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Abstract. Analyzing and classifying sequence data based on structural similari-
ties and differences is a mathematical problem of escalating relevance. Indeed, 
a primary challenge in designing machine learning algorithms to analyzing se-
quence data is the extraction and representation of significant features.  This 
paper introduces a generalized sequence feature extraction model, referred to as 
the Generalized Multi-Layered Vector Spaces (GMLVS) model.  Unlike most 
models that represent sequence data based on subsequences frequency, the 
GMLVS model represents a given sequence as a collection of features, where 
each individual feature captures the spatial relationships between two subse-
quences and can be mapped into a feature vector.  The utility of this approach 
is demonstrated via two special cases of the GMLVS model, namely, Lossless 
Decomposition (LD) and the Multi-Layered Vector Spaces (MLVS).  Experi-
mental evaluation show the GMLVS inspired models generated feature vectors 
that, combined with basic machine learning techniques, are able to achieve high 
classification performance. 
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1 Introduction 

Analyzing and classifying sequence data based on structural similarities and differ-
ences, no matter how subtle, is a mathematical problem of escalating relevance and 
surging importance in many different disciplines, particularly those in biology and 
information sciences. Characterizing patterns of all topologies at various levels of 
sophistication is a colossal problem lurking in the backdrop. One of the primary chal-
lenges in designing machine learning algorithms for the purpose of analyzing  
sequence data is the extraction and representation of significant features.  

Most feature extraction methods are designed to represent sequence data based on 
the frequency of subsequences. For example, computational methods designed to 
analyze protein sequences typically represent a sequence as a set of features  
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corresponding to the frequency of subsequences of amino acids.  It is easy to realize 
that such a simplistic approach fails to capture the complex relationships – be it tem-
poral, spatial, local or global – in collections of sequence data.   In response, we 
propose a generalized sequence feature extraction model, referred to as the Genera-
lized Multi-Layered Vector Spaces (GMLVS) model, along with two special cases of 
the model referred to as the Lossless Decomposition (LD) model [1] and the Multi-
Layered Vector Spaces (MLVS) model [2].  The GMLVS model represents a given 
sequence as a collection of features in which each individual feature can be mapped to 
a corresponding feature vector. The GMLVS model has the flexibility to generate 
diverse types of feature vectors. However, the size of the set of all possible features 
that can be generated is huge. This fact led to the development of the LD and MLVS 
models, which are able to generate different types of feature vectors using a well-
defined subset of features represented through the GMLVS model. We believe the 
resulting feature vectors have the potential of penetrating into the micro structures 
embedded in sequences to provide an infrastructure for various forms of analysis at 
the local level, while concurrently addressing global patterns over those sequences. 

The rest of this paper is organized as follows. Section 2 proposes the Generalized 
Multi-Layered Vector Spaces Model (GMLVS) for representing sequence data.  
Section 3 formally defines the Lossless Decomposition (LD) model and describes its 
application to the problem of pair-wise sequence alignment. Section 4 formally de-
fines the Multi-Layered Vector Spaces (MLVS) model for representing sequence 
data and describes its application to the classification of biological sequences.  
Finally, Section 5 provides a discussion and summary of the work. 

2 Generalized Multi-Layered Vector Spaces (GMLVS) 

The proposed GMLVS model has several significant properties that collectively have 
the potential to discover interesting and novel patterns from sequence data. These 
properties include the ability to 1) discover both local and global patterns embedded 
in a sequence, 2) discover patterns defined in terms of the alphabet defined over a 
target collection of sequences, 3) reconstruct a sequence from its model representa-
tion, and 4) facilitate both descriptive and predictive data mining tasks. We now for-
mally present the Generalized Multi-Layered Vector Spaces model for representing 
sequence data.  

2.1 Model Formulations 

A sequence S of finite length |S| defined over a finite alphabet β is viewed as a collec-
tion of generated subsequences, ߚ௧כ,  of length t  where t = 1,..., |S|-1. Let כߚ denote 
the set of all possible subsequences. 

