)

⋃
Sky(di

⋃
S,E)(Z,℘)) −(CutSky(Di−1)

⋃
CutSky(di

⋃
S))

⋃
NewCompSky(Di, E)}.

Any p ∈ Sky(Di, E)(Z,℘) is such that:
• either there exists a dimension dj ∈ Di such that ∀q ∈ E, p �dj q.
In this case, p ∈ (Sky(Di−1, E)(Z,℘)

⋃
Sky(di

⋃
S,E)(Z,℘))

• or for every q ∈ E, there exists a di ∈ Z such that p ≺di q. In this case,
p ∈ NewCompSky(Di, E) and p /∈ (CutSky(Di−1)

⋃
CutSky(di

⋃
S)

In both cases p belongs to Sky(Di, E)(Z,℘)

Theorem 2 provides a scheme for an incremental computation of skyline
queries associated with several dynamic dimensions. In the following, we de-
scribe more precisely our proposal.

5 EC2Sky Implementation

In this section, we present the implementation of incremental skyline computa-
tion. We introduce some definitions to characterize the points that are involved

Computing Skyline in Response to Online Preference Modification 47

in the incremental computation of skyline points and facilitate the specification
of the algorithms and of the materialization structure. To ensure an efficient and
online computation of skyline, we provide an effective materialization structure
detailed in the sequel. We propose a trade-off between (i) materialize all the
skyline points for all possible preferences and (ii) calculate, for each user query,
the skyline points associated with the preferences formulated in the query. Our
approach is based on three steps:

1. compute and store the skyline on static dimensions. One can adopt any
existing algorithm (e.g. [1]) that computes the skyline for partially ordered
domains;

2. for each dimension with dynamic preferences, compute and store the candi-
date skyline points according to any possible first order preference;

3. rely on the information stored in step 1 and 2 to compute the skyline points
related to user preferences on incrementally introduced dynamic dimensions.

5.1 Skyline Associated with Static Dimensions

In step 1 we compute all the skyline points corresponding to the defined static
preferences of D. Two concepts introduced by Wong et al. in [22] are helpful.
They decompose the set Sky(D,E), corresponding to the defined static prefer-
ences ofD and denoted by ℘∅, into two subsets: the global skyline set GSky(D,E)
and the order-sensitive skyline set OsSky(D,E).

The points in the global skyline set GSky(D,E) remain in the skyline when-
ever any preference on any dimension of Z is added.

Definition 12. (Global skyline points)
The global skyline set of the space D = S

⋃
Z on the dataset E, is defined by

GSky(D,E) =
{p ∈ Sky(D,E) | ∀ q ∈ Sky(D,E), � di ∈ Z, p =S q ∧ p(di) =di q(di)}

Some skyline points are qualified order-sensitive because, depending on the
preferences associated with dynamic dimensions, these points may be skyline or
not. Note first that no global skyline points is order sensitive. Second, CutSky
points have to be searched among order sensitive skyline points.

Definition 13. (Order-sensitive skyline points) The order-sensitive sky-
line set of the space D on the dataset E, is defined by
OsSky(D,E) = {p ∈ Sky(D,E) | p /∈ GSky(D,E)} or equivalently
OsSky(D,E) = Sky(D,E)−GSky(D,E).

Example 15. Let S = {Price, Distance} and Z = {Gr, Air}.
Then GSky(D,E) = {a, b, e} and OsSky(D,E) = {c, d, f, h}, because all the
skyline points are distinct.

5.2 Skyline Associated with Dynamic Dimensions

This section details step 2 of our approach. In this step, we pre-compute the
useful information that does not depend on the dynamic preferences provided

48 T. Bouadi, M.-O. Cordier, and R. Quiniou

by users. For each dimension di with dynamic preferences, we introduce the can-
didate skyline point (CPdi), the new skyline point set (NewSky(di,℘

j
i)
) and the

compromise candidate point set (CandComp(di,℘
j
i)
).

The set CPdi represents the points that may become skyline points over the
dimension di. It is the set of points from OsSky(D,E)

(1) having on di ∈ Z a value different from any point of GSky(D,E) that
dominates them,
(2) having the same value on the static dimensions but different values on

di ∈ Z.

In the sequel, p ≺j
di

⋃
S q indicates that p dominates q on the subspace di

⋃
S

according to the first order preference ℘j
i of the dimension di.

Definition 14. (Candidate skyline points) The candidate skyline point set
of the dynamic dimension di, is defined by
CPdi =
{p ∈ OsSky(D,E) | ∃ q ∈ GSky(D,E), q ≺S p, p(di) =di q(di)}

⋃
{p ∈ OsSky(D,E) | ∃ q ∈ OsSky(D,E), q =S p, p(di) =di q(di)}
Example 16. Let S= {Price,Distance} anddi = {Gr}.ThenCPGr = {c, d, f, h}.

To find the new skyline after the introduction of the new dimension di, it is
sufficient to test the points in CPdi instead of all non-skyline points. This can
significantly reduce the number of domination tests.

NewSky(di,℘
j
i)

(Algorithm 1) represents the set of points in CPdi that are

preferred to the points in GSky(D,E) according to the first order preference
℘j
i = vj <di ∗ such that vj ∈ dom(di). Intuitively, NewSky points are equivalent

to MaxSky points on di according to the preference ℘j
i

Definition 15. (New skyline points)
The new skyline point set of the dynamic dimension di, is defined by
NewSky(di,℘

j
i)

= {p ∈ CPdi | ∀ q ∈ GSky(D,E)
⋃ { CPdi − p}, q ⊀j

di

⋃
S p}

Example 17. NewSky(Gr,H<Gr∗) = {c, d, f, h}.
Finally, CandComp(di,℘

j
i)

(Algorithm 2) represents the set of points that

may become skyline compromises (i.e. compromise candidates) when considering
a new dimension. They are computed for each first order preference ℘j

i on di.

Definition 16. (Compromise candidate points)
Let E′ = (CPdi - NewSky(di,℘

j
i)
) and E′′ = (GSky(D,E)

⋃
NewSky(di,℘

j
i)
).

The compromise candidate points associated with the preference ℘j
i is a set of

pairs (p, Setp) defined by
CandComp(di,℘

j
i)

=

{(p, Setp) ∈ E′ ×P(E′′) | ∀q ∈ P(E′′), ∃dk ∈ {di}
⋃
S, p ≺j

dk
q}.

Computing Skyline in Response to Online Preference Modification 49

Algorithm 1. Calculate NewSky(di,℘
j
i)

input : di: a dimension, ℘j
i : a first order preference on di, GSky(D,E):

global skyline set, CPdi : candidate skyline set over di
output: NewSky(di,℘

j
i)

NewSky(di,℘
j
i)
← ∅1

foreach p ∈ CPdi do2

bool ← true3

foreach q ∈ GSky(D,E)
⋃ { CPdi − p} do4

if q ≺j
di

⋃
S p then5

bool← false6

exit7

if bool then8

NewSky(di,℘
j
i)
← NewSky(di,℘

j
i)

⋃{p}9

Example 18
CandComp(Air,R<Air∗) = {(f, {a, b})} where the notation {(f, {a, b})} means
that f belongs to CandComp(Air,R<Air∗) because f dominates a (resp. b) on at
least one dimension from {Air}⋃S (here Distance (resp. Airline))).

5.3 The EC2Sky Structure

Now, let us consider how to construct an EC2Sky data structure to store ef-
ficiently all the precomputed information. Our aim is to avoid building a data
structure containing all the combinations of the dynamic preferences on all di-
mensions as proposed in [20] . In section 5.1 and 5.2 and thanks to theorem 2, we
have shown that the skyline of an extended dimensional subspace can be com-
puted by taking into account first order preferences only. We propose to store in
EC2Sky structure all the sets NewSky and CandComp associated to any first
order preference in each dimension.

For each dimension di, we compute and store CPdi and for each first or-
der preference on di, we compute and store the two sets: NewSky(di,℘

j
i)

and

CandComp(di,℘
j
i)

related to the first order preference j on dimension di. The

sets NewSky(di,℘
j
i)

and CandComp(di,℘
j
i)

associated with any possible first or-

der preference on dimension Hotel group or dimension Airline are presented in
Table 3.

Now, we evaluate the space complexity of the EC2Sky structure. Let m be
the number of dimensions associated with dynamic preferences and c be the
maximal cardinality of a dimension associated with dynamic preferences. The
space complexity of the EC2Sky structure is given by:

50 T. Bouadi, M.-O. Cordier, and R. Quiniou

Algorithm 2. Calculate CandComp(di,℘
j
i)

input : di: a dimension, ℘j
i : a first order preference on di,

NewSky(di,℘
j
i)
: skyline points added by di for ℘

j
i , GSky(D,E):

global skyline set, CPdi : candidate skyline set
output: CandComp(di,℘

j
i)

CandComp(di,℘
j
i)
← ∅1

foreach p ∈ {CPdi −NewSky(di,℘
j
i)
} do2

Setp ← ∅3

foreach q ∈ {GSky(D,E)
⋃
NewSky(di,℘

j
i)
} do4

foreach dk ∈ {di}
⋃
S do5

if p ≺j
dk

q then6

Setp ← Setp
⋃
q7

CandComp(di,℘
j
i)
← CandComp(di,℘

j
i)

⋃{(p, Setp)}8

Table 3. Illustration of an EC2Sky structure with two dynamic dimensions and three
first order preferences for each dimension

GSky = {a, b, e}
CPGr = {c, d, f, h} CPAir = {f}

℘ = M <Gr ∗ ℘ = T <Gr ∗ ℘ = H <Gr ∗ ℘ = R <Air ∗ ℘ = G <Air ∗ ℘ = W <Air ∗
NewSky{Gr,℘} NewSky{Air,℘}

{f, h} {} {c, d, f, h} {} {} {f}
CandComp{Gr,℘} CandComp{Air,℘}

{(c, {a, b, e}),
(d, {a, b, e})}

{(f, {a}),
(h, {a})}

{} {(f, {a, b})} {(f, {a, e})} {}

m∑
i=0

(c) = O(c.m)

We can note that the size of the EC2Sky structure is significantly smaller than
the number of possible n-th order preferences given by:

(

c−1∑
i=0

(Pi(c)))
m = O((c.c!)m)

Where Pi(c) is the number of permutations of ordering i elements from c ele-
ments. The space complexity of the EC2Sky structure is also significantly smaller
than the space complexity of IPO-tree structure given by:

m∑
i=0

(c+ 1)i = O(cm)

Computing Skyline in Response to Online Preference Modification 51

Algorithm 3. Calculate CutSky(Di−1)

input : Sky(Di−1, E), Sky(Di, E) and Sky(di
⋃
S,E)

output: CutSky(Di−1)

CutSky(Di−1)← ∅1

foreach p ∈ Sky(Di, E) do2

foreach q ∈ Sky(Di−1, E)
⋃
Sky(di

⋃
S,E) do3

if p =Di−1 q and q ≺di
⋃

S p then4

CutSky(Di−1) ← CutSky(Di−1)
⋃{p}5

break6

For example, when m = 3 and c = 40, the number of stored preferences in
EC2Sky structure is 123 only, while in IPO-tree structure is 70, 644, and the
number of all possible n-th order preferences (n ∈ 1, .., c) is 4.1 ∗ 109. This is
574.35 times smaller than the IPO-tree and 714, 502, 572 times smaller than the
number of all possible n-th order preferences. The difference is more obvious
when the number of dimensions m is high.

5.4 Query Evaluation

In this section, we describe step 3 of our proposal (cf. beginning of section 5).
The information precomputed and stored in step 1 and 2 is used in step 3 to
calculate, interactively, the skyline set according to the specified preferences in
the user query.

One dimension with dynamic preferences First, we consider only one dimension
with dynamic preferences in the dimensional space D. According to the user
query, we are faced with two cases:
(i) Query with first order preferences : to compute the skyline associated with a
first-order preference ℘j

i , we use the two sets GSky(D,E) and NewSky(di,℘
j
i)

stored in step 2, as follows : Sky(di
⋃
S,E)(Z,℘j

i)
=GSky(D,E)

⋃
NewSky(di,℘

j
i)
.

Recall that, when dealing with one dimension only, there is no compromise points
(CompSky = ∅).
Example 19. We use the EC2Sky structure in Table 3 to illustrate the dif-
ferent steps of a query evaluation. The skyline associated with the preference
℘ = {M <Gr ∗} (stored in the EC2Sky structure shown in Table 3) is computed
as follow:
Sky({Gr}⋃S,E)(Z,M<Gr∗)= GSky(D,E)

⋃
NewSky{Gr,M<Gr∗}.

Thus, Sky({Gr}⋃S,E)(Z,M<Gr∗) = {a, b, e, f, h}, which is the skyline for ℘.

52 T. Bouadi, M.-O. Cordier, and R. Quiniou

Algorithm 4. Calculate NewCompSky(Di, E)

input : EC2Sky structure, GSky(D,E): global skyline points
output: NewCompSky(Di, E)

CandCompSet =

i⋃ j⋃
CandComp(di,℘

j
i)

1

NewCompSky(Di, E)← ∅2

foreach p ∈ CandCompSet do3

// Compute the set of points dominated by p on at least

one dimension of Di

Dominated(p)← {q|∃ di ∈ Di, p ≺di q}4

// Select the set of points that dominate the skyline

points on at least one dimension

if Dominated(p) =5

Sky(Di−1, E)
⋃

Sky(di
⋃
S,E)− (CutSky(Di−1)

⋃
CutSky(di

⋃
S)

then
NewCompSky(Di, E)← NewCompSky(Di, E)

⋃{p}6

Dominance test over all the elements of the set NewCompSky(Di, E)7

(ii) Query with n-th order preferences : in this case we use themerging property
of Wong et al. [20] (see Theorem 1). This is illustrated by the following example.

Example 20. The skyline associated with the preference ℘ = {M <Gr H <Gr

∗} can be computed from the skyline related to the preferences ℘1 = {M <Gr ∗}
and ℘2 = {H <Gr ∗} (stored in the EC2Sky structure shown in Table 3), as
follow:
Sky({Gr}⋃S,E)(Z,M<Gr∗) = {a, b, e, f, h} (cf. example 19), which is the sky-
line for ℘1.
In the same way, Sky({Gr}⋃S,E)(Z,H<Gr∗) = {a, b, e, c, d, f, h}, which is the
skyline for ℘2.

Finally, to compute ℘ = {M <Gr H <Gr ∗}, we use the merging property
(Theorem 1) :
Sky(D,E)(Z,M<GrH<Gr∗) =
(Sky({Gr}⋃S,E)(Z,M<Gr∗)

⋂
Sky({Gr}⋃S,E)(Z,H<Gr∗))

⋃
PSky(D,E)(Z,M<Gr∗)=
({a, b, e, f, h}⋂{a, b, e, c, d, f, h}) ⋃{f, h}= {a, b, e, f, h}

Several dimensions with dynamic preferences Second, we consider the case of
several dimensions with dynamic preferences which is more complex. According
to definition 10 and 11, some skyline points (CutSky points) may be disqualified

Computing Skyline in Response to Online Preference Modification 53

Algorithm 5. EC2Sky structure construction

input : E: Dataset, D: Data space of E, S: Subspace with static
preferences, Z: Subspace with dynamic preferences

output: EC2Sky structure

// Step 1: computation of static and order sensitive skyline

points

Compute GSky(D,E)1

Store GSky(D,E) in the EC2Sky structure2

Compute OsSky(D,E)3

Store OsSky(D,E) in the EC2Sky structure4

// Step 2: computation of the EC2Sky structure

foreach di ∈ Z do5

Compute and Store CPdi in the EC2Sky structure6

foreach ℘j
i ∈ ℘i do7

Compute NewSky(di,℘
j
i)
; // Algorithm 18

Store NewSky(di,℘
j
i)

in the EC2Sky structure9

Compute CandComp(di,℘
j
i)
; // Algorithm 210

Store CandComp(di,℘
j
i)

in the EC2Sky structure11

when a new dimension is introduced, while new skyline points (CompSky points)
may appear.

The computation of the CutSky set is described by Algorithm 3. We just
show how to compute CutSky(Di−1) because the calculation of CutSky(di

⋃
S)

is performed in the same way.
The compromise skyline points are the set of compromise candidates that

become skyline compromises. The computation of this set is described by Algo-
rithm 4.

We are now in position to detail the EC2Sky method. Algorithm 5 and 6
describe the general process of EC2Sky. Algorithm 5 outlines the required steps
to construct the EC2Sky structure. At the end of step 2 (Algorithm 5, lines 8
and 11), we calculate the skyline sets, stored in the EC2Sky structure. Each of
these sets corresponds to one dimension with dynamic preferences defined in the
user query.

Algorithm 6 is dedicated to step 3, the computation of changing elements of
the skyline. The sets CompSky (Algorithm 6, line 11) and the union of CutSky
(Algorithm 6, line 10) are computed. As stated by the incremental skyline the-
orem (Theorem 2), the final skyline is obtained by eliminating all the CutSky
points and by adding all the CompSky points to the union of skylines related
to queries involving one dynamic preference (Algorithm 6, line 12).

54 T. Bouadi, M.-O. Cordier, and R. Quiniou

Algorithm 6. EC2Sky(Sky(D,E)(Z,℘))

input : Sky(D,E)(Z,℘):skyline query
output: Sky(D,E)(Z,℘)

// Step 3: computation of changing points

Sky(D0, E)(Z,℘) ← GSky(D,E)1

for i← 1 to m = |Z| do2

if ℘i = ∅ then3

Sky(di
⋃
S,E)(Z,℘) ← GSky(D,E)

⋃
CPdi4

else5

if isFirstOrderPref(℘i) then6

Sky(di
⋃
S,E)(Z,℘) ← GSky(D,E)

⋃
NewSky(di,℘

j
i)

7

else8

Use the merging property9

Compute CutSky(Di−1) (resp. CutSky(di
⋃
S))10

Compute NewCompSky(Di, E); // Algorithm 411

Sky(Di, E)(Z,℘) ← Sky(Di−1, E)(Z,℘)

⋃
Sky(di

⋃
S,E)(Z,℘)

⋃
12

NewCompSky(Di, E)− (CutSky(Di−1)
⋃
CutSky(di

⋃
S))

Sky(D,E)(Z,℘) ← Sky(Dm, E)(Z,℘)13

Example 21. The skyline associated with the preferences ℘ = {M <Gr H <Gr

∗, G <Air ∗}, can be computed from the skyline associated with the preferences
℘1 = {M <Gr H <Gr ∗} and ℘2 = {G <Air ∗}.
Let D1 = {Price,Distance,Gr} and D2 = {Price,Distance,Gr,Air}. The sky-
line associated to ℘1 and ℘2 is computed in the same way as in example 20.
Sky(D1, E)(Z,M<GrH<Gr∗) = {a, b, e, f, h} and Sky({Air}⋃S,E)(Z,G<Air∗) =
{a, b, e}.

Since, we have two dimensions with dynamic preferences we compute the sets
CutSky(D1), CutSky({Air}⋃S) and NewCompSky(D2, E). For this exam-
ple, CutSky(D1) = ∅,
CutSky({Air}⋃S) = ∅ and NewCompSky(D2, E) = ∅. Finally,
Sky(D2, E)(Z,℘) = Sky(D1, E)(Z,M<GrH<Gr∗)

⋃
Sky({Air}⋃S,E)(Z,G<Air∗)

= {a, b, e, f, h}.
Our proposal provides the user with a way to express preferences and with

the ability to change them without being penalized by long response times. A
good performance is achieved by storing only the minimal amount of information
required to enable quick and easy updates.

The experimental evaluation presented in the following highlight the relevance
of the proposed solution.

Computing Skyline in Response to Online Preference Modification 55

6 Experiments

In this section, we report an experimental evaluation of our algorithm EC2Sky
on synthetic data sets. EC2Sky is implemented in C/C++ and the experiments
were performed on an Intel Xeon CPU at 3GHz and 16 GB of RAM on a Linux
platform. For static dimensions, the data were produced by the generator re-
leased by the authors of [4]. Three kinds of data sets were generated: independent
data, correlated data and uncorrelated data. The description of these data sets
can be found in [4]. Like in [20], we only show the experimental results for the
uncorrelated data sets. The results for independent data sets and correlated data
sets are similar, but the execution times are much shorter for correlated data
sets. The dynamic dimensions were generated according to a Zipfian distribution
[19]. By default, we set the Zipfian θ parameter to 1. We obtained 1, 000, 000
tuples for 6 dimensions with static order. The number of dynamic dimensions
varied from 1 to 40 and the cardinality of these dimensions varied from 2 to
50. We chose a query template such that the most frequent value of some dy-
namic dimension has the highest priority over all other values. This represents
a parameter that becomes more difficult to manage as the skyline tends to be
larger.

Table 4. Default values

Parameter Value
No. of tuples 100K

No. of dimensions with static preferences (prefs) 6
No. of dimensions with dynamic prefs 4

No. of values in dimension with dynamic prefs 4
Zipfian parameter θ 1

In the following experiments, we compare the performance of our algorithm
EC2Sky with the algorithm IPO-tree implemented by [20], in terms of the exe-
cution time and the storage size.

Scalability with Respect to Dimensionality. In the first experiments, the
number of static dimensions was set to 6 and the number of dynamic dimensions
varied from 1 to 40. Figure 1 shows that the execution time and the storage
size of both EC2Sky and IPO-tree increase with the number of dynamic dimen-
sions. However, the increase rate of IPO-tree is greater than the increase rate
of EC2Sky. This comes from the complexity of the preferences tree built by
IPO-tree. The IPO-tree structure contains more nodes, yielding a larger storage
size. Beyond 6 dynamic dimensions, IPO-tree overflows the available memory.
This is due to its tree size in O(cm) (m is the number of dynamic dimensions and
c the cardinality of a dimension), which induces an exponential increase of the
storage size. The table built by EC2Sky has a size in O(c ∗m), which induces a

56 T. Bouadi, M.-O. Cordier, and R. Quiniou

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

No.Dimensions

E
xe

c
u
ti
o
n
 T

im
e
 (

s
)

● ●
●

●

●

●

EC2Sky
IPO−Tree

10 20 30 40

10 20 30 40

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

(a)

● ●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

No.Dimensions

S
to

ra
g
e
 s

iz
e
 (

M
B

)

● ●
●

●

●

●

EC2Sky
IPO−Tree

10 20 30 40

10 20 30 40

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

(b)

Fig. 1. Scalability with respect to dimensionality

● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

No. of Tuples (in thousands)

E
xe

c
u
ti
o
n
 T

im
e
 (

s
)

● ● ● ● ● ● ●
●

●

●

●

●

●

●

EC2Sky
IPO−Tree

200 400 600 800 1000

200 400 600 800 1000

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

(a)

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

No. of Tuples (in thousands)

S
to

ra
g
e
 s

iz
e
 (

M
B

)

●
●

●
●

●
●

●

●

●

●

●

●

●

●

EC2Sky
IPO−Tree

200 400 600 800 1000

200 400 600 800 1000

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

(b)

Fig. 2. Scalability with respect to database size

substantial increase of the storage size but which evolves more slowly than the
IPO-tree. The results are similar to those in Figure 1 when the number of static
dimensions is set to 4.

Scalability with Respect to the Database Size. In this experiment, the
number of tuples of the dataset varies from 50, 000 to 1, 000, 000. Figure 2 shows
that the execution time and the storage size of both EC2Sky and IPO-tree
increase with the size of the dataset. This is because the size of the informa-
tion stored and analyzed increases with the increase of the dataset. However,
our method is more efficient than the IPO-tree method. Beyond 800.000 tuples,
IPO-tree overflows the available memory. Indeed, IPO-tree stores all the skylines

Computing Skyline in Response to Online Preference Modification 57

●

●
●

● ● ● ●
● ●

●
● ● ● ●

●

● ● ●

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

Cardinality of a dynamic dimension

E
xe

c
u
ti
o
n
 T

im
e
 (

s
)

●
●

●
●

●

●

●

●

●

●

EC2Sky
IPO−Tree

10 20 30 40 50

10 20 30 40 50

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

(a)

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

Cardinality of a dynamic dimension

S
to

ra
g
e
 s

iz
e
 (

M
B

)

●
●

●

●

●

●

●

●

●

● EC2Sky
IPO−Tree

10 20 30 40 50

10 20 30 40 50

0
1
0
0
0

3
0
0
0

5
0
0
0

7
0
0
0

9
0
0
0

0
1
0
0
0

3
0
0
0

5
0
0
0

7
0
0
0

9
0
0
0

(b)

Fig. 3. Scalability with respect to the cardinality of the dynamic dimensions

associated to all possible combinations of the different first order preferences of
all the dynamic dimensions whereas EC2Sky stores only the skyline points cor-
responding to the first order preferences of each dynamic dimension. The skyline
of the various combinations of preferences are derived from simple operations of
intersection and union.

Scalability with Respect to the Cardinality of Dynamic Dimensions.
We vary the cardinality of the dynamic dimensions from 2 to 50. Figure 3 shows
that the execution time and the storage size of both EC2Sky and IPO-tree in-
crease when the cardinality of the dimensions increases. Once more, EC2Sky is
more efficient than IPO-tree. The size of the treestructure of IPO-tree is expo-
nential in O(cm). So, it becomes more complex and larger when the cardinality
of dimensions (c) increases. IPO-tree overflows the available memory for a dy-
namic dimension cardinality above 11. We can also observe a significant increase
of the related execution time.

7 Conclusion

In this paper, we have proposed a new efficient method to compute skyline
queries in the presence of dimensions associated with dynamic user preferences.
We have investigated preferences on dimension values that can be expressed by
any partial or complete order, with a particular focus on the compromise points
which are important in decision making. Our approach, is based on a materializa-
tion of the first order preferences, that can respond efficiently to skyline queries
related to user preferences even in the context of large volumes of data. The ex-
perimentations presented in this paper highlight the performance improvements
of EC2Sky compared to IPO-tree [20].

58 T. Bouadi, M.-O. Cordier, and R. Quiniou

Theconsiderationofdimensionswithdynamicpreferences opens several promis-
ing future research directions. First, to demonstrate the usefulness of our method,
we want to experiment our algorithm on a real data set. We are particularly in-
terested in the analysis of simulation results from a biophysical model to extract
the most polluting plots in a watershed with respect to different analysis criteria.
Another possible future direction is to investigate how to compute skyline queries
in the context of hierarchical and aggregated data. The adopted approach would
search the best compromises along the set of axes. However, this approach raises
several problems. One is to define a computation adapted to the level of the ex-
plored hierarchy. Another is to define the semantics of skyline points at different
levels of granularity.

Acknowledgments. This work was funded by the French National Research
Agency (ANR) through the ACASSYA project (ANR-08-STRA-01).

References

[1] Balke, W.T., Guntzer, U., Siberski, W.: Exploiting indifference for customization
of partial order skylines. In: Proceedings of the 10th International Database Engi-
neering and Applications Symposium, pp. 80–88. IEEE Computer Society (2006)

[2] Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average num-
ber of maxima in a set of vectors and applications. J. ACM 25(4), 536–543 (1978)

[3] Bitran, G.R., Magnanti, T.L.: The structure of admissible points with respect to
cone dominance. Optimization Theory and Applications 29(4), 573–614 (1979)

[4] Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of the
17th International Conference on Data Engineering, pp. 421–430. IEEE Computer
Society (2001)

[5] Bouadi, T., Cordier, M.-O., Quiniou, R.: Incremental computation of skyline
queries with dynamic preferences. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M.,
Zhou, X. (eds.) DEXA 2012, Part I. LNCS, vol. 7446, pp. 219–233. Springer,
Heidelberg (2012)

[6] Brando, C., Goncalves, M., González, V.: Evaluating top-k skyline queries over
relational databases. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007.
LNCS, vol. 4653, pp. 254–263. Springer, Heidelberg (2007)

[7] Chen, L., Lian, X.: Efficient processing of metric skyline queries. IEEE Trans. on
Knowl. and Data Eng. 21(3), 351–365 (2009)

[8] Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting: Theory and
optimizations. In: Proc. of Intelligent Information Systems, pp. 595–604. Springer,
Heidelberg (2005)

[9] Godfrey, P., Shipley, R., Gryz, J.: Algorithms and analyses for maximal vector
computation. The VLDB Journal 16(1), 5–28 (2007)

[10] Huang, Z., Guo, J., Sun, S.L., Wang, W.: Efficient optimization of multiple sub-
space skyline queries. J. Comput. Sci. Technol. 23(1), 103–111 (2008)

[11] Jin, W., Tung, A.K.H., Ester, M., Han, J.: On efficient processing of subspace sky-
line queries on high dimensional data. In: Proc. of the 19th International Confer-
ence on Scientific and Statistical Database Management. IEEE Computer Society
(2007)

Computing Skyline in Response to Online Preference Modification 59

[12] Mindolin, D., Chomicki, J.: Preference elicitation in prioritized skyline queries.
The VLDB Journal 20(2), 157–182 (2011)

[13] Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in
database systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

[14] Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the best views of skyline: a se-
mantic approach based on decisive subspaces. In: Proc of the 31st International
Conference on Very Large Data Bases, pp. 253–264, VLDB Endowment (2005)

[15] Räıssi, C., Pei, J., Kister, T.: Computing closed skycubes. Proc. VLDB En-
dow. 3(1), 838–847 (2010)

[16] Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization.
Academic Press, Orlando (1985)

[17] Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In:
Proceedings of the 27th International Conference on Very Large Data Bases,
pp. 301–310. Morgan Kaufmann Publishers Inc. (2001)

[18] Tao, Y., Xiao, X., Pei, J.: Efficient skyline and top-k retrieval in subspaces. IEEE
Trans. on Knowl. and Data Eng. 19(8), 1072–1088 (2008)

[19] Trenkler, G.: In: Johnson, N.l., Kotz, S., kemp, A.W. (eds.) Univariate Discrete
Distributions, 2nd edn. John wiley (1994) ISBN 0-471-54897-9; Computational
Statistics & Data Analysis, 17(2), 240–241 (1994)

[20] Wong, R.C.W., Fu, A.W.C., Pei, J., Ho, Y.S., Wong, T., Liu, Y.: Efficient sky-
line querying with variable user preferences on nominal attributes. Proc. VLDB
Endow. 1(1), 1032–1043 (2008)

[21] Wong, R.C.W., Pei, J., Fu, A.W.C., Wang, K.: An erratum on “online skyline
analysis with dynamic preferences on nominal attributes”. IEEE Trans. on Knowl.
and Data Eng. (to be published)

[22] Wong, R.C.W., Pei, J., Fu, A.W.C., Wang, K.: Online skyline analysis with
dynamic preferences on nominal attributes. IEEE Trans. on Knowl. and Data
Eng. 21(1), 35–49 (2009)

[23] Xia, T., Zhang, D., Tao, Y.: On skylining with flexible dominance relation. In:
Proc. of the 2008 IEEE 24th International Conference on Data Engineering,
pp. 1397–1399. IEEE Computer Society (2008)

[24] Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient computation
of the skyline cube. In: Proc. of the 31st International Conference on Very Large
Data Bases, pp. 241–252, VLDB Endowment (2005)

The Finite Implication Problem for Expressive

XML Keys: Foundations, Applications,
and Performance Evaluation

Flavio Ferrarotti1, Sven Hartmann2, Sebastian Link3, Mauricio Marin4,
and Emir Muñoz5

1 Victoria University of Wellington
flavio.ferrarotti@vuw.ac.nz

2 Clausthal University of Technology
sven.hartmann@tu-clausthal.de

3 The University of Auckland
s.link@auckland.ac.nz

4 Yahoo! Research
mmarin@yahoo-inc.com

5 DERI, National University of Ireland Galway
emir.munoz@deri.org

Abstract. The increasing popularity of XML for persistent data stor-
age, processing and exchange has triggered the demand for efficient al-
gorithms to manage XML data. Both industry and academia have long
since recognized the importance of keys in XML data management. In
this paper we make a theoretical as well as a practical contribution to
this area. This endeavour is ambitious given the multitude of intractabil-
ity results that have been established. Our theoretical contribution is
based in the definition of a new fragment of XML keys that keeps the
right balance between expressiveness and efficiency of maintenance. More
precisely, we characterize the associated implication problem axiomati-
cally and develop a low-degree polynomial time decision algorithm. In
comparison to previous work, this new fragment of XML keys provides
designers with an enhanced ability to capture properties of XML data
that are significant for the application at hand. Our practical contribu-
tion includes an efficient implementation of this decision algorithm and
a thorough evaluation of its performance, demonstrating that reasoning
about expressive notions of XML keys can be done efficiently in practice,
and scales well. Our results promote the use of XML keys on real-world
XML practice, where a little more semantics makes applications a lot
more effective. To exemplify this potential, we use the decision algo-
rithm to calculate non-redundant covers for sets of XML keys. In turn,
this allow us to reduce significantly the time required to validate large
XML documents against keys from the proposed fragment.

1 Introduction

Keys are the most important class of integrity constraints used in database
management. First of all, they provide a mechanism for identifying objects in

A. Hameurlain et al. (Eds.): TLDKS X, LNCS 8220, pp. 60–94, 2013.
� Springer-Verlag Berlin Heidelberg 2013

The Finite Implication Problem for Expressive XML Keys 61

database instances, thus establishing an invariant relationship between objects
in the real world and their representation in the database. The increasing pop-
ularity of XML [6] for persistent data storage and data processing has triggered
the demand for efficient algorithms to manage XML data. Both industry and
academia have long since recognized the importance of keys in XML data man-
agement. Over the last decade, several notions of XML keys have been proposed
and discussed in the database community. (See [14] for a brief overview). The
most influential proposal is due to Buneman et al. [7,8] who defined keys on the
basis of an XML tree model similar to the one suggested by DOM [3] and XPath
[10]. Figure 1 shows such a representation in which nodes are annotated by their
type: E for element nodes, A for attribute nodes, and S for text nodes (PC-
DATA). While Buneman et al. studied keys as a concept orthogonal to schema
specification (such as DTD or XSD), their proposal has been adopted by the
W3C for the XML Schema standard [23] subject to some minor, though es-
sential modifications (see [4] for a discussion). Today, all major XML-enabled
DBMSs, XML parsers and editors (such as XMLSpy) support keys.

The XML keys considered in this work uniquely identify nodes in an XML tree
by (complex) values on some selected descendant nodes. These keys are defined
using path expressions to select the relevant sets of nodes. In Figure 1, a clear
example of a key is that a bank node can be uniquely identified by the value of
its name attribute. This is an instance of an absolute key which is satisfied if it
holds globally in the entire XML tree. We also work with relative keys, which are
satisfied if they hold locally within some subtrees. For instance, in every subtree
rooted at an account node, a transaction node can be uniquely identified by
the value of its child node, which can either be a withdrawal node or a deposit
node. This XML key might not hold in the entire tree since there might well
be different withdrawals or deposits made at the same time, on the same day
and for the same amount, as long as they do not belong to the same account.
We emphasize that the element nodes withdrawal and deposit have complex
content. Thus, checking whether two transaction nodes violate this latter key
involves testing whether the subtrees rooted at their respective child nodes are
isomorphic to one another, with the identity on string values.

1.1 Motivation

For relational data, keys have been widely used to improve the performance of
many perennial tasks in database management, ranging from consistency check-
ing to query answering. The hope is that keys will turn out to be equally bene-
ficial for XML. One of the most fundamental questions on keys is that of logical
implication, that is, deciding if a new key holds given a set of known keys.
If the implication of XML keys can be decided efficiently, then it is possible
to take advantage not only of those keys that were specified explicitly by the
database designer, but also of those ones that were specified implicitly. Among
other things, this is important for minimizing the cost of validating that an

62 F. Ferrarotti et al.

〈bank name=“ANZ”〉〈branch name=“Downtown”〉
〈client cno=“JOH23144”〉〈account no=“2144964”,kind=“savings”〉

〈transaction〉〈withdrawal〉
〈date〉“2012.02.04”〈/date〉〈time〉“13:01:03”〈/time〉〈amount〉“�500.00”〈/amount〉

〈/withdrawal〉〈/transaction〉
〈transaction〉〈deposit〉

〈date〉“2012.02.04”〈/date〉〈time〉“14:15:03”〈/time〉〈amount〉“�302.34”〈/amount〉
〈/deposit〉〈/transaction〉

〈/account〉〈/client〉
〈/branch〉〈/bank〉
〈bank name=“BNZ”〉〈branch name=“Northshore”〉

· · ·
〈/branch〉〈/bank〉

E

E

E

E

E

A

A

A

E EE

SSS

E

E E E

S SS

E

E E E

A

A

E

SS S

E E E

E

E

E

E

A

A

A

E

E

E E E

SS S

E

E

A

A

SSS

E E E

no

db

bank

branch

client

account

BNZ

cno

name

bname

Northshore

PET23144

09:15:35 $670.342012.02.05

date time amount

2012.02.05 11:47:50 $60.00

transaction

date time

kind

Cheque

7056324 transaction

withdrawalwithdrawal

$500.002012.02.04

amounttimedate

13:01:03

bname

name
bank

branch

client

account

amounttimedate

14:15:03

transaction

cno

JOH23144

Downtown

ANZ

withdrawal

transaction

deposit

transaction

deposit

kind

no

2144964

savings

amounttimedate

2012.02.04 13:01:03 $500.00 2012.02.04 $302.34

amount

Fig. 1. XML data fragment and its tree representation

XML document satisfies a set of keys gathered as business rules during require-
ments engineering.

Example 1. Suppose, a database designer has already specified an XML key ϕa

which expresses that in every subtree rooted at a bank node, a client node can
be uniquely identified by its child attribute cno together with its child node
account. Later on, another of the database designers discovers that the cno at-
tribute can by itself be used to identify a client node relatively to a bank node,
and thus defines a new suitable XML key ϕb. It is easy to see that if ϕb is sat-
isfied by an XML tree T , then also the former key ϕa is satisfied by T . That is,
ϕb implies ϕa. Thus, we can validate an XML tree T against both keys by just
checking whether T satisfies ϕb, since T will satisfy both ϕa and ϕb iff it satisfies
ϕb. We would like to emphasize that the account nodes have complex content.
Thus, checking whether two client nodes in T violate ϕa is quite costly in terms

The Finite Implication Problem for Expressive XML Keys 63

of time, since it involves testing whether the subtrees rooted at their account
nodes are isomorphic to one another, with the identity on string values. In
contrast, checking whether two client nodes violate ϕb only involves checking
equality on the text nodes of their respective cno attributes. ��

No less important, facilities for reasoning about XML keys present numer-
ous opportunities for designing XML databases and views that permit a more
efficient processing of frequent queries and updates.

Example 2. Let us consider the following XQuery, which expresses over XML
trees with the structure of the tree in Figure 1, a client request for her transac-
tions on an specific account and date.

for �a in doc(“transactions.xml”)//account[@no]=“2144964”
where �a//date/text() =“2012.02.04”
return 〈transactions〉{�a/transaction/*}〈/transactions〉

Also, let us assume that this is the most frequent type of query. It is expensive
to process an XQuery such as this one over an XML tree with the layout of
the tree in Figure 1, since for all transaction nodes of the selected account, it
has to be decided if it has a descendant date node which corresponds to the
specified date. This is due to the fact that there can be many transactions on
the selected account for the given date, and thus a transaction node cannot be
uniquely identified by its descendant date node. Note that this key is therefore
not implied by the keys that apply to the XML tree. Also note that if the
transaction nodes are encrypted, then the evaluation of the query requires us to
decrypt every single one of them for the selected account. In this case, the layout
illustrated in Figure 2 represents a better choice. The target transaction nodes
are now grouped together as child nodes of a target txdate node. Redundancies
with respect to dates for a given account are eliminated, which results in a better
overall design. Moreover, only those transaction nodes which are child nodes of
the selected txdate node need to be decrypted. Note that these improvements are
due to the existence of a new relative key which specifies that, in every subtree
rooted at an account node, a txdate node can be uniquely identified by the value
of its date attribute. The original XQuery is rewritten into

for �a in doc(“transactions.xml”)//account[@no]=“2144964”
where �a/txdate[@date] =“2012.02.04”
return 〈transactions〉{�a/txdate/transaction/*}〈/transactions〉 ��

A further example of an area in which the implication of XML keys is of
tremendous benefit is semantically rich data exchange.

Example 3. Suppose we need to share part of the information on bank trans-
actions with the Reserve Bank, and that due to legal requirements we need to
eliminate the information regarding clients and individual accounts. Thus, we

64 F. Ferrarotti et al.

E

E

E

E

E

A

A

A

E E

A

E

E

E

S

E

S

E

E

S

E

A
E

E

S

E

E

S

E

S

A

A

E

E

A

E

E

A

A

A

A
E

A

E

E

E E

SS

E

E

S S

EE

2144964

db

bank

branch

client

account

name

bname

cno

PET23144

BNZ

txdate txdate
date

time

2012.02.05
transaction

withdrawal

amount

$60.0011:47:50

transaction

deposit

$670.3409:15:35

amounttime

date

2012.02.04transaction

withdrawal

13:01:03

amount

$500.00

time

Northshore

no

kind

Cheque

7056324

ANZ

name

bname

cno

JOH23144

Downtown

bank

branch

client

account

kind

savings

no txdate

2012.02.04

date

transaction

time amount

$302.3414:15:03

withdrawal

time

transaction

amount

$500.0013:01:03

deposit

Fig. 2. XML data fragment with improved layout

generate a view over the XML tree which skips the no attribute of the account
nodes and the cno attribute of the client nodes. Clearly, it would be useful to
provide the Reserve Bank with the set of keys defined for the original XML tree.
In light of this additional semantic information, they could better interpret the
XML tree. For instance, they could deduce from those keys that a client node
was identifiable in the original XML document by a cno attribute relatively to a
bank node. Furthermore, they could check whether the specified keys allow one
to conclude further keys which are useful for extraction and processing of the
data in the provided XML document. For instance, they could check whether
the specified keys allow one to conclude a further key stating that a client node
can be identified by its descendant account nodes relatively to a bank node. ��

1.2 Related Work

The definition of keys, adopted by the W3C for XML Schema [23], is currently
the industry standard for specifying keys. However, Arenas et al. [4] have shown
the computational intractability of the associated consistency problem, i.e., the
question whether there exists an XML document that conforms to a given XSD
and satisfies the specified keys. A further issue pointed out by Buneman et al.
[7] is the fact that XML Schema restricts value equality to string-valued data
items. But there are cases in which keys are not so restricted (see Section 7.1 of [7]
for discussion). In particular, we have given examples of XML keys that require

The Finite Implication Problem for Expressive XML Keys 65

a less restricted notion of equality, since they require us to test equality on
element nodes such as withdrawal and deposit which are not string-valued. On
the other hand, the expressiveness and computational properties of XML keys
with good reasoning capabilities have been deeply studied from a theoretical
perspective [7,8,15,16,11].

In practice, however, expressive yet tractable notions of XML keys have been
mostly ignored. Even though several algorithms that validate XML documents
against sets of certain XML keys have been proposed and tested with promising
results (see e.g. [9,18]), none of them make use of the reasoning capabilities of
XML keys as suggested in Example 1.

Aiming to fill this gap between theory and practice, we initiated in [12] an
empirical study of an XML key fragment, namely the fragment of XML keys
with nonempty sets of simple key paths. As shown in [8,15], automated reasoning
about this XML key fragment can be done efficiently, in theoretical terms. Our
work confirmed this fact in practice. This article extends these earlier works
by considering a strictly more expressive fragment of XML keys which allows
the use of single- and variable-length wildcards in the path language used to
specify the keys, as well as empty sets of key paths for the specification of
structural keys which identify nodes (within subtrees) by unique paths instead
of unique data value. In fact, we establish a fragment that strictly includes the
already expressive fragments of XML keys explored in [16,11] without resigning
efficiency.

1.3 Contributions

Evidently, the expressiveness (but also the tractability) of a fragment of XML
keys will depend on the query language used to navigate between nodes in trees.
As common in XML data processing, path expressions are used to select the
nodes of interest. The preferred languages for selection queries against XML
data are XPath queries [10] and fragments thereof. The flexibility provided by
these languages is probably not needed for every application, but there are many
applications where flexibility is essential. Taken that XML is widely used to
represent heterogeneous data, the expressiveness that comes with wildcards and
descendant queries is highly appreciated. One may think of data integration
where data from different sources are stored in the same document. Though not
uniformly structured, the data should still be analyzed using the same ‘one fits
all’ query to avoid extensive maintenance costs. This can only be achieved when
using a sufficiently rich query language.

