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Abstract. In real-applications, there may exist missing data and many
kinds of data (e.g., categorical, real-valued and set-valued data) in an in-
formation system which is called as a Hybrid Information System (HIS).
A new Hybrid Distance (HD) between two objects in HIS is developed
based on the value difference metric. Then, a novel fuzzy rough set is
constructed by using the HD distance and the Gaussian kernel. In ad-
dition, the information systems often vary with time. How to use the
previous knowledge to update approximations in fuzzy rough sets is a
key step for its applications on hybrid data. The fuzzy information gran-
ulation methods based on the HD distance are proposed. Furthermore,
the principles of updating approximations in HIS under the variation of
the attribute set are discussed. A fuzzy rough set approach for incre-
mentally updating approximations is then presented. Some examples are
employed to illustrate the proposed methods.

Keywords: Fuzzy Rough Set, Incrementally Learning, Hybrid Informa-
tion Systems.

1 Introduction

Rough Set Theory(RST) is a powerful mathematical tool proposed by Pawlak [1]
for processing inexact, uncertain, or vague information, and it has been widely
used in several research areas including knowledge discovery, pattern recognition,
artificial intelligence, and data mining [2–5].

In fact, categorical, real-valued and set-valued features usually coexist in real-
world databases. A disadvantage of the Pawlak’s rough set is that this model
is concerned with categorical features assuming some discrete values. Some dis-
cretization algorithms can be used to divide the domain of the corresponding
numerical feature into several intervals, but the discretization usually causes
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information loss. Therefore, an extended model of RST, fuzzy rough set, was
proposed to deal with these cases [6, 7].

When developing a fuzzy rough set model, one of important issues is gener-
ating fuzzy relations between the samples and inducing a set of fuzzy granules
with the fuzzy relations. Combined with the Euclidean distance, Gaussian ker-
nels are first introduced to acquire fuzzy relations between samples described by
fuzzy or numeric attributes in order to generate fuzzy information granules in
the approximation space [11]. But the Euclidean distance has difficult to deal
with the categorial and set-valued data, this paper will introduces a new hybrid
distance.

In real-life applications, information systems may be big data [12,13] and vary
with time. In fuzzy rough sets, the generating of fuzzy relations between samples
inevitably elapses a lot of time, and frequently computing the fuzzy relations
will reduce efficiency of the algorithms. Incremental updating approximations is
a feasible solution. In fact, in RST and its extensions, more and more serious
problems are arising due to the big data and dynamic property. Some researchers
have paid attention to the problem of updating approximations of RST and its
extensions incrementally in dynamic information systems [14–26]. Under the
variation of attribute set, Li et al. proposed some approaches for incremental
updating approximations and extracting rules in RST [14–17]. However, the
incremental approach for updating approximations based on fuzzy rough sets
under the variation of attribute set has not been taken into account until now.

The rest of this paper is organized as follows. In Section 2, some preliminar-
ies are introduced. In Section 3, the generating methods of fuzzy information
granules in hybrid information systems are presented. In Section 4, the updating
principles for lower and upper approximations are analyzed under the varia-
tion of attribute set. Some illustrative examples are conducted. In Section 5, we
conclude the paper.

2 Preliminaries

The rough set theory describes a crisp subset of a universe by two definable
subsets called lower and upper approximations [1]. By using the lower and upper
approximations, the knowledge hidden in information systems can be discovered
and expressed in the form of decision rules.