ڂ  ௌ|ିଵ௧ୀଵ|כ௧ߚ    (1) 

The set of all possible pairs of subsequences (i, j), where i and j are elements of כߚ 
is כߚ ൈ כߚ. Hence, the number of possible subsequences for a given t is equal to| β|t 
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and the number of possible pairs of subsequences (i, j) for all t (1 ≤ t ≤ |S|) is equal to ሺכߚሻଶ כ ሺ݇ ൅ 1ሻሻ. A feature is defined as a pair of subsequences f = (i, j), where i and j 
 along with a specified step value m where 0 ≤ m ≤ k.  The parameter m stands ,כ௧ߚ ∋
for the number of spaces between the elements of a given feature. If m=1, then f 
represents a consecutive subsequence and if m > 1 then f is a subsequence with a gap, 
where the gap is filled by an arbitrary sequence of (m – 1) symbols (i.e. don’t care).  
In the latter case, subsequences i and j are called, respectively, as leading and trailing 
subsequence. When m = 0, the leading subsequence is an element from ߚ௧כ and the 
trailing element is a null symbol, which takes no space (i.e. size of trailing subse-
quence is zero). The upper bound for parameter k is (|R|-1), where R is the maximum 
admissible value of m. For instance, R is equal to |S| - 1, if the feature space is 
represented by all pairs of symbols (i, j), where i and j  ∈  ߚଵכ.  It should be noted 
that in order for a feature f=(i, j) to be valid, the sum of the length of subsequences i 
and j plus the value of m must be less than |S|.  As a result, the number of possible 
features is less than or equal to the number of possible subsequences. Allowing mul-
tiple spaces between the elements of a feature generates a multitude of m-step pairs 
(families) P0, P1,P2,...,Pi,…,Pk, creating a multi-layered k-clustering Ck made up of sets 
Pm|(i,j) where m=0,1,2,...,k. In general, the size of a cluster Ck is | β|t * (k + 1), where t 
is equal to the sum of the length of the subsequences i and j.  Using this notation, a 
sequence S can be represented by a set of features, which, in turn can be converted 
into a set of feature vectors.  A feature is mapped into a corresponding feature vector 
only if it appears at least once in one of the sequences in a given collection of se-
quences. This fact can significantly reduce the size of the feature space.  Assume S is 
<g, c, t, g, g, g, c, t, c, a, g, c, t, a, a, t, g, a, g, c>, t=1, and m=1. The feature (g,c), 
where g is the leading symbol and c is the trailing symbol, is present in the locations 
{1, 6, 11, 19}; this can be represented as a vector <1,6,11,10>.  The resulting vector 
can be used to compare different sequences, or utilized to generate new representa-
tions.  How this is done will be shown in the next section, which will present two 
specialized versions of the GMLVS model.  The first model is the Lossless Decom-
position Model, which corresponds to m=0 and t≥1. The second model is the Multi-
Layered Vector Spaces model which corresponds to the case where m≥1 and t=2. 

3 Lossless Decomposition Model 

The Lossless Decomposition (LD) model creates a set of feature vectors G from a set 
of extracted features of the form f = (i, NULL), where i ∈  ߚ௧כ in which m = 0 such 
that G = {<fp> |fp is the starting position of the pth instance of feature f in S}. 
The resulting feature vectors G represent a lossless decomposition since S can be 
reconstructed directly from G. The maximum number of LD feature vectors that can 
be generated from a sequence S is  

 ∑ |β||ௌ|ିଵ௧ୀଵ t (2) 

Example-1: Given the alphabet β = {a,c,g,t}, with |β| = 4 and the sequence defined 
over β S=[g, c, t, g, g, g, c, t, c, a, g, c, t, a, a, t, g, a, g, c]. The following GMLVS 
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extracted features a, gc, and gct have corresponding LD generated feature vectors 
<10,14,15,18>, <1,6,11,19>, and <1,6,11>, respectively. 