Thus, our first contribution establishes a new fragment of XML keys (namely
Max-Keys) that keeps the right balance between expressiveness and efficiency of
maintenance. More precisely, we characterize the associated implication prob-
lem axiomatically, and propose a low-degree polynomial time decision algo-
rithm. The set of XML keys that are expressible in this new fragment includes
strictly the sets of XML keys that are expressible in the fragments considered in

66 F. Ferrarotti et al.

previous proposals [15,16,11,12]. The first source of expressiveness results from
the very general notion of value equality: two element nodes v and w are consid-
ered value equal, if the subtrees rooted at v and w are isomorphic by an isomor-
phism that is the identity on string values. This contrasts with more restrictive
notions, for instance with value equality on leaf nodes. The second source of ex-
pressiveness is a result of the path language we use to select nodes. This includes
the single-label wildcard, child navigation, and descendant navigation as known
from XPath. Note that in [12] we have considered XML keys whose context and
target nodes can be selected by a path language that uses child navigation and
descendant navigation, and key nodes by using only child navigation. While this
fragment of XML keys can already capture many desirable properties, the Max-
Keys fragment proposed in this paper captures a considerably more expressive
class of properties by allowing the use of single-label wildcards, a controlled use
of variable-length wildcards in the key paths and XML keys without key paths
that allow one to express structural keys.

Our second contribution concerns the exploration of this theoretical ideas in
practice. We develop and implement an efficient algorithm that decides the im-
plication problem for Max-Keys and thoroughly evaluate its performance. Our
performance tests give empirical evidence that reasoning about expressive no-
tions of XML keys is practically efficient, and scales well. In fact, the performance
of this new algorithm is comparable to the performance of the algorithm pre-
sented in [12] for a strictly less expressive fragment of XML keys. Our results
unleash XML keys on real-world XML practice, where a little more semantics
makes applications a lot more effective.

There is indeed great potential for practical uses of the proposed decision
algorithm. For instance, the process of checking XML data integrity against
XML keys can benefit a lot from the ability to decide implication efficiently.
Clearly, if a set Σ of XML keys implies an XML key ϕ, and we have already
checked that an XML data tree satisfies Σ, then there is no need to test ϕ any
more, saving considerable resources. Thus, exploiting our algorithm we compute
non-redundant covers for sets of XML keys. A set Σ of keys is non-redundant if
there is no key σ in Σ such that σ is implied by Σ−{σ}. Same than for the less
expressive fragment of XML keys studied in [12], our experiments show that the
time to compute a non-redundant cover for a given set of keys in the fragment
of Max-Keys, is just a small fraction of the average time needed to validate an
XML document against a single key.

We would like to note that the experiments carried out in this article extend
the experiments presented in [12] in several ways. Firstly, we consider XML keys
which are more expressive than the keys studied in our previous paper. Secondly,
we test the new implication algorithm by considering even larger sets of XML
keys (of up to 180 keys). Thirdly, we include a new XML document which holds
the complete Chilean electoral roll in our validation experiments. This XML
document, which contains 3.2GB of data, is several orders of magnitude larger
than the XML documents usually considered in previous works in this area.

The Finite Implication Problem for Expressive XML Keys 67

Finally, we compute all non-redundant covers that are subsets of a given set of
XML keys, and rank them according to the time it takes for their validation.
This provides valuable information which can be used in practice to design XML
documents which are more efficient to validate. For replication purposes, all
the data sets used in our experiments as well as the full set of results can be
downloaded from http://emir-munoz.github.com/xml-constraints.

1.4 Organization

We recall basic concepts and fix the formal notation in Section 2. In Section 3
we define the central notion of XML key and introduce a new and expressive
fragment of XML keys (namely the Max-Keys). We establish a finite set of in-
ference rules for deriving new Max-Keys in Section 4 and prove its completeness
in Section 5. In Section 6, we presents an efficient algorithm for deciding impli-
cation of Max-Keys as well as an implementation thereof. We present the results
regarding the application and performance evaluation of our decision algorithm
for the finite implication problem of Max-Keys, as well as an strategy to use this
algorithm in the context of XML document validation, in Section 7. We conclude
the paper in Section 8 with final remarks.

2 Preliminaries

2.1 XML Data Representation

We use the common representation of XML data as ordered, node-labeled trees.
Let E denote a countably infinite set of element tags, A a countably infinite

set of attribute names, and {S} a singleton set denoting text (PCDATA). These
sets are pairwise disjoint. The elements of L = E ∪A ∪ {S} are called labels.

An XML tree is a 6-tuple T = (V, lab, ele, att, val, r) where V is a set of nodes,
and lab is a mapping V → L assigning a label to every node in V . A node v ∈ V
is an element node if lab(v) ∈ E, an attribute node if lab(v) ∈ A, and a text
node if lab(v) = S. Moreover, ele and att are partial mappings defining the edge
relation of T : for any node v ∈ V , if v is an element node, then ele(v) is a list
of element and text nodes, and att(v) is a set of attribute nodes in V . If v is an
attribute or text node, then ele(v) and att(v) are undefined. The partial mapping
val assigns a string to each attribute and text node: for each node v ∈ V , val(v)
is a string if v is an attribute or text node, while val(v) is undefined otherwise.
Finally, r is the unique and distinguished root node.

For a node v ∈ V , each node w in ele(v) or att(v) is called a child of v, and we
say that there is an edge (v, w) from v to w in T . A path p of T is a finite sequence
of nodes v0, . . . , vm in V such that (vi−1, vi) is an edge of T for i = 1, . . . ,m. The
path p determines a word lab(v1). · · · .lab(vm) over the alphabet L, denoted by
lab(p). For a node v ∈ V , each node w reachable from v is called a descendant
of v. Note that every XML tree has a tree structure: for each node v ∈ V , there
is a unique path from the root node r to v.

http://emir-munoz.github.com/xml-constraints

68 F. Ferrarotti et al.

2.2 Value Equality of Nodes on XML Trees

Two nodes u, v ∈ V are value equal, denoted by u =v v, iff the subtrees rooted at
u and v are isomorphic by an isomorphism that is the identity on string values.
More formally, u =v v whenever the following conditions are satisfied:

a. lab(u) = lab(v).
b. If u, v are attribute or text nodes, then val(u) = val(v).
c. If u, v are element nodes, then (i) if att(u) = {a1, . . . , am}, then att(v) =
{a′1, . . . , a′m} and there is a permutation π on {1, . . . ,m} such that ai =v a′π(i)
for i = 1, . . . ,m, and (ii) if ele(u) = [u1, . . . , uk], then ele(v) = [v1, . . . , vk]
and ui =v vi for i = 1, . . . , k.

Note that the notion of value equality takes the document order of the XML
tree into account. We remark that =v is an equivalence relation on the node set
V of the XML tree. As an example, the first and third transaction nodes (from
left to right) in Figure 1 are value equal while all the remaining transaction
nodes are not value equal to each other.

2.3 Node Selection Queries on XML Trees

Regular paths have been widely used to express queries for selecting nodes in
XML trees. In the sequel, we use the path language PL{., , ∗} consisting of ex-
pressions given by the following grammar:

Q→ � | ε | Q.Q | | ∗

Herein, � ∈ L is any label, ε denotes the empty path expression, “.” denotes the
concatenation of two path expressions, “ ” denotes the single-label wildcard, and
“ ∗” denotes the variable-length wildcard.

Let P,Q be words from PL{., , ∗}. P is a refinement of Q, denoted by P � Q,
if P is obtained from Q by replacing variable-length wildcards in Q by words
from PL{., , ∗} and single-label wildcards in Q by labels from L. For example,
bank.branch.account is a refinement of bank. .account. Note that � is a pre-order
on PL{., , ∗}. Let ∼ denote the congruence induced by the identity ∗. ∗ = ∗ on
PL{., , ∗}, and observe that P ∼ Q holds if and only if P and Q are refinements
of each other. For example, bank. ∗.account ∼ bank. ∗. ∗.account.

Regular paths allow one to navigate in an XML tree. We briefly recall the
semantics of expressions from PL{., , ∗} in the context of XML. Let Q be a word
from PL{., , ∗}. A path p in the XML tree T is called a Q-path if lab(p) is a
refinement of Q. For nodes v, w ∈ V , we write T |= Q(v, w) if w is reachable
from v following a Q-path in T .

For a node v in the XML tree T , let v[[Q]] denote the set of nodes in T that
are reachable from v following any Q-path, that is, v[[Q]] = {w | T |= Q(v, w)}.
In particular, we use [[Q]] as an abbreviation for r[[Q]] where r is the root node.

For a subset Z ⊆ {., , ∗}, let PLZ denote the subset of PL{., , ∗} with expres-
sions restricted to the constructs in Z. In particular, PL{.} is the set of simple
path expression without wildcards.

The Finite Implication Problem for Expressive XML Keys 69

Since attribute and text nodes in an XML tree T are always leaves, Q ∈
PL{., , ∗} is valid only if it has no labels � ∈ A or � = S in a position other than
the terminal one. Note that each prefix of a valid Q is valid, too.

Let P,Q be words from PL{., , ∗}. P is contained in Q, denoted by P ⊆ Q, if
for every XML tree T and every node v of T we have v[[P]] ⊆ v[[Q]]. It follows
immediately from the definition that P � Q implies P ⊆ Q.

We work with the quotient set PL{., , ∗}
/∼ rather than with PL{., , ∗} directly:

A word from PL{., , ∗} is in normal form if it has no consecutive variable-length
wildcards, i.e., if it has no consecutive “ ∗” and no occurrence of “ ∗. ”. Note that,
each congruence class contains a unique word in normal form. Each word from
PL{., , ∗} can be transformed into normal form in linear time, just by removing
superfluous variable-length wildcards and replacing each occurrence of “ ∗. ” by
“ . ∗”. The length |Q| of a PL{., , ∗} expression Q is the number of labels in
Q plus the number of wildcards (counting both variable-length and single-label
wildcards) in the normal form of Q.

The empty path expression ε has length 0. The natural homomorphism from
PL{., , ∗} to PL{., , ∗}

/∼ is an isomorphism when restricted to words in normal form.

By abuse of notation we use the words from PL{., , ∗} to denote their respective
congruence class.

For nodes v and v′ of an XML tree T , the value intersection of v[[Q]] and v′[[Q]]
is given by v[[Q]] ∩v v

′[[Q]] = {(w,w′) | w ∈ v[[Q]], w′ ∈ v′[[Q]], w =v w′}. That is,
v[[Q]] ∩v v

′[[Q]] consists of all those node pairs in T that are value equal and are
reachable from v and v′, respectively, by following Q-paths.

3 Keys for XML Data

The expressiveness of our fragment of XML keys results from the generality of
our notion of value-equality and that of the path language. For more expressive
path languages the containment problem becomes at least intractable [20].

Definition 1. An XML key ϕ in is an expression of the form

(Qϕ, (Q
′
ϕ, {Pϕ

1 , . . . , P
ϕ
kϕ
}))

where Qϕ, Q
′
ϕ, P

ϕ
1 , . . ., Pϕ

kϕ
∈ PL{., , ∗} such that Qϕ.Q

′
ϕ.P

ϕ
1 , . . ., Qϕ.Q

′
ϕ.P

ϕ
kϕ

are valid, and where kϕ is a non-negative integer.
An XML tree T satisfies ϕ if and only if ∀q ∈ [[Qϕ]] ∀q′1, q′2 ∈ q[[Q′

ϕ]]⎛
⎝ ∧

1≤i≤k

q′1[[P
ϕ
i]] ∩v q

′
2[[P

ϕ
i]] = ∅

⎞
⎠⇒ q′1 = q′2.

Herein, Qϕ is called the context path, Q′
ϕ is called the target path, and

Pϕ
1 , . . . , Pϕ

kϕ
are called the key paths of ϕ.

By the previous definition, if the set of key paths is non empty (i.e. k ≥ 1),
a key ϕ is satisfied by a tree T if and only if for every node q ∈ [[Qϕ]] and all

70 F. Ferrarotti et al.

nodes q′1, q
′
2 ∈ q[[Q′

ϕ]] such that there are nodes xi ∈ q′1[[P
ϕ
i]], yi ∈ q′2[[P

ϕ
i]] with

xi =v yi for all i = 1, . . . , k, then q′1 = q′2. On the other hand, if the set of
key path is empty, a key ϕ is satisfied by a tree T if and only if for every node
q ∈ [[Qϕ]] there is at most one node reachable from q by following a Q′

ϕ-path,
i.e., q[[Q′

ϕ]] contains at most one element. Thus, these latter keys identify nodes
(within certain subtrees) by a unique path while the keys with nonempty sets
of key paths identify nodes (within subtrees) by unique data values. Hence, we
introduce the term structural keys for keys that have an empty set of key path
expressions.

Example 4. We formalize the XML keys discussed in the introduction over XML
trees with the layout of the tree T depicted in Figure 1.

a. (ε, (bank, {name})) expresses “a bank node can be uniquely identified by the
value of its name attribute”. Over trees with this layout, the same can be
expressed by (ε, (, {name}) and also by (ε, (, { ∗.name})) among others.

b. (∗.account, (transaction, { })) expresses “in every subtree rooted at an ac-
count node, a transaction node can be uniquely identified by the value of its
child node, which can either be a withdrawal node or a deposit node”. As an al-
ternative over trees with this layout, we could use (. . .account, (transaction,
{ })) and (bank.branch.client. account, (transaction, { })) among others.

c. (∗.bank, (∗.client, {cno, account})) expresses “in every subtree rooted at a
bank node, a client node can be uniquely identified by its child attribute cno
together with its child node account”. Over trees with this layout the same
is expressed, among others, by (, (.client, {cno, account})).

d. (∗.transaction, (, ∅)) expresses “Every transaction node has at most one
child node”.

3.1 Expressive and Tractable Fragments of XML Keys

In order to take advantage of XML keys effectively it becomes necessary to
reason about them efficiently. Central to this task is the implication problem.
Let Σ ∪ {ϕ} be a finite set of XML keys in a fragment C. We say that Σ
(finitely) implies ϕ, denoted by Σ |=(f) ϕ, if and only if every (finite) XML
tree T that satisfies all σ ∈ Σ also satisfies ϕ. The (finite) implication problem
for the fragment C is to decide, given any finite set of XML keys Σ ∪ {ϕ} in
C, whether Σ |=(f) ϕ. If Σ is a finite set of XML keys in C let Σ∗

(f) denote its

(finite) semantic closure, i.e., the set of all XML keys (finitely) implied by Σ.
That is, Σ∗

(f) = {ϕ ∈ C | Σ |=(f) ϕ}.
As shown in [7,8,15,16,11], efficient decision algorithm for the finite implica-

tion problem of XML keys exist for the following fragments.

K1 = {(Q, (Q′, {P1, . . . , Pk})) | k ≥ 1, Q,Q′ ∈ PL{., ∗} and P1, . . . , Pk ∈ PL{.}}
K2 = {(Q, (Q′, {P1, . . . , Pk})) | k ≥ 0, Q,Q′ ∈ PL{., ∗} and P1, . . . , Pk ∈ PL{.}}
K3 = {(Q, (Q′, {P1, . . . , Pk})) | k ≥ 1, Q,Q′ ∈ PL{., , ∗} and P1, . . . , Pk ∈ PL{., }}

The Finite Implication Problem for Expressive XML Keys 71

Note that the fragment K2 includes the fragment K1 plus structural XML
keys with context and target paths in PL{., ∗}. The fragment K3 is defined us-
ing a more expressive path language than K1 which allows the specification of
single-label wildcards. Thus, it also strictly includes the fragment K1. Regard-
ing the relationship between K2 and K3, it is clear that there are XML keys in
K2 which are not in K3 and vice versa. For instance, the key (ε, (, {name}))
belongs to K3 and does not belong to K2. On the contrary, the structural key
(bank.branch.client.account.transaction, (deposit, ∅)) belongs to K2 and does
not belong to K3.

In this work, we study a fragment of XML keys which strictly includes K1,
K2 and K3. We define it as follows.

Max-Keys = { (Q, (Q′, {P1, . . . , Pk})) | k ≥ 0, Q,Q′, P1, . . . , Pk ∈ PL{., , ∗}

but such that Q′ or P1, . . . , Pk ∈ PL{., }}
It is easy to find examples which belong to Max-Keys and do not belong to

any of the fragments K1, K2 and K3. Take for instance (ε, (, { ∗.name})) and
(∗.transaction, (, ∅)) from Example 4.

The fragment Max-Keys of XML keys provides XML engineers with an en-
hanced ability to capture interesting properties of XML data. These are useful
for several tasks in XML practice such as data integration, cleaning and valida-
tion among others. In the remainder of the article we will establish that despite
its expressiveness, the fragment of Max-Keys can be reasoned about efficiently.

For the time being, we assume the number of key paths k to be ≥ 1 for all
Max-Keys. We consider the case of Max-Keys with empty sets of key paths latter
in Subsection 5.4.

The plan to verify the tractability of Max-Keys is as follows: First we will
characterize the implication problem associated with Max-Keys in terms of a
finite axiomatization. We can speak of the implication problem as the finite and
unrestricted implication problems coincide for the fragment of Max-Keys. The
axiomatization provides complete insight into the interaction of Max-Keys. This
insight allows us to characterize the implication problem by constructive graph
properties. This characterization enables us to establish a compact, low-degree
polynomial-time algorithm for deciding implication.

4 Inference Rules for Max-Keys

Our goal is to establish a finite axiomatization for the implication of Max-Keys.
To begin with we assemble a set of inference rules that allow us to derive new
Max-Keys from given ones. Derivability with respect to a set R of inference
rules, denoted by the binary relation �R between a set of Max-Keys and a single
Max-Key, can be defined analogously to the notion in the relational data model
[1, pp. 164-168].

We aim to find a set of inference rules which is sound and complete for the
implication of Max-Keys. A set R of inference rules is sound (respectively, com-
plete) for the implication of Max-Keys if for all finite sets Σ of Max-Keys we

72 F. Ferrarotti et al.

have Σ+
R ⊆ Σ∗ (respectively, Σ∗ ⊆ Σ+

R). Herein, Σ
+
R = {ϕ | Σ �R ϕ} denotes

the syntactic closure of Σ under derivation by R.
Table 1 shows the set of inference rules for the implication of Max-Keys. Each

inference rule has the form premises
conclusion condition with premises from Max-Keys.

That is, the path expressions used in the premises are always chosen such that
the respective XML key lies in the fragment of Max-Keys.

Table 1. A Finite Axiomatization for Max-Keys

(Q, (Q′, S))
(Q, (Q′, S ∪ {P})) Q′ or P∈PL{., }

(Q, (ε, S))
(prefix-epsilon) (epsilon)

(Q, (Q′.Q′′, S))
(Q.Q′, (Q′′, S))

(Q, (Q′, S ∪ {ε, P}))
(Q, (Q′, S ∪ {ε, P.P ′}))

(target-to-context) (superkey)

(Q, (Q′.P, {P ′}))
(Q, (Q′, {P.P ′})) at least 2 of Q′, P, P ′ ∈ PL{., } (Q, (Q′, S))

(Q′′, (Q′, S))
Q′′⊆Q

(subnodes) (context-path-containment)

(Q, (Q′.P, {ε, P ′}))
(Q, (Q′, {ε, P.P ′})) at least 2 of Q′, P, P ′ ∈ PL{., } (Q, (Q′, S))

(Q, (Q′′, S))
Q′′⊆Q′

(subnodes-epsilon) (target-path-containment)

(Q, (Q′, {P.P1, . . . , P.Pk})),
(Q.Q′, (P, {P1, . . . , Pk}))
(Q, (Q′.P, {P1, . . . , Pk}))

(Q, (Q′, S ∪ {P}))
(Q, (Q′, S ∪ {P ′})) P ′⊆P

(interaction) (key-path-containment)

We prove below the soundness of the subnodes rule since it provides valuable
insight that explains out definition of Max-Keys. The soundness of the remaining
rules can be shown using similar arguments. Therefore we omit those lengthy,
but not very difficult proofs. For comparing, we also refer to our soundness proofs
in [15,16,11] for the special cases of the smaller fragments K1, K2 and K3 of XML
keys.

Lemma 1. The subnodes rule is sound for the implication of XML keys in the
fragment of Max-Keys.

Proof. Suppose an XML tree T violates (Q, (Q′, {P.P ′})). Then there is some
node q ∈ [[Q]] and there are some nodes q′1, q

′
2 ∈ q[[Q′]] such that q′1 = q′2 and

such that there exist p′1 ∈ q′1[[P.P
′]] and p′2 ∈ q′2[[P.P

′]] where p′1 =v p′2 holds.
By definition of concatenation, there exist p1 ∈ q′1[[P]] and p2 ∈ q′2[[P]] such that
p′1 ∈ p1[[P

′]] and p′2 ∈ p2[[P
′]] hold. Since T is a tree and due to the condition

of the subnodes rule Q′ or P.P ′ is a PL{., } expression (i.e. has no variable-
length wildcards), it holds that q′1 is neither an ancestor nor a descendant of q′2.

The Finite Implication Problem for Expressive XML Keys 73

Consequently, p1 = p2 (since otherwise q′1 = q′2). This, however, means that T
also violates (Q, (Q′.P, {P})). ��

In the proof of the previous lemma we have made an interesting observation:
If we allow the use of variable-length wildcards in the target and key paths at
the same time, then we could have a pair of distinct target nodes q′1 and q′2 so
that one is an ancestor of the other one. This would allow us to build a counter-
example tree to demonstrate that the subnodes rule is not sound for such an
extended fragment of Max-Keys.

5 Axiomatic Characterization of Max-Keys Implication

Our goal is to demonstrate that the set R of inference rules is also complete for
the implication of Max-Keys. Completeness means we need to show that for an
arbitrary finite set Σ ∪ {ϕ} of Max-Keys with ϕ /∈ Σ+

R there is some XML tree
T that satisfies all members of Σ but violates ϕ. That is, T is a counter-example
tree for the implication of ϕ by Σ.

The general proof strategy is as follows: For T to be a counter-example we i)
require a context node qϕ with (at least) two target nodes q′ϕ that have value
equal key paths qϕ1 , . . . , q

ϕ
kϕ
, and ii) must for every context node qσ not have

target nodes q′σ with value equal key nodes qσ1 , . . . , q
σ
kσ
, for each σ ∈ Σ. Such a

counter-example tree exists if and only if these two conditions can be satisfied
simultaneously.

In a fist step, we represent ϕ as a finite node-labeled tree TΣ,ϕ, which we
call the mini-tree. Then, we reverse the edges of the mini-tree and add to the
resulting tree downward edges for certain members of Σ. This final digraph GΣ,ϕ

is called the witness network. A downward edge resulting from σ tells us that
under each source node there can be at most one target node. Now, if we can
reach the target node of ϕ from its context node along a dipath then there is no
counter-example tree T . In other words, if we satisfy condition ii) above, then
we cannot satisfy condition i). Otherwise, we can construct a counter-example
tree T .

5.1 Witness Networks

Let Σ ∪ {ϕ} be a finite set of Max-Keys. Let LΣ,ϕ denote the set of all labels
� ∈ L that occur in path expressions of members in Σ ∪ {ϕ}, and fix a label
�0 ∈ E − LΣ,ϕ. First we transform the path expressions occurring in ϕ into
simple path expressions in PL{.}. For that purpose we replace each single-label
wildcard “ ” by �0 and each variable-length wildcard “ ∗” by a sequence of l+1
labels �0, where l is the maximum number of consecutive single-label wildcards
that occurs in any Max-Key in Σ ∪ {ϕ}. This transformation turns Qϕ into Oϕ,
Q′

ϕ into O′
ϕ, and each Pϕ

i into Oϕ
i for i = 1, . . . , kϕ. The path expressions after

the transformation do not contain any more wildcards (neither single-label nor
variable-length ones).

74 F. Ferrarotti et al.

The proper choice of the integer l is essential for the later construction. In
particular, if there are no occurrences of single-label wildcards in the Max-Keys
under consideration, then l = 0 and we just replace each variable-length wildcard
“ ∗” by one �0.

To continue with our construction, let p be an Oϕ-path from a node rϕ to
a node qϕ, let p′ be an O′

ϕ-path from a node r′ϕ to a node q′ϕ and, for i =
1, . . . , kϕ, let pi be a Oϕ

i -path from a node rϕi to a node xϕ
i , such that the paths

p, p′, p1, . . . , pkϕ are mutually node-disjoint. From the paths p, p′, p1, . . . , pkϕ we
obtain the mini-tree TΣ,ϕ by identifying the node r′ϕ with qϕ, and by identifying
each of the nodes rϕi with q′ϕ.

The marking of the mini-tree TΣ,ϕ is a subset M of the node set of TΣ,ϕ: if
for all i = 1, . . . , kϕ we have Qϕ

i = ε, then M consists of the leaves of TΣ,ϕ, and
otherwise M consists of all descendant nodes of q′ϕ in TΣ,ϕ.

We use mini-trees to calculate the impact of Max-Keys in Σ on a possible
counter-example tree for the implication of ϕ by Σ. To distinguish Max-Keys
that have an impact from those that do not, we introduce the notion of appli-
cability. Intuitively, when a Max-Key is not applicable, then we do not need to
satisfy it in a counter-example tree as it does not require all its key paths. Let
TΣ,ϕ be the mini-tree of the Max-Key ϕ with respect to Σ, and let M be its
marking. A Max-Key σ is said to be applicable to ϕ if there are nodes wσ ∈ [[Qσ]]
and w′

σ ∈ wσ[[Q
′
σ]] in TΣ,ϕ such that w′

σ[[P
σ
i]] ∩M = ∅ for all i = 1, . . . , kσ. We

say that wσ and w′
σ witness the applicability of σ to ϕ.

We define the witness network GΣ,ϕ of ϕ and Σ as the node-labeled digraph
obtained from TΣ,ϕ as follows: the nodes and node-labels of GΣ,ϕ are exactly
the nodes and node-labels of TΣ,ϕ, respectively. The edges of GΣ,ϕ consist of
the reversed edges from TΣ,ϕ. Furthermore, for each Max-Key σ ∈ Σ that is
applicable to ϕ and for each pair of nodes wσ ∈ [[Qσ]] and w′

σ ∈ wσ [[Q
′
σ]] that

witness the applicability of σ to ϕ we add a directed edge (wσ, w
′
σ) to GΣ,ϕ. We

refer to these additional edges as witness edges while the reversed edges from
TΣ,ϕ are referred to as upward edges of GΣ,ϕ. This is the case since for every
witness wσ and w′

σ the node w′
σ is a descendant of the node wσ in TΣ,ϕ, and

thus the witness edge (wσ , w
′
σ) is a downward edge or loop in GΣ,ϕ.

Example 5. Let us consider the following Max-Keys which were specified by the
database designer for XML trees with the layout of the tree in Figure 1.

ϕ = (ε, (bank. ∗.client.account, {no, kind}))
σ1 = (ε, (bank. , { ∗.account.no}))
σ2 = (bank, (∗.client, { .no}))
σ3 = (∗.client, (account, {kind}))

Let Σ = {σ1, σ2, σ3}. The left picture of Figure 3 shows the mini-tree TΣ,ϕ

and its marking (note that leaves are marked by ×). The right picture in the
same figure shows its corresponding witness network GΣ,ϕ. Note that all the
Max-Keys in Σ are applicable to ϕ. On the other hand, the Max-Key σ4 =
(ε, (bank.branch.client.account, {no, kind})) is not applicable to ϕ. In fact, σ4

The Finite Implication Problem for Expressive XML Keys 75

E

E

E

AA

E

E

E

E

AA

E

E

E

E

E

bank

db

client

account

kindno

bank

db

client

account

kindno

qϕ
qϕ

q′ϕ
q′ϕ

TΣ,ϕ GΣ,ϕ

××

σ1

σ2

σ3

�0

�0

�0

�0

Fig. 3. A mini-tree and a witness network

is implied by ϕ since it can be derived by an application of the target-path-
containment rule.

In the following section we will prove the following crucial fact. If q′ϕ is reach-

able from qϕ in GΣ,ϕ, then ϕ ∈ Σ+
R. In other words, if ϕ is not derivable from

Σ, then there is no dipath from qϕ to q′ϕ in GΣ,ϕ.

5.2 Reachability Implies Derivability

The following important lemma holds the key to prove the completeness ofR and
also for our low-degree polynomial time decision algorithm for the implication
problem of Max-Keys.

Lemma 2. Let Σ ∪ {ϕ} be a finite set of Max-Keys. If q′ϕ is reachable from qϕ
in the witness network GΣ,ϕ, then ϕ ∈ Σ+

R.

Proof (Sketch). Let D denote the simple path in GΣ,ϕ from qϕ to q′ϕ. According
to the definition of the witness network we can assume without loss of generality
that D consists of a sequence π1, . . . , πn+1, n ≥ 1, where for each i = 1, . . . , n,
πi starts with a possibly empty sequence of upward edges followed by a single
witness edge (wσi , w

′
σi
) where wσi and w′

σi
witness the applicability of σi to

ϕ, and πn+1 is a possibly empty sequence of upward edges. Moreover, we can
assume that qϕ, w

′
σ1
, . . . , w′

σn
form a proper descendant chain, q′ϕ is a proper

descendant of w′
σn−1

and w′
σn

is a descendant node of q′ϕ in TΣ,ϕ. This situation
is illustrated by the witness network GΣ,ϕ in Figure 3.

76 F. Ferrarotti et al.

We now describe a series of assumptions which we use to show that the exis-
tence of the witness edges in D implies the existence of a witness edge (qϕ, q

′
ϕ)

which results from a Max-Key σ in Σ+.

1. The final witness edge in D can be replaced by a witness edge that ends
in q′ϕ. That is, we can assume without loss of generality that πn+1 is in-
deed an empty sequence and w′

σn
= q′ϕ where the set of key paths of σn is

{Pϕ
1 , . . . , P

ϕ
kϕ
}.

2. If there is a witness edge (wσ, w
′
σ) in the witness network GΣ,ϕ that cor-

responds to the applicability of some σ ∈ Σ+
R to ϕ, then for each node w

between wσ and w′
σ in TΣ,ϕ there is also a witness edge (w,w′

σ) in GΣ,ϕ

which corresponds to the applicability of some σ′ ∈ Σ+
R to ϕ. In our exam-

ple in Figure 3, this indicates the existence of a witness edge from the first
�0 node (from top to bottom) to the client node.

3. If there is a witness edge (wσ1 , w
′
σ1
) and another witness edge (w′

σ1
, q′ϕ),

then there is also a witness edge (wσ1 , q
′
ϕ). In our example in Figure 3, this

indicates the existence of a witness edge from the db node to the account
node.

The strategy to prove the previous assumptions consists on showing that for
each new witness edge D′ obtained by virtue of the assumptions, there is a
corresponding inference by R of a Max-Key σ′ that corresponds to the witness
edge D′. For the sake of presentation, we omit this lengthy but not very difficult
part of the proof.

From Assumption 1 and 2, we can conclude that there is a simple path D′ in
GΣ,ϕ from qϕ to q′ϕ. In fact, D′ consists of the sequence π′

1, . . . , π
′
n where each

π′
i with 1 ≤ i ≤ n consists of a single witness edge (wσi , w

′
σi
) where w′

σi
= wσi+1

for i = 1, . . . , n− 1 and where wσ1 = qϕ and w′
σn

= q′ϕ. Again, qϕ, w
′
σ1
, . . . , w′

σn

form a proper descendant chain.
At this stage we can use Assumption 3 repeatedly to conclude that there

is a single witness edge D0 = (qϕ, q
′
ϕ) in GΣ,ϕ resulting from the Max-Key

σ = (Qσ, (Q
′
σ, {Pϕ

1 , . . . , P
ϕ
kϕ
})) in Σ+

R that is applicable to ϕ. Due to the ap-

plicability of σ to ϕ we conclude that Qϕ ⊆ Qσ and Q′
ϕ ⊆ Q′

σ. We can now
apply the context-path-containment and target-path-containment rule to obtain
(Qϕ, (Q

′
ϕ, {Pϕ

1 , . . . , P
ϕ
kϕ
})) ∈ Σ+

R, which proves the lemma. ��
The next example illustrates how the edges of the witness network encode an

inference by R.

Example 6. Let ϕ and Σ be as in Example 5. Recall that the right picture of
Figure 3 shows the corresponding witness network. Thus by Lemma 2, Σ �R ϕ.
Next, we show the actual derivation by R. We first apply the superkey rule to
σ3 to derive σ′

3 = (∗.client, (account, {no, kind})) (cf. with Assumption 1 in the
proof of Lemma 2). We also apply the superkey rule to σ1 and σ2 to derive σ′

1 =
(ε, (bank. , { ∗.account.no, ∗.account.kind})) and σ′

2 = (bank, (∗.client, { .no,
.kind})), respectively. Then we apply the target-to-context rule to σ′

2 to de-
rive σ′′

2 = (bank. ∗, (client, { .no, .kind})) (cf. with Assumption 2 in the proof

The Finite Implication Problem for Expressive XML Keys 77

of Lemma 2). It is easy to see that by successively applying the context-path-
containment, target-path-containment and key-path-containment rules, we can
derive from σ′

1, σ
′′
2 and σ′

3 the following Max-Keys, respectively.

α1 = (ε, (bank. ∗, {client.account.no, client.account.kind}))
α2 = (bank. ∗, (client, {account.no, account.kind}))
α3 = (bank. ∗.client, (account, {no, kind}))

Finally, by application of the interaction rule to α2 and α3 we obtain α4 =
(bank. ∗, (client.account, {no, kind})), and again by application of the interac-
tion rule to α1 and α4 we derive ϕ (cf. with Assumption 3 in the proof of
Lemma 2).

5.3 Completeness

We have now the tools to prove the completeness of our set of inference rules.

Theorem 1. The inference rules in Table 1 are complete for the implication of
Max-Keys.

Proof (Sketch). Let Σ ∪ {ϕ} be a finite set of Max-Keys such that ϕ /∈ Σ+
R. We

will show that ϕ /∈ Σ∗ by constructing a finite XML tree T which satisfies all
Max-Keys in Σ but does not satisfy ϕ. Since ϕ /∈ Σ+

R we know by Lemma 2 that
there is no path from qϕ to q′ϕ in the witness network GΣ,ϕ. Let u denote the
bottom-most descendant node of qϕ in TΣ,ϕ that is reachable from qϕ in GΣ,ϕ.
Note that u is a proper ancestor of q′ϕ in TΣ,ϕ since otherwise u and thus q′ϕ
were reachable from qϕ in GΣ,ϕ.

Let T0 denote a copy of the path from r to u in TΣ,ϕ, and T1, T2 denote two
node-disjoint copies of the subtree of TΣ,ϕ rooted at u. We want that a node of T1

and a node of T2 become value equal precisely when they are copies of the same
marked node in TΣ,ϕ. For attribute and text nodes this is achieved by choosing
string values accordingly, while for element nodes we can adjoin a new child
node with a label from L − (LΣ,ϕ ∪ {�0}) to achieve this. The counter-example
tree T is obtained from T0, T1, T2 by identifying the leaf node u of T0 with the
root nodes of T1 and T2. We conclude that T violates ϕ, and our construction
guarantees that T satisfies all σ ∈ Σ. ��

The construction of the counter example tree T in the proof of Theorem 1 is
illustrated by the following example.

Example 7. Let σ1, σ2 and ϕ be as in Example 5. The corresponding mini-tree
TΣ,ϕ, witness network GΣ,ϕ and counter-example tree T for the implication of
ϕ by Σ = {σ1, σ2} are shown in Figure 4. Note that T satisfies σ1 and σ2, and
violates ϕ.

78 F. Ferrarotti et al.

E

E

AA

E

E

E

E E

E

E

E

E

E

E

E

AA

E

E

E

E

AA

account

kindno

E

AA

account

kindno

bank

db

client

account

kindno

bank

db

client

bank

db

client

account

kindno
20001 20001savings savings

qϕ
qϕ

q′ϕ
q′ϕ

TΣ,ϕ GΣ,ϕ T

××

σ1

σ2

�0

�0

�0

�0

�0

�0

Fig. 4. Mini-tree, witness network and counter-example tree

5.4 Dealing with Structural Max-Keys

Max-Keys with empty sets of key paths behave quite differently than Max-Keys
with non empty key paths. The former ones identify nodes (within certain sub-
trees) by a unique context path. The latter ones identify nodes (within subtrees)
by unique data values.

Let us consider Max-Keys of the form α = (Q, (Q′, ∅)) whose key path Q′

may contain single-label wildcards, but no variable-length wildcards. It is not
hard to see that the inference rules in Table 1 still hold for this case. Using the
superkey rule we can derive α′ = (Q, (Q′, { ∗})) from α.

Thus when constructing the witness network GΣ,ϕ for some Σ and ϕ in Max-
Keys such that α belongs to Σ then we will replace α by α′. As we have demon-
strated above the counter-example tree T constructed for ϕ and the resultant
Σ′ would satisfy Σ′ but violate ϕ. However, it is easy to validate that by our
construction T satisfies not only α′ but even α. So T would actually satisfy Σ
but violate ϕ, thus showing that Σ does not imply ϕ.

If ϕ has an empty set of key paths, then we will construct the witness net-
work GΣ,ϕ′ where ϕ′ = (Qϕ, (Q

′
ϕ, { ∗}))). As we have demonstrated above the

counter-example tree T constructed for ϕ′ and Σ would satisfy Σ but violate
ϕ′. Consequently, it would also violate ϕ (as ϕ implies ϕ′), thus showing that Σ
does not imply ϕ.

Finally, note that ϕ′ = (Qϕ, (Q
′
ϕ, { ∗}))) does not generally imply ϕ. A

counter-example tree T can be easily constructed from merging two copies of
TΣ,ϕ′ on all nodes other than q′ϕ′ and then assigning two different string values
to the two copies of q′ϕ′ . Then T would satisfy ϕ′ but violate ϕ.

The Finite Implication Problem for Expressive XML Keys 79

6 A Decision Algorithm for Max-Keys Implication

We will now design a low-degree polynomial time decision algorithm for the
implication problem of Max-Keys. It is based on the following characterization
of the implication problem in terms of the reachability problem of nodes in the
witness network.

Theorem 2. Let Σ ∪ {ϕ} be a finite set of Max-Keys. We have Σ |= ϕ if and
only if q′ϕ is reachable from qϕ in the witness network GΣ,ϕ.

Proof. Assume that q′ϕ is not reachable from qϕ in GΣ,ϕ. Then we can generate
a counter-example tree for the implication of ϕ by Σ as described in the proof
of Theorem 1. It follows that Σ does not imply ϕ.

On the contrary, assume now that q′ϕ is indeed reachable from qϕ in GΣ,ϕ.
We conclude by Lemma 2 that ϕ is implied by Σ. ��

Theorem 2 tells us that we can decide implication by constructing the wit-
ness network and testing reachability in GΣ,ϕ by applying well known search
techniques. This establishes a surprisingly compact algorithm.

Algorithm 1. Decision Algorithm for the Implication Problem of Max-Keys

Input: finite set of Max-Keys Σ ∪ {ϕ}
Output: yes, if Σ |= ϕ; no, otherwise
1: Construct GΣ,ϕ for Σ and ϕ;
2: if q′ϕ is reachable from qϕ in GΣ,ϕ then return yes;

else return no; end if

The presentation of Algorithm 1 to decide the implication of Max-Keys re-
mains the same as Algorithm 4.2 in [15] to decide the implication of the strictly
less expressive fragment K1 of XML keys. However, the construction of the wit-
ness network GΣ,ϕ, which is central to both algorithms, requires considerably
more effort for the more expressive fragment of Max-Keys. This effort results in
an slight increase in the worst-case time complexity of the algorithm. Neverthe-
less, the simplicity of Algorithm 1 enables us to conclude that the implication
of Max-Keys can be decided in low-degree polynomial time in the worst case.

6.1 Implementation and Complexity Analysis of Algorithm 1

In this subsection we discuss our implementation of Algorithm 1 and analyze its
theoretical complexity.

Data Structures. We need data structures suitable to represent mini-trees and
witness networks. The obvious candidates are adjacency matrices and adjacency
lists [2]. Since the algorithm does not require frequent determination of edge
existence, we choose the latter in order to minimize the memory requirements.

80 F. Ferrarotti et al.

In our implementation, a mini-tree TΣ,ϕ is represented by using a list L of length
n = |V | where V is the vertex set of TΣ,ϕ. Each element ei ∈ L is represented by
an object of type vertexEle that has a pointer to the adjacency list of the i-th
vertex vi in some fixed enumeration of the vertices in V , a pointer to the data
component of the vertex vi, and a pointer to the next element ei+1 in the list.
In turn, the data component of a vertex vi is represented by an object of type
nodeEle, and an element in the adjacency list of a vertex vi is represented by
an object of type edgeEle. An object of type nodeEle has an id component that
uniquely identifies vi, a label component with the label of vi, a flag visited, and
a type component with the type E (element), A (attribute) or S (PCDATA)
of vi. An object of type edgeEle has a pointer to an object of type vertexEle
and a pointer to the next object of type edgeEle in the adjacency list. Witness
networks are represented likewise.

Implementation. We implemented Step 1 of Algorithm 1, using the following
strategy:

i. Construct TΣ,ϕ;
ii. Determine the marking of TΣ,ϕ;
iii. Reverse all edges of TΣ,ϕ;
iv. For each σ ∈ Σ, add the edge (wσ, w

′
σ) to TΣ,ϕ whenever wσ and w′

σ witness
the applicability of σ to ϕ.

Substep (i) involves constructing the mini-tree TΣ,ϕ using the data structures
defined at the beginning of this section. Note that we can find a label �0 that is
not among the labels used in the XML keys in Σ ∪{ϕ} in time

∑
σi∈Σ |σi|+ |ϕ|,

where |σi| and |ϕ| denote the sum of the lengths of all path expressions in σi

and ϕ, respectively. Once we have got a suitable label, �0, TΣ,ϕ can be built in
time O(|ϕ| × l), where |ϕ| is the sum of the lengths of all path expressions in ϕ
and l is the maximum number of consecutive single-label wildcards that occurs
in Σ. Note that the mini-tree TΣ,ϕ has at most (|ϕ| × l) + 1 nodes.

Regarding Substep (ii), if Pϕ
i = ε we can determine the marking of the mini-

tree TΣ,ϕ by simply traversing the list L marking the nodes whose adjacency
list is empty. Note that those nodes correspond to leaves in TΣ,ϕ. Otherwise, we
mark all nodes in the adjacency list of the element ei in L that represents q′ϕ,
and recursively mark all descendants of those nodes. This step takes O(|ϕ| × l)
time.

Assuming that the adjacency list of a vertex vi lists the vertices vj such that
there is an edge from vi to vj . Substep (iii) involves the generation of a new
adjacency list which corresponds to TΣ,σ with all its directed edges reverted.
Again, this takes time O(|ϕ| × l).

Substep (iv) requires, for each σ ∈ Σ, to evaluate w′
σ[[P

σ
i]] for i = 1, . . . , kσ,

for all w′
σ ∈ wσ[[Q

′
σ]] and all wσ ∈ [[Qσ]]. Note that a query of the form v[[Q]] is

a Core XPath query and can be evaluated on a node-labeled three T in order
O(|T | × |Q|) time [13]. Hence, we can evaluate w′

σ [[P
σ
i]] for all i = 1, . . . , kσ in

time O(|ϕ|× l×|σ|). Since [[Qσ]] and wσ[[Q
′
σ]] contain at most |ϕ|× l nodes each,

The Finite Implication Problem for Expressive XML Keys 81

E

E

E

db

bank

E

E

E

A

client

branch

no

E

E

E

A

client

branch

no

E

E

E

A

client

branch

no

E

E

E

E db

1210012100

bank
qϕ

q′ϕ

σ1

σ2

�0

�0

�0�0�0

�0

Fig. 5. Incorrectly built witness network and counter-example

this step can be executed in O((|ϕ| × l)3 × |σ|) time for each σ. Hence, we need
O(||Σ|| × (|ϕ| × l)3) time to generate GΣ,ϕ, where ||Σ|| denotes the sum of all
sizes |σ| for σ ∈ Σ.

Finally, Step 2 of Algorithm 1 can be implemented by applying a depth-first
search algorithm to GΣ,ϕ with root qϕ. This algorithm works in time linear in
the number of edges of GΣ,ϕ [17]. Thus reachability can be decided in O(|ϕ+l|2).
Complexity. The following result is a consequence of the previous observations.

Theorem 3. If Σ∪{ϕ} is a finite set of Max-Keys, then the implication problem
Σ |= ϕ can be decided in O(||Σ|| × (|ϕ| × l)3) time, where |ϕ| is the sum of the
lengths of all path expressions in ϕ, ||Σ|| denotes the sum of all sizes |σ| for
σ ∈ Σ, l is the maximum number of consecutive single-label wildcards that occur
in Σ.

