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Guoyin Wang (Eds.)

Rough Sets, Fuzzy Sets,
Data Mining,
and Granular Computing

14th International Conference, RSFDGrC 2013
Halifax, NS, Canada, October 11-14, 2013
Proceedings

13



Volume Editors

Davide Ciucci
University of Milano-Bicocca, Italy
E-mail: ciucci@disco.unimib.it

Masahiro Inuiguchi
Osaka University, Japan
E-mail: inuiguti@sys.es.osaka-u.ac.jp

Yiyu Yao
University of Regina, SK, Canada
E-mail: yyao@cs.uregina.ca

Dominik Ślęzak
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Preface

This volume comprises papers accepted for presentation at the 14th Rough Sets,
Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC) International
conference, which, along with the 8th International conference on Rough Sets
and Knowledge Technology (RSKT) conference, was held as a major part of Joint
Rough Set Symposium (JRS) during October 11–14, 2013 in Halifax, Canada.
JRS was organized for the first time in 2007 in Toronto, Canada, and was
re-established in Chengdu, China 2012, as the major event assembling differ-
ent rough-set-related conferences and workshops. In addition to RSFDGrC and
RSKT, JRS 2013 also hosted the 4th Rough Set Theory Workshop (RST) and
the Rough Set Applications Workshop (RSA), both held on October 10, 2013.
RSFDGrC is a series of scientific events spanning the last 15 years. It investi-
gates primarily rough sets in connection with the other disciplines outlined in
its title, with respect to both foundations and applications.

JRS 2013 received 106 submissions which were carefully reviewed by two
or more Program Committee (PC) members or additional reviewers. After the
rigorous process finally 44 regular papers (acceptance rate 41.5 %) and 25 short
papers were accepted for presentation at the symposium and publication in two
volumes of the JRS proceedings.

This volume contains original research papers submitted to the conference
RSFDGrC 2013 and lecture notes of keynote speakers: Andrzej Skowron, Bo
Zhang, Vijay Raghavan, Boris Mirkin, and Jian Pei. We would like to thank all
the authors, both those whose papers were accepted and those whose papers did
not appear in the proceedings, for their best efforts – it is their work that gives
meaning to the conference.

It is a pleasure to thank all those people who helped this volume to come into
being and JRS 2013 to be a successful and exciting event. It would not be possible
to hold the symposium without the committees and the sponsors. We deeply ap-
preciate the work of the PC members and additional reviewers (Yasunori Endo,
Faeze Eshragh, Wenxin Yang) who assured the high standards of accepted pa-
pers. We hope that the resulting proceedings are evidence of the high-quality
and exciting RSFDGrC 2013 program. This program also included four special
sessions: Fuzzy and Rough Hybridization (Chris Cornelis, Richard Jensen, Neil
Mac Parthalain, Wei-Zhi Wu), Covering-Based Rough Sets and Their Applica-
tions (William Zhu, Fan Min), Soft Clustering (Pawan Lingras, Manish Joshi),
Granular Computing Theory Research and Applications (Yanping Zhang, Ling
Zhang, Shu Zhao, Xuqing Tang, Deyu Li, Qinghua Zhang).

We would like to express our gratitude to the special session chairs and
both RST and RSA workshops’ chairs (JingTao Yao, Ahmad Taher Azar, Stan
Matwin) for their great work.



VI Preface

We deeply acknowledge the conscientious help of all the JRS chairs (Pawan
Lingras, Yuhua Qian, Chris Cornelis, Sushmita Mitra, Hai Wang, Andrzej Janusz)
whose valuable suggestions and various pieces of advice made the process of pro-
ceedings preparation and conference organization much easier to cope with.

We also gratefully thank our sponsors: David Gauthier, Vice President - Aca-
demic and Research, Saint Mary’s University, Halifax, for sponsoring the recep-
tion; Kevin Vessey, Associate Vice President - Research, Saint Mary’s University,
Halifax, for sponsoring the data mining competition; Steven Smith, Dean of Sci-
ence, Saint Mary’s University, Halifax, for sponsoring the conference facilities;
Danny Silver, Director, Jodrey School of Computer Science, Acadia University,
Wolfville, for sponsoring the second day of the conference in the beautiful An-
napolis valley and Acadia University; Stan Matwin, Canada Research Chair and
Director, Institute for Big Data Analytics, Dalhousie University, Halifax, for
sponsoring RST and RSA workshops at Dalhousie University; finally Infobright
Inc. corporation for being the industry sponsor of the entire event.

Our immense gratitude goes once again to Pawan Lingras for taking charge
of JRS 2013 organization and his invaluable help and support throughout the
whole preparation of the symposium.

We are very thankful to Alfred Hofmann and the excellent LNCS team at
Springer for their help and co-operation. We would also like to acknowledge the
use of EasyChair, a great conference management system.

Finally, let us express our hope that the reader will find all the papers in the
proceedings interesting and stimulating.

October 2013 Davide Ciucci
Masahiro Inuiguchi

Yiyu Yao
Dominik Śl ↪ezak

Guoyin Wang
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30 Years of Rough Sets

and Future Perspectives

Andrzej Skowron1, Andrzej Jankowski2, and Roman Swiniarski3,4,�

1 Institute of Mathematics, Warsaw University
Banacha 2, 02-097 Warsaw, Poland

skowron@mimuw.edu.pl
2 Institute of Computer Science, Warsaw University of Technology

Nowowiejska 15/19, 00-665 Warsaw, Poland
a.jankowski@ii.pw.edu.pl

3 Department of Computer Science, San Diego State University
5500 Campanile Drive San Diego, CA 92182, USA

4 Institute of Computer Science Polish Academy of Sciences
Jana Kazimierza 5, 01-248 Warsaw, Poland

rswiniarski@mail.sdsu.edu

Abstract. In the development of rough set theory and applications, one
can distinguish three main stages. While the first period was based on the
assumption that objects are perceived by means of partial information
represented by attributes, in the second period it was assumed that infor-
mation about the approximated concepts is partial too. Approximation
spaces and searching strategies for relevant approximation spaces were
recognized as the basic tools for rough sets. Important achievements both
in theory and applications were obtained. Nowadays, a new period for
rough sets is emerging.

Keywords: rough sets, granular computing, (approximate) Boolean
reasoning, interactions, adaptive judgment.

1 Introduction

The rough set approach was proposed by Professor Zdzis�law Pawlak in 1982
[11,12] as a tool for dealing with imperfect knowledge, in particular with vague

� The authors would like to express sincere appreciation and gratitude to Professor
Dominik Ślȩzak for his comments and corrections which helped to improve the paper.
This work was supported by the Polish National Science Centre grants 2011/01/B/
ST6/03867, 2011/01/D/ST6/06981, 2012/05/B/ST6/03215, the Foundation for Pol-
ish Science within the Homing Plus program, Edition 3/2011, co-financed from the
European Union Regional Development Fund, and the Polish National Centre for Re-
search and Development grants SP/I/1/77065/10 (“Interdisciplinary System for In-
teractive Scientific and Scientific-Technical Information”) and O ROB/0010/03/001
(“Modern engineering tools for decision support for commanders of the State Fire
Service of Poland during Fire & Rescue operations in the buildings”).

D. Ciucci et al. (Eds.): RSFDGrC 2013, LNAI 8170, pp. 1–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 A. Skowron, A. Jankowski, and R. Swiniarski

concepts. Rough set theory has attracted attention of many researchers and prac-
titioners all over the world, who have contributed essentially to its development
and applications.

The developed methods based on rough set theory alone or in combination
with other approaches found applications in many areas including: acoustics,
bioinformatics, business and finance, chemistry, computer engineering (e.g., data
compression, digital image processing, digital signal processing, parallel and dis-
tributed computer systems, sensor fusion, fractal engineering), decision analy-
sis and systems, economics, electrical engineering (e.g., control, signal analysis,
power systems), environmental studies, digital image processing, informatics,
medicine, molecular biology, musicology, neurology, robotics, social science, soft-
ware engineering, spatial visualization, Web engineering, and Web mining.

The rough set approach is of fundamental importance in artificial intelligence
and cognitive sciences, especially in machine learning, data mining and knowl-
edge discovery, pattern recognition, decision support systems, expert systems, in-
telligent systems, multiagent systems, (complex) adaptive systems, autonomous
systems, cognitive systems, conflict analysis, risk management systems.

Rough sets have established relationships with many other approaches such
as fuzzy set theory, granular computing, evidence theory, formal concept analy-
sis, (approximate) Boolean reasoning, multicriteria decision analysis, statistical
methods, decision theory, matroids. Despite the overlap with many other the-
ories rough set theory may be considered as an independent discipline in its
own right. There are reports on many hybrid methods obtained by combining
rough sets with other approaches such as soft computing (fuzzy sets, neural net-
works, genetic algorithms), statistics, natural computing, mereology, principal
component analysis, singular value decomposition or support vector machines.

The main advantage of rough set theory in data analysis is that it does not
need any preliminary or additional information about data like probability dis-
tributions in statistics, basic probability assignments in evidence theory, a grade
of membership or the value of possibility in fuzzy set theory.

One can observe the following about the rough set approach: (i) introduction
of efficient algorithms for finding hidden patterns in data, (ii) determination of
optimal sets of data (data reduction), evaluation of the significance of data, (iii)
generation of sets of decision rules from data, (iv) easy-to-understand formu-
lation, (v) straightforward interpretation of obtained results, (vi) suitability of
many of its algorithms for parallel processing.

It is worthwhile to mention that rough sets play a crucial role in the devel-
opment of granular computing (GC) [15]. The extension to interactive granular
computing (IGR) requires generalization of the basic concepts such as complex
granules (including both physical and abstract parts [8]), information (decision)
systems as well as methods of inducing hierarchical structures of information
(decision) systems. The current research projects are aiming at developing
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foundations of IGC based on the rough set approach in combination with other
soft computing approaches, in particular with fuzzy sets. The approach is called
interactive rough granular computing (IRGC). In IRGC computations are based
on interactions of complex granules. IRGC can be treated as the basis for (see,
e.g.,[17] and references in this book): (i) Wisdom Technology, in particular for
approximate reasoning (called adaptive judgment) about properties of interac-
tive computations, (ii) context inducing and discovery of structural objects, (iii)
reasoning about changes, (iv) process mining (this research was inspired by Pro-
fessor Pawlak in 1992), (v) perception based computing, (vi) risk management
in computational systems [16,8].

Due to the space limitation we restrict in this paper the references on rough
sets to two basic papers by Professor Zdzis�law Pawlak [11,12], some survey pa-
pers [13] and books [17,5,10] including long lists of references to papers on rough
sets. The basic ideas of rough set theory and its extensions as well as many
interesting applications can be found in a number of books, issues of the Trans-
actions on Rough Sets, special issues of other journals, numerous proceedings
of international conferences, and tutorials (see, e.g., [13,17,5]). The reader is re-
ferred to the cited books and papers, references in them as well as to web pages
www.roughsets.org, rsds.univ.rzeszow.pl.

In this paper we present comments on some research directions in rough sets
over the last 30 years and we also outline future perspectives of rough sets.

2 From Partitions to Coverings

The rough set philosophy is founded on the assumption that with every object
of the universe of discourse we associate some information (data, knowledge).
Objects characterized by the same information are indiscernible (similar) in view
of the available information about them. The indiscernibility relation generated
in this way is the mathematical basis of rough set theory. This understanding of
indiscernibility is related to the idea of Gottfried Wilhelm Leibniz that objects
are indiscernible if and only if all available functionals take on them identical
values (Leibniz’s Law of Indiscernibility: The Identity of Indiscernibles) [9]. How-
ever, in the rough set approach indiscernibility is defined relative to a given set
of functionals (attributes).

Any set of all indiscernible (similar) objects is called an elementary set, and
forms a basic granule (atom) of knowledge about the universe. Any union of
some elementary sets is referred to as crisp (precise) set. If a set is not crisp
then it is called rough (imprecise, vague). Note that due to the computational
complexity of searching for relevant crisp sets for the considered problem, the
searching is usually restricted to a feasible subfamily of the family of all possible
unions of elementary sets.

Consequently, each rough set has borderline cases, i.e., objects which cannot
be classified with certainty as members of either the set or its complement. Ob-
viously crisp sets have no borderline elements at all. This means that borderline
cases cannot be properly classified by employing available knowledge.

www.roughsets.org
rsds.univ.rzeszow.pl
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Thus, the assumption that objects can be “seen” only through the information
available about them leads to the view that knowledge has granular structure.
Due to the granularity of knowledge, some objects of interest cannot be dis-
cerned and appear as the same (or similar). As a consequence, vague concepts
in contrast to precise concepts, cannot be characterized in terms of information
about their elements. Therefore, in the proposed approach, we assume that any
vague concept is replaced by a pair of precise concepts – called the lower and the
upper approximation of the vague concept. The lower approximation consists of
all objects which definitely belong to the concept and the upper approximation
contains all objects which possibly belong to the concept. The difference between
the upper and the lower approximation constitutes the boundary region of the
vague concept. Approximations are two basic operations in rough set theory.

Hence, rough set theory expresses vagueness not by means of membership,
but by employing a boundary region of a set. If the boundary region of a set
is empty it means that the set is crisp, otherwise the set is rough (inexact). A
nonempty boundary region of a set means that our knowledge about the set is
not sufficient to define the set precisely.

In the literature one can find more details on different aspects of rough set
approximations of vague concepts.

The original approach by Professor Pawlak was based on indiscernibility de-
fined by equivalence relations. Any such indiscernibility relation defines a par-
tition of the universe of objects. Over the years many generalizations of this
approach were introduced many of which are based on coverings rather than
partitions. In particular one can consider similarity (tolerance) based rough set
approach, binary relation based rough sets, neighborhood and covering rough
sets, dominance based rough set approach, hybridization of rough sets and fuzzy
sets, and many others.

One should note that dealing with coverings requires solving several new algo-
rithmic problems such as selection of family of definable sets or resolving prob-
lems with selection of relevant definition of approximation of sets among many
possible ones. One should also note that for a given problem (e.g., classification
problem) one should discover the relevant covering for the target classification
task. In the literature there are numerous papers dedicated to theoretical aspects
of the covering rough set approach. However, still much more work should be
done on rather hard algorithmic issues for the relevant covering discovery.

Another issue to be solved is related to inclusion measures. Parameters of
such measures are tuned to induce of the high quality approximations. Usually,
this is done on the basis of the minimum description length principle. In particu-
lar, approximation spaces with rough inclusion measures have been investigated.
This approach was further extended to rough mereological approach. More gen-
eral cases of approximation spaces with rough inclusion were also discussed in
the literature including approximation spaces in GC. Finally, it is worthwhile to
mention the approach for ontology approximation used in hierarchical learning
of complex vague concepts [17].
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3 Rough Sets and Induction

Rough sets are strongly related to inductive reasoning (e.g., in rough set based
methods for inducing classifiers or clusters). In this section, we present an illus-
trative example of the rough set approach to induction of concept approxima-
tions. The approach can be generalized to the rough set approach to inductive
extensions of approximation spaces.

Let us consider the problem of approximation of concepts over a universe U∞

(concepts that are subsets of U∞). We assume that the concepts are perceived
only through some subsets of U∞, called samples. This is a typical situation in
the machine learning, pattern recognition, or data mining approaches [6].

We assume that there is given an information system A = (U,A) and let us
assume that for some C ⊆ U∞ there is given the set ΠU (C) = C ∩ U . In this
way we obtain a decision system Ad = (U,A, d), where d(x) = 1 if x ∈ ΠU (C)
and d(x) = 0, otherwise.

We would like to illustrate how from the decision function d may be induced
a decision function μC defined over U∞ with values in the interval [0, 1] which
can be treated as an approximation of the characteristic function of C.

Let us assume that RULES(Ad) is a set of decision rules induced by some rule
generation method from Ad. For any object x ∈ U∞, let MatchRules(Ad, x) be
the set of rules from this set supported by x.

Now, the rough membership function μC : U∞ → [0, 1] approximating the
characteristic function of C can be defined as follows

1. Let Rk(x), for x ∈ U∞ be the set of all decision rules from MatchRules(Ad, x)
with right hand side d = k, where d = 1 denotes that the rule r is voting for
C and d = 0 – that the rule r is voting against C, respectively.

2. We define real values wk(x), where w1(x) is called the weight “for” and
w0(x) the weight “against” membership of the object x in C, respectively, by
wk(x) =

∑
r∈Rk(x)

strength(r), where strength(r) is a normalized function
depending on length, support, confidence of the decision rule r and on
some global information about the decision system Ad such as the size of
the decision system or the class distribution.

3. Finally, one can define the value of μC(x) in the following way: μC(x) is
undefined if max(w1(x), w0(x)) < ω; μC(x) = 0 if w0(x) − w1(x) ≥ θ and
w0(x) > ω; μC(x) = 1 if w1(x) − w0(x) ≥ θ and w1(x) > ω and μC(x) =
θ+(w1(x)−w0(x))

2θ , otherwise, where ω, θ are parameters set by user.

For computing of the value μC(x) for x ∈ U∞ the user should select a strategy
resolving conflicting votes “for” and “against” membership of x in C. The degree
of these conflicts are represented by values w1(x) and w0(x), respectively. Note
that for some cases of x due to the small differences between these values the
selected strategy may not produce the definite answer and these cases will create
the boundary region.
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We can now define the lower approximation, the upper approximation and
the boundary region of the concept C relative to the induced rough membership
function μC as follows

LOW (C, μC) = {x ∈ U∞ : μC(x) = 1}, (1)

UPP (C, μC) = {x ∈ U∞ : μC(x) > 0 or μC(x) is undefined},
BND(C, μC) = UPP (C, μC) \ LOW (C, μC).

The whole procedure can be generalized for the case of approximation of more
complex information granules than concepts.

4 Boolean Reasoning and Scalability

Solutions for many algorithmic problems related to rough sets were proposed
using the (approximate) Boolean reasoning approach [2,3,1,4,17]. Some progress
was also made in developing methods scalable for large data sets. In this section
we present comments on some applications of Boolean reasoning approach for
solving different problems related to rough sets.

The discernibility relations are closely related to indiscernibility and belong
to the most important relations considered in rough set theory. Tools for discov-
ering and classifying patterns are based on reasoning schemes rooted in various
paradigms. Such patterns can be extracted from data by means of methods
based, e.g., on Boolean reasoning and discernibility.

The ability to discern between perceived objects is important for constructing
many entities like reducts, decision rules or decision algorithms. In the standard
approach the discernibility relation DIS(B) ⊆ U ×U is defined by x DIS(B) y
if and only if non(x IND(B) y), i.e., B(x) ∩ B(y) = ∅, where B(x), B(y)
are neighborhoods of x and y, respectively. However, this is not the case for
generalized approximation spaces.

The idea of Boolean reasoning is based on construction for a given problem P
of a corresponding Boolean function fP with the following property: the solutions
for the problem P can be decoded from prime implicants of the Boolean function
fP . Let us mention that to solve real-life problems it is necessary to deal with
Boolean functions with large sizes.

A successful methodology based on the discernibility of objects and Boolean
reasoning has been developed for computing of many important ingredients for
applications. These applications include generation of reducts and their approxi-
mations, decision rules, association rules, discretization of real-valued attributes,
symbolic value grouping, searching for new features defined by oblique hyper-
planes or higher order surfaces, pattern extraction from data as well as conflict
resolution or negotiation (see, e.g., [13,17]).

Most of the problems related to generation of the above mentioned entities are
NP-complete or NP-hard. However, it was possible to develop efficient heuristics
returning suboptimal solutions of the problems. The results of experiments on
many data sets are very promising. They show very good quality of solutions
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generated by the heuristics in comparison with other methods reported in litera-
ture (e.g., with respect to the classification quality of unseen objects). Moreover,
they are very efficient from the point of view of time necessary for computing of
the solution. Many of these methods are based on discernibility matrices. How-
ever, it is possible to compute the necessary information about these matrices
without their explicit construction (i.e., by sorting or hashing original data).

The considered methodology makes it possible to construct heuristics having
a very important approximation property which can be formulated as follows:
expressions, called approximate implicants, generated by heuristics that are close
to prime implicants define approximate solutions for the problem.

Mining large data sets is one of the biggest challenges in KDD. In many
practical applications, there is a need of data mining algorithms running on
terminals of possibly distributed database systems where the only access to data
is enabled by SQL queries or NoSQL operations.

Let us consider two illustrative examples of problems for large data sets: (i)
searching for short reducts, (ii) searching for best partitions defined by cuts on
continuous attributes. In both cases the traditional implementations of rough
sets and Boolean reasoning based methods are characterized by the high com-
putational cost. The critical factor for time complexity of algorithms solving the
discussed problems is the number of data access operations. Fortunately some
efficient modifications of the original algorithms were proposed by relying on
concurrent retrieval of higher level statistics which are sufficient for the heuris-
tic search of reducts and partitions (see, e.g., [13,17]). The rough set approach
was also applied in development of other scalable big data processing techniques
(e.g., Infobright http://www.infobright.com/).

5 Rough Sets and Logic

Rough set theory has contributed to some extent to various kinds of deductive
reasoning. Particularly, various kinds of logics based on the rough set approach
have been investigated, rough set methodology contributed essentially to modal
logics, many-valued logics (especially different types of 3-valued logics), intu-
itionistic logics, paraconsistent logics and others (see, e.g., references in book
[17] and in articles [13]).

There are numerous issues related to approximate reasoning under uncertainty
including inductive reasoning, abduction, analogy based reasoning and common
sense reasoning.

We would like to stress that still much more work should be done
to develop approximate reasoning methods about complex vague con-
cepts for making progress in development of intelligent systems. This
idea was very well expressed by Professor Leslie Valiant (the 2011 win-
ner of the ACM Turing Award, the highest distinction in computer sci-
ence, “for his fundamental contributions to the development of computa-
tional learning theory and to the broader theory of computer science”)
(http://people.seas.harvard.edu/~valiant/researchinterests.htm):

http://www.infobright.com/
http://people.seas.harvard.edu/~valiant/researchinterests.htm
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A fundamental question for artificial intelligence is to characterize
the computational building blocks that are necessary for cognition. A
specific challenge is to build on the success of machine learning so as
to cover broader issues in intelligence. [...] This requires, in particular
a reconciliation between two contradictory characteristics – the apparent
logical nature of reasoning and the statistical nature of learning.

It is worthwhile to present two more views. The first one by Professor Lotfi A.
Zadeh, the founder of fuzzy sets and the computing with words paradigm (see
[18] and also http://www.cs.berkeley.edu/~zadeh/presentations.html):

Manipulation of perceptions plays a key role in human recognition, de-
cision and execution processes. As a methodology, computing with words
provides a foundation for a computational theory of perceptions - a the-
ory which may have an important bearing on how humans make- and
machines might make - perception-based rational decisions in an envi-
ronment of imprecision, uncertainty and partial truth. [...] computing
with words, or CW for short, is a methodology in which the objects of
computation are words and propositions drawn from a natural language.

and another view by Judea Pearl (the 2011 winner of the ACM Turing Award,
“for fundamental contributions to artificial intelligence through the development
of a calculus for probabilistic and causal reasoning”) [14]:

Traditional statistics is strong in devising ways of describing data
and inferring distributional parameters from sample. Causal inference
requires two additional ingredients: a science-friendly language for artic-
ulating causal knowledge, and a mathematical machinery for processing
that knowledge, combining it with data and drawing new causal conclu-
sions about a phenomenon.

The question arises about the logic relevant for the above mentioned tasks.
First let us observe that the satisfiability relations in the IRGC framework can
be treated as tools for constructing new information granules. If fact, for a given
satisfiability relation, the semantics of formulas relative to this relation is defined.
In this way the candidates for new relevant information granules are obtained.
We would like to emphasize a very important feature. The relevant satisfiabil-
ity relation for the considered problems is not given but it should be induced
(discovered) on the basis of a partial information encoded in information (deci-
sion) systems. For real-life problems, it is often necessary to discover a hierarchy
of satisfiability relations before we obtain the relevant target level. Information
granules constructed at different levels of this hierarchy finally lead to relevant
ones for approximation of complex vague concepts related to complex informa-
tion granules expressed using natural language (see Figure 1). The reasoning
making it possible to derive relevant information granules for solutions of the
target tasks is called adaptive judgment. Deduction and induction as well as ab-
duction or analogy based reasoning are involved in adaptive judgment. Among

http://www.cs.berkeley.edu/~zadeh/presentations.html
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Fig. 1. Interactive hierarchical structures (gray arrows show interactions between hi-
erarchical levels and the environment, arrows at hierarchical levels point from informa-
tion (decision) systems representing partial specifications of satisfiability relations to
induced from them theories consisting of rule sets)

the tasks for adaptive judgment are the following ones supporting reasoning to-
ward: searching for relevant approximation spaces, discovery of new features,
selection of relevant features, rule induction, discovery of inclusion measures,
strategies for conflict resolution, adaptation of measures based on the minimum
description length principle, reasoning about changes, perception (action and
sensory) attributes selection, adaptation of quality measures over computations
relative to agents, adaptation of object structures, discovery of relevant context,
strategies for knowledge representation and interaction with knowledge bases,
ontology acquisition and approximation, learning in dialogue of inclusion mea-
sures between information granules from different languages (e.g., the formal
language of the system and the user natural language), strategies for adaptation
of existing models, strategies for development and evolution of communication
language among agents in distributed environments, strategies for risk manage-
ment in distributed computational systems.

The discussed concepts such as interactive computation and adaptive judg-
ment are among the basic ingredient elements in the Wisdom Technology
(WisTech) [7,8]. Let us mention here the WisTech meta-equation: wisdom =
interactions + adaptive judgment + knowledge. In particular, extension of the
rough set approach on interactive computations is one of the current challenges.

6 Conclusions

In the paper, we have discussed some issues related to the development of rough
sets over 30 years together with challenges for the rough set approach, especially
in the environment where computations are progressing due to interactions on
physical and abstract (information) granules, and where they can be controlled
by performing actions activated on the basis of satisfiability to a degree of com-
plex vague concepts modeled by approximations. Interactive computations and
issues related to them are discussed in the book [8], currently under preparation.
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Abstract. In web age, the traditional information processing faces a new 
challenge. Due to the change of man-machine interaction modes, computers have 
to know the intention or interest of users. So computer information processing 
has to use the human brain processing principle for reference. One of its key 
principles is the multi-granular computing. In the talk, we will discuss the 
problem both from artificial intelligence and traditional information processing 
viewpoints. And we show that the new trend of information processing is to 
combine these two methods. 

Keywords: Granular computing, structure mining, structured prediction, data 
driven, knowledge driven, deep learning.  

1 Introduction 

In web age, man-machine interaction mode had shifted. When a user interacts with a 
single computer, after a program and data have been input to the machine, it simply 
processes the data based on the program while needs not to know the user’s intention or 
what the program means. When a user interacts with a web, the situation has changed. 
The web, a set of computers, has to know the user’s intention or interest in order to 
provide a high quality service. Therefore, in web information processing such as 
information retrieval, recommendation systems, and data mining, besides computers 
deal with the form of information it’s also needed to concern with the meaning of 
information. 

Meaning independent underlies the traditional information processing theory. In 
traditional information processing the grain-size of processing units is quite small such 
as bag of words in text processing, colors, textures or line segments in image 
processing. There exists a big gap between meaning and these processing units, 
namely, the semantic gap. The semantic gap blocks the ability of computers to deal 
with the meaning of information. In order to provide a high quality service, the 
semantic gap should be narrowed down.  

In human cognitive processing such as visual information processing, there does not 
have the semantic gap. How human beings to overcome the difficulty, the main 
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strategies they adopted are multi-granular computing and the combination of 
data-driven and knowledge-driven methodologies. Over the last decade, a number of 
physiological studies in brain have established several basic facts about the cortical 
mechanisms of visual perception. One of the main characteristics is the hierarchical 
architecture, for example, from the primary visual cortex (V1) to the inferotemporal 
cortex (IT), there is an increase in the size of the receptive fields [1]. Namely, the visual 
information processing in human brain is in a hierarchical way (multi-granular 
computing), i.e., from the fine level (primary cortex with small receptive fields) to the 
coarse level (inferotemporal cortex with large receptive fields) or vice versa. In recent 
article [2], Yao showed that “hierarchy of information granules supports an important 
aspect of perception of phenomena…” As we discussed in [3], the multi-granular 
computing strategy is also available to human deliberative behaviors such as problem 
solving, planning, scheduling, etc. Hobbs [4] point out “One of the basic characteristics 
in human problem solving is the ability to conceptualize the world at different 
granularities and translate from one abstraction level to the others easily, i.e. deal with 
them hierarchically”. It seems that the multi-granular computing is aimed at narrowing 
down the semantic gap and improving efficiency since coarse grain-size patterns 
(information) have more semantically meaningful. 

1.1 Structure Mining 

In order to carry out multi-granular computing, it’s first needed to mine the hierarchical 
structures with different grain-sizes behind a huge amount of data. These structures 
include the contextual structures of texts, the spatial structures of images, temporal 
structures of speech, temporal-spatial structures of video, etc. In artificial intelligence 
(AI), the structures are obtained by prior knowledge generally. For example, the 
contextual structure of a text can be obtained by syntactic, lexical, and semantic 
knowledge. The disadvantage of AI methods is that it’s hard to deal with the 
uncertainty of structures. In traditional information processing, it can be regarded as a 
data mining problem and can be solved by probabilistic methods. Several existed data 
mining methods are available in principle. But due to the difficulty of high-level 
features mining, only low-level features are mined generally. For example, Olshausen 
[5] uses a sparse coding network to mine the simple features, line segments with 
different orientations, from natural images that are similar to the features extracted in 
human’s primary visual cortex V1. Deep learning is the famous method presented 
recently. In deep learning by using multilayer neural networks, more complex patterns 
can be learned effectively [6][7]. For example, Le [8] based on a 9 layers sparse deep 
auto-encoder, object level features such as human face, cat and human body can be 
learned by using unsupervised deep learning. But in order to have the results, 1.000 
machines with 16,000 cores are used and it takes about 3 days to train. In [9], we using 
a 2 layers network, the more complex patterns similar to the patterns in human visual 
area V2 can be learned by a hierarchical K-means algorithm. Recently researchers pay 
close attention to deep learning, it’s expected that deep learning may find a way to 
mining the multi-granular hierarchical structures behind the data. But structure mining 
is still a hard problem that people still need to put in lots of efforts to solve it. 
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1.2 Multi-level Inference 

After we have had different gran-size structures (worlds), the key is to process or 
reason the information over different grain-size worlds. In our previous works [3], we 
have discussed the problem from AI viewpoint and present several multi-levels 
reasoning methods based on the quotient space theory. We show that in multi-granular 
reasoning, the homomorphism principle should be guaranteed, i.e., the results inferred 
from a coarse grain-size world are still available to fine grain-size worlds in a certain 
extent. On the other hand, the information synthesis of different grain-size worlds is 
also needed. The synthetic methods are also discussed in [3]. Since the elements of 
coarse grain-size worlds have complex structured, from the traditional information 
processing viewpoint, the inference over hierarchical structured data then becomes a 
structured prediction learning problem. Its aim is to learn a function that maps a 
structured input to a structured output. Therefore, other than general machine learning, 
the processing units of structured prediction are structures (graphs) rather than simple 
points (vectors). So structured prediction learning can be used to handle coarse grain 
size worlds. There are many well-known structured prediction learning algorithms 
[10]-[12] which are the expansions of general machine learning algorithms. We present 
a new structured prediction method called maximal entropy discrimination Markov 
network [13] that is the expansion of a general learning algorithm, maximal entropy 
discrimination learning. Using these methods, information at different grain-size 
worlds can be inferred. 

1.3 Data-Driven and Knowledge-Driven 

In AI, problems are usually solved by using symbolic reasoning and domain knowledge 
while the domain knowledge is represented by symbols. It’s called a knowledge driven 
method that imitates human problem solving behaviors. The processing unit, i.e., 
knowledge, in knowledge driven methods is the coarsest one. It does not have semantic 
gap but is domain dependent and has a poor generalization capacity. Contrary, as 
mentioned before, in traditional information processing, the processing unit is finer. So 
traditional method is data driven and has a big semantic gap. The combination of these 
two methods means to combine the information processing at both coarse and fine 
levels so that the semantic gap is narrowed down and at the same time the 
generalization capacity is remained in a certain extent.  

This is a recent trend in information processing. For example, Judea Pearl, the 
winner of 2011 ACM Turing award, one of his main contributions is the introduction of 
probability to AI. Tenenbaum, et al [14] point out the future trend of information 
processing is statistical inference over abstract structured declarative knowledge 
representation. Now, the key is how to introduce knowledge into traditional methods. 
Here, the knowledge includes prior knowledge, domain knowledge, the knowledge 
behind data, etc. Recently, there are several methods to deal with the issue. For 
example, in the regularized Bayesian inference [15]-[18], based on the optimization 
theory, the posterior regularization are added to the traditional Bayesian inference. 
Therefore, not only prior distribution but also posterior constraints can be considered. 
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And the posterior regularization may be obtained from domain knowledge or/and 
problem attributes so that more knowledge can join the processing process. Certainly, 
the research on the combination of data-driven and knowledge driven is still in the early 
stage. There are a lot of issues to be resolved.    
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Abstract. Analyzing and classifying sequence data based on structural similari-
ties and differences is a mathematical problem of escalating relevance. Indeed, 
a primary challenge in designing machine learning algorithms to analyzing se-
quence data is the extraction and representation of significant features.  This 
paper introduces a generalized sequence feature extraction model, referred to as 
the Generalized Multi-Layered Vector Spaces (GMLVS) model.  Unlike most 
models that represent sequence data based on subsequences frequency, the 
GMLVS model represents a given sequence as a collection of features, where 
each individual feature captures the spatial relationships between two subse-
quences and can be mapped into a feature vector.  The utility of this approach 
is demonstrated via two special cases of the GMLVS model, namely, Lossless 
Decomposition (LD) and the Multi-Layered Vector Spaces (MLVS).  Experi-
mental evaluation show the GMLVS inspired models generated feature vectors 
that, combined with basic machine learning techniques, are able to achieve high 
classification performance. 

Keywords: Sequence Data, Classification, Feature Representation.  

1 Introduction 

Analyzing and classifying sequence data based on structural similarities and differ-
ences, no matter how subtle, is a mathematical problem of escalating relevance and 
surging importance in many different disciplines, particularly those in biology and 
information sciences. Characterizing patterns of all topologies at various levels of 
sophistication is a colossal problem lurking in the backdrop. One of the primary chal-
lenges in designing machine learning algorithms for the purpose of analyzing  
sequence data is the extraction and representation of significant features.  

Most feature extraction methods are designed to represent sequence data based on 
the frequency of subsequences. For example, computational methods designed to 
analyze protein sequences typically represent a sequence as a set of features  
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corresponding to the frequency of subsequences of amino acids.  It is easy to realize 
that such a simplistic approach fails to capture the complex relationships – be it tem-
poral, spatial, local or global – in collections of sequence data.   In response, we 
propose a generalized sequence feature extraction model, referred to as the Genera-
lized Multi-Layered Vector Spaces (GMLVS) model, along with two special cases of 
the model referred to as the Lossless Decomposition (LD) model [1] and the Multi-
Layered Vector Spaces (MLVS) model [2].  The GMLVS model represents a given 
sequence as a collection of features in which each individual feature can be mapped to 
a corresponding feature vector. The GMLVS model has the flexibility to generate 
diverse types of feature vectors. However, the size of the set of all possible features 
that can be generated is huge. This fact led to the development of the LD and MLVS 
models, which are able to generate different types of feature vectors using a well-
defined subset of features represented through the GMLVS model. We believe the 
resulting feature vectors have the potential of penetrating into the micro structures 
embedded in sequences to provide an infrastructure for various forms of analysis at 
the local level, while concurrently addressing global patterns over those sequences. 

The rest of this paper is organized as follows. Section 2 proposes the Generalized 
Multi-Layered Vector Spaces Model (GMLVS) for representing sequence data.  
Section 3 formally defines the Lossless Decomposition (LD) model and describes its 
application to the problem of pair-wise sequence alignment. Section 4 formally de-
fines the Multi-Layered Vector Spaces (MLVS) model for representing sequence 
data and describes its application to the classification of biological sequences.  
Finally, Section 5 provides a discussion and summary of the work. 

2 Generalized Multi-Layered Vector Spaces (GMLVS) 

The proposed GMLVS model has several significant properties that collectively have 
the potential to discover interesting and novel patterns from sequence data. These 
properties include the ability to 1) discover both local and global patterns embedded 
in a sequence, 2) discover patterns defined in terms of the alphabet defined over a 
target collection of sequences, 3) reconstruct a sequence from its model representa-
tion, and 4) facilitate both descriptive and predictive data mining tasks. We now for-
mally present the Generalized Multi-Layered Vector Spaces model for representing 
sequence data.  