3.1 Pairwise Sequence Similarity 

Measuring the degree of similarity between two sequences is an important task in 
several different domains. The LD model has been designed, in part, to facilitate the 
pairwise similarity measurement of sequences. By decomposing two sequences into a 
set of LD feature vectors, we are able to calculate the pairwise similarity of the  
sequences using parallel processes without sacrificing accuracy.  For illustration 
purpose, we assume the feature vectors are based on GMLVS extracted features cor-
responding to the set ߚଶ כ  (m=0). In other words, we assume the generated feature 
vectors represent all possible consecutive subsequences of length two. Formally, giv-
en two sequences S1 and S2, the corresponding sets of feature vectors G1 and G2 are 
defined as follows: 

G1 = {<fp> |fp is the starting position of the pth instance of feature f in S1} 
G2 = {<fp> |fp is the starting position of the pth instance of feature f in S2}  
 
Let a feature vector v1∈  G1 be represented as f1, f2, …, fi, …, fm where fi is the ith 

starting position of feature v1 in S1. Likewise, let a feature vector v2∈  G2 be 
represented as g1, g2, …, gi, …, gn where gi is the ith starting position of feature v2 in 
S2. We now define the distance between v1 and v2, which is denoted as dist(v1 , v2), 
to be a minimal cumulative distance calculated based on an optimal warping path 
between the feature vectors. The optimal warping path can be computed by the dy-
namic programming process, where the minimal cumulative distance Y(fi, gj) is recur-
sively defined as: 

 Y(fi, gj) = d(fi, gj) + min(Y(fi−1, gj−1), Y(fi−1, gj), Y(fi, gj−1)) (3) 

For example, assume the feature vector v1 is <0, 5, 9, 121, 130>, and the feature 
vector v2 is <4, 11, 100>. Then, by dynamic programming, the optimal alignment of 
these two vectors is illustrated in Figure 1. Then the distance between v1 and v2 can 
be calculated according to the optimal alignment as 
(4−0)+(5−4)+(11−9)+(121−100)+(130−100) = 58. 

 

Fig. 1. Alignment between position sequences of two granules 

Given the fact a feature vector represented in terms of the LD model is much 
shorter than the original sequence, the alignment between vectors by dynamic  
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programming should be much more efficient than the alignment between the original 
sequences. The calculation of similarity between two sequences by pairwise align-
ment can be distributed across individual feature vectors. For this purpose, we define 
the distance between the sequence S1 and the sequence S2 as the aggregation of the 
distances between corresponding feature vectors. Let v1f and v2f represent the feature 
vector corresponding to feature f = (i, NULL), where i ∈  ߚ௧כ, in sequences S1 and S2, 
respectively: 

 dist(S1, S2)  = ∑ כሺ௙ ୀ ሺ௜,ே௎௅௅ሻ   ఉ೟ݐݏ݅݀     2௙) (4)ݒ, 1௙ݒ

From this definition, the calculation of the distance between two sequences can be 
distributed to |β|t calculations of distances between |β|t feature vectors. 

3.2 Experimental Investigation 

We studied the performance of the proposed LD generated feature vectors in classify-
ing 53 SCOP protein families. The data set of the 53 SCOP protein families can be 
downloaded from [11]. Each of the SCOP families contains a training data set and a 
testing data set as described in [3]. We simply used 1-nearest neighbor (1NN)  
approach to predict if a test sequence belongs to the given family or not. More specif-
ically, for each test sequence, we evaluate its similarity with each training sequence, 
and then use the class label of the most similar training sequence as the label for this 
test sequence. The accuracy rate of the prediction for each family is reported.  

We used the following approaches to evaluate similarity between two protein se-
quences: 1) the Needleman-Wunsch algorithm (NW) [4] ; 2) the Smith-Waterman 
algorithm (SW) [5]; 3) the proposed granular approach based on single amino acids 
(Single), and 4) the proposed granular approach based on pairs of amino acids (Pair). 
For NW and SW, we set the match reward to be 10 and mismatch penalty to be -8. No 
external scoring matrix is used for this preliminary experimental study. The classifica-
tion results are summarized in Table-1. 