Definition 1. Let (U,R) be a Pawlak approximation space. The universe U �= ∅.
R ⊆ U×U is an equivalence relation on U . U/R denotes the family of all equiva-
lence classes R, and [x]R denotes an equivalence class of R containing an element
x ∈ U . For any X ⊆ U , the lower approximation and upper approximation of X
are defined respectively as follows:

RX = {x ∈ U |[x]R ⊆ X};
RX = {x ∈ U |[x]R ∩X �= ∅}. (1)

The concept of fuzzy rough sets was first proposed by Dubois and Prade [6].
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Definition 2. Let R be a fuzzy equivalence relation on U and X be a fuzzy subset
of U . The fuzzy lower and upper approximations of X were defined as

RX(x) = inf
y∈U

{max(1−R(x, y), X(y))};
RX(x) = sup

y∈U
{min(R(x, y), X(y))}. (2)

More generally, Yeung et al. proposed a model of fuzzy rough sets with a pair
of T -norm and S-norm in [10].

RX(x) = inf
y∈U

{S(N(R(x, y)), X(y))};
RX(x) = sup

y∈U
{T (R(x, y), X(y))}. (3)

In [11], based on the Gaussian kernel function, Hu et al. proposed a Gaussian
kernelized fuzzy rough set model with a pair of Tcos-norm and Scos-norm.

Definition 3. Let RG be a Gaussian kernelized Tcos-fuzzy equivalence relation
on U and X be a fuzzy subset of U . The fuzzy lower and upper approximations
of X are defined as

RGX(x) = inf
y∈U

Scos(N(RG(x, y)), X(y));

RGX(x) = sup
y∈U

Tcos(RG(x, y), X(y)). (4)

Where∀x, y ∈ U,RG(x, y) = k(x, y),Tcos(a, b) = max{ab−√
1− a2

√
1− b2, 0}

is a T -norm, and its dual Scos(a, b) = min{a + b − ab +
√
2a− a2

√
2b− b2, 1}.

In [11], the Gaussian kernel function k(x, y) is definiton as follow.
Let U be a finite universe, and U �= ∅. The samples are m-dimension vectors.

∀xi, xk ∈ U, xi =< xi1, xi2, ..., xim >, xk =< xk1, xk2, ..., xkm >. The gaussian
kernel function

k(xi, xk) = exp (−||xi − xk||2
2δ2

) (5)

can be used to compute the similarity between samples xi and xk. ||xi − xk|| is
the Euclidean distance between xi and xk.

A disadvantage of the Euclidean distance is that it is concerned with real
values. In fact, categorical, real-valued and set-valued attributes usually coexist
in real-world databases. In next section, a new hybrid distance will be introduced.

3 Gaussian Kernelized Fuzzy Rough Set in Hybrid
Information Systems

Definition 4. A Hybrid Information System (HIS) can be written as (U,C ∪
D,V, f), where U is the set of objects, C = Cr ∪ Cs ∪ Cc, Cr is the real-valued
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attribute set, Cs is the set-valued attribute set, Cc is the categorical attribute set,
D denotes the set of decision attributes, Cr ∩ Cs = ∅, Cr ∩ Cc = ∅, Cs ∩ Cc =
∅, C ∩D = ∅.
Example 1. Table 1 is a HIS with two categorical attributes “Headache”, “Mus-
cle Pain”, a real-valued attribute “Temperature”, a set-valued attribute “Syn-
drome” (denoted as a1, a2, a3, a4, respectively), and a decision attribute d. “?”
denotes the unknown value.

Table 1. A hybrid information systems

U Headache(a1) Muscle Pain(a2) Temperature(a3) Syndrome(a4) d

x1 Sick Yes 40 {C, R, A} Flu

x2 Sick Yes 39.5 {C, R, A} Flu

x3 Middle ? 39 {C} Flu

x4 Middle Yes 36.8 {R} Rhinitis

x5 Middle No ? {R} Rhinitis

x6 No No 36.6 {R, A} Health

x7 No ? ? {A} Health

x8 No Yes 38 {C, R, A} Flu

x9 ? Yes 37 {R} Health

3.1 Hybrid Distance

In HIS, there are different type of attributes, to construct the distance among
objects efficiently, a novel distance function should be presented. Firstly, value
difference under different type of attribute should be defined.

