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Abstract. Metric technique has recently been applied to solve such data
mining problems as classification, clustering, feature selection, decision
tree construction. In this paper, we apply metric technique to solve a
attribute reduction problem of incomplete decision tables in rough set
theory. We generalize Liang entropy in incomplete information systems
and investigate its properties. Based on the generalized Liang entropy,
we establish a metric between coverings and study its properties for
attribute reduction. Consequently, we propose a metric based attribute
reduction method in incomplete decision tables and perform experiments
on UCI data sets. The experimental results show that metric technique is
an effective method for attribute reduction in incomplete decision tables.

Keywords: Rough sets, feature selection and extraction, Liang’s
entropy, metric based reducts.

1 Introduction

Classical rough set theory based on equivalent relation has been introduced by
Pawlak [11] as one of the effective tools for rule induction, object classification
in complete decision tables. Attribute reduction is one of the crucial problems
in rough set theory. Recently, there have been many attribute reduction algo-
rithms in complete decision tables based on the equivalent relation [17]. In fact,
there are many cases that decision tables contain missing values for at least one
conditional attribute in the value set of that attribute and these decision tables
are called incomplete decision tables. To extract decision rules directly from in-
complete decision tables, Kryszkiewicz [5] has extended the equivalent relation
in classical rough set theory to tolerance relation and proposed tolerance rough
set. Based on the tolerance relation, many uncertainty measures and attribute
reduction algorithms for incomplete decision tables have been investigated [7],
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[8], [9], [12], [13]. Huang et al [4] proposed an attribute reduction algorithm based
on information quantity. Zhou et al [22], Huang et al [3] proposed attribute re-
duction algorithms based on tolerance matrix. The time complexity of these

algorithms is O
(
|A|3|U |2

)
, where |A| is the number of conditional attributes

and |U | is the number of objects. Zhang et al [21] improved the algorithm from

[4] and the time complexity is down to O
(
|A|2|U |2

)
. Dai et al [1] presented an

attribute reduction algorithm based on the coverage of an attribute set.
Metric is a distance measure between two sets [2]. In recent researches, metric

technique has been applied to solve problems in data mining and rough set
theory. Mantaras [16], Simovici and Jaroszewicz [18], [19] used a metric as the
attribute selection criterion in the process of decision tree construction. Nguyen
[10] proposed a metric based attribute reduction method in complete decision
tables. Qian et al [14], [15] proposed knowledge distances between coverings in
incomplete information systems and investigate its properties.

In this paper, we propose a metric based attribute reduction method in in-
complete decision tables. Firstly, we generalize Liang entropy [6] in incomplete
information systems and investigate its properties. Secondly, we establish a met-
ric between coverings based on the generalized Liang entropy and study its
properties in incomplete decision tables for attribute reduction. Finally, we de-
fine a reduct based on the metric, significance of attribute based on the metric
and propose an attribute reduction heuristic algorithm in incomplete decision

tables. The time complexity of proposed algorithm is O
(
|A|2|U |2

)
.

The structure of this paper is as follows. Section 2 presents the concept of
attribute reduction in rough set theory. Section 3 presents a generalized Liang
entropy in incomplete information systems and investigate its properties. Section
4 establishes a metric between coverings based on the generalized Liang entropy
and study its properties. Section 5 presents a metric based attribute reduction
method in incomplete decision tables. In Section 6, we perform some experiments
of the proposed algorithm. The conclusions are presented in the last section.

2 Basic Notions

In this section, we introduction some basic concepts in rough set theory related
to attribute reduction.

An information system [11] is a pair S = (U,A), where U is a non-empty,
finite collection of objects and A is a non-empty, finite set, of attributes. Each
a ∈ A corresponds to the function a : U → Va, where Va is called the value set
of a. Elements of U can be interpreted as, e.g., cases, patients, observations, etc.
Without loss of generality, we will assume that U = {u1, ..., u|U|}.