As can be seen in Table-1, the proposed granular approach based on single amino 
acids reaches the same level of accuracy rate as the Needleman-Wunsch algorithm 
and the Smith-Waterman algorithm. In other words, the proposed granular approach is 
able to distribute the calculation of pairwise similarity to 20 parallel processes without 
sacrificing accuracy. The accuracy rate of the proposed granular approach based on 
pairs of amino acids is approximately 6% worse than the other three methods; howev-
er the calculation of similarity of two protein sequences under this setting can be  
distributed to 400 parallel processes, each of which deals with much smaller data. 
Therefore, this approach may be suitable for online analysis of very large scale pro-
tein sequence database, where the tradeoff between efficiency and accuracy is  
necessary. 
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Table 1. Preliminary experimental results 

 

4 Multi-Layered Vector Spaces Model 

The Multi-Layered Vector Spaces Model (MLVS) creates a set of feature vectors G 
based on GMLVS features of the form (i,j), where i and j ∈ ߚଵכ. The total number of 
feature vectors that can be generated from an alphabet β is |β|2.  In this specialized 
case, a sequence S is viewed to have a multi-layered structure made up of a set of  
m-step ordered pairs (features) (i,j), where i and j ∈ ߚଵכ,  denoted by Pm|(i,j), where 1 ≤ 
m ≤ k. Ordered pairs made up of consecutive elements of the sequence are said to 
form the family of 1-step (one-step) pairs, P1|(i,j).  The concept of a multi-layered  
k-clustering Ck, as defined in the context of the GMLVS model, also applies to the 
MLVS model. Thus, the MLVS model views a sequence S as the as the union of all 
ordered pairs (i,j), where i and j ∈ ߚଵכ at k distinct layers. The following example 
demonstrates how the said structures are built. 

Example-2: Given the alphabet β = {a,c,g,t}, with |β|=4, |β|2 =16, and the sequence  
S = [g, c, t, g, g, g, c, t, c, a, g, c, t, a, a, t, g, a, g, c]. The following are sample m-step 
pairs ( ߚଵכ): 1-step ordered pairs for (g,c) are located at step locations [1,2], [6,7], 
[11,12], and [19,20]; 1-step ordered pairs for (g,g) are located at step locations [4,5], 
and [5,6]; 2-step ordered pairs for (g,t) are located at step locations [1,3], [6,8], and 
[11,13]; 4-step ordered pairs for (c,g) are located at step locations [2,6], and [7,11]. 
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4.1 Feature Vector Creation 

For a selected value of m and a given GMLVS extracted feature f = (i,j) (i, j∈ߚଵכ), the 
sequence of anchor positions is taken as forming the scalar components of an n-
dimensional feature vector Vm|(i,j) associated with the feature (i,j). The union of such 
vectors for all features (for a given m) forms a vector cluster Žm at step size m, pro-
viding a single-step representation for the sequence. 

 Žm = (i,j) Vm|(i,j) (5) 

The union of vector clusters Žm provides a multi-layered feature vector space Žk, 
one layer for each value of m, for the original sequence. 

 Žk = m (i,j) Vm|(i,j) (6) 

Feature vectors for each m-step feature can be structured in at least two different 
ways. One approach is to simply record the step (spatial index) locations of anchor 
positions as Boolean values (1, 0). This approach is suitable for collections of equal 
length sequences. An alternative approach is to partition a sequence into n equal seg-
ments and record the number of anchor positions that fall into each segment. The 
number of segments n will determine the dimension of the vectors thus formed. The 
size of n can be adjusted to meet restrictions or expectations on resolution and accura-
cy. This approach has the advantage of mapping sequences of unequal length into 
fixed length feature vectors. For a given m, the construction scheme for Vm|(i,j) can be 
implemented in two different ways:  a vector can be constructed for each feature in 
the sequence to generate a vector cluster over the whole sequence, or feature vectors 
in the cluster are concatenated into a single vector to represent the entire sequence. 
The steps involved in the feature mapping process are illustrated in Fig. 2. As is the 
case with LD feature vectors, MLVS feature vectors can also be analyzed in a distri-
buted manner. In particular, MLVS feature vectors can be processed in parallel based 
on either specific sets of ordered pairs (i, j) and / or range of step sizes (m). 