2.1 Model Formulations 

A sequence S of finite length |S| defined over a finite alphabet β is viewed as a collec-
tion of generated subsequences, ,  of length t  where t = 1,..., |S|-1. Let  denote 
the set of all possible subsequences. 

 | |    (1) 

The set of all possible pairs of subsequences (i, j), where i and j are elements of  
is   . Hence, the number of possible subsequences for a given t is equal to| β|t 
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and the number of possible pairs of subsequences (i, j) for all t (1 ≤ t ≤ |S|) is equal to 1 . A feature is defined as a pair of subsequences f = (i, j), where i and j 
∈ , along with a specified step value m where 0 ≤ m ≤ k.  The parameter m stands 
for the number of spaces between the elements of a given feature. If m=1, then f 
represents a consecutive subsequence and if m > 1 then f is a subsequence with a gap, 
where the gap is filled by an arbitrary sequence of (m – 1) symbols (i.e. don’t care).  
In the latter case, subsequences i and j are called, respectively, as leading and trailing 
subsequence. When m = 0, the leading subsequence is an element from  and the 
trailing element is a null symbol, which takes no space (i.e. size of trailing subse-
quence is zero). The upper bound for parameter k is (|R|-1), where R is the maximum 
admissible value of m. For instance, R is equal to |S| - 1, if the feature space is 
represented by all pairs of symbols (i, j), where i and j  ∈  .  It should be noted 
that in order for a feature f=(i, j) to be valid, the sum of the length of subsequences i 
and j plus the value of m must be less than |S|.  As a result, the number of possible 
features is less than or equal to the number of possible subsequences. Allowing mul-
tiple spaces between the elements of a feature generates a multitude of m-step pairs 
(families) P0, P1,P2,...,Pi,…,Pk, creating a multi-layered k-clustering Ck made up of sets 
Pm|(i,j) where m=0,1,2,...,k. In general, the size of a cluster Ck is | β|t * (k + 1), where t 
is equal to the sum of the length of the subsequences i and j.  Using this notation, a 
sequence S can be represented by a set of features, which, in turn can be converted 
into a set of feature vectors.  A feature is mapped into a corresponding feature vector 
only if it appears at least once in one of the sequences in a given collection of se-
quences. This fact can significantly reduce the size of the feature space.  Assume S is 
<g, c, t, g, g, g, c, t, c, a, g, c, t, a, a, t, g, a, g, c>, t=1, and m=1. The feature (g,c), 
where g is the leading symbol and c is the trailing symbol, is present in the locations 
{1, 6, 11, 19}; this can be represented as a vector <1,6,11,10>.  The resulting vector 
can be used to compare different sequences, or utilized to generate new representa-
tions.  How this is done will be shown in the next section, which will present two 
specialized versions of the GMLVS model.  The first model is the Lossless Decom-
position Model, which corresponds to m=0 and t≥1. The second model is the Multi-
Layered Vector Spaces model which corresponds to the case where m≥1 and t=2. 

3 Lossless Decomposition Model 

The Lossless Decomposition (LD) model creates a set of feature vectors G from a set 
of extracted features of the form f = (i, NULL), where i ∈   in which m = 0 such 
that G = {<fp> |fp is the starting position of the pth instance of feature f in S}. 
The resulting feature vectors G represent a lossless decomposition since S can be 
reconstructed directly from G. The maximum number of LD feature vectors that can 
be generated from a sequence S is  

 ∑ |β|| | t (2) 

Example-1: Given the alphabet β = {a,c,g,t}, with |β| = 4 and the sequence defined 
over β S=[g, c, t, g, g, g, c, t, c, a, g, c, t, a, a, t, g, a, g, c]. The following GMLVS 
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extracted features a, gc, and gct have corresponding LD generated feature vectors 
<10,14,15,18>, <1,6,11,19>, and <1,6,11>, respectively. 

3.1 Pairwise Sequence Similarity 

Measuring the degree of similarity between two sequences is an important task in 
several different domains. The LD model has been designed, in part, to facilitate the 
pairwise similarity measurement of sequences. By decomposing two sequences into a 
set of LD feature vectors, we are able to calculate the pairwise similarity of the  
sequences using parallel processes without sacrificing accuracy.  For illustration 
purpose, we assume the feature vectors are based on GMLVS extracted features cor-
responding to the set   (m=0). In other words, we assume the generated feature 
vectors represent all possible consecutive subsequences of length two. Formally, giv-
en two sequences S1 and S2, the corresponding sets of feature vectors G1 and G2 are 
defined as follows: 

G1 = {<fp> |fp is the starting position of the pth instance of feature f in S1} 
G2 = {<fp> |fp is the starting position of the pth instance of feature f in S2}  
 
Let a feature vector v1∈  G1 be represented as f1, f2, …, fi, …, fm where fi is the ith 

starting position of feature v1 in S1. Likewise, let a feature vector v2∈  G2 be 
represented as g1, g2, …, gi, …, gn where gi is the ith starting position of feature v2 in 
S2. We now define the distance between v1 and v2, which is denoted as dist(v1 , v2), 
to be a minimal cumulative distance calculated based on an optimal warping path 
between the feature vectors. The optimal warping path can be computed by the dy-
namic programming process, where the minimal cumulative distance Y(fi, gj) is recur-
sively defined as: 

 Y(fi, gj) = d(fi, gj) + min(Y(fi−1, gj−1), Y(fi−1, gj), Y(fi, gj−1)) (3) 

For example, assume the feature vector v1 is <0, 5, 9, 121, 130>, and the feature 
vector v2 is <4, 11, 100>. Then, by dynamic programming, the optimal alignment of 
these two vectors is illustrated in Figure 1. Then the distance between v1 and v2 can 
be calculated according to the optimal alignment as 
(4−0)+(5−4)+(11−9)+(121−100)+(130−100) = 58. 

 

Fig. 1. Alignment between position sequences of two granules 

Given the fact a feature vector represented in terms of the LD model is much 
shorter than the original sequence, the alignment between vectors by dynamic  
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programming should be much more efficient than the alignment between the original 
sequences. The calculation of similarity between two sequences by pairwise align-
ment can be distributed across individual feature vectors. For this purpose, we define 
the distance between the sequence S1 and the sequence S2 as the aggregation of the 
distances between corresponding feature vectors. Let v1f and v2f represent the feature 
vector corresponding to feature f = (i, NULL), where i ∈  , in sequences S1 and S2, 
respectively: 

 dist(S1, S2)  = ∑      ,    1  , 2 ) (4) 

From this definition, the calculation of the distance between two sequences can be 
distributed to |β|t calculations of distances between |β|t feature vectors. 

3.2 Experimental Investigation 

We studied the performance of the proposed LD generated feature vectors in classify-
ing 53 SCOP protein families. The data set of the 53 SCOP protein families can be 
downloaded from [11]. Each of the SCOP families contains a training data set and a 
testing data set as described in [3]. We simply used 1-nearest neighbor (1NN)  
approach to predict if a test sequence belongs to the given family or not. More specif-
ically, for each test sequence, we evaluate its similarity with each training sequence, 
and then use the class label of the most similar training sequence as the label for this 
test sequence. The accuracy rate of the prediction for each family is reported.  

We used the following approaches to evaluate similarity between two protein se-
quences: 1) the Needleman-Wunsch algorithm (NW) [4] ; 2) the Smith-Waterman 
algorithm (SW) [5]; 3) the proposed granular approach based on single amino acids 
(Single), and 4) the proposed granular approach based on pairs of amino acids (Pair). 
For NW and SW, we set the match reward to be 10 and mismatch penalty to be -8. No 
external scoring matrix is used for this preliminary experimental study. The classifica-
tion results are summarized in Table-1. 

As can be seen in Table-1, the proposed granular approach based on single amino 
acids reaches the same level of accuracy rate as the Needleman-Wunsch algorithm 
and the Smith-Waterman algorithm. In other words, the proposed granular approach is 
able to distribute the calculation of pairwise similarity to 20 parallel processes without 
sacrificing accuracy. The accuracy rate of the proposed granular approach based on 
pairs of amino acids is approximately 6% worse than the other three methods; howev-
er the calculation of similarity of two protein sequences under this setting can be  
distributed to 400 parallel processes, each of which deals with much smaller data. 
Therefore, this approach may be suitable for online analysis of very large scale pro-
tein sequence database, where the tradeoff between efficiency and accuracy is  
necessary. 
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Table 1. Preliminary experimental results 

 

4 Multi-Layered Vector Spaces Model 

The Multi-Layered Vector Spaces Model (MLVS) creates a set of feature vectors G 
based on GMLVS features of the form (i,j), where i and j ∈ . The total number of 
feature vectors that can be generated from an alphabet β is |β|2.  In this specialized 
case, a sequence S is viewed to have a multi-layered structure made up of a set of  
m-step ordered pairs (features) (i,j), where i and j ∈ ,  denoted by Pm|(i,j), where 1 ≤ 
m ≤ k. Ordered pairs made up of consecutive elements of the sequence are said to 
form the family of 1-step (one-step) pairs, P1|(i,j).  The concept of a multi-layered  
k-clustering Ck, as defined in the context of the GMLVS model, also applies to the 
MLVS model. Thus, the MLVS model views a sequence S as the as the union of all 
ordered pairs (i,j), where i and j ∈  at k distinct layers. The following example 
demonstrates how the said structures are built. 

Example-2: Given the alphabet β = {a,c,g,t}, with |β|=4, |β|2 =16, and the sequence  
S = [g, c, t, g, g, g, c, t, c, a, g, c, t, a, a, t, g, a, g, c]. The following are sample m-step 
pairs ( ): 1-step ordered pairs for (g,c) are located at step locations [1,2], [6,7], 
[11,12], and [19,20]; 1-step ordered pairs for (g,g) are located at step locations [4,5], 
and [5,6]; 2-step ordered pairs for (g,t) are located at step locations [1,3], [6,8], and 
[11,13]; 4-step ordered pairs for (c,g) are located at step locations [2,6], and [7,11]. 
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4.1 Feature Vector Creation 

For a selected value of m and a given GMLVS extracted feature f = (i,j) (i, j∈ ), the 
sequence of anchor positions is taken as forming the scalar components of an n-
dimensional feature vector Vm|(i,j) associated with the feature (i,j). The union of such 
vectors for all features (for a given m) forms a vector cluster Žm at step size m, pro-
viding a single-step representation for the sequence. 

 Žm = (i,j) Vm|(i,j) (5) 

The union of vector clusters Žm provides a multi-layered feature vector space Žk, 
one layer for each value of m, for the original sequence. 

 Žk = m (i,j) Vm|(i,j) (6) 

Feature vectors for each m-step feature can be structured in at least two different 
ways. One approach is to simply record the step (spatial index) locations of anchor 
positions as Boolean values (1, 0). This approach is suitable for collections of equal 
length sequences. An alternative approach is to partition a sequence into n equal seg-
ments and record the number of anchor positions that fall into each segment. The 
number of segments n will determine the dimension of the vectors thus formed. The 
size of n can be adjusted to meet restrictions or expectations on resolution and accura-
cy. This approach has the advantage of mapping sequences of unequal length into 
fixed length feature vectors. For a given m, the construction scheme for Vm|(i,j) can be 
implemented in two different ways:  a vector can be constructed for each feature in 
the sequence to generate a vector cluster over the whole sequence, or feature vectors 
in the cluster are concatenated into a single vector to represent the entire sequence. 
The steps involved in the feature mapping process are illustrated in Fig. 2. As is the 
case with LD feature vectors, MLVS feature vectors can also be analyzed in a distri-
buted manner. In particular, MLVS feature vectors can be processed in parallel based 
on either specific sets of ordered pairs (i, j) and / or range of step sizes (m). 

 
Fig. 2. Proposed feature mapping process 

Example-2: Using the same alphabet and sequence as used in the previous examples, 
the following are sample feature vectors for a select group of m-step MLVS features:  

 
Sequence disassembled into m-step pairs Pm|(i,j) ,   (m = 1, 2, …, k) 

� 
Anchor positions of m-step pairs extracted from the given sequence 

� 
Feature vectors Vm|(i,j) constructed for all (i,j) pairs and all desired/selected m values 

� 
Feature vectors grouped into m clusters Žm, (m=1,2,…,k), to be analyzed 
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Anchor positions of 1-step feature (g,c) are located at step (index) locations 
[1,6,11,19]; vector V1|(gc), is represented by the Boolean feature vector 
<1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0> if step locations for the anchors are used di-
rectly as vector components.  If we instead partition the sequence into 4 equal seg-
ments (n = 4), the vector V1|(gc), is represented  by the 4D  feature vector <1,1,1,1> 
with vector components representing the number of anchor elements in each segment; 
anchor positions of the 1-step  feature (g,g) are located at step (index) locations [4,5]; 
vector V1|(gg) is represented by the Boolean feature vector 
<0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> or by the 4D vector <2,0,0,0>; anchor posi-
tions of 2-step feature (g,t) are located at step (index) locations [1,6,11]; vector V2|(gt) 
is represented by the Boolean vector <1,0,0,0,0,1 ,0,0,0,0,1,0,0,0,0,0,0, 0,0,0> or by 
the 4D vector <1,1,1,0>. 

4.2 Experimental Investigation 

Experiments were conducted to determine the potential usefulness of the MLVS gen-
erated feature vectors in classifying biological sequences. Specific objectives in-
cluded: investigating the accuracy of classifiers constructed from various  
n-dimensional feature vectors Vm|(i,j); and, the accuracy of ensemble classifiers con-
structed from individual vector clusters Žm. The results obtained from these classifiers 
were compared with results obtained from the (k,m)-mismatch kernel method [6,7].  

The biological sequences utilized in the experiments corresponded to the classifica-
tion of the 3PGK-DNA sequences, Eukaryota vs. Euglenozoa [8]. There were a total 
of forty-three instances belonging to the class Eukaryota and forty-four instances 
belonging to the class Euglenozoa. The alphabet β consisted of the elements {a,c,g,t}. 
Each instance was mapped into the following vector clusters Ž1, Ž2, Ž3, and Ž10. For 
the experiments, we set n=100; that is, we segmented each Vm|(i,j) into 100 equal seg-
ments.  In addition, we arbitrarily selected the step sizes m=1,2,3, and 10. We uti-
lized the decision tree classifier C4.5 [9] as implemented in the Weka data mining 
application [10].  The performance of the decision trees was evaluated using the 
hold-out method in which the feature vectors, Vm|(i,j), for a given GMLVS feature  
f = (i, j) (i, j∈ , were randomly divided into five pairs of training and test sets. The 
reported performance is the average accuracy over five runs. 

The results of the experiments are shown in Tables 2 and 3. Table-2 shows the ac-
curacy of the decision trees constructed from the feature vectors for each ordered pair 
feature. For instance, the decision tree constructed from the feature vectors corres-
ponding to the ordered pair (a,a) has an estimated predicted accuracy of 75%, 82%, 
75%, and 69% with respect to step sizes 1, 2, 3, and10, respectively. The results show 
for the selected step sizes, the decision trees are performing better than random guess-
ing but not at a desired level. A significant improvement in performance is obtained 
from the use of ensemble (multiple) classifiers constructed from decision trees be-
longing to a single vector cluster. Table-3 shows the accuracy values obtained by 
combining multiple decision trees at step sizes 1, 2, 3, and 10. The grouping of clas-
sifiers into ensembles was based on the accuracy of individual decision trees con-
structed from single ordered pairs. Specifically, for a given step size, the decision 
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trees were selected based on accuracy and the r most accurate decision trees were 
combined to form an ensemble of size r. The decision trees of a given ensemble were 
combined using un-weighted majority voting. Several of the constructed ensemble 
classifiers shown in Table-3 have a high degree of accuracy, and in particular the 
ensemble classifier consisting of fifteen decision trees at step size m=1 (15:96) has a 
96% level of accuracy.  

Table 2. Decision tree accuracy values for selected feature vectors 

Vm|(i,j) m=1 m=2 m=3 m=10 
(a,a) 75 82 75 69 
(a,c) 77 63 69 64 
(a,g) 75 89 83 75 
(a,t) 77 78 82 71 
(c,a) 69 68 71 67 
(c,c) 76 75 82 87 
(c,g) 64 78 74 67 
(c,t) 76 68 77 67 
(g,a) 70 78 74 72 
(g,c) 75 67 82 82 
(g,g) 70 66 84 85 
(g,t) 76 64 69 76 
(t,a) 66 68 72 67 
(t,c) 87 75 74 70 
(t,g) 72 70 67 67 
(t,t) 76 61 75 72 

Average 74 72 76 72 

Table 3. Ensemble decision tree accuracy values for selected vector clusters 

m # Classifiers : Accuracy (%) 
1 3:90; 5:93; 7:93; 9:94; 11:92; 13:92; 15:96 
2 3:90; 5:87; 7:87; 9:90; 11:87; 13:83; 15:79 
3 3:87; 5:92; 7:91; 9:92; 11:93; 13:94; 15:94 
10 3:92; 5:90; 7:92; 9:92; 11:90; 13:89; 15:87 

Table 4. (k,m)-mismatchmethod accuracy values 

K m = 0 (%) m=1 (%) 
4 90 89 
5 93 88 
6 93 90 
7 91 93 
8 91 93 
9 90 91 
10 86 90 
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To evaluate the results recorded in Tables-2 and -3, we repeated the experiments 
using the (k,m)-mismatch kernel method. Specifically, the five pairs of training and 
test sets were evaluated using the (k,m)-mismatch method as implemented by the 
authors of [6,7]. Table-4 shows the classification accuracy results, averaged over the 
five runs, for contiguous subsequences of length k = 4, 5, …, 10 and zero or one mis-
matches (m). The maximum achieved accuracy was 93%, which is less than the 96% 
accuracy value obtained through the use of the proposed multi-layer vector space 
model. In addition, the comprehensibility of a decision tree classifier is, in general, 
much greater as compared to SVM classifiers (i.e. (k,m)-mismatch method). This 
difference is significant if one wishes to obtain a deep characterization of a collection 
of biological sequences. 

5 Discussion and Summary 

It is anticipated that the transparent quality, simplicity and therefore the interpretation 
of the feature extraction models discussed in this paper will shed light into the inner 
workings of the system being studied. The Generalized Multi-Layered Vector Spaces 
(GMLVS) model allows an investigator to map a collection of sequences into a very 
large space of feature vectors for the purpose of analyzing and classifying data. The 
generated feature vectors can be logically partitioned along multiple dimensions 
based on sets of specific GMLVS features (i, j) (i and j∈ ) and/or specific step 
values m (0 ≤ m ≤ k). We believe a large feature vector space whose vectors can be 
partitioned into semantically related groups will provide a user-friendly mathematical 
habitat in which an investigator can discover the intrinsic elements of the system be-
ing studied such as the plausibility of interactions among micro patterns and causal 
connections embedded in a sequence.  More generally, an investigator has the oppor-
tunity to discover relationships among various groups of feature vectors and to dis-
cover characteristics of the feature space as the step values (m) are increased to their 
limit. 

We have also developed two related sequential data models, referred to as the 
Lossless Decomposition (LD) model and the Multi-Layered Vector Spaces (MLVS) 
model. These two models are able to generate different types of feature vectors using 
a well-defined subset of features represented through the GMLVS model. Preliminary 
experimental results reported on in this paper indicate both the LD and MLVS models 
have the capability to identify important relationships within individual sequences. 

In the future, we plan to explore the utility of GMLVS (and specialized cases) in a 
variety of ways.  One area of study is to explore the applicability of the GMLVS for 
signal peptide prediction; that is, to identify sections of amino acids that used to direct 
nascent, or newly formed, proteins to their correct locations. Moreover, we believe 
the GLMVS format (or a derivative) could be used to create human-interpretable 
rules; this is something currently lacking in of the current signal peptide detection 
techniques.  Second, we also wish to explore the applicability of the MLVS model, 
combined with association mining, to detect potential mutations and frequent co-
occurrences of mutations within cancer cells.  Third, we are interested in exploring 
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how to incorporate external scoring matrices into the LD model, along with develop-
ing adaptive search methods to exploit the LD representation.  Finally, the MLVS 
and LD methods represent only two special cases of the GMLVS model; developing 
complementary special case models may yield additional advantages and insights. 
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Abstract. A least-squares data approximation approach to finding individual
clusters is advocated. A simple local optimization algorithm leads to suboptimal
clusters satisfying some natural tightness criteria. Three versions of an iterative
extraction approach are considered, leading to a portrayal of the cluster struc-
ture of the data. Of these, probably most promising is what is referred to as the
incjunctive clustering approach. Applications are considered to the analysis of
semantics, to integrating different knowledge aspects and consensus clustering.

1 Individual Clusters in Graph Theory and Clustering

In spite of the ubiquitous use of partitions and hierarchies as the only two cluster struc-
tures of interest (see, for example, [8]), individual clusters are prominent in the analysis
of similarity data from the start. Intuitively, cluster is a set of highly similar entities that
are dissimilar from entities outside of the cluster.

Currently, the most popular format for similarity data is of square matrix A = (ai j)
of pair-wise indices ai j expressing similarity between entities i, j ∈ I. The greater the
value of ai j, the greater the similarity between i and j. Some examples of similarity data
are (i) individual judgements of similarity expressed using a fixed range, (2) correlation
coefficients between variables or time series, (3) graphs represented by 1/0-similarity
matrices, (4) weighted graphs, or networks, (5) probabilities of common ancestry, es-
pecially in proteomics, (6) affinnity data obtained by transformation of distances using
a Gaussian or another kernel function. Consider an example of a data set of this type.

Eurovision Song Contest Scoring
Table 1 presents the average scores given by each country to her 10 top choices at the
Eurovision song contests (up to and including year 2011). I compiled this using public
data at http://www.escstats.com/ (visited 28/2/2013). Each row of the table corresponds
to one out of selected nineteen European countries, and assigns a non-zero score to those
of the other eighteen that have been among the 10 best choices. The cluster structure
of the table should quantify to what extent the gossip of the effects of cultural and
ethnical links on voting is justified, because the quality of songs and performances may
be considered random from year to year, so that in the ideal case when no cultural
preferences are involved at evaluations, the similarity matrix should be of a random
structure too.

D. Ciucci et al. (Eds.): RSFDGrC 2013, LNAI 8170, pp. 26–37, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Table 1. Eurovision scoring: Each row contains the average score given by the row country to
the column country in Eurovision song contests (multiplied by 10)

Country Az Be Bu Es Fr Ge Gr Is It Ne Pol Por Ro Ru Se Sp Sw Ukr UK
1 Azerbajan 0 0 0 0 0 0 61 48 0 0 0 0 50 65 0 0 0 90 0
2 Belgium 38 0 0 0 0 39 40 0 0 47 0 0 0 0 0 34 0 0 42
3 Bulgaria 67 0 0 0 0 0 93 0 0 0 0 0 0 48 60 0 0 44 0
4 Estonia 41 0 0 0 0 0 0 0 43 0 0 0 0 88 0 0 0 43 0
5 France 0 37 43 0 0 0 0 56 47 0 0 54 0 0 80 0 0 0 41
6 Germany 0 0 0 0 34 0 37 35 0 0 55 0 0 0 70 0 0 0 42
7 Greece 54 0 80 0 41 0 0 0 0 0 0 0 40 0 80 44 0 38 0
8 Israel 50 0 0 0 0 0 0 0 0 43 0 0 66 74 50 0 0 62 43
9 Italy 0 0 100 0 54 0 0 0 0 0 0 0 120 0 0 0 0 65 52

10 Netherlands 39 46 0 0 0 38 0 45 0 0 0 0 0 0 70 0 0 0 0
11 Poland 84 43 0 39 0 0 0 0 90 0 0 0 0 0 0 0 0 82 0
12 Portugal 0 35 0 0 0 45 0 41 81 0 0 0 52 0 57 42 0 74 43
13 Romania 52 0 0 0 0 0 82 0 60 0 0 0 0 49 80 0 0 35 0
14 Russia 99 0 0 0 0 0 37 36 0 0 0 0 0 0 80 0 0 77 0
15 Serbia 0 0 53 0 0 0 73 0 0 0 0 0 0 44 0 0 0 44 0
16 Spain 0 0 78 0 0 51 45 0 74 0 0 43 79 0 47 0 0 46 0
17 Switzerland 0 0 0 0 44 0 0 42 47 0 0 0 0 0 106 41 0 0 41
18 Ukraine 111 0 0 0 0 0 0 0 0 0 60 0 0 98 90 0 0 0 0
19 UK 0 0 0 36 0 39 38 0 0 0 0 0 0 0 37 0 0 0 0

There are several individual cluster related graph-theoretic concepts: (a) connected
component (a maximal subset of nodes in which there is a path connecting each pair
of nodes), (b) bicomponent (a maximal subset of nodes in which each pair of nodes
belongs to a cycle), and (c) clique (a maximal subset of nodes in which each pair of
nodes is connected by an edge). Even more relevant is a more recent concept of (d) the
maximum density subgraph [5]. The density g(S) of a subgraph S⊂ I is the ratio of the
number of edges in S to the number of elements |S|. For an edge weighted graph with
weights specified by the matrix A = (ai j), the density of a subgraph on S ⊆ I g(S) is
defined by the Rayleigh quotient sT As/sT s, where s = (si) is the characteristic vector of
S, viz. si = 1 if i ∈ S and si = 0 otherwise. The maximum value of the Raleigh quotient
of a symmetric matrix over any real vector s is equal to the maximum eigenvalue and
is attained at an eigenvector corresponding to this eigenvalue. This gives rise to the
so-called (e) spectral clustering.

Cluster-specific individual cluster concepts include those of B-cluster [7] and Apre-
sian’s cluster [1].

2 Approximation Models for Summary and Semi-average Criteria

2.1 Least-Squares Approximation

The idea is to find such a subset S ⊆ I that its binary matrix s = (si j) approximates a
given symmetric similarity matrix A as close as possible. To take into account the dif-
ference in the unit of measurement of the similarity as well as for its zero point, matrix
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s should be also supplied with (adjustable) scale shift and rescaling coefficients, say λ
and μ . That would mean that the approaximation is sought in the set of all binary λ + μ
/ μ matrices λ s + μ with λ > 0. Unfortunately, such an approximation, at least when
follows the least squares approach, would have little value as a tool for producing a
cluster, because the optimal values for λ and μ would not separate the optimal S from
the rest [10,11]. This is why this author uses only one parameter λ , change of the unit
of measurement, in formulating approximation problems in clustering. The issue of ad-
justment of similarity zero point, in such a setting, is moved out of the modeling stage
to the data pre-processing stage. This amounts to substraction of a similarity shift value
from all the similarity values before doing data analysis. Choice of the similarity shift
value may affect the clustering results, which the user can take advantage of to differ-
ently contrast within- and between- cluster similarities. In the remainder, it is assumed
that a similarity shift value has been subtracted from all the similarity entries. Another
assumption, for the sake of simplicity, is that the diagonal entries aii are all zero (after
the pre-processing step). From now on, S is represented by a vector s = (si) such that
si = 1 if i ∈ S and si = 0, otherwise. Our approximation model is

ai j = λ sis j + ei j (1)

where ai j are the preprocessed similarity values, s = (si) is the unknown cluster belong-
ingness vector and λ , the rescaling value, also referred to as the cluster intensity value.
To fit the model (1), only the least squares criterion L2 = ∑i, j∈I e2

i j is considered here.

Pre-specified Intensity. We first consider the case in which the intensity λ of the
cluster to be found is pre-specified. Since s2

i = si for any 0/1 variable si, the least squares
criterion can be expressed as

L2(S,λ ) = ∑
i, j∈I

(ai j −λ sis j)
2 = ∑

i, j∈I
a2

i j− 2λ ∑
i, j∈I

(ai j−λ/2)sis j (2)

Since ∑i, j a2
i j is constant, for λ > 0, minimizing (2) is equivalent to maximizing the

summary within-cluster similarity after subtracting the threshold value π = λ/2, i.e.,

f (S,π) = ∑
i, j∈I

(ai j−π)sis j = ∑
i, j∈S

(ai j −π). (3)

This is the so-called summary similarity criterion which satisfies the following prop-
erties:

Statement 1. A cluster S optimizes criterion (3) over similarity matrix A if and only if
S optimizes it over symmetric similarity matrix A + A′.

Statement 2. The optimal cluster size according to criterion (3) can only decrease
when π grows.

One more property of the criterion is that it leads to provably tight clusters. Let us
refer to cluster S as suboptimal if, for any entity i, the value of criterion (3) can only
decrease if i changes its state in respect to S. Entity i changes its state in respect to S if
it is added to S, in the case that i 	∈ S, or removed from S if i ∈ S.
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Statement 3. If S is a suboptimal cluster, then the average similarity a(i,S) of i with
other entities in S is greater than π if i ∈ S, or less than π if i 	∈ S.

An algorithm for producing a suboptimal cluster S starting from any entity i by
adding/removing a single entity can be drawn using property:

Δ(S,k) = f (S± k)− f (S) =−2zk ∑
i∈S

aik, (4)

under the assumption that the diagonal similarities ai j are not considered and zk in (4)
corresponds to S, that is, taken before the change of sign.

Optimal Intensity. When λ in (2) is not fixed but can be adjusted to further minimize
the criterion, it is easy to prove that the optimal λ is

λ = a(S) = sT As/[sT s]2, (5)

where a(S) is the average within cluster S similarity.
By putting this equation in the least-squares criterion (2), one can prove:

L2(S) = (A,A)− [sT As/sT s]2, (6)

which implies that the optimal cluster S is a maximizer of

g2(S) = [sT As/sT s]2 = a2(S)|S|2 (7)

According to (7), the maximum of g2(S) may correspond to either positive or nega-
tive value of a(S). The focus here is on maximizing (7) only for positive a(S). This is
equivalent to maximizing its square root, that is the Rayleigh quotient,

g(S) = sT As/sT s = a(S)|S| (8)

This criterion is a form of the so-called semi-average clustering criterion which has a
number of properties similar to those of the summary similarity criterion. In particular
a cluster tightness property is:

Statement 4. If S is a suboptimal cluster, then the average similarity a(i,S) of i with
other entities in S is greater than a(S)/2i if i ∈ S, or less than a(S)/2 if i 	∈ S.

An algorithm for producing a suboptimal cluster S starting from any i ∈ I can be
drawn by selecting such an entity i whose adding to S if i 	∈ S or removal from S if i ∈ S
makes the greatest increment of criterion (8).

2.2 Partitional, Additive and Incjunctive Clusters: Iterative Extraction

The approximation model can be extended to a set of (not necessarily disjoint) similarity
clusters S1,S2, ...,SK :

ai j =
K⊎

k=1

λksk
i sk

j + ei j, for i, j ∈ I, (9)
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where sk = (sk
i ) and λk are k-th cluster belongingness vector and the intensity. The

symbol
⊎

denotes an operation of integration of the binary values together with their
intensities. We consider three versions of the operation: (a) additive clusters:

⊎
is just

summation; (b) partitional clusters:
⊎

denotes the fact that clusters are disjunct, no over-
lapping; (c) incjunctive clusters:

⊎
is maximum over k = 1,2, ...,K, that is, operation of

inclusive disjunction.
The goal is to minimize the residuals ei j with respect to the unknown relations Rk

and intensities λk.
Additive cluster model was introduced, in the English language literature, by Shep-

ard and Arabie in [18], and independently, and even earlier, in a more general form
embracing other cluster structures as well, by the author in mid-seventies in Russian
([10], see references in [11]). Incjunctive clusters have not been considered in the liter-
ature, to our knowledge.

We maintain that cluster structures frequently are similar to that of the Solar system
so that clusters hidden in data much differ with respect to their “contributions”. We pro-
posed an iterative extraction method [10] to find clusters one by one (see also [11,13]).
Depending on the setting, that is, meaning of

⊎
in (9), one may use the following

options:

i Additive clusters. The iterative extraction works as this:
(a) Initialization. Given a preprocessed similarity matrix A, compute the data scat-

ter T = (A,A). Put k = 0.
(b) General step. Add 1 to k. Find cluster S (locally) maximizing criterion g(S) in

(8). Output that as Sk, the intensity of this cluster, the within-cluster average
a(S) as λk, and its contribution to the data scatter, wk = a(S)2|S|2.

(c) Test. Check a stopping condition. If it does hold, assign K = k and halt. Oth-
erwise, compute the residual similarity matrix as A− λksksT

k and go back to
General step with the residual matrix as A.

The stopping condition can be either reaching a prespecified number of clusters or
contribution of the individual cluster has become too small or the total contribution
of the so far found clusters has become too large. The individual cluster contribu-
tiona are additive in this process. Moreover, the residual matrix in this process tends
to 0 when k increases [10,11].

ii Partitional clusters. This method works almost like the iterative extraction at the
additive clustering model, except that here no residual matrix is considered, but
rather the found clusters are removed from the set of entities.

iii Incjunctive clusters. Make a loop over i ∈ I. Run the semi-average criterion sub-
optimal algorithm at S = {i} for each i. Remove those of the found clusters that
overlap with others too much. This can be done by applying the same algorithm to
the cluster-to-cluster similarity matrix; entries in this matrix are defined as propor-
tional to the overlap values. The individual cluster over this matrix contains those
clusters that overlap too much - only one of them shoild be left.

For an example, let us apply each of these three strategies to the Eurovision matrix,
preliminarily made symmetric with zeroed diagonal entries.

a Additive clusters one by one: With the condition to stop when the contribution of
an individual cluster becomes less than 1.5% of the total data scatter, the algorithm
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Table 2. Additive clusters found at the Eurovision song contest dataset

n. Cluster Intensity Contribution, %
1 Azerbajan, Bulgaria, Greece, Russia, Serbia, Ukraine 70.0 21.43
2 Azerbajan, Israel, Romania, Russia, Ukraine 49.5 7.13
3 Bulgaria, Greece, Italy, Romania, Spain 46.8 6.38
4 Azerbajan, Poland, Ukraine 66.8 3.90
5 Italy, Portugal, Romania 53.0 2.46
6 Greece, Romania, Serbia 43.7 1.67

found, in addition to the universal cluster I with the intensity equal to the similarity
average, six more clusters (see Table 2). We can see that, say, pair Azerbajan and
Ukraine belong to three of the clusters and contribute, therefore, the summary in-
tensity value 70.0+49.5+66.8=186.3 as the “model” similarity between them (the
summary similarity between them in Table 1 is 201).

b Partitional clusters one by one. Here the algorithm is run on the entities remaining
unclustered after the previous step (see Table 3).

Table 3. Partitional clusters found one-by-one at the Eurovision song contest dataset

n. Cluster Intensity Contribution, %
1 Azerbajan, Bulgaria, Greece, Russia, Serbia, Ukraine 70.0 21.43
2 Italy, Portugal, Romania, Spain 56.1 5.50
3 Belgium, Netherlands 57.3 0.96
4 Germany, UK 45.3 0.60
5 France, Israel, Switzerland 11.6 0.12
6 Estonia, Poland 3.3 0.00

There are only two meaningful clusters, East European and Latin South Eu-
ropean, in Table 3; the other four contribute too little. The first of the clusters is
just a replica of that in the additive clustering computation. Yet the second cluster
combines clusters 3 and 5 cleaned from the Balkans in the additive clusters results
Table 2.

c Incjunctive clusters from every entity. The semi-average algorithm has been applied
starting from S = {i} for every i ∈ I. Most of the final clusters coincide with each
other, so that there are very few different clusters (see Table 4).

According to the data recovery model, these clusters lead to a recovered similar-
ity matrix as follows: first of all, the subtracted average value, 35.72, should be put
at every entry. Then the two entries of Belgium/Netherlands link are to be increased
by the intensity of cluster 2, 57.3. Similarly, the intensities of clusters 1 and 4 are
to be added for any pair of entities within each. Then entries for pairs from cluster
3 are to be changed for 35.7+110.6=146.3.

This is an example at which the local nature of the algorithm is of an advantage
rather than a drawback. Clusters in Table 4 reflect cultural interrelations rather than
anything else.
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Table 4. All four different incjunctive clusters found at the Eurovision song contest dataset start-
ing from every entity

Cluster Intensity Contribution, %
1. Azerbajan, Bulgaria, Greece, Russia, Serbia, Ukraine 70.0 21.43
2. Belgium, Netherlands 57.3 0.96
3. Bulgaria, Greece, Serbia 110.6 10.7
4. Italy, Portugal, Romania, Spain 56.1 5.50

3 Applications

3.1 Semantics of Domain-Specific Nouns

The idea that semantics of domain-specific nouns lies in their relation to specific situa-
tions, functions, etc., a few decades back was not that obvious in cognitive sciences as it
is now. In the absence of Internet, the researchers used the so-called sorting experiments
to shed light on semantics of domain specific nouns [16,4]. In a sorting experiment, a
set of domain-specific words is specified and written down, each on a small card; a re-
spondent is asked then to partition cards into any number of groups according to their
perceived similarity among the nouns. Then. a similarity matrix between the words
can be drawn so that the similarity score between two words is defined as the number
of respondents who put them together in the same cluster. A cognitive scientist may
think that behind the similarity matrix can be some “additive” elementary meanings.
In the analysis of similarities between 72 kitchenware terms, the iterative one-by-one
extraction with the semi-average similarity suboptimal algorithm found that the clusters
related to the usage only: (i) a cooking process, such as frying or boiling; (ii) a com-
mon consumption use, such as drinking or eating, and (iii) a common situation such as a
banket [4]. In contrast to expectations, none of the clusters reflected logical or structural
similarities between the kitchenware items.