For a given information system S = (U,A), the function μS : P(A) −→ R
+,

where P(A) is the power set of A, is called the monotone evaluation function if:

1. μS(B) can be computed using information from B and U for any B ⊂ A;
2. μS(.) is monotone, i.e., for any B,C ⊂ A, if B ⊂ C, then μS(B) ≤ μS(C).
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In rough sets, reducts are the minimal subsets (with respect to the set inclusion)
of attributes that contain a necessary portion of information about the objects,
expressed by a monotone evaluation function.

Definition 1 (μ-reduct). Any set B ⊆ A is called the reduct relative to a
monotone evaluation function μ, or briefly μ-reduct, if B is the smallest subset
of attributes that μ(B) = μ(A), i.e., μ(B′) < μ(B) for any proper subset B′

� B.
We denote by RED(S, μ) the set of all μ-reducts, i.e.,

RED(S, μ) = {R ⊂ A : R is μ-reduct of S} (1)

The attribute a ∈ A is called core attribute if a presents in all reducts of A. The
set of all core attributes is denoted by

CORE(S, μ) =
⋂

RED(S,µ)

R (2)

This definition is general for many existing definitions of reducts. Let us men-
tion some well-known types of reducts used in rough set theory.

2.1 Decision Table and Decision Reducts

A decision table is a special information system D = (U,A∪D), where attributes
are of two types: conditional attributes (the attributes from A), and decision
attributes (the attributes from D). The conditional attributes are also called
conditions, while the decision attributes are briefly called decisions.

Each subset of attributes P ⊆ A determines a binary indistinguishable relation
IND (P ) as follows

IND(P ) = {(x, y) ∈ U × U : infP (x) = infP (y)} . (3)

It is obvious that IND (P ) is an equivalence relation, as it is reflexive, sym-
metric and transitive, over the set U . Any element u ∈ U the set [u]P =
{v ∈ U |(u, v) ∈ IND (P )} is called the equivalent class. The relation IND (P )
constitutes a partition of U , which is denoted by

U/P = {[u]P : u ∈ U} (4)

Let D = (U,A ∪D) be a decision table. Any set Di ∈ U/D is called the
decision class of D. For any B ⊂ A, the set

POSB(D) = {u ∈ U : [u]B ⊆ Di for some Di ∈ U/D} (5)

is called the B-positive region of D. The decision table D is called consistent
if and only if POSA(D) = U . Otherwise, D is called the inconsistent decision
table. Any minimal subset B of A such that POSB(D) = POSA(D) is called
the decision reduct (or reduct based on positive region) of D. It has been shown
in [9] that μPOS(B) = |POSB(D)| is a monotone evaluation function. Thus:

Proposition 1. The set of attributes R ⊆ A is decision reduct if and only if it
is μ-reduct with respect to the measure μPOS(B) = |POSB(D)|.
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2.2 Entropy Based Methods

Let D = (U,A ∪D) be a decision table and C ⊂ A is an arbitrary set of at-
tributes. Suppose that U/C = {C1, C2, ..., Cm}and U/D = {D1, D2, ..., Dn}, the
conditional Shannon entropy of D with respect to C ⊂ A is defined as

H (D |C ) = −
m∑
i=1

|Ci|
|U |

n∑
j=1

|Ci ∩Dj |
|Ci| log2

|Ci ∩Dj |
|Ci| (6)

Proposition 2 ([19]). Let D = (U,A ∪D) be a decision table. If Q ⊆ P ⊆ A
then H (D |Q ) ≥ H (D |P ). The equality holds when ∀Xu, Xv ∈ U/P , Xu �= Xv,

if (Xu ∪Xv) ⊆ Yk ∈ U/Q then
|Xu∩Dj |

Xu
=

|Xv∩Dj |
Xv

for ∀j ∈ {1, 2, ..., n}.
Thus H (D|C) is monotone function with respect to set inclusion. Any μ-

reduct with respect to entropy measure μEnt(C) = M −H (D |C ), where M is
a constant, is called a reduct of D based on conditional Shannon entropy.