It is important to note the blow-up in the size of the counter-example with
respect to ϕ. This is due to the occurrence of consecutive single-label wildcards.
If the number l is fixed in advance, then Algorithm 1 establishes a worst-case
time complexity that is quadratic in the input. In particular, if the input consists
of XML keys in K1, as studied in [15,12], then the worst-case time complexity
of Algorithm 1 is that of the algorithm dedicated to XML keys in K1 only [15].

Remark 1. If we simply replace each variable-length wildcard “ ∗” by the single-
label �0 and not by a sequence of l+ 1 labels �0, then Theorem 2 does not hold.
To see this, consider

82 F. Ferrarotti et al.

ϕ = (∗.bank, (branch.client, { .no}))
σ1 = (.bank, (branch, {client. .no}))
σ2 = (∗.bank.branch, (client, { .no}))

Let Σ = {σ1, σ2}. A simple replacement of “ ∗” by �0 results in the witness
network shown on the first (from the left) picture in Figure 5. But then by
Lemma 2, Σ would imply ϕ, which is clearly incorrect as shown by the counter-
example tree on the second picture in Figure 5.

7 Applications and Performance Evaluation

In this section we present the results regarding the application and performance
evaluationof our decisionalgorithmfor thefinite implicationproblemofMax-Keys.
We also compare these results against the results obtained in [12] for a strictly less
expressive fragment of XML keys.We start by describing in Subsection 7.1 the con-
struction of the sets of XML keys used in our experiments. These set of keys cor-
respond to actual XML documents which are also described in this section, and
latter used in the experiments regarding the application of XML key reasoning in
the context of XML document validation. These latter experiments are reported
in Subsection 7.3. The experiments regarding the performance of the decision al-
gorithm for the implication of Max-Keys are presented in Subsection 7.2.

The running times reported in Subsection 7.2 were obtained in a fairly stan-
dard Intel Core i7 2.8 GHz machine, with 4 GB of RAM, running a Linux kernel
2.6.32. We compiled our C++ implementation of the algorithms using the stan-
dard g++ compiler from the GNU Compiler Collection 4.6.3. The experiments
in Subsection 7.3 were run on a cluster of 160 nodes of type Xeon E5-2680(i7)
with 128 GB and 16 cores per node (2.68 GHZ) running Linux RHEL 6.1. The
reason for using this facility was to save time on the experiments concerning the
validation of XML documents, in particular this was required for the validation of
the big XML document of 3.2GB corresponding to the Chilean electoral role. The
use of these nodes allowed us to load in RAM the whole DOM representation of
each XML tree tested in the experiments (including the one corresponding to the
Chilean electoral role), thus simplifying the task of writing a validation algorithm
to test our ideas. It should be noted that this task is accessory to this paper as it
was only used to showcase the benefits of using XML key reasoning in this con-
text. In this work, we are not concerned with parallelization challenges. In fact,
we ran these jobs with a standard sequential algorithm, having one instance of
an XML document and corresponding set of keys to be validated per node. We
simply run several experiments (over different documents) at once by submitting
different jobs (i.e., by using a separated node for each validation instance).

We remind the reader that, as stated in the introduction, all the data sets
used in our experiments as well as the full set of results and the binary codes
of the implemented algorithms are publicly available at http://emir-munoz.

github.com/xml-constraints. To the best of our knowledge, this is the first

http://emir-munoz.github.com/xml-constraints
http://emir-munoz.github.com/xml-constraints

The Finite Implication Problem for Expressive XML Keys 83

time that large sets of non-trivial XML keys for real XML documents are made
publicly available. Our hope is that this contribution facilitates further research
in the area.

7.1 Defining the Data Sets: XML Keys and XML Documents

We use a collection of XML documents from [22] plus a large XML document
(padron.xml) that holds the publicly available Chilean electoral roll1. A charac-
terization of these XML documents is shown in Table 2. From [22] we use the
documents 321gone.xml and yahoo.xml (auction data), dblp.xml (bibliographic
information on CS), nasa.xml (astronomical data), SigmodRecord.xml (articles
from SIGMOD Record), and mondial-3.0.xml (world geographic database).

Table 2. XML Documents

Doc ID Document No. of
Elements

No. of
Attributes

Size Max.
Depth

Average
Depth

doc1 padron.xml 119,235,504 39,745,398 3.2 GB 5 4.06667
doc2 321gone.xml 311 0 24 KB 5 3.76527
doc3 yahoo.xml 342 0 25 KB 5 3.76608
doc4 dblp.xml 29,494 3,247 133.9 MB 6 2.90228
doc5 nasa.xml 476,646 56,317 25 MB 8 5.58314
doc6 SigmodRecord.xml 11,526 3,737 478 KB 6 5.14107
doc7 mondial-3.0.xml 22,423 47,423 1.9 MB 5 3.59274

In order to generate realistic XML keys for the experiments regarding the
performance of the decision algorithm in Subsection 7.2 as well as to use the
same sets of XML keys for the experiments involving documents validation in
Subsection 7.3, we follow a strategy that is grounded in the XML documents
described above. We explain this strategy using the XML document with the
Chilean electoral roll as a model. The layout of this document is illustrated in
Figure 6. For clarity of presentation we have translated the labels of the nodes
from Spanish to English and simplified the structure by collapsing the first name,
father’s surname and mother’s surname descendant nodes of the name element
node into just one text node. We start by defining a series of keys which are
appropriate in the context of this XML document. We list some of them together
with an informal interpretation for reference.

a. (ε, (commune, {person}))
“A person cannot be enrolled in more than one commune”.

b. (ε, (commune, {person.id}))
“Similar to (a), but not equivalent”.

1 The Chilean electoral roll can be downloaded in PDF format from the official site
http://www.servel.cl of the Electoral Commission of Chile. The XML version used
in this paper was extracted from the PDF document by Cristian Bravo-Lillo and
can be obtained from http://manzanamecanica.org/2012/11/padron electoral

en xml.html

http://www.servel.cl
http://manzanamecanica.org/2012/11/padron_electoral_en_xml.html
http://manzanamecanica.org/2012/11/padron_electoral_en_xml.html

84 F. Ferrarotti et al.

c. (commune, (person, {id}))
“A person node can be identified by its id attribute respectively to a commune
node”.

d. (commune.person, (polling, {circumscription, district}))
“A polling node can be identified by its child nodes circumscription and
district node respectively to a person node”.

e. (commune.person, (polling, ∅))
“A person node can only have one child node with label polling”.

f. (commune.person.polling, (circumscription, ∅))
“A polling node can only have one child node with label circumscription”.

g. (. . , (circumscription, ∅))
“Idem (f) over trees with the layout of the tree in Figure 6”.

h. (ε, (, { ∗.id}))
“Idem (b) over trees with the layout of the tree in Figure 6”.

i. (. , (∗.polling, { .S}))
“A polling node can be identified by the value of its descendant text nodes
relatively to the nodes at level two in the XML tree”.

j. (. , (, { ∗.S})) “Every node at level three can be identified by its descendant
text nodes respectively to a node at level two. In trees with the layout of the
tree in Figure 6, this means that for instance the name of a person cannot
coincide with the address which in turn cannot coincide with the circumscrip-
tion nor with the district”.

Note that the XML keys in (a)–(d) are in the strictly less expressive fragment
K1 of XML keys studied in [12] while the remaining keys are not. All the XML
keys in the previous list are however in the fragment of Max-Keys covered in
this work. Also note that the XML keys in (e)–(g) are structural keys and that,
over trees with the layout of the tree in Figure 6, the XML keys in (i) and (j)
cannot be expressed without allowing wildcards in the key paths.

We then define new (implied) XML keys, by successively applying the infer-
ence rules for Max-Keys from Table 1 to the previously defined set of XML keys.

E
A

E

E E

E

E

A

S E

S S

S

E

E

E E

E

E

A

S E

S S

S

Punta Arenas

A

district

gender

60

16.300.400−9

Pablo Neruda Balmaceda 655

Magallanes

male

...
......

...
...

db

name

id
A
id gender

19.123.344−1

Gabriela Mistral Colon 766

female

Magallanes 60

addressname

scription
circum−

district

name address

scription
circum−

polling polling

personperson

commune

Fig. 6. Chilean electoral roll

The Finite Implication Problem for Expressive XML Keys 85

For instance, by applying the superkey rule to the XML key in (h) we can ob-
tain the new XML keys (ε, (, { ∗.id, ∗.gender})), (e, (, { ∗.id, ∗.name})) and
(e, (, { ∗.id, ∗.gender, ∗.name})) among others.

Finally, we define sets Σ ∪ {ϕ} of Max-Keys such that the keys in Σ are
applicable to ϕ and Σ |= ϕ. The idea is to test the algorithm also against sets
of Max-Keys Σ ∪ {ϕ} for which it is not only the case that ϕ is not implied
by Σ, but also it is non trivial for the algorithm to determine this fact. The
following steps allow us to obtain sets of Max-Keys with these characteristics:
a) define a Max-Key ϕ, b) build its corresponding witness network G∅,ϕ, c) add
several witness edges to G∅,ϕ taking care of keeping q′ϕ not reachable from qϕ,
and d) define Max-Keys corresponding to those witness edges. As an example,
let us take ϕ = (ε, (commune.person.polling, {district})). The corresponding
witness network G∅,ϕ is shown in the first picture of Figure 7. From the witness
edges A1, A2 and A3 shown in the second picture of Figure 7, we can derive the
following set Σ of Max-Keys among others:

σ1 = (commune, (person, {polling.district}))
σ2 = (, (, { ∗.district}))
σ3 = (∗.person, (polling, {district}))
σ4 = (∗.person, (, { ∗.district}))
σ5 = (, (∗.polling, { }))
σ6 = (, (. , {district}))

where the keys σ1 and σ2 correspond to the witness edge A1, the keys σ3 and
σ4 correspond to the witness edge A2, and the keys σ5 and σ6 correspond to the
witness edge A3.

E

E

E

E

db

commune

person

polling

district

E

E

E

E

E
A2

A1
A3

E

db

commune

person

polling

district

G∅,ϕ GΣ,ϕ

qϕqϕ

q′ϕq′ϕ

Fig. 7. Witness networks for a non-implied key

The processes described in this section were used to produce a robust col-
lection of Max-Keys as well as a collection of K1 keys to thoroughly test the
performance of the decision algorithm for the implication problem of Max-Key
and for the implication problem of K1 keys, respectively. The results are reported
in the next section.

86 F. Ferrarotti et al.

7.2 Performance of the Decision Algorithm for Max-Keys

In order to have a baseline to determine how much the increase in expressibility
of the considered class of Max-Keys affects the performance of the decision al-
gorithm, we also include measures of the performance of the decision algorithm
in [12] which is optimized for deciding implication of the strictly less expressive
fragment K1 of XML keys from [15].

The results regarding running times for deciding the implication of K1 keys
and Max-Keys are shown in Figures 8(a) and 8(b). In both figures, the x-axis
corresponds to the number of keys in Σ, and the y-axis corresponds to the
average running time required to decide whether Σ implies a given key ϕ. More
precisely, let time(Σ,ϕ) be the running time required to decide Σ |= ϕ and
let Φ be a set of XML keys such that Σ ∩ Φ = ∅, the reported running time
corresponds to

(∑
ϕi∈Φ time(Σ,ϕi)

)
/|Φ|. In our experiments the sets Φ were

composed of 10 fixed XML keys. We tested the scalability of the algorithms by
adding, in each iteration, 10 new XML keys to the corresponding Σ sets. Each
of the experiments was executed 5 times. The resulting error bars are included
in the graphs. They are consistent with time variations commonly produced by
the scheduling of the operating system and the use of the time() function to
measure the experiments [21].

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140 160 180

D
ec

is
io

n
T

im
e

[m
s]

Size of Σ set

abs-abs
abs-rel
rel-abs
rel-rel

mix-abs
mix-rel

(a) Implication of K1 keys

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140 160 180

D
ec

is
io

n
T

im
e

[m
s]

Size of Σ set

abs-abs
abs-rel
rel-abs
rel-rel

mix-abs
mix-rel

(b) Implication of Max-Keys

Fig. 8. Performance of the Decision Algorithms for the Implication of XML Keys

We consider Σ sets composed by (i) only absolute keys (“abs”), (ii) only
relative keys (“rel”) or (iii) both types of keys (“mix”). Given that an input
key ϕ can be either absolute or relative, we have a total of six test cases. The
performance shown by the “abs-rel” curves is slightly degraded due to the fact
that, in general, the algorithm needs to traverse more nodes to determine whether
q′ϕ is reachable from qϕ. This is consistent with the way in which the witness
networks are defined.

The Finite Implication Problem for Expressive XML Keys 87

Finally, we present in Figure 9 the aggregate results. For a small set Σ with
about 10 XML keys, the execution takes 0.2ms in average, whereas for a large
set of about 180 XML keys, the execution takes around 4ms in the worst case.
Thus, we can conclude that both decision algorithms are efficient in practice
and both scale well. In particular, the price to pay for the added expressibility
provided by the Max-Keys is in the order of just 3ms for a considerable big set
of 180 Max-Keys.

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140 160 180

D
ec

is
io

n
T

im
e

[m
s]

Size of Σ set

K1 keys
Max-Keys

Fig. 9. Aggregate results for the Performance of the Decision Algorithms

7.3 Applying XML Key Reasoning to Document Validation

Fast algorithms for the validation of XML documents against keys are crucial
to ensure the consistency and semantic correctness of data stored in databases
or exchanged between applications [5]. In this section we propose to use our
decision algorithm to compute non-redundant cover sets of Max-Keys. As shown
in the experiments this has the potential to significantly reduce the time needed
to validate XML documents against sets of Max-Keys. In our experiments we
validate XML documents as a whole, starting from scratch. This is clearly useful
for instance for tasks such as data cleaning, and it is enough to showcase a
concrete example in which our algorithm for the implication of XML keys can
be sucessfully used in practice. Nevertheless we note that the central case of
incremental validation, which is left out of the scope of this paper, can also
benefit from this idea.

Cover Sets for XML Keys. We define the concept of cover set of XML keys
following the notion given in [19] for functional dependencies in the relational
model. Thus, two sets Σ1 and Σ2 of XML keys are a cover of one another if
they imply exactly the same set of XML keys, i.e., if Σ∗

1 = Σ∗
2 . A set Σc of

XML keys is a non-redundant cover if none of its proper subsets is a cover for it.

88 F. Ferrarotti et al.

This is the case if there is no key ϕ in Σc such that Σc − {ϕ} |= ϕ. Note that a
non-redundant cover set Σc of a given set Σ of XML keys has potentially fewer
keys than Σ and at the same time, every tree T that satisfies all the keys in Σc,
also satisfies all the keys in the original set Σ.

Thus, given a set Σ of Max-Keys, we can use our decision algorithm to com-
pute a non-redundant cover set Σc for it and then, provided it has fewer keys
than the original set Σ, validate the target XML document against Σc instead
of Σ. As shown in our experiments, this can potentially result in enormous time
savings.

It is important to note that a set Σ can contain more than one non-redundant
cover set and there can also exist non-redundant cover sets that are not included
in Σ. In this work we only consider cover sets that are included in Σ.

Validation against Non-redundant Covers. The aim is to determine the vi-
ability of computing non-redundant cover sets to reduce the overall time required
to validate XML documents against sets of Max-Keys.

Validating an XML document against a set of XML keys involves checking, for
every XML key in the set, whether the document satisfies such key. For this task,
we use a semi-näıve algorithm that parses the XML document into a DOM tree
and then evaluates the XML keys on the resulting tree, by using XPath queries
to express their context, target and key paths. We do not use sophisticated vali-
dation algorithms such as [9,18] because they are not suitable in its current form
to validate Max-Keys. An adaptation of such kind of algorithms for Max-Keys is
a complex task which is out of the scope of this work and non essential to prove
our point, that is to prove that reasoning about XML keys brings important
benefits in this context. Furthermore, the proposed optimization based on non-
redundant cover sets is independent of the particular algorithm used for XML
key validation.

Tests Results. Given a set Σ of Max-Keys, we compute a non-redundant cover
set Σc by simply checking for every key ϕi ∈ Σ, whether Σ−{ϕi} |= ϕi (this step
is done by our decision algorithm for the implication problem of Max-Keys). If
we find a key ϕi that is implied by Σ−{ϕi}, we eliminate it from Σ and continue
checking the remaining keys against the resulting set Σ − {ϕi}. For comparison
purpose, we also compute the set C of all non redundant covers that are strictly
contained in Σ. To obtain C, we first check every singleton subset of Σ, then we
check every subset of Σ of cardinality two, and so on till we have checked every
strict subset of Σ. Note that once we find a non-redundant cover set Σc ⊂ Σ,
we can automatically discard every Si ⊂ Σ such that Σc ⊆ Si.

The results obtained from the computation of non-redundant cover sets are
summarized in Table 3, were time(Σc) denotes the time in milliseconds required
to compute a non-redundant coverΣc ⊂ Σ, time(C) denotes the time in millisec-
onds needed to compute the set C of all non-redundant covers contained in Σ,
and min(Σc) and max(Σc) denote the cardinality of the smallest non-redundant

The Finite Implication Problem for Expressive XML Keys 89

Table 3. Computation of Non-redundant Covers

XML document |Σ| |Σc| time(Σc) |C| time(C) min(Σc) max(Σc)

padron

doc1 10 5 4.041 8 2896.630 5 5

321gone & yahoo

doc2 & doc3 13 8 5.388 1 22792.900 8 8

DBLP

doc4 12 7 5.879 1 9424.210 7 7

nasa

doc5 12 7 5.469 2 10417.200 7 7

SigmodRecord

doc6 12 6 4.783 2 10633.400 6 6

mondial

doc7 12 6 3.078 12 9460.690 6 7

cover and the cardinality of the biggest non-redundant cover contained in Σ,
respectively.

Figure 10 shows the optimization achieved by pre-calculating non-redundant
cover sets during the validation process of the XML documents in Table 2. In
both plots the x-axis represent the documents and the y-axis represent the run-
ning time in milliseconds. We use a separate plot for doc1 due to the difference
in scale, and consequently in validation time, with respect to the others XML
documents. Also due to differences in scale, we had to truncate the bars repre-
senting the validation time for doc4, doc5 and doc7 against the full set of XML
keys. The actual time required for those validations is indicated on top of the
corresponding bars.

This results clearly indicate that the running time required to compute a non-
redundant cover set is just a tiny fraction of the overall running time required
to validate a single XML document against a key. It also confirms that the
proposed optimization of the validation process, based on the pre-calculation of
non-redundant covers, can significantly reduce the time required for this task.

Significant time savings are achieved in the validation of doc1, doc4, doc5 and
doc7. This coincides with the largest tested documents. For instance, while it
takes 38 minutes to validate the XML document padron.xml (doc1) against 10
Max-Keys, the validation against the best cover in C only requires 20 minutes.

For reference, we list next the set Σ of Max-Keys used for the validation
experiments with the document padron.xml. Note that the nodes given, father
and mother, which are not included in the simplified tree in Figure 6, refer to
the child nodes of the name node in the actual structure of the XML document
padron.xml. The labels father and mother refer to the father’s surname and
the mother’s surname, respectively. The keys used in the validation experiments
with the others XML documents tested in this work, can be found online as

90 F. Ferrarotti et al.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

doc1

R
un

ni
ng

 T
im

e
[m

s]

XML documents

38min

27min

20min

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

doc2 doc3 doc4 doc5 doc6 doc7

XML documents

351ms 429ms

Full-set
One-pass Cover

Best Cover
Worst Cover

3min 1.5min

2.84seg

0.9min

Fig. 10. Validation of XML documents

indicated at the beginning of this section. For the sake of presentation, we omit
them here.

1. (ε, (commune, {name.given, name.father, name.mother}))
2. (ε, (commune, { ∗, person}))
3. (ε, (commune, {name.given, name.father, name.mother, person}))
4. (ε, (, {person}))
5. (ε, (commune, {person.id}))
6. (ε, (commune, {person.id, person.gender}))
7. (ε, (commune, { .id, .gender, .name}))
8. (ε, (commune, {person.id, person.gender, person.name.given, person.name.father,

person.name.mother}))
9. (ε, (∗, {person.id, person.gender, person.name, person.address}))

10. (ε, (commune, {person.id, person.gender, person.name.given, person.name.father,
person.name.mother, person.address}))

The result of computing all non-redundant covers included in Σ is a collec-
tion C with 8 sets, shown in Table 4. The last set contains simpler keys (i.e.,
with lower length and fewer single-label and variable-length wildcards), which
results in less complex XPath queries and the minimum time required for valida-
tion. Specifically, the more complex Max-Keys like (ε, (comuna, { ∗, person}))
involve 345 commune nodes, that in total compress 13, 248, 351 person (com-
plex) nodes with various element and attribute children. Moreover, if we discard
the absolute Max-Key with a variable-length wildcard in its target path (which
involves 3, 239, 791 nodes), we can reduce the validation time to six minutes.
Indeed, when more nodes are selected by the target path and more complex
nodes by the key paths, then it becomes more time consuming to compute the
corresponding value intersection among all pairs of elements.

The Finite Implication Problem for Expressive XML Keys 91

Table 4. Non-redundant covers used in the validation experiments with padron.xml

(ε, (commune, {name.given, name.father, name.mother, person}))
(ε, (, {person}))
(ε, (commune, { .id, .gender, .name}))
(ε, (∗, {person.id, person.gender, person.name, person.address}))
(ε, (commune, {person.id, person.gender, person.name.given,

person.name.father, person.name.mother, person.address}))
(ε, (commune, {name.given, name.father, name.mother, person}))
(ε, (, {person}))
(ε, (commune, { .id, .gender, .name}))
(ε, (∗, {person.id, person.gender, person.name, person.address}))
(ε, (commune, {person.id, person.gender, person.name.given,

person.name.father, person.name.mother}))
(ε, (commune, {name.given, name.father, name.mother, person}))
(ε, (, {person}))
(ε, (commune, {person.id, person.gender}))
(ε, (commune, { .id, .gender, .name}))
(ε, (∗, {person.id, person.gender, person.name, person.address}))
(ε, (commune, {name.given, name.father, name.mother, person}))
(ε, (, {person}))
(ε, (commune, {person.id}))
(ε, (commune, { .id, .gender, .name}))
(ε, (∗, {person.id, person.gender, person.name, person.address}))
(ε, (commune, {name.given, name.father, name.mother}))
(ε, (, {person}))
(ε, (commune, { .id, .gender, .name}))
(ε, (∗, {person.id, person.gender, person.name, person.address}))
(ε, (commune, {person.id, person.gender, person.name.given,

person.name.father, person.name.mother, person.address}))
(ε, (commune, {name.given, name.father, name.mother}))
(ε, (, {person}))
(ε, (commune, { .id, .gender, .name}))
(ε, (commune, {person.id, person.gender, person.name.given,

person.name.father, person.name.mother}))
(ε, (∗, {person.id, person.gender, person.name, person.address}))
(ε, (commune, {name.given, name.father, name.mother}))
(ε, (, {person}))
(ε, (commune, {person.id, person.gender}))
(ε, (commune, { .id, .gender, .name}))
(ε, (∗, {person.id, person.gender, person.name, person.address}))
(ε, (commune, {name.given, name.father, name.mother}))
(ε, (, {person}))
(ε, (commune, {person.id}))
(ε, (commune, { .id, .gender, .name}))
(ε, (∗, {person.id, person.gender, person.name, person.address}))

92 F. Ferrarotti et al.

8 Conclusion

Our contribution is two-fold. Firstly, we introduced an expressive fragment ofXML
keys (Max-Keys) that is sufficiently flexible to advance XML data processing in
important areas of XML application such as consistency management, data in-
tegration, query optimization and view maintenance. The flexibility results from
the right balance between expressiveness and efficiency of maintenance. Secondly,
we have shown through extensive experimentation that reasoning about this ex-
pressive fragment of XML keys can be done efficiently in practice, and scales well.
Our results promote the use of XML keys to real-world XML practice, where a
little more semantics makes applications a lot more effective.

Additionally, we have shown that our contribution to the problem of deciding
implication is not only of interest for the problem itself but has immediate conse-
quences for other perennial tasks in XML database management. As an example
we have studied the problem of validating an XML document against a set of
XML keys. We have presented an optimization method for this validation that
computes a non-redundant cover for the set of XML keys given as input so that
satisfaction only needs to be checked for the keys in this cover. This can reduce
the number of keys significantly, and our experiments show that enormous time
savings can be achieved in practice. This holds true even though the validation
procedure is able to decide value equality among element nodes with complex
content as this is required for the XML keys studied here (and distinguishes
them from the keys defined in XML Schema). We would like to emphasize that
the use of non-redundant covers does not depend on the particular choice of the
XML fragment but can be tailored to any class of XML constraints for which
the implication problem can be solved efficiently.

The experiments with large sets of non-trivial XML keys and large XML
documents provide a good platform (and also pinpoint the need) for further
research in the area. This can go into various directions. XML practice might well
warrant the study of other classes of XML keys that require different paradigms
to select and compare nodes, or specify restrictions. It would be interesting to
investigate the interaction of XML keys with schema specification languages
and other classes of database constraints, including functional, multivalued and
inclusion dependencies. This is likely to be a challenging task as already observed
and illustrated by examples in previous work [8]: keys can non-trivially interact
with content models and thus behave differently under such specifications.

It would also be interesting to explore other practical applications of the
decision algorithm for the implication problem in areas such as optimization of
XPath queries, XML constraint mining, and XML design. The broad area in
which XML keys can be applied, as indicated in several parts of this article,
warrant further studies.

Acknowledgement. This paper was funded in part by Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Lion-2). The authors would like to
thank the anonymous reviewers for their comments and suggestions, which have
contributed to improve the paper. Finally, the authors wish to acknowledge the

The Finite Implication Problem for Expressive XML Keys 93

contribution of the NeSI high-performance computing facilities and the staff at
the Centre for eResearch at the University of Auckland. New Zealand’s national
facilities are provided by the New Zealand eScience Infrastructure (NeSI) and
funded jointly by NeSI’s collaborator institutions and through the Ministry of
Business, Innovation and Employment’s Infrastructure programme (http://www.
nesi.org.nz).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Aho, A., Ullman, J., Hopcroft, J.: Data structures and algorithms. Addison-Wesley
(1983)

3. Apparao, V., et al.: Document object model (DOM) level 1 specification, W3C
recommendation (1998), http://www.w3.org/TR/REC-DOM-Level-1/

4. Arenas, M., Fan, W., Libkin, L.: What’s hard about XML schema constraints? In:
Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453,
pp. 269–278. Springer, Heidelberg (2002)

5. Arenas, M., Libkin, L.: XML data exchange: Consistency and query answering. J.
ACM 55, 7:1–7:72 (2008)

6. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Exten-
sible markup language (XML) 1.0, 4th edn., W3C recommendation (2006),
http://www.w3.org/TR/xml

7. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Keys for XML. Computer
Networks 39(5), 473–487 (2002)

8. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Reasoning about keys for
XML. Inf. Syst. 28(8), 1037–1063 (2003)

9. Chen, Y., Davidson, S., Zheng, Y.: Xkvalidator: a constraint validator for XML.
In: CIKM 2002: Proceedings of the 2002 ACM CIKM International Conference on
Information and Knowledge Management, pp. 446–452. ACM (2002)

10. Clark, J., DeRose, S.: XML path language (XPath) version 1.0, W3C recommen-
dation (1999), http://www.w3.org/TR/xpath

11. Ferrarotti, F., Hartmann, S., Link, S., Wang, J.: Promoting the semantic capability
of XML keys. In: Lee, M.L., Yu, J.X., Bellahsène, Z., Unland, R. (eds.) XSym 2010.
LNCS, vol. 6309, pp. 144–153. Springer, Heidelberg (2010)

12. Ferrarotti, F., Hartmann, S., Link, S., Marin, M., Muñoz, E.: Performance analysis
of algorithms to reason about XML keys. In: Liddle, S.W., Schewe, K.-D., Tjoa,
A.M., Zhou, X. (eds.) DEXA 2012, Part I. LNCS, vol. 7446, pp. 101–115. Springer,
Heidelberg (2012)

13. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath
queries. Trans. Database Syst. 30(2), 444–491 (2005)

14. Hartmann, S., Köhler, H., Link, S., Trinh, T., Wang, J.: On the notion of an XML
key. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2008. LNCS, vol. 4925, pp.
103–112. Springer, Heidelberg (2008)

15. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2) (2009)

16. Hartmann, S., Link, S.: Expressive, yet tractable XML keys. In: EDBT 2009: 12th
International Conference on Extending Database Technology. ACM International
Conference Proceeding Series, vol. 360, pp. 357–367. ACM (2009)

http://www.nesi.org.nz
http://www.nesi.org.nz
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/xml
http://www.w3.org/TR/xpath

94 F. Ferrarotti et al.

17. Jungnickel, D.: Graphs, Networks and Algorithms. Springer (1999)
18. Liu, Y., Yang, D., Tang, S., Wang, T., Gao, J.: Validating key constraints over

XML document using XPath and structure checking. Future Generation Comp.
Syst. 21(4), 583–595 (2005)

19. Maier, D.: Minimum Covers in the Relational Database Model. J. ACM 27, 664–674
(1980)

20. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J.
ACM 51(1), 2–45 (2004)

21. Stewart, D.B., Khosla, P.K.: Mechanisms for Detecting and Handling Timing Er-
rors. Commun. ACM 40(1), 87–93 (1997)

22. Suciu, D.: XML Data Repository, University of Washington (2002),
http://www.cs.washington.edu/research/xmldatasets/www/repository.html

23. Thompson, H., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema Part 1:
Structures, 2nd edn., W3C Recommendation (2004),
http://www.w3.org/TR/xmlschema-1/

http://www.cs.washington.edu/research/xmldatasets/www/repository.html
http://www.w3.org/TR/xmlschema-1/

ALACRITY: Analytics-Driven Lossless Data
Compression for Rapid In-Situ Indexing, Storing,

and Querying

John Jenkins1,2,�, Isha Arkatkar1,2,�, Sriram Lakshminarasimhan1,2,
David A. Boyuka II1,2, Eric R. Schendel1,2, Neil Shah1,2, Stephane Ethier3,

Choong-Seock Chang3, Jackie Chen4, Hemanth Kolla4, Scott Klasky2, Robert Ross5,
and Nagiza F. Samatova1,2,��

1 North Carolina State University, NC 27695, USA
2 Oak Ridge National Laboratory, TN 37831, USA

3 Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA
4 Sandia National Laboratory, Livermore, CA 94551, USA
5 Argonne National Laboratory, Argonne, IL 60439, USA

samatova@csc.ncsu.edu

Abstract. High-performance computing architectures face nontrivial data pro-
cessing challenges, as computational and I/O components further diverge in per-
formance trajectories. For scientific data analysis in particular, methods based
on generating heavyweight access acceleration structures, e.g. indexes, are be-
coming less feasible for ever-increasing dataset sizes. We present ALACRITY,
demonstrating the effectiveness of a fused data and index encoding of scientific,
floating-point data in generating lightweight data structures amenable to common
types of queries used in scientific data analysis. We exploit the representation of
floating-point values by extracting significant bytes, using the resulting unique
values to bin the remaining data along fixed-precision boundaries. To optimize
query processing, we use an inverted index, mapping each generated bin to a list
of records contained within, allowing us to optimize query processing with at-
tribute range constraints. Overall, the storage footprint for both index and data is
shown to be below numerous configurations of bitmap indexing, while matching
or outperforming query performance.

1 Introduction

Increasingly complex simulation models, capable of using high-end computing archi-
tectures, are being used to simulate dynamics of various scientific processes with a high
degree of precision. However, coupled with this opportunity to augment knowledge and
understanding of the highly complex processes being studied are the challenges of con-
ducting exploratory data analysis and knowledge discovery. Specifically, data size on
the tera- and peta-scale is becoming a limiting factor in understanding the phenomena
latent in these datasets, especially in a post-processing context.

Due to massive dataset sizes, full context analysis is a crucial bottleneck in the
knowledge discovery pipeline, being restrained by the limits of computer memory and

� Authors contributed equally.
�� Corresponding author.

A. Hameurlain et al. (Eds.): TLDKS X, LNCS 8220, pp. 95–114, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

96 J. Jenkins et al.

I/O bandwidth. Most commonly, applications of which such data exploration processes
are characteristic are interactive and require near-real-time I/O rates for full data explo-
ration. However, I/O access rates are too slow to support efficient random disk access
in real-time for large-scale data sets, necessitating new approaches to reduce the I/O
pressure of extreme-scale data analytics.

A knowledge priors approach to data analytics is promising in restricting data to
smaller and more practical sizes. Often times, scientists have some prior knowledge
about the regions of interest in their data. For example, fusion scientists aiming to un-
derstand plasma turbulence might formulate analysis questions involving correlations
of turbulence intensities in different radial zones (0.1<ψ < 0.15;0.3<ψ < 0.35;0.5<
ψ < 0.55;0.7 < ψ < 0.75;0.9 < ψ < 0.95). Likewise, climate scientists aiming to un-
derstand factors contributing to natural disasters might limit their search to particular
regions or perhaps only a single region.

Thus, formulating queries on scientific simulation data constrained on variables of
interest is an important way to select interesting or anomalous features from large-
scale scientific datasets. Traditional database query semantics are an effective means to
express such queries. This allows us to leverage a great deal of work from the database
community on query processing. The indexing techniques used in traditional database
systems, such as B−trees [9] and bitmap indexes [23], have been used extensively in the
literature. However, while indexing is a blessing for fast and efficient query processing,
it is arguably a curse in terms of storage; index sizes are often 100-300% of the original
column size for high-cardinality data (such as double-precision data) [26], which is a
huge bottleneck for storage- and I/O-bound extreme-scale applications.

A number of bitmap index compression techniques have been introduced to reduce
the size of the bitmap index while maintaining fast query retrieval. In particular, Word
Aligned Hybrid (WAH) [24] bitmap compression is used in FASTBIT [23], a state-of-
the-art scientific indexing technology with fast query processing capabilities. Notably,
however, the total storage footprint for a high-cardinality data column along with an
associated FASTBIT index is around 200% of the original size [25], which is still pro-
hibitive in many extreme-scale contexts. Furthermore, while this indexing scheme is
optimized for region-retrieval queries over spatio-temporal data sets (i.e., returning the
record IDs/regions that match a query constraint), returning the actual values of the
variables associated with these regions (i.e. value retrieval query) is equally important
in data analytics, necessitating an expanded approach.

Therefore, we present ALACRITY, an Analytics-driven Lossless Compression
methodology, for Rapid in-situ Indexing, sToring, and querYing. ALACRITY inte-
grates data reduction and indexing methodology for floating-point datasets, optimized
for query-driven data analytics over scientific data. We believe that a tight cohesion
between the data and index allows us to optimize storage requirements while at the
same time facilitating both fast indexing at simulation-time and range query processing
with value retrieval during analysis. In particular, our focus is on write-once, read-many
(WORM) datasets utilizing double-precision floating-point variables, as are commonly
produced by large-scale, high-fidelity simulation runs and subsequently analyzed by
numerous application scientists in multiple (often global) contexts. A few examples
of such data are the particle-based fusion simulation GTS [20] and the direct numeri-

ALACRITY: Analytics-Driven Lossless Data Compression 97

cal combustion simulation S3D [8], each of which are comprised of primarily double-
precision, high-cardinality variables (≈ 100% unique values for GTS, ≈ 50% unique
values for S3D).

Toward the goal of developing a system given this motivation, we make the following
contributions in this paper:

– We present a lossless compression methodology for floating-point (single and
double-precision) variables utilizing unique-value encoding of the most signifi-
cant bytes. Our lossless compression reduces the size of a number of high-entropy,
double-precision scientific datasets by at least 15%. Compared to lossless compres-
sion techniques like FPC [6], optimized for floating-point data, we report superior
average compression ratios.

– Using our lossless compression method, we optimize range query evaluation in-
cluding value retrieval by binning the column data by the distinct significant byte
metadata, integrating efficient compressed-data organization and decompression of
retrieved results. Compared to state-of-the-art techniques like FASTBIT [23], we
provide comparable or better performance on range queries retrieving record IDs.
For range queries that additionally retrieve variable values, we achieve up to one
order of magnitude improvement in performance.

– For query processing, we utilize an inverted index, incurring a smaller storage foot-
print compared to other database indexing schemes. Using an inverted index com-
pression via the PForDelta algorithm [30], we achieve a combined index and data
column size of only 77–93% of the original column size.

2 Background

2.1 Indexing

Search and query processing operations on traditional database systems like Oracle,
MySQL, and DB2 involve the use of indexing techniques that are usually variants
of either bitmap indexes or B−trees. While these techniques are effective in speeding
up query response times, they come at the cost of a heavy-weight index management
scheme. Indexing with B−trees [9], which tends to be more suitable for transactional
databases that require frequent updates, is observed to consume storage that is one-to-
three times the size of the raw column data for high-cardinality attributes. Scientific
data, which is typically read (or append) only, have been shown to be better served with
bitmap-based indexing techniques [19, 23], providing faster response times with lower
index storage overhead.

While there are numerous technologies that use variants of bitmap indexing, we pri-
marily focus on FASTBIT [23], a state-of-the-art bitmap indexing scheme, that is used
by a number of scientific applications for answering range queries. FASTBIT employs
a Word-Aligned-Hybrid (WAH) compression scheme based on run-length encoding,
which decreases the index storage requirement and allows FASTBIT to perform logical
operations efficiently on the compressed index and compute partial results by scanning
the index. While the required storage for WAH is larger than that for bitmap compres-
sion variants such as Byte-aligned Bitmap Compression [4], WAH has been shown to be

98 J. Jenkins et al.

far faster for query processing. For those records that cannot be evaluated with the index
alone, FASTBIT resorts to performing a read of the raw data, in what is called candi-
date checks. Unfortunately, the bitmap index created is sensitive to the distribution and
cardinality of the input data, taking anywhere from 30 to 300% of the raw column size.
The space can partly be reduced through techniques such as precision binning, at the
cost of disturbing the distribution of values along the bins.

Another type of index, popular for document indexing, is an inverted index [22, 29].
Traditionally, in document clustering systems, a single document is identified by terms,
which typically correspond to some subset of written language. An inverted index, in
this case, maps each term in the dictionary to the list of documents the term appears in,
greatly speeding up queries constrained by term. In this work, an inverted mapping is
used in a different context: we are mapping histogram bins to lists of records that fall
within each bin.

2.2 Compression

Data compression methods within databases have been widely studied as an impor-
tant component for lowering the storage footprint of data-stores [11, 14, 21]. For ex-
ample, the column-oriented database C-Store [2] uses null compression (elimination of
zeroes), dictionary encoding, and run-length encoding for effective data reduction of
attributes organized contiguously, as opposed to the traditional row-store organization.
While these methods have limited use on floating-point data due to high-entropy signif-
icand bits, our work does share similarity with the dictionary encoding method, in that
we compress floating-point data through identifying unique values and assigning them
reduced bitwise representations. However, we perform this on only the most significant
few bytes of the floating-point data, as opposed to the full dataset as in C-Store, and dis-
card the representation entirely when using the inverted index for our query processing
methodology.

A compression methodology particularly important to our methods is based on in-
verted index compression techniques. Asides from general purpose compressors, spe-
cialized techniques, such as Simple9, Simple16, Relate10 and Carryover12 [3] provide
high compression ratios while being computationally efficient for compressing and pro-
cessing indexes on text collections. Furthermore, document reordering methods have
been devised to increase locality, thereby achieving higher compression ratios [27]. For
our method, a particularly important inverted index compression algorithm is the PFor
family of compressors, which include PFor, PForDelta, and PDict [30], built specif-
ically for fast compression and decompression speeds on modern CPU architectures.
Each method uses reduced, fixed bit widths to encode values with a high degree of
similarity (PFor and PForDelta) or commonly occuring values (PDict), encoding the
remaining in full-precision as exceptions. Of these methods, PForDelta is the basis for
our inverted index compression, as it first encodes differences between successive val-
ues before compressing. See Section 3.3.

As mentioned, many general-purpose and specialized compression methodologies
fail to provide high compression ratios on floating-point data. Part of the reason for
this is that floating-point scientific data is notoriously difficult to compress due to high
entropy significands, of which floating-point data is primarily composed of (23 of 32

ALACRITY: Analytics-Driven Lossless Data Compression 99

bits for single precision and 52 of 64 bits for double-precision). Much work has been
done to build compressors for these kinds of data, mostly based on difference coding.
Algorithms such as FPC [6] and fpzip [17] use predictors like the Lorenzo predictor
[12], FCM [28] and DFCM [10] to compress. Given an input stream of floating-point
values, the predictors use the previously seen values to predict the next value in the
stream, and rather than attempt to compress the floating-point values themselves, the
compression algorithm uses a measure of error between the predicted and actual value,
typically as an XOR operation.

Our compression/indexing methodology is based on treating the most significant
bytes of floating-point data differently than the least significant bytes. Isenburg et al.
use the same underlying concept in a prediction-based compression utility, which par-
titions the sign, exponent, and significand bits of the prediction error, followed by com-
pression of each component [13]. Unlike their method, our method must maintain the
approximability of floating point datasets by treating the most significant bytes as a
single component (sign, exponent, and the most significant significand bits), enabling
efficient index generation and range query processing over the compressed data.

Another method that is based on processing data with respect to significant bytes
is ISOBAR preconditioner [18]. Based on the observation that a significant byte-wise
view of the data can yield patterns not picked up by existing compressors, ISOBAR
first determines the compressibility of input data by looking at the frequency distribu-
tion on a significant byte level. Significant byte columns that appear to have a uniform
frequency distribution (such as mantissa bytes in floating-point variables) are ignored
in subsequent compression, leading to greatly increased compression speeds.

3 Method

3.1 System Overview

As mentioned, the goal of this paper is to facilitate query-driven analysis of large-scale
scientific simulation data with storage-bound requirements. There are two stages where
we focus our design to achieve this goal: first, while simulation data is being generated
and is still in memory, or later as a post-processing step, we can process and reorganize
a floating-point dataset to compress the data. Second, we can modify the new organi-
zation of data to optimize query processing on the preprocessed data. For this purpose,
we introduce two components in the scientific knowledge discovery pipeline, the loss-
less compressor/indexer and the query engine. These correspond to two different use
cases using the same underlying process – a compression-only use case and a query-
processing use case.

3.2 Compression

Scientific simulations use predominantly double-precision floating-point variables, so
the remainder of the paper will focus on compression and query processing for these
variables, though our method can be applied to floating point numbers of different pre-
cision. The underlying representation of these variables, the IEEE 754 floating-point

100 J. Jenkins et al.

standard [1], is a primary driver of our compression and querying methodology, so we
briefly review it here. The standard encodes floating point values using three compo-
nents: a sign bit, an exponent field, and a significand field. For example, 64-bit double-
precision values use one sign bit, 11 exponent bits, and 52 significand bits. Given the
sign bit s, the unsigned integral representation of the exponent field e, and each signifi-
cand bit mi (most to least significant), the resulting value encoded by a double-precision
variable is:

value = (−1)s× 2e−1023× (1+
52

∑
i=1

(mi2
−i)). (1)

Note that, all other components being equal, a difference of one in the exponent fields
of two double-precision numbers leads to a 2x difference in the represented values.

Our key observation for the compression process is that there is similarity among
values in our target datasets with respect to orders of magnitude. For instance, in a
simulation grid, adjacent grid values are unlikely to differ in orders of magnitude, except
perhaps along simulation-specific phenomenon boundaries. Furthermore, the encoding
naturally lends itself to accurate approximation given the exponent components. Hence,
we base our compression and query processing methodology on the commonality in the
sign and exponent field of double-precision datasets.

Figure 1 gives an overview of the compression process, developed under the assump-
tion of similar exponent components and with the goal of being amenable to range query
processing. For an N-element partition (a single block of configurable size from the
dataset, to be compressed and indexed as a unit), we split the 8N-byte double-precision
column stream into two components: a kN-byte high-order byte stream consisting of the
most significant k bytes of each value, and the remaining (8− k)N-byte low-order byte
stream consisting of the remaining significant bytes. Using the observation of highly
similar sign and exponent values, we identify the unique high-order bytes and discard
redundant values. Let n be the number of unique high-order byte patterns. We define
a bin to be a set of low-order bytes with equivalent high-order bytes, with bin edges

Fig. 1. Various stages of the compression methodology, described in Section 3.2. The bitmap
index is used for compression, while the inverted index is used in query processing.