3.2 Determining Similarity Threshold by Combining Knowledge

In [14] partitional clusters of protein families in herpes viruses are found. The similarity
between them is derived from alignments of protein amino acid sequences and similar-
ity neigbourhoods. At different similarity shifts, different numbers of clusters can be
obtained, from 99 non-singleton clusters (of 740 entities) at the zero similarity shift to
only 29 non-singleton clusters at the shift equal to 0.97 [14]. To choose a proper value
of the shift, external information can be used – of functional activities of the proteins
under consideration in [14]. Although function of most proteins under consideration
was unknown, the set of pairs of functionally annotated proteins can be used to shed
light onto potentially admissible values of the similarity shift. In each pair, the proteins
can be synonymous (sharing the same function) or not. Because of a high simplicity
of virus genomes, the synonymous proteins should belong in the same aggregate pro-
tein family, whereas proteins of different functions should belong in different protein
families. The similarity shift value should be taken as that between the sets of simi-
larity values for synonymous and nonsynonymous proteins. Then, after subtraction of
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this value, similarities between not synonymous HPFs get negative while those between
synonymous HPFs remain positive. In [14] no non-synonymous pair has a greater mbc
similarity than 0.66, which should imply that the shift value 0.67 confers specificity for
the production of aggregate protein families. Unfortunately, the situation is less clear
cut for synonymous proteins: although the similarities between them indeed are some-
what higher, 24% pairs is less than 0.67. To choose a similarity shift that minimizes
the error in assigning negative and positive similarity values, one needs to compare
the distribution of similarity values in the set of synonymous pairs with that in the set
of non-synonymous pairs and derive the intersection point similarity value (see details
in [14]).

3.3 Consensus Clustering

Consensus clustering is an activity of summarizing a set of clusterings into a single
clustering. This has become popular recently because after applying different clustering
algorithms, or the same algorithm at different parameter settings, on a data set, one gets
a number of different solutions. Consensus clustering seeks a unified cluster structure
behind the solutions found (see, for example, [21,13]). Here some results of applying
an approach from Mirkin and Muchnik [15] in the current setting will be reported (see
also [13]).

Consider a partition S = {S1, ...,SK} on I and corresponding binary membership N×
K matrix Z = (zik) where zik = 1 if i∈ Sk and zik = 0, otherwise (i = 1, ...,N,k = 1, ...,K).
Obviously, ZT Z is a diagonal K ×K matrix in which (k,k)-th entry is equal to the
cardinality of Sk, Nk = |Sk|. On the other hand, ZZT = (si j) is a binary N×N matrix in
which si j = 1 if i and j belong to the same class of S, and si j = 0, otherwise. Therefore,
(ZT Z)−1 is a diagonal matrix of the reciprocals 1/Nk and PZ = Z(ZT Z)−1ZT = (pi j)
is an N×N matrix in which pi j = 1/Nk if both i and j belong to the same class Sk,
and pi j = 0, otherwise. Matrix PZ represents the operation of orthogonal projection of
any N-dimensional vector x onto the linear subspace L(Z) spanning the columns of
matrix Z.

A set of partitions Ru, u = 1,2, ...,U , along with the corresponding binary member-
ship N× Lt matrices Xu, found with various clustering procedures, can be thought of
as proxies for a hidden partition S, along with its binary membership matrix Z. Each of
the partitions can be considered as related to the hidden partition S by equations

xu
il =

K

∑
k=1

cu
klzik + eu

ik (10)

where coefficients cu
kl and matrix zik are to be chosen to minimize the residuals eu

ik.
By accepting the sum of squared errors E2 = ∑i,k,u(eu

ik)2 as the criterion to mini-
mize, one immediately arrives at the optimal coefficients being orthogonal projections
of the columns of matrices Xu onto the linear subspace spanning the hidden matrix Z.
More precisely, at a given Z, the optimal K×Lu matrices Cu = (cu

kl) are determined by
equations Cu = Z(ZT Z)−1Xu. By substituting these in equations (10), the square error
criterion can be reformulated as:
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E2 =
U

∑
u=1

||Xu−PZXu||2 (11)

where ||.||2 denotes the sum of squares of the matrix elements. It is not difficult to show
that the criterion can be reformulated in terms of the so-called consensus similarity
matrix. To this end, let us form N×L matrix X = (X1X2...XU) where L = ∑U

u=1 Lu. The
columns of this matrix correspond to clusters Rl that are present in partitions R1, ...,RU .
Then the least squares criterion can be expressed as E2 = ||X −PZX ||2, or equivalently,
as E2 = Tr((X −PZX)(X−PZX)T ) where Tr denotes the trace of N×N matrix, that is,
the sum of its diagonal elements, and T , the transpose. By opening the parentheses in the
latter expression, one can derive that E2 = Tr(XXT −PZXXT ). Let us denote A = XXT

and take a look at (i, j)-th element of this matrix ai j = ∑l xilx jl where summation goes
over all clusters Rl of all partitions R1,R2, ...,RU . Obviously, ai j equals the number
of those partitions R1,R2, ...,RU at which i and j are in the same class. This matrix
is referred to in the literature as the consensus matrix. The latter expression can be
reformulated thus as

E2 = NU −
K

∑
k=1

∑
i, j∈Sk

ai j/Nk.

This leads us to the following statement.

Statement 5. A partition S = {S1, ...,SK} is an ensemble consensus clustering if and
only if it maximizes criterion

g(S) =
K

∑
k=1

∑
i, j∈Sk

ai j/Nk (12)

where A = (ai j) is the consensus matrix.

Criterion (12) is but the sum of semi-average criteria for clusters S1, ..., SK . There-
fore, the iterative extraction algorithm in its partitional clusters format is applicable
here. We compared the performances of this algorithm and a number of up-to-date
algorithms of consensus clustering (see Table 5) [19].

Table 5. Consensus clustering methods involved in the experiments

n. Method Author(s) Reference
1 Bayes Wang et al. [23]
2 Vote Dimitriadi et al. [3]
3 CVote Ayad, Kamel [2]
4 Borda Sevillano et al. [17]
5 Fusion Guenoche [6]
6 CSPA Strehl, Ghosh [21]
7 MCLA Strehl, Ghosh [21]
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These algoritms have been compared with two versions of the iterative extraction
partitional clusters method above differing by the condition whether the option of zero-
ing all the diagonal entries of the similarity matrix has been utilized or not (Lsc1 and
Lsc2). Three types of datasets have been used: (a) datasets from the Irvine Data Repos-
itory, (b) generated synthetic datasets, and (c) specially drawn artificial 2D shapes.
Here we present only results of applying the algorithms to the Wisconsin Diagnostic
Breast Cancer (WDBC) dataset from UCI Data Repository (569 entities, 30 features,
two classes) (see Figure 1). The results are more or less similar to each other, although
the superiority of our algorithms is expressed more clearly on the other datasets [19].

Lsc1 Lsc2 Bayes Vot cVote Borda Fus CSPA MCLA
0

0.2

0.4

0.6

0.8

1

Fig. 1. Comparison of the accuracy of consensus clustering algorithms at WDBC dataset

4 Conclusion

The paper describes least squares approximation approaches for finding individual sim-
ilarity clusters which can be useful in several perspectives - summary similarity crite-
rion, semi-average criterion, spectral clustering criterion and approximation criterion.
The clustering criterion involves, in different forms, the concept of similarity threshold,
or similarity shift - a value subtracted from all the similarity matrix entries. The thresh-
old can be used for bridging different aspects of the phenomenon under study together.
This is demonstrated in section 3.2, in which the final choice of clustering involves the
protein function and gene arrangement in the genomic circle, in addition to the original
similarity derived from protein sequences.

The criterion leads to nice properties of the clusters: they are quite tight over average
similarities of individual entities with them. Also, unlike methods for finding global
optima, the one starting from an entity leads to recovery of the local cluster structure of
the data, probably a single most important innovation proposed in this paper.
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Abstract. Uncertainty is ubiquitous in big data. Consequently, ana-
lyzing and mining uncertain and probabilistic data is important in big
data analytics. In this short article, we review some recent progress in
mining uncertain and probabilistic data in the hope that the problems,
progress, and challenges can inspire interdisciplinary dialogues and lead
to new research opportunities.

1 Introduction

According to Wikipedia, big data refers to “data sets with sizes beyond the ability
of commonly-used software tools to capture, curate, manage, and process the
data within a tolerable elapsed time”1. Big data posts many grand challenges for
data analytics, often summarized using four V’s: volume, variety, veracity, and
velocity.

Uncertainty is ubiquitous in big data. Consequently, analyzing and mining
uncertain and probabilistic data is important in big data analytics. For example,
noise is almost unavoidable in massive data. To reduce data volume, sampling
methods and statistical models are often employed to access and summarize
large data sets and generate working data sets for analysis, which introduce
imprecision and uncertainty. Moreover, many data analysis techniques trade off
uncertainty for reduced representation cost. When integrating data from many
sources, such as resolving conflicts and inconsistency and removing duplicates
and redundancy, uncertainty often slides in due to noise and errors in data.
Uncertainty is inherent in analysis results derived from inaccurate or uncertain
data. To process streaming data, which arrives fast and may often allow only one
scan, analytics results have to be approximate and thus uncertainty is inevitable.

Recently, significant progress has been achieved in mining uncertain and prob-
abilistic data in the databases and data mining communities. Different from the
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previous work focusing on uncertainty in inferences, this new line of work explic-
itly models uncertainty in data, and how the uncertainty in data affects query
and data mining results. In this paper, we review some of such research results,
part of them being generated in my group or by my collaborators and me. The
purpose is to bring such problems, progress, and challenges to the attention of
a broader audience and possible applications in the hope that interdisciplinary
dialogues can be inspired and new research opportunities can be identified and
pursued.

We note that a systematic survey of data processing and data mining tech-
niques on uncertain data is far beyond the capacity of this paper. There are
some recent excellent surveys on the topic, such as [3,7]. We realize that, due to
the limit of space and the wide range of the related results, the coverage of this
paper is biased and narrow. We apologize for any possible unintentional offenses.

In the rest of the paper, we first review the possible worlds model of un-
certain data in Section 2. Then, in Section 3 we discuss ranking queries and
skyline queries, which are good representatives in uncertain data processing. In
Section 4, we discuss clustering and outlier detection on uncertain data, some
interesting problems in mining uncertain and probabilistic data. We conclude by
some interesting challenges in Section 5.

2 Uncertain and Probabilistic Data and Possible Worlds

We consider multidimensional objects, that is, objects of multiple attributes. An
object is described by its values on those attributes. An object is certain if its
value on every attribute is determined, which is the case assumed in most of the
traditional data analysis methods. An object is uncertain if there exists at least
one attribute where the object’s behavior can be modeled as a random variable.

For example, we can model a tennis player as an object with multiple at-
tributes, one being the speed of serves. A play serves in a game multiple times
likely in different speeds, not to mention in different games. Thus, a player’s
speed of serves is a random variable.

In general, a multidimensional uncertain object is a multidimensional random
variable. In practice, often an uncertain object is captured by a set of instances,
where each instance can be regarded as a sample of the object.

There are two frequently used methods to represent uncertain objects. In a
probabilistic table, an instance of an uncertain object is represented as a tuple
associated with an existence probability. Generation rules are used to describe
the relations among instances. For example, an exclusive rule can specify that
several instances of an object cannot co-exist. Alternatively, we can represent
each uncertain object explicitly as a set of instances, where each instance can
be associated with an existence probability. More generally, we can describe an
uncertain object using its joint distribution or its factored marginal distributions
under some independence assumptions.

An uncertain database is a set of uncertain objects. In the rest of the paper,
we use the terms “uncertain data” and “probabilistic data” interchangeably
to refer to uncertain databases.
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Table 1. Possible worlds in the toy example in Table 2

Name Speed of serves Return of serve rate Existence probability

Albert
120 60% 0.40
100 75% 0.60

Bob
135 50% 0.30
125 35% 0.50

Table 2. A toy example

Possible world id Tuples Existence probability

w1 (Albert, 120, 60%), (Bob, 135, 50%) 0.12

w2 (Albert, 120, 60%), (Bob, 125, 35%) 0.20

w3 (Albert, 120, 60%) 0.08

w4 (Albert, 100, 75%), (Bob, 135, 50%) 0.18

w5 (Albert, 100, 75%), (Bob, 125, 35%) 0.30

w6 (Albert, 100, 75%) 0.12

A possible configuration of an uncertain database is called a possible
world [16]. To describe the semantics of an uncertain/probabilistic data set
completely, we have to enumerate all possible configurations thoroughly and
their existence probability.

For example, suppose we model tennis players using two attributes, speed of
serves and return of serve rate. As a toy example, Table 2 shows two players,
Albert and Bob, each having two instances. Table 1 shows the six possible worlds.

Given an uncertain database D, let PW(D) be the set of possible worlds of
D. Each possible world is a database associated with an existence probability.
For an analytics task Q, such as a query or a data mining task, we can apply
Q on every possible world of D. Denote by Q(w) (w ∈ PW(D)) the result of
Q on possible world w. The problem of analyzing and mining uncertain data is
to summarize the result set {Q(w) | w ∈ PW(D)}. For more details about the
possible world model, please see [16].

3 Ranking Queries and Skyline Queries on Uncertain
Data

Consider the task of ranking objects, a simple yet frequently used database
query. Given a set of multidimensional objects and an objective function defined
using the dimensions, we want to sort all objects according to their values in the
objective function. While ranking queries on certain data have been well studied
and popular in commercial products, ranking uncertain data is far from trivial.

The challenge comes from the fact that an uncertain tuple/object may have
different ranks in different possible worlds. There are different ways to summarize
their ranks. For example, one may use the expected rank, which is the average of
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the ranks in all possible worlds weighted by the existence probabilities of those
worlds. That is,

E(rank(x)) =
∑

w∈PW(D)

rankw(x)p(w)

where p(w) is the existence probability of a possible world, and rankw(x) is the
rank of object x in possible world w.

One possible drawback of the method using expectation is that a tuple may
not take the expected rank in any possible world. An alternative is to find for
each uncertain tuple/object the most likely rank, that is, the rank of the highest
probability. That is,

M(rank(x)) = arg max
r>0

⎧⎨⎩ ∑
w∈PW(D),rankw(x)=r

p(w)

⎫⎬⎭
However, the probability of even the most likely rank may be very low on a large
uncertain database. Moreover, two tuples/objects may reach their most likely
ranks in different possible worlds. In other words, such ranks may not be used
for comparison.

To tackle the problem, among several recently proposed models, we proposed
the probabilistic threshold approach [8]. Given a probability threshold p > 0 and
a ranking threshold k > 0, a probabilistic threshold top-k query finds all
tuples that have a probability of at least p to be ranked at the top k positions
in all possible worlds. That is,

rank(x, p) = max

⎧⎨⎩k > 0 |
∑

w∈PW(D),rankw(x)≥k

p(w) ≥ p

⎫⎬⎭
Most recently, Li et al. [13] developed a unified model.

The models of ranking queries on uncertain data demonstrate the challenges
in summarizing different query answers in different possible worlds and some
interesting ideas.

It is computationally prohibitive to enumerate all possible worlds and com-
pute a query in each world. We observed that Poisson binomial recurrence can
be used in computing many types of probabilistic threshold based queries on
uncertain data [8]. Later, Bernecker et al. [4] defined probabilistic threshold fre-
quent patterns on uncertain transactions, where each item takes a probability to
appear in a transaction. Their algorithm uses Poisson binomial recurrence, too.
Using Poisson binomial recurrence and some other techniques, we try to avoid
enumerating all possible worlds and computing queries on each possible world
in analyzing and mining uncertain data.

Ranking queries on uncertain data can be extended to address needs in var-
ious applications. We discussed a few interesting extensions [7], including top-k
typicality queries, online ranking query answering, continuous ranking queries
on uncertain data streams, ranking queries on probabilistic linkages, and prob-
abilistic path queries on road networks.
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Skyline queries are another type of useful analytic queries related to ranking
queries. An object x is said to dominate another object y if x is not worse than
y in every dimension, and there exists at least one dimension where x is better
than y. Given a set D of objects, x ∈ D is a skyline object if there does not
exist any other object y ∈ D such that y dominates x. A skyline query finds all
skyline objects in a given set.

We developed a bounding-pruning-refining framework for probabilistic thresh-
old based skyline queries on uncertain data [15]. Given a probability threshold
p > 0, we compute all objects that take a probability of at least p to be in the
skyline. The problem formulation and the general framework inspire many more
recent methods. The bounding-pruning-refining framework is a general heuristic
method for analyzing and mining uncertain data.

4 Clustering Analysis and Outlier Detection on
Uncertain Data

Clustering analysis, also known as unsupervised learning, partitions a set of
objects into groups such that objects falling into a group are similar to each
other, and objects falling into different groups are dissimilar. Uncertainty is
considered in clustering, such as fuzzy clustering [6], where the assignment of
an object to a cluster may be probabilistic. However, how to cluster uncertain
objects was not systematically investigated until very recently.

The need of clustering analysis on uncertain data comes from a few appli-
cations. For example, marketing surveys may collect customers’ opinion about
products, such as hotels, on multiple attributes, such as room quality, location
convenience, and service quality. One hotel may receive multiple reviews and
thus can be naturally modeled as an uncertain object of multiple instances,
where each review is captured by an instance. An often useful analytic task is to
cluster uncertain objects, such as clustering hotels according to their reviews.

Some studies [11,12,14,10] extend traditional clustering methods, such as K-
means, density-based clustering, and hierarchical clustering, to uncertain data.
Cormode and McGregor [5] provided theoretical analysis on extending partition-
ing methods, such as K-means and K-medoids, to uncertain data.

Most of the clustering methods for uncertain data extended from traditional
approaches only explore the geometric properties of data objects and focus on
instances of uncertain objects. One important issue in uncertain data clustering
is that the distribution of an uncertain object is an inherent feature, which
should be considered in clustering. For example, Figure 1 shows the instances of
two uncertain objects. The two objects have very similar mean values, but their
distributions of instances are very different.

To address the new challenge in uncertain data mining that distributions are
inherent features for uncertain data, we advocated clustering uncertain objects
according to their distributions [9]. Concretely, we can estimate the distribution
of an uncertain object using the instances of the object. Then, we can mea-
sure the similarity between the distributions of two objects, for example, using
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Fig. 1. Two objects of different distributions but similar means. The artwork is adopted
from [9].

Kullback-Leibler divergence. However, computing the distribution similarity be-
tween every two uncertain objects in a large data set is very costly. To tackle
the cost, we developed a fast Gauss transform method.

Outlier detection is another frequently used data mining task, which finds
objects that are significantly different from the majority. Outlier detection on
certain data has been well studied [1].

Aggarwal and Yu [2] proposed the notion of (δ, η)-outlier. An uncertain object
O is a (δ, η)-outlier if the probability of O lying in a region in some subspace with
density at least η is less than δ. To mine (δ, η)-outliers, one can first enumerate all
non-empty subspaces in a bottom-up, breadth-first manner. For each subspace,
one can use sampling and micro-clusters to estimate the density distribution,
and check whether there is an (δ, η)-outlier. In this method, only outlier objects
are detected, but not outlier instances.

To detect both outlier objects and outlier instances, a straightforward way to
extend existing outlier detection methods to handle uncertain objects works in
two steps. First, for each uncertain object, we can detect and removed outlier
instances. After this step, we can represent each object using an aggregate, such
as mean or median, of all instances of the object. Second, we can detect and
remove outlier objects. However, such a straightforward extension suffers from
a critical drawback. As we just discussed, distribution is an inherent feature of
uncertain objects. Using aggregates, such as mean and median, may not be able
to represent an object well.

In many applications, an uncertain object is associated with some inherent
properties described by a set of conditioning attributes, and a set of instances
described by a set of dependent attributes. For example, to collect environment
surveillance data, the meteorological measures at a location, such as tempera-
ture, pressure, and humidity, may be modeled as a multidimensional random
variable, that is, an uncertain object. Multiple co-located monitors may provide
readings to estimate the random variable. At the same time, the values of those
meteorological measures at a location depend on some conditioning attributes,
such as latitude and longitude.
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To provide a comprehensive solution to detect outliers on uncertain data at
both object level and instance level [9], we observe that objects with similar prop-
erties, such as latitude and longitude, tend to have similar instance distributions.
Consequently, we can learn the normal instances of each object by taking into
account the instances of objects with similar properties. Technically, we learn
the conditional distribution of dependent attributes given the conditioning at-
tributes, and measure the normality, which is the opposite of outlyingness, of
an instance by its conditional probability. At the object level, we detect outlier
objects most of whose instances are outliers.

5 Summary and Challenges

Uncertain data and probabilistic data are ubiquitous in big data and big data
analytics. Therefore, effective and efficient techniques are of high demand in prac-
tice. We reviewed some of the recent progress in analyzing and mining uncertain
data. Particularly, we illustrated the challenges and some ideas about summa-
rizing results in possible worlds, reducing enumeration of all possible worlds and
computing queries on each possible world, a heuristic bounding-pruning-refining
framework, using distributions of instances in objects in analytics, and integrat-
ing analysis at both instance level and object level.

Although good progress has been achieved, there are still many grand chal-
lenges. Particularly, many of the state-of-the-art methods for analyzing and min-
ing uncertain data are developed in the traditional databases and data mining
community. For example, fuzzy methods and rough set methods are two impor-
tant approaches to capture and analyze uncertainty. However, not many existing
uncertain data analysis and mining methods, particularly those on pattern min-
ing, consider fuzzy methods and rough set methods systematically.

Uncertainty may exist in multiple aspects in big data analytics, such as data
level and analysis level. While uncertain data analysis and mining methods
mainly target on uncertainty at the data level, and many existing machine learn-
ing methods, rough set methods, and fuzzy methods embrace uncertainty in
inference process, it is important and interesting to develop a comprehensive
framework to address uncertainty in different aspects in an integrative and con-
sistent way. Instead of categorizing different methods according to the traditional
schools, we have to adopt and develop whatever feasible and effective methods
to tackle the grand challenges posted by uncertainty in big data and big data
analytics.
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Abstract. In inconsistent decision tables, there are groups of rows with
equal values of conditional attributes and different decisions (values of
the decision attribute). We study three approaches to deal with such
tables. Instead of a group of equal rows, we consider one row given by
values of conditional attributes and we attach to this row: (i) the set of
all decisions for rows from the group (many-valued decision approach);
(ii) the most common decision for rows from the group (most common
decision approach); and (iii) the unique code of the set of all decisions
for rows from the group (generalized decision approach). We present ex-
perimental results and compare the depth, average depth and number of
nodes of decision trees constructed by a greedy algorithm in the frame-
work of each of the three approaches.

Keywords: Decision Trees, Greedy Algorithms, Inconsistent Decision
Tables, Boundary Subtables.

1 Introduction

It is not uncommon to have inconsistent decision tables where there are groups of
rows (objects) with equal values of conditional attributes and different decisions
(values of the decision attribute). In this paper, we consider three approaches to
deal with inconsistent decision tables.

The first approach is called many-valued decisions – MVD . We transform
an inconsistent decision table into a decision table with many-valued decisions.
Instead of a group of equal rows with, probably, different decisions we consider
one row given by values of conditional attributes and we attach to this row the
set of all decisions for rows from the group [6]. Our aim here is to find, for a
given row r, a decision from the set of decisions attached to rows equal to r.

The second approach is called the most common decision – MCD . We trans-
form an inconsistent decision table into consistent decision table with one-valued
decisions. Instead of a group of equal rows with, probably, different decisions,
we consider one row given by values of conditional attributes and we attach to

D. Ciucci et al. (Eds.): RSFDGrC 2013, LNAI 8170, pp. 46–54, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Three Approaches to Deal with Inconsistent Decision Tables 47

this row the most common decision for rows from the group. Our aim here is to
find, for a given row r, the most common decision attached to rows equal to r.

The third approach is well known in the rough set theory [9, 10] and is called
generalized decision – GD . In this case we transform an inconsistent decision
table into the table with many-valued decisions and after that encode each set
of decisions by a number (decision) such that equal sets are encoded by equal
numbers and different sets – by different numbers. Our aim here is to find, for a
given row r, all decisions attached to rows equal to r.

In literature, often, problems that are connected with multi-label data are con-
sidered from the point of view of classification (multi-label classification problem)
[3–5, 8, 11–13]. But here our aim is to show that the proposed approach based
on many-valued decisions can be useful from the point of view of knowledge
representation.

In [2, 7] we studied a greedy algorithm for construction of decision trees for
decision tables with many-valued decisions. This algorithm can be used also in
the cases of MCD and GD approaches: we can consider decision tables with
one-valued decisions as decision tables with many-valued decisions where sets of
decisions attached to rows have one element.

This paper is an extension of the conference publication [2]. It is devoted to
the comparison of depth, average depth and number of nodes of trees constructed
by the greedy algorithm in the framework of MVD , MCD and GD approaches.
All definitions are given for binary decision tables. However, they can be easily
extended to the decision tables filled by numbers from the set {0, . . . , k − 1},
where k ≥ 3.

We present experimental results for data sets from UCI Machine Learning
Repository [1] that are converted into inconsistent decision tables by removal
of some conditional attributes. These results show that the use of MCD and,
especially, MVD approaches can reduce the complexity of trees in comparison
with GD approach. It means that MVD and MCD approaches can be useful
from the point of view of knowledge representation.

This paper consists of six sections. Section 2 contains main definitions. In
Sect. 3, we consider decision tables which have at most t decisions in each set
of decisions attached to rows. In Sect. 4, we present the greedy algorithm for
construction of decision trees. Section 5 contains results of experiments and
Sect. 6 – conclusions.

2 Main Definitions

A (binary) decision table with one-valued decisions is a rectangular table T
filled by numbers from the set {0, 1}. Columns of this table are labeled with
conditional attributes f1, . . . , fn. Each row is labeled with a natural number
(decision) which is interpreted as a value of the decision attribute. It is possible
that T is inconsistent, i.e., contains equal rows with different decisions. The table
T can contain also equal rows with equal decisions.
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A (binary) decision table with many-valued decisions is a rectangular table
filled by numbers from the set {0, 1}. Columns of this table are labeled with
conditional attributes f1, . . . , fn. Rows of the table are pairwise different, and
each row is labeled with a nonempty finite set of natural numbers (set of deci-
sions). Note that each consistent decision table with one-valued decisions can be
interpreted also as a decision table with many-valued decisions. In such table,
each row is labeled with a set of decisions which has one element.

The most frequent decision attached to rows from a group of rows in a decision
table T with one-valued decisions is called the most common decision for this
group of rows. If we have more than one such decision we choose the minimum
one.

To work with inconsistent decision tables we consider three approaches:

– many-valued decisions – MVD ,
– most common decision – MCD ,
– generalized decision – GD .

For approach called many-valued decisions – MVD , we transform an inconsistent
decision table T into a decision table TMVD with many-valued decisions. Instead
of a group of equal rows with, probably, different decisions, we consider one row
from the group and we attach to this row the set of all decisions for rows from
the group [6].

T 0 =

f1 f2 f3
r1 1 1 1 1
r2 0 1 0 1
r3 0 1 0 3
r4 1 1 0 2
r5 0 0 1 2
r6 0 0 1 3
r7 1 0 0 1
r8 1 0 0 2

, T 0
MVD =

f1 f2 f3
r1 1 1 1 {1}
r2 0 1 0 {1, 3}
r3 1 1 0 {2}
r4 0 0 1 {2, 3}
r5 1 0 0 {1, 2}

, T 0
GD =

f1 f2 f3
r1 1 1 1 1
r2 0 1 0 2
r3 1 1 0 3
r4 0 0 1 4
r5 1 0 0 5

, T 0
MCD =

f1 f2 f3
r1 1 1 1 1
r2 0 1 0 1
r3 1 1 0 2
r4 0 0 1 2
r5 1 0 0 1

Fig. 1. Transformation of inconsistent decision table T 0 into decision tables T 0
MVD ,

T 0
GD and T 0

MCD

For approach called most common decision – MCD , we transform inconsistent
decision table T into consistent decision table TMCD with one-valued decision.
Instead of a group of equal rows with, probably, different decisions, we consider
one row from the group and we attach to this row the most common decision
for the considered group of rows.

For approach called generalized decision – GD , we transform inconsistent
decision table T into consistent decision table TGD with one-valued decisions.
Instead of a group of equal rows with, probably, different decisions, we consider
one row from the group and we attach to this row the set of all decisions for rows
from the group. Then instead of a set of decisions we attach to each row a code
of this set – a natural number such that the codes of equal sets are equal and the
codes of different sets are different. We have shown in Fig. 1 the transformation
of an inconsistent decision table T 0 using all the three approaches.



Three Approaches to Deal with Inconsistent Decision Tables 49

To unify some notions for decision tables with one-valued and many-valued
decisions, we will interpret decision table with one-valued decisions as a decision
table with many-valued decisions where each row is labeled with a set of decisions
that has one element.

We will say that T is a degenerate table if either T is empty (has no rows),
or the intersection of sets of decisions attached to rows of T is nonempty.

A table obtained from T by removal of some rows is called a subtable of T .
A subtable T ′ of T is called boundary subtable if T ′ is not degenerate but each
proper subtable of T ′ is degenerate. We denote by B(T ) the number of boundary
subtables of the table T . It is clear that T is a degenerate table if and only if
B(T ) = 0. The value B(T ) will be interpreted as uncertainty of T .

T1 =

f1 f2 f3 d
r2 0 1 0 {1, 3}
r4 0 0 1 {2, 3}
r5 1 0 0 {1, 2}

T2 =
f1 f2 f3 d

r1 1 1 1 {1}
r4 0 0 1 {2, 3}

T3 =
f1 f2 f3 d

r2 0 1 0 {1, 3}
r3 1 1 0 {2}

T4 =
f1 f2 f3 d

r1 1 1 1 {1}
r3 1 1 0 {2}

Fig. 2. All boundary subtables of the decision table T 0
MVD (see Fig. 1)

Figure 2 presents all four boundary subtables of the decision table T 0
MVD

depicted in Fig. 1. The number of boundary subtables of the decision table
T 0
MCD is equal to six. The number of boundary subtables of the decision table

T 0
GD is equal to 10. Each boundary subtable of tables T 0

MCD and T 0
GD has two

rows (see Proposition 1).
Let fi1 , . . . , fim ∈ {f1, . . . , fn} and δ1, . . . , δm ∈ {0, 1}. We denote by

T (fi1 , δ1) . . . (fim , δm)

the subtable of the table T which consists of all rows that at the intersection
with columns fi1 , . . . , fim have numbers δ1, . . . , δm respectively. For example, the
subtable T (f1, 0) will contain rows from T for which the value of the attribute
f1 is equal to 0. Similarly, the subtable T (f1, 0)(f2, 1) will have the rows from
T , for which, attribute f1 has the value 0 and f2 has the value 1. In this way,
we construct subtables by choosing attributes and their corresponding values.

A decision tree over T is a finite tree with root in which each terminal node is
labeled with a decision (a natural number), and each nonterminal node is labeled
with an attribute from the set {f1, . . . , fn}. Two edges start in each nonterminal
node. These edges are labeled with 0 and 1 respectively.

Let Γ be a decision tree over T and v be a node of Γ . There is one to
one mapping between node v and subtable of T i.e. for each node v, we have
an unique subtable of T . We denote T (v) as a subtable of T that is mapped
for a node v of decision tree Γ . If node v is the root of Γ then T (v) = T .
Otherwise, let nodes and edges in the path from the root to node v be labeled
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with attributes fi1 , . . . , fim and numbers δ1, . . . , δm respectively. Then T (v) is
the subtable T (fi1 , δ1) . . . (fim , δm) of the table T .

It is clear that for any row r of T there exists exactly one terminal node v
in Γ such that r belongs to T (v). The decision attached to v will be considered
as the result of the work of Γ on the row r. We denote by lΓ (r) the length of
the path from the root of Γ to the node v. We will say that Γ is a decision tree
for the table T if, for any row r of T , the result of the work of Γ on the row r
belongs to the set of decisions attached to the row r. An example of a decision
tree for the table T 0

MVD can be found in Fig. 3.
We denote by h(Γ ) the depth of Γ which is the maximum length of a path

from the root to a terminal node. Let Δ(T ) be the set of rows of T . We denote
by havg(Γ ) the average depth of Γ which is equal to

∑
r∈Δ(T ) lΓ (r)/|Δ(T )|. We

denote by N(Γ ) the number of nodes in the decision tree Γ .

3 Set Tab(t) of Decision Tables

We denote by Tab(t), where t is a natural number, the set of decision tables with
many-valued decisions such that each row in the table has at most t decisions
(is labeled with a set of decisions which cardinality is at most t).

Proposition 1. [6] Each boundary subtable of a table T ∈ Tab(t) has at most
t + 1 rows.

Therefore, for tables from Tab(t), there exists a polynomial time algorithm for
the finding of all boundary subtables and the computation of parameter B(T ).
For example, for any decision table T with one-valued decisions (in fact, for any
table from Tab(1)), the equality B(T ) = P (T ) holds, where P (T ) is the number
of unordered pairs of rows of T with different decisions. Hence, we count number
of boundary subtables by checking over all possible subtables from T . First, we
start from all possible combination of 2-rows subtables of T . For each 2-rows
subtable, if it is boundary subtable then we count it. However, if it is degenerate
subtable, then we expand it into 3-rows subtable by adding another row which
was not added before. Henceforth, in a similar way, we check this new 3-rows
subtable for boundary subtable, and continue expanding if it is degenerate. We
continue this process until we expand it into (t + 1)-rows subtables of T , and
finish the algorithm by returning all boundary subtables that have been counted.

4 Greedy Algorithm U

The greedy algorithm U , for a given decision table T with many-valued decisions,
constructs a decision tree U(T ) for T (see Algorithm 1).

Now, we present an example of the greedy algorithm work for construction
of a decision tree for the decision table T 0

MVD depicted in Fig. 1. All boundary
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Algorithm 1. Greedy algorithm U

Require: Binary decision table T with many-valued decisions and attributes
f1, . . . , fn.

Ensure: Decision tree U(T ) for T .
Construct the tree G consisting of a single node labeled with the table T ;
while (true) do

if No one node of the tree G is labeled with a table then
Denote the tree G by U(T );

else
Choose a node v in G which is labeled with a subtable T ′ of the table T ;
if B(T ′) = 0 then

Instead of T ′ mark the node v with the most common decision for T ′;
else

for i = 1, . . . , n, compute the value

Q(fi)=max{B(T ′(fi, 0)), B(T ′(fi, 1))};

Instead of T ′ mark the node v with the attribute fi0 , where i0 is the minimum
i for which Q(fi) has the minimum value;
For each δ ∈ {0, 1}, add to the tree G the node v(δ) and mark this node with
the subtable T ′(fi0 , δ);
Draw an edge from v to v(δ) and mark this edge with δ;

end if
end if

end while

subtables of the decision table T 0
MVD are depicted in Fig. 2. The table T 0

MVD

is not degenerate, so for i ∈ {1, 2, 3}, we compute the value Q(fi): Q(f1) =
max{0, 1} = 1, Q(f2) = max{0, 2} = 2, Q(f3) = max{1, 1} = 1. We choose the
attribute f1 and assign it to the root of the constructed tree. The decision tree
U(T 0

MVD) is depicted in Fig. 3.
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Fig. 3. Decision tree U(T 0
MVD)
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Table 1. Characteristics of inconsistent decision tables

Decision RowsAttr Spectrum
table T #1 #2 #3#4#5#6

balance-scale-1 125 3 45 50 30

breast-cancer-1 193 8 169 24

breast-cancer-5 98 4 58 40

cars-1 432 5 258 161 13

flags-5 171 21 159 12

hayes-roth-data-1 39 3 22 13 4

kr-vs-kp-5 1987 31 1564 423

kr-vs-kp-4 2061 32 1652 409

lymphography-5 122 13 113 9

mushroom-5 4078 17 4048 30

nursery-1 4320 7 28581460 2

nursery-4 240 4 97 96 47

spect-test-1 164 21 161 3

teeth-1 22 7 12 10

teeth-5 14 3 6 3 0 5 0 2

tic-tac-toe-4 231 5 102 129

tic-tac-toe-3 449 6 300 149

zoo-data-5 42 11 36 6

5 Experimental Results

We consider a number of decision tables from UCI Machine Learning Repository
[1]. In some tables there were missing values. Each such value was replaced with
the most common value of the corresponding attribute. Some decision tables con-
tain conditional attributes that take unique value for each row. Such attributes
were removed. We removed from these tables some conditional attributes. As
a result, we obtain inconsistent decision tables. After that we transform each
such table T into tables TMVD , TMCD and TGD as it was described in Sec-
tion 2. The information about these decision tables can be found in Table 1.
This table contains name of inconsistent table T in the form “name of initial
table from [1]”-“number of removed conditional attributes”, number of rows in
TMVD , TMCD , TGD (column “Rows”), number of attributes in TMVD , TMCD , TGD

(column “Attr”), and spectrum of the table TMVD (column “Spectrum”). Spec-
trum of a decision table with many-valued decisions is a sequence #1, #2,. . . ,
where #i, i = 1, 2, . . ., is the number of rows labeled with sets of decisions with
the cardinality equal to i.