In order to deal with the value difference under the categorical attributes,
Stanfill and Waltz [27] introduced a Value Difference Metric (VDM). Based it,
the normalized value difference under the categorical attributes is defined as:

Definition 5. Let HIS=< U,C ∪ D,V, f >, ∀x, y ∈ U, ∀a ∈ C and a is a cate-
gorical attribute,

vdm(a(x), a(y)) =

√
√
√
√

1

|U/D|
∑

di∈U/D

(
|a(x) ∩ di|
|a(x)| − |a(y) ∩ di|

|a(y)| )2. (6)

Where |.| denotes support degree, and it is clear that vdm(a(x), a(y)) ∈ [0, 1].
In [27], Wilson et al. also defined value difference under real-valued attributes.

Definition 6. Let HIS=< U,C ∪ D,V, f >, ∀x, y ∈ U, ∀a ∈ C and a is a real-
valued attribute,

vdr(a(x), a(y)) =
|a(x)− a(y)|

4δa
(7)

where δa is the standard deviation under the attribute a.
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In order to deal with the unknown values (denoted by “?”), Wilson et al. also
defined value difference as [27]:

Definition 7. Let HIS=< U,C∪D,V, f >, ∀x, y ∈ U, ∀a ∈ C, a(x) =? or a(y) =
? and x �= y,

vdi(a(x), a(y)) = 1. (8)

According to Definition 7, the value difference will be set as 1 between an
unknown value and another one.

To set-valued attribute, it can be seen as a set of multiple categorical at-
tributes. For example, to the set-valued attribute d in Table 1, the subset which
has maximum cardinal number in the domain Vd is {C, R, A}. Therefore, at-
tribute d can be divided to three categorical attributes (C, R, A, respectively).
Therefore, set-value {C, R, A}={C=Yes, R=Yes,A=Yes}, {C, R}={C=Yes,
R=Yes,A=?}. Because the value difference between “?” and other values is equal
to 1, the value difference between {C, R, A} and {C, R} is 1/3. Therefore, the
value difference of set-valued attributes is defined as follow:

Definition 8. Let HIS=< U,C ∪ D,V, f >, ∀x, y ∈ U, ∀a ∈ C and a is a set-
valued attribute. Let Va be the domain of a.

vds(a(x), a(y)) = 1− |a(x) ∩ a(y)|
s

(9)

where s is the maximum cardinal number (cardinality) in the subset of Va.

In order to deal with the hybrid and incomplete attributes, according to Def-
initions 5, 6, 7 and 8, a novel Hybrid Distance (HD) can be defined as follows:

Definition 9. Given a HIS, the Hybrid Distance (HD) is defined as:

HD(x, y) =

√
√
√
√

m∑

a=1

d2(a(x), a(y)) (10)

where m is the number of attributes, and

d(a(x), a(y)) =

⎧

⎪⎪⎨

⎪⎪⎩

1, a(x) =? or a(y) =? and x �= y
vdm(a(x), a(y)), a is a categorical attribute
vds(a(x), a(y)), a is a set− valued attribute
vdr(a(x), a(y)), a is a real − valued attribute

(11)

Example 2. Based on Example 1, we can compute the HD distance matrix. Ac-
cording to formula (10), the following results hold:

(1) Because attribute a1 is categorical, d(a1(x1), a1(x3)) = vdm(a1(x1), a1(x3))

=
√

1
3 ((

2
2 − 1

3 )
2 + (02 − 2

3 )
2 + (02 − 0

3 )
2) = 0.54.

(2) Because a2(x3) =?, d(a2(x1), a2(x3)) = 1.
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(3) Because attribute a3 is real-valued, d(a3(x1), a3(x3)) = a3(x1)−a3(x3)
4δa3

=

(40− 39)/(4× 1.28) = 0.19.
(4) Because attribute a4 is set-valued, d(a4(x1), a4(x3)) = vds(a4(x1), a4(x3))

= 3−1
3 = 0.67.