ALACRITY: Analytics-Driven Lossless Data Compression 101

B1,B2, . . . ,Bn corresponding to the sorted unique patterns. Figure 2 shows the relation-
ship between floating-point values, the high and low-order bytes, and their resulting
bins. The low-order bytes are reorganized into their respective bins, and a record ID
(RID) to bin mapping M is generated to maintain the original organization, using a
bitmap with �log(n)� bits per identifier. A general-purpose compressor (such as bzip2)
is then run on the bin mapping M, as well as (optionally) the low-order bytes.

Fig. 2. Mapping between floating-point numbers, high- and low-order bytes, and their respective
bins

Three data structures are produced as the result of the compression process: (1) the
compression metadata, defining the high-order byte values and file offsets of each bin,
(2) the compressed RID-to-bin mapping M, and (3) the bin-organized low-order bytes.

The value of k should be chosen with two goals in mind: to cause the number of
distinct high-order bytes to stabilize with an increasing stream size, and to maximize
the redundancy of the patterns (for compression) while encoding the entirety of the sign
and exponent components (for future query processing). For scientific floating point
data, we have found k = 2 to be the most effective; it covers the sign bit, all exponent
bits, and the first four significand bits of double-precision values (approximately two
significant figures in base 10 scientific notation). This makes sense, as higher degrees
of precision in scientific data tend toward high-entropy values. To verify our choice of
k for this paper, Figure 3 shows the number of distinct high-order bytes recorded as a

1

10

100

1000

10000

100000

0 1000000 2000000 3000000 4000000

N
um

be
r o

f d
is

tin
ct

 p
at

te
rn

s

Number of points

2 bytes
3 bytes

1

10

100

1000

10000

0 100000 200000 300000 400000

N
um

be
r o

f d
is

tin
ct

 p
at

te
rn

s

Number of points

2 bytes
3 bytes

Fig. 3. Cumulative growth of the number of distinct higher order 2-byte and 3-byte pattern for
increasing data size

102 J. Jenkins et al.

data stream is processed. For both k = 2 and 3, a relatively small cardinality is seen
relative to the number of points processed, with the distinct values quickly reaching a
(near) maximum.

Recall that the metadata consists of unique high-order bytes as well as their respec-
tive file offsets to the low-order byte payload. Hence, the metadata size is directly pro-
portional to the number of unique high-order bytes. As shown in Figure 3, for two of
the scientific datasets, the size of metadata is less than 0.1% of the dataset for k = 2,
due to the small number of distinct patterns. For k = 3, however, the number of distinct
patterns increases by a factor of 100 due to the addition of the higher-entropy signifi-
cand bits. This increases the metadata size similarly, while additionally increasing the
size of the RID to bin mapping logarithmically. Given the trends in Figure 3, we expect
random sampling to be sufficient to determine a good value of k for double-precision
datasets.

3.3 Query Processing: Index Generation

The compression methodology presented in Section 3.2 is, as will be shown, effective
at improving the compression ratio of many scientific datasets, but is not optimized for
query processing. If a range query is performed using our compression index, the entire
RID-to-bin mapping M would need to be traversed to map the binned data back to RIDs.
Thus, we develop another method to optimize for range queries by using an inverted
index, at the cost of additional storage. This inverted index, which we denote as M−1,
maps each bin to a list of RIDs sharing the same high-order bytes, creating a bin-based
value-to-RID mapping. Figure 4 illustrates the index used in compression compared
to the inverted index. This organization is advantageous for range query processing
because we now access the RIDs by bin (the same access pattern as with the low-order
bytes). It is initially disadvantageous, however, because of the increased space. This
means, for a partition of N elements, approximately Nlog(N) bits are needed to store the
index, with marginal additional space to store metadata such as the number of elements
within each bin. Bounding the maximum partition size to 32GB of double-precision
data ensures that each RID in the inverted index needs no more than four bytes, making
the index size less than 50% of the raw column size, or lower for smaller partitions.
As a simple example, a partition size of 2GB of double-precision data requires 28 bits
for each RID, translating to an index size of 43.75% of the raw column size. This is
assuming, of course, that the partition is completely filled.

Fig. 4. Building an inverted index for query processing from the index used in compression

ALACRITY: Analytics-Driven Lossless Data Compression 103

Inverted Index Compression. While the index is relatively small compared to the
column size, we make a few observations that allow us to further reduce index storage
overhead. Our inverted index works on the bin-level by using linearized RIDs, with
the resulting structure of an ordered list of RIDs. This presents the perfect opportunity
to use a compressed inverted index, based on difference (delta) encoding. Specifically,
we use the PForDelta algorithm. Given a desired bits-per-item parameter b, PForDelta
stores a base value (the first RID in the sorted list), and differences between consecutive
elements, using only b bits per-difference. For values that cannot be stored using b bits
(namely, differences greater than 2b− 1), that element, called an exception, is stored
at the end of the compression block, with a special marker put in it’s place. Then, for
decompression, a two-pass approach is taken: the first pass restores all deltas to their
original state, and the second corrects, or “patches” the values encoded as exceptions,
while computing the running sum and restoring values. The PForDelta default block
size is used for compression (128 elements), for both cache efficiency and to allow the
value of b to vary across blocks.

For PForDelta compression to be effective, the parameter b must be determined to
optimize and balance compression ratio and speed. While we do not provide a detailed
evaluation, we use the approach from the original PForDelta paper: select the b that
results in the highest compression ratio by computing, for each compression block,
the value of b that minimizes total size (compressed delta list + exception list). For
the datasets evaluated in this paper, this heuristic represents a good tradeoff between
compression ratio and speed, because a large number of exceptions hurts both metrics.

Low-order Byte Compression with ISOBAR. The need for fast (de)compression
speeds in the indexing process requires us to revisit the idea of low-order byte compres-
sion – for the compression target of our method, the primary metric is instead storage
reduction. Previous work [15] showed two trends using low-order byte compression
along with indexing: that compression gains for the low-order bytes vary widely across
datasets, and that compression speed was the limiting factor for indexing speed. We be-
lieve these trends arise because the underlying data being compressed is composed of
entirely floating-point mantissa bytes, which tend to have a more uniform distribution.

Based on these observations, we use the ISOBAR preconditioner to cut down on
compression costs, while still receiving the benefits of data reduction. Figure 5 shows
the modified compression process. Each significant byte-column is analyzed for com-
pressibility using frequency analysis. Each column deemed compressible by ISOBAR
is then compressed, while the “incompressible” columns are kept as-is, saving on com-
putation.

3.4 Query Processing: File Layout

The data used by the query processing engine is split into three components: a metadata
file, an index file, and a compression file, each corresponding to its purpose described
in the previous sections.

The metadata file layout is shown in Figure 6. The metadata file contains partition
information, including file offsets for each partition and bin, the number and bounds
(high-order bytes) of bins, and the number of values per bin per partition. The index

104 J. Jenkins et al.

Fig. 5. ISOBAR analysis and compression, applied on a per-bin basis

<N number of partitions>
<Metadata offset for partition t> (0≤ t < N)
<Index offset, state flag for partition t> (0≤ t < N)
<Low order byte offset, state flag for partition t> (0≤ t < N)
(Repeat for 0≤ t < N)
<P number of elements in partition t>
<B number of bins>
<Number of elements in bin b> (0≤ b < B)
<Bin bound b> (0≤ b < B)
<Compression offset b> (0≤ b < B)
(End Repeat)

Fig. 6. Metadata file format

file and the compression file contain the RIDs and compressed low-order bytes, re-
spectively. A single scan of the metadata file is necessary for query processing and is
small enough to be held in memory to optimize future queries. In our experimentation,
however, we do not consider this possibility.

3.5 Query Processing: Range Queries

The processing of range queries is based on two characteristics of our compression/in-
dexing process: that the bins (low-order bytes and inverted index) are organized on
disk in increasing order of high-order bytes, and that bin edges (the high-order bytes)
provide a lower bound on the values of RIDs within each bin by treating the high-order
bytes as a truncated double-precision value.

The query evaluation process is shown in Figure 7. Given a variable constraint
[v1,v2), the metadata file shown in Figure 6 is traversed to obtain the necessary high-
order bytes and bin file-offsets. Using the high-order bytes as a lower-bound for values
within a bin, the boundary bins Bx and By are obtained using a binary search. Then, a
single, contiguous read is performed per partition in each of the index and low-order
bytes files in order to fetch the data corresponding to the range of bins Bx,Bx+1, . . . ,By,
taking advantage of the bin organization in file. The column data corresponding to the

ALACRITY: Analytics-Driven Lossless Data Compression 105

Fig. 7. Query processing methodology, taking into account metadata, index, and compression
data fetching and aggregating

low-order bytes are reconstructed and only the data in boundary bins are filtered against
the query bounds.

In the case of queries requesting only RIDs, not all of the low-order bytes need to
be fetched and reconstructed. Only the bins at each boundary need be read and checked
against the query constraints, as all remaining bins are guaranteed to fit within the query
bounds.

4 Results and Discussions

4.1 Experimental Setup

We performed our experiments on the Lens cluster at Oak Ridge National Laboratory,
dedicated to high-end visualization and data analysis. Each node in the cluster is made
up of four quad-core 2.3 GHz AMD Opteron processors and is equipped with 64GB
of memory. All experiments were run with data located on the Lustre filesystem. For
the indexing and query processing experiments, we compare against WAH encoding as
implemented by FASTBIT, version 1.3.4. To avoid database-related overheads such as
concurrency control, transaction support, etc. and provide a fair comparison between
technologies, we wrote a minimal query driver for FASTBIT using only the necessary
indexing and querying functions provided in the FASTBIT API. Also in the interest of
fairness, we use the same partition size of 2GB for both our method and FASTBIT.

4.2 Datasets

To evaluate our compression, indexing, and query processing performance, we use
a collection of double precision datasets from various sources. The majority of the
datasets (msg, num, and obs) are publicly available and discussed by Burtscher and
Ratanaworabhan [7]. We additionally use timeslice data for numerous variables gener-
ated by the GTS [20], FLASH [5], S3D [8], and XGC-1 [16] simulations.

In particular, we used the following two scientific simulation datasets to evaluate
our query performance in terms of value-centric queries and region-centric queries:
1) GTS [20], a particle-based simulation for studying plasma microturbulence in the

106 J. Jenkins et al.

core of magnetically confined fusion plasmas of toroidal devices, and 2) S3D [8], a
first-principles-based direct numerical simulation (DNS) of reacting flows that aids the
modeling and design of combustion devices.

4.3 Query Processing

Index Generation

We evaluate the performance of our index generation methodology with respect to both
computational and storage efficiency. We utilize inverted index compression, but not
low-order byte compression, when comparing our method to FASTBIT’s, as this repre-
sents the best tradeoff between indexing speed and storage footprint. Table 1 shows the
results obtained from these experiments.

As shown in Table 1, our combined index and data encoding outperforms numerous
FASTBIT configurations with respect to both speed and storage. Even with index com-
pression, ALACRITY is shown to encode the data at an order of magnitude higher rate

Table 1. Query index generation throughput and storage footprint. AI : ALACRITY with inverted
index compression. FD: FASTBIT with default configuration (105 bins). F2,3: FASTBIT with bin
boundaries at two/three significant digits.

Dataset Index Gen. (MB/s) Storage (data+index)
In-situ Post-proc. Requirement (%)
AI F2 AI F2 AI F2 F3 FD

msg bt 120 9 67 8 87.3 152.0 178.1 192.6
msg lu 125 10 65 9 87.2 162.6 197.9 201.6
msg sp 136 10 73 9 83.0 126.2 157.0 197.7
msg sppm 137 12 73 11 81.3 114.7 116.8 125.3
msg sweep3d 140 8 63 7 85.0 148.4 187.5 200.9
num brain 138 9 65 8 87.6 164.3 191.5 202.3
num comet 107 7 53 7 92.9 181.4 193.1 196.1
num control 109 6 58 6 93.1 154.8 199.6 200.9
num plasma 130 6 38 6 86.6 157.3 189.3 197.6
obs error 138 11 51 10 88.5 149.9 167.6 176.9
obs info 132 11 28 10 85.0 138.1 181.3 219.3
obs spitzer 137 12 69 11 87.0 146.4 177.2 198.3
obs temp 121 10 40 9 91.9 187.0 200.1 210.0
gts phi l 111 7 42 6 92.9 181.5 199.4 208.8
gts phi nl 112 7 42 6 92.9 183.6 199.7 208.9
gts chkp zeon 110 7 28 7 91.3 176.3 198.9 220.4
gts chkp zion 114 7 28 6 89.9 166.1 194.6 220.0
gts potential 112 6 71 6 92.5 184.0 197.9 199.8
xgc iphase 105 10 68 9 90.0 168.3 172.3 176.9
s3d temp 144 14 71 13 80.4 117.2 135.4 202.0
s3d vvel 123 11 64 10 90.1 171.7 195.0 202.1
flash velx 101 9 80 8 82.4 123.8 157.2 195.7
flash vely 107 9 83 9 79.4 112.3 137.3 193.1
flash gamc 110 16 83 14 77.5 100.4 102.1 198.1

ALACRITY: Analytics-Driven Lossless Data Compression 107

than the fastest configuration of FASTBIT we tested, though the gap narrows somewhat
when including read/write measurements: computing the compressed bitmap indexes
appears to be FASTBIT’s rate-limiting factor.

To show a full picture of ALACRITY’s performance characteristics with respect to
data and index encoding, Table 2 shows indexing results over the same datasets, this
time showing the effect of different configurations of ALACRITY. First, the use of
index compression is a good way of reducing the overall storage footprint while not
incurring high computational costs. Second, the efficacy of low-order byte compression
shows widely varying storage results based on the particular underlying dataset. This is
a result of the mantissa bytes being highly entropic, though ISOBAR improves the en-
coding speed when not much data is selected for compression. Third, the choice of k is
highly important in the context of indexing performance. As increasing values of k tend
to increase the number of unique patterns exponentially (see Figure 3), the resulting

Table 2. Query index generation throughput and storage footprint among multiple ALACRI-
TY configurations. AIB: ALACRITY with inverted index and low-order byte compression. AB:
ALACRITY with low-order byte compression only. AI : ALACRITY with inverted index com-
pression only. AI3: ALACRITY with inverted index compression and k = 3. A: ALACRITY
without additional compression.

Dataset Index Gen. (MB/s) Storage (data+index)
In Situ Post-proc. Requirement (%)

A AI AI3 AB AIB A AI AI3 AB AIB A AI AI3 AB AIB

msg bt 207 120 44 28 25 85 67 33 23 21 125.0 87.3 97.7 118.7 81.0
msg lu 217 125 42 26 24 82 65 30 22 20 125.0 87.2 99.6 124.4 86.6
msg sp 240 136 57 33 30 86 73 42 27 25 125.0 83.0 91.5 120.7 78.7
msg sppm 224 137 82 66 54 86 73 54 48 43 125.0 81.3 75.1 60.6 16.8
msg sweep3d 233 140 56 32 29 76 63 38 25 23 125.0 85.0 92.5 105.1 65.1
num brain 243 138 58 22 21 77 65 39 19 18 125.0 87.6 92.0 124.6 87.2
num comet 167 107 26 32 29 68 53 20 24 23 125.0 92.9 114.2 114.0 81.8
num control 179 109 33 27 24 71 58 25 22 20 125.0 93.1 117.2 124.1 92.2
num plasma 213 130 66 107 79 45 38 30 38 33 125.0 86.6 86.9 50.9 12.5
obs error 243 138 62 42 37 56 51 37 28 25 125.0 88.5 91.3 88.1 51.6
obs info 226 132 37 52 45 38 28 17 21 18 125.0 85.0 114.5 77.8 37.8
obs spitzer 251 137 59 30 27 85 69 41 24 23 125.0 87.0 87.3 94.8 56.8
obs temp 206 121 35 25 23 55 40 22 17 16 125.0 91.9 109.3 125.1 91.9
gts phi l 184 111 33 36 32 81 42 19 23 21 125.0 92.9 122.1 125.1 93.0
gts phi nl 186 112 34 41 36 88 42 22 25 24 125.0 92.9 117.3 125.0 92.9
gts chkp zeon 181 110 19 28 26 83 27 11 16 15 125.0 91.3 136.3 125.2 91.4
gts chkp zion 191 114 20 28 25 85 28 12 17 15 125.0 89.9 133.3 125.1 90.0
gts potential 181 112 33 48 40 87 71 28 37 33 125.0 92.5 95.5 124.9 92.4
xgc iphase 150 105 28 29 26 80 68 25 25 23 125.0 90.0 88.0 105.4 70.4
s3d temp 267 144 100 48 42 106 70 58 35 32 125.0 80.4 76.9 118.7 74.2
s3d vvel 216 123 43 23 21 97 64 32 19 18 125.0 90.1 97.4 125.0 90.2
flash velx 267 142 78 23 21 101 80 52 20 19 125.0 82.4 90.1 125.0 82.4
flash vely 246 144 80 23 21 107 83 54 20 19 125.0 79.4 89.2 125.0 79.4
flash gamc 270 148 142 96 74 110 83 83 60 54 125.0 77.5 68.7 115.1 67.6

108 J. Jenkins et al.

effect on indexing performance is negative in both generation time and storage over-
head. However, it is useful in query processing, as it minimizes the cost of processing
misaligned bins.

In our previous work, we utilized zlib for the low-order byte compression. A detailed
comparison between the use of ISOBAR and zlib can be seen in Table 3. Note that
the underlying compressor used by ISOBAR in this work is actually zlib; ISOBAR is
technically a compression preconditioner. The use of ISOBAR on the same datasets
produced a speed increase while leaving the storage footprint virtually unchanged.
Specifically, we see a median 22% (mean 40%) increase in encoding throughput, with a
corresponding median 0.01% (mean−0.31%) increase in storage.

Table 3. ALACRITY indexing performance, using ISOBAR and zlib as the underlying
compressors

Dataset Index Gen. (MB/s) Storage (data+index)
In Situ Requirement (%)

w/ISOBAR w/zlib w/ISOBAR w/zlib
msg bt 28 21 118.7 119.4
msg lu 26 21 124.4 124.4
msg sp 33 20 120.7 124.0
msg sppm 66 37 60.6 59.6
msg sweep3d 32 22 105.1 96.6
num brain 22 20 124.6 124.5
num comet 32 17 114.0 116.2
num control 27 21 124.1 124.1
num plasma 107 62 50.9 51.4
obs error 42 30 88.1 94.9
obs info 52 37 77.8 75.1
obs spitzer 30 20 94.8 94.4
obs temp 25 21 125.1 125.0
gts phi l 36 21 125.1 125.0
gts phi nl 41 21 125.0 125.0
gts chkp zeon 28 21 125.2 125.1
gts chkp zion 28 21 125.1 125.1
gts potential 48 20 124.9 125.0
xgc iphase 29 22 105.4 105.3
s3d temp 48 19 118.7 123.3
s3d vvel 23 20 125.0 125.0
flash velx 80 21 125.0 125.0
flash vely 83 21 125.0 125.0
flash gamc 83 17 115.1 121.4

End-to-End Query Performance Evaluation

For an end-to-end performance comparison, we perform queries under a number of
scenarios, using the GTS potential (gts potential) and S3D temperature (s3d temp) vari-
ables. We look at two types of range queries: those that return record IDs given con-
straints on variables (which we refer to as “region-centric” queries, as they are used to

ALACRITY: Analytics-Driven Lossless Data Compression 109

retrieve “regions of interest”), and those that additionally output the values of the vari-
ables (which we will refer to as “value-centric” queries). We compare ALACRITY
on each of these query types against FASTBIT, which is optimized for range queries,
especially those of the “region-centric” type.

For both types of queries, we use ALACRITY with index compression, and AL-
ACRITY without it. For region-centric queries, we use k = 3 and FASTBIT precision-3
binning (e.g., bin boundaries use three significant figures). This is so we can avoid
performing costly candidate checks in both FASTBIT and ALACRITY and evaluate
query processing with only the index, corresponding to fully “aligned” queries. For
value-centric queries, we use k = 2 and FASTBIT precision-2 binning. This is done
because value-centric queries are dominated by data retrieval, and the lower-precision
indexes incur lower time to process, at the cost of having higher false positives. As the
majority of the data read in tends to satisfy query constraints due to binning, the cost of
pruning false positives is outweighed by the benefit of a lighter index.

0.02

0.2

2

20

0.001 0.01 0.1 1 10

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

ec
on

ds
)

Query Selectivity

ALAC

ALAC_I

FB-P2

Seq. Scan

0.02

0.2

2

20

0.001 0.01 0.1 1 10

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

ec
on

ds
)

Query Selectivity

ALAC
ALAC_I
FB-P2
Seq. Scan

Fig. 8. Comparison of query response times for varying query selectivity, between ALACRITY
(ALAC), ALACRITY with compressed inverted indexes (ALAC I), FASTBIT (FB-P2) sequen-
tial scan. The left plot is for S3D temperature, while the right plot is for GTS potential.

Value-centric Queries. Figure 8 shows value-based query response time using our
method, compared to FASTBIT’s precision-based indexing (the fastest configuration we
tested), with varying query selectivity. By query selectivity, we refer to the percentage
of the column data returned by a query. For the GTS potential column, we provide a
speedup in the range of 3.2 to 11.9. For the S3D temperature column, a speedup of 5.2
to 9.0 is observed. Due to the clustering of the data, a very small number of I/O seek
operations are needed by our method relative to FASTBIT. Furthermore, the amount of
data read by our method is much lower than that by FASTBIT, as shown in Table 1.
The reason that sequential scan performs better than FASTBIT in this context is that, in
parallel file systems such as Lustre, seeks are a very high-latency operation. For value-
centric queries, FASTBIT incurs a seek per item, whereas sequential scan reads all data
in a single, large read, and so for less selective queries, the seek costs outweigh the read
costs.

110 J. Jenkins et al.

0

0.5

1

1.5

2

2.5

3

3.5

0.001 0.01 0.1 1 10

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

ec
on

ds
)

Selectivity

FB-P3
A
AI

0

0.5

1

1.5

2

2.5

3

3.5

4

0.001 0.01 0.1 1 10

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

ec
on

ds
)

Selectivity

FB-P3
A
AI

Fig. 9. Comparison of response return by FASTBIT (FB-P3) against ALACRITY, with and with-
out inverted index compression (ALAC I and ALAC, respsectively), for region-centric queries
with varying number of query hits. The left and right plot show results for S3D temperature and
GTS potential, respectively.

Region-centric Queries. Figure 9 shows region query response time with varying
number of hits (records returned) for our method compared to FASTBIT with preci-
sion and default binning. As mentioned, the queries were chosen so that no candidate
checks are needed. The precision-based boundaries are the basis for our method and is
base two, while for FASTBIT it is a special configuration using base ten. Overall, it is
seen that query performance time is low in nearly all cases on account of only needing
to process the index, but different configurations of ALACRITY are able to meet or
slightly outperform the FASTBIT alternative, likely due to the lower index size, though
decompression overhead is a concern, as shown in the right plot of Figure 9. For the
GTS potential variable, the compressed index size for k = 3 was less space-efficient
than that for k = 2, making the read+decompress overhead larger than just reading the
raw inverted index.

4.4 Performance Analysis

Figure 10 shows the breakup of overall query processing time into I/O and compute com-
ponents, corresponding to index/bin loading and processing, respectively. The dataset
tested on is S3D using the velocity variable. I/O is the dominant cost of query processing,
while the application of the query constraints and data transformations is a low, though
non-negligible, component. We believe multithreading or asynchronous I/O would be
able to hide most of the compute costs by interleaving it with the more costly I/O
operations.

4.5 Compression

To analyze the performance of our lossless data compression scheme, we compare the
compression ratios obtained with our method (without the inverted index) to those ob-
tained by general-purpose lossless compression utilities, as well as more recent floating-
point compressors. Out of the datasets tested, our method performed better than all of

ALACRITY: Analytics-Driven Lossless Data Compression 111

0

20

40

60

80

100

A A_I A A_I A A_I A A_I A A_I

0.001 0.01 0.1 1 10

Ti
m

e
sp

en
t (

%
)

Query Selectivity

Value-centric Queries I/O CPU

0

20

40

60

80

100

A A_I A A_I A A_I A A_I A A_I

0.001 0.01 0.1 1 10

Ti
m

e
sp

en
t (

%
)

Query Selectivity

Region-centric Queries I/O CPU

Fig. 10. Comparison of computation and I/O time distribution for ALACRITY for different
query types of varying selectivity, on the S3D temperature variable. A: ALACRITY without
bin or inverted index compression. AI : ALACRITY with inverted index compression.

Table 4. Compression ratio and ALACRITY storage components. AB: ALACRITY with bin
compression (using bzip2).

Dataset Compression Ratio Storage Requirement (%)
gzip fpzip bzip2 FPC AB Data Index Metadata

msg bt 1.12 1.20 1.09 1.29 1.40 69.35 1.86 ≈0.00
msg lu 1.05 1.13 1.01 1.17 1.30 74.42 1.97 0.01
msg sp 1.10 1.11 1.06 1.26 1.33 73.98 1.11 ≈0.00

msg sppm 7.41 3.25 7.09 5.30 8.87 9.58 1.66 0.02
msg sweep3d 1.09 1.33 1.32 3.09 2.11 46.60 0.67 0.02

num brain 1.06 1.25 1.06 1.16 1.28 74.50 3.39 ≈0.00
num comet 1.16 1.27 1.17 1.16 1.34 66.16 8.16 0.03

num control 1.05 1.12 1.03 1.05 1.15 74.02 12.22 0.02
num plasma 1.77 1.06 6.17 15.05 75.72 0.70 0.60 0.03

obs error 1.44 1.37 1.36 3.60 2.59 34.07 4.51 ≈0.00
obs info 1.14 1.06 1.22 2.27 3.52 24.97 3.36 0.04

obs spitzer 1.23 1.07 1.78 1.03 1.90 44.36 8.05 ≈0.00
obs temp 1.03 1.09 1.03 1.02 1.13 75.00 12.70 0.03
gts phi l 1.04 1.18 1.02 1.07 1.19 75.00 8.56 0.03

gts phi nl 1.04 1.17 1.01 1.07 1.19 75.00 9.20 0.03
gts chkp zeon 1.04 1.09 1.02 1.01 1.17 75.00 10.04 0.10
gts chkp zion 1.04 1.10 1.02 1.02 1.18 75.00 9.60 0.11

gts potential 1.04 1.15 1.01 1.06 1.18 75.00 9.60 ≈0.00
xgc iphase 1.36 1.53 1.37 1.36 1.58 55.33 7.56 ≈0.00

s3d temp 1.18 1.46 1.15 1.34 1.35 73.38 0.77 ≈0.00
s3d vvel 1.04 1.24 1.02 1.15 1.27 75.00 3.74 ≈0.00

flash velx 1.11 1.34 1.08 1.26 1.32 75.00 0.81 ≈0.00
flash vely 1.13 1.43 1.09 1.29 1.32 75.00 0.80 ≈0.00

flash gamc 1.28 1.62 1.28 1.53 1.40 71.37 0.06 ≈0.00

112 J. Jenkins et al.

the other compressors tested (gzip, fpzip [17], bzip2, and FPC [7]) on 18 of 24. FPC
gave superior performance compared to our method on two of the 27 datasets, while
fpzip gave better performance on the remaining four. Overall, our method was consis-
tent in yielding comparable or better compression ratios than the other compressors,
providing evidence of strong compression ratios in other application datasets.

To justify our superior performance on most of the datasets, we argue that the bin-
based compression of the data generally allows a much greater exploitation of existing
compression algorithms than the normal distribution of scientific data that was passed
to the other compressors. The reorganization of the data allowed bzip2 to be utilized
as best as possible, causing the data to be reduced significantly because of the splitting
of the low-entropy and high-entropy sections of the data. As evidenced by the small
compressed index and metadata sizes, the reorganization is a low-overhead operation
with respect to storage. We attribute the better performance of FPC and fpzip on some of
the datasets to the encoding of data dependency which the FCM [28], DFCM [10], and
Lorenzo [12] predictors used by FPC and fpzip were able to capture in their predictions.

5 Conclusion

As the size of scientific datasets in various disciplines continues to grow, new methods
to store and analyze the datasets must be developed, as I/O capabilities are not grow-
ing as quickly, and new technologies (such as SSDs) are not currently able to achieve
the storage density and cost-efficiency of traditional mechanical disk drives. Successful
methods of mitigating this growing gap must involve data reduction in all stages of the
knowledge discovery pipeline, including storage of raw data as well as analytics meta-
data. We believe our work in this paper in compression, indexing, and query processing
of scientific data represents a step in the right direction, allowing both efficient lossless
compression of floating-point data for accuracy-sensitive applications as well as effi-
cient query processing on variable constraints, all with less space and I/O requirements
than other database technologies.

Acknowledgements. We would like to acknowledge the use of resources at ORNL’s
leadership class computing facility, OLCF. Also, we appreciate the use of the datasets
available from the Flash Center for Computational Science. This work was supported in
part by the U.S. Department of Energy, Office of Science and the U.S. National Science
Foundation (Expeditions in Computing and EAGER programs). Oak Ridge National
Laboratory is managed by UT- Battelle for the LLC U.S. D.O.E. under contract no.
DEAC05- 00OR22725.

References

1. IEEE standard for floating-point arithmetic. IEEE Standard 754-2008 (2008)
2. Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in column-

oriented database systems. In: Proceedings of the 2006 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2006, pp. 671–682. ACM, New York (2006)

ALACRITY: Analytics-Driven Lossless Data Compression 113

3. Anh, V.N., Moffat, A.: Index compression using fixed binary codewords. In: Proceedings
of the 15th Australasian Database Conference, ADC 2004, vol. 27, pp. 61–67. Australian
Computer Society, Inc., Darlinghurst (2004)

4. Antoshenkov, G.: Byte-aligned bitmap compression. In: Data Compression Conference, p.
476 (1995)

5. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNeice, P.,
Rosner, R., Truran, J.W., Tufo, H.: FLASH: An adaptive mesh hydrodynamics code for mod-
eling astrophysical thermonuclear flashes. The Astrophysical Journal Supplement Series 131,
273–334 (2000)

6. Burtscher, M., Ratanaworabhan, P.: High throughput compression of double-precision
floating-point data. In: IEEE Data Compression Conference, pp. 293–302 (2007)

7. Burtscher, M., Ratanaworabhan, P.: FPC: A high-speed compressor for double-precision
floating-point data. IEEE Transactions on Computers 58, 18–31 (2009)

8. Chen, J.H., Choudhary, A., Supinski, B., DeVries, M., Hawkes, E.R., Klasky, S., Liao, W.,
Ma, K., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S., Yoo, C.: Terascale
direct numerical simulations of turbulent combustion using S3D. Comp. Sci. and Discov-
ery 2(1)

9. Comer, D.: The ubiquitous B-Tree. ACM Comput. Surv. 11, 121–137 (1979)
10. Goeman, B., Vandierendonck, H., Bosschere, K.D.: Differential FCM: Increasing value pre-

diction accuracy by improving table usage efficiency. In: Seventh International Symposium
on High Performance Computer Architecture, pp. 207–216 (2001)

11. Graefe, G., Shapiro, L.: Data compression and database performance. In: Proceedings of the
1991 Symposium on Applied Computing, pp. 22–27 (April 1991)

12. Ibarria, L., Lindstrom, P., Rossignac, J., Szymczak, A.: Out-of-core compression and de-
compression of large n-dimensional scalar fields. Computer Graphics Forum 22, 343–348
(2003)

13. Isenburg, M., Lindstrom, P., Snoeyink, J.: Lossless compression of predicted floating-point
geometry. Computer-Aided Design 37(8), 869–877 (2005); CAD 2004 Special Issue: Mod-
elling and Geometry Representations for CAD

14. Iyer, B.R., Wilhite, D.: Data compression support in databases. In: Proceedings of the 20th
International Conference on Very Large Data Bases, VLDB 1994, pp. 695–704. Morgan
Kaufmann Publishers Inc., San Francisco (1994)

15. Jenkins, J., et al.: Analytics-driven lossless data compression for rapid in-situ indexing, stor-
ing, and querying. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012,
Part II. LNCS, vol. 7447, pp. 16–30. Springer, Heidelberg (2012)

16. Ku, S., Chang, C., Diamond, P.: Full-f gyrokinetic particle simulation of centrally heated
global ITG turbulence from magnetic axis to edge pedestal top in a realistic Tokamak geom-
etry. Nuclear Fusion 49(11), 115021 (2009)

17. Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data. IEEE
Transactions on Visualization and Computer Graphics 12, 1245–1250 (2006)

18. Schendel, E.R., Jin, Y., Shah, N., Chen, J., Chang, C., Ku, S.-H., Ethier, S., Klasky, S.,
Latham, R., Ross, R., Samatova, N.F.: ISOBAR preconditioner for effective and high-
throughput lossless data compression. In: Proceedings of the 28th International Conference
on Data Engineering, ICDE 2012. IEEE (2012)

19. Sinha, R.R., Winslett, M.: Multi-resolution bitmap indexes for scientific data. ACM Trans.
Database Syst. 32 (2007)

20. Wang, W.X., Lin, Z., Tang, W.M., Lee, W.W., Ethier, S., Lewandowski, J.L.V., Rewoldt, G.,
Hahm, T.S., Manickam, J.: Gyro-kinetic simulation of global turbulent transport properties
in Tokamak experiments. Physics of Plasmas 13(9), 092505 (2006)

21. Westmann, T., Kossmann, D., Helmer, S., Moerkotte, G.: The implementation and perfor-
mance of compressed databases. SIGMOD Rec. 29(3), 55–67 (2000)

114 J. Jenkins et al.

22. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing Docu-
ments and Images, 2nd edn. Morgan Kaufmann (1999)

23. Wu, K.: Fastbit: an efficient indexing technology for accelerating data-intensive science.
Journal of Physics: Conference Series 16, 556 (2005)

24. Wu, K., Ahern, S., Bethel, E.W., Chen, J., Childs, H., Cormier-Michel, E., Geddes, C., Gu,
J., Hagen, H., Hamann, B., Koegler, W., Lauret, J., Meredith, J., Messmer, P., Otoo, E.,
Perevoztchikov, V., Poskanzer, A., Prabhat, Rubel, O., Shoshani, A., Sim, A., Stockinger, K.,
Weber, G., Zhang, W.-M.: FastBit: interactively searching massive data. Journal of Physics:
Conference Series 180(1), 012053 (2009)

25. Wu, K., Otoo, E., Shoshani, A.: On the performance of bitmap indices for high cardinality
attributes. In: Proc. of the Thirtieth International Conference on Very Large Data Bases,
VLDB 2004, vol. 30, pp. 24–35 (2004)

26. Wu, K., Otoo, E.J., Shoshani, A.: Optimizing bitmap indices with efficient compression.
ACM Trans. Database Syst. 31, 1–38 (2006)

27. Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with optimized
document ordering. In: Proceedings of the 18th International Conference on World Wide
Web, WWW 2009, pp. 401–410. ACM, New York (2009)

28. Yiannakis, S., Smith, J.E.: The predictability of data values. In: Proceedings of the 30th An-
nual ACM/IEEE International Symposium on Microarchitecture, MICRO 30, pp. 248–258.
IEEE Computer Society, Washington, DC (1997)

29. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys 38(2)
(July 2006)

30. Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar ram-cpu cache compression.
In: Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006,
pp. 59–71. IEEE Computer Society, Washington, DC (2006)

A Declarative Approach to View Selection
Modeling

Imene Mami, Zohra Bellahsene, and Remi Coletta

University Montpellier 2, LIRMM, France
{mami,bella,coletta}@lirmm.fr

Abstract. View selection is important in many data-intensive systems
e.g., commercial database and data warehousing systems. Given a database
(or a data warehouse) schema and a query workload, view selection is to
choose an appropriate set of views to be materialized that optimizes the
total query cost, given a limited amount of resource, e.g., storage space
and total view maintenance cost. The view selection problem is known to
be a NP-complete problem. In this paper, we propose a declarative ap-
proach that involves a constraint programming technique which is known
to be efficient for the resolution of NP-complete problems. The originality
of our approach is that it provides a clear separation between formulation
and resolution of the problem. For this purpose, the view selection prob-
lem is modeled as a constraint satisfaction problem in an easy and declara-
tive way. Then, its resolution is performed automatically by the constraint
solver. Furthermore, our approach is flexible and extensible, in that it can
easily model and handle new constraints and new heuristic search strate-
gies to reduce the solution space. The performance results show that our
approach outperforms the genetic algorithm which is known to provide
the best trade-off between quality of solutions in terms of cost saving and
execution time.

keywords: Database design, modeling and management, query process-
ing and optimization, view selection, materialized views.

1 Introduction
Selecting the best set of views to materialize for a given query workload, un-
der certain resource constraints, is one of the most common problems in com-
mercial database management systems and data warehousing systems. In many
applications, and in particular in a data warehouse application, queries need to
be answered over massive amounts of data. Materializing and exploiting previ-
ous query results (views) can be important for efficient processing of queries by
avoiding re-computation of expensive query operations. Consequently, answering
queries using materialized views is significant for improving query performance.
To support view selection process, different related issues have to be considered.
One of the challenging issues is the view maintenance which is the process of
updating a materialized view. Indeed, whenever a data source is changed, the
materialized views built on it have to be updated (or at least have to be checked

A. Hameurlain et al. (Eds.): TLDKS X, LNCS 8220, pp. 115–145, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

116 I. Mami, Z. Bellahsene, and R. Coletta

whether some changes have to be propagated or not) in order to compute up-to-
date query results. The view maintenance cost constraint is very important in
the view selection process and cannot be ignored. Otherwise, the cost of the view
maintenance may offset the performance advantages provided by the view mate-
rialization. Besides the view maintenance issue, each materialized view requires
additional storage space which must be taken into account when deciding which
and how many views to materialize. Hence, there is a need for selecting a set
of views to materialize by taking into account three important features: query
cost, view maintenance cost and storage space. The problem of choosing which
views to materialize that minimize the total query cost given a limited amount
of resource such as total view maintenance cost and storage space is known as
the view selection problem. This is one of the most complex problem solving: it
is known to be a NP-complete problem [11]. Moreover, the number of possible
view combinations to materialize grows exponentially with the number of queries
and with the numbers of columns, join predicates and grouping clauses.

There has been much work on materialized view selection. A naive method
is to apply an algorithm which finds the optimal set of materialized views by
browsing through all sets of considered views to materialization. However, an
exhaustive search cannot be applied due to the complexity of the problem. The
most efficient method for deciding which views to be materialized for a given
workload is a randomized method which uses the genetic algorithm [5,18,33].
The main difference between the genetic algorithm and previously designed al-
gorithms, i.e., greedy algorithms [7,8,24,28,32] is that it can be applicable on the
large search space. It can find a reasonable solution within a relatively short pe-
riod of time by trading executing time for quality. However, there is no guarantee
of performance because the probabilistic behavior of the genetic algorithms does
not insure to find the global optimum. Besides, the quality of the solution (i.e.,
the quality of the obtained set of materialized views in terms of cost saving) de-
pends on the set-up of the algorithm as well as the extremely difficult fine-tuning
of the algorithm that must be performed during many test runs.

In this paper, we have proposed a constraint programming based approach.
Constraint programming is a general framework which relies on a combination
of techniques that deal with reasoning. It has been applied with success to many
domains such as scheduling, planning, vehicle routing, configuration, networks
and bioinformatics. More recently, constraint programming has been considered
as beneficial in data mining setting [25]. Our motivation to use constraint pro-
gramming in solving the view selection problem is that it is known to be efficient
for the resolution of NP-complete problems and a powerful method for modeling
and solving combinatorial optimization problems [26]. To solve a given problem
by means of constraint programming, the problem must be represented as a con-
straint satisfaction problem. This part of the problem solving is called modeling.
Then, the resolution of the modeled problem is performed automatically by the
constraint solver in the solving stage. The originality of our approach is that it
provides a clear separation between formulation and resolution of the problem.
Indeed, constraint programming is a declarative programming paradigm: instead

A Declarative Approach to View Selection Modeling 117

of specifying how to solve the problem, the user has only to specify the problem
itself.
Our Goals. Based on the application workload, we select a set of views to
materialize over a database (or data warehouse) schema, such that the cost of
evaluating queries is minimal, subject to space and maintenance cost constraints.
Our goal is to provide better solution quality (i.e., the quality of the obtained
set of materialized views in terms of cost saving) with respect to the currently
most efficient approach (genetic algorithm). The focus of this study is also to
enable optimal view selection by using constraint programming techniques.
Our Contributions. We propose a novel and efficient approach to address
the view selection problem. Our approach is based on constraint programming
techniques and consists in modeling in a declarative way the view selection as a
constraint satisfaction problem. We formalize and study the view selection prob-
lem under a limited amount resource, e.g., storage space and view maintenance
cost. The contributions of this paper are based on the extension of our previous
work [23].
– We include further explanations and illustrations through the paper, i.e.,

how the constraint programming can be applied to decide which views to
materialize (see section 3.2).

– We propose a heuristic search strategy to efficiently search the solution space
(see section 5.2.2). We prove that the time that a constraint solver incurs
for finding near optimal and optimal solutions is significantly reduced (see
section 6.2).

– We also show the effectiveness of our heuristic based search strategy which
improves in several magnitudes the quality of the solution provided by the
previous version [23]. Hence, our approach achieves significant performance
gains compared with the genetic algorithm in terms of cost saving (see section
6.3.1 and 6.3.2). While in our previous work [23] we achieved only a slight
improvement.

– We design new and various experiments to prove the efficiency of our ap-
proach when we simulate diverse query workloads by generating different
query and update distribution and query complexity. The results show that,
over all the experiments, the performance of our approach is much better
than that of the genetic algorithm (see section 6.3.3 and 6.3.4).

– We perform real experiments on MySQL server in order to measure the real
query runtime (see section 6.4). The results of these experiments have shown
that queries using our proposed views are evaluated faster in comparison with
those found by the genetic algorithm. These experiments also confirm the
robustness of our approach toward simplified cost models. This requirement
is very important for database optimization as it is based on cost estimations.

Paper Outline. The rest of this paper is organized as follows. After review-
ing and classifying prior work in the view selection context, Section 3 contains
the background related to understand the view selection problem and discusses
the settings for the problem. In Section 4, we present the framework that we
have used for representing views to materialize in order to exhibit common sub-
expressions. Section 5 describes how to model the view selection problem as a

118 I. Mami, Z. Bellahsene, and R. Coletta

constraint satisfaction problem as well as the heuristic search strategy that we
have designed for optimization purpose. Section 6 gives a performance analy-
sis comparing our approach with the genetic algorithm. The paper ends with a
summary and future works in Section 7.

2 Related Work
In this section, we review the view selection methods based on what kind of algo-
rithms they use to address the view selection problem. The best-known heuristic
algorithms proposed in literature to tackle the problem of finding an appropriate
set of views to materialize can be classified into three major groups: deterministic
algorithms, randomized algorithms and hybrid algorithms. For a deeper review
of the existing view selection approaches, we refer the reader to the survey that
we have done in our previous work [21].

Deterministic Algorithms Based Methods. Much research work on view
selection uses deterministic strategies to address the view selection problem. [27]
is the first paper that provides a solution for materializing view indexes which
can be seen as a special case of the materialized views. The solution is based
on A* algorithm. An exhaustive approach is also presented in [16] for finding
the best set of views to materialize. Nevertheless, an exhaustive search cannot
compute the optimal solution in a reasonable time.

The authors in [9] present and analyze algorithms for view selection in case
of OLAP-style queries. They provide a polynomial-time greedy algorithm to
select a set of views to materialize that minimizes the query cost subject to a
space constraint. However, this approach does not consider the view maintenance
cost. The work in [32] is dealing with more general SQL queries which include
select, project, join, and aggregation operations. A greedy algorithm has been
designed to select a set of materialized views so that the combined query and
view maintenance cost is minimized. However, the view maintenance cost has
been overrated since the maintenance cost for a materialized view is the cost
used for constructing this view. Besides, the view selection is done without any
resource constraint.

A theoretical framework for the view selection problem in data warehousing
setting has been developed in [7]. Their work provides a near-optimal polynomial
time greedy algorithm for the cases of AND view graph, where each query (or
view) has a unique evaluation, and OR view graph, in which any view can
be computed from any one of its related views. For the most general case of
AND-OR view graph which allows a single query to be answered and updated
from multiple paths, they have designed a near-optimal exponential time greedy
algorithm. This approach was extended in [8] to study the view selection under
a maintenance cost constraint.