Table 2 contains depth, average depth and number of nodes for decision trees
U(TMVD), U(TMCD) and U(TGD) constructed by the greedy algorithm U for de-
cision tables TMVD , TMCD and TGD derived from 18 inconsistent decision tables
T (see Table 1). The obtained results show that the decision trees constructed
in the frameworks of MVD approach are usually simpler than the decision trees
constructed in the frameworks of MCD and the decision trees constructed in
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Table 2. Depth, average depth and number of nodes for decision trees U(TMVD ),
U(TGD) and U(TMCD)

Decision depth average depth number of nodes
table T MVD MCD GD MVD MCD GD MVD MCD GD

balance-scale-1 2 3 3 2 2.72 3 31 121 156

breast-cancer-1 6 6 7 3.72 3.731 4.119 154 159 220

breast-cancer-5 3 4 4 1.837 2.184 2.602 49 77 102

cars-1 5 5 5 2.903 3.646 4.507 90 300 462

flags-5 6 6 6 3.825 3.889 3.906 217 224 232

hayes-roth-data-1 2 3 3 1.744 1.974 2.308 17 26 39

kr-vs-kp-5 13 14 14 8.241 8.575 9.487 783 1135 1811

kr-vs-kp-4 12 14 14 8.125 8.531 9.471 785 1107 1833

lymphography-5 6 7 7 3.803 4.221 4.361 79 109 121

mushroom-5 7 8 8 2.782 2.797 2.898 249 260 265

nursery-1 7 7 7 2.825 4.446 4.946 430 1380 2130

nursery-4 2 4 4 1.333 2.783 2.417 9 133 61

spect-test-1 7 9 10 3.348 3.354 4.335 37 47 61

teeth-1 4 4 4 2.818 2.818 2.818 35 35 35

teeth-5 3 3 3 2.214 2.214 2.214 20 20 20

tic-tac-toe-4 5 5 5 2.996 4.247 4.541 76 200 257

tic-tac-toe-3 6 6 6 4.265 4.804 5.276 223 365 513

zoo-data-5 4 6 7 3.214 3.452 4.095 19 25 41

average 5.56 6.33 6.5 3.44 3.91 4.3 183.5 317.94 464.39

the frameworks of MCD approach are usually simpler than the decision trees
constructed in the framework of GD approach.

6 Conclusions

We considered three approaches for the work with inconsistent decision tables,
and compared for these approaches the complexity of decision trees constructed
by the greedy algorithm. Experimental results show that the approach based on
the many-valued decisions outperforms the approaches based on the generalized
decisions and the most common decisions.
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Abstract. We have investigated rough set-based concepts for a given
Non-deterministic Information System (NIS). In this paper, we con-
sider generating a NIS from a Deterministic Information System (DIS)
intentionally. A NIS Φ is seen as a diluted DIS φ, and we can hide
the actual values in φ by using Φ. We name this way of hiding Infor-
mation Dilution by non-deterministic information. This paper considers
information dilution and its application to hiding the actual values in a
table.

Keywords: Rough sets, NIS-Apriori algorithm, Information dilution,
Privacy preserving, Randomization, Perturbation.

1 Introduction

In our previous research, we coped with rule generation in Non-deterministic
Information Systems (NISs) [7, 11–13]. In contrast to Deterministic
Information Systems (DISs) [9, 14], NISs were proposed by Pawlak [9],
Orłowska [8] and Lipski [5, 6] in order to better handle information incomplete-
ness in data. We have proposed certain and possible rules in NISs, and proved
an algorithm named NIS-Apriori is sound and complete for defined certain and
possible rules. We have also implemented NIS-Apriori [10].

This paper considers the connection between information incompleteness and
information hiding (or the randomization and the perturbation in privacy-
preserving [2]). We intentionally add information incompleteness, i.e., non-deter-
ministic values, to a DIS for hiding the actual values, then a DIS is translated
to a NIS. For such a NIS, we can apply our previous framework including
NIS-Apriori.
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Fig. 1. NIS Φ1 and 16 derived DISs. Here, Domainage={young,middle, senior},
Domainsex={male, female}, Domainsalary={low, normal, high}. The number of de-
rived DISs is finite. However, it usually increases in the exponential order with respect
to the level of incompleteness of NIS′s values.

The paper is organized as follows: Section 2 recalls rule generation in NISs.
Section 3 introduces the framework of information dilution, and considers prop-
erties. Section 4 considers an algorithm for dilution and its relation to reduction
[9], and Section 5 concludes the paper.

2 Apriori-Based Rule Generation in NISs

We omit any formal definition. Instead, we show an example in Figure 1. We
identify a DIS with a standard table. In a NIS, each attribute value is a set. If
the value is a singleton, there is no incompleteness. Otherwise, we have a set of
possible values. We can interpret this situation by saying that each set includes
the actual value but we do not know which of them is the actual one.

A rule (more correctly, a candidate for a rule) is an implication τ in the form
of Condition_part ⇒ Decision_part. In a NIS, the same τ may be generated
from different tuples, so we use notation τx to express that τ is generated by
an object x. For example in Φ1, an implication τ : [age, senior] ⇒ [salary, high]
occurs in objects 1 and 3. Therefore, there are τ1 and τ3. If τx is the unique
implication from an object x, we say τx is definite, and otherwise we say τx is
indefinite. In this example, τ1 is indefinite and τ3 is definite.

In a DIS, the following holds for each y ∈ [x]CON ∩ [x]DEC (CON : condition
attributes, DEC: decision attributes).

support(τy)=support(τx), accuracy(τy)=accuracy(τx).
Therefore, we may identify τx with τ . However in a NIS, this may not hold. The
property of each τ1 and τ3 is slightly different, namely the one is indefinite and
the other is definite. If there is at least one τx satisfying constraint, we see this
τx is the evidence for causing τ is a rule. There may be other τy not satisfying
the constraint. We employ this strategy for rule generation in a NIS.
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Fig. 2. A distribution of pairs (support,accuracy) for τx. There exists φmin ∈ DD(τx)
which makes both support(τx) and accuracy(τx) the minimum. There exists φmax ∈
DD(τx) which makes both support(τx) and accuracy(τx) the maximum. We denote
such quantities as minsupp, minacc, maxsupp and maxacc, respectively.

Let DD(Φ) and DD(τx) denote {φ | φ is a derived DISs from NIS Φ} and
{φ ∈ DD(Φ) | τx occurs in φ }, respectively. According to rule generation (em-
ploying support and accuracy) in DISs [9], rule generation with missing values
[3, 4] and data mining in transaction data [1], we defined the next tasks in rule
generation in NISs [11].

Specification of the Rule Generation Tasks in a NIS
Let us consider the threshold values α and β (0 < α, β ≤ 1).

(The Lower System: Certain rule generation task) Find each definite im-
plication τx such that support(τx) ≥ α and accuracy(τx) ≥ β hold in each
φ ∈ DD(τx). We say such τ is a certain rule and τx is an evidence of supporting
τ in a NIS.

(The Upper System: Possible rule generation task) Find each implication τx

such that support(τx) ≥ α and accuracy(τx) ≥ β hold in some φ ∈ DD(τx). If
such τ is not certain rule, we say τ is a possible rule and τx is an evidence of
supporting τ in a NIS.

Both the above tasks depend on |DD(τx)|. In [11], we proved some simplify-
ing results illustrated by Figure 2. We also showed how to effectively compute
support(τx) and accuracy(τx) for φmin and φmax independently from |DD(τx)|.
Due to Figure 2, we have the following equivalent specification.

Equivalent Specification of the Rule Generation Tasks in a NIS
(The Lower System: Certain rule generation task) Find each definite τx such

that minsupp(τx) ≥ α and minacc(τx) ≥ β (see Figure 2).
(The Upper System: Possible rule generation task) Find each implication τx

such that maxsupp(τx) ≥ α and maxacc(τx) ≥ β (see Figure 2).



58 H. Sakai et al.

Example. In NIS Φ1, we at first generate two blocks inf and sup for each
descriptor. These two blocks are the extensions from Grzymała-Busse’s blocks
[3, 4], and inf defines the minimum equivalence class. On the other hand, sup
defines the maximum equivalence class. For example,

inf([age, s])={3}, sup([age, s])={1, 2, 3},
inf([salary, h])={1, 3}, sup([salary, h])={1, 3}.

Since sup([age, s])∩ sup([salary, h])={1, 3}, we know there are τ1 and τ3 for an
implication τ : [age, s] ⇒ [salary, h]. As for τ3, 3 ∈ inf([age, s])∩inf([salary, h])
holds, so we know τ3 is definite. In this case, we have the following.

minsupp(τ3)=(|inf([age, s]) ∩ inf([salary, h])|)/3=|{3}|/3=1/3.
minacc(τ3)= |inf([age,s])∩inf([salary,h])|

(|inf([age,s])|+|OUT |) =|{3}|/(|{3}|+ |{2}|)=1/2.
maxsupp(τ3)=(|sup([age, s]) ∩ sup([salary, h])|)/3=|{1, 3}|/3=2/3.
maxacc(τ3)= |sup([age,s])∩sup([salary,h])|

(|inf([age,s])|+|IN |) =|{1, 3}|/(|{3}|+ |{2}|)=2/2=1.0.
OUT=(sup([age, s]) \ inf([age, s])) \ inf([salary, h]),
IN=(sup([age, s]) \ inf([age, s])) ∩ sup([salary, h]).

In the above calculation, we do not handle DD(Φ1) at all. By using blocks inf
and sup, it is possible to calculate four criterion values. We extended rule gen-
eration to NISs and implemented a software tool with NIS-Apriori algorithm
[11]. NIS-Apriori does not depend on the number of derived DISs, and the
complexity is almost the same as the original Apriori algorithm [1].

3 Information Dilution

This section considers a framework of information dilution.

3.1 An Intuitive Example

We at first consider DIS16 and Φ1 in Figure 1. Since a DIS is a special case
of a NIS, we can apply NIS-Apriori to each DIS. In this case, the lower and
the upper systems generate the same rules. The following is the real execution
under the decision attribute salary, α=0.5 and β=0.6.

?-step1. /* Rule generation in DIS16 under α=0.5 and β=0.6 */
File Name for Read Open: dis16.pl.
SUPPORT:0.5, ACCURACY:0.6
===== Lower System ==========================================
[1] MINSUPP=0.667, MINACC=0.667
[age,senior] ==> [salary,high] [1,3] /* Obtained rule */
[2] MINSUPP=0.333, MINACC=0.5
(Lower System Terminated)
===== Upper System ==========================================
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[1] MAXSUPP=0.667, MAXACC=0.667
: : :

EXEC_TIME=0.0 (sec)

We obtained an implication [age, senior] ⇒ [salary, high] from DIS16. Now,
we consider the 2nd person’s tuple (senior, female, normal). If we employ the
following replacement,

senior to [young, senior] (semantically young or senior),
female to [male, female],
normal to [low, normal],

the 2nd person’s tuple is changed to

([young, senior], [male, female], [low, normal]).

This is an example of information dilution. There are 8 possible tuples and one
of the tuple is actual, so in such case we say the actual tuple is diluted with
1/8 degree. Similarly, DIS16 is diluted to Φ1 with 1/16 degree in Figure 1. The
following is the real execution of rule generation in Φ1.

?-step1. /* Rule generation in Φ1 under α=0.5 and β=0.6 */
File Name for Read Open: Phi1.pl.
SUPPORT:0.5, ACCURACY:0.6
===== Lower System ==========================================
(Lower System Terminated)
===== Upper System ==========================================
[1] MAXSUPP=0.667, MAXACC=1.0
[age,senior] ==> [salary,high] [1,3] /* Obtained rule */
[2] MAXSUPP=0.333, MAXACC=1.0
[3] MAXSUPP=0.333, MAXACC=1.0
(Upper System Terminated)
EXEC_TIME=0.0 (sec)

In this execution, we know that the results (an obtained rule) in Φ1 is the same
as the original DIS16. Namely, DIS16 and Φ1 are equivalent in rule generation,
but some actual values are hidden in Φ1. Even though this example depends
on threshold values α=0.5 and β=0.6, these DIS16 and Φ1 give an example of
information dilution with obtainable rules preserved.

Figure 3 shows the chart of information dilution, namely the relation between
a DIS, a NIS and obtained rules. In data mining, we usually do not open
the original data set, namely a DIS, to save privacy-preserving. However, we
may open the diluted data set, namely a NIS, because some data in a NIS
are changed to disjunctive information. We may consider diluting some specified
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Fig. 3. Formalization of information dilution with constraint

person’s data intentionally. Like this, information dilution may take the role of
hiding the actual values in a table.

3.2 Some Properties and a Formalization of a Problem

Now, we confirm the following facts.

(Fact 1). A DIS φ is diluted to a NIS Φ.
(Fact 2). NIS-Apriori is applicable to Φ.
(Fact 3). For Φ diluted from φ, each rule in φ is obtainable by the upper system
in Φ.

(Fact 3) is the key background. Let us suppose an implication τx satisfies
support(τx) ≥ α and accuracy(τx) ≥ β in φ, and φ is diluted to Φ. Then,
we know φ ∈ DD(τx) ⊆ DD(Φ). According to the specification of the upper
system, τ satisfies the condition of a possible rule, namely τ is obtainable in the
upper system. However, we also have a problem. For φ′ ∈ DD(Φ) (φ′ 	= φ), the
upper system may pick up another implication η as a possible rule. Therefore,
we need to know the next fact.

(Fact 4). For Φ diluted from φ, some rules not related to φ may be obtained by
the upper system in Φ. We name such rules unexpected rules.
(Fact 5). If we dilute much more attribute values, we may have much more
unexpected rules. On the other hand, if we dilute less attribute values, we will
have less unexpected rules.

According to five facts, we have the problem in the following.

(Problem of Information Dilution). Dilute a DIS φ to a NIS Φ so as not
to generate any unexpected rules.
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4 A Example on an Algorithm for Information Dilution

We are now starting this work, and we are considering how to dilute a DIS to
a NIS. Therefore, we employ an exemplary DIS φ1 in Table 1 for considering
an algorithm. For simplicity, we fix constraint such that the decision attribute
is D, maxsupp(τx) = α > 0 and maxacc(τx) = β = 1.0. In this example, we
dilute φ1 to a NIS with obtainable 7 rules preserved in Table 2. We can easily
obtain them by using a software tool [10].

Table 1. An exemplary DIS φ1. Here,
DomainA={1, 2, 3}, DomainB={1, 2},
DomainC={1, 2} and DomainD={1, 2}.

OB A B C D

1 3 1 1 1

2 2 1 1 1

3 1 1 1 2

4 3 1 2 1

5 3 1 1 1

6 2 2 2 2

7 1 2 1 2

8 2 2 2 2

Table 2. Seven rules in φ1

Rules Objects

(Imp 1) [A,1]==>[D,2] [3,7]
(Imp 2) [A,3]==>[D,1] [1,4,5]
(Imp 3) [B,2]==>[D,2] [6,7,8]
(Imp 4) [A,2]&[B,1]==>[D,1] [2]
(Imp 5) [A,2]&[C,1]==>[D,1] [2]
(Imp 6) [A,2]&[C,2]==>[D,2] [6,8]
(Imp 7) [B,1]&[C,2]==>[D,1] [4]

4.1 Reduction and Dilution

Reduction seems to be applicable to information dilution, namely we apply re-
duction to a table, and we replace non-necessary attribute values with the set of
all attribute values. However, this way is not sufficient for preserving the rules.

In φ1, the degree of data dependency from {A,B,C} to {D} is 1.0, and 8 ob-
jects are consistent for condition attributes A,B,C and decision attribute D. In
reduction, we have a tuple (3,−,−, 1) from object 1, 4, 5, and a tuple (1,−,−, 2)
from object 3, 7, because they are still consistent. After this reduction, it seems
possible to replace each − symbol with all attribute values, i.e., [1, 2]. Like this
we have a tuple (1, [1, 2], [1, 2], 2) from object 3. In this tuple, we need to con-
sider four cases (1, 1, 1, 2), (1, 1, 2, 2), (1, 2, 1, 2) and (1, 2, 2, 2). An implication
τ2 : [B, 1]&[C, 1] ⇒ [D, 1] contradicts to η3 : [B, 1]&[C, 1] ⇒ [D, 2] related to
the tuple (1, 1, 1, 2). However in other three cases, τ2 does not contradict to any
implication, and τ2 becomes the unexpected rule.

4.2 Base Step Dilution: Dilution in Each Attribute

We propose a dilution process related to reduction. We start with NIS Φ2 in
Table 3, then we fix some attribute values which induce 7 rules.
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Table 3. NIS Φ2 at the beginning

OB A B C D

1 {1, 2, 3} {1, 2} {1, 2} {1, 2}
2 {1, 2, 3} {1, 2} {1, 2} {1, 2}
3 {1, 2, 3} {1, 2} {1, 2} {1, 2}
4 {1, 2, 3} {1, 2} {1, 2} {1, 2}
5 {1, 2, 3} {1, 2} {1, 2} {1, 2}
6 {1, 2, 3} {1, 2} {1, 2} {1, 2}
7 {1, 2, 3} {1, 2} {1, 2} {1, 2}
8 {1, 2, 3} {1, 2} {1, 2} {1, 2}

(Step 1-1). In order to generate (Imp 1), (Imp 2) and (Imp 3), we fix [A, 3] and
[D, 1] in object 1 ∈ [1, 4, 5], [A, 1] and [D, 2] in object 7 ∈ [3, 7], [B, 2] and [D, 2]
in object 8 ∈ [6, 7, 8].
(Step 1-2). In order to generate inconsistency, we fix [A, 2] and [D, 1] in object
2, [A, 2] and [D, 2] in object 6, [B, 1] and [D, 1] in object 2, [B, 1] and [D, 2] in
object 3, [C, 1] and [D, 1] in object 2, [C, 1] and [D, 2] in object 3, [C, 2] and
[D, 1] in object 4, [C, 2] and [D, 2] in object 6.

Table 4. NIS Φ3 after the base step

OB A B C D

1 {3} {1, 2} {1, 2} {1}
2 {2} {1} {1} {1}
3 {1, 2, 3} {1} {1} {2}
4 {1, 2, 3} {1, 2} {2} {1}
5 {1, 2, 3} {1, 2} {1, 2} {1, 2}
6 {2} {1, 2} {2} {2}
7 {1} {1, 2} {1, 2} {2}
8 {1, 2, 3} {2} {1, 2} {2}

After these two steps, we have Φ3 in Table 4. Since three implications (Imp 1),
(Imp 2) and (Imp 3) appear in each derived DIS, they are also rules in the
upper system. We have the next important fact.

(Fact 6). Any implication τx : [A, 1]&Condition_part ⇒ [D, 2] in a derived
DIS φ ∈ DD(Φ3) is redundant for (Imp 1). Therefore, accuracy(τx) = 1.0 holds
in this φ. Any implication ηy : [A, 1]&Condition_part ⇒ [D, 1] in a derived DIS
φ′ ∈ DD(Φ3) is inconsistent, because (Imp 1) also appears in this φ′. Therefore,
accuracy(ηy) < 1.0 holds in this φ′. According to the above consideration, we do
not have to pay any attention to any implication with a descriptor [A, 1]. The
same holds for descriptors [A, 3], [B, 2].
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4.3 Recursive Steps Dilution: Dilution in a Set of Attributes

Similarly to the base step, we fix some attribute values for (Imp 4), (Imp 5),
(Imp 6) and (Imp 7).

(Step 2-1). The attribute values of (Imp 4) and (Imp 5) are fixed in Φ3. We fix
[B, 1] in object 4 and [C, 2] in object 6.

According to (Fact 6), we do not have to consider any implication including
descriptors [A, 1], [A, 3] and [B, 2]. It is enough to consider descriptors [A, 2],
[B, 1], [C, 1] and [C, 2]. Then, we have 10 implications, where unexpected rules
may exist.

(1) [A,2]&[B,1] ==> [D,1], (2) [A,2]&[B,1] ==> [D,2],
(3) [A,2]&[C,1] ==> [D,1], (4) [A,2]&[B,1] ==> [D,2],
(5) [A,2]&[C,2] ==> [D,1], (6) [A,2]&[C,2] ==> [D,2],
(7) [B,1]&[C,1] ==> [D,1], (8) [B,1]&[C,1] ==> [D,2],
(9) [B,1]&[C,2] ==> [D,1], (10) [B,1]&[C,2] ==> [D,2].

(Step 2-2). Here, (1) is (Imp 4), (3) is (Imp 5). They are obtainable in object
2. (6) is (Imp 6), which is obtainable in object 6. (9) is (Imp 7), and we fix [B, 1]
in object 4. According to (Fact 6), any of (2), (4), (5) and (10) does not satisfy
accuracy(τx)=1.0 in any derived DISs. (7) in object 2 and (8) in object 3 are
inconsistent in any derived DISs.

After (Step 2-1) and (Step 2-2), we have Φ4 below.

Table 5. NIS Φ4 after the 2nd step

OB A B C D

1 {3} {1, 2} {1, 2} {1}
2 {2} {1} {1} {1}
3 {1, 2, 3} {1} {1} {2}
4 {1, 2, 3} {1} {2} {1}
5 {1, 2, 3} {1, 2} {1, 2} {1, 2}
6 {2} {1, 2} {2} {2}
7 {1} {1, 2} {1, 2} {2}
8 {1, 2, 3} {2} {1, 2} {2}

In Φ4, all 7 implications (Imp 1) to (Imp 7) are all obtainable. There is a con-
junction of descriptors [B, 1]&[C, 1] which causes inconsistency, so we need to
consider a conjunction of descriptors [A,_]&[B, 1]&[C, 1]. However, such con-
junction is redundant, and we do not have to consider it. The following is the
real execution. If there is an implication τx, maxsupp(τx)>0.1 holds. Therefore,
we set α=0.1 instead of α>0.
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?-step1. /* Rule p ⇒ q in Φ4 under α=0.1 and β=1.0 */
File Name for Read Open: Phi4.pl.
SUPPORT:0.1, ACCURACY:1.0
===== Lower System ==========================================

: : :
(Next Candidates are Remained) [[[1,1],[4,2]],[[1,2],[4,1]], :::
===== Upper System ==========================================
[1] MAXSUPP=0.125, MAXACC=0.5
[2] MAXSUPP=0.375, MAXACC=1.0
[a,1] ==> [d,2] [3,7,8] /* (Imp 1) in φ1 */

: : :
[5] MAXSUPP=0.375, MAXACC=1.0
[a,3] ==> [d,1] [1,4,5] /* (Imp 2) in φ1 */

: : :
[10] MAXSUPP=0.5, MAXACC=1.0
[b,2] ==> [d,2] [5,6,7,8] /* (Imp 3) in φ1 */
(Next Candidates are Remained) [[[1,2],[4,1]],[[1,2],[4,2]], :::
EXEC_TIME=0.0 (sec)

?-step2. /* Rule p1&p2 ⇒ q in Φ4 under α=0.1 and β=1.0 */
===== Lower System ==========================================

: : :
(Next Candidates are Remained) [[[1,2],[2,1],[4,1]],[[1,2], :::
===== Upper System ==========================================
[1] MAXSUPP=0.375, MAXACC=1.0
[a,2]&[b,1] ==> [d,1] [2,4,5] /* (Imp 4) in φ1 */

: : :
[3] MAXSUPP=0.25, MAXACC=1.0
[a,2]&[c,1] ==> [d,1] [2,5] /* (Imp 5) in φ1 */

: : :
[6] MAXSUPP=0.375, MAXACC=1.0
[a,2]&[c,2] ==> [d,2] [5,6,8] /* (Imp 6) in φ1 */

: : :
[9] MAXSUPP=0.375, MAXACC=1.0
[b,1]&[c,2] ==> [d,1] [1,4,5] /* (Imp 7) in φ1 */

: : :
(Next Candidates are Remained) [[[2,1],[3,1],[4,1]], :::
EXEC_TIME=0.0 (sec)

?-step3. /* Rule p1&p2&p3 ⇒ q in Φ4 under α=0.1 and β=1.0 */
===== Lower System ==========================================
[1] MINSUPP=0.125, MINACC=0.333

: : :
[4] MINSUPP=0.0, MINACC=0.0
(Lower System Terminated)
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===== Upper System ==========================================
(Upper System Terminated)
EXEC_TIME=0.0 (sec)

In step 1, we obtained three implications (Imp 1), (Imp 2) and (Imp 3) in the
upper system. In step 2, we obtained four implications (Imp 4) to (Imp 7) in
the upper system. In step 3, we obtained no implications. In view of the above
results, we have the following:

{τ | τ is either a possible rule or a certain rule in Φ4}={τ | τ is a rule in φ1}.

This means that Φ4 and φ1 are equivalent in rule generation, and they are
satisfying the formalization of Figure 3. Each tuple of φ1 stores the actual values,
therefore we should not open φ1. However, it may be possible to open Φ4, because
some attribute values are diluted. Especially, the tuple of object 5 is completely
diluted.

5 Concluding Remarks

We have proposed a framework of information dilution, which depends on the
research on RNIA (Rough Non-deterministic Information Analysis) and NIS-
Apriori algorithm. This is an attempt to apply information incompleteness and
RNIA to the randomization and the perturbation in privacy-preserving [2].

We investigated the formal algorithm of diluting a DIS and its implemen-
tation. In Figure 1, we unexpectedly obtained that rules in DIS16 and Φ1 are
the same under support ≥ 0.5 and accuracy ≥ 0.6. In this paper, we handled
the most simple case support > 0 and accuracy=1.0. The procedure proposed
in this paper is a preliminary work towards more general cases.

In Φ4 and φ1, 13 attribute values are diluted for totally 32 attribute values.
The ratio is about 1/3. We figure that this ratio is depending on the number of
rules and total number of objects. Furthermore, (Fact 6) seems very important.
If most descriptors are fixed in the base step, the number of implications are
reduced in the recursive steps. Like several variations of reduction with several
constraints, there may be several variations of information dilution.

Acknowledgment. The authors would be grateful for anonymous referees for
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Abstract. This paper proposes an incremental attribute selection
method based on rough sets from partially uncertain and incremental
or large decision system. The uncertainty exists only in the decision at-
tributes (classes) and is represented by the belief function theory. The
simplification of large or incremental uncertain decision table is based
on computing possible reducts by the means of belief discernibility ma-
trix and function under the belief function framework from two or more
sub-decision tables.

Keywords: Uncertainty, incremental data, belief function theory, rough
sets, attribute selection, discernibility matrix and function.

1 Introduction

Feature selection is an important topic in data mining, especially for high dimen-
sional datasets to take away the unnecessary attributes [4,5,6]. The discernibility
matrix and function was proposed by Skowron and Rauszer [8] to select relevant
features from data using rough set theory. It provides an easy approach to com-
pute the possible reducts and the core of a decision table. However, the original
discernibility matrix and function cannot deal with uncertain decision system. In
previous works [13,14], we have proposed belief discernibility matrix and func-
tion to compute the possible reducts and core from partially uncertain data. The
uncertainty exists only in the decision attribute and is represented by the belief
function theory. It is considered as a useful theory for representing and managing
total or partial uncertain knowledge because of its relative flexibility. In addi-
tion, this theory is not competitive but complementary to the rough set theory
and can be often used jointly with it [12]. In this paper, we use the Transferable
Belief Model (TBM), one interpretation of belief function theory [11].

Our earlier solutions [13,14] are not suitable for large databases characterized
by huge number of instances, attributes and attribute values. Besides, these
solutions are not suitable for incremental data where the complete training set is
not given at the beginning. This paper proposes incremental belief discernibility
matrix and function to solve the dynamically changing big data by gathering
the results obtained from many parts of datasets. The original discernibility
matrix and function from large and incremental data relative to crisp decision
tables was proposed in [2]. The proposed new feature selection method deals
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with both incremental and partially uncertain data. The rest of the paper is
organized as follows: Section 2 provides an overview of the rough set theory.
Section 3 introduces the belief function theory as understood in the Transferable
Belief Model (TBM). Section 4 describes the attribute selection method based on
rough sets under uncertainty to deal with large and incremental data. In Section
5, experimental results have been done to show the efficiency of the solution.

2 Rough Set Theory

In this section, we give some notions related to information systems and rough
sets [3,4]. An information system is a pair A = (U, C), where U is the universe
of discourse with a finite number of objects (or entities) and C is a non-empty,
finite set of attributes. We also consider a special case of information systems
called decision tables. A decision table is an information system of the form DT
= (U, C ∪ {d}), where d /∈ C is a distinguished attribute called decision. In this
paper, the notation ci(xj) is used to represent the value of a condition attribute
ci ∈ C for xj ∈ U . For every set of attributes B ⊆ C, an equivalence relation
denoted by INDB and called the B-indiscernibility relation, is defined by

INDB = U/B = {[xj ]B|xj ∈ U} (1)

where
[xj ]B = {xi|∀c ∈ B c(xi) = c(xj)} (2)

Let B ⊆ C and X ⊆ U . We can approximate X by constructing the B− lower
and B−upper approximations of X , denoted B

¯
(X) and B̄(X), respectively, where

B
¯

(X) = {xj |[xj ]B ⊆ X} and B̄(X) = {xj |[xj ]B ∩X 	= ∅} (3)

2.1 Reduct and Core

A reduct [5,6] is a minimal subset of attributes from C that preserves the
positive region and the ability to perform classifications as the entire attributes
set C. A subset B ⊆ C is a reduct of C with respect to d, iff B is minimal and:

PosB({d}) = PosC({d}) (4)

where PosC({d}) is called a positive region of the partition U/{d} with respect
to C.

PosC({d}) =
⋃

X∈U/{d}
C
¯

(X) (5)

The core is the most important subset of attributes, it is included in every
reduct.

Core(DT, {d}) =
⋂

RED(A, {d}) (6)

where RED(DT, {d}) is the set of all reducts of DT relative to d.
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2.2 Discernibility Matrix and Function

The discernibility matrix and function [8,9] are a way to compute reducts and
cores from decision table which are defined below. Let DT be a decision table
with n objects. The discernibility matrix M(DT ) is a symmetric n*n matrix with
entries Mi,j. Each entry consists of the set of attributes upon which objects xi

and xj differ. For i, j = 1, ..., n

Mi,j = {c ∈ C|c(xi) 	= c(xj) and d(xi) 	= d(xj)} (7)

Thus, entry Mi,j is the set of all attributes which discern objects xi and xj that
do not belong to the same equivalence class IND{d}. A discernibility function
f(DT ) for a decision table DT is a boolean function of k boolean variables c∗1...c

∗
k

(corresponding to the attributes c1...ck) defined as follows, where M∗
i,j = {c∗|c ∈

Mi,j}.

f(DT ) = ∧{∨M∗
i,j |1 ≤ j ≤ i ≤ n,Mi,j 	= ∅} (8)

where ∧ and ∨ are two logical operators for conjunction and disjunction. The
set of all prime implicants of f(DT ) determines the sets of all reducts of DT .

3 Belief Function Theory

The belief function theory was proposed by Shafer [7] as a useful tool to repre-
sent uncertain knowledge. Here, we introduce only some basic notations related
to the TBM [11], one interpretation of the belief function theory. Let Θ, called a
frame of discernment, be a finite set of exhaustive elements to a given problem.
All the subsets of Θ belong to the power set of Θ, denoted by 2Θ. The bba (basic
belief assignment) is a function representing the impact of a piece of evidence
on the subsets of the frame of discernment Θ and is defined as follows:

m : 2Θ → [0, 1]

∑
E⊆Θ

m(E) = 1 (9)

where m(E) is a basic belief mass (bbm) that shows the part of belief exactly
committed to the element E. The conjunctive rule is used to combine the bba’s
induced from distinct pieces of evidence [10]:

(m1 ∩©m2)(E) =
∑

F,G⊆Θ:F∩G=E

m1(F )×m2(G) (10)

To make decisions from beliefs, the TBM [10] proposes using the pignistic prob-
abilities denoted BetP which are defined as :

BetP ({a}) =
∑
F⊆Θ

| {a} ∩ F |
| F |

m(F )

(1−m(∅)) for all a ∈ Θ (11)
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4 Incremental Belief Discernibility Matrix and Function

In this section, we will first give an overview of the uncertain decision table
followed by a description of the belief discernibility matrix and function [14].
Belief discernibility matrix and function can be used to get reducts and cores of
uncertain decision tables, but they do not work very well with incremental or
large data. Therefore, we propose an incremental method for attribute selection
from partially uncertain and incremental decision system based on rough sets
under the belief function framework by gathering the results obtained from two
or many belief discernibility matrices and functions.

4.1 Uncertain Decision Table

Our uncertain decision table denoted UDT contains n objects xj , characterized
by a set of certain condition attributes C={c1, c2,...,ck} and uncertain decision
attribute ud. We propose to represent the uncertainty of each object by a bba
mj expressing belief on decision defined on the frame of discernment Θ={ud1,
ud2,...,uds} representing the possible values of ud.

Example: Let us use Table 1 to describe our uncertain decision system. It con-
tains five objects, three certain condition attributes C={a, b, c} and an uncer-
tain decision attribute ud with possible value {yes, no} representing Θ. For exam-
ple, for the object x2, belief of 0.6 is exactly committed to the decision ud2=no,
whereas belief of 0.4 is assigned to the entire frame of discernment Θ (ignorance).

Table 1. Uncertain Decision Table 1 (UDT1)

U a b c ud

x1 0 1 1 m1({yes}) = 0.95 m1(Θ) = 0.05
x2 1 0 2 m2({no}) = 0.6 m2(Θ) = 0.4
x3 1 0 2 m3({no}) = 1
x4 1 1 1 m4({no}) = 0.95 m4(Θ) = 0.05
x5 0 0 1 m5({yes}) = 1

4.2 Belief Discernibility Matrix and Function

In order to compute the possible reducts from our uncertain decision table,
we have previously proposed [13,14] the concepts of belief discernibility matrix
M ′(UDT ) and function f ′(UDT ). The belief discernibility matrix was based
on a distance measure to identify the similarity or dissimilarity between two
bba’s mi and mj . The threshold value is used to provide flexibility. Hence, belief
discernibility matrix M ′(UDT ) is a n*n matrix with entries M ′

i,j .
For i,j=1,...,n

M ′
i,j = {c ∈ C|c(xi) 	= c(xj) and dist(mi,mj) ≥ threshold} (12)
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where dist is a distance measure between two bba’s proposed in [1] as defined
below.

The belief discernibility function f ′(UDT ) for the uncertain decision table
UDT is equivalent to the certain discernibility function f(DT ) only it is com-
puted from the belief discernibility matrix. The latter has the same structure as
the certain discernibility matrix. The belief discernibility function is a boolean
function of m boolean variables c∗1...c

∗
m (corresponding to the attributes c1...cm)

defined as below, where M ′∗
ij = {c∗|c ∈ M ′

i,j}

f ′(UDT ) = ∧{∨M ′∗
i,j |1 ≤ j ≤ i ≤ n,M ′

i,j 	= ∅} (13)

where ∧ and ∨ are two logical operators for conjunction and disjunction. The
set of all prime implicants of f ′(UDT ) determines the sets of all reducts of UDT .

Example: To apply our feature selection method to the uncertain decision table
1 (see Table 1), we start by computing the belief discernibility matrix (see Table
2). To obtain Table 2, we use Equation (12) with a threshold value equal to 0.1.
For example, M ′

1,5 = ∅ because the two objects x1 and x5 have dist(m1,m5) =
0.07 ≤ 0.1. The decision values of the two objects are considered similar.

Table 2. Belief discernibility matrix (M’(UDT1))

U x1 x2 x3 x4 x5

x1

x2 a,b,c
x3 a,b,c
x4 a b,c
x5 a,c a,c a,b

Next, we compute the possible reducts by computing the discernibility func-
tion. f ′(UDT ) = (a ∨ b ∨ c) ∧ (a) ∧ (a ∨ c) ∧ (b ∨ c) ∧ (a ∨ b) = (a ∧ b) ∨ (a ∧ c).
We find two possible reducts: {a and b} or {a and c}.

4.3 Belief Discernibility Matrix and Function for Large or
Incremental Data

Since the proposed belief discernibility matrix and function [13,14] are not suit-
able for large and incremental data, we propose an incremental belief discerni-
bility matrix and function computed from two uncertain decision tables. The
original discernibility matrix and function from large and incremental data rel-
ative to crisp decision tables was proposed in [2]. The method has the following
merits:
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1. Work efficiently with big data.
2. Work very well with incremental data.
3. Disassemble decision tables into parts, and then ”divide and conquer”.
4. Suitable for parallel computing.

We will adapt their work on our uncertain context as follows. Let us define
three uncertain decision tables UDT1 = (U1, C ∪ {ud}), UDT2 = (U1, C ∪ {ud})
and UDT = (U,C ∪ {ud}) where U1 = {x1, x2, ...., xn}, U2 = {y1, y2, ...., ym},
C= {c1, c2, ...., ck}, U = U1 ∪ U2.