Let S = (U,A) be a complete information system, for any P ⊆ A the value

E(P ) =

m∑
i=1

|Pi|
|U |

(
1− |Pi|

|U |
)

(7)

where U/P = {P1, ..., Pm}, is called the Liang entropy [6].
Let P,Q ⊆ A be arbitrary sets of attributes and let U/P = {P1, ..., Pm},

U/Q = {Q1, ..., Qn}. The conditional Liang entropy is defined as follows:

E(Q|P ) =

n∑
i=1

m∑
j=1

|Qi ∩ Pj |
|U |

|Qc
i − P c

j |
|U | (8)

where Qc
i = U −Qi, P

c
j = U − Pj (see [6]).

It has been shown in [6] that both Liang entropy and conditional Liang entropy
measures are monotone with respect to set inclusion. Thus the μ-reducts with
respect to either μ1(P ) = E(P ) or μ2(P ) = E(D|P ) are called the Liang entropy
based reducts.

3 Reducts for Incomplete Information Systems

An information system S = (U,A) is called incomplete, or IIS for short, if the
value a(u) is not always determined for a ∈ A and u ∈ U . Furthermore, we will
denote the missing value by * [5]. Analogically, incomplete decision table, briefly
IDT, is an incomplete information system D = (U,A ∪ {d}) where d /∈ A and
∗ /∈ Vd. Let S = (U,A) be an IIS, for any P ⊆ A we define a binary relation on
U as follows:

SIM (P ) =
{
(u, v) ∈ U2 : ∀a ∈ P, a(u) = a(v) ∨ a(u) = ∗ ∨ a(v) = ∗} (9)

Let us notice that SIM (P ) is a tolerance relation (as it is reflexive and sym-
metric) on U and that SIM (P ) =

⋂
a∈PSIM ({a}) . For any object u ∈ U and
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set of attributes P ⊂ A, the set SP (u) = {v ∈ U : (u, v) ∈ SIM(P )} is called
the tolerance class of u, or granule of information. Let K(P ) denote the family
of tolerance classes of all objects from U , called the knowledge base of P , i.e.

K(P ) = U/SIM(P ) = {SP (u) : u ∈ U} =
{
SP (u1) , SP (u2) , ..., SP

(
u|U|

)}
.

It is clear that the tolerance classes in K(P ) do not constitute a partition of U
in general. They constitute a covering of U , i.e., SP (u) �= ∅ for every u ∈ U , and⋃

u∈USP (u) = U . We will denote by COV ER (U) = {K(P ) : P ⊂ A} the set
of all possible coverings on U defined by attributes from A. A partial ordered
relation (COV ER (U) ,≺) can be defined on COV ER (U) as follows

1. K(P ) is the same as K(Q), denoted by K(P ) = K(Q), if and only if ∀u ∈
U, SP (u) = SQ (u).

2. K(P ) is finer than K(Q), denoted by K(P ) ≺ K(Q), if and only if ∀u ∈
U, SP (u) ⊆ SQ(u).

Let S = (U,A) be an IIS. The family ω = {SA (u) = {u} |u ∈ U } is called the
discrete covering and δ = {SA (u) = U |u ∈ U } is called the complete covering.

Definition 2 (generalized Liang entropy). Let S = (U,A) be an IIS and
P ⊆ A. The generalized Liang entropy of P is defined by

IE(P ) =

|U|∑
i=1

1

|U |
(
1− |SP (ui)|

|U |
)

= 1− 1

|U |2
n∑

i=1

|SP (ui)| (10)

where |SP (u)| denotes the cardinality of SP (u).

Obviously, we have 0 ≤ IE (P ) ≤ 1 − 1
|U| . Function IE(P ) achieves the

maximum value 1− 1
|U| if K(P ) = ω, and the minimum value 0 when K(P ) = δ.

Definition 3 (Conditional generalized Liang entropy). Let S = (U,A) be
an IIS and P,Q ⊆ A. The generalized Liang entropy of Q conditioned on P is
defined by

IE(Q |P ) =
1

|U |
|U|∑
i=1

( |SP (ui)| − |SQ(ui) ∩ SP (ui)|
|U |

)
(11)

It has been shown that Liang entropy E(P ) presented in [6] is a particular case
of the generalized Liang entropy, and the conditional Liang entropy E (Q |P ) is a
particular case of the conditional generalized Liang entropy IE (Q |P ). Moreover,
let S = (U,A) be an IIS and P,Q,R ⊆ A, the following properties hold:

P1) If K(P ) � K(Q) then IE (P ) ≥ IE (Q) and IE (P ) = IE (Q) if and only
if K(P ) = K(Q).