The view selection has been studied in [19,30,31] under the condition that
the input queries can be answered using exclusively the materialized views. An
exhaustive algorithm has been designed in [31] to select a set of materialized
views while minimizing the combination of the query and view maintenance cost.
This work was extended in [19] by developing greedy algorithms that expand only

A Declarative Approach to View Selection Modeling 119

a small fraction of the states produced by the exhaustive algorithm. The view
selection problem in [30] is addressed under a space constraint. However, their
view selection algorithm is still in exponential time.

The system designed in [3] runs a greedy enumeration algorithm to pick a set
of views and indexes to materialize by taking into account the space constraint.
Nevertheless, this approach does not take into account the view maintenance
cost.

The authors in [28] demonstrate that using multi-query optimization tech-
niques in conjunction with a greedy heuristic provides significant benefit. The
greedy heuristic is used to iteratively pick from the AND-OR view graph the set
of views to materialize that minimizes the query cost. This study was extended
in [24] to consider how to optimize the view maintenance cost. However, the
view selection has been studied without any resource constraint.

In order to improve the query performance as well as save the storage space,
the study in [29] aims at materializing only a part of the relations instead of
considering all tuples in the relations. An efficient algorithm has been designed
which uses clustering techniques to select the set of views to be materialized.

The above methods take a deterministic approach either by exhaustive search
or by some heuristics such as greedy. However, greedy search is subjected to
the known caveats, i.e., sub-optimal solutions may be retained instead of the
globally optimal one since initial solutions influence the solution greatly. As a
result, other algorithms have been developed to improve the solutions of the
view selection problem, namely: randomized algorithms and hybrid algorithms
which we describe in next sections.

Randomized Algorithms Based Methods. Typical randomized algorithms
are genetic or use simulated annealing. Genetic algorithms generate solutions
using techniques inspired by the natural evolution process such as selection,
mutation, and crossover. The search strategy for these algorithms is very similar
to biological evolution. Genetic algorithms start with a random initial population
and generate new populations by random crossover and mutation. The fittest
individual found is the solution. The algorithms terminate as soon as there is no
further improvement over a period.

A genetic algorithm has been used in [33] to solve the view selection problem.
The materialized views have been selected according to their reduction in the
combined query and view maintenance cost. However, because of the random
characteristic of the genetic algorithm, some solutions can be infeasible. For
example, in the maintenance cost constrained model, when a view is selected,
the benefit will not only depend on the view itself but also on other views that
are selected. One solution to this problem is to add a penalty value as part of the
fitness function to ensure that infeasible solutions will be discarded. For instance,
a penalty function has been applied in [18] which reduces the fitness each time
the maintenance cost constraint is not satisfied. This approach minimizes the
query cost given varying upper bounds on the view maintenance cost, assuming
unlimited amount of storage space. In order to let the genetic algorithm converge
faster, they represent the initial population as a favorable configuration based

120 I. Mami, Z. Bellahsene, and R. Coletta

on external knowledge about the problem and its solution rather than a random
sampling, i.e., the views with a high query frequency are most likely selected for
materialization.

The approach proposed in [10] use simulated annealing algorithms to address
the view selection problem. These algorithms are motivated by an analogy to
annealing in solids. Simulated Annealing algorithms start with an initial configu-
ration, generate new configurations by random walk along the different solutions
of the solution space according to a cooling schedule and terminate as soon as
no applicable ones exist or lose all the energy in the system. The view selection
problem is solved in [10] under the case where either the space constraint or
the maintenance cost constraint is considered. Further, randomized search has
been applied to solve two more issues. First, they considered the case where both
space and maintenance constraints exist. Next they applied a randomized search
in the context of dynamic view selection.

In contrast with simulated annealing algorithms, genetic algorithms use a
multi-directional search which allows to efficiently search the space and find bet-
ter solution quality. For more details about this observation we refer the reader to
[18]. Randomized algorithms can be applied to complex problems dealing with
large or even unlimited search spaces. Recent works [13,14] have shown that
randomized search heuristic techniques, in comparison to greedy techniques, are
able to select comparatively better quality views for higher dimensional data
sets. However, they may have a tendency to converge toward local optima due
to their random characteristics. Besides, their successes often depend on the set-
up of the algorithm as well as the extremely difficult fine-tuning of algorithm
that must be performed during many test runs.

Hybrid Algorithms Based Methods. Hybrid algorithms combine the strate-
gies of deterministic and randomized algorithms in their search in order to
provide better performance in terms of solution quality. Solutions obtained by
deterministic algorithms are used as initial configuration for simulated annealing
algorithms or as initial population for genetic algorithms.

A hybrid approach has been applied in [34] which combines heuristic al-
gorithms i.e., greedy algorithms and genetic algorithms to solve three related
problems. The first one is to optimize queries. The second one is to choose
the best global processing plan from multiple processing plans for each query.
The third problem is to select materialized views from a given global process-
ing plan. Their experimental results confirmed that hybrid algorithms provide
better performance than either genetic algorithms or heuristic algorithms i.e.,
greedy algorithms used alone in terms of solution quality. However, their algo-
rithms are more time consuming and may be impractical due to their excessive
computation time.

3 Background
3.1 View Selection Problem and Cost Model

View Selection Problem The problem of view selection that we consider in this
paper is to select a set of views to be materialized in order to speed up a given set

A Declarative Approach to View Selection Modeling 121

of queries constrained by a storage space capacity and maintenance costs to keep
the materialized views in synchronization with the underlying base relations.

More precisely, the view selection problem can be defined as follows: Given a
queryworkloadQ = {q1, q2, ..., qq}and their query frequencyfQ = {fq1 , fq2 , ..., fqq}
over a given database (or data warehouse) schema R = {r1, r2, ..., rr}, a set of
updates U = {u1, u2, ..., uu} on base relations and their update frequency fU =
{fur1, fur2, ..., furr} and a limited amount of resource, e.g., storage space Spmax

and view maintenance cost limit Umax, the problem is to find a set of views to ma-
terialize MV = {v1, v2, ..., vv} such as the cost of evaluating the query workload is
minimal.

Cost Model The cost model assigns an estimated cost e.g., query cost or
maintenance cost to any view (or query) in the search space. In our approach,
we use a cost model similar to [6,20]. Hence, the query and view maintenance
costs are estimated with respect to CPU and IO costs. In this paper we consider
selection-projection-join (SPJ) queries that may involve aggregation and a group
by clause as well. The formulas used for cost operations estimation are given
below with the following assumptions:

– Formulas to estimate the cost of executing every relational operation take
into account its implementation, e.g., we consider sequential scans and nested
loop joins.

– The CPU cost is estimated as the time needed to process each tuple of the
relation e.g., checking selection conditions.

– The IO cost estimation is the time necessary for fetching each tuple of the
relation.

– The costs are estimated according to the size of the involved relations and
in terms of time.

Estimated Cost of Relational Operations

– Estimated cost of unary operations
• cost(op) = (IO ∗ card ∗ length) + (CPU ∗ card ∗ lengthP) where op is a

selection operation
• cost(op) = (IO ∗ card ∗ log(card) ∗ length) + (CPU ∗ card ∗ log(card) ∗
lengthP) where op is a projection operation

• cost(op) = (IO ∗ card ∗ length)+ (CPU ∗ card ∗ lengthA) where op is an
aggregation operation

– Estimated cost of binary operations
• cost(op) = (IO ∗ lcard ∗ rcard ∗ (llength+ rlength)) + (CPU ∗ lcard ∗

rcard ∗ lengthP) where op is a join operation

Where card is the number of tuples of the operand, length is the length
(in bytes) of a tuple, lengthP is the length of columns checked by predicates,
lengthA is the length of the tuples being aggregated, lcard and rcard are respec-
tively the number of tuples of the left and right operands (the same for llength
and rlength).

122 I. Mami, Z. Bellahsene, and R. Coletta

Fig. 1. Search tree using constraint propagation

3.2 Constraint Programming Notions
Constraint programming has been successfully applied in numerous combinato-
rial search problems [26] such as scheduling and timetabling. Constraint program-
ming allows to solve combinatorial problems modeled as a Constraint Satisfaction
Problem (CSP). Indeed, the principle idea of constraint programming is to solve
problems by stating constraints which must be satisfied by the solution.

Formally, a CSP is defined by a triplet (VAR;DOM;CST):

– Variables. V AR = {var1, var2, ..., varn} is the set of variables of the problem.
– Domains. DOM = {dvar1 , dvar2 , ..., dvarn} is the set of possible values that

can be assigned to each variable vari.
– Constraints. CST = {c1, c2, ..., cn} is the set of constraints that describes

the relationship between subsets of variables. Formally, a constraint Cijk

between the variables vari, varj , vark is any subset of the possible combi-
nations of values of vari, varj , vark, i.e., Cijk ⊂ dvari × dvarj × dvark . The
subset specifies the combinations of values that the constraint allows.

A feasible solution to a CSP is an assignment of a value from its domain
to every variable, so that the constraints on these variables are satisfied. For
optimization purpose some cost expression on these variables takes a maximal
or minimal value.

Most algorithms for solving CSPs usually use constraint propagation to reduce
the size of the search space to be explored [15]. When a value of a variable is
fixed, constraint propagation is applied to restrict the domains of other variables
whose values are not currently fixed. This means that when a value is assigned to

A Declarative Approach to View Selection Modeling 123

the current variable, any value in the domain of a future variable which conflicts
with this assignment is removed from the domain.

Let us now illustrate this in the context of view selection problem. Figure 1
shows the domain reduction of four variables Matv1 , Matv2 , Matv3 and Matv4
where Matvi denotes for each view vi if it has been materialized or has not been
materialized. It is a binary variable, dMatvi

={0,1} (0: vi has not been material-
ized, 1: vi has been materialized). The problem is to select a set of views to mate-
rialize subject to a space and maintenance cost constraints. The space constraint
ensures that the total space occupied by the materialized views is less than Spmax.
Let as assume that Spmax=3MB, size(v1)=4MB, size(v2)=2MB, size(v3)=1MB
and size(v4)=1MB; where size(vi) is the size of the view vi. While, the mainte-
nance cost constraint guarantees that the time to update the set of materialized
views is less than Umax. Note that Umax = 3sec, Mc(v1)=1sec, Mc(v2)=2sec,
Mc(v3)=2sec and Mc(v4)=5sec; where Mc(vi) denotes the cost of maintaining
the view vi.

At the beginning, the initial variable domains, dMatv1
=dMatv2

=dMatv3
=dMatv4

={0,1}, are represented by four columns of white squares. Considering the space
and maintenance cost constraints, it appears that Matv1 and Matv4 cannot take
the value 1 because otherwise the total space and maintenance cost of the ma-
terialized views will be respectively greater than Spmax and Umax. In the stage
(1), red

Matv1
size(v1)>Spmax

and red
Matv4
Mc(v4)>Umax

filters respectively the inconsistent
value 1 from dMatv1

and dMatv4
. The deleted values are marked with a black

square. After this stage some variable domains are not reduced to singletons,
the constraint solver takes one of these variables and tries to assign to it each
of the possible values in turn. For example, if the solver selects the view v2 to
be materialized (Matv2 = 1, see stage (2)), red

Matv3
Mc(v2)+Mc(v3)>Umax

eliminates
the value 1 from dMatv3

. Otherwise, if the view v3 is selected to be materialized
(Matv3 = 1, see stage (3)), redMatv2

Mc(v2)+Mc(v3)>Umax
withdraws the value 1 from

dMatv2
. This enumeration stage leads in our example to two solutions. These

solutions are of various quality or cost.
In addition to providing a rich constraint language to model a problem as a

CSP and techniques such as constraint propagation to reduce the search space by
excluding solutions where the constraints become inconsistent, constraint pro-
gramming offers facilities to control the search behavior. This means that search
strategies can be defined to decide in which order to explore the created child
nodes in an enumeration tree which can significantly reduce the execution time.
Furthermore, constraint programming provides ways to limit the tree search re-
garding different criteria. For instance performing the search until reaching a
feasible solution in which all constraints are satisfied, or until reaching a search
time limit or until reaching the optimal solution.

4 Framework for Detecting Common Views

In our approach, the task of a view selection module is to recognize possibilities
of shared views and then to apply a strategy that use constraint programming

124 I. Mami, Z. Bellahsene, and R. Coletta

(a) AND view graph (b) AND-OR view graph

Fig. 2. DAG representation of two queries q1 and q2

techniques for deciding which views to materialize. The first task involves setting
up the search space by identifying common sub-expressions between the differ-
ent queries of workload. This feature can be exploited for sharing computation,
updates and storage space. The most commonly used frameworks in the context
of representing SQL queries in order to exhibit common sub-expressions are the
AND view graph and the AND-OR view graph. In what follows, we start by
giving a formal definition of these representations.

Definition 4.1 (AND View Graph) An AND view graph is formed from the
union of individual AND-DAG representations of each query. An AND-DAG
representation for a query or a view v is a directed acyclic graph having the base
relations as leaf nodes and the node v as a root node and consists of a set of
operation nodes (Op-Nodes) and equivalence nodes (Eq-Nodes). The Op-nodes
have only Eq-nodes as children and Eq-nodes have only Op-nodes as children.
Each Op-Node corresponds to an algebraic expression (Select-Project-Join) with
possible aggregate function. It represents the expression defined by the operand
and its inputs. An Eq-Node represents an expression that is defined by the child
operation node and its inputs. Each Eq-Node represents a view that could be
selected for materialization. In an AND-DAG representations, each Op-node opi
has associated with it an AND arc which is indicated by drawing a semicircle,
through the edges (opi,vc1),(opi,vc2),...,(opi,vci). This dependence means that
all the views vc1 , vc2 ,...,vci that are the child nodes of opi are needed to compute
the view vp which is the parent node of opi.

Definition 4.2 (AND-OR View Graph) A graph is called an AND-OR view
graph if for each query or a view v, there is an AND-OR-DAG representation. All
the possible AND-DAG representations for v, described in the previous definition,

A Declarative Approach to View Selection Modeling 125

become the AND-OR DAG which consists of all possible execution plans for v. If
a parent view vp has outgoing edges to children operation nodes op1,op1,...,opi,
then vp can be computed from any one of its children. This dependence is indi-
cated by drawing a semicircle, called an OR arc. The AND-OR view graph can
be constructed by merging the AND-OR DAG for each query where the common
sub-expressions are represented once.

The DAG representation of the queries q1: P �� PS �� S and q2: PS �� S ��
N, are shown in figure 2. The subscripts P, PS, S and N denote respectively the
base relations of TPC-H benchmark: Part, PartSupp, Supplier and Nation. In
the AND view graph (see figure 2a), there is only one way to answer or update
a view (or query). Indeed, the views P-PS-S and PS-S-N, corresponding respec-
tively to the result of the query q1 and q2, can be computed or updated on only
one way (it consider optimal query plans):

q1:((P �� PS) �� S)
q2:((PS �� S) �� N)

However, all possible ways for evaluating the queries have been considered in
the AND-OR view graph (see figure 2b). For simplicity, we represent only two
execution plans for the view P-PS-S which is the query result of q1 and one
execution plan for the view PS-S-N that is the query result of q2:

q1:{((P �� PS) �� S), (P �� (PS �� S))} // two execution plans
q2:((PS �� S) �� N) // one execution plan

The remaining execution plans are just indicated in figure 2b by dashed lines.
In this paper, we use the AND-OR view graph to compactly represent alter-

native query plans and exhibit common subexpression. For more details about
constructing the AND-OR view graph for the queries of workload, we may refer
the reader to [28].

Our motivation to use the AND-OR representation rather than the AND
representation since the latter makes local optimal choices, and may miss global
optimal plans. The choice of materialized views must be done in conjunction
with choosing execution plans for queries. For instance, a plan that seems quite
inefficient could become the best plan if some intermediate result of the plan is
chosen to be materialized and maintained as the following example demonstrates
it.

Example. Let us consider the views P-PS-S and PS-S-N which are respectively
computed by using the plan ((P �� PS) �� S) and the plan ((PS �� S) �� N), as it is
shown in figure 2a. These execution plans represent the optimal plans for q1 and
q2. However, if we choose the alternative plan (P �� (PS �� S)) to compute the
view P-PS-S, the view PS-S becomes a common subexpression (see figure 2b).
It can be computed once and used for both queries q1 and q2. This alternative
with sharing of the view PS-S may be the global optimal choice.

126 I. Mami, Z. Bellahsene, and R. Coletta

In the context of view maintenance, common sub-expressions can be exploited
to find an efficient plan for maintenance of a set of views. Indeed, the view P-PS-
S may also be used for sharing updates and hence reducing the view maintenance
cost.

Note that in the AND-OR view graph, each equivalence node, which represents
a candidate view vi to materialization, has the following parameters associated
to it: Query cost Qc (the evaluation cost of the cheapest embedded expression
AND-DAG for vi), maintenance cost Mc (the cost required for updating vi when
the related base relations are changed), reading cost Rc, query frequency fq (if
the equivalence node is a root node) and the update frequency fu (the frequency
of updating vi in response to change to the underlying data). To each operation
node opi, that represents a relational operator, a cost is associated with it which
is the cost incurred during the computation of the parent node of opi from the
children nodes of opi.

The view selection problem for AND-OR view graphs can be formulated as
follows: Given an AND-OR view graph G, a maximum storage space Spmax

(available space), a total view maintenance limit Umax(available maintenance
time), the problem is to select a set of views to be materialized MV , a subset
of the equivalence nodes of G, that minimizes the total query cost, under the
constraint that the total space occupied by MV is less or equal than Spmax and
the total maintenance time of MV (i.e., view maintenance cost) is less or equal
than Umax.

5 Our View Selection Approach

Let us now introduce the constraint satisfaction model that we have proposed
for the view selection problem. We then present the search strategy that we have
defined within the constraint solver for optimization purpose.

5.1 Modeling View Selection Problem as a Constraint Satisfaction
Problem (CSP)

This section describes how to model the view selection problem as a CSP. Then,
its resolution is supported automatically by the constraint solver. In the follow-
ing, we define all the symbols as well as the variables that we have used in our
constraint satisfaction model.

– G. The AND-OR view graph described in the previous section.
– Q(G). The views which correspond to the query results (the root nodes in

the AND-OR view graph G).
– V (G). The set of views in G which are candidate to materialization.
– U(vi). The set of updates on vi in response to changes of the associated base

relations.
– δ(vi, u): The differential result of view vi with respect to update u.
– fq(vi). The access frequency or importance of the associated view (or query)

vi.

A Declarative Approach to View Selection Modeling 127

– fu(vi). The frequency of propagating the changes of each associated base
relation to the view vi.

– Spmax. The maximum storage space that can be used to view materializa-
tion.

– Umax. The time that can be allotted to keep up to date the materialized
views.

– size(vi). The size of the view vi in terms of number of bytes.

CSP Variables and Their Domains

– Matvi . The materialization variable which denotes for each view vi (equiv-
alence node in the AND-OR view graph G), if it is materialized or not
materialized. It is a binary variable, dMatvi

={0,1} (0: vi is not materialized,
1: vi is materialized).

– Qc(vi). The query cost corresponding to the view vi. The domain is a finite
subset of N∗ such as dQc(vi) ⊂ N∗.

– Mc(vi). The maintenance cost corresponding to a view vi, where dQc(vi) ⊂
N∗.

The view selection problem can be formulated by the following constraint sat-
isfaction model. It consists in specifying in a declarative way the CSP variables,
their domains, and the constraints that are over them.

minimize
∑

vi∈Q(G)

(
fq(vi) ∗Qc(vi)

)
(1)

subject to
∑

vi∈V (G)

(
Matvi ∗ size(vi)

)
≤ Spmax (2)

∑
vi∈V (G)

(
Matvi ∗ fu(vi) ∗Mc(vi)

)
≤ Umax (3)

In our approach, the main objective is the minimization of the total query cost.
It is computed by summing over the cost of processing each input query rewritten
over the materialized views. Constraints (2) and (3) state that the views are
selected to be materialized under a limited amount of resources. Constraint (2)
ensures that the total space occupied by the materialized views is less than or
equal to the maximum storage space capacity. Constraint (3) guarantees that
the total maintenance cost of the set of materialized views is less than or equal
to the total view maintenance cost limit.

The query and maintenance costs corresponding to a view are implemented by
using a depth-first traversal of the AND-OR view graph. We have been inspired
by the formulas described in [24,28] to compute these two costs. Note that the
query and maintenance costs corresponding to a base relation are equal to zero.
They may be formulated as follows.

128 I. Mami, Z. Bellahsene, and R. Coletta

Query Cost

Qc(vi) =

{
CCost(vi) if Matvi = 0
Rc(vi) otherwise

(4)

where

CCost(vi) = min
opj∈child(vi)

(
cost(opj) +

∑
vk∈child(opj)

Qc(vk)

)

(5)

Constraint (4) states that the query cost corresponding to each given view
in the AND-OR view graph is the minimum cost paths from the view to its
related base relations or views. The reading cost is considered if the view has
been materialized. Constraint (5) ensures that the minimum cost path is selected
for computing a given view. Each minimum cost path includes all the cost of
executing the operation nodes on the path and the query cost corresponding to
the related bases relations or views.

View Maintenance Cost

Mc(vi) =

{
0 if Matvi = 0∑

u∈U(vi)
Mcost(vi, u) otherwise

(6)

where

Mcost(vi, u) = min
opj∈child(vi)

(
cost(opj , u)

+
∑

vk∈child(opj)

UCost(vk, u)

)
(7)

UCost(vk, u) =

{
Mcost(vk, u) if Matvk = 0
δ(vk, u) otherwise

(8)

Constraint (6) guarantees that there is no maintenance cost if the view has
not been materialized. Otherwise, the view maintenance cost is computed by
summing the number of changes in the base relations from which the view is
updated. We assume incremental maintenance to estimate the view maintenance
cost. Therefore, the maintenance cost is the differential results of materialized
views given the differential (updates) of the bases relations. Constraints (7) and
(8) insure that the best plan with the minimum cost will be selected to maintain
a view. The view maintenance cost is computed similarly to the query cost, but
the cost of each minimum path is composed of all the cost of executing the
operation nodes with respect to the updates on the path and the maintenance
cost corresponding to the related base relations or views.

A Declarative Approach to View Selection Modeling 129

5.2 Search Strategy

A key ingredient of any constraint satisfaction approach is an efficient search
strategy. As mentioned in Section 3.2, the search is organized as an enumera-
tion tree, where each node corresponds to a subspace of the search. The tree is
progressively constructed by applying series of branching strategies that define
the way to branch from a tree search node. In the constraint solver, branching
has been applied to decision variables. In our constraint satisfaction model, the
materialization variable Matvi is the decision variable since the aim of the view
selection problem is to decide which views to materialize. The most common
branching strategies in the constraint solver are based on the assignment of a se-
lected variable to one or several selected values (one assignment in each branch).
Variable selector defines the way to choose a non instantiated variable on which
the next decision will be made. Once the variable has been chosen, the solver
has to compute its value.

5.2.1 The Default Search Strategy. The default search strategy is applied
to the decision variables of the solver when no search strategy is specified. The
default strategy selects the decision variables to be instantiated by using the
following branching strategies.

Variable selection heuristic: DomOverWDeg. The strategy selects the variable
Matvi with the smallest ratio r:

r =
dom

w ∗ deg

where dom is the current domain size, deg is the current number of non instan-
tiated constraints involving the variable, and w the sum of the counters of the
failures caused by each constraint from the beginning of the search. To each
variable Mat(vi) are associated, at any time the dom, deg and w values.

Value selection heuristic: MinVal. The variable Matvi which has been chosen
(by applying the variable selection heuristic) is then assigned, in the first branch,
to its smallest value:

val = min(dMatvi
)

In the next branch, the value val is removed from the variable domain dMatvi
.

5.2.2 Our Own Search Strategy. As mentioned in Section 3.2, constraint
programming offers facilities to control the search behavior. Defining our own
search strategy is very important since a well-suited search strategy can reduce
the number of expanded nodes and hence the time that the solver takes to find
solutions to the view selection problem. In the following we describe the variable
and value selection heuristics that we have defined in the search strategy.

Variable and value selection heuristics. Our aim is to minimize the query
cost with a constraint on update time (maintenance cost constraint) and storage

130 I. Mami, Z. Bellahsene, and R. Coletta

space (space constraint). Low query cost can be obtained by materializing all the
queries of the workload (materializing the root level in the AND-OR view graph).
In this case the view maintenance cost will be high. Low view maintenance cost
can be achieved by leaving all the views virtual and in this case the query cost
will be high (replicating the base relations which are in the leaf level of the AND-
OR view graph). For this matter, our strategy consists in finding an intermediary
level for each query tree in the AND-OR view graph that optimizes the query
cost without violating the maintenance cost and space constraints. Therefore,
our strategy is based on the notion of level in the AND-OR view graph [4].
For this purpose, each view (equivalence node) is associated to a level, which is
defined as follows:

level(baserelation) = 0

level(view) = max
vc∈child(view)

level(vc) + 1

As presented in the code below, we explain how to compute for each query
the relative query cost reduction associated to the different levels in the query
tree.

levels = ∅ //set of levels with their cost saving
for each q in Q(G) do
levelCS = ∅//Map : key = level; val = cost saving
// each view in the query tree is associated to a level
for each l in AllLevels(q) do
space = 0
maint = 0
for each v in AllV iews(l) do
space = space+ size(v)
maint = maint+Mc(v)

end for
if space ≤ SpMax and maint ≤ UMax then

LevelCostSaving(q, l)
//LevelCostSaving is defined as the relative
//query cost reduction when the views associated
// to level l are materialized

else
LevelCostSaving(q, l) = −1

end if
levelCS.put(l, LevelCostSaving)

end for
levels = levels ∪ {levelCS}

end for

In order to guide the search to the optimal solution, the variable selector
has to start by instantiating the materialization variables of the recommended

A Declarative Approach to View Selection Modeling 131

views. These views are those associated to the levels that minimize the query
cost subject to space and maintenance cost constraints. For this purpose, we sort
the query levels according to their LevelCostSaving in descending order (as it
is presented below). We iterate over the sorted set starting with the levels which
have the highest query cost reduction. We then store each view associated to
these levels in the variable MV .

//sort the levels according to their LevelCostSaving in
//descending order
LSort = SortLevels(levels)
for each ls in LSort do

for each vs in ls do
MV = MV ∪ {Matvs}

end for
end for

Finally, the variable selector will choose the materialization variables to be
instantiated in the order they appear in MV . Once the variable has been chosen,
the value selector will assign the materialization variable to its highest value:
max(dMatvi

). Note that these variable and value heuristics do not inhibit the
solver to compute solutions in which it will start by materializing another set of
views. By defining these heuristics in the search strategy, we expect the solver
to converge faster to the optimal solution and avoid browsing a large number of
inferior solutions.

6 Performance Evaluation

In this section, we evaluate the performance of our approach through experimen-
tations over the database schema of the TPC-H benchmark [2]. Our approach
takes as input a set of selection-projection-join (SPJ) queries that may involve
aggregation and group by clause as well. For each query, we consider all possible
execution plans which represent its execution strategies. Then, all the queries
are merged into the same graph (see Section 4) in order to detect the overlapping
and capture the dependencies among them. Our approach produces as output
the set of materialized views. The performance of our approach was evaluated
by measuring the gain in solution quality obtained by the materialized views.

The rest of this section is organized as follows. In Section 6.1, we describe
our experimental setup, and the randomized method used for comparison. In
Section 6.2, we study the impact of variable and value selection heuristics on the
search space explored by our approach. In Section 6.3, we first report experimen-
tal results when the view selection is decided under resource constraints and we
present the results on performance by increasing the number of queries. Then,
we evaluate the effect of the frequency of queries and updates as well as the
query complexity on performance. In Section 6.4, we study the benefit of using

132 I. Mami, Z. Bellahsene, and R. Coletta

materialized views to improve query performance. Finally, we summarize the
performance results in Section 6.5.

6.1 Experimental Setup

We have implemented our approach and compared it with a randomized method
i.e., genetic algorithm . The latter was chosen for comparison since it has been
argued that the genetic algorithm provides a good balance between the comput-
ing costs that an algorithm incurs for finding the materialized views and the gain
to be realized in query processing by materializing these views (see Section 2).
All the algorithms are implemented in Java and all the experiments were carried
out on an Intel Core 2 Duo P8600 CPU @ 2.40 GHz machine running with 3GB
of RAM and Windows XP Professional SP3.

In order to solve the view selection problem as a constraint satisfaction prob-
lem, we have used the latest powerful version of CHOCO [1] (knowing that the
constraint solvers are structured around annual competitions [17]). For the ge-
netic algorithm, we have implemented the one presented in [5] by incorporating
space and maintenance cost constraints into the algorithm and without taking
into account the data placement. In order to let the genetic algorithm con-
verge quickly, we generated an initial population which represents a favorable
view configuration rather than a random sampling. Favorable view configuration
such as the views which minimize the query cost without violating space and
maintenance cost constraints are most likely selected for materialization.

To evaluate the performance of view selection methods, we measure the fol-
lowing metric.

1. Solution Quality. The performance of view selection methods was eval-
uated by measuring the solution quality which results from evaluating the
quality of the obtained set of materialized views in terms of cost saving. In
the experimental results, the solution quality denoted by Qs is computed as
follows:

Qs =
WM −∑

vi∈Q(G)

(
fq(vi) ∗Qc(vi)

)
WM −ALLM

(9)

Where WM is the total query cost obtained using the "WithoutMat" ap-
proach which does not materialize views and always recomputes queries,
AllM is the "AllMat" approach which materializes the result of each query
of the workload. The "WithoutMat" and "AllMat" approaches are used as
a benchmark for our normalized results. As defined in Section 5, Qc(vi) is
the query cost corresponding to the view vi and fq(vi) is the frequency of
the view vi.

2. Space constraint. In the case where the view selection problem is decided
under a space constraint, the total space occupied by the materialized views
has to be less than or equal to the maximum storage space Spmax . Similar

A Declarative Approach to View Selection Modeling 133

to [10] Spmax is computed as a function of the size of the associated query
workload.

Spmax = α ∗ SpAllM (10)

where SpAllM is the size of the whole workload and α is a constant. In our
experiments, we assume the case where the view selection is studied under
restrictive constraints and hence we set α to 10%. We also examine the case
where the constraints are not very tight and at that case α was set to 30%.

3. MaintenanceCostConstraint. In the maintenance cost constrained model,
the total maintenance cost of the set of materialized views has to be less than
or equal to the total view maintenance cost limit Umax. As in previous work
[10], Umax is calculated as a function of the total maintenance cost when all
the queries are materialized.

Umax = β ∗McAllM (11)

where McAllM is the total maintenance cost when the result of each query
of the workload is materialized and β is a constant. The value of β was set
similar to α (see above).

4. Runtime. The Runtime which we consider here is the time that MySQL
server takes to compute query results using materialized view. This metric
has been used in Section 6.4 to measure the running time of the query
workload given a set of materialized views. Thus, the runtime is a good
metric to study the benefit that materialized views found by our approach
bring to query evaluation. It is also a good indicator for comparing the
performance of our approach to those of the genetic algorithm.

6.2 Impact of Variable and Value Selection Heuristics

Here, we study the impact of variable and value selection heuristics that we
have presented in Section 5.2.2, on the search space explored by our approach.
To evaluate this, we attempted to compare the solution quality found by the
constraint solver in the case where (i) the default search strategy is used and
(ii) the variable and value selection heuristics that we have defined in Section
5.2.2 are implemented in the search strategy. As mentioned in Section 3.2, the
constraint solver (CHOCO Solver) can find a set of feasible solutions in which
all the constraints are satisfied before reaching the optimal solution. In this case,
we use timeout condition to evaluate the quality of the different solutions found
by the solver. A workload of 20 queries suffices to illustrate this. α and β, which
define respectively the storage space and the view maintenance cost limits, was
set to 30%. The results are shown in figure 3. The solver is left to run until
reaching the optimal solution. default search denotes the default search strategy
while custom search requires the variable and value selection heuristics that we
have defined in the search strategy. We can observe from figure 3 that the time

134 I. Mami, Z. Bellahsene, and R. Coletta

Fig. 3. Impact of heuristics on the search

(a) β=10% (b) β=30%

(c) α=10% (d) α=30%

Fig. 4. Solution quality while varying the space or the maintenance cost constraint

A Declarative Approach to View Selection Modeling 135

that a solver incurs in the presence of custom search for finding near optimal
and optimal solutions is significantly reduced. This is because the variable and
value selection heuristics that we have defined in the search strategy reduce
significantly the search space explored by the CHOCO solver. Consequently, our
approach can provide high solution quality in a short time. In the following
experiments, we use the custom search in the constraint satisfaction model.

6.3 Solution Quality: Our Approach versus Genetic Algorithm

In this section, we examined the effectiveness of our approach by measuring
the gain in solution quality obtained by using our approach versus the genetic
algorithm. First, we compare the performance of our approach to those of the
genetic algorithm for various values of storage space and maintenance cost limits
and then we present the impacts on performance by increasing the number of
queries. We also evaluate the solution quality found by view selection methods
with respect to different query and update distributions. Finally, we evaluate
our approach and the genetic algorithm according to query complexity. In order
to allow a fair comparison with the genetic algorithm and since our approach is
able to provide a solution at any time, the CHOCO solver was left to run until
the convergence of the genetic algorithm in the following experiments. More
precisely, the timeout condition was set to the time required by the genetic
algorithm to solve the view selection problem. Since the heuristic based search
strategy allows the solver to find a high solution quality very fast (as described
in the previous section) and the genetic algorithm requires an amount of time
to converge, we expect to achieve significant performance gains in comparison
with the genetic algorithm in terms of cost saving.

6.3.1 Resource Constraints. In this experiment, we first examine the impact
of space and maintenance cost constraints on solution quality. For this evaluation,
we consider a workload of 50 queries. Recall that for each query, we consider all
possible execution plans which represent its execution strategies. The query and
update frequencies are at scale 1. The values of α and β which define respectively
the storage space capacity and the view maintenance cost limit are varied from
10% to 100%. All the results are shown in figure 4.

Figure 4a and Figure 4b investigate respectively the influence of space con-
straint on solution quality for each value of α where β was set to 10% and 30%,
while figure 4c and figure 4d examine respectively the impact of maintenance
cost constraint on solution quality for each value of β where α was set to 10%
and 30%. We note from these experiments that the quality of the solutions pro-
duced by our approach and genetic algorithm improves when α (see figure 4a
and figure 4b) or β (see figure 4c and figure 4d) increases. However, there is
no improvement in the solution quality from certain values of α or β because
the maintenance cost constraint or the space constraint becomes the significant
factor.

136 I. Mami, Z. Bellahsene, and R. Coletta

We also observe from figure 4 that our approach provides better solution
quality in the case where the view selection is decided under a maintenance cost
constraint (i.e., Qs ≈ 0.8 when α=100% and β=30% in figure 4b while Qs ≈ 0.7
when β=100% and α=30% in figure 4d). The reason is the maintenance cost of a
view may decrease with selection of other views for materialization. Hence, there

(a) α=10% (b) β=10%

(c) α=10% and β=10% (d) α=30%

(e) β=30% (f) α=30% and β=30%

Fig. 5. Solution quality on large workloads under different resource constraints

A Declarative Approach to View Selection Modeling 137

is time to update more views. This non monotonic nature of view maintenance
cost is formally defined in [8].

Finally, we conclude from these experiments that our approach outperforms
the genetic algorithm for different values of α and β in terms of cost saving.
Indeed, we can see that our approach generates solutions with cost saving up to
2 times more than the genetic algorithm.

6.3.2 Large Query Workload. Let us now evaluate the performance of our
approach and the one of genetic algorithm on larger query workload. For this
purpose, we generated workloads of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100
queries. The solution quality of our approach and the genetic algorithm is eval-
uated when the view selection is decided under the case where (i) only the space
constraint is considered (see figure 5a and figure 5d); (ii) the limiting factor is the
view maintenance cost(see figure 5b and figure 5e); and (iii) both maintenance
cost and space constraints exists (see figure 5c and figure 5f). On each of these
cases, we consider the case where the resource constraints become very tight (α
and/or β = 10%) as well as the case where we relax them (α and/or β = 30%).

For this collection of experiments, we make the following observations. Our
approach provides in all the cases better performances in terms of the solution
quality while varying the number of queries. For example for a workload of 100
queries where α and β was set to 30% (see figure 5f), our approach provides
a cost saving of 24% more than the genetic algorithm (QsCSP = 0.512 while
QsGeneticAlgorithm = 0.27). Another remark based on figure 5 is that in our
approach the gain in solution quality tends to be relatively more significant when

Table 1. Distribution of query and update frequencies

qrandom The values of the query frequencies have been

assigned randomly to each query of the workload.

quniform All the queries of the workload have the same query

frequency

qgaussian Queries from certain levels have higher probability

to be queried. The frequency distribution is normal

with μ = 1/2 and σ = 1.

urandom The values of the update frequencies have been

assigned using a random distribution.

uuniform All the views in the AND-OR view graph have the

same update frequency

ugaussian The views which are at the lower level of the

AND-OR view graph have higher probability to be

updated than those which are on the upper level

(guassian distribution with μ = 1/2 and σ = 1).

138 I. Mami, Z. Bellahsene, and R. Coletta

we have more resource constraints. For instance, the gain in solution quality
obtained by our approach is up to 10% (in figure 5a) and 16% (in figure 5b)
more than the genetic algorithm. While this gain is up to 18% in figure 5c. This
is because the idea of constraint programming is to solve problems by stating
constraints and the search space is reduced when there are more constraints.

(a) qrandom, α=10% and β=10% (b) quniform, α=10% and β=10%

(c) qgaussian, α=10% and β=10% (d) qrandom, α=30% and β=30%

(e) quniform, α=30% and β=30% (f) qgaussian, α=30% and β=30%

Fig. 6. Solution quality for different query distributions

A Declarative Approach to View Selection Modeling 139

This result is similar to the case where we relax the constraints (see figures 5d,
5e and 5f).

6.3.3 Query and Update Distributions. We now study the behavior of
view selection methods while varying the query and update frequencies. For
this purpose, we generated different query and update distribution to simulate
various workloads (see table 1). The random distribution assigns random values
to query or update frequencies. While, the uniform distribution simulates cases
where all views (or queries) have equal probability to be queried and updated.
The last distribution which is the gaussian distribution favors views (or queries)
from lower levels in the AND-OR view graph that have higher probability to
be queried or updated. For example, queries of the TPC-H benchmark which
contain less relational operators have higher probability to be queried.

Figures 6 illustrates the quality of the solutions produced by the two meth-
ods for different query distributions (qrandom, quniform, qgaussian). In the first
combination, α and β were set to 10% (see figures 6a, 6b and 6c). While, for
the other combination, α and β were set to 30% (see figures 6d, 6e and 6f).
The update frequencies are at scale 1. We have made the same experiments for
different update distributions in which the query frequencies was at scale 1 (see
figure 7).

We can see that the quality of the solutions found by our approach is always
better than those of the genetic algorithm for different query and update distri-
butions. For example, in figure 6 and in the worst case which arises at the random
workload (qrandom;α=10%;β=10%), our approach provides solutions with a cost
saving of 4% more than the genetic algorithm. While, in the best case which
arises at the gaussian workload (qgaussian;α=30%;β=30%), the cost saving is
35% more than the genetic algorithm.

6.3.4 Query Complexity. We study the effect of query complexity on view
selection performance. More specifically, we evolved the number of join operators
NJoinOp for each query of the workload since the complexity of binary operators
is more important than the one of unary operators. This results to three different
workloads: (i) c_query_01 (NJoinOp < 2); (ii) c_query_02, (2 ≤ NJoinOp < 4);
and (iii) c_query_03, (NJoinOp ≥ 4). We run experiments with a workload of
50 queries and we measure the gain in solution quality according to the set of
the obtained materialized views. The frequencies for access and update are at
scale 1. Figure 8 shows the cost saving found by our approach and the genetic
algorithm for both cases: (i) α and β was set to 10% (see figure 8a) and (ii) α
and β was set to 30% (see figure 8b). We can see that our approach produce
the best results. Indeed, our approach provides a cost saving up to 27.2% when
α and β was set to 10% and 63.3% when α and β was set to 30%. While the
genetic algorithm achieve a cost saving of only 12.9% when α and β was set to
10% and 29.3% when α and β was set to 30%. We also observe, in the graphic
depicted in figure 8, that the quality of the solutions produced by our approach

140 I. Mami, Z. Bellahsene, and R. Coletta

(a) urandom, α=10% and β=10% (b) uuniform, α=10% and β=10%

(c) ugaussian, α=10% and β=10% (d) urandom, α=30% and β=30%

(e) uuniform, α=30% and β=30% (f) ugaussian, α=30% and β=30%

Fig. 7. Solution quality for different update distributions

slightly decrease with an increasing complexity of the query workload. Hence,
we confirm that the performance of our approach is not significantly influenced
by an increasing of query complexity.

A Declarative Approach to View Selection Modeling 141

(a) α=10% and β=10% (b) α=30% and β=30%

Fig. 8. Query complexity on view selection performance

6.4 Query Performance Using Materialized Views

In this section, we study the benefit of using materialized views to improve
query performance. For a workload involving 10, 20, 30, 40, 50, 60, 70, 80, 90
and 100 queries, we materialized the views proposed by our approach and the
genetic algorithm. Then, we run the query workload using these views. We also
consider the two basic strategies that we have defined above: the "WithoutMat"
and the "AllMat" approaches. Recall that the "WithoutMat" approach does not
materialize views and always recomputes queries. While the "AllMat" approach
materializes the result of each query without any resource constraint. The fre-
quencies for access and update are at scale 1. In order to measure the query
runtime, the experiments were performed on MySQL server through JDBC in-
terface. The query runtime is expressed in seconds (sec).

The results are shown in figure 9. The view selection has been decided under
space and maintenance cost constraints: (i) α and β was set to 10% in figure 9a
and (ii) α and β was set to 30% in figure 9b. The results indicate that the benefit
of using materialized views is significant. Indeed, queries using our proposed
views or those of the genetic algorithm are evaluated faster in comparison with

(a) α=10% and β=10% (b) α=30% and β=30%

Fig. 9. Query runtime using materialized views

142 I. Mami, Z. Bellahsene, and R. Coletta

the "WithoutMat" approach. We can also see that our approach provides the
better quality of the obtained set of materialized views. For instance as can be
seen in figure 9b, when comparing the runtimes of the workload of 100 queries,
our approach requires ≈ 16seconds while genetic algorithm takes ≈ 24seconds.
According to the equation (9) in section 6.1,

QsCSP = 0.518 =
32.86(WM) − 16.297(CSP)

32.86(WM) − 0.892(ALLM)
(12)

QsGeneticAlgorithm = 0.273 =
32.86(WM) − 24.126(GeneticAlgorithm)

32.86(WM) − 0.892(ALLM)
(13)

This result confirms our expectation in section 6.3.2 that for a workload of 100
queries where α and β was set to 30%, our approach provides a cost saving of 24%
more than the genetic algorithm (QsCSP = 0.512 while QsGeneticAlgorithm =
0.27). Another important remark is that our approach is able to provide materi-
alized views that produce higher cost savings even if the underlying cost model
is simplified (see section 3). Thus, our approach is robust toward simplified cost
models which is an important requirement for a practical solution to the view
selection problem.

6.5 Concluding Remarks

Our experiments show that our approach outperforms the genetic algorithm in
many cases. We achieve impressive cost saving factors when (i) we study the
view selection under resource constraints, (ii) we increase the number of queries
and (iii) we simulate various query workloads. We also show the efficiency of our
approach when we run the query workloads on MySQL server i.e., queries using
our proposed views are evaluated faster in comparison with those found by the
genetic algorithm. The experiment results confirm our expectation that our own
search strategy allows our approach to achieve significant performance gains in
comparison with the genetic algorithm.

7 Conclusion

The most efficient algorithm proposed so far for deciding which views to mate-
rialize is the genetic algorithm that provides the best trade-off between quality
of solutions and execution time. However, there is no guarantee of performance
because the probabilistic behavior of the genetic algorithms does not insure to
find the global optimum. Besides, the quality of the solution depends on the
set-up of the algorithm as well as the extremely difficult fine-tuning of algorithm
that must be performed during many test runs.

In this paper, we proposed a declarative approach which simply modeled the
view selection problem as a CSP without the need of being interested in the
way the problem is solved. Indeed, its resolution was supported automatically
by the constraint solver. We also designed a heuristic search strategy within the
constraint solver to reduce the solution space and hence the execution time. The
experiment results confirm our expectation that our own search strategy allows

A Declarative Approach to View Selection Modeling 143

our approach to achieve significant performance gains in comparison with the
genetic algorithm.