M ′(UDT1) and M ′(UDT2) are belief discernibility matrices of respectively
UDT1 and UDT2 computed using equation (12). The M ′(UDT ) is the belief
discernibility matrix relative to UDT and can be computed as follows:

M ′(UDT ) =

(
M ′(UDT1) M ′(UDT1, UDT2)

M ′(UDT2)

)
(14)

where M ′(UDT1, UDT2) is the belief discernibility matrix between two uncer-
tain decision tables UDT1 and UDT2. It is a n*m matrix where each entry M ′

i,j

is defined as follows:

For i = 1, ..., n and j = 1, ...,m

M ′
i,j = {c ∈ C|c(xi) 	= c(yj) and dist(mi,mj) ≥ threshold} (15)

Let f ′
1 and f ′

2 be the belief discernibility functions of respectively UDT1 and
UDT2 computed using equation (16). f ′ is the belief discernibility function of
the whole UDT and is defined as follows:

f ′ = f ′
1

∧
f ′
2

∧
f ′
1,2 (16)

where f ′
1,2 is the discernibility function between UDT1 and UDT2 relative to the

belief discernibility matrix M ′(UDT1, UDT2) and is defined as follows:

f ′
1,2 = ∧{∨M ′∗

i,j |1 ≤ j ≤ i ≤ n,M ′
i,j 	= ∅} (17)

Example: To understand the notions of incremental discernibility matrix and
function for the uncertain case, let us take another uncertain decision table
(UDT2) (see Table 3). The second decision table could be considered to be an
incremental addition to the first.

Table 3. Uncertain Decision Table 2 (UDT2)

U a b c ud

y1 0 0 0 m1({yes}) = 0.95 m1(Θ) = 0.05
y2 0 1 2 m2({no}) = 1
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We start by computing its relative belief discernibility matrix (see Table 4).
Then, we compute the belief discernibility matrix between UDT1 and UDT2 to
obtain Table 5.

Table 4. Belief discernibility matrix 2 (M ′(UDT2))

U y1 y2
y1
y2 a,b

Table 5. Belief discernibility matrix (M ′(UDT1, UDT2))

U x1 x2 x3 x4 x5

y1 a,c a,c a,b,c
y2 c a,b b,c

Finally, we compute belief discernibility matrix of the whole UDT (see Table
6). f ′ is the belief discernibility function of the whole UDT and is equal to:
f ′ = (a ∨ b∨ c) ∧ (a) ∧ (c) ∧ (a ∨ c) ∧ (b ∨ c) ∧ (a ∨ b) = (a ∧ c). We find only one
possible reduct: {a and c}.

Table 6. Belief discernibility matrix (M’(UDT ))

U x1 x2 x3 x4 x5 y1 y2
x1

x2 a,b,c
x3 a,b,c
x4 a b,c
x5 a,c a,c a,b
y1 a,c a,c a,b,c
y2 c a,b b,c a,b

5 Experimentation

Several tests were performed on real-world databases to evaluate the proposed
incremental feature selection method in comparison with non-incremental fea-
ture selection method proposed originally in [14]. The comparison is based on
two evaluation criteria: the time requirement (the number of seconds needed to
find the reduct) and the classification accuracy (Percent of Correct Classification
(PCC)) of the generated decision rules by incorporating the two methods into
a classification system called belief rough set classifier [15]. The latter is able to
generate uncertain decision rules used for classification process where the feature
selection is one of the important steps.
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We have tested our methods on standard real-world databases obtained from
the U.C.I. repository1. A brief description of these databases is presented in
Table 7. These databases are of varying sizes (number of instances, number of
attributes and number of decision values). Our incremental method can also work
on very large databases by dividing them in many parts. The databases were
artificially modified in order to include uncertainty in the decision attribute. We
took different degrees of uncertainty based on increasing values of probabilities
P used to transform the actual decision value di of each object xj to a bba
mj({di}) = 1−P and mj(Θ) = P . A larger P gives a larger degree of uncertainty.

– Low degree of uncertainty: 0 < P ≤ 0.3
– Middle degree of uncertainty: 0.3 < P ≤ 0.6
– High degree of uncertainty: 0.6 < P ≤ 1

Table 7. Description of databases

Databases #instances #attributes #decision values

W. Breast Cancer 690 8 2

Balance Scale 625 4 3

C. Voting records 497 16 2

Zoo 101 17 7

Nursery 12960 8 3

Solar Flares 1389 10 2

Lung Cancer 32 56 3

Hayes-Roth 160 5 3

Car Evaluation 1728 6 4

Lymphography 148 18 4

Spect Heart 267 22 2

Tic-Tac-Toe Endgame 958 9 2

Each database is divided into ten parts. Nine parts are used as the training set,
the last is used as the testing set. The procedure is repeated ten times, each time
another part is chosen as the testing set. This method, called a cross-validation,
permits a more reliable estimation of the evaluation criterion. In this paper, we
report the average of the evaluation criteria. Each training set is divided in two
parts to simulate the incremental data.

Table 8 reports the experimental results relative to the classification accuracy.
From this table, we see that the proposed incremental feature selection method
has the same accuracy as the non-incremental method for attribute selection.
It is true for all the databases and for all degrees of uncertainty. For example,
the mean PCC for Balance Scale database is equal to 83.23% with incremental
and non-incremental methods. We can also conclude that when the degree of
uncertainty increases there is a slight decline in accuracy.

1 http://www.ics.uci.edu/ mlearn/MLRepository.html
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The Table 8 also gives the experimental results relative to the second evalua-
tion criterion, the time requirement needed to simplify the databases. Note that
the time requirement is almost the same for different degrees of uncertainty. We
conclude from the table that the incremental method feature selection method is
faster than the non-incremental method for attribute selection. It is true for all
the databases. For example, the time requirement for W. Breast Cancer database
goes from 154 seconds with non-incremental method to 101 seconds with incre-
mental method.

Table 8. The PCC and time requirement relative to non-incremental and incremental
methods

Same PCC(%) for non-incremental and Non-incremental method Incremental method

Databases incremental methods Time (seconds) Time (seconds)

Low Middle High Mean

W. Breast Cancer 86.87 86.58 86.18 86.54 154 101

Balance Scale 83.46 83.21 83.03 83.23 129 83

C. Voting records 98.94 98.76 98.52 98.74 110 69

Zoo 96.52 96.47 95.87 95.95 101 63

Nursery 96.68 96.21 96.07 96.32 380 199

Solar Flares 88.67 88.61 88.56 88.61 157 103

Lung Cancer 75.77 75.50 75.33 75.53 48 29

Hayes-Roth 97.96 97.15 96.75 96.95 91 67

Car Evaluation 84.46 84.17 84.01 84.21 178 112

Lymphography 83.24 83.03 82.67 82.64 102 61

Spect Heart 85.34 85.28 85.07 85.23 109 62

Tic-Tac-Toe Endgame 86.26 86.21 86.18 86.21 139 78

6 Conclusion and Future Work

In this paper, we have proposed an incremental feature selection method from
large amount of data or incremental data by defining belief discernibility ma-
trices and functions from many parts of uncertain decision tables. We handle
uncertainty in decision attributes using the belief function. Experimental results
show the efficiency of the method compared with non-incremental feature selec-
tion method especially for the time requirement criteria. We have also proposed
a belief discernibility matrix and function between two uncertain decision tables.

As a future work, we suggest adapting the concepts of incremental belief dis-
cernibility matrix and function to select relevant features from data characterized
by uncertain condition attribute values.
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Abstract. This paper presents results of experiments on 24 data sets
with three different interpretations of missing attribute values: lost val-
ues, attribute-concept values, and “do not care” conditions. Lost values
were erased or forgotten to be inserted. Attribute-concept values are any
values from the attribute domain restricted to the respective concept.
“Do not care” conditions are any values from the attribute domain with-
out any restriction. For our experiments we used concept probabilistic
approximations, a generalization of standard approximations. Our main
objective was to determine the best interpretation of missing attribute
values, in terms of the error rate. Results of experiments indicate that
the lost value interpretation of missing attribute values is the best. Our
secondary objective was to test how useful proper concept probabilistic
approximations (i.e., different from standard concept lower and upper ap-
proximations) are for mining data with missing attribute values. Proper
concept probabilistic approximations were better than standard concept
approximations for 12 data sets and worse for five data sets (out of 24).

1 Introduction

Lower and upper approximations are the most fundamental ideas of rough set
theory. A probabilistic (or parameterized) approximation, associated with a
probability (parameter) α, is a generalization of ordinary lower and upper ap-
proximations. If the probability α is quite small, the probabilistic approximation
is reduced to an upper approximation; if it is equal to one, the probabilistic ap-
proximation becomes a lower approximation [1]. Probabilistic approximations
have been studied in areas such as variable precision rough sets, Bayesian rough
sets, decision-theoretic rough sets for many years. The idea was introduced in
[2] and then discussed in many papers, see, e. g., [3–10].

So far, mostly theoretical properties of probabilistic approximations were dis-
cussed. Only recently probabilistic approximations, for completely specified and
inconsistent data sets, were experimentally validated in [11]. For incomplete data
sets probabilistic approximations were generalized and re-defined in [1]. Results
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of similar experiments, but restricted to only lost values and “do not care” con-
ditions, were presented in [12].

We will distinguish three kinds of missing attribute values: lost values, at-
tribute-concept values and “do not care” conditions. If an attribute value was
originally given but now is not accessible (e.g., erased or forgotten) we will call
it lost. If a data set consists of lost values, we will try to induce rules from
existing, specified data. Another interpretation of a missing attribute value is
based on a refusal to answer a question, e.g., some people may refuse to tell
their marital status, such a value will be called a “do not care” condition. For
analysis of data sets with “do not care” conditions we will replace them by all
specified attribute values. Attribute-concept values are “do not care” conditions
restricted to a concept to which the case with missing attribute values belongs.
Any attribute-concept value may be replaced by the set of all specified attribute
values restricted to a concept to which the case belongs.

For incomplete data sets there exist many definitions of approximations. Fol-
lowing [1], we will use so called concept approximations, generalized to concept
probabilistic approximation in [1]. Concept probabilistic approximations differ-
ent from standard concept lower and upper approximations are called proper.

The main objective of this paper was to determine the best interpretation
of missing attribute values. Out of eight data sets, for six data sets lost values
provided the smallest error rate. Our secondary objective was to study usefulness
of proper concept probabilistic approximations to mining data sets with missing
attribute values. Proper concept probabilistic approximations were better than
standard concept approximations for 12 data sets and worse for five data sets
(out of 24).

2 Data Sets

We assume that the input data sets are presented in the form of a decision table.
An example of a decision table is shown in Table 1. Rows of the decision table
represent cases, while columns are labeled by variables. The set of all cases will
be denoted by U . In Table 1, U = {1, 2, 3, 4, 5, 6, 7, 8}. Independent variables are
called attributes and a dependent variable is called a decision and is denoted by
d. The set of all attributes will be denoted by A. In Table 1, A = {Temperature,
Headache, Cough}. The value for a case x and an attribute a will be denoted
by a(x).

In this paper we distinguish between three interpretations of missing attribute
values: lost values, denoted by “?”, “do not care” conditions, denoted by “*”
and attribute-concept values, denoted by “−”. We assume that lost values were
erased or are unreadable and that for data mining we use only remaining, spec-
ified values [13, 14]. “Do not care” conditions are interpreted as uncommitted
[15, 16]. Such missing attribute values will be replaced by all possible attribute
values. The attribute-concept value is a special case of the “do not care” condi-
tion: it is restricted to attribute values typical for the concept to which the case
belongs. For example, typical values of temperature for patients sick with flu are:
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Table 1. An incomplete data set

Attributes Decision

Case Temperature Headache Cough Flu

1 high yes no yes

2 ? yes * yes

3 * ? yes yes

4 normal no no maybe

5 high − yes maybe

6 * no yes no

7 − no * no

8 normal no no no

high and very-high, for a patient the temperature value is missing, but we know
that this patient is sick with flu. Using the attribute-concept interpretation, we
will assume that possible temperature values are: high and very-high.

We will assume that for any case at least one attribute value is specified (i.e.,
is not missing) and that all decision values are specified.

For complete data sets, a block of a variable-attribute pair (a, v), denoted by
[(a, v)], is the set {x ∈ U | a(x) = v} [17]. For incomplete data sets the definition
of a block of an attribute-value pair is modified in the following way.

– If for an attribute a there exists a case x such that a(x) = ?, i.e., the
corresponding value is lost, then the case x should not be included in any
blocks [(a, v)] for all values v of attribute a,

– If for an attribute a there exists a case x such that the corresponding value is
a “do not care” condition, i.e., a(x) = ∗, then the case x should be included
in blocks [(a, v)] for all specified values v of attribute a.

– If for an attribute a there exists a case x such that the corresponding value
is an attribute-concept value, i.e., a(x) = −, then the corresponding case x
should be included in blocks [(a, v)] for all specified values v ∈ V (x, a) of
attribute a, where

V (x, a) = {a(y) | a(y) is specified ,y ∈ U, d(y) = d(x)}.

For the data set from Table 1, V (5, Headache) = {no}, V (7, T emperature) =
{low}, and the blocks of attribute-value pairs are:

[(Temperature, high)] = {1, 3, 5, 6},
[(Temperature, normal)] = {3, 4, 6, 7, 8},
[(Headache, yes)] = {1, 2},
[(Headache, no)] = {4, 5, 6, 7, 8},
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[(Cough, no)] = {1, 2, 4, 7, 8},
[(Cough, yes)] = {2, 3, 5, 6, 7}.

For a case x ∈ U and B ⊆ A, the characteristic set KB(x) is defined as the
intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x)] of attribute a and its
value a(x),

– If a(x)) =? or a(x) = ∗ then the set K(x, a) = U , where U is the set of all
cases.

– If a(x) = −, then the corresponding set K(x, a) is equal to the union of
all blocks of attribute-value pairs (a, v), where v ∈ V (x, a) if V (x, a) is
nonempty. If V (x, a) is empty, K(x, a) = U .

For Table 1 and B = A,

KA(1) = {1}, KA(5) = {5, 6},
KA(2) = {1, 2}, KA(6) = {5, 6, 7},
KA(3) = {2, 3, 5, 6, 7}, KA(7) = {4, 6, 7, 8},
KA(4) = {4, 7, 8}, KA(8) = {4, 7, 8}.

Note that for incomplete data there is a few possible ways to define approxi-
mations [18, 19], we use concept approximations [1]. A B-concept lower approx-
imation of the concept X is defined as follows:

BX = ∪{KB(x) | x ∈ X,KB(x) ⊆ X}.

A B-concept upper approximation of the concept X is defined as follows:

BX = ∪{KB(x) | x ∈ X,KB(x) ∩X 	= ∅} =

= ∪{KB(x) | x ∈ X}.

Since we will use only A-concept lower and upper approximations, we will call
them, for simplicity, lower and upper approximations.

For Table 1, lower and upper approximations of the concept {4, 5} are:

A{4, 5} = ∅ and A{4, 5} = {1, 2, 3, 5, 6, 7}.

3 Probabilistic Approximations

For incomplete data sets, a B-concept probabilistic approximation of the set X ,
denoted by apprα(X), is defined by the following formula [1]
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Fig. 1. Error rate for the bankruptcy
data set
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Fig. 2. Error rate for the breast cancer
data set
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Fig. 3. Error rate for the echocardio-
gram data set
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Fig. 4. Error rate for the hepatitis data
set
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Fig. 5. Error rate for the image seg-
mentation data set
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Fig. 6. Error rate for the iris data
set
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Fig. 7. Error rate for the lymphography
data set
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Fig. 8. Error rate for the wine recogni-
tion data set



Three Interpretations of Missing Attribute Values 83

Table 2. Data sets used for experiments

Data set Number of

cases attributes concepts

Bankruptcy 66 5 2

Breast cancer 277 9 2

Echocardiogram 74 7 2

Image segmentation 210 19 7

Hepatitis 155 19 2

Iris 150 4 3

Lymphography 148 18 4

Wine recognition 178 13 3

∪{KB(x) | x ∈ X, Pr(X |KB(x)) ≥ α}.

Since we will discuss only A-concept probabilistic approximations, we will call
them, for simplicity, probabilistic approximations.

Thus, for the concept {4, 5} we may define three distinct probabilistic ap-
proximations:

appr0.333({4, 5}) = {4, 5, 6, 7, 8}, appr0.5({4, 5}) = {5, 6},
and appr1({4, 5}) = ∅.

Note that there are only two distinct probabilistic approximations for the
concept {1, 2, 3} (the standard lower and upper approximations).

4 Rule Induction with LERS

The LERS (Learning from Examples based on Rough Sets) data mining system
[17, 20] starts from computing lower and upper approximations for every concept
and then it induces rules using the MLEM2 (Modified Learning from Examples
Module version 2) rule induction algorithm. Rules induced from lower and upper
approximations are called certain and possible, respectively [21].

MLEM2 explores the search space of attribute-value pairs. Its input data set
is a lower or upper approximation of a concept. In general, MLEM2 computes
a local covering and then converts it into a rule set [20]. In order to induce
probabilistic rules we have to modify input data sets, as described in [22].

5 Experiments

For our experiments we used eight real-life data sets that are available on the
University of California at Irvine Machine learning Repository. These data sets
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were enhanced by replacing 35% of existing attribute values by missing attribute
values, separately by lost values, separately by attribute-concept values, and
separately by “do not care” conditions, see Table 2. Thus, for any data set
from Table 2, three data sets were used for experiments, with missing attribute
values interpreted as lost values, attribute-concept values and as “do not care”
conditions, respectively. Thus for our experiments 24 data sets were used. Results
of our experiments for these 24 data sets may be categorized into four groups:

– For 11 data sets, there exists some α ∈ [0.1, 0.9] such that the error rate,
a result of ten-fold cross validation, is smaller for the corresponding proper
(i.e., different from lower and upper approximations) probabilistic approxi-
mation than for both lower and upper approximations. For example, for the
breast cancer data set with lost values and α = 0.9, the error rate is 27.44%,
while the error rates for the lower and upper approximations are 29.24%
and 29.60%, respectively. To this group belong 4 data sets with lost values,
4 data sets with attribute-concept values, and 3 data sets with “do not care”
conditions.

– For 8 data sets, there exists, for any α ∈ [0.1, 0.9], the error rate for proba-
bilistic approximations is neither larger nor smaller than the error rate for
lower and upper approximations. An example is the bankruptcy data set with
lost values. To this group belong 4 data sets with lost values, 2 data sets with
attribute-concept values, and 2 data sets with “do not care” conditions.

– For 4 data sets, there exists some α ∈ [0.1, 0.9] such that the error rate is
larger than the error rate for lower and upper approximations. For example,
for the bankruptcy data set with “do not care” conditions and α = 0.7 the
error rate is 42.42%, while the error rates for the lower and upper approxima-
tions are 37.88% and 31.82%, respectively. To this group belong one data set
with attribute-concept values and 3 data sets with “do not care” conditions.

– For one data set, there exists some α ∈ [0.1, 0.9] such that the error rate
for the corresponding proper probabilistic approximation is smaller than for
both lower and upper approximations and there exists another α ∈ [0.1, 0.9]
such that the error rate for the corresponding proper probabilistic approx-
imation is larger than for both lower and upper approximations. It is the
image segmentation data set with attribute-concept values, where the error
rates for the lower approximation is 52.38%, for the upper approximation is
51.43%, for α = 0.5 the error rate is 47.14% and for α = 0.9 the error rate
is 53.33%.

6 Conclusions

Our objective was to compare, experimentally, three interpretations of missing
attribute values using probabilistic approximations. For any original, complete
data set the best overall interpretation of missing attribute values was selected
among the three incomplete data sets, with lost values, attribute-concept val-
ues and “do not care” conditions. In six out of eight data sets, the smallest overall
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error rate, a result of ten-fold cross validation, was associated with lost values.
Note that for the echocardiogram data set the best interpretation was the “do
not care” condition and for the hepatitis data set there is a tie between two
interpretations: attribute-concept value and “do not care” condition.

Additionally, as follows from our experiments for each of 24 data sets sepa-
rately, the best choice is again the lost value interpretation of missing attribute
values since for this kind of missing attribute value the error rate for proper prob-
abilistic approximations cannot be larger than for standard approximations.
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Abstract. This paper concerns the problem of searching for reduct on
set-valued decision systems. We present efficient algorithms for solving
the the problems of attribute reduction and lower and upper approxi-
mation of a set induction for set-valued decision tables with predefined
tolerance relations. Theoretical evaluation shows that the proposed algo-
rithms outperform the known algorithms in literature.
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1 Introduction

Rough set theory was originally developed [7] as a tool for dealing with incom-
plete and imperfect data. It has been successfully applied in various tasks, such
as feature selection/extraction, rule synthesis and classification.

Guan et al. [3] initially introduced the set-valued information system as gen-
eralized models of the classic single-valued information systems. The general-
ization is based on the assumption that each pair of attribute and object is
associated with a set of values instead of a single value. Recently, the set-valued
information system has become a developing research area and got a lot of at-
tention ([3],[10],[15]). In those papers, the authors proposed many interesting
approaches to generalization of the standard rough sets like methods for com-
puting the rough set concepts like lower and upper approximation, the reducts
and decision rules for the case of set-valued decision tables. The generalizations
are based on either tolerance-based rough sets ([4],[14],[15]) or dominance-based
rough sets ([2],[15]). The proposed so far rough set methods for set-valued de-
cision tables are not efficient for real life applications, as they are performing
many matrix operations including multiplication of n × n matrices, where n is
the number of objects in decision tables [15].

In this paper we present an efficient approach to computation of short reducts
for set-valued decision tables. The idea is based on the contingency table and lat-
tice traversal approach to calculate the number of occurrences of each attribute
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in the discernibility matrix without implicit implementation of this matrix. The
proposed solution is especially effective in the case when the set-valued decision
tables are large, but the number of different sets of values of each attribute is not
very high. This is in fact an initial proposition, however it can be easily adopted
for other rough set concepts.

The paper is organized as follows: Section 2 presents some basic concepts in
a set-valued decision table. In Section 3 we present the new concepts called a
contingency table and attribute lattices and discuss how to apply them to the
algorithm for attribute reduction. Section 4 presents the complete scheme of the
algorithm for reduct calculation. The algorithm for computing a lower and an
upper approximation of a set is discussed in Section 5. In Section 6 we present
some concluding remarks and propose some ideas of future research.

2 Basic Notions

Set-valued decision systems were proposed as a tool to characterize the data sets
with incomplete or uncertain information [10].

Formally set-values decision table is a tuple DT = (U,A ∪ {d}), where U i
a finite set of objects, A is a finite set of set-valued attributes, i.e the functions
of form a : U → 2Va for a ∈ A, and d /∈ A is a distinguished attribute called
decision. The set Va is called the domein of attribute a, and a(x) ⊆ Va for each
a ∈ A and x ∈ U . In the case, when |a(x)| = 1 for any a ∈ A and x ∈ U we have
a standard single-valued decision table.

In Table 1 we have an example of a set-valued decision system. There are
ten objects and four condition attributes. Objects belong to one of two decision
classes. The table is adopted from [10].

Table 1. An example of a set-valued decision table

U Audition(A) Spoken Language(S) Reading(R) Writing(W) dec

x1 {E} {E} {F,G} {F,G} No
x2 {E,F,G} {E,F,G} {F,G} {E, F,G} No
x3 {E,G} {E,F} {F,G} {F,G} No
x4 {E,F} {E,G} {F,G} {F} No
x5 {F,G} {F,G} {F,G} {F} No
x6 {F} {F} {E, F} {E, F} Yes
x7 {E,F,G} {E,F,G} {E,G} {E, F,G} Yes
x8 {E,F} {F,G} {E, F,G} {E,G} Yes
x9 {F,G} {G} {F,G} {F,G} Yes
x10 {E,F} {E,G} {F,G} {E, F} Yes

Let DT = (U,A ∪ {d}) be a set-valued decision table. Any reflexive and
symmetric relation τ ⊆ U × U is called a tolerance relation defined on U . A
tolerance relation τB related to a set of attributes B ⊆ A can be defined by:

τB(x, y) ⇔ ∀b∈B |a(x) ∩ a(y)| 	= ∅ (1)
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For any B ⊆ A we denote by [x]τB = {y ∈ U : (x, y) ∈ τB} the tolerance class
related to object x ∈ U . We also denote by U/τB = {[x]τB : x ∈ U} the family
of all tolerance classes of τB.

For the decision table from Table 1 the tolerance class [x1]τB related to B =
{Audition, Spoken language} is [x1]τB = {x1, x2, x3, x4, x7, x10}

Given a set-valued decision table DT = (U,A ∪ {d}). Each subset X ⊆ U
can be approximated by a pair of two definable sets (L,U), called the lower and
upper approximations of X , where

LDT (X) = {x ∈ U : [x]τB ⊆ X}; UDT (X) = {x ∈ U : [x]τB ∩X 	= ∅}.

In a single-valued attribute decision system two objects are called discernible
if their values are different in at least one attribute. Skowron and Rauszer [11]
proposed to store the sets of attributes that discern pairs of objects in discerni-
bility matrix. In a set-valued decision table with predefined tolerance relations
τ(.), two objects x and y are discernible if there exists attribute a such that
(x, y) /∈ τa. The discernibility matrix for a set-valued decision table using the
tolerance relations, defined by Eq. 1, can be defined as follows:

Definition 1 (Discernibility matrix). Let DT = (U,A∪{d}) be a set-valued
decision table. The discernibility matrix MDT = [mij ]

n
i,j=1 of DT is defined by:

mij =

{
∅ if d(ui) = d(uj)

{a ∈ A : (ui, uj) /∈ τa} otherwise

for any pair of objects (ui, uj) ∈ U2.

An example of a discernibility matrix for a set-valued decision table based on
tolerance relations is presented in Table 2.

Table 2. The discernibility matrix of the decision table shown in Table 1. The gray
cells are related to the pairs of objects that have the same decision.

MIS x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 A,S S A,S

x2

x3 A S

x4 S W

x5 W

x6 A,S A S

x7

x8 S W W

x9 A,S S

x10
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3 Attribute Reduction and Heuristics

Attribute reduction is an important task in many applications, e.g. feature se-
lection, decision rule extraction or concept approximation. Intuitively, attribute
reduct is a minimal set of attributes that preserves all information necessary to
discern objects such as the original attribute set.

Definition 2 (Decision relative reduct). Given a set-valued decision table
DT = (U,A ∪ {d}) the decision relative reduct of DT is the minimal set of
attribute R ⊆ A, which satisfying the following conditions:

1. for any pair (x, y) ∈ U2 , if d(x) 	= d(y) and (x, y) /∈ τA then (x, y) /∈ τR;
2. no proper subset R′ of R satisfies the previous condition.

The reduct R is optimal if it consists of the smallest number of attributes.
Problem of finding the optimal reduct of a single-valued decision table is NP -

hard [11]. Different heuristics have been investigated for this problem [5]. They
differ by a searching strategy and an objective function. In this paper we con-
centrate on greedy forward selection algorithm. The method iteratively extends
a subset of attributes by picking in each step of the algorithm the attribute that
maximizes the objective function.

The critical operation in almost all heuristics is calculating the value of the
objective function for a given attribute set. The operation becomes more time-
consuming when we have to deal with a set-valued decision table with tolerance
classes. In the next sections we will discuss an algorithm for solving this problem.
We present the objective function called discernibility function for set-valued
decision tables. We also introduce two data structures called a contingency table
and attribute lattices. By using them one can speed up the time for tolerance
class induction and candidate attribute set evaluation.

3.1 Discernibility Function

Usually the objective function for an attribute reduction problem is defined by
using two rough set concepts positive and boundary region. Alternatively one
can use the number of pairs of objects from different classes, that are discerned
by a set of attributes as an evaluation measure. This measure is called discerni-
bility function and it was introduced for single-valued decision tables with the
indiscernibility relation [5]. In this section we discuss the properties of the dis-
cernibility function, generalized for set-valued decision tables. The algorithm for
attribute reduct induction is presented with this measure. However, the idea is
universal that it can be applied to another forms of objective functions too. Be-
low we present the definitions of a basic and a generalized discernibility function
for a single and a set-valued decision table, respectively.

Definition 3 (Basic discernibility measure). Let DT = (U,A ∪ {d}) be a
single-valued decision table. The discernibility measure for a set of attributes
B ⊆ A is defined by:

disc(B) = |{(x, y) ∈ U × U |(d(x) 	= d(y)) ∧ ∃b∈B(b(x) 	= b(y))}|
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Definition 4 (Generalized discernibility function). Let DT = (U,A∪{d})
be a set-valued decision table with tolerance relations τa (for all a ∈ A). The
mapping discern : 2A → R+ ∪ {0}, defined by

discern(B) = |{(x, y) ∈ U × U |(d(x) 	= d(y)) ∧ ∃b∈B(x, y) /∈ τb)}|
where B ⊆ A is set of attributes, is called the generalized discernibility function.

Below we list some properties of the generalized function:

Property 1. For any attribute a ∈ A, the value discern(a) is equal to frequency
of occurrence of attribute a in the discernibility matrix MDT .

Property 2. Discernibility function is increasing. For any set B ⊆ A and
C ⊆ A, if B ⊆ C then discern(B) ≤ discern(C)

Property 3. Let DT = (U,A ∪ {d}) be a set-valued decision table and let
B ⊆ A be a set of attributes, discern(B) = discern(A) iff.

∀(x,y)∈U2d(x) 	= d(y) ∧ (x, y) /∈ τA ⇒ ((x, y) /∈ τB)

3.2 Contingency Table and Tolerance-Based Contingency Table

One can observe that for any attribute a ∈ A, a frequency of occurrence of a
in discernibility matrix M(DT ) is computed in DTIME(n2) by scanning all
cells of the matrix. This time can be improved by using the discernibility func-
tion and some additional structure called a contingency table. The concept was
proposed in [6] and it was defined for a single-valued decision table with the
indiscernibility relation. Intuitively, a contingency table is a structure, which
keeps information about decision distributions of all indiscernibility classes. Us-
ing such data structure one can quickly determine a frequency of occurrence of
any attribute in discernibility matrix without checking its cells. In this section
at first we remind a concept of a contingency table for a single-valued decision
system and then discuss a concept of a tolerance based contingency table for a
set-valued decision system with a predefined tolerance relation.

Contingency Table. Let Vd be the set of decision values in decision table
DT = (U,A ∪ {d}), and let U/IND(B) = {[x1]B, ..., [xnB ]B} be partition of U
defined by indiscernibility relation IND(B) for B ⊆ A. Contingency table CTB

related to B is a two dimensional table CTB = [CTB[i, j]]
j∈{1,...,|Vd|}
i∈{1,...,nB} where:

CTB[i, j] = |{x ∈ U : x ∈ [xi]B ∧ d(x) = j}|.
The local discernibility measure related to indiscernibility class [xi]B is defined
as follows:

δB([xi]B) = |{(x, y) ∈ [xi]B × (U \ [xi]B) : d(x) 	= d(y)}|
=

∑
j1 
=j2,xk /∈[xi]B

CT [i, j1] · CT [k, j2]

=
∑
j1 
=j2

CT [i, j1] · (|Dj2 | − CT [i, j2])

where |Dj | denotes cardinality of decision class Dj for j = 1, ..., |Vd|.
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Table 3. The contingency tables for single attributes and values of the discern function

Audition

Values No Yes

E 1 0

F 0 1

E,F 1 2

F,G 1 1

E,G 1 0

E,F,G 1 1

disc(A) = 21

Spoken language

No Yes

E 1 0

F 0 1

G 0 1

E,F 1 0

E,G 1 1

F,G 1 1

E,F,G 1 1

disc(S) = 22

Reading

No Yes

E,F 0 1

F,G 0 1

E,G 5 2

E,F,G 0 1

disc(R) = 15

Writing

No Yes

F 2 0

E,F 0 2

E,G 0 1

F,G 2 1

E,F,G 1 1

disc(W) = 22

Hence the basic discernibility measure of attribute set B is defined as the
number of pairs of discernible objects, i.e.

disc(B) =
∑
i

δB([xi]B) =
1

2

nB∑
i=1

∑
j1 
=j2

CT [i, j1](|Dj2 | − CT [i, j2]) (2)

The summation is taken over the disjoint subsets induced by IND(B) and over
all j1, j2 ∈ {1, . . . , |Vd|}, j1 	= j2.

Table 3 presents the contingency table and the values of the discernibility
function for each attribute from Table 1. We remind that the cardinality of
each decision class is equal to 5. The contingency table with the indiscernibility
relation is further called the basic contingency table.

Proposition 1. Let DT = (U,A ∪ {d}) be a decision table. Let IND(B) be
a indiscernibility relation related to B ⊆ A. Let nB denotes a number of in-
discernibility classes defined by INB(B). Given a contingency table CTB. The
value discern(B) can be determined in time O(dnB), which is bounded by O(dn),
where n = |U | and d is a number of decision classes.

Tolerance-Based Contingency Table. For a decision table DT = (U,A ∪
{d}), let τB be a tolerance relation for B ⊆ A and let U/IND(B) =
{[x1], ..., [xnB ]} be the partition of U defined by indiscernibility relation
IND(B). The tolerance based contingency table is a two-dimensional table

TCTB = [TCTB[i, j]]
j∈{1,...,|Vd|}
i∈{1,...,nB} , which is defined as follows:

TCTB[i, j] = |{x ∈ [xi]τB ∧ d(y) = j}|

Intuitively, tolerance-based contingency table stores the decision distributions
inside each tolerance class. One can observe that the tolerance classes are not
disjoint in general. This may cause an error in calculation of a discernibility
function if we take the same formula for a basic contingency table.
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To compute the value of discernibility function we modify the concept of a
local discernibility measure. For a tolerance class [xi]τB , the local discernibility
measure related to [xi]τB is defined by:

δB([xi]τB ) = |{(x, y) ∈ [xi]B × (U \ [xi]τB ) : d(x) 	= d(y)}|
=

∑
j1 
=j2,xk /∈[xi]τB

CT [i, j1]× TCTB[k, j2]

=
∑
j1 
=j2

CTB[i, j1](|Dj2 | − TCTB[i, j2])

The generalized discernibility measure can be calculated as follows:

discern(B) =
∑
i

δB([xi]τB ) =
1

2

nB∑
i=1

∑
j1 
=j2

CTB[i, j1](|Dj2 | − TCT [i, j2]) (3)

where B ⊂ A. We denote by CTB ⊗ TCTB the operation in Equation 3. The
summation is taken over a disjoint subsets induced by IND(B) and over all
j1, j2 ∈ {1, . . . , |Vd|}, j1 	= j2.

Table 4. The illustration of contingency tables and discernibility function calculation

a1 = Audition

Set CTa1 TCTa1 δa1

values No Yes No Yes

E 1 0 4 3 1 · (5− 3) + 0 · (5− 4) = 2

F 0 1 3 5 0 · (5− 5) + 1 · (5− 3) = 2

E,F 1 2 5 5 1 · (5− 5) + 2 · (5− 5) = 0

F,G 1 1 4 5 1 · (5− 5) + 1 · (5− 4) = 1

E,G 1 0 4 4 1 · (5− 4) + 0 · (5− 4) = 1

E,F,G 1 1 5 5 1 · (5− 5) + 1 · (5− 5) = 0

discern(a1) =
1
2
(2 + 2 + 0 + 1 + 1 + 0) = 3

The basic and tolerance-based contingency tables related to the attribute
Audition are shown in Table 4. In the last column we illustrate how to local
discernibility measures are calculated. In the last row we have the value of discern
function computed for this attribute.

Observation 1. For a given set of attributes B ⊆ A the contingency table CTB

can be created by simple SQL queries of the form: SELECT B COUNT DISTINCT

GROUP BY d.

Observation 2. Let DT = (U,A∪ {d}) be a set-value decision table. Let CTB

and TCTB denote a basic and tolerance-based contingency table for B ⊆ A,
respectively. Let {[x1], ..., [xnB ]} be indiscernibility classes defined by IND(B).
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The elements of TCTB = [TCTB[i, j]]
j∈{1,...,|Vd|}
i∈{1,...,nB} can be defined by adding up

appropriate elements of the contingency table CTB:

TCTB[i, j] =
∑

xk∈[xi]τB

CT [k, j]

Proposition 2. The pessimistic time for generation of tolerance contingency
table is O(n2

Bd), where nB is a number of records in basic contingency table
CTB and d is a number of decision classes.

The algorithm of calculating TCT is efficient for the decision tables with
small attribute domains In the case of a large number of records in the basic
contingency table, the creation of TCT from CT is time-consuming. Next sec-
tion presents a speed-up technique for computing TCT using an additional data
structure, called the attribute value lattices, for storing the relations between at-
tribute values.

3.3 Lattice of Attribute Values

Formally, lattice is a partially ordered set (poset) in which any two elements
have a supremum and an infimum. Lattice can be presented as directed graph
G = (V,E), where V is a set of vertices and E is a set of edges. Vertices are corre-
sponding to the elements of the given ordered set. The directed edge (vi, vj) ∈ E
if the element vi is ”smaller” then vj and between vi and vj there is no other
element. This structure is adopted to store the values of attributes with symbolic
domains.