HD(x1, x3) = (
4∑

a=1
d2(a(x), a(y)))1/2 =

√
0.542 + 12 + 0.192 + 0.672 = 1.33.

3.2 Generating Fuzzy Relations under the Hybrid Attributes

Based on the gaussian kernel function in Formula (5), the Euclidean distance is
replaced by HD distance, the new gaussian kernel function

kH(xi, xk) = exp (−||xi − xk||2
2δ2

) (12)

||xi − xk|| is the HD distance between xi and xk. We have
(1) kH(xi, xk) ∈ [0, 1];
(2) kH(xi, xk) = kH(xk, xi);
(3) kH(xi, xi) = 1.
Using the new Gaussian kernel function, we can compute the Tcos-equivalence

relation RG in HIS. Furthermore, we can construct a Gaussian fuzzy rough set
model.

Example 3. Base on Table 1, let δ2 = 0.8, each sample is a 4-D vector, the
fuzzy relation between each two samples can be computed by Formula (12). For

example, RG(x1, x3) = kH(x1, x3) = exp(−HD2(x1,x3)
2×0.8 ) = exp(−1.332/1.6) =

0.33. Therefore,

RG =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0.99 0.33 0.49 0.30 0.53 0.18 0.76 0.33
1 0.33 0.53 0.30 0.57 0.18 0.79 0.35

1 0.26 0.15 0.29 0.13 0.33 0.14
1 0.48 0.40 0.13 0.61 0.53

1 0.24 0.13 0.30 0.26
1 0.22 0.80 0.26

1 0.22 0.08
1 0.40

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

3.3 Gaussian Kernelized Fuzzy Rough Set in HIS

Let HIS=(U,C ∪D,V, f), U/D = {di}, i = 1, 2, ..., |U/D|. Here we suppose the
following relationships hold: ∀x ∈ di, di(x) = 1; otherwise, di(x) = 0. There-
fore, we can approximate the decision regions with the fuzzy granules induced
by Gaussian function. Based on Definition 3, Hu et al. proposed the following
proposition [11]:
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Proposition 1. HIS=(U,C ∪D,V, f), ∀di ∈ U/D,

RGdi(x) = inf
y/∈di

√

1−RG
2(x, y);

RGdi(x) = sup
y∈di

RG(x, y). (13)

To simple the computing, we can generate the fuzzy lower and upper approx-
imations by the follow proposition:

Proposition 2. HIS=(U,C ∪D,V, f), ∀x ∈ U, ∀di ∈ U/D.

RGdi(x) =
√

1− (sup
y/∈di

RG(x, y))2;

RGdi(x) = sup
y∈di

RG(x, y). (14)

Proof. It is clear that function y =
√
1− x2, x ∈ [0, 1] is a monotonically decreas-

ing function. It is easy to prove that
√

1− (sup(x))2 = inf(
√
1− x2), x ∈ [0, 1].

Therefore, RGdi(x) =
√

1− (sup
y/∈di

RG(x, y))2.

Example 4. Based on Examples 1 and 3, U/D={d1, d2, d3}, d1={x1, x2, x3, x8},
d2 = {x4, x5}, d3 = {x6, x7, x9}. According to Proposition 2,

RGd1(x1) =
√

1− ( sup
y/∈d1

RG(x1, y))2 =
√

1− (sup{0.49, 0.3, 0.53, 0.18, 0.33})2

=
√
1− 0.532 = 0.85.

Similarly, the other lower approximations can be computed as follows.
RGd1 = {0.85/x1, 0.82/x2, 0.96/x3, 0/x4, 0/x5, 0/x6, 0/x7, 0.84/x8, 0/x9}.
RGd2 = {0/x1, 0/x2, 0/x3, 0.79/x4, 0.95/x5, 0/x6, 0/x7, 0/x8, 0/x9}.
RGd3 = {0/x1, 0/x2, 0/x3, 0/x4, 0/x5, 0.61/x6, 0.98/x7, 0/x8, 0.84/x9}.