More recently, the view selection has been investigated in data placement
in a distributed setting [5]. For this purpose, we have extended our constraint
satisfaction model to deal with the distributed setting. The formulation of the
view selection problem in a distributed context can be found in our recent work
[22]. As a future work, we are planning to solve the view selection problem in
a large scale distributed environments such as peer to peer or cloud computing
environments.

In our proposals, all queries are assumed to be known and given in advance
and there is a frequency of occurrence associated with each query. One line of
recent research [12] has explored the problem of identifying subject area specific
queries from which frequent queries are selected. As a result, they obtain signifi-
cant performance improvements when processing queries. However, the proposed
approach is based on a given workload and chooses accordingly the set of views
to materialize. In order to respond to the changes in the query workload over
time, views need to be selected continuously. Consequently, the dynamic view
selection issue will be a part of our planned future work while studying the view
selection in large scale distributed environments.

References

1. Choco, open-source software for constraint satisfaction problems,
http://www.emn.fr/z-info/choco-solver

2. The TPC benchmark H (TPC-H),
http://www.tpc.org/tpch/spec/tpch2.14.3.pdf

3. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection of materialized
views and indexes in sql databases. In: VLDB, Cairo, Egypt, pp. 496–505 (2000)

4. Baril, X., Bellahsene, Z.: Selection of materialized views: A cost-based approach. In:
Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 665–680. Springer,
Heidelberg (2003)

5. Chaves, L.W.F., Buchmann, E., Hueske, F., Böhm, K.: Towards materialized view
selection for distributed databases. In: Proceedings of the 12th International Con-
ference on Extending Database Technology: Advances in Database Technology,
EDBT 2009, pp. 1088–1099. ACM, New York (2009)

6. Du, W., Krishnamurthy, R., Shan, M.C.: Query optimization in heterogeneous
dbms. In: Proc. of VLDB. Vancouver, British Columbia, Canada, pp. 277–291
(1992)

7. Gupta, H.: Selection of views to materialize in a data warehouse. In: ICDT, Delphi,
Greece, pp. 98–112 (1997)

8. Gupta, H., Mumick, I.S.: Selection of views to materialize under a maintenance
cost constraint. In: ICDT, Jerusalem, Israel, pp. 453–470 (1999)

9. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently.
In: SIGMOD Conference, Montreal, Canada, pp. 205–216 (1996)

10. Kalnis, P., Mamoulis, N., Papadias, D.: View selection using randomized search.
Data Knowl. Eng. 42(1), 89–111 (2002)

11. Karloff, H.J., Mihail, M.: On the complexity of the view-selection problem. In:
PODS, Philadelphia, Pennsylvania, USA, pp. 167–173 (1999)

http://www.emn.fr/z-info/choco-solver
http://www.tpc.org/tpch/spec/tpch2.14.3.pdf

144 I. Mami, Z. Bellahsene, and R. Coletta

12. Vijay Kumar, T.V., Dubey, G., Singh, A.: Frequent queries selection for view materi-
alization. In:Meghanathan,N.,Nagamalai,D.,Chaki,N. (eds.)Advances inComput-
ing & Inform. Technology. AISC, vol. 177, pp. 521–530. Springer, Heidelberg (2012)

13. Vijay Kumar, T.V., Kumar, S.: Materialized view selection using genetic algorithm.
In: IC3, pp. 225–237 (2012)

14. Vijay Kumar, T.V., Kumar, S.: Materialized view selection using iterative im-
provement. In: Meghanathan, N., Nagamalai, D., Chaki, N. (eds.) Advances in
Computing & Inf. Technology. AISC, vol. 178, pp. 205–213. Springer, Heidelberg
(2012)

15. Kumar, V.: Algorithms for constraint-satisfaction problems: A survey. AI Maga-
zine 13(1), 32–44 (1992)

16. Labio, W., Quass, D., Adelberg, B.: Physical database design for data warehouses.
In: Proceedings of the Thirteenth International Conference on Data Engineering,
ICDE 1997, pp. 277–288. IEEE Computer Society, Washington, DC (1997)

17. Lecoutre, C., Roussel, O., van Dongen, M.R.C.: Promoting robust black-box solvers
through competitions. Constraints 15(3), 317–326 (2010)

18. Lee, M., Hammer, J.: Speeding up materialized view selection in data warehouses
using a randomized algorithm. Int. J. Cooperative Inf. Syst. 10(3), 327–353 (2001)

19. Ligoudistianos, S., Theodoratos, D., Sellis, T.K.: Experimental evaluation of data
warehouse configuration algorithms. In: DEXA Workshop, Vienna, Austria, pp.
218–223 (1998)

20. Mackert, L.F., Lohman, G.M.: R* optimizer validation and performance evalua-
tion for local queries. In: Proceedings of the 1986 ACM SIGMOD International
Conference on Management of Data, SIGMOD 1986, pp. 84–95. ACM, New York
(1986)

21. Mami, I., Bellahsene, Z.: A survey of view selection methods. SIGMOD
Record 41(1), 20–29 (2012)

22. Mami, I., Bellahsene, Z., Coletta, R.: View selection under multiple resource con-
straints in a distributed context. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou,
X. (eds.) DEXA 2012, Part II. LNCS, vol. 7447, pp. 281–296. Springer, Heidelberg
(2012)

23. Mami, I., Coletta, R., Bellahsene, Z.: Modeling view selection as a constraint satis-
faction problem. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.)
DEXA 2011, Part II. LNCS, vol. 6861, pp. 396–410. Springer, Heidelberg (2011)

24. Mistry, H., Roy, P., Sudarshan, S., Ramamritham, K.: Materialized view selection
and maintenance using multi-query optimization. In: SIGMOD Conference, Santa
Barbara, California, USA, pp. 307–318 (2001)

25. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining.
In: KDD, Las Vegas, USA, pp. 204–212 (2008)

26. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York (2006)

27. Roussopoulos, N.: The logical access path schema of a database. IEEE Trans.
Software Eng. 8(6), 563–573 (1982)

28. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and extensible algorithms
for multi query optimization. In: SIGMOD Conference, Dallas, Texas, USA, pp.
249–260 (2000)

29. Sohn, J.-S., Yang, J.-H., Chung, I.-J.: Improved view selection algorithm in data
warehouse. In: Kim, K.J., Chung, K.-Y. (eds.) IT Convergence and Security 2012.
LNEE, vol. 215, pp. 921–928. Springer, Heidelberg (2012)

30. Theodoratos, D., Ligoudistianos, S., Sellis, T.K.: View selection for designing the
global data warehouse. Data Knowl. Eng. 39(3), 219–240 (2001)

A Declarative Approach to View Selection Modeling 145

31. Theodoratos, D., Sellis, T.K.: Data warehouse configuration. In: VLDB, Athens,
Greece, pp. 126–135 (1997)

32. Yang, J., Karlapalem, K., Li, Q.: Algorithms for materialized view design in data
warehousing environment. In: VLDB, Athens, Greece, pp. 136–145 (1997)

33. Zhang, C., Yang, J.: Genetic algorithm for materialized view selection in data
warehouse environments. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS,
vol. 1676, pp. 116–125. Springer, Heidelberg (1999)

34. Zhang, C., Yao, X., Yang, J.: An evolutionary approach to materialized views
selection in a data warehouse environment. IEEE Transactions on Systems, Man,
and Cybernetics, Part C 31(3), 282–294 (2001)

A Framework for Modeling, Computing

and Presenting Time-Aware Recommendations

Kostas Stefanidis1,3, Eirini Ntoutsi2, Mihalis Petropoulos2,
Kjetil Nørv̊ag3, and Hans-Peter Kriegel2

1 Institute of Computer Science, FORTH, Heraklion, Greece
kstef@ics.forth.gr

2 Institute for Informatics, Ludwig Maximilian University, Munich, Germany
{ntoutsi,petropoulos,kriegel}@dbs.ifi.lmu.de

3 Department of Computer and Information Science, Norwegian University of Science
and Technology, Trondheim, Norway

kjetil.norvag@idi.ntnu.no

Abstract. Lately, recommendation systems have received significant at-
tention. Most existing approaches though, recommend items of potential
interest to users by completely ignoring the temporal aspects of rat-
ings. In this paper, we argue that time-aware recommendations need
to be pushed in the foreground. We introduce an extensive model for
time-aware recommendations from two perspectives. From a fresh-based
perspective, we propose using different aging schemes for decreasing the
effect of historical ratings and increasing the influence of fresh and novel
ratings. From a context-based perspective, we focus on providing dif-
ferent suggestions under different temporal specifications. To facilitate
user browsing, we propose an effective presentation layer for time-aware
recommendations based on user preferences and summaries for the sug-
gested items. Our experiments with real movies ratings show that time
plays an important role in the recommendation process.

1 Introduction

Recommendation systems provide users with suggestions about products, movies,
videos and a variety of other items. A popular category of recommendation sys-
tems is the collaborative filtering approaches (e.g., [21,11]) that try to predict
the utility of items for a particular user based on the items previously rated by
similar users. That is, users similar to a target user are first identified, and then,
items are recommended based on the ratings of these users. Users are considered
as similar if they buy common items as in case of Amazon or if they provide
similar movie evaluations as in case of MovieLens.

Although there is a substantial amount of research in the area of recommenda-
tion systems [34], most of the approaches produce recommendations by ignoring
the temporal information that is inherent in the ratings, since ratings are given
at a specific point in time. Due to the fact that a huge amount of user preferences
data is accumulated over time, it is reasonable to exploit the temporal informa-
tion associated with these data in order to obtain more accurate and up to date

A. Hameurlain et al. (Eds.): TLDKS X, LNCS 8220, pp. 146–172, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Framework for Modeling, Computing and Presenting Recommendations 147

recommendations. Our goal is to use the time information of the user ratings
towards improving the predictions in collaborative recommendation systems. We
consider two different types of time effects based upon the recency/freshness and
the temporal context of the ratings and consequently, we propose two different
time-aware recommendation models, namely the fresh-based and the context-
based recommendations model.

The fresh-based recommendations model assumes that the most recent user
ratings better reflect his/her current trends and thus, they should contribute
more in the computation of the recommendations. To account for the recency
of the ratings we distinguish between the damped window model that gradually
decreases the importance of ratings over time and the sliding window model
that counts only for the most recent ratings and ignores any previous historical
information. As an example, consider a movie recommendation system that gives
higher priority to new releases compared to other old seasoned movies (damped
window model) or focuses solely on new releases (sliding window model).

From a different perspective, the context-based recommendations model offers
different suggestions under different time specifications. The main motivation
here, is that although user preferences may change over time they display tem-
poral repetition, i.e., recur over time. As an example consider a tourist guide
system that provides different suggestions for winter (typically ski resorts) and
summer (typically sea resorts). Or, a restaurant recommendation system that
might distinguish between weekdays (typically business lunches) and weekends
(typically family lunches).

It is the purpose of this paper to provide a framework for time-aware rec-
ommendations that handles the different temporal aspects of recommendations
through the fresh-based or the context-based model. Apart from the top-k rec-
ommendations extraction, we also focus on their effective presentation to the end
user by adding structure in the results. Our goal is to minimize the browsing
effort of the user and help him/her receive a broader view of the recommended
items. Towards this direction, we exploit preferences defined by users upon items
and extract a ranking of preferences that is used for ordering the suggested items.
We further enrich this structure by summarizing the different levels of prefer-
ences with information for the items.

In a nutshell, this paper makes the following contributions:

– We propose a framework for time-aware recommendations that models the
different types of time effects, that is, the age and the temporal context of
ratings. Furthermore, we consider different cases for selecting the appropri-
ate set of users for estimating the recommendations of a user and introduce
the notion of support in recommendations to model how confident the rec-
ommendations of an item for a user is, in order to deal with the sparsity of
the explicitly defined user ratings.

– We propose an effective presentation solution for the recommended items
which builds upon user preferences for items. Our solution provides a ranked
overview of the suggested items enriched with summarized information and
can facilitate user browsing.

148 K. Stefanidis et al.

– We implement a proof of concept prototype for time-aware recommendations
in a movie recommendations application and we experiment with different
types of aging and temporal contexts. Our experiments show that time is an
important dimension and should be part of the recommendation process.

The rest of the paper is organized as follows. The basic, time-invariant rec-
ommendation model is presented in Sect. 2. The time dimension is introduced in
Sect. 3, where we distinguish between the aging factor (Sect. 3.1) and the tem-
poral context factor (Sect. 3.2). In Sect. 4, we focus on the effective presentation
of time-aware recommendations based on user preferences. The computation of
recommendations under different temporal semantics is discussed in Sect. 5. In
Sect. 6, we present our experiments using a real dataset of movie ratings. Our
prototype implementation is outlined in Sect. 7, while related work is presented
in Sect. 8. Finally, conclusions and outlook are pointed out in Sect. 9.

2 The Basic Time-Free Recommendation Model

Assume a set of items I with relational schema R(A1, . . . , Ad), where each
attribute Aj , 1 ≤ j ≤ d, takes values from a domain dom(Aj). Let A =
{A1, . . . , Ad} be the attribute set of R and dom(A) = dom(A1)× . . .× dom(Ad)
be its value domain. We use i to denote an item in dom(A) of R. For instance,
consider the movies shown in Fig. 1.

mID title year director genre language duration

1 Casablanca 1942 Curtiz Drama English 102

2 Vertigo 1958 Hitchcock Horror English 128

3 Psycho 1960 Hitchcock Horror English 109

4 Schindler’s List 1993 Spielberg Drama English 195

5 The Farmer’s Wife 1945 Hitchcock Drama English 129

6 Suspicion 1941 Hitchcock Drama English 99

7 Twilight Zone: The Movie 1983 Spielberg Horror English 101

8 Arachnophobia 1990 Spielberg Horror English 103

9 Lincoln 2012 Spielberg Drama English 150

10 The Walking Dead 1936 Curtiz Horror English 66

Fig. 1. Movies instance

Assume also a set of users U . Each user u ∈ U may give a rating for an
item i ∈ I, which is denoted by rating(u, i) and lies in the range [0.0, 1.0].
For instance, consider the ratings shown in Fig 2. We use Zi to denote the set
of users in U that have expressed a rating for item i. The cardinality of the
items set I is usually high and typically users rate only a few of these items,
that is, |Zi| << |U| for a specific item i. For the items unrated by the users, a
relevance score is estimated by invoking a recommendation strategy.

A Framework for Modeling, Computing and Presenting Recommendations 149

uID mID rating timestamp

1 3 0.9 1296367200

1 1 0.6 1297317600

2 2 0.7 1294639200

2 3 0.9 1298181600

Fig. 2. Ratings instance

In this section, we first present the basic model for time-free recommendations
(Sect. 2.1) and then define the top-k recommendations problem (Sect. 2.2). The
time–free recommendations model is the generally used recommendations model
where the notion of time is completely ignored.

2.1 Defining Time-Free Recommendations

There are different ways to estimate the relevance of an item for a user. In
general, the recommendation methods are organized into three main categories:
(i) content-based, that recommend items similar to those the user has preferred
in the past (e.g., [33,28]), (ii) collaborative filtering, that recommend items that
similar users have liked in the past (e.g., [21,11]) and (iii) hybrid, that combine
content-based and collaborative filtering approaches (e.g., [8]).

Our work falls into the collaborative filtering category. The key concept of
collaborative filtering is to use, for a given user u ∈ U , the ratings of other
users in U in order to produce relevance scores for the items unrated by u.
But, which is the appropriate set of users, hereafter called peers, for computing
the recommendations of u? Due to the inherent fuzziness associated with this
question, there exists no single definition for locating the peers of u. In our
model, we consider three different aspects of peers: (i) close friends, (ii) area
experts and (iii) similar users.

The close friends of a user u are explicitly selected by u. Computing recom-
mendations using close friends is based on the assumption that these users would
have similar tastes for most things, because of the closeness of the relationship.

Close Friends: Let U be a set of users. The close friends Cu, Cu ⊆ U , of a
user u ∈ U are explicitly defined by u.

An alternative solution might be the implicit extraction of the set of friends
through some social network like Facebook or Google+.

From a different perspective, area experts can be used for producing recom-
mendations for specific queries, since they are considered to be knowledgeable
on a specific topic, domain or area. Several methods deal with the problem of
finding experts (e.g., [9]); the focus of this paper though is on how to exploit
experts preferences to recommend interesting items to other users and not on
how to identify these experts. So, we consider that the set of experts for a given
query are predefined, e.g., experts in tablet pcs.

150 K. Stefanidis et al.

Area Experts: Let U be a set of users and Q be a query. The area experts
DQ, DQ ⊆ U , are the users considered as experts for the query Q.

We denote this set as DQ, so, not dependent on the user, since typically
experts are associated with specific queries, subjects or domains rather than
with certain users.

Alternatively, a user can opt to employ the ratings of the users that exhibit
the most similar behavior to him/her in order to produce relevance scores for the
items unrated by him/her, even if other friendship or expert relationships exist.
Similar users are located via a similarity function simU(u, u′) that evaluates
the proximity between two users u and u′. Several methods can be applied for
selecting the similar users of a user u. A direct method is to locate those users
u′ with similarity simU(u, u′) above a given threshold.

Similar Users: Let U be a set of users. The similar users Su, Su ⊆ U ,
of a user u ∈ U is a set of users, such that, ∀u′ ∈ Su, simU(u, u′) ≥ δ and
∀u′′ ∈ U\Su, simU(u, u′′) < δ, where δ is a threshold similarity value.

Clearly, one could argue for other ways of selecting Su, e.g., by taking the k
most similar users to u. Our main motivation here is that we opt for selecting
only highly relevant users.

We define now the general notion of peers for a user by taking into account
the three different cases presented above.

Definition 1 (Peers). Let U be a set of users, u be a user in U and Q be a
query posed by u. The peers Pu,Q, Pu,Q ⊆ U , of u for Q are either:

(i) the close friends Cu of u,
(ii) the area experts DQ for Q, or
(iii) the similar users Su of u.

Based on the peers of a user for a query, we formally define the relevance of
an item for a user as follows:

Definition 2 (Time-free Relevance). Let U be a set of users and I be a set
of items. Let also Q be a query posed by u ∈ U , and Pu,Q be the peers of u for
Q. If u has not expressed any rating for an item i ∈ I, the time-free relevance
of i for u under Q is:

relevancef(u, i, Q) =

∑
u′∈(Pu,Q∩Zi)

contribution(u, u′)× rating(u′, i)∑
u′∈(Pu,Q∩Zi)

contribution(u, u′)

where contribution(u, u′) =
{
1, if Pu,Q is Cu or DQ

simU(u, u′), if Pu,Q is Su
The relevance score of user u for an item i depends on the peers of u that have
given a rating for i, i.e., those in Pu,Q ∩ Zi. The contribution(u, u′) reflects the
importance of each rating(u′, i) for u; this importance depends on how “reliable”
u′ is for u. When close friends or area experts are used, contribution is set to
1, since we are certain about the importance of the ratings of the selected users

A Framework for Modeling, Computing and Presenting Recommendations 151

to the given user. For the similar users case, the contribution of each user u′

depends on his/her similarity to u.
As already mentioned, due to the abundance of items in a recommendation

application, users typically rate only a small portion of these items. So, the fol-
lowing question usually arises: How confident are the relevance scores associated
with the recommended items? To deal with this issue, we introduce the notion of
support for each candidate item i for user u, which defines the fraction of peers
of u that have provided ratings for i.

Definition 3 (Time-free Support). Let U be a set of users and I be a set of
items. Let also Q be a query posed by u ∈ U , and Pu,Q be the peers of u for Q.
The time-free support of an item i ∈ I for u under Q is:

supportf (u, i, Q) = |Pu,Q ∩ Zi|/|Pu,Q|
Intuitively, the notion of support expresses how reliable is our estimation of

the relevance of item i for user u.
To estimate the worthiness of an item recommendation for a user, we propose

to combine the relevance and support scores in terms of a value function.

Definition 4 (Time-free Value). Let U be a set of users and I be a set of
items. For σ ∈ [0, 1], the time-free value of an item i ∈ I for a user u ∈ U under
a query Q, such that, �rating(u, i), is:

valuef(u, i, Q) = σ × relevancef(u, i, Q) + (1− σ)× supportf (u, i, Q)

We take a generic approach for computing the time-free value of an item
for a user. More sophisticated functions can be designed. However, this linear
combination of relevance and support is simple and easy to implement. Moreover,
when σ = 1, valuemaps to relevance, which is the typically used recommendation
score.

2.2 Top-k Time-Free Recommendations

Given a query Q submitted by a user u and a restriction k on the number of the
recommended items, the goal is to provide u with k suggestions for items that
are highly relevant to u and exhibit high support.

Definition 5 (Top-k Time-free Recommendations). Let U be a set of users
and I be a set of items. Given a query Q posed by a user u ∈ U , recommend to
u a list of k items Iu =< i1, . . . , ik >, Iu ⊆ I, such that:
(i) ∀ij ∈ Iu, �rating(u, ij),
(ii) valuef(u, ij, Q) ≥ valuef(u, ij+1, Q), 1 ≤ j ≤ k − 1, ∀ij ∈ Iu, and
(iii) valuef(u, ij, Q) ≥ valuef(u, xy, Q), ∀ij ∈ Iu, xy ∈ I\Iu.

The first condition ensures that the suggested items do not include already
evaluated items by the user (for example, do not recommend a movie that the
user has already watched). The second condition ensures the descending ordering
of the items with respect to their value, while the third condition defines that
every item in the result set has value greater than or equal to the value of any
of the non–suggested items.

152 K. Stefanidis et al.

3 Time-Aware Recommendations

The basic time-free recommendation model presented above assumes that all
ratings are active and potentially they could be exploited for recommendations.
This way though the temporal aspects of the user ratings are completely ignored.
However, the information needs of a user evolve over time, especially if we con-
sider a long period of time, either smoothly (i.e., drift) or more drastically (i.e.,
shift). As such, the recent user ratings reflect better his/her current interests
comparing to older possible obsolete ratings. From another point of view, user
interests might change under different temporal circumstances and thus, users
may have different needs depending on the temporal context. For example, dur-
ing the weekdays one might be interested in reading IT news whereas during
the weekends he/she might be interested in reading about cooking, gardening or
other hobbies.

To handle such different cases, we propose a framework for time-aware recom-
mendations that incorporates the notion of time in the recommendation process
towards accuracy improvement. We distinguish between two types of time-aware
recommendations, namely the fresh-based and the context-based ones. The fresh-
based recommendations pay more attention to more recent user ratings thus try-
ing to deal with the problem of drift or shift in the user information needs over
time. The context-based recommendations take into account the temporal context
under which the ratings were given (e.g., weekdays vs weekends).

In our time-aware recommendation model, the rating of a user u for an item
i, rating(u, i), is associated with a timestamp tu,i, which is the time that i was
rated by u (c.f., Fig 2) and thus, it denotes the freshness or age of the rating.
Below, we first define the fresh-based recommendation model (Sect. 3.1) and
then, the temporal context-based recommendation model (Sect. 3.2). We also
present a variant of the top-k recommendations problem by defining the top-k
time-aware recommendations (Sect. 3.3).

3.1 Fresh-Based Recommendations

Generally speaking, the popularity of the items in a recommendation application
changes over time; typically, items, e.g., movies, pictures or songs, lose popularity
as time goes by. Motivated by the intuition that the importance of item ratings
increases with the popularity of the items themselves, fresh-based recommenda-
tions suggest items by mainly exploiting recent and novel user ratings.

Driven by the work in data streams [18], we use different types of aging mech-
anisms to define the way that the historical information (in form of ratings) is
incorporated in the recommendation process. Aging in streams is typically im-
plemented through the notion of windows, which define which part of the stream
is active at each time point and thus could be used for further processing. In this
work, we use the damped window model that gradually decreases the importance
of historical data comparing to more recent data and the sliding window model
that remembers only the ratings given within a specific, recent time period. We
present these cases in more detail below. Note that the static case (Sect. 2),

A Framework for Modeling, Computing and Presenting Recommendations 153

corresponds to the landmark window model which considers the whole rating
history from a given landmark.

Damped Window Model. In the damped window model, although all user
ratings are active, i.e., they can contribute to produce recommendations, their
contribution depends upon their arrival time, i.e., upon the time of rating. In
particular, the rating of a user u for an item i is weighted through some temporal
decay function that gradually discounts the history of past ratings. Typically, in
temporal applications, the exponential fading function is employed, so the weight
of rating(u, i) decreases exponentially with time via the function 2−λ(t−tu,i),
where tu,i is the time of the rating and t is the current time. Thus, t − tu,i is
the age of the rating. The parameter λ, λ > 0, is the decay rate which defines
how fast the past history is forgotten. The higher λ, the lower the importance
of historical ratings compared to more recent ratings.

Under this aging schema, the so-called damped relevance of an item i for a
user u with respect to a query Q in a given timepoint t is given by:

relevanced(u, i,Q) =

∑
u′∈(Pu,Q∩Zi)

2−λ(t−tu′,i) × contribution(u, u′)× rating(u′, i)
∑

u′∈(Pu,Q∩Zi)
contribution(u, u′)

So, all user item scores rating(u′, i) are weighted by their recency 2−λ(t−tu′,i).
Since all ratings are active, the damped support of i for u under Q is equal to

the corresponding time-free support, that is:

supportd(u, i, Q) = supportf (u, i, Q)

Finally, the damped value of i for u under Q is computed as in the time-free
case by combining the relevance and support scores (σ ∈ [0, 1]):

valued(u, i, Q) = σ × relevanced(u, i, Q) + (1− σ)× supportd(u, i, Q)

Sliding Window Model. In the sliding window model only a subset of the
available ratings is exploited, and in particular, the most recent ones. The size of
this subset, referred to as window size, might be defined in terms of timepoints
(e.g., use the ratings given within the last month) or records (e.g., use the 1000
most recent ratings). We adopt the first case. The ratings within the window
are the active ratings that participate in the recommendation computation. Let
t be the current time and W be the window size. Then, a rating of a user u for
an item i, rating(u, i), is active only if tu,i > t−W .

In the sliding window model, the sliding relevance of an item i for a user u
under a query Q is defined with regard to the active ratings of the peers of u for
i. More specifically:

relevances(u, i, Q) =

∑
u′∈(Pu,Q∩Xi)

contribution(u, u′)× rating(u′, i)∑
u′∈(Pu,Q∩Xi)

contribution(u, u′)

where Xi is the set of users in Zi, such that, ∀u′ ∈ Xi, tu′,i > t−W .

154 K. Stefanidis et al.

The sliding support of i for u under Q is defined as the fraction of peers of u
that have expressed ratings for i that are active at time t. That is:

supports(u, i, Q) = |Pu,Q ∩ Xi|/|Pu,Q|

Finally, the sliding value of i for u under Q, for σ ∈ [0, 1], is a linear combi-
nation of their relevance and support scores:

values(u, i, Q) = σ × relevances(u, i, Q) + (1 − σ)× supports(u, i, Q)

3.2 Temporal Context-Based Recommendations

In contrast to fresh-based recommendations, the context-based ones assume that
although the user preferences may change over time, they display some kind of
temporal repetition. Or in other words, users may have different preferences un-
der different temporal contexts. For instance, during the weekend a user may
prefer to watch different movies from those in the weekdays. So, a movie recom-
mendation system should provide movie suggestions for the weekends that may
differ from the suggestions referring to weekdays.

As above, the rating of a user for an item, rating(u, i), is associated with the
rating time tu,i. Time is modeled here as a multidimensional attribute. The di-
mensions of time have a hierarchical structure, that is, time values are organized
at different levels of granularity (similar to [32,35]). In particular, we consider
three different levels over time: time of day, day of week and time of week
with domain values {“morning”, “afternoon”, “evening”, “night”}, {“Mon”,
“Tue”, “Wed”, “Thu”, “Fri”, “Sat”, “Sun”} and {“Weekday”, “Weekend”}, re-
spectively. It is easy to derive such kind of information from the time value tu,i
that is associated with each user rating by using SQL or other programming
languages. More elaborate information can be extracted by using the WordNet
or other ontologies.

Let Θ be the current temporal context of a user u. We define the context-based
relevance of an item i for u under a query Q expressed at Θ based on the ratings
of the peers of u for i that are defined for the same context Θ. Formally:

relevancec(u, i, Q) =

∑
u′∈(Pu,Q∩Yi)

contribution(u, u′)× rating(u′, i)∑
u′∈(Pu,Q∩Yi)

contribution(u, u′)

where Yi is the set of users in Zi, such that, ∀u′ ∈ Yi, tu′,i �→ Θ, that is, the user
rating has been expressed for a context equal to Θ. For example, if the temporal
context of a user query is “Weekend”, only the user ratings given for the context
“Weekend” would be considered.

The context-based support of i for u under Q is defined with respect to the
number of peers of u that have expressed ratings for i under the same temporal
context as the query context. That is:

supportc(u, i, Q) = |Pu,Q ∩ Yi|/|Pu,Q|

A Framework for Modeling, Computing and Presenting Recommendations 155

Similar to the fresh-based recommendations, the context-based value of i for
u under Q is calculated taking into account the context-based relevance and
support. For σ ∈ [0, 1]:

valuec(u, i, Q) = σ × relevancec(u, i, Q) + (1 − σ)× supportc(u, i, Q)

3.3 Top-k Time-Aware Recommendations

Next, we define the time-aware variation of the top-k recommendation problem
(c.f., Sec 2.2) applicable to both fresh-based and context-based approaches.

Definition 6 (Top-k Time-aware Recommendations). Let U be a set of
users and I be a set of items. Given a query Q posed by a user u ∈ U at time
t mapped to a temporal context Θ, recommend to u a list of k items Iu =<
i1, . . . , ik >, Iu ⊆ I, such that:

(i) ∀ij ∈ Iu, �rating(u, ij), for the fresh-based recommendations, and ∀ij ∈ Iu,
�rating(u, ij) that is associated with context equal to Θ, for the context-based
recommendations,

(ii) valueo(u, ij, Q) ≥ valueo(u, ij+1, Q), 1 ≤ j ≤ k − 1, ∀ij ∈ Iu, and
(iii) valueo(u, ij, Q) ≥ valueo(u, xy, Q), ∀ij ∈ Iu, xy ∈ I\Iu,
where o corresponds to either d (for the damped window model), s (for the sliding
window model) or c (for the context-based model).

The first condition ensures that the suggested items do not include already
evaluated items by the user either in general or under a specific context, while
the second and the third conditions resemble those of Def. 5.

4 Presentation of Time-Aware Recommendations Based
on User Preferences

Depending on the value of k and the recommendation application per se, the
top-k recommendations for a user u might result in a lot of information for u.
To facilitate the user selection, we propose to organize the results in a compact
yet intuitive and representative way. To achieve this goal, we employ, apart from
ratings, preferences expressed by users over items. These user preferences might
be either qualitative (e.g., the director is more important than the genre of the
movie) or quantitative (e.g., the preference scores for the directors Q. Tarantino,
F. F. Coppola are 0.9, 0.5, respectively).

In the following, we discuss in more details how preferences can be given
(Sect. 4.1) and we present a formal model for the effective presentation of user
top-k recommendations based on his/her preferences (Sect. 4.2).

156 K. Stefanidis et al.

4.1 User Preferences

In general, preferences can be expressed either in a qualitative or in a quantitative
way. Following a qualitative preference model, users employ binary relations to
directly define preferences between data items (e.g., [13,20]). Following a quan-
titative preference model, users provide numeric scores via scoring functions to
indicate their degree of interest (e.g., [6,22,35]). We use a qualitative preference
model [13], since this model is more general than the quantitative one and also
closer to the users intuition. Specifically:

Definition 7 (Preference Model). Let U be a set of users and I be a set of
items with relational schema R(A1, . . . , Ad). For a user u ∈ U , assume a set of
values Pu of an attribute Aj, 1 ≤ j ≤ d, such that, Pu ⊆ dom(Aj). The user u
specifies a binary preference relation prefu on Pu, prefu = {(p1 � p2)|p1, p2 ∈
Pu}, where p1 � p2 denotes that u prefers p1 over p2.

For example, a user might prefer A. Hitchcock over S. Spielberg, i.e., (A.
Hitchcock � S. Spielberg), and S. Spielberg over Q. Tarantino, i.e., (S. Spielberg �
Q. Tarantino).

Alternatively, instead of providing comparative relationships, users could pro-
vide explicit preference scores for the values in Pu. This would correspond to a
quantitative approach, with higher preference scores indicating more important
preferences. For example, a user might assign to A. Hitchcock, S. Spielberg and
Q. Tarantino the preference scores 0.9, 0.7 and 0.6, respectively. The transi-
tion from the quantitative to the qualitative approach is straightforward. For
the aforementioned example, the qualitative equivalent is: (A. Hitchcock � S.
Spielberg), (A. Hitchcock � Q. Tarantino), and (S. Spielberg � Q. Tarantino).

Irrespectively of their qualitative or quantitative formulation, preferences may
also be expressed at different levels of granularity. We distinguish between value-
based and attribute-based preferences. Value-based preferences are expressed be-
tween individual values of item attributes. Typically, they are formulated over
the items of a relation based on the values of their attributes. An example of a
value-based preference for the item attribute director could be (A. Hitchcock �
Q. Tarantino). Attribute preferences express preferences between the different
attributes of R, i.e., they evaluate how important for the end user each attribute
or feature of the item description is. For example, a user might consider the at-
tribute director more important than the attribute genre, i.e., (director � genre).
Attribute preferences might be also expressed either qualitatively (e.g., [19]) or
quantitatively (e.g., [26]). In what follows, we will use the term prefu to denote
the whole set of value-based and attribute-based preferences of a user u.

Clearly, preferences may be collected using various ways. Specifically, prefer-
ences can be provided explicitly by the users, as above, or constructed automat-
ically, for instance, based on the past behavior of the user or of similar users.
Such methods for the automatic construction of preferences have been the focus
of much current research (e.g., [27]) and are beyond the scope of this paper. For
our study, we assume that the set of preferences is provided for each user.

A Framework for Modeling, Computing and Presenting Recommendations 157

4.2 Time-Aware Recommendations Presentation

A user in a recommendation application might express both value-based and
attribute-based preferences. To combine these different types, we use attribute-
based preferences to set priorities among value-based preferences based on the
attributes involved in the preferences, similarly to [19]. For example, assume a
user with value-based preference (A. Hitchcock � S. Spielberg) over the attribute
director and (horror � drama) over the attribute genre. Assume also that our
user considers the director of a movie to be more important than its genre which
is expressed through the attribute-based preference (director � genre).

Given the above set of preferences, the following combined preferences can
be drawn: our user prefers the set of values or keywords {A. Hitchcock, horror}
over the set of values {A. Hitchcock, drama}. The latter set is preferred over the
set {S. Spielberg, horror}, which in turn is preferred over the set {S. Spielberg,
drama}.

The combined preferences of a user can be directly exploited for ranking the
top-k recommendations of the user. The idea is to first extract the combined
preferences and then use them to rank and present the top-k recommended
items to the user.

This ranking could be also enhanced by exploiting the different attributes of
the item description and building summaries upon these descriptions. We start
with the brick of this concept, which is, the keyword-based summary.

Definition 8 (Keyword-based summary). Let M be a set of keywords and
I ′, I ′ ⊆ I, be a set of items. A keyword-based summary, key-sum, is a pair (M :
I ′M), I ′M ⊆ I ′, such that, all items in I ′M contain all keywords in M .

For example, the keyword-based summary ({A. Hitchcock, horror}: {Psycho,
Vertigo}) consists of a set of two keywords (A. Hitchcock and horror) that is
associated with a set of movies (Psycho and Vertigo) that contain (or are re-
lated with) the keywords. In this example, the keywords {A. Hitchcock, horror}
derived from user preferences are extended by the titles of the movies which are
directed by A. Hitchcock and belong to the horror genre type. Other extension
options could be employed as well, e.g., information about the production year
or the duration of the movies. Also, the extension might refer to more than
one attributes, e.g., both title and production year of a movie could be consid-
ered. Such a summary offers more information to the end user regarding the
recommended item and facilitates his/her selection.

So far, we focus on the summary of a single combined preference. Our goal is to
construct a summary for the top-k recommendations based on user preferences.
This summary consists of an ordered set of keyword-based summaries, such that,
a keyword-based summary key-sumi = (Mi, I ′Mi

) appears before a keyword-
based summary key-sumj = (Mj , I ′Mj

), if the keywords of Mi are preferred over
the keywords of Mj with respect to the available value-based and attribute-
based preferences. Considering our previous example and using only the titles
of the movies for the extension, the corresponding ordering would be: the sum-
mary ({A. Hitchcock, horror}: {Psycho, Vertigo}) is preferred over the summary

158 K. Stefanidis et al.

({A. Hitchcock, drama}: {The Farmer’s Wife, Suspicion}), which is preferred
over the summary ({S. Spielberg, horror}: {Twilight Zone: The Movie, Arachno-
phobia}), which in turn is preferred over ({S. Spielberg, drama}: {Lincoln,
Schindler’s List}).

Note also that there might be cases where the preferences may be equivalent,
e.g., {M. Curtiz, horror} is equally preferred to {S. Spielberg, horror}, and con-
sequently, the corresponding keyword-based summaries would be equivalent. To
accommodate such cases, we propose to summarize the equivalent keyword-based
summaries in the so called keyword-based class summaries.

Definition 9 (Keyword-based class summary). A keyword-based class sum-
mary, class-sum, is a set of keyword-based summaries {key-sum1, . . . , key-
sumn}, such that, the keywords in M1, . . ., Mn are considered equally preferable
with respect to a given set of value and attribute preferences.

For example, given that the sets of keywords {M. Curtiz, horror} and {S. Spiel-
berg, horror} are equally preferable with respect to a specific set of preferences,
then their keyword-based summaries, e.g., {({M. Curtiz, horror}: {The Walking
Dead}) and ({S. Spielberg, horror}: {Twilight Zone:TheMovie,Arachnophobia})},
constitute a keyword-based class summary.

Based on the keyword-based class summaries, we define formally the time-
aware recommendations summary as follows:

Definition 10 (Time-aware recommendations summary). Let U be a set
of users, I be a set of items, Q be a query posed by a user u ∈ U at time t
mapped to the temporal context Θ and prefu be the set of value and attribute
preferences of u. Let also Iu be the top-k time-aware recommendations for u.
The time-aware recommendation summary for u is a list of keyword-based class
summaries tar-sum = <class-sum1, . . ., class-sumx>, such that:

(i) all sets of keywords in class-sumi are preferred over all sets of keywords in
class-sumi+1, 1 ≤ i ≤ x− 1, with respect to prefu,

(ii) all keywords of the value preferences of prefu appear in an M set of tar-sum
and

(iii) only the keywords of the M sets of tar-sum appear in the value preferences
of prefu.

So, given that the set of keywords {A. Hitchcock, horror} is preferred over
the sets {M. Curtiz, horror} and {S. Spielberg, horror}, with the last two being

({A. Hitchcock, horror}: {Psycho, Vertigo})

{({M. Curtiz, horror}: {The Walking Dead}), ({S. Spielberg, horror}: {Twilight Zone:
The Movie, Arachnophobia})}

Fig. 3. A presentation example

A Framework for Modeling, Computing and Presenting Recommendations 159

equally preferred, then the keyword-based summary for {A. Hitchcock, horror}
will be first displayed. The keyword-based class summary for {M. Curtiz, horror}
and {S. Spielberg, horror} will follow. Schematically, this would look as in Fig. 3.

5 Time-Aware Recommendations Computation

A high level representation of the main components of the architecture of our
system is depicted in Fig. 4. Assume a user that submits a query presenting
his information needs. Each query is enhanced with a contextual specification
expressing some temporal information. This temporal information of the query
may be postulated by the application or be explicitly provided by the user as part
of his query. Typically, in the first case, the context implicitly associated with
a query corresponds to the current context, that is, the time of the submission
of the query. As a query example, for a restaurant recommendation application,
consider a user looking for restaurants serving chinese cuisine during the week-
end. As part of his/her query, the user should also provide the aging schema
that will be used.

Then, we locate the peers of the user (Sect. 5.1) and employ their ratings
for estimating the time-aware recommendations (Sect. 5.2). Finally, recommen-
dations are summarized and presented to the user (Sect. 5.3). In following, we
overview the details of each step.

5.1 Selecting Peers

Our model assumes three different kinds of peers, namely close friends, area
experts and similar users. For each submitted query Q of a user u, u specifies the
peers that will be used for producing his/her recommendations. This selection
step of the peers is, in general, application dependent. For example, when a user
is asking for advice for a personal computer, the area experts may fit well to
the user needs, while when asking for a suggestion about a movie, the user’s
close friends may provide good answers. In a similar manner, when using a trip
advisor, the choice of users with similar tastes seems appropriate.

For the close friends case, the set of peers of u consists of the close friends
of u, while for the area experts case, the set of peers of u consists of the users
that are considered to be experts for Q. We assume that this information is
already known. For the similar users case, we need to calculate all similar-
ity measures simU(u, u′) for all users u′ ∈ U . Those users u′ with similarity
simU(u, u′) greater than or equal to the threshold δ represent the similar users of
u (Algorithm 1).

5.2 Computing Recommendations

Having established the methodology for finding the peers of a user, we focus next
on how to generate valued recommendations for him/her. Given a user u ∈ U
and his/her peers Pu,Q, the procedure for estimating the value score of an item

160 K. Stefanidis et al.

Fig. 4. System architecture

i for u requires the computation of the relevance and support of i. Note that
we do not compute value scores for all items in I, but only for the items I ′,
I ′ ⊆ I, that satisfy the query selection conditions. To do this, we perform a
pre-processing step to select the relevant to the query data by running a typical
database query. For example, for a query about destinations in Greece posed to
a travel recommendation system, we ignore all the rest destinations.

Algorithm 2 presents the general procedure for computing the value scores of
the items in I ′. Pairs of the form (i, valueo(u, i, Q)) are maintained in a set Vu,
where o corresponds to d, s or c for the damped window, sliding window and
context-based approach, respectively. As a post-processing step, we rank all pairs
in Vu on the basis of their value score. To provide the top-k recommendations
to u, we report the k items with the highest scores, i.e., the k first items in Vu.

Next, we discuss separately the particulars of each time-aware recommenda-
tion approach. For the damped window approach, all the ratings of the peers of
u are employed for computing recommendations. However, this is not the case
for the other two approaches, where only a subset of the peers ratings are taken
into consideration. More specifically, for the sliding window approach, only the
most recent ratings are used, while for the context-based approach, the ratings
that are defined for a temporal context equal to the query context are employed.
This can be seen as a rating pre-filtering step. It is worth noting that, since some
ratings are ignored due to temporal specifications, some of the peers finally may
not contribute at all to the recommendation list construction.

Moreover, for the context-based approach, the associated set of ratings for
a specific query may be empty, that is, there may be no ratings for the query.
In this case, we can use for the recommendation process these ratings whose
context is more general than the query context. For example, for a query with

A Framework for Modeling, Computing and Presenting Recommendations 161

Algorithm 1. Finding Similar Users Algorithm

Input: A set of users U , a user u ∈ U and a threshold similarity value δ.
Output: The peers of u, Pu,Q.

1: begin
2: Pu,Q = ∅;
3: for each user u′ ∈ U\{u} do
4: compute simU(u, u′);
5: if simU(u, u′) ≥ δ then
6: add u′ to Pu,Q;
7: end if
8: end for
9: return Pu,Q;
10: end

Algorithm 2. Value Computation Algorithm

Input: A user u ∈ U , a query Q, the peers Pu,Q along with their ratings, the aging
schema and the weight σ.

Output: A set Vu of pairs (i, valueo(u, i,Q)), ∀i ∈ I′.

1: begin
2: Vu = ∅;
3: for each item i ∈ I′ unrated by user u do
4: compute relevanceo(u, i,Q);
5: compute supporto(u, i,Q);
6: compute valueo(u, i, Q);
7: add (i, valueo(u, i,Q)) to Vu;
8: end for
9: return Vu;
10: end

context “Sat”, we can use a rating given for context “Weekend”. The selection
of the appropriate ratings can be made more efficient by deploying indexes on
the context of the ratings. Such a data structure that exploits the hierarchical
nature of context, termed profile tree, is introduced in [35].

As a final note, the two approaches for computing time-aware recommenda-
tions can be combined. For instance, we can apply the context-based approach
first. Then, we can apply the damped window approach. This way, the impor-
tance of the ratings that are defined for the query context decreases with time.