Definition 5 (Lattice of an attribute). Let DT = (U,A∪{d}) be a set-valued
decision table. Let a ∈ A and Va be the domain of an attribute a. The lattice of
attribute a is a directed graph defined as an ordered set Latt(a) = (Va, r), where
r ⊆ 2Va × 2Va is a partial order defined by r = {(X,Y ) ∈ 2Va × 2Va : X ⊆ Y }.

Let us denote the lattice of attribute a by Latt(a) and the set of all lattices
related to attributes from A by Latt(A).

Observation 3. Every set-valued decision table DT = (U,A ∪ {d}) can be
translated to the structured decision table SDT = (U,Latt(A), d).

The structures of attribute values are shown in Figure 1. One can observe that
the tolerance classes for all nodes of Latt(a) can be determined by two scanning
the lattice: bottom - up and top - down. Initially a tolerance class of a node in the
lowest level consists of one element, which is himself. In the bottom-up phase,
every node aggregates the lists of tolerance classes from it’s children. In the top-
down phase the parent nodes send the tolerance class list to their children. The
node in the lower level completes its tolerance class by the appropriate elements
obtained from their parents.

Observation 4. For any attribute a ∈ A, the time complexity of the algorithm
computing tolerance classes of all nodes in lattice Latt(a) is O(na), where na is
a number of nodes of the lattice (na = |U/IND(a)|).
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x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

Audition

{E, F,G}

{E,G} {E, F} {F,G}

{E} {F} .

Spoken language

{E, F,G}

{E,G} {E, F} {F,G}

{E} {F} {G}

Reading

{E, F,G}

{E,G} {E, F} {F,G}

. . .

Writing

{E, F,G}

{E,G} {E, F} {F,G}

{F}. .

Fig. 1. The structured set-valued decision table

Observation 5. Having a set of lattices Latt(A) with tolerance classes calcu-
lated for all nodes, the tolerance class of any record on the basic contingency
table CTB can be induced in time O(c), where c is a cardinality of the tolerance
class of the investigated record.

Proposition 3. Let Latt(A) be a set of lattices defined for attribute set A. As-
sume that for each lattice Latt(a) the tolerance classes for it’s nodes are cal-
culated. For any set of attributes B ⊂ A, the time complexity of the algorithm
computing the tolerance contingency table TCTB from CTB based on Latt(A)
is O(nBc), where nB is a number of records in the basis contingency table CTB

and c is a maximal cardinality of tolerance classes of the records in CTB. The
value c is bounded by nB.

4 Searching for Decision Relative Reducts

In this section we present the complete schema for decision relative reduct in-
duction. Let us consider a set-valued decision table with a given tolerance rela-
tion. Reduct for a set-valued decision tables is a minimal set of attributes, that
preserves the discernibility of the set of all attributes. The greed heuristic for
attribute reduction shown in Algorithm 1.
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Algorithm 1. Generalized Maximal Discernibility (GMD) heuristic for set-
valued decision tables with tolerance relation.
1: Input: Set-valued decision table D = (U,A ∪ d).
2: Output: Attribute reduction R.
3: Generate a set of lattices Latt(A);
4: R ← ∅;
5: discern(R) ← 0;
6: while (discern(R) < discern(A)) do
7: max discern ← 0;
8: for (ai ∈ A) do
9: B ← R ∪ {ai};
10: Create CTB ;
11: Create TCTB using CTB and Latt(A);
12: Determine discern(B) = CTB ⊗TCTB using Equation (3);
13: if (discern(B) > max dicern) then
14: max discern ← discern(B);
15: best attribute ← ai;
16: end if
17: end for
18: A ← A \ {best attribute};
19: R ← R ∪ {best attribute};
20: end while

Proposition 4. The time complexity of GMD − heuristic is O(k2 ∗ m2 ∗ d),
where k is a number of attributes, m is the maximal number of distinct set-values
occurring in attribute domains and d is a number of decision classes.

5 Set Approximation Induction

Let X ⊆ U be a given subset of the universe U . The goal is to find upper and
lower approximation of X . The approach of using a square matrix to represent
set approximations was discussed in [15]. In this paper, the authors proposed an
O(n3) algorithm, where n is the number of objects in the decision table. In this
section we present a new method for induction of rough approximations of sets.
The time complexity can be improved by using a tolerance-based contingency
table.

Given a set-valued information table DT = (U,A). Let τB be a tolerance
relation related to B ⊆ A. Let x be an element of a set X . Let [x]τB be a
tolerance class related to x. The inclusion degree of [x]τB in X is

ν([x]τB , X) =
|[x]τB ∩X |
|[x]τB |

.

We can observe the value of inclusion function can be effectively computed by
using a contingency table.
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For any set of objects X ⊆ U we denote by dX : U → {0, 1} the characteristic

function of X , i.e. dX(x) =

{
1 if x ∈ X

0 otherwise.

Proposition 5. Let DT = (UDT , ADT ∪ {dX}) be a decision table with binary
decision 0 and 1. Let X ⊆ U . Let TCTB be a tolerance-based contingency table
for DT . Let x ∈ X and τB be a tolerance relation. The inclusion degree of [x]τB
in X can be computed using TCTB as follows:

|[x]τB ∩X |
|[x]τB |

=
TCT [x, 1]

TCT [x, 1] + TCT [x, 0]

The object x ∈ U belongs to lower approximation of X , if

|[x]τB ∩X |
|[x]τB |

= 1

and end its belong to upper approximation of X if

|[x]τB ∩X |
|[x]τB |

> 0

Below we present a scheme of algorithm computing upper and lower approx-
imation of a given set of objects X .

Algorithm 2. Verify, if objects belong to lower or upper approximation

1: Input: Set-valued information table IS = (U,A), X ⊆ U , B ⊆ A, tolerance
relation τB , U/IND(B) = {1, 2, ..., nB}.

2: Output: Upper and lower approximation of X.
3: Create the decision table DS = (U,A ∪ {dX}).;
4: Generate CTB ;
5: Generate TCTB from CTB;
6: for i ∈ {1, 2, ..., nB} do

7: Compute a inclusion degree νi =
TCT [i,1]

TCT [i,1]+TCT [i,0]

8: if (νi = 1) then
9: LowerAppr ← {i}
10: else
11: if (νi > 0) then
12: UpperAppr ← {i}
13: end if
14: end if
15: end for

Let us notice that the time complexity of the Verifying algorithm is O(m2),
where m is the maximal number of distinct set-values in attribute domains.
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6 Conclusions

We have presented the algorithms for solving problems of attribute reduction and
lower and upper approximation of a set induction. To improve time complexity
we have provided novel data structures called a generalized contingency table and
lattices of attribute values. By using these structures one can reduce the time
complexity of the algorithm for searching for a lower and an upper approximation
of a set presented in [15] from O(n3) to O(m2), where m is the maximal number
of distinct set-values in attribute domains. In next papers we will show that the
proposed solution can be also modified to manage with dominance based rough
sets approach to set-valued decision table.
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[8], [9], [12], [13]. Huang et al [4] proposed an attribute reduction algorithm based
on information quantity. Zhou et al [22], Huang et al [3] proposed attribute re-
duction algorithms based on tolerance matrix. The time complexity of these

algorithms is O
(
|A|3|U |2

)
, where |A| is the number of conditional attributes

and |U | is the number of objects. Zhang et al [21] improved the algorithm from

[4] and the time complexity is down to O
(
|A|2|U |2

)
. Dai et al [1] presented an

attribute reduction algorithm based on the coverage of an attribute set.
Metric is a distance measure between two sets [2]. In recent researches, metric

technique has been applied to solve problems in data mining and rough set
theory. Mantaras [16], Simovici and Jaroszewicz [18], [19] used a metric as the
attribute selection criterion in the process of decision tree construction. Nguyen
[10] proposed a metric based attribute reduction method in complete decision
tables. Qian et al [14], [15] proposed knowledge distances between coverings in
incomplete information systems and investigate its properties.

In this paper, we propose a metric based attribute reduction method in in-
complete decision tables. Firstly, we generalize Liang entropy [6] in incomplete
information systems and investigate its properties. Secondly, we establish a met-
ric between coverings based on the generalized Liang entropy and study its
properties in incomplete decision tables for attribute reduction. Finally, we de-
fine a reduct based on the metric, significance of attribute based on the metric
and propose an attribute reduction heuristic algorithm in incomplete decision

tables. The time complexity of proposed algorithm is O
(
|A|2|U |2

)
.

The structure of this paper is as follows. Section 2 presents the concept of
attribute reduction in rough set theory. Section 3 presents a generalized Liang
entropy in incomplete information systems and investigate its properties. Section
4 establishes a metric between coverings based on the generalized Liang entropy
and study its properties. Section 5 presents a metric based attribute reduction
method in incomplete decision tables. In Section 6, we perform some experiments
of the proposed algorithm. The conclusions are presented in the last section.

2 Basic Notions

In this section, we introduction some basic concepts in rough set theory related
to attribute reduction.

An information system [11] is a pair S = (U,A), where U is a non-empty,
finite collection of objects and A is a non-empty, finite set, of attributes. Each
a ∈ A corresponds to the function a : U → Va, where Va is called the value set
of a. Elements of U can be interpreted as, e.g., cases, patients, observations, etc.
Without loss of generality, we will assume that U = {u1, ..., u|U|}.

For a given information system S = (U,A), the function μS : P(A) −→ R+,
where P(A) is the power set of A, is called the monotone evaluation function if:

1. μS(B) can be computed using information from B and U for any B ⊂ A;
2. μS(.) is monotone, i.e., for any B,C ⊂ A, if B ⊂ C, then μS(B) ≤ μS(C).
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In rough sets, reducts are the minimal subsets (with respect to the set inclusion)
of attributes that contain a necessary portion of information about the objects,
expressed by a monotone evaluation function.

Definition 1 (μ-reduct). Any set B ⊆ A is called the reduct relative to a
monotone evaluation function μ, or briefly μ-reduct, if B is the smallest subset
of attributes that μ(B) = μ(A), i.e., μ(B′) < μ(B) for any proper subset B′ � B.
We denote by RED(S, μ) the set of all μ-reducts, i.e.,

RED(S, μ) = {R ⊂ A : R is μ-reduct of S} (1)

The attribute a ∈ A is called core attribute if a presents in all reducts of A. The
set of all core attributes is denoted by

CORE(S, μ) =
⋂

RED(S,μ)

R (2)

This definition is general for many existing definitions of reducts. Let us men-
tion some well-known types of reducts used in rough set theory.

2.1 Decision Table and Decision Reducts

A decision table is a special information system D = (U,A∪D), where attributes
are of two types: conditional attributes (the attributes from A), and decision
attributes (the attributes from D). The conditional attributes are also called
conditions, while the decision attributes are briefly called decisions.

Each subset of attributes P ⊆ A determines a binary indistinguishable relation
IND (P ) as follows

IND(P ) = {(x, y) ∈ U × U : infP (x) = infP (y)} . (3)

It is obvious that IND (P ) is an equivalence relation, as it is reflexive, sym-
metric and transitive, over the set U . Any element u ∈ U the set [u]P =
{v ∈ U |(u, v) ∈ IND (P )} is called the equivalent class. The relation IND (P )
constitutes a partition of U , which is denoted by

U/P = {[u]P : u ∈ U} (4)

Let D = (U,A ∪D) be a decision table. Any set Di ∈ U/D is called the
decision class of D. For any B ⊂ A, the set

POSB(D) = {u ∈ U : [u]B ⊆ Di for some Di ∈ U/D} (5)

is called the B-positive region of D. The decision table D is called consistent
if and only if POSA(D) = U . Otherwise, D is called the inconsistent decision
table. Any minimal subset B of A such that POSB(D) = POSA(D) is called
the decision reduct (or reduct based on positive region) of D. It has been shown
in [9] that μPOS(B) = |POSB(D)| is a monotone evaluation function. Thus:

Proposition 1. The set of attributes R ⊆ A is decision reduct if and only if it
is μ-reduct with respect to the measure μPOS(B) = |POSB(D)|.
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2.2 Entropy Based Methods

Let D = (U,A ∪D) be a decision table and C ⊂ A is an arbitrary set of at-
tributes. Suppose that U/C = {C1, C2, ..., Cm}and U/D = {D1, D2, ..., Dn}, the
conditional Shannon entropy of D with respect to C ⊂ A is defined as

H (D |C ) = −
m∑
i=1

|Ci|
|U |

n∑
j=1

|Ci ∩Dj |
|Ci|

log2
|Ci ∩Dj |
|Ci|

(6)

Proposition 2 ([19]). Let D = (U,A ∪D) be a decision table. If Q ⊆ P ⊆ A
then H (D |Q ) ≥ H (D |P ). The equality holds when ∀Xu, Xv ∈ U/P , Xu 	= Xv,

if (Xu ∪Xv) ⊆ Yk ∈ U/Q then
|Xu∩Dj |

Xu
=

|Xv∩Dj |
Xv

for ∀j ∈ {1, 2, ..., n}.

Thus H (D|C) is monotone function with respect to set inclusion. Any μ-
reduct with respect to entropy measure μEnt(C) = M −H (D |C ), where M is
a constant, is called a reduct of D based on conditional Shannon entropy.

Let S = (U,A) be a complete information system, for any P ⊆ A the value

E(P ) =

m∑
i=1

|Pi|
|U |

(
1− |Pi|

|U |

)
(7)

where U/P = {P1, ..., Pm}, is called the Liang entropy [6].
Let P,Q ⊆ A be arbitrary sets of attributes and let U/P = {P1, ..., Pm},

U/Q = {Q1, ..., Qn}. The conditional Liang entropy is defined as follows:

E(Q|P ) =

n∑
i=1

m∑
j=1

|Qi ∩ Pj |
|U |

|Qc
i − P c

j |
|U | (8)

where Qc
i = U −Qi, P c

j = U − Pj (see [6]).
It has been shown in [6] that both Liang entropy and conditional Liang entropy

measures are monotone with respect to set inclusion. Thus the μ-reducts with
respect to either μ1(P ) = E(P ) or μ2(P ) = E(D|P ) are called the Liang entropy
based reducts.

3 Reducts for Incomplete Information Systems

An information system S = (U,A) is called incomplete, or IIS for short, if the
value a(u) is not always determined for a ∈ A and u ∈ U . Furthermore, we will
denote the missing value by * [5]. Analogically, incomplete decision table, briefly
IDT, is an incomplete information system D = (U,A ∪ {d}) where d /∈ A and
∗ /∈ Vd. Let S = (U,A) be an IIS, for any P ⊆ A we define a binary relation on
U as follows:

SIM (P ) =
{

(u, v) ∈ U2 : ∀a ∈ P, a(u) = a(v) ∨ a(u) = ∗ ∨ a(v) = ∗
}

(9)

Let us notice that SIM (P ) is a tolerance relation (as it is reflexive and sym-
metric) on U and that SIM (P ) =

⋂
a∈PSIM ({a}) . For any object u ∈ U and
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set of attributes P ⊂ A, the set SP (u) = {v ∈ U : (u, v) ∈ SIM(P )} is called
the tolerance class of u, or granule of information. Let K(P ) denote the family
of tolerance classes of all objects from U , called the knowledge base of P , i.e.

K(P ) = U/SIM(P ) = {SP (u) : u ∈ U} =
{
SP (u1) , SP (u2) , ..., SP

(
u|U|

)}
.

It is clear that the tolerance classes in K(P ) do not constitute a partition of U
in general. They constitute a covering of U , i.e., SP (u) 	= ∅ for every u ∈ U , and⋃

u∈USP (u) = U . We will denote by COV ER (U) = {K(P ) : P ⊂ A} the set
of all possible coverings on U defined by attributes from A. A partial ordered
relation (COV ER (U) ,≺) can be defined on COV ER (U) as follows

1. K(P ) is the same as K(Q), denoted by K(P ) = K(Q), if and only if ∀u ∈
U, SP (u) = SQ (u).

2. K(P ) is finer than K(Q), denoted by K(P ) ≺ K(Q), if and only if ∀u ∈
U, SP (u) ⊆ SQ(u).

Let S = (U,A) be an IIS. The family ω = {SA (u) = {u} |u ∈ U } is called the
discrete covering and δ = {SA (u) = U |u ∈ U } is called the complete covering.

Definition 2 (generalized Liang entropy). Let S = (U,A) be an IIS and
P ⊆ A. The generalized Liang entropy of P is defined by

IE(P ) =

|U|∑
i=1

1

|U |

(
1− |SP (ui)|

|U |

)
= 1− 1

|U |2
n∑

i=1

|SP (ui)| (10)

where |SP (u)| denotes the cardinality of SP (u).

Obviously, we have 0 ≤ IE (P ) ≤ 1 − 1
|U| . Function IE(P ) achieves the

maximum value 1− 1
|U| if K(P ) = ω, and the minimum value 0 when K(P ) = δ.

Definition 3 (Conditional generalized Liang entropy). Let S = (U,A) be
an IIS and P,Q ⊆ A. The generalized Liang entropy of Q conditioned on P is
defined by

IE(Q |P ) =
1

|U |

|U|∑
i=1

(
|SP (ui)| − |SQ(ui) ∩ SP (ui)|

|U |

)
(11)

It has been shown that Liang entropy E(P ) presented in [6] is a particular case
of the generalized Liang entropy, and the conditional Liang entropy E (Q |P ) is a
particular case of the conditional generalized Liang entropy IE (Q |P ). Moreover,
let S = (U,A) be an IIS and P,Q,R ⊆ A, the following properties hold:

P1) If K(P ) � K(Q) then IE (P ) ≥ IE (Q) and IE (P ) = IE (Q) if and only
if K(P ) = K(Q).

P2) If K(P ) � K(Q) then IE (P ∪Q) = IE (P ).
P3) IE (P ∪Q) ≥ IE (P ) and IE (P ∪Q) ≥ IE (Q).
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P4) IE (P ∪Q) = IE (P ) + IE (Q |P ) = IE (P ) + IE (P |Q).
P5) 0 ≤ IE (Q |P ) ≤ 1− 1

|U| ; the equality IE (Q |P ) = 0 holds iff K(P ) � K(Q)

and the equality IE (Q |P ) = 1− 1
|U| holds iff K(P ) = δ and K(Q) = ω.

P6) If U/SIM(P ) � U/SIM(Q) then IE (R |Q) ≥ IE (R |P ).
P7) If U/SIM(P ) � U/SIM(Q) then IE (P |R ) ≥ IE (Q |R ).
P8) IE (Q |P ) + IE (P |R ) ≥ IE (Q |R ).

Let D = (U,A ∪ {d}) be an IDT, Huang Bing et al [4] defined the reducts
based on information quantity as the minimal subsets of attributes B such that
IE (B |{d}) = IE (A |{d} ) They are, in fact, the μ-reducts with respect to the
conditional generalize Liang entropy measure, defined by

μIE(B) = IE (B |{d} ) = IE (B ∪ {d})− IE (B) (12)

4 Metric between Coverings and Properties

Recall that any map d : X ×X → [0,∞) that satisfies the following conditions:

M1) d (x, y) ≥ 0, d (x, y) = 0 if and only if x = y.
M2) d (x, y) = d (y, x).
M3) d (x, y) + d (y, z) ≥ d (x, z).

for any x, y, z ∈ X is called a metric on X [2].
The condition M3) is called the triangular inequality. The pair (X, d) is called

a metric space. Based on the generalized Liang entropy, in this Section we es-
tablish a metric between coverings and study some properties of the proposed
metric for attribute reduction in incomplete decision tables.

Theorem 1 (Metric). For any incomplete information system S = (U,A), the
map dE : COV ER (U)× COV ER (U) → [0,∞), defined by

dE (K (P ) ,K (Q)) = IE (P |Q) + IE (Q |P ) (13)
where P,Q ⊂ A, is a metric on COV ER(U).

Proof. We will show that dE satisfies three properties of metric functions:

(M1) From Property P5) we have dE (K(P ),K(Q)) ≥ 0 for any P,Q ⊂ A and
the equality holds if and only if (IE (Q |P ) = 0) and (IE (P |Q ) = 0), i.e.,(

U/SIM(P ) � U/SIM(Q)

)
∧
(
U/SIM(Q) � U/SIM(P )

)
⇔ K (P ) = K (Q)

(M2) From the definition of dE , it is easy to see that

dE (K (P ) ,K (Q)) = dE (K (Q) ,K (P ))

for any K (P ) ,K (Q) ∈ COV ER (U).
(M3) For any P,Q,R ⊂ A, from Property P5) we have

IE (Q |P )+IE (P |R ) ≥ IE (Q |R ) and IE (R |P )+IE (P |Q) ≥ IE (R |Q)

Thus we have dE (K (Q) ,K (P )) + dE (K (P ) ,K (R)) ≥ dE (K (Q) ,K (R))
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Therefore all conditions (M1), (M2), (M3) are satisfied, we can conclude that
dE is a metric on COV ER(U)

The following propositions present some properties of the metric dE . The
proofs of those facts are omitted due to lack of space.

Proposition 3. Let S = (U,A) be an incomplete information system. For any
subsets B,C ⊂ A :

a) dE (K (B) ,K (C)) =
1

|U |

|U|∑
i=1

|SB(ui)| − |SC(ui)|
|U | (14)

b) if B ⊆ C then dE (K (B) ,K (B ∪ {d})) ≥ dE (K (C) ,K (C ∪ {d})) (15)

Proposition 3 b) states that the bigger the attribute set B is, the smaller the
metric dE (K (B) ,K (B ∪ {d})) is, and vice versa. In other words, the metric
decreases as tolerance classes become smaller through finer classification.

5 Metric Based Reducts in Incomplete Decision Tables

In next content, we define the reduct based on the proposed metric and prove
that this reduct is the same as the reduct based on information quantity.

Definition 4. If the set of attributes R ⊆ A satisfies the following conditions:

(1) dE (K (R) ,K (R ∪ {d})) = dE (K (A) ,K (A ∪ {d}))
(2) ∀r ∈ R, dE (K (R− {r}) ,K ((R− {r}) ∪ {d})) 	= dE (K (A) ,K (A ∪ {d}))

then R is called a reduct of A based on metric.

Proposition 4. Let D = (U,A ∪ {d}) be an incomplete decision table and B ⊆
A. Then dE(K(B),K(B ∪ {d})) = dE(K(A),K(A ∪ {d})) if and only if

IE (B |{d} ) = IE (A |{d} ) .

Proof. Let us consider U = {u1, ..., un} and B ⊆ A. Since B ⊂ B ∪ {d} , A ⊂
A ∪ {d} , and dE (K (B) ,K (B ∪ {d})) = dE (K (A) ,K (A ∪ {d})) , it follows
from Proposition 3 that

1

|U |

|U|∑
i=1

|SB(ui)| −
∣∣SB∪{d}(ui)

∣∣
|U | =

1

|U |

|U|∑
i=1

|SA(ui)| − |SA∪{d}(ui)|
|U | ⇔

⇔

⎛⎝1− 1

|U |2
|U|∑
i=1

∣∣SB∪{d}(ui)
∣∣⎞⎠−

⎛⎝1− 1

|U |2
|U|∑
i=1

|SB(ui)|

⎞⎠
=

⎛⎝1− 1

|U |2
|U|∑
i=1

∣∣SA∪{d}(ui)
∣∣⎞⎠−

⎛⎝1− 1

|U |2
|U|∑
i=1

|SA(ui)|

⎞⎠
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According to Equation 12, the last equation is equivalent to

IE (B ∪ {d})− IE (B) = IE (A ∪ {d})− IE (A)

which is equivalent to IE (B |{d} ) = IE (A |{d} ). This completes the proof.

Therefore, we can conclude from Proposition 4 that the reduct based on pro-
posed metric is the same as that based on information quantity in incomplete
decision tables.

Definition 5. Let D = (U,A ∪ {d}) be an incomplete decision table and B ⊆ A.
The significance of attribute b ∈ A−B is defined as

SIGB(b) = dE(K(B),K(B ∪ {d}))− dE(K(B ∪ {b}),K(B ∪ {b} ∪ {d})),

where S∅(ui) = U for any ui ∈ U, i = 1, ..., |U |.

Definition 5 implies that the significance of attribute b ∈ A− B is measured
by the changes of the metric dE (K (B) ,K (B ∪ {d})) when b is added to B,
the bigger the value of SIGB(b), the more important the attribute b. This sig-
nificance of attribute will be treated as the attribute selection criterion in our
heuristic algorithm for attribute reduction

The heuristic search for short metric based reducts in incomplete decision
tables is presented in Algorithm 1 (Algorithm MBR). In order to find the best
reduct, the algorithm begins with R = ∅, then the most important attribute is
chosen from searching space and added into R. The above processes are done
until we get the best reduct.

Algorithm 1. MBR: metric-based reduct for incomplete decision table

Data: An incomplete decision table D = (U,A ∪ {d});
Output: The short metric-based reduct R of D;

1 R = ∅;
2 Calculate dE (K (R) ,K (R ∪ {d})) and T = dE (K (A) ,K (A ∪ {d}));
// Iterative insertion of the most important attribute to R

3 while dE(K(R),K(R ∪ {d})) 	= T do
4 for each a ∈ A−R do
5 Calculate S = dE(K(R ∪ {a}),K(R ∪ {a} ∪ {d}));
6 SIGR(a) = dE(K(R),K(R ∪ {d}))− S;

7 R = R ∪
{
ArgMax
a∈A−R

{SIGR (a)}
}

;

8 Calculate dE (K (R) ,K (R ∪ {d}));
// Deleting redundant attributes in R

9 for each a ∈ R do
10 Calculate dE (K (R− {a}) ,K (R− {a} ∪ {d}));
11 if dE (K (R− {a}) ,K (R− {a} ∪ {d})) = T then R = R− {a}
12 return R;
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Let us consider While loop from command line 3 to 8. To calculate SIGR (a),
we need to calculate SR∪{a}(ui), SR∪{a}∪{d}(ui) because SR(ui), SR∪{d}(ui)
have already calculated in the previous step. According to Zhang et al [21],
the time complexity to calculate SR∪{a}(ui) for ∀ui ∈ U when SR(ui) calculated

is O
(
|U |2

)
. So the time complexity to calculate all SIGE (a) is

(|A|+ (|A| − 1) + ... + 1) ∗ |U |2 = (|A| ∗ (|A| − 1) /2) ∗ |U |2 = O
(
|A|2|U |2

)
,

where |A| is the number of conditional attributes and |U | is the number of ob-
jects. The time complexity to choose the attribute with maximum significance

is |A|+ (|A| − 1) + ... + 1 = |A| ∗ (|A| − 1) /2 = O
(
|A|2

)
. Hence, the time com-

plexity of While loop is O
(
|A|2|U |2

)
. Similarly, the time complexity of For loop

from command line 10 to 12 is O
(
|A|2|U |2

)
. Consequently, the time complexity

of Algorithm 1 is O
(
|A|2|U |2

)
, which is less than that of [3], [4], [22]. However,

the time complexity of Algorithm 1 is the same as that of [21].

5.1 Example

Table 1. Car descriptions

Car Price Mileage Size Max-speed d

u1 High High Full Low Good
u2 Low * Full Low Good
u3 * * Compact High Poor
u4 High * Full High Good
u5 * * Full High Excellent
u6 Low High Full * Good

In this Section we consider the descriptions of cars as in Table 1 [4]. This is
an incomplete decision table D = (U,A ∪ {d}), where

U = {u1, u2, u3, u4, u5, u6} and A = {Car, Price,Mileage, Size,Max-speed}.

For simplification we will denote the attributes by a1, a2, a3, a4 respectively.
Firstly, let us calculate the knowledge bases of the following sets of attributes:

K({a1}) ={{u1, u3, u4, u5}, {u2, u3, u5, u6}, U, {u1, u3, u4, u5}, U,
{u2, u3, u5, u6}}

K({a2}) ={U,U, U, U, U, U}
K({a3}) ={{u1, u2, u4, u5, u6}, {u1, u2, u4, u5, u6}, {u3}, {u1, u2, u4, u5, u6},

{u1, u2, u4, u5, u6}, {u1, u2, u4, u5, u6}}
K({a4}) ={{u1, u2, u6}, {u1, u2, u6}, {u3, u4, u5, u6}, {u3, u4, u5, u6},

{u3, u4, u5, u6}, U}
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K(A) ={{u1}, {u2, u6}, {u3}, {u4, u5}, {u4, u5, u6}, {u2, u5, u6}}
K({d}) ={{u1, u2, u4, u6}, {u1, u2, u4, u6}, {u3}, {u1, u2, u4, u6}, {u5},

{u1, u2, u4, u6}}

According to lines 1 and 2 of Algorithm 1, we set R = ∅ and calculate

T = dE (K (A) ,K (A ∪ {d})) = 1

|U |2
6∑

i=1

(∣∣SA(ui)−
(
SA(ui) ∩ S{d}(ui)

)∣∣) = 4

36
.

Now, we start the first iteration of the While loop by the calculation of attribute
significance:

SIG∅ (a1) =
1

|U |2
|U|∑
i=1

(∣∣S∅(ui)− S{d}(ui)
∣∣− ∣∣S{a1}(ui)− S{a1,d}(ui)

∣∣) = 0.

Similarly, SIG∅ (a2) = 0, SIG∅ (a3) = 10
36 , SIG∅ (a4) = 8

36 . Choose a3 which
haves the most significance and R = {a3}. After calculation of

dE (K ({a3}) ,K ({a3, d})) =
8

36
,

we can see that dE (K ({a3}) ,K ({a3, d})) 	= dE (K (A) ,K (A ∪ {d})) . Thus we
have to perform the second loop.

SIG{a3}(a1) =
2

36
, SIG{a3}(a2) = 0, SIG{a3}(a4) =

4

36
.

Choose a4 which haves the most significance and R = {a3, a4}. Calculate

dE (K ({a3, a4}) ,K ({a3, a4, d})) =
4

36
= dE (K (A) ,K (A ∪ {d})) .

Hence, go to For loop. We can see that

dE (K ({a3}) ,K ({a3, d})) =
8

36
	= T ; dE (K ({a4}) ,K ({a4, d})) =

10

36
	= T.

As a consequence, the algorithm finishes and returns R = {a3, a4} as the best
reduct of A. This result is the same as the result in the example in reference [4].

6 Experiments

The experiments on PC (Pentium Dual Core 2.13 GHz, 1GB RAM, WINXP) are
performed on 6 data sets obtained from UCI Machine Learning Repository [20].
We choose information quantity based attribute reduction algorithm [4] (IQBAR
for short) to compare with the proposed algorithm. The results of experiments
are showm in Table 2 and Table 3, where |U |, |A|, |R| are the numbers of objects,
primal condition attributes, and after reduction respectively, and t is the time
of operation (calculated by second). Condition attributes will be denoted by
1, 2, ..., |A|. The results show that the reduct of the proposed algorithm is the
same as that of the IQBAR algorithm. However, the time of operation in the
proposed algorithm is less than that in the IQBAR algorithm.
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Table 2. The results of the proposed algorithm and IQBAR algorithm

Seq. Data sets |U | |A| Algorithm IQBAR Algorithm MBR
|R| Comp. time |R| Comp. time

1 Hepatitis 155 19 4 1.296 4 0.89
2 Lung-cancer 32 56 4 0.187 4 0.171
3 Automobile 205 25 5 3 5 1.687
4 Anneal 798 38 9 179 9 86.921
5 Voting Records 435 16 15 25.562 15 16.734
6 Credit Approval 690 15 7 29.703 7 15.687

Table 3. The reducts of the proposed algorithm and IQBAR algorithm

Seq Data sets The reducts of Alg. IQBAR The reducts of Alg. MBR

1 Hepatitis {1, 2, 4, 17} {1, 2, 4, 17}
2 Lung-cancer {3, 4, 9, 43} {3, 4, 9, 43}
3 Automobile {1, 13, 14, 20, 21} {1, 13, 14, 20, 21}
4 Anneal {1, 3, 4, 5, 8, 9, 33, 34, 35} {1, 3, 4, 5, 8, 9, 33, 34, 35}
5 Voting Records {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, {1, 2, 3, 4, 5, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16} 12, 13, 14, 15, 16}
6 Credit Approval {1, 2, 3, 4, 5, 6, 8} {1, 2, 3, 4, 5, 6, 8}

7 Conclusion

Attribute reduction is one of the crucial problems in both rough set theory for
complete information systems and tolerance rough set for incomple information
systems. In this paper, a generalized Liang entropy is proposed based on Liang
entropy [6] and some of its properties are considered in incomplete information
systems. Based on the generalized Liang entropy, a metric is established between
coverings and a metric based attribute reduction method in incomplete decision
tables is proposed. To construct the metric based attribute reduction method,
we define the reduct based on metric, the significance of an attribute based
on metric. We use the significance of an attribute as heuristic information to
design and implemement an efficient attribute reduction algorithm in incomplete
decision tables. We also prove theoretically and experimentally that the reduct
based on metric is the same as that base on information quantity [4] and the
time complexity of the proposed algorithm is less than that of the information
quantity based algorithm [4].
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Tables Based on Rough Sets
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Abstract. It is well known that data mining and knowledge discovery
on incomplete data are difficult and inevitable. However, the previous
analysis on Rough Sets has been developed under a single decision table,
but not under multiple decision tables. In this paper, introducing a gen-
eral significance of attributes in multiple decision tables, a completion
algorithm in multiple decision tables based on Rough Sets is proposed.
Through the experiments, it is shown that the algorithm is effective to
process incomplete multiple decision tables.

Keywords: rough sets, multiple decision tables, completion algorithm,
missing attributes.

1 Introduction

Rough set theory [1, 2], introduced by Z.Pawlak in the early 1980s, is a mathe-
matical tool to deal with vagueness and uncertainty. This theory has been applied
to machine learning, data mining, decision analysis, and pattern recognition, etc
[3]. It is known that data mining and knowledge discovery on incomplete data
are difficult and inevitable. The previous methods [4-6] to deal with incomplete
data are developed under a single decision table, but not under multiple decision
tables.

In order to treat the problem, several approaches have been proposed in papers
[7, 8]. Inuiguchi et al. [7] have discussed an approach to complete missing objects
in multiple decision tables when attributes are common among decision tables.

However, we may have multiple decision tables when the information comes
from multiple information sources or when objects are evaluated by multiple
decision makers. When each decision table is obtained from a decision maker, it
can be regarded as partial information about the opinion of the decision maker.
The decision table possibly lacks certain attributes. These decision tables may
have common attributes and different attributes. It will impact efficiency of data
mining. In this paper, we introduce a new completion algorithm in multiple
decision tables based on Rough Sets. Through the experiments, it is shown that
the algorithm is effective to process incomplete multiple decision tables.
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2 Definitions

A decision table is defined as a four-tuple < U,C ∪ {d}, V, f >, where
U = {x1, x2, ..., xn} is a universe of elements; C is a set of condition attributes
and d is a decision attribute; V = ∪a∈C∪{d}Va is a set of values for all attributes,
where Va is a set of values for each attribute a ∈ C; and f : U × (C ∪ {d}) → V
is an information function such that for every element x ∈ U , a ∈ U ∪ {d},
f(x, a) ∈ Va is the value of attribute a for element x. This paper uses a repre-
sentation of decision table in [7]. A decision table is formally defined as follows.

Definition 1. Let d be a decision attribute, Vd be the set of values for de-
cision attribute d. Then we can rewrite a decision table described by a four-
tuple < W,C ∪

∑
, V, f >, where W = {w1, ..., wt} is a set of patterns, wi =

∪a∈C {〈a, a (x)〉} is a pattern (i = 1, ..., t), a(x) is the value of attribute a ∈ C for
the object x ∈ U ; C is a set of condition attributes; Σ = {σC(wi, vd), ∀vd ∈ Vd}
is a set of frequencies of each pattern wi , where σC is a frequency function,
σC(wi, vd) is frequency for each pattern wi and decision attribute value vd ;
V = ∪a∈CVa is a set of values for all condition attributes, where Va is a set of
values for each attribute a; f : W × C → V is an information function; For
w ∈W , a ∈ C, f (w, a) ∈ Va is the value of attribute a for pattern w.

For example, the decision table shown in Table 1 can be rewritten as the table
shown in Table 2.

Table 1. An example of decision table

U Design Function Size Dec

x11 Classic Simple Compact Accept
x12 Classic Simple Compact Accept
x13 Classic Simple Compact Reject
x21 Classic Multiple Normal Accept
x22 Classic Multiple Normal Accept

Table 2. A decision table rewritten

W Design Function Size Σ

w1 Classic Simple Compact (2,1)
w2 Classic Multiple Normal (2,0)

According to definition 1, for any decision table Ti =< Wi, Ci ∪
∑

i, Vi, fi >,
where Ci is a set of condition attributes with respect to decision table Ti. Then,
we obtain the following definitions.