RGd1(x1) = sup
y∈d1

RG(x1, y) = sup{RG(x1, x1), RG(x1, x2), RG(x1, x3),

RG(x1, x8)} = sup{1, 0.99, 0.33, 0.76}= 1.
Similarly, the other upper approximations can be computed as follows.

RGd1 = {1/x1, 1/x2, 1/x3, 0.61/x4, 0.3/x5, 0.8/x6, 0.22/x7, 1/x8, 0.4/x9}.
RGd2={0.49/x1, 0.53/x2, 0.26/x3, 1/x4, 1/x5, 0.4/x6, 0.13/x7, 0.61/x8, 0.53/x9}.
RGd3 = {0.53/x1, 0.57/x2, 0.29/x3, 0.53/x4, 0.26/x5, 1/x6, 1/x7, 0.8/x8, 1/x9}.

In next section, we apply the fuzzy rough set to design the incremental
updating approximations under the variation of the attribute set.
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4 A Fuzzy Rough Set Approach of Incrementally
Updating Approximations under the Variation of the
Attribute Set

We discuss the variation of approximations in HIS when the attribute set evolves
over time. Given a HIS = (U,C∪D,V, f) at time t, U �= ∅ and C∩D = ∅. Suppose
there are some attributes enter into HIS or get out of HIS at time t + 1. The
fuzzy equivalence relations will be changed. And then, the fuzzy lower and upper

approximations will be changed too. Let R
(t)
G be the fuzzy equivalence relation

at time t. For each fuzzy set X ⊆ U , the fuzzy lower and upper approximations

are denoted by R
(t)
G X and R

(t)
G X at time t, respectively. Let P ⊆ C denote

the attribute set at time t, RP
G denotes the fuzzy equivalence relation under

the attribute set P . Let R
(t+1)
G be the fuzzy equivalence relation, Qi be the

immigrating attribute set and Qe be the emigrating attribute set at time t+ 1.

The fuzzy lower and upper approximations of X are denoted by R
(t+1)
C X and

R
(t+1)
G X , respectively. With these stipulations, we focus on the algorithms for

updating approximations of the decision classes when (1) attributes enter into
the HIS at time t+ 1; (2) attributes get out of the HIS at time t+ 1.

4.1 The Immigration of Attributes

Given a HIS = (U,C ∪ D,V, f), ∀xi, xk ∈ U . xi, xk can be seen as two m-
dimension vectors, and xi =< xc1

i , xc2
i , ..., xcm

i >, xk =< xc1
k , xc2

k , ..., xcm
k >,

cj ∈ C, and j = 1, ...,m,m = |C|. ∀P ⊆ C, xi, xk can be seen as two m-
dimension vectors denoted as xP

i and xP
k , respectively. x

P
i =< xp1

i , xp2

i , ..., xpl

i >,
xP
k =< xp1

k , xp2

k , ..., xpl

k >, pj ∈ P , and j = 1, ..., l, l = |P |. According to formula
(12), the following proposition holds.

Proposition 3. ∀P ⊆ C, ∀xi, xk ∈ U , xi �= xk.

RP
G(xi, xk) =

∏

pj∈P

R
{pj}
G (xi, xk). (15)

Proof. RP
G(xi, xk) = exp(− ||xP

i −xP
k ||2

2δ2 ) = exp(−
|P |∑

j=1

d2
sa(xij,xkj)

2δ2 )

=
∏

pj∈P

exp(− d2
sa(xij ,xkj)

2δ2 ) =
∏

pj∈P

exp(− ||x{pj}
i −x

{pj}
k ||2

2δ2 ) =
∏

pj∈P

R
{pj}
G (xi, xk).