 
Fig. 2. Proposed feature mapping process 

Example-2: Using the same alphabet and sequence as used in the previous examples, 
the following are sample feature vectors for a select group of m-step MLVS features:  

 
Sequence disassembled into m-step pairs Pm|(i,j) ,   (m = 1, 2, …, k) 

� 
Anchor positions of m-step pairs extracted from the given sequence 

� 
Feature vectors Vm|(i,j) constructed for all (i,j) pairs and all desired/selected m values 

� 
Feature vectors grouped into m clusters Žm, (m=1,2,…,k), to be analyzed 
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Anchor positions of 1-step feature (g,c) are located at step (index) locations 
[1,6,11,19]; vector V1|(gc), is represented by the Boolean feature vector 
<1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0> if step locations for the anchors are used di-
rectly as vector components.  If we instead partition the sequence into 4 equal seg-
ments (n = 4), the vector V1|(gc), is represented  by the 4D  feature vector <1,1,1,1> 
with vector components representing the number of anchor elements in each segment; 
anchor positions of the 1-step  feature (g,g) are located at step (index) locations [4,5]; 
vector V1|(gg) is represented by the Boolean feature vector 
<0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> or by the 4D vector <2,0,0,0>; anchor posi-
tions of 2-step feature (g,t) are located at step (index) locations [1,6,11]; vector V2|(gt) 
is represented by the Boolean vector <1,0,0,0,0,1 ,0,0,0,0,1,0,0,0,0,0,0, 0,0,0> or by 
the 4D vector <1,1,1,0>. 

4.2 Experimental Investigation 

Experiments were conducted to determine the potential usefulness of the MLVS gen-
erated feature vectors in classifying biological sequences. Specific objectives in-
cluded: investigating the accuracy of classifiers constructed from various  
n-dimensional feature vectors Vm|(i,j); and, the accuracy of ensemble classifiers con-
structed from individual vector clusters Žm. The results obtained from these classifiers 
were compared with results obtained from the (k,m)-mismatch kernel method [6,7].  

The biological sequences utilized in the experiments corresponded to the classifica-
tion of the 3PGK-DNA sequences, Eukaryota vs. Euglenozoa [8]. There were a total 
of forty-three instances belonging to the class Eukaryota and forty-four instances 
belonging to the class Euglenozoa. The alphabet β consisted of the elements {a,c,g,t}. 
Each instance was mapped into the following vector clusters Ž1, Ž2, Ž3, and Ž10. For 
the experiments, we set n=100; that is, we segmented each Vm|(i,j) into 100 equal seg-
ments.  In addition, we arbitrarily selected the step sizes m=1,2,3, and 10. We uti-
lized the decision tree classifier C4.5 [9] as implemented in the Weka data mining 
application [10].  The performance of the decision trees was evaluated using the 
hold-out method in which the feature vectors, Vm|(i,j), for a given GMLVS feature  
f = (i, j) (i, j∈ ߚଵכሻ, were randomly divided into five pairs of training and test sets. The 
reported performance is the average accuracy over five runs. 

The results of the experiments are shown in Tables 2 and 3. Table-2 shows the ac-
curacy of the decision trees constructed from the feature vectors for each ordered pair 
feature. For instance, the decision tree constructed from the feature vectors corres-
ponding to the ordered pair (a,a) has an estimated predicted accuracy of 75%, 82%, 
75%, and 69% with respect to step sizes 1, 2, 3, and10, respectively. The results show 
for the selected step sizes, the decision trees are performing better than random guess-
ing but not at a desired level. A significant improvement in performance is obtained 
from the use of ensemble (multiple) classifiers constructed from decision trees be-
longing to a single vector cluster. Table-3 shows the accuracy values obtained by 
combining multiple decision trees at step sizes 1, 2, 3, and 10. The grouping of clas-
sifiers into ensembles was based on the accuracy of individual decision trees con-
structed from single ordered pairs. Specifically, for a given step size, the decision 
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trees were selected based on accuracy and the r most accurate decision trees were 
combined to form an ensemble of size r. The decision trees of a given ensemble were 
combined using un-weighted majority voting. Several of the constructed ensemble 
classifiers shown in Table-3 have a high degree of accuracy, and in particular the 
ensemble classifier consisting of fifteen decision trees at step size m=1 (15:96) has a 
96% level of accuracy.  