Definition 2. According to definition 1, a set of decision tables is defined as

Γ = {Ti , i = 1, ..., h}, Ti =< Wi, Ci ∪
∑

i, Vi, fi >,

where C
i

is a set of condition attributes with respect to T
i
;

The set of all condition attributes in Γ is defined as

C (Γ ) =
⋃h

i=1 Ci;
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The set of missing attributes in Ti is defined as

Ai = {a|a /∈ Ci ∧ a ∈ C};

The set of all missing attributes in Γ is defined as

A (Γ ) =
⋃h

i=1 Ai;

The set of decision tables which include attribute a in Γ is defined as

Z(Γ, a) = {Ti|a ∈ Ci, ∀Ti ∈ Γ};

The set of decision tables which lack attribute a in Γ is defined as

Y (Γ, a) = {Ti|a /∈ Ci, ∀Ti ∈ Γ}.

Definition 3. Let wi be a pattern in one decision table Ti and Wj be the set
of patterns in another decision table Tj, i 	= j, the set of values of common
condition attributes between wi and Wj denoted by B(wi,Wj) is defined as

B(wi,Wj) = {< a, a(wi) > |∀a ∈ Ci ∩ Cj , ∃w ∈Wj , a(wi) = a(w)};

The set of common patterns between Wj and B(wi,Wj) denoted by F (wi,Wj)
is defined as

F (wi,Wj) = {w|∀ < a, va >∈ B(wi,Wj), ∀w ∈Wj , va = a(w)};

The set of common patterns between F (wi,Wj) and < b, vb > denoted by
L(< b, vb >,wi,Wj) is defined as

L(< b, vb >,wi,Wj) = {w|∀w ∈ F (wi,Wj), b(w) = vb}.

3 The Completion Algorithm in Multiple Decision Tables
Based on Rough Sets

In multiple decision tables, the missing attributes in different decision tables
may be entirely different. For example, a decision table possibly lacks several
attributes, or several decision tables all lack an identical attribute, and further-
more, the significance of attributes may be different even though there is an
identical missing attribute in different decision tables, the general significance of
attributes in multiple decision tables should be defined.

3.1 The General Significance of Attributes in Multiple Decision
Tables

In order to treat the error caused by human evaluation as well as to accommo-
date disagreements among decision tables, we introduce significance as defined
in Variable Precision Rough Sets. In definition 5, the general significance of at-
tributes is heuristic information for the following algorithm, which is used to
avoid the formidable computational load.

Definition 4. [9, 10] To Ti ∈ Γ , for each attribute a ∈ Ci, the significance of a
denoted by SGF (a,Wi) is defined as
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SGF (a,Wi) =

∣
∣
∣POSβ

Ci
(
∑

i)
∣
∣
∣−

∣
∣
∣
∣
POSβ

Ci−{a}(
∑

i)
∣
∣
∣
∣

|Wi| ,

where β ∈ [0, 0.5) is an allowable error ratio and∣∣∣POSβ
Ci

(
∑

i)
∣∣∣ =

∑
∀w∈Wi,∃vd∈Vd,σCi

(w,vd)
/
∑

∀vd∈Vd
σCi

(w,vd)≥1−β
σCi (w, vd).

Definition 5. In Γ , the general significance of a denoted by S (a) is defined as

S (a) =
∑h

i=1 |Wi|SGF (a,Wi)
∑h

i=1 |Wi|
.

The larger S (a) is, the more important the attribute a is. According to the heuris-
tic information S (a), we may reduce the searching space.

3.2 The Completion Algorithm for Missing Attributes in Multiple
Decision Tables

We introduce the method which simultaneously adds am to all the decision tables
Y (Γ, am) missing this attribute.

Firstly, suppose the domain of am is Vam = {v1am
, ..., vram

}. After am is added,
we replace the original pattern wu with r patterns.

wu1 = {wu (c1) , wu(c2), ..., wu(cq), v
1
am
}

...
wur = {wu (c1) , wu(c2), ..., wu(cq), vram

}
,

where {wu (c1) , wu(c2), ..., wu(cq)} is values of pattern wu.
Frequency of the original pattern is redistributed by r patterns. We define the

ratio of frequency of every new pattern to frequencies of r patterns as follows.

μ
(
wu, vd,Wj ,

〈
am, viam

〉)
= {

∑

w∈L σ(w,vd)
/
∑

w∈F σ(w,vd), if F 	= φ

0, if F = φ
,

where i = 1, · · ·, r; vd is a value of decision attribute d; F = F (wu,Wj); L =
L
(〈
am, viam

〉
, wu,Wj

)
.

The average of the ratio is defined as follows.

σ (wui, vd) = σ (wu, vd)×
∑|Z(Γ,am)|

j=1 μ(wu,vd,Wj ,〈am,vi
am〉)

|Z(Γ,am)| ,

where i = 1, · · ·, r; vd is a value of decision attribute d.
Delete the patterns whose frequencies are 0, we obtain the new decision tables.
It is shown that the completion algorithm in multiple decision tables in

Algorithm 1.
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Algorithm 1. Completion Algorithm in Multiple Decision Tables

Iutput: A set of incomplete decision tables Γ = {Ti, i = 1, ..., h}, where Ti =

〈Wi, Ci ∪Σi, Vi, fi〉; C =
⋃h

i=1 Ci is the set of all condition attributes; Ai =

{a|a /∈ Ci ∧ a ∈ C} is the set of missing attributes in Ti; A =
⋃h

i=1 Ai is the set
of all missing attributes; A given threshold β(0 ≤ β < 0.5).

Output: Complete decision tables Γ ′ = {T ′
i , i = 1, ..., h}, where T ′

i =
〈W ′

i , C ∪Σ′
i, V

′
i , f

′
i〉.

Step 1 Set Γ ′ = T,C′ = C,A′ = A.
Step 2 If A′ = ∅, then go to step 5, otherwise step 3.
Step 3 According to definition 5, calculate the most important missing attribute
am = arg max

a∈A′
{S (a)} in Γ ′.

Step 4 The attribute am is added to all the decision tables Y (Γ, am) which miss
this attribute.

1. Add the attribute am to all the decision tables which miss this attribute and
make sure that new condition attributes and new attribute values are filled
in new patterns.

2. Calculate frequency of every new pattern.
3. Delete the patterns whose frequencies are 0.
4. Set C′ = C′ ∪ {am}, A′ = A′ − {am}, go to step 2.

Step 5 Γ ′ is the result.

4 An Illustrative Example and Analysis

4.1 An Illustrative Example

In order to test the validity of the algorithm, Solar-Flare dataset (the dataset can
be downloaded at ftp://ftp.ics.uci.edu/pub/machine-learning-databases) from
UCI database is used. We select {Activity, Evolution, Historically-complex, Did
region become, Area, C-class flares} 5 condition attributes and 1 decision at-
tribute to construct 4 decision tables. Vd = {0, 1}, Σ = (σC(wi, 0), σC(wi, 1)),
Γ = {T1, T2, T3, T4} shown in Table 3. Suppose that 4 decision tables are eval-
uated by 4 decision makers who have their own partial opinion. These decision
tables shown in Table 4 with missing attributes are generated from the 4 com-
plete tables T1 ∼ T4 which 4 attributes are removed from at random. T1 and
T2 lack a2. T3 lacks a4. T4 lacks a5. C1 = {a1, a3, a4, a5}, C2 = {a1, a3, a4, a5},
C3 = {a1, a2, a3, a5}, C4 = {a1, a2, a3, a4}, C(Γ ) = {a1, a2, a3, a4, a5}; A1 =
{a2}, A2 = {a2}, A3 = {a4}, A4 = {a5}, A(Γ ) = {a2, a4, a5}.

Set β=0.2, as definition 5 the attribute a2 is the missing attribute in decision
tables T1 and T2, the general significance of a2 is 0.0815. Similarly, the general
significance of missing attributes a4 and a5 is 0. We obtain the most important
missing attribute a2 and add it to T1 and T2 . The domain of a2 is Va2 = {1, 2},
then, after the attribute a2 is added, we replace each pattern with 2 patterns.
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Table 3. The set of original decision tables

Table 3.1.

W1 a1 a2 a3 a4 a5 Σ

w1 1 1 1 2 1 (12,1)
w2 1 2 2 2 1 (20,1)
w3 1 2 2 1 1 (15,0)
w4 1 2 1 2 1 (24,12)
w5 2 2 1 2 1 (3,10)
w6 2 2 2 2 1 (25,3)
w7 2 2 2 2 2 (11,0)

Table 3.2.

W2 a1 a2 a3 a4 a5 Σ

w1 1 1 1 2 1 (13,1)
w2 1 2 2 2 1 (15,0)
w3 1 2 2 1 1 (11,0)
w4 1 2 1 2 1 (20,10)
w5 2 2 1 2 1 (4,15)
w6 2 2 2 2 1 (23,2)
w7 2 2 2 2 2 (12,0)

Table 3.3.

W3 a1 a2 a3 a4 a5 Σ

w1 1 1 1 2 1 (10,0)
w2 1 2 2 2 1 (22,1)
w3 1 2 2 1 1 (20,1)
w4 1 2 1 2 1 (28,14)
w5 2 2 1 2 1 (2,9)
w6 2 2 2 2 1 (33,5)
w7 2 2 2 2 2 (14,0)

Table 3.4.

W4 a1 a2 a3 a4 a5 Σ

w1 1 1 1 2 1 (12,1)
w2 1 2 2 2 1 (18,0)
w3 1 2 2 1 1 (18,0)
w4 1 2 1 2 1 (15,7)
w5 2 2 1 2 1 (1,8)
w6 2 2 2 2 1 (20,1)
w7 2 2 2 2 2 (10,0)

Then, calculate frequencies of new patterns. According to definition 3 we get
B (w11,W3) = {〈a1, 1〉 , 〈a3, 1〉 , 〈a5, 1〉}, F (w11,W3) = {w31, w33}, L(< a2, 1 >
,w11,W3) = {w31}, L(< a2, 2 >,w11,W3) = {w33}. μ(w11, 0,W3, 〈a2, 1〉) =

σ(w31,0)
σ(w31,0)+σ(w33,0)

= 10
10+28 =0.263, similarly, μ(w11, 0,W4, 〈a2, 1〉) =0.444, fre-

quency of pattern w111 on the decision attribute value 0 is σC′
1
(w111, 0)=36 ∗

(0.263 + 0.444) /2 =12.74, in the same way, σC′
1
(w111, 1) =0.82. Frequencies

of the pattern w111 on the domain Vd = {0, 1} of decision attribute d are
(12.74,0.82). At last, delete the patterns whose frequencies are (0,0). The re-
sult is given in Table 4.

After completing the 4 decision tables, we round the frequencies of all patterns.
Compare T ′

1 ∼ T ′
4 to T1 ∼ T4, the error ratio of T ′

1 is 1/137 ∗ 100% = 0.73%, the
error ratio of T ′

2 is 0.79%, the error ratio of T ′
3 is 1.26%, and the error ratio of

T ′
4 is 0.9%. The average error ratio is 0.94%. The illustrative example test the

validity and feasibility of our completion algorithm.

4.2 Experiment and Analysis

Experiment 1: We use datasets Dermatology, Car, Postoperative-Patient and
Nursery from UCI database as test dataset. We select different objects and
different condition attributes and 1 decision attribute to construct 4, 5, 3, 6
decision tables respectively and remove attributes at random. Multiple decision
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Table 4. The set of final decision tables

Table 4.1. T ′
1 after completing a2

W ′
1 a1 a2 a3 a4 a5 Σ

g1 1 1 1 2 1 (12.74,0.82)
g2 1 2 2 2 1 (20,1)
g3 1 2 2 1 1 (15,0)
g4 1 2 1 2 1 (23.26,12.18)
g5 2 2 1 2 1 (3,10)
g6 2 2 2 2 1 (25,3)
g7 2 2 2 2 2 (11,0)

Table 4.2. T ′
2 after completing a2

W ′
2 a1 a2 a3 a4 a5 Σ

g1 1 1 1 2 1 (11.68,0.69)
g2 1 2 2 2 1 (15,0)
g3 1 2 2 1 1 (11,0)
g4 1 2 1 2 1 (21.32,10.31)
g5 2 2 1 2 1 (4,15)
g6 2 2 2 2 1 (23,2)
g7 2 2 2 2 2 (12,0)

Table 4.3. T ′
3 after completing a4

W ′
3 a1 a2 a3 a4 a5 Σ

g1 1 1 1 2 1 (10,0)
g2 1 2 2 2 1 (23.08,2)
g3 1 2 2 1 1 (18.92,0)
g4 1 2 1 2 1 (28,14)
g5 2 2 1 2 1 (2,9)
g6 2 2 2 2 1 (33,5)
g7 2 2 2 2 2 (14,0)

Table 4.4. T ′
4 after completing a5

W ′
4 a1 a2 a3 a4 a5 Σ

g1 1 1 1 2 1 (12,1)
g2 1 2 2 2 1 (18,0)
g3 1 2 2 1 1 (18,0)
g4 1 2 1 2 1 (15,7)
g5 2 2 1 2 1 (1,8)
g6 2 2 2 2 1 (20.54,1)
g7 2 2 2 2 2 (9.46,0)

Table 5. Experiment results for different datasets

Dataset N1 N2 N3 N4 The average error ratio

Dermatology 4 5 300 4 0.75%
Car 5 6 928 4 1.35%

Postoperative-Patient 3 4 90 3 1.1%
Nursery 6 7 2400 8 2.1%

Fig. 1. Contrast the number of missing attributes with the average error ratio



118 N. Jiao

tables are completed with the above algorithm. The experiment results are shown
in Table 5 (N1: Number of decision tables; N2: Number of condition attributes;
N3: Number of all objects; N4: Number of missing attributes).

Experiment 2: The dataset is Solar-Flare from UCI database. The attributes
selected are the same as the above example. We select 1000 objects to construct
4 decision tables which remove 1, 2, 3, 4, 5, 6 attributes randomly. The 4 decision
tables are completed with the above algorithm. The results (Fig. 1) illustrate
that the larger number of missing attributes is, the higher average error ratio is.
Missing attributes in each decision table should be small in number, otherwise,
it will lead to appreciable error.

5 Conclusions

In this paper, a new algorithm is proposed to complete multiple decision tables. It
keeps the integrity and consistency of all multiple decision tables, which provides
a new idea for pre-process of multiple decision tables.
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Abstract. In multi-label classification, each instance may be associated
with multiple labels simultaneously which is different from the traditional
single-label classification where an instance is only associated with a
single label. In this paper, we propose two types of approaches to deal
with multi-label classification problem based on rough sets. The first
type of approach is to transform the multi-label problem into one or
more single-label problems and then use the classical rough set model to
make decisions. The second type of approach is to extend the classical
rough set model in order to handle multi-label dataset directly, where
the new model considers the correlations among labels. The effectiveness
of multi-label rough set model is presented by a series of experiments
completed for two multi-label datasets.

Keywords: rough sets, multi-label classification, correlation.

1 Introduction

Multi-label classification problems [1] widely exist in various applications where
each instance is normally associated with multiple labels and the classes encoun-
tered in the problem are not mutually exclusive but may overlap.

There exists uncertainty during the process of multi-label classification due to
the finite number of training instances and the ambiguity of concept themselves,
which impacts the precision of the prediction. However, there is a lack of study
on the uncertainty existing in the multi-label classification. Rough sets form a
conceptual vehicle to deal with ambiguous, vague, and uncertain knowledge [2].
In this paper, several methods based on rough sets are proposed for the multi-
label decision system.

The rest of this paper is organized as follows. Section 2 briefly reviews the re-
lated studies about rough sets and multi-label learning. In Section 3, two types of
approaches for multi-label problem are proposed, which are respectively based
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on classical rough set model and multi-label rough set model. Section 4 illus-
trates the effectiveness of multi-label rough set model through some experiments.
Finally, Section 5 concludes the studies.

2 Related Works

This section briefly reviews some existing works on rough sets and multi-label
learning that are pertinent to our study.

2.1 Rough Sets

Rough set theory, proposed in 1982 by Pawlak [2], is regarded as a tool to process
inexact, uncertain or vague knowledge. Indiscernibility relation and Approxima-
tions are two important concepts in Pawlak rough set theory.

Rough set theory has attracted worldwide attention of many researchers and
practitioners, who have contributed essentially to its development and applica-
tions. For example, in order to deal with incomplete information system, some
researchers extend the equivalence relations to non-equivalence relations such
as tolerance relation [3], similarity relation [4], limited tolerance relation [5],
etc.. In order to support numerical attributes, Yao [6] and Hu [7] proposed the
neighborhood rough set model based on the neighborhood relations.

2.2 Multi-label Learning

Multi-label classification is different from the traditional task of single-label clas-
sification where each instance is only associated with a single class label. An in-
tuitive approach to multi-label learning is to decompose the task into a number
of binary classification problems and each for one class. This kind of approaches
include binary relevance method (BR) [1], binary pairwise classification approach
(PW) [8] and label combination or label power-set method (LC) [9]. Such an ap-
proach, however, usually suffers from the deficiency that the correlation among
the labels is not taken into account.

There are also numbers of multi-label classification algorithms derived from
traditional machine learning methods. For example, Boostexter system [10] pro-
vides two boosting algorithms, Adaboost.MH and Adaboost.MR, which are two
extensions of Adaboost for multi-label classification. Comit et al. [11] extended
the alternating decision tree learning algorithm for multi-label classification. In
addition, a number of multi-label methods are based on the popular k Nearest
Neighbors (kNN) lazy learning algorithm [12].

3 Rough Sets Based Approaches for Multi-label
Classification

In multi-label decision table, an object is associated with a subset of labels and
different classes may overlap by definition in the feature space. Fig. 1(a) shows a
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multi-label dataset which includes five instances with four labels grass, tree, sky
and water. If we transfer Fig. 1(a) into Fig. 1(b), we find it looks like a single-
label inconsistent decision table, where two objects with the same conditional
features belong to different decision classes. In single-label classification system,
the classes are mutually exclusive and the inconsistent problem was considered
to be caused by noise, such as mistakes in recording process [13], which is in
conflict with the definition of multi-label classification. We cannot directly cope
with multi-label problem using the existing single-label inconsistent approaches.
In this paper, we will present two types of rough sets based approaches for
multi-label classification problem.

Fig. 1. Example of multi-label dataset and its transformation

Before introducing the methods, we present the formal notation in this paper.
Let MDT = 〈U,A〉 be a multi-label decision table, where U is a finite, nonempty
set called the universe, and A = C ∪D; C = {c1, . . . , cn} is the set of conditional
attributes and D = {l1, . . . , lm} is the set of labels.

The first type of approach is to directly transform the multi-label problem into
one or more traditional single-label problems and then use the classical rough
set theory to obtain rules. As for the methods of transformation, we can refer to
literature [1]. Fig. 1(a) is used as an original example to briefly exemplify these
transformations.

For example, we can learn binary classifiers from original dataset, and one
for each different label lj ∈ D. Each dataset contains all instances of original
dataset. The instance is labeled as 1, if the original label lj is included and as
0, otherwise. Fig. 2 shows the result of transformation of Fig. 1(a) using this
method. For a new object, its prediction is a set of labels which are output
by classifiers. However, the precision of the decision suffers from the imbalance
problem existing in the dataset.

In addition, we also can consider each different set of labels that exists in the
multi-label dataset as a single-label. Fig. 3 shows the result of transformation of
Fig. 1(a) using this method. The new labels come from the power set of D. This
method suffers from the sparse problem that the dataset has a large number of
classes as well as few examples per class.
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Fig. 2. Four datasets with binary labels

Fig. 3. Transformed dataset with power set

The second type of approach is to extend specific rough set model in order to
handle multi-label data directly. It can be noticed from Fig. 1(a) that in multi-
label dataset, different labels often co-occur in practice. Namely, the labels are
not independent with each other. Taking Fig. 1(a) as an example, the probability
of an image being annotated with label sky would be high if we know it has
label grass. Thus, effective exploitation of correlation information among labels
is crucial for the success of multi-label rough sets.

Generally speaking, the co-occurrence of labels is related with the location of
instance. Those instances with multiple labels are usually located in the over-
lapped region. Fig. 4 gives an example to illustrate the relation between location
and co-occurrence. Two labels are respectively marked by ‘*’ and ‘+’ in a 2-D
space and examples simultaneously belonging to l1 and l2 are denoted by ‘X’.
For convenience, we assume that the distribution of two classes is circular. There
are several instances in example space such as a, b, c,d and we associate a neigh-
borhood with five neighbors to each instance. It can be seen that the instances
located in the non-overlapped region only have one label while the instances
located in the overlapped region may have two labels simultaneously. Let δ(x)
denote the neighborhood of instance x and |δj(x)| is the number of instance with
label lj(j = 1, . . . ,m) in δ(x). Let Γ (x) denote the sum of all kinds of neighbors
in δ(x) and |Γ (x)| =

∑m
q=1 |δq(x)|. The proportion that the neighbors with label

lj accounts for of all kinds of neighbors is represented as Υj(x) = |δj(x)|/|Γ (x)|.
Taking instances a and c as examples, Υ1(a) = 1 and Υ2(a) = 0 while Υ1(b) = 1/6
and Υ2(b) = 5/6 . The proportion Υj(x) varies along the changing of location
of instances. A larger value for Υj(x) will increase the probability of instance
x having label lj . Here, we first introduce the inclusion degree and then give
the definition of upper and lower approximations of multi-label decision table
according to the proportion Υj(x).
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Fig. 4. Illustration of location estimation in multi-label system

Definition 1. Given two sets A and B in the universe, the inclusion degree of
A in B is defined as

I(A,B) =
Card(A ∩B)

Card(A)
(1)

where Card(Φ) stands for the number of elements in set Φ. The proportion Υj(x)
can be described using inclusion degree as follows.

Υj(x) = I(Γ (x), Y ) =
Card(Γ (x) ∩ Y )

Card(Γ (x))
(2)

where Y represents the set of instances with label lj in universe. Then the upper
and lower approximations of decision class are defined as follows.

Definition 2. Given a multi-label decision table MDT = 〈U,A〉, Xi ∈ U and
A = C ∪D; Y is the subset of instances with label lj(j = 1, . . . ,m) and B ⊆ C.
Then the lower and upper approximations of decision class Y with respect to
neighborhood relation R are denoted as Rβ

BY and Rα
BY respectively, and defined

as follows.
Rβ

BY = {xi|I(Γ (x), Y ) � β, xi ∈ U} (3)

Rα
BY = {xi|I(Γ (x), Y ) � α, xi ∈ U} (4)

From the definition, we can see that just as decision-theoretic rough set
models [14,15], the multi-label rough set model incorporates probabilistic ap-
proaches into rough set theory. For each label lj ∈ D, inclusion degree β and
α(0 � α < β � 1) are different and they are estimated from the training dataset
according to maximum posterior probability. Let l1j denote the event of instance

xi having label lj and l0j denotes the event of instance xi having no label lj .

P (l1j |Υj(xi)) denotes the probability of instance xi having label lj , when the

proportion is Υj(xi)) and P (l0j |Υj(xi)) means just the opposite. Then according

to Bayesian decision theory, if P (l1j |Υj(xi)) � P (l0j |Υj(xi)) then the instance xi

has label lj , and otherwise the instance xi has no relation with label lj . The
threshold β is determined when P (l1j |Υj(xi)) = P (l0j |Υj(xi)) and the threshold

α is determined when P (l1j |Υj(xi)) reaches a satisfied value. Taking Fig. 5 as
an example, β is the threshold of lower approximation and α is selected as the
threshold of upper approximation when P (l1j |Υj(xi)) approaches zero.
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Fig. 5. Illustration of estimation of inclusion degree

For each label lj, the multi-label rough set model divides the universe into

three regions. Decision positive region is denoted by POSB(Y ) = Rβ
BY where the

instances certainly belongs to class lj. Negative region is denoted by NEGB(Y ) =
U −Rα

BY where the instances have no relation with class lj. The boundary re-

gion denoted by BNB(Y ) = Rα
BY −Rβ

BY is a subset of instances that may have
relation with class lj .

After defining the upper and lower approximations of decision class, we will
give the definition of multi-label decision function based on rough sets, which
can be used for multi-label classification problem.

Definition 3. Given a multi-label decision table MDT = 〈U,A〉, xi ∈ U . Υj(xi)
(j = 1, . . . ,m) is the proportion that the neighbors with label lj in δ(xi) have of
all kinds of neighbors in δ(xi). The multi-label decision function of xi for label
lj is defined as MDj(xi) = l1j , if Υj(xi) � β or MDj(xi) = l0j , if Υj(xi) � α.

MDj(xi) is the result assigned to xi according to the inclusion degree. Obvi-
ously, MDj(xi) = l1j if xi is located in the positive region of class lj , or MDj(xi) =

l0j if xi is located in the negative region of class lj , or if xi is located in the boundary
region of class lj , we will assign it a probability of having label lj .

4 Experiments

To test the effectiveness of the multi-label rough set model(MLRS) presented
in this paper, we apply it to two multi-label datasets which come from the the
open source Mulan library [1] and Table 1 shows their associated properties.
We compare MLRS with various state-of-art multi-label algorithms including
the classifier chains algorithm CC, the random k label-set method for multi-
label classification RAkEL and back-propagation multi-label learning (BPMLL)
learner.

Experimental results of ten-fold cross-validation in terms of Hamming loss,
average precision, coverage, one-error and ranking loss are shown in Table 2 and
Table 3. The value following ± gives the standard deviation and the best result
on each metric is shown in bold face. The number of the nearest neighbors is set
as 10.
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It can be seen from Table 2 and Table 3 that MLRS performs well on most
evaluation criteria when it applied to the multi-label classification problem. With
the enormous increasing of the amount of instances and labels, MLRS still can
performs well compared to other multi-label algorithms. It shows that MLRS
has some scalability.

Table 1. Multi-label datasets used for experiments

name instances attribute labels cardinality density
Scene 2407 294 6 1.074 0.179

Corel5k 5000 499 374 3.522 0.009

Table 2. MLNRS vs. other multi-label algorithms over Scene

performance RAkEL BPMLL CC MLRS
hloss 0.1012±0.0075 0.2667±0.0508 0.1444±0.0164 0.0912±0.0082

avgprec 0.8379±0.0156 0.6852±0.0235 0.7176±0.0354 0.8652±0.0153
cov 0.5862±0.0593 0.9405±0.0855 1.3504±0.2002 0.4818±0.0539

one-error 0.2663±0.0258 0.5450±0.0381 0.3914±0.0453 0.2255±0.0248
rloss 0.0999±0.0121 0.1714±0.0165 0.3914±0.0453 0.0790±0.0116

Table 3. MLNRS vs. other multi-label algorithms over Corel5k

performance RAkEL BPMLL CC MLRS
hloss 0.0097±0.0001 0.5547±0.0213 0.0099±0.0001 0.0105±0.0001

avgprec 0.1075±0.0080 0.0563±0.0097 0.2364±0.0102 0.2463±0.0092
cov 336.0374±2.6687 169.0732±4.6338 165.3946±5.8193 132.1238±5.4093

one-error 0.7734±0.0201 0.9974±0.0025 0.7076±0.0172 0.7398±0.0154
rloss 0.6565±0.0116 0.2273±0.0096 0.1869±0.0083 0.1513±0.0049

5 Conclusion

We study the problem of classification under multi-label dataset in this paper.
Based on rough set theory, we propose two kinds of approaches to deal with the
multi-label problem and present a multi-label rough set model. After applying
the model to multi-label datasets, we obtain promising results compared with
other well-known multi-label algorithms. Future work will focus on the dimension
reduction of multi-label dataset which can improve the accuracy and efficiency
of prediction.
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Abstract. Soft clustering plays an important role in many real world
applications. Fuzzy clustering, rough clustering, evidential clustering and
many other approaches are used effectively to overcome the rigidness of
crisp clustering. Each approach has its own unique features that set it
apart from others. In this paper, we propose an enhanced rough clus-
tering approach by combining the strengths of rough clustering and evi-
dential clustering. The rough K-means algorithm is augmented with an
ability to determine outliers in datasets using the concepts from the Ev-
idential c-means algorithm. Different experiments are carried on various
datasets and it is found that the modified rough K-means can effectively
detect outliers with relatively smaller computational complexity.

Keywords: Rough Clustering, Fuzzy Clustering, Rough k-means, Fuzzy
c-means, belief functions, Evidential c-means.

1 Introduction

The process of grouping objects into separate clusters is one of the first data
mining techniques applied in a knowledge discovery process. Researchers have
developed a number of clustering algorithms over the years. The conventional
crisp clustering techniques group objects into separate clusters. Each object is
assigned to only one cluster. The term crisp clustering refers to the fact that
the cluster boundaries are strictly defined and object’s cluster membership is
unambiguous.

Such a requirement is found to be too restrictive in many data mining appli-
cations [1]. In practice, an object may display characteristics of different clusters.
In such cases, an object should belong to more than one cluster, and as a result,
cluster boundaries necessarily overlap.

A conventional clustering algorithm such as K-means categorizes an object
into precisely one cluster. Whereas, fuzzy clustering [2, 3] and rough set cluster-
ing [4–6] provide an ability to specify the membership of an object to multiple
clusters, which can be useful in real world applications.

D. Ciucci et al. (Eds.): RSFDGrC 2013, LNAI 8170, pp. 127–137, 2013.
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Fuzzy set representation of clusters, using algorithms such as fuzzy c-means
(FCM), make it possible for an object to belongs to multiple clusters with a
degree of membership between 0 and 1 [3]. Evidential C-means (ECM) proposed
by [7] is an extension of FCM and noise clustering algorithm proposed by Dave
et al. [8]. It clearly identifies objects that belong to one or more clusters by the
virtue of their position in the problem space. Basic belief assignment (bba) values
are computed for all possible combinations of k clusters (2k partitions), which
are used to determine cluster membership. Rough K-means algorithm (RKM)
[4] groups objects into lower and upper regions of clusters and an object can
belongs to an upper region of multiple clusters.

Outlier detection is a very well explored research area with applicability in
several real life applications. Outliers affect badly on the overall quality of knowl-
edge obtained from the dataset. Hawkins et al. [9] defined an outlier as a much
deviated observation from other observations. Acuna et al. [10] demonstrated
the effect of outliers on the mis-classification error rate. Eskin et al. [11] pro-
posed clustering based outlier detection using the distance to closest cluster.
Mahoney et al. [12] and He et al. [13] proposed variation in clustering based out-
lier detection. A detailed survey of various outlier detection techniques is given
by Chandola et al. [14] However, all these techniques detect outliers from crisp
clustering. Jaruskulchai et al. proposed outlier detection for non-crisp clustering.
They integrated possibilistic approach with FCM to propose PXFCM to detect
outlier in fuzzy clustering. ECM is also able to detect outliers while generating
flexible non-crisp clustering.

Joshi et al. [15] put forth strengths of RKM and ECM clustering algorithms
after evaluating both the algorithms on various datasets. ECM was found to be
good at outlier detection whereas RKM was good at dealing with high dimen-
sional data. In this paper, we present our proposal to enhance RKM using the
concepts used in ECM. We test our results with a synthetic and some standard
datsets.

The rest of the paper is organized as follows. The description of ECM and
RKM is presented in section 2. The details of the proposed enhancements are
given in section 3, followed by experimental results and observations in section
4. Conclusions in section 5 mark the end of the paper.

2 Algorithms: RKM and ECM

The following subsections provide a brief review of the RKM and the ECM
algorithms.

2.1 Rough K-means Algorithm

Lingras and West [4] provided RKM algorithm based on an extension of the
K-means algorithm [16, 17]. Peters [5] discussed various refinements of Lingras
and West’s original proposal. These included calculation of rough centroids and
the use of ratios of distances as opposed to differences between distances similar
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Input:
k: the number of clusters,
D(n,m): a data set containing n objects where each object has m dimensions,
p: a roughness parameter (threshold value = 1.4),
w lower: relative importance assigned to lower bound (0.75),
w upper: relative importance assigned to upper bound (0.25),
δ:an input parameter that stands for a small acceptable change in the
subsequent centroid values,

iter: an input parameter indicating number of consecutive iterations for which
difference in subsequent centroid values should be less than δ,

Output:
A set of clusters. Each cluster is represented by the objects in the lower region
and in boundary region (upper bound)

Steps:
arbitrarily choose k objects from D as the initial cluster centers (centroids);
repeat
arbitrarily choose k objects from D as the initial cluster centers (centroids);
repeat

(re)assign each object to lower/upper bounds of appropriate clusters by
determining its distance from each cluster centroid,

update the cluster means (centroids) using the number of objects assigned
and relative importance assigned to lower bound and upper bound
of the cluster;

until no change;

Fig. 1. The Rough K-means algorithm

to those used in the rough set based Kohonen algorithm described in [18]. The
rough K-means [4] and its various extensions [5] have been found to be effective in
distance based clustering. A comparative study of crisp, rough and evolutionary
clustering depicts how rough clustering outperforms crisp clustering [19].

In RKM, each cluster ci, 1 ≤ i ≤ k, is represented using its lower A(ci)
and upper A(ci) approximations [20]. All objects that are clustered using the
algorithm follow basic properties of rough set theory such as:

(P1) An object x can be part of a lower

approximation of at most one cluster

(P2) x ∈ A(ci) =⇒ x ∈ A(ci)

(P3) An object x is not part of any lower

approximation

�
x belongs to upper approximation of two

or more clusters.

Fig. 1 depicts the general idea of how rough K-means algorithm works.
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An object is assigned to lower and/or upper approximation of one or more
clusters. For each object vector, v, let d(v, cj) be the distance between itself
and the centroid of cluster cj . Let d(v, ci) = min1≤j≤k d(v, cj). The ratios
d(v, cj)/d(v, ci), 1 ≤ i, j ≤ k, are used to determine the membership of v.
Let T = {j : d(v, cj)/d(v, ci) ≤ threshold and i 	= j}.

1. If T 	= ∅, v ∈ A(ci) and v ∈ A(cj), ∀j ∈ T . Furthermore, v is not part of any
lower approximation. The above criterion guarantees that property (P3) is
satisfied.

2. Otherwise, if T = ∅, v ∈ A(ci). In addition, by property (P2), v ∈ A(ci).

It should be emphasized that the approximation space A is not defined based
on any predefined relation on the set of objects. The lower and upper approx-
imations are constructed based on the criteria described above. The value of a
threshold is finalized based on the experiments described in [21].

2.2 Evidential C-means Algorithm

ECM is a credal partition based approach that generates 2k values for each
object to determine cluster membership of an object i by a bba mi; where k is
the number of clusters and bba is a basic belief assignment value. As compared
to the earlier versions [22] where only k numbers of clusters were considered
for membership assignment, 2k clusters are proposed in the ECM algorithm to
model all situations ranging from complete ignorance to full certainty concerning
the cluster of i.

As mentioned earlier, the ECM algorithm first obtains a credal partition fol-
lowed by a separate treatment of an empty set of the credal partition in order
to obtain bba for all 2k clusters. The similarity between an object and a cluster
is measured using the Euclidean metric. In order to obtain the final solution
matrix, the problem is represented as an unconstrained optimization problem
and solved using an iterative algorithm.

Hence, for a dataset that has three clusters, ECM for each object generates
eight different bba values mi. These eight values correspond to the knowledge
regarding the cluster membership of an object i. If a bba value of hundredth
object for second cluster is 1, then we can say that cluster of object 100 is
known with certainty. Likewise we can claim to have partial knowledge about
cluster membership of an object (0 < bba < 1); no knowledge about cluster
membership of an object (object belongs to all clusters), and importantly outlier
characteristics of an object.

ECM builds on Fuzzy c-means to obtain an initial clustering. They fur-
ther apply the noise-clustering proposed by Dave [8] for fine-tuning the initial
solution.
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3 RKM Enhancement for Outlier Detection

In this section, we describe our approach to enhance RKM algorithm that enables
it to determine outlier objects. We define a term ‘degreeOfOutlier’ and describe
it in this section.

As discussed earlier, this enhancement is motivated and based on the concepts
of Evidential clustering. We first apply RKM to determine cluster memberships
for all objects, followed by calculations of bba values for each object. The pro-
posed enhancement is as follows.

Let sim(xi, xj) be similarity between two vectors. It can be inverse of the
distance between these two vectors, i.e. sim(xi, xj) = 1/distance(xi, xj). Fur-
thermore, let us define similarity between a vector xj and a set of vectors A as∑

xi∈A sim(xi, xj)/‖A‖, where ‖A‖ is the cardinality of A. In the classical belief
functions, m(∅) = 0. We can derive the classical belief functions as follows.

Let C = {c1, c2, c3, ..., ck} be a set of clusters, where ci is the centroid of
cluster i. Furthermore, mi be the bba for an object xi that belongs to upper
bounds of clusters c ∈ B such that B ⊆ C, then

mi(B) =
sim(B, xi)

sim(B, xi) + sim(C −B, xi)
(1)

and the residual m should be assigned to C:

mi(C) = 1−mi(B). (2)

It should be noted that B and C are the only two focal elements of mi. This
covers the special case where the object xi belongs to a single cluster ch, i.e.
when it is in the lower bound of ch:

mi({ch}) =
sim(ch, xi)

sim(ch, xi) + sim(C − {ch}, xi)
(3)

and
mi(C) = 1−mi({ch}). (4)

The above formulation does not allow for outliers. If we drop the restriction
that m(∅) = 0, then we should modify the above bba as follows.