P2) If K(P ) � K(Q) then IE (P ∪Q) = IE (P ).
P3) IE (P ∪Q) ≥ IE (P ) and IE (P ∪Q) ≥ IE (Q).
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P4) IE (P ∪Q) = IE (P ) + IE (Q |P ) = IE (P ) + IE (P |Q).
P5) 0 ≤ IE (Q |P ) ≤ 1− 1

|U| ; the equality IE (Q |P ) = 0 holds iffK(P ) � K(Q)

and the equality IE (Q |P ) = 1− 1
|U| holds iff K(P ) = δ and K(Q) = ω.

P6) If U/SIM(P ) � U/SIM(Q) then IE (R |Q) ≥ IE (R |P ).
P7) If U/SIM(P ) � U/SIM(Q) then IE (P |R ) ≥ IE (Q |R ).
P8) IE (Q |P ) + IE (P |R ) ≥ IE (Q |R ).

Let D = (U,A ∪ {d}) be an IDT, Huang Bing et al [4] defined the reducts
based on information quantity as the minimal subsets of attributes B such that
IE (B |{d}) = IE (A |{d} ) They are, in fact, the μ-reducts with respect to the
conditional generalize Liang entropy measure, defined by

μIE(B) = IE (B |{d} ) = IE (B ∪ {d})− IE (B) (12)

4 Metric between Coverings and Properties

Recall that any map d : X ×X → [0,∞) that satisfies the following conditions:

M1) d (x, y) ≥ 0, d (x, y) = 0 if and only if x = y.
M2) d (x, y) = d (y, x).
M3) d (x, y) + d (y, z) ≥ d (x, z).

for any x, y, z ∈ X is called a metric on X [2].
The condition M3) is called the triangular inequality. The pair (X, d) is called

a metric space. Based on the generalized Liang entropy, in this Section we es-
tablish a metric between coverings and study some properties of the proposed
metric for attribute reduction in incomplete decision tables.

Theorem 1 (Metric). For any incomplete information system S = (U,A), the
map dE : COV ER (U)× COV ER (U) → [0,∞), defined by

dE (K (P ) ,K (Q)) = IE (P |Q) + IE (Q |P ) (13)
where P,Q ⊂ A, is a metric on COV ER(U).

Proof. We will show that dE satisfies three properties of metric functions:

(M1) From Property P5) we have dE (K(P ),K(Q)) ≥ 0 for any P,Q ⊂ A and
the equality holds if and only if (IE (Q |P ) = 0) and (IE (P |Q ) = 0), i.e.,
(
U/SIM(P ) � U/SIM(Q)

) ∧ (
U/SIM(Q) � U/SIM(P )

) ⇔ K (P ) = K (Q)

(M2) From the definition of dE , it is easy to see that

dE (K (P ) ,K (Q)) = dE (K (Q) ,K (P ))

for any K (P ) ,K (Q) ∈ COV ER (U).
(M3) For any P,Q,R ⊂ A, from Property P5) we have

IE (Q |P )+IE (P |R ) ≥ IE (Q |R ) and IE (R |P )+IE (P |Q) ≥ IE (R |Q)

Thus we have dE (K (Q) ,K (P )) + dE (K (P ) ,K (R)) ≥ dE (K (Q) ,K (R))
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Therefore all conditions (M1), (M2), (M3) are satisfied, we can conclude that
dE is a metric on COV ER(U)

The following propositions present some properties of the metric dE . The
proofs of those facts are omitted due to lack of space.