Table 2. Decision tree accuracy values for selected feature vectors 

Vm|(i,j) m=1 m=2 m=3 m=10 
(a,a) 75 82 75 69 
(a,c) 77 63 69 64 
(a,g) 75 89 83 75 
(a,t) 77 78 82 71 
(c,a) 69 68 71 67 
(c,c) 76 75 82 87 
(c,g) 64 78 74 67 
(c,t) 76 68 77 67 
(g,a) 70 78 74 72 
(g,c) 75 67 82 82 
(g,g) 70 66 84 85 
(g,t) 76 64 69 76 
(t,a) 66 68 72 67 
(t,c) 87 75 74 70 
(t,g) 72 70 67 67 
(t,t) 76 61 75 72 

Average 74 72 76 72 

Table 3. Ensemble decision tree accuracy values for selected vector clusters 

m # Classifiers : Accuracy (%) 
1 3:90; 5:93; 7:93; 9:94; 11:92; 13:92; 15:96 
2 3:90; 5:87; 7:87; 9:90; 11:87; 13:83; 15:79 
3 3:87; 5:92; 7:91; 9:92; 11:93; 13:94; 15:94 
10 3:92; 5:90; 7:92; 9:92; 11:90; 13:89; 15:87 

Table 4. (k,m)-mismatchmethod accuracy values 

K m = 0 (%) m=1 (%) 
4 90 89 
5 93 88 
6 93 90 
7 91 93 
8 91 93 
9 90 91 
10 86 90 
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To evaluate the results recorded in Tables-2 and -3, we repeated the experiments 
using the (k,m)-mismatch kernel method. Specifically, the five pairs of training and 
test sets were evaluated using the (k,m)-mismatch method as implemented by the 
authors of [6,7]. Table-4 shows the classification accuracy results, averaged over the 
five runs, for contiguous subsequences of length k = 4, 5, …, 10 and zero or one mis-
matches (m). The maximum achieved accuracy was 93%, which is less than the 96% 
accuracy value obtained through the use of the proposed multi-layer vector space 
model. In addition, the comprehensibility of a decision tree classifier is, in general, 
much greater as compared to SVM classifiers (i.e. (k,m)-mismatch method). This 
difference is significant if one wishes to obtain a deep characterization of a collection 
of biological sequences. 

5 Discussion and Summary 

It is anticipated that the transparent quality, simplicity and therefore the interpretation 
of the feature extraction models discussed in this paper will shed light into the inner 
workings of the system being studied. The Generalized Multi-Layered Vector Spaces 
(GMLVS) model allows an investigator to map a collection of sequences into a very 
large space of feature vectors for the purpose of analyzing and classifying data. The 
generated feature vectors can be logically partitioned along multiple dimensions 
based on sets of specific GMLVS features (i, j) (i and j∈ ߚ௧כ) and/or specific step 
values m (0 ≤ m ≤ k). We believe a large feature vector space whose vectors can be 
partitioned into semantically related groups will provide a user-friendly mathematical 
habitat in which an investigator can discover the intrinsic elements of the system be-
ing studied such as the plausibility of interactions among micro patterns and causal 
connections embedded in a sequence.  More generally, an investigator has the oppor-
tunity to discover relationships among various groups of feature vectors and to dis-
cover characteristics of the feature space as the step values (m) are increased to their 
limit. 

We have also developed two related sequential data models, referred to as the 
Lossless Decomposition (LD) model and the Multi-Layered Vector Spaces (MLVS) 
model. These two models are able to generate different types of feature vectors using 
a well-defined subset of features represented through the GMLVS model. Preliminary 
experimental results reported on in this paper indicate both the LD and MLVS models 
have the capability to identify important relationships within individual sequences. 

In the future, we plan to explore the utility of GMLVS (and specialized cases) in a 
variety of ways.  One area of study is to explore the applicability of the GMLVS for 
signal peptide prediction; that is, to identify sections of amino acids that used to direct 
nascent, or newly formed, proteins to their correct locations. Moreover, we believe 
the GLMVS format (or a derivative) could be used to create human-interpretable 
rules; this is something currently lacking in of the current signal peptide detection 
techniques.  Second, we also wish to explore the applicability of the MLVS model, 
combined with association mining, to detect potential mutations and frequent co-
occurrences of mutations within cancer cells.  Third, we are interested in exploring 
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how to incorporate external scoring matrices into the LD model, along with develop-
ing adaptive search methods to exploit the LD representation.  Finally, the MLVS 
and LD methods represent only two special cases of the GMLVS model; developing 
complementary special case models may yield additional advantages and insights. 
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