5.3 Presenting Recommendations

To facilitate users in item selection, we present the top-k time-aware recom-
mended items for a user u in a compact and intuitive way, by employing his/her
value-based and attribute-based preferences prefu.

The problem we deal with here can be stated as follows: Given a relation R
describing the items in a recommendation application and the preferences prefu
of u over R, how to produce ranked groups of items in R based on prefu. To this

162 K. Stefanidis et al.

 A. Hitchcock, horror level 1

A. Hitchcock, drama M. Curtiz, horror S. Spielberg, horror level 2

 M. Curtiz, drama S. Spielberg, drama level 3

Fig. 5. A lattice example

end, a lattice is built where the nodes correspond to the combinations of values
appearing in prefu. For example, for the list of preferences: (i) A. Hitchcock is
preferred over M. Curtiz or S. Spielberg, (ii) horror movies are preferred over
drama movies and (iii) the director of a movie is as important as its genre, the
lattice of Fig. 5 is constructed. The top nodes are more important to the user
comparing to the bottom nodes, whereas nodes lying in the same level of the
lattice are of equal importance.

A query is formulated for each node in the lattice. Considering only the top-
k items for recommendations, all queries in a specific level are associated with
equally preferable items and each query is associated with the items that contain
the keywords of the query. The queries of each level are successively executed
starting from the queries of the top level and going down the lattice. For example,
for the lattice of Fig. 5, items with keywords {A. Hitchcock, horror}, i.e., items
in the result of the query of the first level, are preferred over the items with
keywords {S. Spielberg, horror}, i.e., the items in the results of a query of the
second level, and so on. Within the same level, items are ranked according to
their recommendation value score.

Then, we construct a keyword-based summary for each query in the lattice.
The set of queries in a level of the lattice corresponds to a keyword-based class
summary, while the total set of ordered queries in the lattice represents the
time-aware recommendation summary.

6 Experiments

In this section, we evaluate the effectiveness of our time-aware recommendation
system using a real movie ratings dataset [1], which consists of 100,000 ratings
given from September 1997 till April 1998 by 1,000 users for 1,700 items. The
monthly split is shown in Fig. 6(a), while the split per weekends and weekdays
is shown in Fig. 6(b).

Since there is no information about actual friends and experts in the dataset,
we employ as the peers of a given user his/her similar users. To this end, the
notion of user similarity is important. We use here a simple variation; that is,
we use distance instead of similarity. More specifically, we define the distance
between two users as the Euclidean distance over the items rated by both.

A Framework for Modeling, Computing and Presenting Recommendations 163

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Sep-97 Oct-97 Nov-97 Dec-97 Jan-98 Feb-98 Mar-98 Apr-98

ra

ti
ng

s

Months

(a)

0

10000

20000

30000

40000

50000

60000

Weekends Weekdays

ra

ti
ng

s

Temporal context

(b)

Fig. 6. (a) Ratings per month and (b) ratings per temporal context

Let u, u′ ∈ U be two users, Iu be the set of items for which ∃rating(u, i),
∀i ∈ Iu, and Iu′ be the set of items for which ∃rating(u′, i), ∀i ∈ Iu′ . We denote
by Iu ∩ Iu′ the set of items for which both users have expressed preferences.
Then, the distance between u, u′ is:
distU(u, u′) =

√∑
i∈Iu∩Iu′ (rating(u, i)− rating(u′, i))2/|Iu ∩ Iu′ |

To evaluate the quality of the recommendations, we use a predictive accuracy
metric that directly compares the predicted ratings with the actual ones [25].
A commonly used metric in the literature is the Mean Absolute Error (MAE),
which is defined as the average absolute difference between predicted ratings and
actual ratings: MAE =

∑
u,i |rating(u, i) − valueo(u, i, Q)|/N , where N is the

total number of ratings in the employed dataset and o corresponds to d, s or c.
Clearly, the lower the MAE score, the better the predictions.

Next, we report on the results for the sliding window model, the damped
window model and the context-based model compared to the time-free model.

Sliding window model. To illustrate the effectiveness of the sliding window model,
we use windows of different sizes W . The window size W = 1 stands for the
most recent month, i.e., April 1998, the window size W = 2 stands for both
April 1998 and March 1998, and so forth. The window size W = 8 includes the
whole dataset, from April 1998 till September 1997. We denote the resulting
dataset as DW , where W = [1 − 8] is the window size. For each dataset DW ,
we compute the recommendations for each user by considering the user ratings
within the corresponding window W . We compare the predicted values with
the actual values given by the user within the same window W and report the
average results.

The results for different windows, distance thresholds and σ values are pre-
sented in Fig. 7(a) (for σ = 1.0), Fig. 7(b) (for σ = 0.95), Fig. 8(a) (for σ = 0.9),
Fig. 8(b) (for σ = 0.85), Fig. 9(a) (for σ = 0.8) and Fig. 9(b) (for σ = 0.75).
Regarding the effect of the different window sizes, in general, recommendations
present better quality for small windows (this is not the case for the smallest
window size W = 1 because of the small amount of ratings used for predic-
tions). For example, for a user distance threshold equal to 0.03 and W = 3,

164 K. Stefanidis et al.

(a) (b)

Fig. 7. MAE scores for the sliding window model with (a) σ = 1.0 and (b) σ = 0.95

(a) (b)

Fig. 8. MAE scores for the sliding window model with (a) σ = 0.9 and (b) σ = 0.85

the predictions are improved around 2.5% compared to W = 8 (i.e., compared
to the time-free recommendations model). Or, for a threshold equal to 0.06 and
W = 2, the predictions are improved around 4% compared to W = 8 (Fig. 7(a)).
Moreover, the larger the window, the smaller the improvement. As expected, for
larger user distance thresholds, the MAE scores increase for all window sizes,
since more dissimilar users are considered for the suggestions computation. Note
that the specific distance threshold values are selected with respect to the num-
bers of similar users they return; the experiment presents similar behavior for
different such values. Regarding the effect of σ, the best recommendation quality
is given when σ = 0.9. More specifically, the quality is improved from σ = 1.0 to
σ = 0.9, while we notice the opposite behavior for smaller σ values. That is, for
σ ∈ [0.9, 1.0], the lower the σ, the better the predictions, and, for σ < 0.9, the
higher the σ, the better the predictions. For example, for W = 2 and distance
equal to 0.06, the predictions for σ = 0.9 are improved around 7% compared to
the predictions for σ = 1.0 and 16% for σ = 0.8. The corresponding improve-
ments for distance equal to 0.09 are 4.5% and 12%, respectively. In overall, our
studies show that support has an effect on the recommendations quality and
could be used for improving the recommendation process. However, the choice
of an optimal value for σ to achieve the highest quality of recommendations is

A Framework for Modeling, Computing and Presenting Recommendations 165

(a) (b)

Fig. 9. MAE scores for the sliding window model with (a) σ = 0.8 and (b) σ = 0.75

Fig. 10. MAE scores for the damped window model

application dependent, due to the different amounts of ratings given at specific
time instances, or periods.

Damped window model. Next, we evaluate the effect of the decay rate λ in the
recommendations accuracy. We use different values for λ; the higher the λ is,
the less the historical data count. The value λ = 0 corresponds to the time-free
model. We downgrade the original ratings based on the decay factor λ and the
time difference between the end of the observation period (22/04/1998) and the
ratings timestamp.

The results of this experiment for σ = 0.9, which is the optimal σ value ac-
cording to the previous analysis, are shown in Fig. 10. This aging model offers
a small improvement in this setting, i.e., for the employed dataset. In particu-
lar, the best MAE scores are obtained when λ = 0.004. So, for λ = 0.004 and
distance equal to 0.03, the predictions are improved around 1.3% compared to
the time-free model. The improvements for distance equal to 0.06, 0.09 and 0.12
are 0.6%, 1.6% and 1%, respectively. Larger λ values lead to worst predictions
compared to the predictions of the time-free model. Practically, λ = 0.004 means

166 K. Stefanidis et al.

Fig. 11. MAE scores for the context-based approach

that the ratings loose 10% of their value after 10 years. As above, larger distance
thresholds lead to larger MAE scores and worst recommendations quality.

Context-based recommendations. In this set of experiments, we demonstrate the
effect of temporal context on producing recommendations. We consider two dif-
ferent temporal contexts “Weekends” and “Weekdays”. For the “Weekends” con-
text, we base our predictions only on ratings defined for weekends (Dweekends),
whereas for the “Weekdays” context, we consider ratings from Monday to Friday
(Dweekdays). The predicted values are compared to the actual values given by
the user within the same temporal context through the MAE metric.

Fig. 11 displays the results for σ = 0.9. Except for the two temporal con-
texts, “Weekends” and “Weekdays”, we also present the scores for the time-free
model, i.e., when the whole dataset is used. Generally speaking, the temporal
context affects the recommendations accuracy. In particular, for both contexts,
“Weekends” and “Weekdays”, the quality of the recommendations is improved
compared to the time-free approach that completely ignores the temporal infor-
mation of the ratings. For example, for a user distance threshold equal to 0.03,
the predictions for “Weekends” are improved on average 13% when using ratings
for “Weekends” instead of using the whole rating set. Similarly, for a distance
equal to 0.06, the predictions for “Weekdays” are improved around 11%. Also,
larger distance thresholds values result in larger MAE scores, that is, the quality
of the recommendations decreases with the user distance threshold.

Finally, we have performed t-tests to see if there are statistically significant
differences between the proposed approaches and the time-free model. The re-
sults of the tests demonstrate that the probability of the difference being due
to chance is less than 0.005, 0.0005 and 0.0005 for the sliding window, damped
window and temporal context model, respectively. So clearly, our approaches pro-
duce statistically significant recommendations compared to the time-free model.

To summarize, time plays an important role towards improving the quality of
the proposed recommendations. The sliding window and the context-based ap-
proaches increase the recommendations accuracy. However, a mere decay model

A Framework for Modeling, Computing and Presenting Recommendations 167

seems to be not adequate. In our current work, we aim at designing a more
elaborate aging scheme that considers not only the age of the ratings but also
other parameters, such as the recency and popularity of the recommended items
and the context under which the ratings were given.

7 Prototype Implementation: Movie Guide

To demonstrate the feasibility of our approach, we have developed a research
prototype for a movie recommendation application, called tRecs: A Time-aware
Movie Guide (Fig. 12). The overall system architecture of tRecs is the one de-
picted in Fig. 4. We maintain information about movies, users and ratings. The
movies database schema consists of a single relation with schema: Movies(mid,
title, year, director, genre, language, duration). The prototype is implemented
in Java and MySQL.

When a user joins the system, he/she registers his/her ratings for computing
recommendations and his/her value and attribute preferences for constructing
summaries and presenting the results (Fig. 13). Users express their ratings for
movies by providing a numerical score between 0.0 and 1.0. Furthermore, users
are allowed to define their value-based and attribute-based preferences following
either the qualitative or the quantitative preference model. For instance, a user
may define that A. Hitchcock � M. Scorsese or may give the score 0.8 to A.
Hitchcock and the score 0.6 to M. Scorsese. Similarly, for the attribute prefer-
ences. Clearly, a user can add, delete or modify ratings and preferences at any
time and not only at registration time.

Besides user registration, the other part of the application includes recommen-
dations computation, summary construction and presentation. Recommendations
computation runs in two modes: time-free and time-aware. In the time-free mode,
the temporal aspects of the user ratings are completely ignored. The time-aware
mode distinguishes between fresh-based and context-based recommendations. In
this mode, the user query is enhanced with some temporal information which is
provided by the user as part of his/her query or postulated by the application. In
the latter case, the information implicitly associated with the query corresponds
to the current temporal characteristics, that is, the context at the time of the sub-
mission of the query. The user should also provide the exact scheme that will be
used (damped window, sliding window or temporal context).

Presentation summaries are produced with respect to the top-100 time-aware
recommendations. User preferences are employed for constructing ordered sets of
keywords, in the form of a lattice. Following this ordering, keyword-based sum-
maries, that is, keywords extended with movie titles and production years, are
presented to users. As a case study scenario, suppose that a user gave two value-
based preferences (A. Hitchcock is preferred over M. Scorsese and horror movies
are preferred over crime movies) and one attribute-based preference (the director
of a movie is as important as its genre). Suppose also that our user opts to fol-
low the damped window model and would like to know the recommended movies
according to his/her previously submitted ratings and preferences. The results of

168 K. Stefanidis et al.

Fig. 12. tRecs: A Time-aware Movie Guide

Fig. 13. tRecs configurations

this query example are depicted in Fig. 14. Note that the summary for {A. Hitch-
cock, crime} does not appear in the results, since there are no crime movies di-
rected by A. Hitchcock in our database instance.

8 Related Work

The research literature on recommendations is extensive. Typically, recommen-
dation approaches are distinguished between: content-based, that recommend
items similar to those the user previously preferred (e.g., [33,28]), collaborative
filtering, that recommend items that users with similar preferences liked (e.g.,
[21,11]) and hybrid, that combine content-based and collaborative ones (e.g., [8]).
Several extensions have been proposed, such as employing multi-criteria ratings
(e.g., [2]) and defining recommendations for groups (e.g., [7,31,30]).

A Framework for Modeling, Computing and Presenting Recommendations 169

Fig. 14. tRecs: A Time-aware Movie Guide

Recently, there are also approaches focusing on enhancing recommendations
with further contextual information (e.g., [3,32]). In these approaches, context
is defined as a set of dimensions, or attributes, such as location, companion and
time, with hierarchical structure. While a traditional recommendation system
considers only two dimensions that correspond to users and items, a context-
aware recommendation system considers one additional dimension for each con-
text attribute. In our approach, we focus on a particular case of this model,
that is, the three-dimensional recommendations space among users, items and
time, since our specific goal is to study how the time effects contribute to the
improvement of predictions.

Moreover, there are some approaches which incorporate temporal informa-
tion to improve recommendations effectiveness. [37] presents a graph-based rec-
ommendation system that mixes long-term and short-term user preferences to
improve predictions accuracy, while [36] considers how time can be used into
matrix factorization models by examining changes in user and society tastes and
habits, and items popularity. [15] uses a strategy, similar to our damped window
model, that decreases the importance of known ratings as time distance from
recommendation time increases. However, the proposed algorithm uses cluster-
ing to discriminate between different kinds of items. [10] introduces the idea of
micro-profiling, which splits the user preferences into several sets of preferences,
each representing the user in a particular temporal context. The predictions are
computed using these micro-profiles instead of a single user model. The main
focus of this work is on the identification of a meaningful partition of the user
preferences using implicit feedback. In our paper, the goal is to examine time
from different perspectives. This way, we use a general model for time, consid-
ering time either as specific time instances or specific temporal conditions, in
order to define a unified time-aware recommendation model.

170 K. Stefanidis et al.

The temporal aspect of the data has been also studied in different application
domains like time series [29] and temporal database queries [14]. Recently the
focus has been on huge amounts of data that are collected over time, the so
called data streams [4,18]. Due to the theoretically infinite nature of these data,
it is impossible to consider them all for answering a query or for a data mining
task. So, the rationale is to use the temporal information in order to “reduce”
the dataset complexity, e.g., by focusing on a specific period of time instead of
the whole stream (e.g., [5]) or by considering the aging of the data (e.g., [12]).

Finally, the general concept of summaries resembles the notion of tag clouds.
A tag cloud is a visual representation for text data. Tags are usually single words,
alphabetically listed and in different font size and color in order to show their
importance1. Tag clouds have appeared on several Web sites, such as Flickr and
del.icio.us, while recently tag cloud drawing has also received attention (e.g.,
[24]). With regard to summaries for keyword queries, data clouds [23] are the
most relevant. This work proposes algorithms that try to discover good, not
necessarily popular, keywords within the query results. Our approach follows
a preference-based technique to locate important keywords. From a different
perspective, [16] introduces the notion of object summary for summarizing the
data in a relational database about a particular data subject, or keyword. An
object summary is a tree with a tuple containing the keyword as the root node
and its neighboring tuples containing additional information as child nodes. [17]
extends this work by presenting a partial object summary of size l, composed of
only l representative tuples.

9 Conclusions

In this paper, we study different semantics to exploit the time information asso-
ciated with user ratings in order to improve the accuracy of recommendations.
We consider various types of time effects, and thus, propose different time-aware
recommendation models. Fresh-based recommendations care mainly for recent
and novel ratings, while context-based recommendations are computed with re-
spect to ratings with temporal context equal to the query context. To help users
receive a broader view of the recommended items, we add some structure to
the presentation of the results. In particular, we rank the recommended items
based on user preferences and organize equally important items through sum-
maries. Finally, we evaluate our approach using a real dataset of movie ratings
and demonstrate its feasibility through a prototype implementation of a movie
guide application.

There are several directions for future work. We envision to extend our frame-
work so as to support a novel mode of interaction between users and recommen-
dation systems; our goal is to exploit the whole rating history to produce valued
recommendations and, at the same time, use the fresh ratings to assist users in
database exploration.

1 en.wikipedia.org/wiki/Tag cloud

A Framework for Modeling, Computing and Presenting Recommendations 171

Acknowledgments. The work of the second author is supported by the project
“IdeaGarden” funded by the Seventh Framework Programme under grand no

318552.

References

1. Movielens data sets, http://www.grouplens.org/node/12 (visited on November
2011)

2. Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rat-
ing systems. IEEE Intelligent Systems 22(3), 48–55 (2007)

3. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating con-
textual information in recommender systems using a multidimensional approach.
ACM Trans. Inf. Syst. 23(1), 103–145 (2005)

4. Aggarwal, C.C. (ed.): Data Streams – Models and Algorithms. Springer (2007)
5. Aggarwal, C.C., Han, J., Wang, J., Yu, P.: A framework for clustering evolving

data streams. In: VLDB (2003)
6. Agrawal, R., Wimmers, E.L.: A framework for expressing and combining prefer-

ences. In: SIGMOD Conference, pp. 297–306 (2000)
7. Amer-Yahia, S., Roy, S.B., Chawla, A., Das, G., Yu, C.: Group recommendation:

Semantics and efficiency. PVLDB 2(1), 754–765 (2009)
8. Balabanovic, M., Shoham, Y.: Content-based, collaborative recommendation. Com-

mun. ACM 40(3), 66–72 (1997)
9. Balog, K., Bogers, T., Azzopardi, L., de Rijke, M., van den Bosch, A.: Broad

expertise retrieval in sparse data environments. In: SIGIR, pp. 551–558 (2007)
10. Baltrunas, L., Amatriain, X.: Towards time-dependant recommendation based on

implicit feedback. In: CARS, pp. 1–5 (2009)
11. Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algo-

rithms for collaborative filtering. In: UAI, pp. 43–52 (1998)
12. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving

data stream with noise. In: SDM 2006 (2006)
13. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database

Syst. 28(4), 427–466 (2003)
14. Dayal, U., Wuu, G.T.J.: A uniform approach to processing temporal queries. In:

VLDB, pp. 407–418 (1992)
15. Ding, Y., Li, X.: Time weight collaborative filtering. In: CIKM, pp. 485–492 (2005)
16. Fakas, G.J.: A novel keyword search paradigm in relational databases: Object sum-

maries. Data Knowl. Eng. 70(2), 208–229 (2011)
17. Fakas, G.J., Cai, Z., Mamoulis, N.: Size-l object summaries for relational keyword

search. PVLDB 5(3), 229–240 (2011)
18. Gama, J.: Knowledge Discovery from Data Streams. CRC Press (2010)
19. Georgiadis, P., Kapantaidakis, I., Christophides, V., Nguer, E.M., Spyratos, N.: Ef-

ficient rewriting algorithms for preference queries. In: ICDE, pp. 1101–1110 (2008)
20. Kießling, W.: Foundations of preferences in database systems. In: VLDB, pp. 311–

322 (2002)
21. Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.:

Grouplens: Applying collaborative filtering to usenet news. Commun. ACM 40(3),
77–87 (1997)

22. Koutrika, G., Ioannidis, Y.E.: Personalizing queries based on networks of composite
preferences. ACM Trans. Database Syst. 35(2) (2010)

http://www.grouplens.org/node/12

172 K. Stefanidis et al.

23. Koutrika, G., Zadeh, Z.M., Garcia-Molina, H.: Data clouds: summarizing keyword
search results over structured data. In: EDBT, pp. 391–402 (2009)

24. Kuo, B.Y.-L., Hentrich, T., Good, B.M., Wilkinson, M.D.: Tag clouds for summa-
rizing web search results. In: WWW, pp. 1203–1204 (2007)

25. Melville, P., Sindhwani, V.: Recommender systems. In: Encyclopedia of Machine
Learning, pp. 829–838 (2010)

26. Miele, A., Quintarelli, E., Tanca, L.: A methodology for preference-based person-
alization of contextual data. In: EDBT, pp. 287–298 (2009)

27. Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web
usage mining. Commun. ACM, 142–151 (2000)

28. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text
categorization. In: ACM DL, pp. 195–204 (2000)

29. Nong, Y.: The Handbook of Data Mining. Lawrence Erlbaum Associates, Mahwah
(2003)

30. Ntoutsi, E., Stefanidis, K., Nørv̊ag, K., Kriegel, H.-P.: Fast group recommendations
by applying user clustering. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012
Main Conference 2012. LNCS, vol. 7532, pp. 126–140. Springer, Heidelberg (2012)

31. O’Connor, M., Cosley, D., Konstan, J.A., Riedl, J.: Polylens: A recommender sys-
tem for groups of user. In: ECSCW, pp. 199–218 (2001)

32. Palmisano, C., Tuzhilin, A., Gorgoglione, M.: Using context to improve predictive
modeling of customers in personalization applications. IEEE Trans. Knowl. Data
Eng. 20(11), 1535–1549 (2008)

33. Pazzani, M.J., Billsus, D.: Learning and revising user profiles: The identification
of interesting web sites. Machine Learning 27(3), 313–331 (1997)

34. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook.
Springer, New York, Inc. (2010)

35. Stefanidis, K., Pitoura, E., Vassiliadis, P.: Managing contextual preferences. Inf.
Syst. 36(8), 1158–1180 (2011)

36. Xiang, L., Yang, Q.: Time-dependent models in collaborative filtering based rec-
ommender system. In: Web Intelligence, pp. 450–457 (2009)

37. Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang, Q., Sun, J.: Temporal
recommendation on graphs via long- and short-term preference fusion. In: KDD,
pp. 723–732 (2010)

Incremental Mining of Top-k Maximal Influential Paths
in Network Data

Enliang Xu, Wynne Hsu, Mong Li Lee, and Dhaval Patel

School of Computing, National University of Singapore
{xuenliang,whsu,leeml,dhaval}@comp.nus.edu.sg

Abstract. Information diffusion refers to the spread of abstract ideas and con-
cepts, technical information, and actual practices within a social system, where
the spread denotes flow or movement from a source to an adopter, typically via
communication and influence. Discovering influence relations among users has
important applications in viral marketing, personalized recommendations and
feed ranking in social networks. Existing works on information diffusion anal-
ysis have focused on discovering “influential users” and “who influences whom”
relationships using data obtained from social networks. However, they do not
consider the continuity of influence among users. In this paper, we develop a
method for inferring top-k maximal influential paths which can capture the conti-
nuity of influence. We define a generative influence propagation model based on
the Independent Cascade Model and Linear Threshold Model, which mathemat-
ically models the spread of certain information through a network. We formalize
the top-k maximal influential path inference problem and develop an efficient al-
gorithm, called TIP, to infer the top-k maximal influential paths. TIP makes use
of the properties of top-k maximal influential paths to dynamically increase the
support and prune the projected databases. As databases evolve over time, we
also develop an incremental mining algorithm IncTIP to maintain top-k maxi-
mal influential paths. We evaluate the proposed algorithms on both synthetic and
real-world datasets. The experimental results demonstrate the effectiveness and
efficiency of both TIP and IncTIP.

1 Introduction

With the prevalence of online social media such as Facebook, Twitter and YouTube,
information diffusion analysis has attracted great research interests recently. Informa-
tion diffusion refers to the spread of abstract ideas and concepts, technical information,
and actual practices within a social system, where the spread denotes flow or movement
from a source to an adopter, typically via communication and influence [1]. Discovering
influence relations among users has important applications in viral marketing, personal-
ized recommendations and feed ranking in social networks. Existing works on informa-
tion diffusion analysis have focused on discovering “influential users” [10,11,12,18,5,4]
and “who influences whom” relationships [7,17] using data obtained from social net-
works. However, they either assume the existence of a social graph with edges labeled
with influence probabilities or do not consider the continuity of influence among users.
The notion of “continuity of influence” is inspired by the fact that, after adopting an

A. Hameurlain et al. (Eds.): TLDKS X, LNCS 8220, pp. 173–199, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

174 E. Xu et al.

action, users influence other users who have not performed similar action before, thus
triggering a cascade of influence. Based on this observation, we introduced the concept
of “influential path” that captures the continuity of influence [21].

Figure 1 shows the top-5 influential paths obtained from the MemeTracker
dataset [13]. Each node in the network is a news website and a directed edge
from node a to node b indicates that information has propagated from a to b. For
example, {us.rd.yahoo.com → seattletimes.nwsource.com →
blog.beliefnet.com} is an example of top-1 influential path. Our quick analysis
of this pattern revealed that a new piece of information gets propagated
from us.rd.yahoo.com to seattletimes.nwsource.com to
blog.beliefnet.com. This information can be utilized in automated news feed-
ing application, where we inform website seattletimes.nwsource.com about
newly published information by us.rd.yahoo.com and so on. Apart from this news
feeding application, top-k influential paths are also useful for finding critical nodes
which should have mirror sites. For example, website us.rd.yahoo.com is present
in 4 of the top-5 influential paths, then any disruptions to this node may lead to news
blackout.

breitbart.com

philly.com

blog.beliefnet.com

seattletimes.nwsource.com

blog.myspace.com

uk.news.yahoo.com

forum.prisonplanet.com

us.rd.yahoo.com

news.originalsignal.com

Fig. 1. Top-5 influential paths in MemeTracker Dataset

The problem is further complicated by the fact that users of the aforementioned on-
line social media are active and regularly upload new information to the social media.
For example, news websites regularly publish important information in MemeTracker
dataset. On average, 20,000 news articles are produced per hour from August 2008 to
January 2009 in the MemeTracker dataset (see Figure 2). Such updates may introduce
new patterns or invalidate some existing patterns. Recomputing top-k maximal influen-
tial paths for each update is very inefficient.

In this paper, we describe a method, called TIP to infer the top-k maximal influential
paths which can truly capture the dynamics of information diffusion among users in the
social network [21]. Given a log of propagation observations of some information over a
hidden network, our goal is to infer the top-k maximal influential paths that best explain
these observations. We define a generative influence propagation model based on the
Independent Cascade Model and the Linear Threshold Model, which mathematically
models the spread of certain information through a network. By utilizing the properties

us.rd.yahoo.com
seattletimes.nwsource.com
blog.beliefnet.com
us.rd.yahoo.com
seattletimes.nwsource.com
blog.beliefnet.com
seattletimes.nwsource.com
us.rd.yahoo.com
us.rd.yahoo.com

Incremental Mining of Top-k Maximal Influential Paths in Network Data 175

Fig. 2. News updates in Memetracker dataset

of top-k maximal influential paths, TIP can dynamically increase the support and prune
the projected databases.

We then extend TIP to allow for incremental mining. The extended algorithm, named
IncTIP, leverages on the computation performed in previous stages to maintain the set
of top-k maximal influential paths efficiently. We evaluate the proposed algorithms on
both synthetic and real-world datasets. The experimental results demonstrate the effec-
tiveness and efficiency of both TIP and IncTIP.

2 Influence Propagation Model

An influence network aims to capture the propagation of influence among a set of en-
tities based on a list of observations. We model the network using a directed graph
G = (V,E) where V and E are the sets of nodes and edges respectively.

A node u in V denotes an entity and can be active or inactive. It is considered active
if it has been influenced. Nodes can switch from being inactive to active, but not vice
versa. When a node u gets influenced, it in turns may influence each of its currently
inactive neighbors v with some small probability. Node u can only influence its neighbor
v if their time difference is within some time threshold τ .

Each directed edge (u,v) ∈ E has a weight weight(u,v) ∈ [0,1] denoting the likeli-
hood of node v being influenced by node u. Suppose tu and tv are the times at which
nodes u and v get influenced respectively. Then weight(u,v) = 0 if tv ≤ tu, i.e., nodes
cannot be influenced by nodes from the future time points. Otherwise, weight(u,v) =

e−
tv−tu

α where α is radius of influence.
We associate each node u with an influence measure which is computed from the

weights of the edges connecting u to its active neighboring nodes as follows:

in f luence(u,S) = 1−∏
w∈S

(1−weight(w,u)) (1)

176 E. Xu et al.

where S is the set of active neighbors of u.
One immediate concern is the cost of updating in f luence(u,S) when the status of

nodes change. Since the node status changes frequently, this update cost can be compu-
tationally expensive. We derive an expression that allows in f luence(u,S) to be updated
incrementally.

Suppose a new neighboring node w of u becomes active. Then

in f luence(u,S∪{w}) = 1− (1−weight(w,u))∗∏
u′∈S

(1−weight(u′,u))

= 1− (1−weight(w,u))∗ (1− in f luence(u,S))

= in f luence(u,S)+ (1− in f luence(u,S))∗weight(w,u) (2)

We observe that the influence measure in f luence(u,S) is both monotonic and sub-
modular.

A function f (.) is monotonic if f (S)≤ f (S′), for S⊆ S′. From Equation 2, we have

in f luence(u,S∪{w})− in f luence(u,S)= (1− in f luence(u,S))∗weight(w,u)≥ 0

A function f (.) is submodular if f (S∪{w})− f (S)≥ f (S′ ∪{w})− f (S′), for S⊆ S′.
This means that adding a node w to S increases the score more than adding w to S′ when
S⊆ S′. We show that in f luence(u,S) is sub-modular as follows:

in f luence(u,S∪{w})− in f luence(u,S)− (in f luence(u,S′∪ {w})− in f luence(u,S′))
= (1− in f luence(u,S))∗weight(w,u)− (1− in f luence(u,S′))∗weight(w,u)

= (in f luence(u,S′)− in f luence(u,S))∗weight(w,u) (3)

By monotonicity, in f luence(u,S′) ≥ in f luence(u,S). Hence,

(in f luence(u,S′)− in f luence(u,S))∗weight(w,u)≥ 0

Definition 1. An observation o = < (u1, t1), (u2, t2), · · · , (un, tn) > is a sequence of
tuples (ui, ti) where ti is the time when node ui becomes active, and ∀ i < j, ti < t j.
Further, ui = u j ∀ i = j. The length of observation o, denoted as |o|, is the number of
(ui, ti) tuples in o.

Definition 2. An in f luentialpath is a sequence of nodes, denoted as p = < v1 → v2 →
··· → vn >, such that weight(vi,vi+1) is larger than some user defined threshold for all
i, 1 ≤ i ≤ n− 1. The length of p is given by |p| = n− 1.

Definition 3. An observation o supports an influential path p if

– ∀v ∈ p, v ∈ { ui | (ui, ti) ∈ o}, and
– if ui and u j are nodes in o that correspond to vi′ and vi′+1, then 0 < t j− ti < τ , 1 ≤

i′ ≤ n− 1.

Let D be an observation database, which consists of a set of observations. The
support of an influential path p, denoted as support(p), is the fraction of observations
in D that support p.

Incremental Mining of Top-k Maximal Influential Paths in Network Data 177

The score of a path p = < v1 → v2 → ··· → vn > w.r.t. an observation o is defined
as

score(p,o) = log(in f luence(v1,S) ∏
1≤i≤n−1

weight(vi,vi+1))− logε, (4)

where ε ∈ [0,1] is some small value and S is the set of active neighbors of v1 w.r.t. o.
Let Sp be the set of observations in D that support influential path p. The total score

of p, denoted as total score(p), is defined by

total score(p) = ∑
o∈Sp

score(p,o). (5)

An influential path p = < v1 → v2 → ··· → vm > is a sub-path of another influential
path p′ = < v′1 → v′2 → ··· → v′n >, denoted as p p′, if and only if ∃ i1, i2, · · · , im,
such that 1 ≤ i1 < i2 < · · · < im ≤ n, and v1 = v′i1 , v2 = v′i2 , · · · , and vm = v′im . We also
call p′ a super-path of p.

An influential path p is maximal if there exists no influential path p′ such that p
p′ and support(p) = support(p′).

Definition 4. An influential path p is a top-k maximal influential path if p is maximal
and there exist no more than (k− 1) maximal influential paths whose total score is
greater than that of p.

The following theorem states the relation between the support and total score of two
maximal influential paths. This theorem is utilized by our proposed algorithm in Section
3 to effectively prune off the search space.

Theorem 1. For any two maximal influential paths p and p′, if support(p) > support
(p′) and ε < e−|D|(|o|+1)τ , then total score(p) > total score(p′) where o is an obser-
vation with maximum length in database D.

Proof. Let p be a maximal influential path with support s and length |p|. We can calcu-
late the total score of path p as

total score(p) = ∑
o∈Sp

score(p,o)

> (loge−τ + |p| ∗ loge−τ − logε)∗ s

=−sτ− s|p|τ− s∗ logε
=−sτ− s|p|τ− s∗ logε + logε− logε
= (− logε)∗ (s− 1)+ (−sτ− s|p|τ− logε)

> (− logε)∗ (s− 1)+ (−sτ− s|p|τ− loge−|D|(|o|+1)τ)

= (− logε)∗ (s− 1)+ (|D|(|o|+ 1)− s(|p|+1))τ
> (− logε)∗ (s− 1)

Since (|D|(|o|+ 1)− s(|p|+ 1)) ≥ 0, we have (loge−τ + |p| ∗ loge−τ − logε)∗ s >
(− logε) ∗ (s− 1). Note that (loge−τ + |p| ∗ loge−τ − logε) ∗ s is the lower bound for
the total score of any maximal influential path with support s, and (− logε) ∗ (s− 1)

178 E. Xu et al.

is the upper bound for the total score of any maximal influential path with support
(s− 1). Further, the value of total score decreases with the length of a path. Hence,
(loge−τ + |p| ∗ loge−τ − logε) ∗ s > (− logε) ∗ (s− 1) implies that the total score of
any maximal influential path with support s is greater than all the maximal influential
paths whose support is less than s. ��

3 The TIP Algorithm

In this section, we first describe the TIP algorithm that mines the top-k maximal influen-
tial paths without having to specify a minimum support threshold [21]. TIP is a prefix-
based influential path mining method. It extends the classical projection-based pattern
growth method [14] with time constraint. Instead of projecting observation databases
by considering all possible occurrences of prefixes, TIP examines the frequent prefix
sub-paths and projects only the corresponding valid observations which satisfy the time
constraint into the projected databases. The influential paths are then extended by ex-
ploring the valid frequent nodes in the projected databases.

Given an influential path p = < v1 → v2 → ··· → vn > and a node α , we can extend
p by α if the last node of p, i.e. vn, can in f luence α , that is, the time difference between
tvn and tα is within the time threshold τ . We denote the extension as p → α = < v1 →
v2 → ··· → vn → α >.

Let p′ = p→ α be an extension of p. we say p is a pre f ix of p′ and α is a su f f ix
of p′. For example, in our sample observation database D as shown in Table 1, < a →
d → g > is a prefix of path < a→ d → g→ i > and < i > is its suffix.

Let Sp be the set of observations that support influential path p. Suppose each o∈ Sp

is of the form < (u1, t1), (u2, t2), · · · , (ua, ta), (ua+1, ta+1), · · · , (ub, tb) >. Then we
define the p-pro jected database as Dp = { < (ua+1, ta+1), · · · , (ub, tb) > } if the last
node vn ∈ p corresponds to ua ∈ o and the time difference ta+1− ta is less than τ .

Table 1. A Sample Observation Database D

ID Observation

o1 <(a,1) (d,5) (g,10) (i,16)>
o2 <(c,8) (e,15) (f,20)>
o3 <(c,4) (d,10) (g,16) (i,20)>
o4 <(c,3) (e,12) (i,36)>
o5 <(c,5) (e,9) (h,20) (i,24)>

Table 2. Frequent nodes in D

Node Count

c 4
i 4
e 3
d 2
g 2
a 1
f 1
h 1

Consider the sample observation database in Table 1. Let time threshold τ = 20. The
projected database for path < c→ e > is D<c→e> = {< (f ,20)>, < (h,20),(i,24)>}.
Note that for observation o4, the time stamp of e is 12, while the next time stamp is 36.
Since the time difference is 24 which is more than τ , node e cannot influence node i,
and hence < (i,36)> is not included in the projected database.

Incremental Mining of Top-k Maximal Influential Paths in Network Data 179

Algorithm 1. TIPMiner(D, k, τ)
Require: global variable PathSet
Require: observation database D, an integer k and time threshold τ
Ensure: Top-k maximal influential path set PathSet
1: V ← nodes in D
2: Initialize min sup = 1
3: Initialize PathSet = /0
4: Let root be the root node
5: for each node v ∈ V do
6: Create child node v of root and record support count and IDs of the supporting observa-

tions of v
7: Update PathSet by calling TIP(v, D<v>, k, min sup, τ , PathSet)
8: end for
9: return PathSet

Having defined the concept of path-projected databases, we next describe the frame-
work TIPMiner for mining the top-k maximal influential paths from a given observation
database D. Algorithm 1 gives the details. It first finds all the nodes in D and sorts them
in decreasing order of their support values. A global variable PathSet is used to keep
track of the set of top-k maximal influential paths. This global variable is updated by
calling Algorithm TIP (see Algorithm 2) for each node.

Algorithm TIP finds the top-k maximal influential paths by constructing projected
databases. Inputs to TIP algorithm are an influential path p, the p-projected database
Dp, the number of maximal influential paths k, minimum support threshold min sup,
time threshold τ , and PathSet. The outputs are the set of top-k maximal influential
paths PathSet.

Given an influential path p, TIP algorithm attempts to extend p by first obtaining the
p-projected database Dp. Initially, the path consists of only one node. Given a path p,
we first check if this path is promising (lines 1-3). A path is promising if its support
is no less than the minimum support threshold. We calculate the total score of path p
(lines 4-5). Line 6 checks whether there exists an influential path p′ ∈ PathSet such that
p is a sub-path or super-path of p′. If p′ exists, we perform maximal influential path
verification (lines 8-15). If p′ is a sub-path of p, then we replace p′ by p in the PathSet
since p is now the maximal influential path (lines 12-14). However, if p′ is a super-path
of p, then p is not a maximal influential path and can be discarded (lines 9-11).

If p′ does not exist and PathSet contains less than k maximal influential paths, then
we add p to the PathSet (lines 17-18). Otherwise, if PathSet already contains k maximal
influential paths, we check the total score of p. If the total score of p is larger than any
of the k maximal influential paths in PathSet, we replace the path with the smallest
total score by p (lines 19-24). By Theorem 1, we raise min sup to the support of the
path whose total score is the minimum in PathSet (lines 26-29). This allows us to prune
off unpromising paths.

Next, the algorithm attempts to extend p by finding all the frequent nodes α ∈ Dp

such that we can extend p to p→ α (lines 30-41). We scan the p-projected database Dp

to find every frequent node α , such that path p can be extended to p → α , and insert
α into a priority queue Q (lines 31-36). We recursively call TIP algorithm to extend

180 E. Xu et al.

Algorithm 2. TIP(p, Dp, k, min sup, τ , PathSet)
Require: global variable PathSet, min sup
Require: a path p, Dp, an integer k and time threshold τ
Ensure: Top-k maximal influential path set PathSet
1: if support(p) < min sup then
2: return
3: end if
4: let Sp be the set of observations that support p
5: calculate total score(p) = ∑

o∈Sp

score(p,o)

6: check whether a discovered influential path p′ ∈ PathSet exists, s.t. either p p′ or p′ p,
and support(p) = support(p′)

7: if such super-path or sub-path exists then
8: for each p′ ∈ PathSet such that support(p′) = support(p) do
9: if p p′ then

10: return
11: end if
12: if p′ p then
13: replace p′ with p
14: end if
15: end for
16: else
17: if |PathSet| < k then
18: PathSet = PathSet ∪ {p}
19: else
20: let path q ∈ PathSet such that � q′ ∈ PathSet, total score(q′) < total score(q)
21: if total score(p) > total score(q) then
22: replace q with p
23: end if
24: end if
25: end if
26: if |PathSet| = k then
27: let path q ∈ PathSet such that � q′ ∈ PathSet, total score(q′) < total score(q)
28: min sup = support(q)
29: end if
30: Q← empty priority queue
31: compute the frequency of each node in Dp

32: for each frequent node α do
33: if p can be extended to p→ α then
34: Q.insert(α)
35: end if
36: end for
37: while !Q.isEmpty() do
38: α = Q.pop()
39: create child node α of the last node of p and record support count and IDs of the support-

ing observations of α
40: Call TIP(p→ α , Dp→α , k, min sup, τ , PathSet)
41: end while
42: return

Incremental Mining of Top-k Maximal Influential Paths in Network Data 181

another path using the next frequent node in Q (lines 37-41). The algorithm terminates
when Q is empty.

Table 3. < c >-projected database D<c>

ID Observation

o2 <(e,15) (f,20)>
o3 <(d,10) (g,16) (i,20)>
o4 <(e,12) (i,36)>
o5 <(e,9) (h,20) (i,24)>

Table 4. Frequent nodes in D<c>

Node Count

e 3
i 2
d 1
f 1
g 1
h 1

Let us now use the example in Table 1 to illustrate the TIP algorithm. The entity with
the highest support value is c (see Table 2). We obtain the projected database D<c> as
shown in Table 3. The frequent nodes with their support values are shown in Table 4.
We insert these nodes into the priority queue Q and recursively call TIP to extend< c>.
Since node e has support 3 in Q, we extend < c > to < c→ e >.

Conceptually, the TIP algorithm is constructing a prefix search tree where node in the
tree corresponds to an influential path starting from the root to the node and its support
is shown next to the node as shown in Figure 3. The number along each edge denotes
the total score of the path from the root to the end node of the edge. We assume that the
time threshold τ = 20 and ε = e−64. We observe that < c→ e > are supported by three
observations o2,o4 and o5 in Table 1. The scores with respect to these observations are
as follows:

score(p,o2) = log(in f luence(c,S)∗weight(c,e))− logε

= loge−
15−8
1.0 − loge−64

= 57

Similarly, we have score(p,o4) = 55 and score(p,o5) = 60. Thus the total score of the
influential path p = < c → e > is total score(p) = 57 + 55+ 60 = 172. In the same
manner, we build < c→ e >-projected database and extend < c → e > to < c → e →
f >.

Suppose we wish to find the top-2 maximal influential paths. After obtaining the
paths < c → e > and < c → i >, the min sup is raised to 2. This implies that all the
branches rooted at node a are pruned as their support values are less than 2. Similarly,
branches rooted at node e are also pruned as they have already been traversed previously
from node c. The bold lines in Figure 3 show the explored paths.

To further improve the efficiency of TIP algorithm, we propose two optimization
strategies.

Early Termination by Equivalence. Early termination by equivalence is a search
space reduction technique developed in CloSpan [15]. Let N(D) represent the total

182 E. Xu et al.

<>

fde

c de a

g i

g i

i

f h i

i

d

g i

g i

if h

i i

h

ii

g

i

i

f h

i

g

i

i

i

55

60 4955

4952 4952 48

48

93172 58 495252 117

49 45

45

48 45 10749

10759 53 49 118 60

:4 :3 :1 :1:4 :2:2

:1:1

:1

:3

:1

:1

:1

:1 :1 :1 :1

:1

:2 :1 :2 :2

:1 :1

:1

:1 :1:1

:1

:1

:1 :1 :2

:1

:1 :2 :1:1

pruned

pruned

pruned

49

Fig. 3. Prefix search tree for sample database

number of nodes in D. The property of early termination by equivalence shows if two
influential paths p p′ and N(Dp) = N(Dp′), then ∀ γ , support(p → γ) = support(p′
→ γ). It means the descendants of p in the prefix search tree cannot be maximal. Fur-
thermore, the descendants of p and p′ are exactly the same. We can utilize this property
to quickly prune the search space of p.

Pseudo Projection. As with traditional projection-based mining method, the major
cost of TIP is the construction of projected databases. To reduce the cost of projection,
we apply the pseudo-projection technique [14]. Instead of constructing a physical pro-
jection by collecting all the postfixes, we use pointers referring to the observations in the
database as a pseudo projection. Every projection consists of two pieces of information:
pointer to the observation in database and o f f set of the postfix in the observation. This
allows us to avoid physically copying postfixes: only pointers to the projected point are
saved for each observation. Thus, it is efficient in terms of both running time and space.