Proposition 3. Let S = (U,A) be an incomplete information system. For any
subsets B,C ⊂ A :

a) dE (K (B) ,K (C)) =
1

|U |
|U|∑
i=1

|SB(ui)| − |SC(ui)|
|U | (14)

b) if B ⊆ C then dE (K (B) ,K (B ∪ {d})) ≥ dE (K (C) ,K (C ∪ {d})) (15)

Proposition 3 b) states that the bigger the attribute set B is, the smaller the
metric dE (K (B) ,K (B ∪ {d})) is, and vice versa. In other words, the metric
decreases as tolerance classes become smaller through finer classification.

5 Metric Based Reducts in Incomplete Decision Tables

In next content, we define the reduct based on the proposed metric and prove
that this reduct is the same as the reduct based on information quantity.

Definition 4. If the set of attributes R ⊆ A satisfies the following conditions:

(1) dE (K (R) ,K (R ∪ {d})) = dE (K (A) ,K (A ∪ {d}))
(2) ∀r ∈ R, dE (K (R− {r}) ,K ((R− {r}) ∪ {d})) �= dE (K (A) ,K (A ∪ {d}))
then R is called a reduct of A based on metric.

Proposition 4. Let D = (U,A ∪ {d}) be an incomplete decision table and B ⊆
A. Then dE(K(B),K(B ∪ {d})) = dE(K(A),K(A ∪ {d})) if and only if

IE (B |{d} ) = IE (A |{d} ) .
Proof. Let us consider U = {u1, ..., un} and B ⊆ A. Since B ⊂ B ∪ {d} , A ⊂
A ∪ {d} , and dE (K (B) ,K (B ∪ {d})) = dE (K (A) ,K (A ∪ {d})) , it follows
from Proposition 3 that

1

|U |
|U|∑
i=1

|SB(ui)| −
∣∣SB∪{d}(ui)

∣∣
|U | =

1

|U |
|U|∑
i=1

|SA(ui)| − |SA∪{d}(ui)|
|U | ⇔

⇔
⎛
⎝1− 1

|U |2
|U|∑
i=1

∣∣SB∪{d}(ui)
∣∣
⎞
⎠−

⎛
⎝1− 1

|U |2
|U|∑
i=1

|SB(ui)|
⎞
⎠

=

⎛
⎝1− 1

|U |2
|U|∑
i=1

∣∣SA∪{d}(ui)
∣∣
⎞
⎠−

⎛
⎝1− 1

|U |2
|U|∑
i=1

|SA(ui)|
⎞
⎠
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According to Equation 12, the last equation is equivalent to

IE (B ∪ {d})− IE (B) = IE (A ∪ {d})− IE (A)

which is equivalent to IE (B |{d} ) = IE (A |{d} ). This completes the proof.

Therefore, we can conclude from Proposition 4 that the reduct based on pro-
posed metric is the same as that based on information quantity in incomplete
decision tables.

Definition 5. Let D = (U,A ∪ {d}) be an incomplete decision table and B ⊆ A.
The significance of attribute b ∈ A−B is defined as

SIGB(b) = dE(K(B),K(B ∪ {d}))− dE(K(B ∪ {b}),K(B ∪ {b} ∪ {d})),
where S∅(ui) = U for any ui ∈ U, i = 1, ..., |U |.

Definition 5 implies that the significance of attribute b ∈ A− B is measured
by the changes of the metric dE (K (B) ,K (B ∪ {d})) when b is added to B,
the bigger the value of SIGB(b), the more important the attribute b. This sig-
nificance of attribute will be treated as the attribute selection criterion in our
heuristic algorithm for attribute reduction

The heuristic search for short metric based reducts in incomplete decision
tables is presented in Algorithm 1 (Algorithm MBR). In order to find the best
reduct, the algorithm begins with R = ∅, then the most important attribute is
chosen from searching space and added into R. The above processes are done
until we get the best reduct.