Proposition 4. Let Qi be an attribute set immigrating into HIS at time t + 1.
∀di ∈ U/D, and ∀x ∈ U . The fuzzy approximations at time t+ 1 are as follows:

R
(t+1)
G di(x) =

√

1− (sup
y/∈di

{R(t)
G (x, y)× ∏

q∈Qi

R
{q}
G (xi, xk)})2;

R
(t+1)
G di(x) = sup

y∈di

{R(t)
G (x, y)× ∏

q∈Qi

R
{q}
G (xi, xk)}. (16)
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Table 2. Attribute a5 is added into HIS

U Headache(a1) Muscle Pain(a2) Temperature(a3) Syndrome(a4)Cough(�a5) d

x1 Sick Yes 40 {C, R, A} Yes Flu

x2 Sick Yes 39.5 {C, R, A} Yes Flu

x3 Middle ? 39 {C} Yes Flu

x4 Middle Yes 36.8 {R} No Rhinitis

x5 Middle No ? {R} No Rhinitis

x6 No No 36.6 {R, A} No Health

x7 No ? ? {A} No Health

x8 No Yes 38 {C, R, A} Yes Flu

x9 ? Yes 37 {R} No Health

Example 5. Based on Example 4, attribute a5 is added into HIS (shown as Table
2). Therefore, P = {a1, a2, a3, a4}, Qi = {a5}.

According to Formula (12), we can compute the fuzzy relation between

each two samples under the attribute set Qi. For example, R
{a5}
G (x1, x4) =

exp(− 1
3 (1+( 2

5 )
2+( 3

5 )
2)

2δ2 ) = 0.73. Therefore,

R
{a5}
G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0.73 0.73 0.73 0.73 1 0.73
1 1 0.73 0.73 0.73 0.73 1 0.73

1 0.73 0.73 0.73 0.73 1 0.73
1 1 1 1 0.73 1

1 1 1 0.73 1
1 1 0.73 1

1 0.73 1
1 0.73

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Because R
(t)
G has been generated in Example 3, ∀xi, xk ∈ U,R

(t+1)
G (xi, xk) =

R
(t)
G (xi, xk)×R

{a5}
G (xi, xk). Therefore,

R
(t+1)
G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0.99 0.33 0.36 0.22 0.38 0.13 0.76 0.24
1 0.33 0.39 0.22 0.41 0.13 0.79 0.25

1 0.19 0.11 0.21 0.09 0.33 0.10
1 0.48 0.40 0.13 0.44 0.53

1 0.24 0.13 0.22 0.26
1 0.22 0.58 0.26

1 0.16 0.08
1 0.29

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

According to Proposition 4, the approximations are as follows.
RGd1 = {0.92/x1, 0.91/x2, 0.98/x3, 0/x4, 0/x5, 0/x6, 0/x7, 0.81/x8, 0/x9}.
RGd2 = {0/x1, 0/x2, 0/x3, 0.84/x4, 0.97/x5, 0/x6, 0/x7, 0/x8, 0/x9}.
RGd3 = {0/x1, 0/x2, 0/x3, 0/x4, 0/x5, 0.81/x6, 0.99/x7, 0/x8, 0.84/x9}.
RGd1 = {1/x1, 1/x2, 1/x3, 0.44/x4, 0.22/x5, 0.58/x6, 0.16/x7, 1/x8, 0.29/x9}.
RGd2={0.36/x1, 0.39/x2, 0.19/x3, 1/x4, 1/x5, 0.4/x6, 0.13/x7, 0.44/x8, 0.53/x9}.
RGd3 = {0.38/x1, 0.41/x2, 0.21/x3, 0.53/x4, 0.26/x5, 1/x6, 1/x7, 0.58/x8, 1/x9}.
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4.2 The Emigration of Attributes

Given two attribute sets P,Qe ⊆ C, and Qe ⊂ P,Qe �= ∅, fuzzy relation RP−Qe

G

(xi, xk) between xi and xk can be computed according to Proposition 3. And
then, the following updating proposition of fuzzy approximations can be gotten.