4 Incremental Mining

One challenge in finding the top-k maximal influential paths in social networks is that
most users are active and updates tend to be frequent and voluminous. In general, there
are three kinds of updates: (1) new observation arrives. This corresponds to an INSERT
operation. (2) new follow-up action is observed later. This corresponds to an APPEND
operation. (3) an existing observation is no longer valid and should be removed. This
corresponds to a DELETE operation. We can consider APPEND as deleting an existing
observation and inserting a new one. For example, if we wish to append the tuple <
(g,26)> to observation o2 in Table 1, we first delete o2 and insert the observation o′2:
< (c,8)(e,15)(f ,20)(g,26)> into D.

Incremental Mining of Top-k Maximal Influential Paths in Network Data 183

Invoking TIP for each update is infeasible. In this section, we describe an incremental
mining algorithm to mine top-k maximal influential paths. The main idea in incremental
mining is to leverage on the computations done previously. In order to do this, we need
to store additional information for each node, namely the support count for each of its
extended child and the IDs of the supporting observations. Figure 4 shows the additional
information we keep for root and node c, e in the explored paths of the prefix tree.

<>

e

c d

g i

if h i

i

i

i

52

93172 117

49 45

45

107

107

:4 :4 :2

:3

:1 :1 :1

:1

:2 :2 :2

:2

Node Count IDs

h o51

f
o51h

Node Count IDs

1 o2

a 1 o1

g 2 o1,o3

d 2 o1,o3

e 3 o2,o4,o5

i 4 o1,o3,o4,o5

c 4 o2,o3,o4,o5

Node Count IDs

g 1 o3

f 1 o2

d 1 o3

i 2 o3,o5

e 3 o2,o4,o5

f 1 o2
h 1 o5
i 1 o5

Fig. 4. Prefix tree with additional information for root and node c, e

The IncTIP algorithm for incremental mining of top-k maximal influential paths is
given in Algorithm 3. The inputs are database D, set of updates U , an integer k, top-
k maximal influential path set PathSet and the corresponding final min sup, and time
threshold τ . The output is the set of top-k maximal influential paths PathSet. For each
update, we first check whether it is INSERT or DELETE (line 2). If the update is IN-
SERT an observation o, then for each node v in o, we scan additional information table
of root and check whether v is frequent or not (line 5). If it is frequent, we update the
PathSet by calling the INSERT algorithm (lines 6-7). Otherwise, we call the TIP algo-
rithm (lines 8-12). If the update is DELETE an observation o, we update the PathSet by

184 E. Xu et al.

calling the DELETE algorithm (lines 15-17). The global variable PathSet, which keeps
track of the set of top-k maximal influential paths, is updated by calling the appropriate
algorithms. Algorithm 4 and 5 gives the details of INSERT and DELETE respectively.
We will illustrate them in detail in the following subsections with our running example.

Algorithm 3. IncTIP(D, U , k, min sup, τ , PathSet)
Require: global variable PathSet, min sup
Require: database D, set of updates U , an integer k and time threshold τ
Ensure: Top-k maximal influential path set PathSet
1: let root be the root node
2: for each update in U do
3: if INSERT o then
4: for each node v ∈ o do
5: scan additional information table of root, check whether v is frequent or not
6: if v is frequent then
7: Update PathSet by calling INSERT(D, v, o, k, min sup, τ , PathSet)
8: else
9: let I be the set of observations in D ∪ {o} that support v

10: let I<v> be v-projected database
11: Update PathSet by calling TIP(v, I<v>, k, min sup, τ , PathSet)
12: end if
13: end for
14: else
15: if DELETE o then
16: Update PathSet by calling DELETE(D, root, o, k, min sup, τ , PathSet)
17: end if
18: end if
19: end for
20: return PathSet

4.1 Insert Observation

Suppose we insert a new observation o6: < (a,2)(d,7)(i,13)> into the sample obser-
vation database D in Table 1. The new observation database D′ after insertion is shown
in Table 5.

Recall that in our previous running example for the TIP algorithm, we find top-2
maximal influential paths and the min sup is finally raised to 2. So all the branches
rooted at node a are pruned as their support values are less than 2 (see Figure 3). How-
ever, after inserting observation o6, the support of node a becomes 2, implying that we
should mine influential paths starting at node a. Based on the additional information for
the root node as shown in Table 6, we know that in the original database observation o1

supports node a. So observations that support node a are observation o1 and the inserted
observation o6.

For node a, we call the TIP algorithm (Algorithm 2). We obtain < a >-projected
database I<a> as shown in Table 7. The frequent nodes with their support values are
shown in Table 8. We insert these nodes into the priority queue Q and recursively call

Incremental Mining of Top-k Maximal Influential Paths in Network Data 185

Table 5. New database D′ after insertion

ID Observation

o1 <(a,1) (d,5) (g,10) (i,16)>
o2 <(c,8) (e,15) (f,20)>
o3 <(c,4) (d,10) (g,16) (i,20)>
o4 <(c,3) (e,12) (i,36)>
o5 <(c,5) (e,9) (h,20) (i,24)>
o6 <(a,2) (d,7) (i,13)>

Table 6. Additional information for root node

Node Count IDs

c 4 o2,o3,o4,o5
i 4 o1,o3,o4,o5
e 3 o2,o4,o5
d 2 o1,o3

g 2 o1,o3

a 1 o1
f 1 o2

h 1 o5

TIP to extend < a >. Since node d has support 2 in Q, we extend < a > to < a→ d >.
By recursively calling the TIP algorithm, we obtain the path < a → d → i > and the
other paths are pruned.

Table 7. < a >-projected database I<a>

ID Observation

o1 <(d,5) (g,10) (i,16)>
o6 <(d,7) (i,13)>

Table 8. Frequent nodes in I<a>

Node Count

d 2
i 2
g 1

For node d, we update PathSet by calling the INSERT algorithm, as we observe from
the prefix search tree in Figure 3 that node d has already been traversed in the previ-
ous mining result. Algorithm 4 gives the details of INSERT algorithm. The inputs are
database D, node v, observation o, an integer k, min sup, time threshold τ , and top-k
maximal influential path set PathSet. The output is the set of top-k maximal influential
paths PathSet. We first check whether observation o supports v (line 1). If o supports
v, we update the support of v and total score of path < root → ··· → v > and mean-
while update IDs of the supporting observations of node v (lines 2-5). For each child
α of node v, if α is frequent, we recursively call the INSERT algorithm (lines 7-8).
Otherwise, we call the TIP algorithm to explore branches that are pruned previously
for possible top-k maximal influential paths (lines 9-15). Finally, we update the top-k
maximal influential path set PathSet (lines 18-21) and min sup (lines 22-23). With the
insertion of observation o6, we update the support of d to 3. Based on the additional
information for node d as shown in Table 9, we know that the child node i is supported
by o6, so we update the support of i and meanwhile update the total score of path < d
→ i >.

For node i in observation o6, as it is already traversed, we call the INSERT algorithm
and update the support of i to 5. Figure 5 shows the prefix search tree constructed after
inserting observation o6. The bold lines represent the explored paths.

186 E. Xu et al.

Algorithm 4. INSERT(D, v, o, k, min sup, τ , PathSet)
Require: global variable PathSet, min sup
Require: database D, node v, observation o, an integer k and time threshold τ
Ensure: Top-k maximal influential path set PathSet
1: if o supports v then
2: support(v) = support(v) + 1
3: let path p = < root → ·· · → v >
4: total score(p) = total score(p) + score(p,o)
5: add ID of o to IDs of the supporting observations of node v
6: for each child α of v do
7: if α is frequent then
8: Call INSERT(D, α , o, k, min sup, τ , PathSet)
9: else

10: if o supports α then
11: let I be the set of observations in D ∪ {o} that support < p→ α >
12: let I<p→α> be < p→ α >-projected database
13: Call TIP(< p→ α >, I<p→α>, k, min sup, τ , PathSet)
14: end if
15: end if
16: end for
17: end if
18: let path q ∈ PathSet such that � q′ ∈ PathSet, total score(q′) < total score(q)
19: if ∃ p′ ∈ T \PathSet such that total score(p′) > total score(q) then
20: replace q with p′
21: end if
22: let path q ∈ PathSet such that � q′ ∈ PathSet, total score(q′) < total score(q)
23: min sup = support(q)
24: return

4.2 Delete Observation

Suppose we delete observation o4: < (c,3)(e,12)(i,36)> from the sample observation
database D in Table 1. We update PathSet by calling the DELETE algorithm. Algorithm
5 gives the details of DELETE algorithm. The inputs are database D, node v, observa-
tion o, an integer k, min sup, time threshold τ , and top-k maximal influential path set
PathSet. The output is the set of top-k maximal influential paths PathSet. We first scan
the additional information table of node v to find every node α such that o supports α
(line 1). For each node α , we update the support of α and total score of path < root →
··· → α > and meanwhile update IDs of the supporting observations of node α (lines
3-6). We recursively call the DELETE algorithm on node α (line 7). After deleting ob-
servation o, we update the top-k maximal influential path set PathSet (lines 9-12) and
min sup (lines 13-14). Finally, we call the TIP algorithm to explore branches that are
pruned previously for possible top-k maximal influential paths (lines 15-20).

As observation o4 is deleted from the sample database D, the support of node c, e
and i will decrease. Note that we utilize the additional information for each node in the
prefix tree as shown in Figure 4. Starting from the root node, based on the additional
information for root node (Table 6), we know node c and i are supported by observation

Incremental Mining of Top-k Maximal Influential Paths in Network Data 187

a

d

i g

i g

102

119

:2

:2

:2

:2

:1

:1

pruned

<>

e

c d

g i

if h i

i

i

i

52

93172 117

49 45

45

107

165

:4 :5 :3

:3

:1 :1 :1

:1

:2 :2 :3

:2

pruned

Fig. 5. Prefix search tree for new database after inserting observation o6

o4, so we decrease their support by 1. As for node c, based on its additional information
(Table 10), the child e is also supported by o4, so we update the support of node e and
meanwhile update the total score of path < c→ e >. Figure 6 shows the prefix search
tree after deleting observation o4. The bold lines represent the explored paths.

Table 9. Additional information for node d

Node Count IDs

g 2 o1,o3
i 2 o1,o3

Table 10. Additional information for node c

Node Count IDs

e 3 o2,o4,o5
i 2 o3,o5
d 1 o3

f 1 o2
g 1 o3

h 1 o5

4.3 Complexity Analysis

In this section, we provide a brief analysis of the time and space complexity of TIP and
IncTIP algorithms. The major cost of the TIP algorithm is the construction of projected
databases. In the worst case, when no pruning takes place, TIP constructs a projected
database for every observation in the database. Thus, both the worst-case time and space
complexities are O(NL) where N is the number of tuples in the database and L is the
maximum length of all observations. In addition, since we use pseudo-projection in our
implementation, the space complexity can be reduced to the order of the size of the
database.

188 E. Xu et al.

<>

e

c d

g i

if h i

i

i

i

52

93117 117

49 45

45

107

107

:3 :3 :2

:2

:1 :1 :1

:1

:2 :2 :2

:2

Fig. 6. Prefix search tree for new database after deleting observation o4

Algorithm 5. DELETE(D, v, o, k, min sup, τ , PathSet)
Require: global variable PathSet, min sup
Require: database D, node v, observation o, an integer k and time threshold τ
Ensure: Top-k maximal influential path set PathSet
1: scan additional information table of node v, find every node α such that o supports α
2: for each node α do
3: support(α) = support(α) − 1
4: let path p = < root → ·· · → α >
5: total score(p) = total score(p) − score(p,o)
6: remove ID of o from IDs of the supporting observations of node α
7: Call DELETE(D, α , o, k, min sup, τ , PathSet)
8: end for
9: let path q ∈ PathSet such that � q′ ∈ PathSet, total score(q′) < total score(q)

10: if ∃ p′ ∈ T \PathSet such that total score(p′) > total score(q) then
11: replace q with p′
12: end if
13: let path q ∈ PathSet such that � q′ ∈ PathSet, total score(q′) < total score(q)
14: min sup = support(q)
15: scan additional information table of root, find every node v′ that is not frequent
16: for each node v′ do
17: let I be the set of observations in D\{o} that support v′
18: let Iv′ be v′-projected database
19: Call TIP(v′, Iv′ , k, min sup, τ , PathSet)
20: end for
21: return

Incremental Mining of Top-k Maximal Influential Paths in Network Data 189

Similar to the TIP algorithm, the worst-case time complexity of IncTIP is O(NL)
where N is the number of tuples in the database and L is the maximum length of all
observations. For the IncTIP algorithm, we keep child node information for each node
in the prefix tree to facilitate incremental mining. So the worst-case space complexity
of IncTIP is O((N +C)L) where C is the number of child nodes for each node in the
tree.

5 Experimental Evaluation

In this section, we conduct experiments to evaluate the effectiveness and efficiency of
our proposed TIP and IncTIP algorithms. In the first set of experiments, we compare
the TIP algorithm with the Naı̈ve algorithm that finds the top-k influential paths without
any optimization techniques. We also analyze the effectiveness of the two optimization
strategies by implementing two versions of TIP, TIPearly and TIPpp, where TIPearly

utilizes only the early termination strategy without pseudo projection whereas TIPpp

utilizes only the pseudo projection technique without early termination. In the second
set of experiments, we compare efficiency of TIP and IncTIP algorithms for incremental
mining.

All algorithms are implemented in Java language. The experiments are performed
using an Intel Core 2 Quad CPU 2.83 GHz system with 3GB of main memory and
running Windows XP operating system.

We used one synthetic and two real-world datasets for performance evaluation. The
OutbreakSim simulation model [22] is used to generate the synthetic dataset. This
model mimics the real-world disease outbreak data in Western Australia. Our synthetic
dataset consists of 48,507 outbreak cases for the South-west region of Western Australia
over 100 days resulting in more than 150,000 observations.

Besides the synthetic dataset, we also utilize a real-world dataset, the MemeTracker
data [13]. This MemeTracker dataset contains the quotes, phrases, and hyperlinks of
the articles/blogposts that appear over prominent online news sites from August 2008
to April 2009. Each post contains a URL, time stamp, and all of the URLs of the posts it
cites. Nodes are mostly news portals or news blogs and the time stamps in the data cap-
ture the time that a quote/phase was used in a post. Finally, there are directed hyperlinks
among the posts. We use these hyperlinks to trace the flow of information. A site pub-
lishes a piece of information and uses hyperlinks to refer to the same or closely related
pieces of information published by other sites. An observation is thus a collection of
time-stamped hyperlinks among different sites that refer to the same or closely related
pieces of information. We record one observation per piece – or closely related pieces –
of information. We extract the most active media sites and blogs with the largest number
of posts, and generate 46,352 observations.

Another real-world dataset is the Delicious dataset. The Delicious dataset contains
social networking, bookmarking, and tagging information from a set of 20K users from
Delicious social bookmarking system. Each user has bookmarks, tag assignments, i.e.
tuples [user, tag, bookmark], and contact relations within the dataset social network.
Each bookmark has a title and URL. The dataset also contains the timestamps when
the tag assignments were done. We generate 19,230 observations from the Delicious
dataset.

190 E. Xu et al.

Table 11. Datasets Characteristics

Datasets Cardinality Avg Len Max Len Min Len

Synthetic 150,000 8.00 20 6
MemeTracker 46,352 13.72 42 3
Delicious 19,230 24.16 68 3

Table 11 shows the characteristics of the synthetic and real-world datasets used in
the experiments including the number of input observations (Cardinality), average ob-
servation length (Avg Len), maximum observation length (Max Len) and minimum
observation length (Min Len).

5.1 Efficiency Experiments

Efficiency of TIP. In this set of experiments, we evaluate the efficiency of TIP algo-
rithm on both synthetic and real-world datasets. First, we vary the synthetic database
size from 10k to 90k (See Figure 7). We set k = 10, time threshold τ = 100, and radius
of influence α = 1.0. We observe that TIP algorithm remains efficient as the database
size increases. In particular, the early termination optimization strategy is more effective
in reducing the runtime compared to the pseudo projection.

 0

 500

 1000

 1500

 2000

 2500

 3000

10k 30k 50k 70k 90k

R
un

ni
ng

 ti
m

e
(s

)

Database size

Naive
TIPearly

TIPpp

TIP

Fig. 7. Performance of varying database size on
synthetic dataset

 0

 200

 400

 600

 800

 1000

 1200

10k 20k 30k 40k

R
un

ni
ng

 ti
m

e
(s

)

Database size

Naive
TIPearly

TIPpp

TIP

Fig. 8. Performance of varying database size on
MemeTracker dataset

Similarly, for the real-world MemeTracker dataset, we generate the top-10 (i.e. k =
10) maximal influential paths by setting time threshold τ to 1000 and radius of influence
α to 1.0. We randomly sample the dataset to vary the database size from 10k to 40k. As
can be seen from Figure 8, TIP algorithm outperforms the Naı̈ve algorithm with early
termination playing a greater role in reducing the runtime of TIP.

Incremental Mining of Top-k Maximal Influential Paths in Network Data 191

Efficiency of IncTIP. We also evaluate the efficiency of IncTIP algorithm on both
synthetic and real-world datasets. For the synthetic dataset, we set the size of original
database D to 100k and vary the size of update database from 10k to 50k. We set k = 5,
time threshold τ = 100, and radius of influence α = 1.0. Figure 9 shows the result.
We observe that as the size of update database increases, the running time for both
algorithms increases. However, IncTIP is more efficient than TIP. The reason is that
each time when the database updates, TIP has to mine from scratch, but IncTIP only
deals with the update part.

 0

 200

 400

 600

 800

 1000

 1200

 1400

10k 20k 30k 40k 50k

R
un

ni
ng

 ti
m

e
(s

)

Update database size

TIP
IncTIP

Fig. 9. Performance of varying update database
size on synthetic dataset

 0

 100

 200

 300

 400

 500

 600

5k 10k 15k 20k

R
un

ni
ng

 ti
m

e
(s

)

Update database size

TIP
IncTIP

Fig. 10. Performance of varying update
database size on MemeTracker dataset

For the MemeTracker dataset, we generate the top-10 (i.e. k = 10) maximal influential
paths by setting time threshold τ to 1000 and radius of influence α to 1.0. We set the
original database size to 25k and vary the size of update database from 5k to 20k. We
can see from Figure 10 that IncTIP algorithm outperforms TIP algorithm as the size of
update database increases.

We then compare the performance of IncTIP algorithm with an existing incremental
mining algorithm IncSpan [29]. We evaluate IncTIP and IncSpan by varying update
database size on both synthetic and real-world datasets. For both algorithms, we set the
parameters such that they will generate the same number of patterns. Figure 11 shows
the result on synthetic dataset by varying update database size from 10k to 50k. We can
see that IncTIP outperforms IncSpan and the performance gap gets larger and larger
as the update database size increases. This is because IncTIP utilizes time information
to prune off the search space during mining process. Similar trend is observed for the
MemeTracker dataset.

Memory Usage. Note that in order to facilitate incremental mining, we keep addi-
tional information for each node in the prefix tree. Thus, IncTIP algorithm will incur
additional memory cost. In the experiments, we also compare the memory usage of TIP
and IncTIP. Figure 13 shows the memory usage of TIP and IncTIP on the synthetic
dataset. The size of original database D is 100k and the size of update database varies
from 10k to 50k. We set k = 5, time threshold τ = 100, and radius of influence α = 1.0.

192 E. Xu et al.

 0

 200

 400

 600

 800

 1000

10k 20k 30k 40k 50k

R
un

ni
ng

 ti
m

e
(s

)

Update database size

IncSpan
IncTIP

Fig. 11. Performance of varying update database
size on synthetic dataset

 0

 100

 200

 300

 400

 500

5k 10k 15k 20k

R
un

ni
ng

 ti
m

e
(s

)

Update database size

IncSpan
IncTIP

Fig. 12. Performance of varying update database
size on MemeTracker dataset

We can see that as the update database size increases, the memory usage of both algo-
rithms increases. However, IncTIP algorithm incurs more memory usage than TIP, as
IncTIP keeps additional information to facilitate incremental mining.

 500

 600

 700

 800

 900

 1000

10k 20k 30k 40k 50k

M
em

or
y

us
ag

e
(M

B
)

Update database size

TIP
IncTIP

Fig. 13. Memory usage by varying update
database size on synthetic dataset

 100

 200

 300

 400

 500

 600

 700

5k 10k 15k 20k

M
em

or
y

us
ag

e
(M

B
)

Update database size

TIP
IncTIP

Fig. 14. Memory usage by varying update
database size on MemeTracker dataset

The memory usage of TIP and IncTIP on the MemeTracker dataset is shown in
Figure 14. We set the original database size to 25k and vary the size of update database
from 5k to 20k. We set k to 10, τ to 1000 and α to 1.0. Similar trend can be observed
for the MemeTracker dataset.

5.2 Sensitivity Experiments

Effect of k. Next, we investigate the effect of the number of maximal influential paths,
k, on the performance of TIP algorithm. We set the database size to 20k and vary k from
5 to 25. Figure 15 shows the experimental results for the synthetic dataset. As can be
seen, the runtime for both TIP and Naı̈ve algorithm increases as k increases. However,

Incremental Mining of Top-k Maximal Influential Paths in Network Data 193

 0

 200

 400

 600

 800

 1000

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

Number of maximal influential paths (k)

Naive
TIPearly

TIPpp

TIP

Fig. 15. Performance of TIP by varying k on 20k
synthetic dataset

 0

 100

 200

 300

 400

 500

 600

 700

 800

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

Number of maximal influential paths (k)

TIP
IncTIP

Fig. 16. Performance of IncTIP by varying k on
70k synthetic dataset

the runtime of TIP algorithm is half that of the Naı̈ve algorithm demonstrating that TIP
remains efficient even when k increases.

We also investigate the effect of the number of maximal influential paths, k, on the
performance of IncTIP algorithm. For the synthetic dataset, we set the original database
size to 50k, update database size to 20k and time threshold τ to 100. Figure 16 shows
the runtime of IncTIP and TIP by varying k from 5 to 25. We can see that the runtime of
both algorithms increases as k increases. However, IncTIP algorithm outperforms TIP
algorithm by a large margin.

Effect of τ . Here, we examine the effect of varying the time threshold τ on the perfor-
mance of TIP algorithm. Note that increasing τ is equivalent to increasing the search
space, i.e. the number of potential influential paths. We set the number of maximal in-
fluential paths k to 5, database size |D| to 20k and vary the time threshold τ from 10 to
50. Figure 17 shows that the runtime for all algorithms increases as τ increases. Similar
trend is observed here with the TIP algorithm showing a significant reduction in run-
time as compared to the Naı̈ve algorithm. Similar trend is observed for the real-world
datasets.

We also examine the effect of varying the time threshold τ on the performance of
IncTIP algorithm. For the synthetic dataset, we set the original database size to 50k,
update database size to 20k and k to 10. Figure 18 shows the runtime of IncTIP and TIP
by varying τ from 10 to 50. We can see that the runtime of both algorithms increases as τ
increases. However, IncTIP algorithm is more efficient than TIP algorithm for different
values of τ . Similar trend is observed for the real-world datasets.

5.3 Effectiveness Experiments

Effectiveness of TIP. In the final set of experiments, we demonstrate the effectiveness
of using maximal influential paths for prediction. To do cross validation, we partition
the MemeTracker dataset into 4 folds (25% each). We use 75% of the total observations

194 E. Xu et al.

 0

 50

 100

 150

 200

 250

 300

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

Time threshold (τ)

Naive
TIPearly

TIPpp

TIP

Fig. 17. Performance of TIP by varying τ on
20k synthetic dataset

 0

 100

 200

 300

 400

 500

 600

 700

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

Time threshold (τ)

TIP
IncTIP

Fig. 18. Performance of IncTIP by varying τ on
70k synthetic dataset

for training and the remaining 25% for testing. We run the TIP algorithm on the training
data to generate the top-k maximal influential paths. For each influential path p = < v1

→ v2 → ··· → vn−1 → vn > generated, we obtain the corresponding rule

r = {< v1 → v2 → ··· → vn−1 >⇒< vn >}
with

con f idence(r) =
support(< v1 → v2 → ··· → vn−1 → vn >)

support(< v1 → v2 → ··· → vn−1 >)
.

For each rule < v1 → v2 → ··· → vn−1 >⇒ < vn >, we determine the number of
observations in the testing data that support p′ = < v1 → v2 → ··· → vn−1 >. If there
is at least one support observation in the testing data, we assign the probability of node
vn being influenced to the confidence of the rule, i.e. support(p)

support(p′) . If we have more than
one rule predicting that node vn will be influenced, we assign the maximum confidence
of the rules as the probability of node vn being influenced.

The set of predicted nodes are sorted in decreasing order of the probability of getting
influenced. We consider a node to be the next influenced node if it is among the top-n
nodes. Here top-n nodes are the first n non-duplicate nodes with highest probability of
being influenced.

Let X be the set of nodes influenced in test data, and Y be the set of nodes predicted
to be influenced in test data, then precision and recall are defined by the following
equations:

precision =
|X ∩Y |
|Y | (6)

recall =
|X ∩Y |
|X | (7)

We compare the prediction accuracy of TIP algorithm with NetInf algorithm [7], which
can only infer influential edge between two nodes. Similarly, we run NetInf algorithm

Incremental Mining of Top-k Maximal Influential Paths in Network Data 195

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

P
re

ci
si

on

Number of predicted nodes

Netinf
TIP

(a) Precision

 0

 0.01

 0.02

 0.03

 0.04

5 10 15 20 25

R
ec

al
l

Number of predicted nodes

Netinf
TIP

(b) Recall

Fig. 19. Precision and recall on MemeTracker dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

2k 4k 6k 8k 10k

P
re

ci
si

on

Update database size

IncSpan
IncTIP

(a) Precision

 0

 0.02

 0.04

 0.06

 0.08

 0.1

2k 4k 6k 8k 10k

R
ec

al
l

Update database size

IncSpan
IncTIP

(b) Recall

Fig. 20. Precision and recall on Delicious dataset

on the training data to generate a set of influential edges, say < i→ j >. We assign the
probability of node j being influenced as support(<i→ j>)

support(<i>)
.

We perform 4-fold cross validation for evaluating the prediction performance of both
algorithms. Figure 19 shows the precision and recall results by varying the number of
predicted nodes, n, from 5 to 25. We observe that TIP algorithm significantly outper-
forms NetInf algorithm for different values of n. This is because influential paths are
more informative than influential edges and hence in predicting which node will be
influenced next, the TIP algorithm tends to be more accurate than NetInf algorithm.

Effectiveness of IncTIP. We evaluate the effectiveness of IncTIP algorithm on the
Delicious dataset. Note that due to space limitation, we do not report the efficiency
results for the algorithms on the Delicious dataset. We partition the dataset into training
data and testing data. The size of the training data varies from 2k to 10k. We set time
threshold τ = 1000, and radius of influence α = 1.0. We run IncTIP on the training
data to generate a set of rules and use the top-10 nodes for prediction. Similarly, we run
IncSpan on the training data to generate a set of rules and select the top-10 predicted
nodes.

196 E. Xu et al.

We compare the prediction accuracy of IncTIP with IncSpan [29]. Figure 20 shows
the precision and recall results by varying the size of update database (training data)
from 2k to 10k. We observe that IncTIP outperforms IncSpan in both precision and re-
call measures. Further, the gap in both precision and recall between IncTIP and IncSpan
widens as update database size increases. This demonstrates the effectiveness of IncTIP
algorithm.

6 Related Work

In this section, we review works that are most relevant to our research. These include
works in information diffusion analysis and incremental pattern mining.

6.1 Information Diffusion Analysis

Research on information diffusion analysis has focused on validating the existence
of influence [6,3], studying the maximization of influence spread in the whole net-
work [10,12,5,4], modeling direct influence in homogeneous networks [20], and mining
topic-level influence on heterogeneous networks [16].

The works in [6,19] first study the influence maximization problem as an algorithmic
problem. Kempe et al. [10] examine the influence maximization problem for a family
of influence models. The authors design approximation algorithms for the independent
cascade model. However, a drawback of their work is the efficiency issue of their greedy
algorithm. Several recent studies try to address the efficiency issue by using new heuris-
tics [12,11,5,4,18].

Gomez et al. [7] study the diffusion of information among blogs and online news
sources. They assume that connections between nodes cannot be observed and use the
observed cascades to infer a sparse, “hidden” network of information diffusion. They
propose an iterative algorithm called NetInf which is based on submodular function
optimization. NetInf first reconstructs the most likely structure of each cascade. Then
it selects the most likely edge of the network in each iteration. The algorithm assumes
that the weights of all edges have the same values.

Mathioudakis et al. [17] investigate the problem of sparsifying influence networks.
Given a social graph and a list of actions propagating through it, they design the SPINE
algorithm to find the “backbone” of the network through the use of the independent-
cascade model [10]. SPINE has two phases: the first phase selects a set of arcs that
yields a finite log-likelihood, while the second phase greedily seeks a solution of max-
imum log-likelihood. The effectiveness of SPINE came from its ability to reduce com-
putation speed significantly.

In the field of sequence mining, Giannotti et al. [23] introduce a novel form of se-
quential pattern, called Temporally-Annotated Sequence (TAS), representing typical
transition times between the events in a frequent sequence. They formalize the novel
mining problem of discovering representative frequent TAS’s as a combination of fre-
quent sequential pattern mining and density-based clustering.

Incremental Mining of Top-k Maximal Influential Paths in Network Data 197

Information diffusion has also been considered from the view of the blogosphere,
since it provides a unique resource for studying information flow. The works in [2,8]
model and study the dynamics of diffusion of information in the blogosphere, while
[9,3] design algorithms to identify influential blog posts and influential bloggers in a
blogosphere.

Our work is different from the above methods. We do not require the underlying
network structure to be known, and consider temporal information in information
diffusion.

6.2 Incremental Pattern Mining

Works that are most relevant to our incremental mining method are in the field of
incremental sequential pattern mining. Sequential pattern mining, first introduced in
[24], is to find frequent subsequences from a sequence database. In many applications,
databases are updated incrementally, which leads to the study of incremental mining
of sequential patterns. Incremental sequential pattern mining methods can be classified
into two categories, Apriori-based methods (e.g. ISM [26], ISE [28], and GSP+ [25])
and projection-based methods (e.g. IncSpan [29], IncSpan+ [30], PBIncSpan [31], and
ISPBS [32]). Apriori-based incremental mining methods would generate huge set of
candidate sequences, while projection-based incremental mining methods can avoid
this by using pattern growth approach to mine sequential patterns.

Parthasarathy et al. [26] propose an incremental mining algorithm ISM based on
SPADE [27], by maintaining a sequence lattice of the old database. The sequence lattice
includes all the frequent sequences and a negative border. The negative border includes
sequences that are infrequent but their subsequences are frequent. As the sequences
in negative border do not necessarily have high support, it is very time and memory
consuming to use negative border.

Masseglia et al. [28] develop another incremental mining algorithm ISE. ISE per-
forms incremental pattern mining with a candidate generate-and-test approach − size-
(k+1) candidates are generated from size-k frequent sequences. The problem of this
algorithm is that it would generate a large number of candidates as well as multiple
scans of the whole database. Zhang el al. [25] propose GSP+ algorithm for incremental
sequential pattern mining when databases are updated by insertion or deletion. How-
ever, their method also belongs to candidate generate-and-test approach. Thus, it suffers
from the same problems as ISE.

In [29], Cheng et al. propose an incremental mining algorithm, called IncSpan, by
taking advantage of PrefixSpan [14]. IncSpan buffers a set of semi-frequent sequences
for incremental mining. When a sequence database grows, the semi-frequent sequences
have a higher probability to become frequent. Therefore, IncSpan can effectively reduce
the number of database scan and projection. However, IncSpan cannot find the complete
set of sequential patterns in the updated database [30].

Nguyen et al. [30] clarify the weakness of IncSpan by proving the incorrectness of
the basic properties in IncSpan and propose a new algorithm called IncSpan+. IncSpan+
rectifies the shortcomings in generating the set of frequent sequential patterns and the
set of semi-frequent sequential patterns.

198 E. Xu et al.

In [31], Chen et al. argue that in general IncSpan+ cannot find complete set of se-
quential patterns, and propose a new incremental mining algorithm based on prefix
tree, called PBIncSpan. PBIncSpan constructs a prefix tree to represent the sequential
patterns and maintains the tree structure using width pruning and depth pruning when
database updates. One problem of depth pruning is that it is based on Apriori property,
so it is not very effective when the prefix tree is huge.

Our incremental mining method IncTIP is quite different from existing works on
incremental pattern mining. We extend the pattern growth method with time constraint,
and introduce a score function to measure different patterns.

7 Conclusion

In this paper, we develop a method for inferring top-k maximal influential paths which
can truly capture the dynamics of information diffusion. Given a log of propagation
observations of some information over a hidden network, our goal is to infer the top-
k maximal influential paths that best explain these observations. We define a gen-
erative influence propagation model based on the Independent Cascade Model and
Linear Threshold Model, which mathematically models the spread of certain informa-
tion through a network. We design an algorithm called TIP to infer the top-k maximal
influential paths. TIP utilizes the properties of top-k maximal influential paths to dy-
namically increase the support and prune the projected databases. In many applications,
databases are updated incrementally. We also develop an incremental mining algorithm
IncTIP to maintain the set of top-k maximal influential paths. We evaluate the proposed
algorithms on both synthetic and real-world datasets. The experimental results demon-
strate the effectiveness and efficiency of both TIP and IncTIP.

References

1. Rogers, E.: Diffusion of Innovations, 4th edn. Free Press (1995)
2. Adar, E., Adamic, L.A.: Tracking Information Epidemics in Blogspace. In: Web Intelligence,

pp. 207–214 (2005)
3. Agarwal, N., Liu, H., Tang, L., Yu, P.S.: Identifying the Influential Bloggers in a Community.

In: WSDM 2008, pp. 207–218 (2008)
4. Chen, W., Wang, C., Wang, Y.: Scalable Influence Maximization for Prevalent Viral Market-

ing in Large-Scale Social Networks. In: KDD 2010, pp. 1029–1038 (2010)
5. Chen, W., Wang, Y., Yang, S.: Efficient Influence Maximization in Social Networks. In: KDD

2009, pp. 199–208 (2009)
6. Domingos, P., Richardson, M.: Mining the Network Value of Customers. In: KDD 2001, pp.

57–66 (2001)
7. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring Networks of Diffusion and Influ-

ence. In: KDD 2010, pp. 1019–1028 (2010)
8. Gruhl, D., Guha, R., Liben-nowell, D., Tomkins, A.: Information Diffusion through

Blogspace. In: WWW 2004, pp. 491–501 (2004)
9. Java, A., Kolari, P., Finin, T., Oates, T.: Modeling the Spread of Influence on the Blogosphere.

World Wide Web Conference Series (2006)
10. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the Spread of Influence through a Social

Network. In: KDD 2003, pp. 137–146 (2003)

Incremental Mining of Top-k Maximal Influential Paths in Network Data 199

11. Kimura, M., Saito, K.: Tractable Models for Information Diffusion in Social Networks. In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213,
pp. 259–271. Springer, Heidelberg (2006)

12. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-
effective Outbreak Detection in Networks. In: KDD 2007, pp. 420–429 (2007)

13. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the Dynamics of the News
Cycle. In: KDD 2009, pp. 497–506 (2009)

14. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-C.: Prefixspan:
Mining Sequential Patterns Efficiently by Prefix-projected Pattern Growth. In: ICDE 2001,
pp. 215–224 (2001)

15. Yan, X., Han, J., Afshar, R.: Clospan: Mining Closed Sequential Patterns in Large Datasets.
In: SDM 2003, pp. 166–177 (2003)

16. Liu, L., Tang, J., Han, J., Jiang, M., Yang, S.: Mining Topic-level Influence in Heterogeneous
Networks. In: CIKM 2010, pp. 199–208 (2010)

17. Mathioudakis, M., Bonchi, F., Castillo, C., Gionis, A., Ukkonen, A.: Sparsification of Influ-
ence Networks. In: KDD 2011, pp. 529–537 (2011)

18. Narayanam, R., Narahari, Y.: A Shapley Value-Based Approach to Discover Influential Nodes
in Social Networks. IEEE T. Automation Science and Engineering 8(1), 130–147 (2011)

19. Richardson, M., Domingos, P.: Mining Knowledge-Sharing Sites for Viral Marketing. In:
KDD 2002, pp. 61–70 (2002)

20. Tang, J., Sun, J., Wang, C., Yang, Z.: Social Influence Analysis in Large-scale Networks. In:
KDD 2009, pp. 807–816 (2009)

21. Xu, E., Hsu, W., Lee, M.L., Patel, D.: Top-k Maximal Influential Paths in Network Data.
In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part I. LNCS,
vol. 7446, pp. 369–383. Springer, Heidelberg (2012)

22. Watkins, R., Eagleson, S., Beckett, S., Garner, G., Veenendaal, B., Wright, G., Plant, A.:
Using GIS to Create Synthetic Disease Outbreaks. BMC Medical Informatics and Decision
Making 7(1), 4 (2007)

23. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F.: Mining Sequences with Temporal Anno-
tations. In: SAC 2006, pp. 593–597 (2006)

24. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance Im-
provements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS,
vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

25. Zhang, M., Kao, B., Cheung, D., Yip, C.L.: Efficient Algorithms for Incremental Update of
Frequent Sequences. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI),
vol. 2336, pp. 186–197. Springer, Heidelberg (2002)

26. Parthasarathy, S., Zaki, M., Ogihara, M., Dwarkadas, S.: Incremental and Interactive Se-
quence Mining. In: CIKM 1999, pp. 251–258 (1999)

27. Zaki, M.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learn-
ing 42(1/2), 31–60 (2001)

28. Masseglia, F., Poncelet, P., Teisseire, M.: Incremental Mining of Sequential Patterns in Large
Databases. Data & Knowledge Engineering 46(1), 97–121 (2003)

29. Cheng, H., Yan, X., Han, J.: IncSpan: Incremental Mining of Sequential Patterns in Large
Database. In: KDD 2004, pp. 527–532 (2004)

30. Nguyen, S., Sun, X., Orlowska, M.: Improvements of IncSpan: Incremental Mining of Se-
quential Patterns in Large Database. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005.
LNCS (LNAI), vol. 3518, pp. 442–451. Springer, Heidelberg (2005)

31. Chen, Y., Guo, J., Wang, Y., Xiong, Y., Zhu, Y.: Incremental Mining of Sequential Patterns
Using Prefix Tree. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI),
vol. 4426, pp. 433–440. Springer, Heidelberg (2007)

32. Liu, J., Yan, S., Wang, Y., Ren, J.: Incremental mining algorithm of sequential patterns based
on sequence tree. In: Lee, G. (ed.) Advances in Intelligent Systems. AISC, vol. 138, pp.
61–67. Springer, Heidelberg (2012)

Author Index

Ait-Ameur, Yamine 1
Ait-Sadoune, Idir 1
Arkatkar, Isha 95

Bellahsene, Zohra 115
Bouadi, Tassadit 34
Boyuka II, David A. 95

Chang, Choong-Seock 95
Chen, Jackie 95
Coletta, Remi 115
Cordier, Marie-Odile 34

Ethier, Stephane 95

Ferrarotti, Flavio 60

Hartmann, Sven 60
Hsu, Wynne 173

Jenkins, John 95

Klasky, Scott 95
Kolla, Hemanth 95
Kriegel, Hans-Peter 146

Lakshminarasimhan, Sriram 95
Li Lee, Mong 173
Link, Sebastian 60

Mami, Imene 115
Marin, Mauricio 60
Muñoz, Emir 60

Nørv̊ag, Kjetil 146
Ntoutsi, Eirini 146

Patel, Dhaval 173
Petropoulos, Mihalis 146

Quiniou, René 34

Ross, Robert 95

Samatova, Nagiza F. 95
Schendel, Eric R. 95
Shah, Neil 95
Stefanidis, Kostas 146

Xu, Enliang 173

	Preface
	Editorial Board
	Table of Contents
	Stepwise Development of Formal Models for Web Services Compositions: Modelling and Property Verification
	1 Introduction
	2 The Event-B Method
	2.1 Event-B Model
	2.2 Refinement of Event-B
	2.3 Semantics of Event-B Models

	3 Services Composition Description Languages
	3.1 Services Composition Description Languages
	3.2 Overview of BPEL
	3.3 Case Study
	3.4 Decomposition Operator of BPEL
	3.5 BPEL and the Event-B Semantics

	4 From BPEL Process to Event-B Model
	4.1 Formal Modelling of WSDL Service Description by an Event-B Context
	4.2 Formal Modelling of BPEL Variables and Activities by Event-B Variables and Events

	5 A Refinement Based Methodology
	5.1 Methodology: Vertical Decomposition
	5.2 The Application of Scenario 1 to the Case Study

	6 Verification of Services Properties
	7 BPEL2BTool
	8 Related Work
	9 Conclusion
	References

	Computing Skyline Incrementally in Response to Online Preference Modification
	1 Introduction
	2 Related Work
	3 BasicConcepts
	4 EC2Sky: An Incremental Skyline Computation
	5 EC2Sky Implementation
	5.1 Skyline Associated with Static Dimensions
	5.2 Skyline Associated with Dynamic Dimensions
	5.3 The EC2Sky Structure
	5.4 Query Evaluation

	6 Experiments
	7 Conclusion
	References

	The Finite Implication Problem for Expressive XML Keys: Foundations, Applications, and Performance Evaluation
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contributions
	1.4 Organization

	2 Preliminaries
	2.1 XML Data Representation
	2.2 Value Equality of Nodes on XML Trees
	2.3 Node Selection Queries on XML Trees

	3 KeysforXMLData
	3.1 Expressive and Tractable Fragments of XML Keys

	4 Inference Rules for Max-Keys
	5 Axiomatic Characterization of Max-Keys Implication
	5.1 Witness Networks
	5.2 Reachability Implies Derivability
	5.3 Completeness
	5.4 Dealing with Structural Max-Keys

	6 A Decision Algorithm for Max-Keys Implication
	6.1 Implementation and Complexity Analysis of Algorithm 1

	7 Applications and Performance Evaluation
	7.1 Defining the Data Sets: XML Keys and XML Documents
	7.2 Performance of the Decision Algorithm for Max-Keys
	7.3 Applying XML Key Reasoning to Document Validation

	8 Conclusion
	References

	ALACRITY: Analytics-Driven Lossless Data Compression for Rapid In-Situ Indexing, Storing, and Querying
	1 Introduction
	2 Background
	2.1 Indexing
	2.2 Compression

	3 Method
	3.1 System Overview
	3.2 Compression
	3.3 Query Processing: Index Generation
	3.4 Query Processing: File Layout
	3.5 Query Processing: Range Queries

	4 Results and Discussions
	4.1 Experimental Setup
	4.2 Datasets
	4.3 Query Processing
	4.4 Performance Analysis
	4.5 Compression

	5 Conclusion
	References

	A Declarative Approach to View Selection Modeling
	1 Introduction
	2 Related Work
	3 Background
	4 Framework for Detecting Common Views
	5 Our View Selection Approach
	6 Performance Evaluation
	7 Conclusion
	References

	A Framework for Modeling, Computing and Presenting Time-Aware Recommendations
	1 Introduction
	2 The Basic Time-Free Recommendation Model
	2.1 Defining Time-Free Recommendations
	2.2 Top-k Time-Free Recommendations

	3 Time-Aware Recommendations
	3.1 Fresh-Based Recommendations
	3.2 Temporal Context-Based Recommendations
	3.3 Top-k Time-Aware Recommendations

	4 Presentation of Time-Aware Recommendations Based on User Preferences
	4.1 User Preferences
	4.2 Time-Aware Recommendations Presentation

	5 Time-Aware Recommendations Computation
	5.1 Selecting Peers
	5.2 Computing Recommendations
	5.3 Presenting Recommendations

	6 Experiments
	7 Prototype Implementation:
	8 Related Work
	9 Conclusions
	References

	Incremental Mining of Top-k Maximal Influential Paths in Network Data
	1 Introduction
	2 Influence Propagation Model
	3 The TIP Algorithm
	4 Incremental Mining
	4.1 Insert Observation
	4.2 Delete Observation
	4.3 Complexity Analysis

	5 Experimental Evaluation
	5.1 Efficiency Experiments
	5.2 Sensitivity Experiments
	5.3 Effectiveness Experiments

	6 Related Work
	6.1 Information Diffusion Analysis
	6.2 Incremental Pattern Mining

	7 Conclusion
	References

	Author Index