Algorithm 1. MBR: metric-based reduct for incomplete decision table

Data: An incomplete decision table D = (U,A ∪ {d});
Output: The short metric-based reduct R of D;

1 R = ∅;
2 Calculate dE (K (R) ,K (R ∪ {d})) and T = dE (K (A) ,K (A ∪ {d}));
// Iterative insertion of the most important attribute to R

3 while dE(K(R),K(R ∪ {d})) �= T do
4 for each a ∈ A−R do
5 Calculate S = dE(K(R ∪ {a}),K(R ∪ {a} ∪ {d}));
6 SIGR(a) = dE(K(R),K(R ∪ {d}))− S;

7 R = R ∪
{
ArgMax
a∈A−R

{SIGR (a)}
}
;

8 Calculate dE (K (R) ,K (R ∪ {d}));
// Deleting redundant attributes in R

9 for each a ∈ R do
10 Calculate dE (K (R− {a}) ,K (R− {a} ∪ {d}));
11 if dE (K (R− {a}) ,K (R− {a} ∪ {d})) = T then R = R− {a}
12 return R;
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Let us consider While loop from command line 3 to 8. To calculate SIGR (a),
we need to calculate SR∪{a}(ui), SR∪{a}∪{d}(ui) because SR(ui), SR∪{d}(ui)
have already calculated in the previous step. According to Zhang et al [21],
the time complexity to calculate SR∪{a}(ui) for ∀ui ∈ U when SR(ui) calculated

is O
(|U |2). So the time complexity to calculate all SIGE (a) is

(|A|+ (|A| − 1) + ...+ 1) ∗ |U |2 = (|A| ∗ (|A| − 1) /2) ∗ |U |2 = O
(
|A|2|U |2

)
,

where |A| is the number of conditional attributes and |U | is the number of ob-
jects. The time complexity to choose the attribute with maximum significance

is |A|+ (|A| − 1) + ...+ 1 = |A| ∗ (|A| − 1) /2 = O
(
|A|2

)
. Hence, the time com-

plexity of While loop is O
(
|A|2|U |2

)
. Similarly, the time complexity of For loop

from command line 10 to 12 is O
(
|A|2|U |2

)
. Consequently, the time complexity

of Algorithm 1 is O
(
|A|2|U |2

)
, which is less than that of [3], [4], [22]. However,

the time complexity of Algorithm 1 is the same as that of [21].

5.1 Example

Table 1. Car descriptions

Car Price Mileage Size Max-speed d

u1 High High Full Low Good
u2 Low * Full Low Good
u3 * * Compact High Poor
u4 High * Full High Good
u5 * * Full High Excellent
u6 Low High Full * Good

In this Section we consider the descriptions of cars as in Table 1 [4]. This is
an incomplete decision table D = (U,A ∪ {d}), where
U = {u1, u2, u3, u4, u5, u6} and A = {Car, Price,Mileage, Size,Max-speed}.
For simplification we will denote the attributes by a1, a2, a3, a4 respectively.
Firstly, let us calculate the knowledge bases of the following sets of attributes:

K({a1}) ={{u1, u3, u4, u5}, {u2, u3, u5, u6}, U, {u1, u3, u4, u5}, U,
{u2, u3, u5, u6}}

K({a2}) ={U,U, U, U, U, U}
K({a3}) ={{u1, u2, u4, u5, u6}, {u1, u2, u4, u5, u6}, {u3}, {u1, u2, u4, u5, u6},

{u1, u2, u4, u5, u6}, {u1, u2, u4, u5, u6}}
K({a4}) ={{u1, u2, u6}, {u1, u2, u6}, {u3, u4, u5, u6}, {u3, u4, u5, u6},

{u3, u4, u5, u6}, U}
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K(A) ={{u1}, {u2, u6}, {u3}, {u4, u5}, {u4, u5, u6}, {u2, u5, u6}}
K({d}) ={{u1, u2, u4, u6}, {u1, u2, u4, u6}, {u3}, {u1, u2, u4, u6}, {u5},

{u1, u2, u4, u6}}
According to lines 1 and 2 of Algorithm 1, we set R = ∅ and calculate

T = dE (K (A) ,K (A ∪ {d})) = 1

|U |2
6∑

i=1

(∣∣SA(ui)−
(
SA(ui) ∩ S{d}(ui)

)∣∣) = 4

36
.

Now, we start the first iteration of the While loop by the calculation of attribute
significance:

SIG∅ (a1) =
1

|U |2
|U|∑
i=1

(∣∣S∅(ui)− S{d}(ui)
∣∣− ∣∣S{a1}(ui)− S{a1,d}(ui)

∣∣) = 0.