Proposition 5. Let P ⊆ C, and Qe be the attributes emigrating from HIS at
time t + 1, and Qe ⊂ P . ∀di ∈ U/D, and ∀x ∈ U . The fuzzy lower and upper
approximations at time t+ 1 as follows:

R
(t+1)
G di(x) =

√

1− (sup
y/∈di

(R
(t)
G (x, y)/

∏

q∈Qe

R
{q}
G (x, y)))2;

R
(t+1)
G di(x) = sup

y∈di

(R
(t)
G (x, y)/

∏

q∈Qe

R
{q}
G (x, y)). (17)

Table 3. The emigrating of attributes a4, a5

U Headache(a1) Muscle Pain(a2) Temperature(a3) Syndrome(a�

4 ) Cough(a�

5 ) d

x1 Sick Yes 40 {C, R, A} Yes Flu

x2 Sick Yes 39.5 {C, R, A} Yes Flu

x3 Middle ? 39 {C} Yes Flu

x4 Middle Yes 36.8 {R} No Rhinitis

x5 Middle No ? {R} No Rhinitis

x6 No No 36.6 {R, A} No Health

x7 No ? ? {A} No Health

x8 No Yes 38 {C, R, A} Yes Flu

x9 ? Yes 37 {R} No Health

Example 6. Based on Example 5, attribute set {a4, a5} is deleted from HIS
(shown as Table 3). Therefore P = {a1, a2, a3, a4, a5}, Qe = {a4, a5}. Ac-
cording to Proposition 3, we can compute the fuzzy relations under the at-

tribute set Qe. For example, RQe

G (x1, x4)=R
{a4}
G (x1, x4)× R

{a5}
G (x1, x4)=0.55,

R
(t+1)
G (x1, x4) = R

(t)
G (x1, x4)/R

Qe

G (x1, x4) = 0.36/0.55 = 0.65. Therefore,

R
(t+1)
G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0.99 0.43 0.65 0.40 0.56 0.24 0.76 0.43
1 0.44 0.70 0.40 0.61 0.24 0.79 0.46

1 0.48 0.29 0.39 0.24 0.43 0.26
1 0.48 0.74 0.24 0.80 0.53

1 0.44 0.24 0.40 0.27
1 0.29 0.85 0.48

1 0.29 0.15
1 0.52

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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According to Proposition 5, the approximations are as follows:
RGd1 = {0.76/x1, 0.72/x2, 0.88/x3, 0/x4, 0/x5, 0/x6, 0/x7, 0.52/x8, 0/x9}.
RGd2 = {0/x1, 0/x2, 0/x3, 0.6/x4, 0.9/x5, 0/x6, 0/x7, 0/x8, 0/x9}.
RGd3 = {0/x1, 0/x2, 0/x3, 0/x4, 0/x5, 0.52/x6, 0.96/x7, 0/x8, 0.84/x9}.
RGd1 = {1/x1, 1/x2, 1/x3, 0.8/x4, 0.4/x5, 0.85/x6, 0.29/x7, 1/x8, 0.52/x9}.
RGd2 = {0.65/x1, 0.7/x2, 0.48/x3, 1/x4, 1/x5, 0.74/x6, 0.24/x7, 0.8/x8, 0.53/x9}.
RGd3 = {0.56/x1, 0.61/x2, 0.39/x3, 0.74/x4, 0.44/x5, 1/x6, 1/x7, 0.85/x8, 1/x9}.

5 Conclusions

In HIS, the attributes may be hybrid, and possible have unknown values. Based
on this, a new HD formula was designed. Combined with the HD distance and the
Gaussian kernel, a novel fuzzy rough set was constructed. In HIS, the attributes
generally vary with time. The incremental updating principles of upper and
lower approximations of fuzzy rough sets under the variation of the attribute set
were discussed in this paper. Several examples were employed to illustrate the
proposed methods. Our future research work will focus on the validation of the
proposed algorithms in real data sets and the application on feature selection.
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