Similarly, SIG∅ (a2) = 0, SIG∅ (a3) = 10
36 , SIG∅ (a4) = 8

36 . Choose a3 which
haves the most significance and R = {a3}. After calculation of

dE (K ({a3}) ,K ({a3, d})) = 8

36
,

we can see that dE (K ({a3}) ,K ({a3, d})) �= dE (K (A) ,K (A ∪ {d})) . Thus we
have to perform the second loop.

SIG{a3}(a1) =
2

36
, SIG{a3}(a2) = 0, SIG{a3}(a4) =

4

36
.

Choose a4 which haves the most significance and R = {a3, a4}. Calculate

dE (K ({a3, a4}) ,K ({a3, a4, d})) = 4

36
= dE (K (A) ,K (A ∪ {d})) .

Hence, go to For loop. We can see that

dE (K ({a3}) ,K ({a3, d})) = 8

36
�= T ; dE (K ({a4}) ,K ({a4, d})) = 10

36
�= T.

As a consequence, the algorithm finishes and returns R = {a3, a4} as the best
reduct of A. This result is the same as the result in the example in reference [4].

6 Experiments

The experiments on PC (Pentium Dual Core 2.13 GHz, 1GB RAM, WINXP) are
performed on 6 data sets obtained from UCI Machine Learning Repository [20].
We choose information quantity based attribute reduction algorithm [4] (IQBAR
for short) to compare with the proposed algorithm. The results of experiments
are showm in Table 2 and Table 3, where |U |, |A|, |R| are the numbers of objects,
primal condition attributes, and after reduction respectively, and t is the time
of operation (calculated by second). Condition attributes will be denoted by
1, 2, ..., |A|. The results show that the reduct of the proposed algorithm is the
same as that of the IQBAR algorithm. However, the time of operation in the
proposed algorithm is less than that in the IQBAR algorithm.
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Table 2. The results of the proposed algorithm and IQBAR algorithm

Seq. Data sets |U | |A| Algorithm IQBAR Algorithm MBR
|R| Comp. time |R| Comp. time

1 Hepatitis 155 19 4 1.296 4 0.89
2 Lung-cancer 32 56 4 0.187 4 0.171
3 Automobile 205 25 5 3 5 1.687
4 Anneal 798 38 9 179 9 86.921
5 Voting Records 435 16 15 25.562 15 16.734
6 Credit Approval 690 15 7 29.703 7 15.687

Table 3. The reducts of the proposed algorithm and IQBAR algorithm

Seq Data sets The reducts of Alg. IQBAR The reducts of Alg. MBR

1 Hepatitis {1, 2, 4, 17} {1, 2, 4, 17}
2 Lung-cancer {3, 4, 9, 43} {3, 4, 9, 43}
3 Automobile {1, 13, 14, 20, 21} {1, 13, 14, 20, 21}
4 Anneal {1, 3, 4, 5, 8, 9, 33, 34, 35} {1, 3, 4, 5, 8, 9, 33, 34, 35}
5 Voting Records {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, {1, 2, 3, 4, 5, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16} 12, 13, 14, 15, 16}
6 Credit Approval {1, 2, 3, 4, 5, 6, 8} {1, 2, 3, 4, 5, 6, 8}

7 Conclusion

Attribute reduction is one of the crucial problems in both rough set theory for
complete information systems and tolerance rough set for incomple information
systems. In this paper, a generalized Liang entropy is proposed based on Liang
entropy [6] and some of its properties are considered in incomplete information
systems. Based on the generalized Liang entropy, a metric is established between
coverings and a metric based attribute reduction method in incomplete decision
tables is proposed. To construct the metric based attribute reduction method,
we define the reduct based on metric, the significance of an attribute based
on metric. We use the significance of an attribute as heuristic information to
design and implemement an efficient attribute reduction algorithm in incomplete
decision tables. We also prove theoretically and experimentally that the reduct
based on metric is the same as that base on information quantity [4] and the
time complexity of the proposed algorithm is less than that of the information
quantity based algorithm [4].
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