Let mi be the bba for an object xi that belongs to upper bounds of clusters
c ∈ B such that B ⊆ C, then

mi(B) =
sim(B, xi)

sim(B, xi) + sim(C −B, xi)
(5)

The residual m can either be assigned to C or ∅ depending on how similar
the object is to centers of the clusters in B. Typically, sim(B, xi) should be less
than or equal to half of the maximum distance between cluster centers.

Let us define farApart as the similarity between least similar cluster cen-
troids:

farApart = min
ci,cj∈C and ci 
=cj

sim(ci, cj) (6)
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If similarity between xi and cluster centers in B is greater than or equal to
half of farApart, it is not an outlier. If xi is less similar to cluster centers in
B than half of farApart, it could be potentially an outlier. Therefore, we can
define:

degreeOfOutlier(xi) = max

(
0,

farApart

2
− sim(B, xi)

)
(7)

This degree of outlier will be used to assign the residual mi using the following
two equations:

mi(∅)
mi(C)

=
degreeOfOutlier(xi)

farApart/2
, and (8)

mi(C) + mi(∅) = (1 −mi(B)) (9)

Equations 1 to 4 are straightforward and these formulas are used to calculate
bba values for all objects and bba for Ω as defined in [7]. We have used C instead
of Ω. The value of bba of an object can be obtained using equation 1 if the object
belongs to only one cluster. However, equation 3 can be used to obtain bba of an
object that belongs to multiple clusters.

Equations 5 onward correspond to the situation where bba for an empty set can
be non-zero (m(∅) 	= 0). It means that, these equations can be used to detect
outlier objects (if any) in the dataset. We define a measure ‘degreeOfOutlier’
that can be 0 or any positive real number. If ‘degreeOfOutlier’ value is zero
it means that object is not an outlier. We can elaborate the formulation of
‘degreeOfOutlier’ using Figure 2.

The term ‘farApart’ gives the maximum distance among all centroids (least
similar centroids are obtained using equation 6). Half of the ‘farApart’ distance
that is farApart

2 is a threshold value that determines whether an object is an
outlier. Hereafter, we refer to this threshold as an ‘outlier determination thresh-
old’. If an object lie in the circumference of a circle drawn from cluster centroids
with a radius of ‘outlier determination threshold’ value then that object is not an
outlier. But if an object is beyond the circumference of all cluster centroid circles
then that object is treated as an outlier. The value of sim(B,Xin) is greater than
the threshold value of farApart

2 , hence Xin is not an outlier (equation 7, ‘degree-
OfOutlier = 0’). Whereas Xout is an outlier because the value of sim(B,Xout)
is smaller than the threshold resulting in positive value of ‘degreeOfOutlier’ as
shown in Figure 2.

4 Experimental Results and Observations

We applied our enhanced RKM algorithm to various data sets to check if it
can detect outliers properly. The data sets used for experimental purposes are
presented in one subsection followed by results and observations in another sub-
section.

Synthetic Data Set: We used the synthetic data set developed by Lingras et
al. [23] to experiment with the enhanced RKM algorithms. Sixty objects from
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Fig. 2. Synthetic data with outlier

a total of 65 objects are distributed over three distinct clusters. However, five
objects do not belong to any particular cluster.

Synthetic Data Set with Outlier: We modified the original synthetic data
set to include an outlier as shown in Figure 2. We retained the 60 objects from
original synthetic data set that are clustered into three distinct clusters and
added two objects Xin, Xout in the data set. This modified data set have 62
objects where the 61st object is an outlier as shown in Figure 2.

Fig. 3. Diamond data

Diamond Data Set: We used the classical Diamond data set [24] for experi-
mentation. It is composed of twelve objects as represented in Figure 3. Objects
1 to 11 are part of Windhams data whereas object 12 is an outlier.

Glass Identification Data Set: We used another standard data set namely
Glass Identification data set [25]. This data set has 214 instances of seven differ-
ent types of glasses. Nine attributes including refractive index, amount of sodium,
magnesium deposited are used for classification. In order to reduce the number
of clusters we retained 163 instances corresponding to the first three types of
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glasses. We added two outliers to the data set in order to test the performance
of our algorithm.

Expected results are obtained after applying the enhanced RKM algorithm
on both the Synthetic and modified Synthetic data sets. The enhanced RKM
algorithm generated satisfactory results for the Diamond data set and for the
Glass data sets too. The results and the observations are discussed in the next
subsection.

4.1 Results and Observations

Our objectives of experiments on various data sets were two fold. Firstly, we
want to check whether our enhanced RKM algorithm is able to appropriately
detect outliers from the data sets. Moreover, we also checked whether our pro-
posed algorithm incorrectly tags any object as an outlier. The results of applying
enhanced RKM to the various data sets are as follows.

When we applied enhanced RKM to original synthetic dataset we get ‘de-
greeOfOutlier’ as 0 for all 65 objects. This is what we expected as the synthetic
data set does not contain any outliers. For modified synthetic data set, Xout (7,
98) and Xin (25, 40) are the additional objects. Our enhanced RKM algorithm
successfully detected the Xout as an outlier with a positive ‘degreeOfOutlier’ for
Xout, whereas for Xin ‘degreeOfOutlier’ is 0 indicating that it is not an outlier.
Table 1 shows how the value of ‘degreeOfOutlier’ changes for an object placed
at different coordinates. The results for the object xin and for the object xout

are also included in Table 1.

Table 1. Changing ‘degreeOfOutlier’ for varying coordinates in Synthetic data set

Coordinates Cluster membership degreeOfOutlier

(0, 0) c1, c2 0
(0, 30) c1 0
(0, 70) c1 0
(0, 100) Outlier 0.11
(0, 130) Outlier 0.30
(0, 150) Outlier forms its own cluster 0.6
(30, 0) c2 0
(70, 0) c2, c3 0
(100, 0) Outlier 0.18
(150, 0) Outlier forms its own cluster 0.6
Xin (25, 40) c1, c3 0
Xout (7, 98) Outlier 0.15

Similarly, enhanced RKM algorithm is able to detect the outlier object from
Diamond data set correctly. ECM algorithm detects the outlier from this data
set whereas original RKM algorithm was not able to detect the outlier from this
data set [15].



The ECM or The RKM 135

Both of these Synthetic and Diamond data sets have low dimensionality.
Hence, we decided to test our algorithm on another standard data set with
relatively higher dimensions. The standard Glass data set has nine dimensions.
Initially, we verified that our algorithm does not falsely point at any object as
an outlier. We added two outliers and our algorithm correctly identified both of
these newly added instances as outliers.

For all these experiments we calculated, similarity among centroids as well
as similarity between objects and cluster centroids. We experimented with two
different types of similarity measures namely, Euclidean distance based similar-
ity and Cosine similarity measures to verify which measure suits well. We have
obtained Euclidean distance based similarity by taking inverse of conventional
Euclidean distance using formula mentioned in equation 10, whereas cosine sim-
ilarity is obtained as mentioned in equation 11.

sim(xi, xj) =
1√∑m

k=1(xik − xjk)2
(10)

sim(xi, xj) =

√ ∑m
k=1(xik × xjk)∑m

k=1(xik)2 ×
∑m

k=1(xjk)2
(11)

Where both xi and xj are m dimensional vectors.
All the above mentioned experimental results are obtained using Euclidean

distance based similarity measure. With cosine similarity measure we could not
obtain similar results as shown in Table 1. However, we find cosine similarity
suitable when an object is stretched too far to form its own cluster. In this
case, the outlier object forms its own cluster with only single object as shown in
Table 1 for an object (0, 150). Euclidean distance based similarity results infinity
(∞) and ultimately assigns 0 to ‘degreeOfOutlier’. Use of Cosine similarity in
such cases results in proper identification of outliers. Moreover, a case in which
two outliers forming their own cluster is handled better by Cosine similarity as
compared to Euclidean based similarity measure.

We performed various experiments and analyzed the results. We further sum-
marize our observations as follows.

1. The algorithm correctly detects outliers, if any, from a data set.
2. The value of ‘degreeOfOutlier’ is directly proportional to how far an outlier

is from ‘outlier determination threshold’.
3. The above observation holds true till an object is not too far to form its own

cluster with that sole object.
4. How far an object can be stretched without being labeled as an outlier

depends upon ‘outlier determination threshold’.
5. In the proposal discussed in section 3, we have mentioned ‘outlier determi-

nation threshold’ to be farApart × 0.5. However, we have observed that
in some situations we get better results when we used farApart × 0.6 as
‘outlier determination threshold’. More experiments shall be performed in
future to determine best suitable threshold value for different data sets in
different working conditions.
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5 Conclusions

Our evaluation of strengths and limitations of RKM as compared to various
other non-crisp clustering algorithms like Fuzzy c-means (FCM), Interval set
K-means (IKM), Evidential c-means (ECM) suggests that RKM lacks the ca-
pability of outlier detection. Hence, we proposed an enhanced RKM algorithm.
The enhancement is motivated by the theoretical foundation of belief function
theory and its practical implementation in the form of ECM.

We incorporated the concept of basis belief assignment for an object and
proposed use of ‘outlier determination threshold’ to determine whether an object
is an outlier. We have evaluated the correctness of the proposed algorithm using
a synthetic data set and two standard data sets.

Further studies may reveal if ‘outlier determination threshold’ is dependent
on a given dataset.
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Abstract. In this paper, dual intuitionistic fuzzy rough approximation
operators determined by an intuitionistic fuzzy implication operator I
in infinite universes of discourse are investigated. Lower and upper ap-
proximations of intuitionistic fuzzy sets with respect to an intuitionis-
tic fuzzy approximation space in infinite universes of discourse are first
introduced. Properties of I-intuitionistic fuzzy rough approximation op-
erators are then examined. Relationships between special types of intu-
itionistic fuzzy relations and properties of I-intuitionistic fuzzy rough
approximation operators are further established.

Keywords: Approximation operators, Intuitionistic fuzzy implicators,
Intuitionistic fuzzy rough sets, Intuitionistic fuzzy sets, Rough sets.

1 Introduction

One of the main directions in the research of rough set theory [6] is naturally the
generalization of concepts of Pawlak rough set approximation operators. Many
authors have generalized the notion of rough set approximations into the fuzzy
environment, and the results are called rough fuzzy sets (fuzzy sets approxi-
mated by a crisp approximation space) and fuzzy rough sets (fuzzy or crisp sets
approximated by a fuzzy approximation space). As a more general case of fuzzy
sets, the concept of intuitionistic fuzzy (IF for short) sets, which was originated
by Atanassov [1], has played a useful role in the research of uncertainty theories.
Unlike a fuzzy set, which gives a degree of which element belongs to a set, an
IF set gives both a membership degree and a nonmembership degree. Obviously,
an IF set is more objective than a fuzzy set to describe the vagueness of data or
information. The combination of IF set theory and rough set theory is a new hy-
brid model to describe the uncertain information and has become an interesting
research issue over the years (see e.g. [2, 3, 5, 7–12]).

It is well-known that the dual properties of lower and upper approximation
operators are of particular importance in the analysis of mathematical structures
in rough set theory. The dual pairs of lower and upper approximation operators
in the rough set theory are strongly related to the interior and closure operators
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in topological space, the necessity (box) and possibility (diamond) operators
in modal logic, and the belief and plausibility functions in the Dempster-Shafer
theory of evidence. The main objective of this paper is to present the study of IF
rough sets determined by an IF implicator I in infinite universes of discourse. We
will define a dual pair of lower and upper I-IF rough approximation operators
and examine their essential properties.

2 Preliminaries

In this section we recall some basic notions and previous results which will be
used in the later parts of this paper.

2.1 Intuitionistic Fuzzy Logical Operators

Throughout this paper, U will be a nonempty set called the universe of discourse.
The class of all subsets (respectively, fuzzy subsets) of U will be denoted by P(U)
(respectively, by F(U)). In what follows, 1y will denote the fuzzy singleton with
value 1 at y and 0 elsewhere; 1M will denote the characteristic function of a crisp
set M ∈ P(U). For α ∈ [0, 1] (where [0, 1] is the unit interval) , α̂ will denote the
constant fuzzy set: α̂(x) = α, for all x ∈ U . For any A ∈ F(U), the complement
of A will be denoted by ∼ A, i.e. (∼ A)(x) = 1−A(x) for all x ∈ U .

We first review a lattice on [0, 1]× [0, 1] originated by Cornelis et al. [4].

Definition 1. Denote

L∗ = {(x1, x2) ∈ [0, 1]× [0, 1] | x1 + x2 ≤ 1}. (1)

A relation ≤L∗ on L∗ is defined as follows: ∀(x1, x2), (y1, y2) ∈ L∗,

(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1 and x2 ≥ y2. (2)

The relation ≤L∗ is a partial ordering on L∗ and the pair (L∗,≤L∗) is a complete
lattice with the smallest element 0L∗ = (0, 1) and the greatest element 1L∗ =
(1, 0) . The meet operator ∧ and the join operator ∨ on (L∗,≤L∗) linked to the
ordering ≤L∗ are, respectively, defined as follows: ∀(x1, x2), (y1, y2) ∈ L∗,

(x1, x2) ∧ (y1, y2) = (min(x1, y1),max(x2, y2)),
(x1, x2) ∨ (y1, y2) = (max(x1, y1),min(x2, y2)).

(3)

Meanwhile, an order relation ≥L∗ on L∗ is defined as follows: ∀x = (x1, x2), y =
(y1, y2) ∈ L∗,

(y1, y2) ≥L∗ (x1, x2) ⇐⇒ (x1, x2) ≤L∗ (y1, y2), (4)

and

x = y ⇐⇒ x ≤L∗ y and y ≤L∗ x. (5)
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Definition 2. An IF negator on L∗ is a decreasing mapping N : L∗ → L∗

satisfying N (0L∗) = 1L∗ and N (1L∗) = 0L∗. If N (N (x)) = x for all x ∈ L∗,
then N is called an involutive IF negator.

The mapping Ns, defined as Ns(x1, x2) = (x2, x1), ∀(x1, x2) ∈ L∗, is called
the standard IF negator.

Definition 3. An IF t-norm on L∗ is an increasing, commutative, associative
mapping T : L∗ × L∗ → L∗ satisfying T (1L∗ , x) = x for all x ∈ L∗.

Definition 4. An IF t-conorm on L∗ is an increasing, commutative, associative
mapping S : L∗ × L∗ → L∗ satisfying S(0L∗ , x) = x for all x ∈ L∗.

Obviously, the greatest IF t-norm (respectively, the smallest IF t-conorm)
with respect to (w.r.t.) the ordering ≤L∗ is min (respectively, max), defined by
min(x, y) = x ∧ y (respectively, max(x, y) = x ∨ y) for all x, y ∈ L∗.

An IF t-norm T and an IF t-conorm S on L∗ are said to be dual w.r.t. an IF
negator N if

T
(
N (x),N (y)

)
= N

(
S(x, y)

)
, ∀x, y ∈ L∗,

S
(
N (x),N (y)

)
= N

(
T (x, y)

)
, ∀x, y ∈ L∗.

(6)

Definition 5. A mapping I : L∗ × L∗ → L∗ is referred to as an IF implicator
on L∗ if it is decreasing in its first component (left monotonicity), increasing in
its second component (right monotonicity), and satisfies following conditions:

I(0L∗ , 0L∗) = 1L∗ , I(1L∗ , 0L∗) = 0L∗ , I(0L∗ , 1L∗) = 1L∗ , I(1L∗ , 1L∗) = 1L∗ .
(7)

Remark 1. According to the left monotonicity of I, it is easy to verify that
I
(
(α, β), 1L∗

)
= 1L∗ for all (α, β) ∈ L∗, similarly, by the right monotonicity of

I, one can conclude that I
(
0L∗ , (α, β)

)
= 1L∗ for all (α, β) ∈ L∗.

Definition 6. Let S be an IF t−conorm and N an IF negator on L∗. An IF
S-implicator generated by the S and N is a mapping IS,N defined as follows:

IS,N (x, y) = S
(
N (x), y

)
, ∀x, y ∈ L∗. (8)

Definition 7. Let T be an IF t-norm on L∗. An IF R-implicator generated by
the T is a mapping IT defined as follows:

IT (x, y) = sup{γ ∈ L∗ | T (x, γ) ≤L∗ y}, ∀x, y ∈ L∗. (9)

Definition 8. [4] A mapping I : L∗ × L∗ → L∗ is said to be satisfied, respec-
tively, axiom

(A1) if I(·, y) is decreasing in L∗ for all y ∈ L∗ and I(x, ·) is increasing in
L∗ for all x ∈ L∗ (monotonicity laws);

(A2) if I(1L∗ , x) = x for all x ∈ L∗ (neutrality principle);
(A3) if I(x, y) = I

(
NI(y),NI(x)

)
for all x, y ∈ L∗ (contrapositivity);

(A4) if I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ L∗ (exchangeability prin-
ciple);

(A5) if x ≤L∗ y ⇐⇒ I(x, y) = 1L∗ for all x, y ∈ L∗ (confinement principle);
(A6) if I : L∗ × L∗ → L∗ is a continuous mapping (continuity).
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Remark 2. In axiom (A3), the mapping NI , defined by NI(x) = I(x, 0L∗), x ∈
U , is an IF negator on L∗, and it is called the negator induced by I. Moreover,
it can be easily verified that if axioms (A2) and (A3) hold, then necessarily NI
is involutive. An IF implicator I on L∗ is called a border IF implicator (resp.
EP, CP) if it satisfies axiom (A2) (resp. (A4), (A5)); an IF implicator I on L∗

is called a model IF implicator if it satisfies axioms (A2), (A3) and (A4); an
IF implicator on L∗ is called a �Lukasiewicz IF implicator if it satisfies axioms
(A2)–(A6).

Theorem 1. [4] An IF S-implicator IS,N on L∗ defined by Definition 6 is a
model IF implicator on the condition that N is an involutive IF negator; An IF
R-implicator IT on L∗ defined by Definition 7 is a border IF implicator.

Given an IF negator N and a border IF implicator I, we define an N -dual
operator of I, θI,N : L∗ × L∗ → L∗ as follows:

θI,N (x, y) = N (I(N (x),N (y))), x, y ∈ L∗. (10)

According to Eq. (10), we can conclude following

Theorem 2. For a border IF implicator I and an IF negator N , we have
(1) θI,N (1L∗ , 0L∗) = θI,N (1L∗ , 1L∗) = θI,N (0L∗ , 0L∗) = 0L∗.
(2) θI,N (0L∗ , 1L∗) = 1L∗.
(3) If N is involutive, then θI,N (0L∗ , x) = x for all x ∈ L∗.
(4) θI,N is left monotonic (resp. right monotonic) whenever I is left mono-

tonic (resp. right monotonic).
(5) If I is left monotonic, then θI,N (x, 0L∗) = 0L∗ for all x ∈ L∗; and if I is

right monotonic, then θI,N (1L∗ , x) = 0L∗ for all x ∈ L∗.
(6) If I is an EP IF implicator, then θI,N satisfies the exchange principle,

i.e.
θI,N (x, θI,N (y, z)) = θI,N (y, θI,N (x, z)), ∀x, y, z ∈ L∗. (11)

(7) If I is a CP IF implicator, then x ≤ y iff θI,N (x, y) = 0L∗.

2.2 Intuitionistic Fuzzy Sets

Definition 9. [1] Let a set U be fixed. An IF set A in U is an object having the
form

A = {〈x, μ
A

(x), γ
A

(x)〉 | x ∈ U},

where μA : U → [0, 1] and γA : U → [0, 1] satisfy 0 ≤ μA(x) + γA(x) ≤ 1 for all
x ∈ U, and μ

A
(x) and γ

A
(x) are, respectively, called the degree of membership

and the degree of non-membership of the element x ∈ U to A. The family of all
IF subsets in U is denoted by IF(U). The complement of an IF set A is defined
by ∼ A = {〈x, γ

A
(x), μ

A
(x)〉 | x ∈ U}.
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It can be observed that an IF set A is associated with two fuzzy sets μ
A

and
γ

A
. Here, we denote A(x) = (μ

A
(x), γ

A
(x)), then it is clear that A ∈ IF(U) iff

A(x) ∈ L∗ for all x ∈ U . Obviously, a fuzzy set A = {〈x, μ
A

(x)〉 | x ∈ U} can be
identified with the IF set of the form {〈x, μ

A
(x), 1 − μ

A
(x)〉 | x ∈ U}. Thus an

IF set is indeed an extension of a fuzzy set.
Some basic operations on IF(U) are introduced as follows [1]: for A,B,Ai ∈

IF(U), i ∈ J , J is an index set,
• A ⊆ B iff μ

A
(x) ≤ μ

B
(x) and γ

A
(x) ≥ γ

B
(x) for all x ∈ U,

• A ⊇ B iff B ⊆ A,
• A = B iff A ⊆ B and B ⊆ A,
• A ∩B = {〈x,min(μ

A
(x), μ

B
(x)),max(γ

A
(x), γ

B
(x))〉 | x ∈ U},

• A ∪B = {〈x,max(μ
A

(x), μ
B

(x)),min(γ
A

(x), γ
B

(x))〉 | x ∈ U},
•
⋂
i∈J

Ai = {〈x,
∧
i∈J

μ
Ai

(x),
∨
i∈J

γ
Ai

(x)〉 | x ∈ U},

•
⋃
i∈J

Ai = {〈x,
∨
i∈J

μAi
(x),

∧
i∈J

γAi
(x)〉 | x ∈ U}.

For (α, β) ∈ L∗, ̂(α, β) will be denoted by the constant IF set: ̂(α, β)(x) =
(α, β), for all x ∈ U. For any y ∈ U and M ∈ P(U), IF sets 1

y
, 1

U−{y} , and 1
M

are, respectively, defined as follows: for x ∈ U ,

μ
1y

(x) =

{
1, if x = y,
0, if x 	= y.

γ
1y

(x) =

{
0, if x = y,
1, if x 	= y.

μ
1U−{y}

(x) =

{
0, if x = y,
1, if x 	= y.

γ
1U−{y}

(x) =

{
1, if x = y,
0, if x 	= y.

μ1M
(x) =

{
1, if x ∈ M,
0, if x /∈ M.

γ1M
(x) =

{
0, if x ∈ M,
1, if x /∈ M.

The IF universe set is U = 1
U

= ̂(1, 0) = 1̂
L∗ = {〈x, 1, 0〉 | x ∈ U} and the IF

empty set is ∅ = ̂(0, 1) = 0̂L∗ = {〈x, 0, 1〉 | x ∈ U}.
By using L∗, IF sets on U can be represented as follows: for A,B,Aj ∈

IF(U)(j ∈ J, J is an index set), x, y ∈ U , and M ∈ P(U)
• A(x) = (μ

A
(x), γ

A
(x)) ∈ L∗,

• U(x) = (1, 0) = 1
L∗ ,

• ∅(x) = (0, 1) = 0
L∗ ,

• x = y =⇒ 1y (x) = 1
L∗ and 1

U−{y}(x) = 0
L∗ ,

• x 	= y =⇒ 1
y
(x) = 0

L∗ and 1
U−{y}(x) = 1

L∗ ,
• x ∈M =⇒ 1

M
(x) = 1

L∗ ,
• x /∈M =⇒ 1

M
(x) = 0

L∗ ,M ∈ P(U),
• A ⊆ B ⇐⇒ A(x) ≤L∗ B(x), ∀x ∈ U ⇐⇒ B(x) ≥L∗ A(x), ∀x ∈ U ,
•
( ⋂
j∈J

Aj

)
(x) =

∧
j∈J

Aj(x) =
( ∧
j∈J

μ
Aj

(x),
∨
j∈J

γ
Aj

(x)
)
∈ L∗,

•
( ⋃
j∈J

Aj

)
(x) =

∨
j∈J

Aj(x) =
( ∨
j∈J

μAj
(x),

∧
j∈J

γAj
(x)
)
∈ L∗.
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Given an IF implicator I, an involutive IF negator N , and two IF sets A,
B ∈ IF(U), we define two IF sets A⇒I B and θI,N (A,B) as follows:

(A⇒I B)(x) = I(A(x), B(x)), x ∈ U,
θI,N (A,B)(x) = θI,N (A(x), B(x)), x ∈ U.

(12)

It can easily be verified that

θI,N (A,B) =∼N ((∼N A) ⇒I (∼N B)). (13)

3 I-Intuitionistic Fuzzy Rough Approximation Operators

In this section, by employing an IF implicator I on L∗, we will define the lower
and upper approximations of IF sets w.r.t. an arbitrary IF approximation space
and discuss properties of I-IF rough approximation operators.

Definition 10. Let U and W be two nonempty universes of discourse. A subset
R ∈ IF(U ×W ) is referred to as an IF binary relation from U to W , namely,
R is given by

R = {〈(x, y), μ
R

(x, y), γ
R

(x, y)〉 | (x, y) ∈ U ×W}, (14)

where μ
R

: U × W → [0, 1] and γ
R

: U ×W → [0, 1] satisfy 0 ≤ μ
R

(x, y) +
γ

R
(x, y) ≤ 1 for all (x, y) ∈ U ×W . We denote the family of all IF relations

from U to W by IFR(U ×W ). An IF relation R ∈ IFR(U ×W ) is said to
be serial if

∨
y∈W R(x, y) = 1L∗ for all x ∈ U . If U = W , R ∈ IFR(U × U) is

called an IF binary relation on U . R ∈ IFR(U × U) is said to be reflexive if
R(x, x) = 1L∗ for all x ∈ U . R is said to be symmetric if R(x, y) = R(y, x) for
all x, y ∈ U . R is said to be T -transitive if

∨
y∈U T (R(x, y), R(y, z)) ≤

L∗ R(x, z)
for all x, z ∈ U , where T is an IF t-norm.

Definition 11. Let U and W be two non-empty universes of discourse and R
an IF relation from U to W . The triple (U,W,R) is called a generalized IF
approximation space.

Definition 12. Assume that I is an IF implicator and N an IF negator on
L∗. Let (U,W,R) be a generalized IF approximation space and A ∈ IF(W ),
the I-lower and I-upper approximations of A, denoted as RI(A) and RI(A),
respectively, w.r.t. the approximation space (U,W,R) are IF sets of U and are,
respectively, defined as follows:

RI(A)(x) =
∧

y∈U

I
(
R(x, y), A(y)

)
, x ∈ U,

RI(A)(x) =
∨

y∈W

θI,N
(
N (R(x, y)), A(y)

)
, x ∈ U.

(15)

The operators RI , RI : IF(W ) → IF(U) are, respectively, referred to as I-
lower and I-upper IF rough approximation operators of (U,W,R), and the pair
(RI(A), RI(A)) is called the I-IF rough set of A w.r.t. (U,W,R).
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The following theorem shows that the lower and upper I-IF rough approxi-
mation operators determined by an IF implicator I and an involutive IF negator
N are dual with each other.

Theorem 3. Assume that I is an IF implicator and N an involutive IF negator
on L∗. Let (U,W,R) be a generalized IF approximation space, then

(DIFL) RI(A) =∼N RI(∼N A), ∀A ∈ IF(W ),
(DIFU) RI(A) =∼N RI(∼N A), ∀A ∈ IF(W ).

(16)

The next theorem gives some basic properties of I-IF rough approximation
operators.

Theorem 4. Let (U,W,R) be an IF approximation space. Assume that I is a
continuous, hybrid monotonic and border IF implicator on L∗ and N an involu-
tive IF negator on L∗, then the lower and upper I-IF rough approximation op-
erators have the following properties: For all A,B ∈ IF(W ), Aj ∈ IF(W )(∀j ∈
J, J is an index set), M ⊆W, (x, y) ∈ U ×W and all (α, β) ∈ L∗,

(IFL1) RI( ̂(α, β) ⇒I A) = ̂(α, β) ⇒I RI(A), provided that I is an EP IF
implicator.

(IFU1) RI(θI,N ( ̂(α, β), A)) = θI,N ( ̂(α, β), RI(A)), provided that I is an EP
IF implicator.

(IFL2) RI(
⋂
j∈J

Aj) =
⋂
j∈J

RI(Aj).

(IFU2) RI(
⋃
j∈J

Aj) =
⋃
j∈J

RI(Aj).

(IFL3) RI( ̂(α, β)) ⊇ ̂(α, β).

(IFU3) RI( ̂(α, β)) ⊆ ̂(α, β).

(IFL4) RI(W ) = U .

(IFU4) RI(∅W ) = ∅U , where ∅W and ∅U are the empty sets in W and U
respectively.

(IFL5) RI( ̂(α, β) ⇒I ∅W ) = ̂(α, β) ⇒I ∅U ⇐⇒ RI(∅W ) = ∅U , provided that
I is an EP IF implicator.

(IFU5) RI(θI,N ( ̂(α, β),W )) = θI,N ( ̂(α, β), U) ⇐⇒ RI(W ) = U , provided
that I is an EP IF implicator.

(IFL6) A ⊆ B =⇒ RI(A) ⊆ RI(B).

(IFU6) A ⊆ B =⇒ RI(A) ⊆ RI(B).

(IFL7) RI(
⋃
j∈J

Aj) ⊇
⋃
j∈J

RI(Aj).

(IFU7) RI(
⋂
j∈J

Aj) ⊆
⋂
j∈J

RI(Aj).
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(IFL8) RI(1y ⇒I ̂(α, β))(x) = I(R(x, y), (α, β)).

(IFU8) RI(θI,N (1W−{y},
̂(α, β)))(x) = θI,N (N (R(x, y)), (α, β)).

(IFL9) RI(1W−{y})(x) = I(R(x, y), 0L∗).

(IFU9) RI(1y)(x) = θI,N (N (R(x, y)), 1L∗).

(IFL10) RI(1M )(x) =
∧

y/∈M

I(R(x, y), 0L∗).

(IFU10) RI(1M )(x) =
∨

y∈M

θI,N (N (R(x, y)), 1L∗).

Theorems 5-8 below show the relationships between some special IF relations
and properties of I-IF rough approximation operators.

Theorem 5. Let (U,W,R) be an IF approximation space, I a continuous border
and CP IF implicator, and N an involutive IF negator. Then

R is serial ⇐⇒ (IFL0) RI( ̂(α, β)) = ̂(α, β), ∀(α, β) ∈ L∗.

⇐⇒ (IFU0) RI( ̂(α, β)) = ̂(α, β), ∀(α, β) ∈ L∗.

Theorem 6. Let (U,R) be an IF approximation space (i.e. R is an IF relation
on U), I a border and CP IF implicator, and N an involutive IF negator. Then

R is reflexive ⇐⇒ (IFLR) RI(A) ⊆ A, ∀A ∈ IF(U),
⇐⇒ (IFUR) A ⊆ RI(A), ∀A ∈ IF(U).

Theorem 7. Let (U,R) be an IF approximation space, I a border and CP IF
implicator, and N an involutive IF negator. Then

R is symmetric

⇐⇒ (IFLS)RI(1x ⇒I ̂(α, β))(y) = RI(1y ⇒I ̂(α, β))(x),∀x, y ∈ U,∀(α, β) ∈ L∗,

⇐⇒ (IFUS)RI(θI,N (1U−{y}, ̂(α, β)))(x) = RI(θI,N (1U−{x}, ̂(α, β)))(y),
∀x, y ∈ U,∀(α, β) ∈ L∗.

Theorem 8. Let (U,R) be an IF approximation space, N an involutive IF nega-
tor, and I an IF implicator and T an IF t-norm satisfying

I(a, I(b, c)) = I(T (a, b), c), ∀a, b, c ∈ L∗. (17)

(1) If R is IF T -transitive, then

(IFLT) RI(A) ⊆ RI(RI(A)), ∀A ∈ IF(U).

(IFUT) RI(RI(A)) ⊆ RI(A), ∀A ∈ IF(U).

(2) If I is a CP and border IF implicator, then

(IFLT) ⇐⇒ (IFUT) =⇒ R is T -transitive. (18)
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4 Conclusion

We have investigated a general type of relation-based I-intuitionistic fuzzy rough
sets determined by an IF implicator I. We have defined I-lower and I-upper ap-
proximations of IF sets with respect to a generalized IF approximation space. We
have examined properties of I-lower and I-upper IF rough approximation oper-
ators and established relationships between some special types of IF binary rela-
tions and properties of I-IF rough approximation operators. For further study,
we will investigate other mathematical structures of the I-IF approximation
operators.
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Discernibility Matrix Based Attribute Reduction

in Intuitionistic Fuzzy Decision Systems

Qinrong Feng and Rui Li
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Abstract. Based on the theory of rough sets and intuitionistic fuzzy
sets, this paper researches attribute reduction in intuitionistic fuzzy de-
cision systems (IFDS). Firstly, we establish an intuitionistic fuzzy rough
set model based on the similarity relation. Secondly, the discernibility
matrix based on the maximal consistent block is constructed and an
algorithm of attribute reduction is designed, which can eliminate the
redundant information from the given IFDS. Finally, an illustrative ex-
ample is employed to show the validity of the algorithm in this paper.

Keywords: intuitionistic fuzzy decision systems, α−similarity relation,
discernibility matrix, attribute reduction.

1 Introduction

Rough set theory, proposed by Pawlak [1] in the early 1980s, is a mathematical
tool to deal with uncertain, imprecise or incomplete knowledge in information
systems. In 1986, Atanassov gave the definiton of intuitionistic fuzzy sets. As an
intuitively straightforward extension of Zadeh’s fuzzy set theory [2], intuitionistic
fuzzy sets is defined by a pair of membership function: a membership degree and
a non-membership degree, which depicted the essence of the fuzziness [3,4].

In recent years, many research results have been obtained with intuitionistic
fuzzy rough sets [5-12]. For example, Zhou and Wu [6,7] described the rough
approximations of intuitionistic fuzzy sets. The algorithms of attribute reduc-
tion based on intuitionistic fuzzy rough sets were proposed in [13-17]. Huang
[13,14] constructed a dominance-based rough set model in intuitionistic fuzzy
information systems, defined the lower and upper approximation discernibility
matrices to find out all the lower and upper approximation reducts, and applied
it in computing audit risk assessment. Zhang and Tian [15] gave a systematic
study on attribute reduction with intuitionistic fuzzy rough sets. Wang and Shu
[16] proposed an attribute reduction algorithm based on dependence degree and
nondependence degree with intuitionistic fuzzy similarity relations. Chen [17]
proposed a new method of attribute reduction integrating the information en-
tropy with intuitionistic fuzzy equivalence relations.

In intuitionistic fuzzy decision systems (IFDS), the key step of constructing
intuitionistic fuzzy rough set model is the classification of the universe. In the
classification of the universe induced by dominance relations or intuitionistic
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fuzzy similarity relations, some articles did not take into account the degree of
hesitancy.

This paper copes with IFDS based on the similarity relation. The degree of
hesitancy will be introduced to the similarity relation. Investigations about the
similarity measures of intuitionistic fuzzy sets have been carried out in [18-21].
A new weighted Euclidean distance and a parameter α will be used to define the
similarity relation in IFDS. An algorithm of attribute reduction based on the
discernibility matrix will be designed in IFDS.

The rest of this paper is organized as follows. In section 2, the basic prelimi-
naries are briefly reviewed. In section 3, the intuitionistic fuzzy rough set model
based on similarity relation is proposed. In section 4, the discernibility matrix
is constructed and an algorithm of attribute reduction is designed in IFDS. In
section 5, conclusions summarize the paper.

2 Preliminaries

In this section, we will review some basic concepts.

Definition 1. [13] Let 〈μ, γ〉 be an order pair, where 0 ≤ μ, γ ≤ 1 and 0 ≤
μ + γ ≤ 1. Then we call 〈μ, γ〉 an intuitionistic fuzzy value.

Definition 2. [13] Let U be the universe of discourse. An intuitionistic fuzzy
set A in U is an object having the form A = {〈x,μA (x) ,γA (x)〉 |x ∈ U }, where
μA:U → [0, 1] and γA:U → [0, 1] satisfy 0 ≤ μA (x) +γA (x) ≤ 1 for all x ∈ U
and μA (x) and γA (x) are, respectively, called the degree of membership and the
degree of non-membership of the element x ∈ U to A.

πA (x) =1−μA (x)−γA (x) denotes the degree of hesitancy of x to A or the
degree of uncertainty of x to A. Evidently, 0 ≤ πA (x) ≤ 1 for all x.

It is obvious that any fuzzy set A= {〈x,μA (x)〉 |x ∈ U } can be identified with
the intuitionistic fuzzy set in the form {〈x,μA (x) , 1−μA (x)〉 |x ∈ U }. Thus an
intuitionstic fuzzy set is an extension of a fuzzy set.

Definition 3. An intuitionistic fuzzy information system (IFIS) is a quadruple
(U,A, V, f), where U is a non-empty and finite set of objects called the universe,
A is a non-empty and finite set of attributes. V is the set of all intuitionistic
fuzzy values. The information function f is a map from U × A to V , such that
f (x, a) = 〈μa (x) , γa (x)〉 ∈ V for all a ∈ A.

When A = C∪D, and C∩D = ∅, then (U,C∪D,V, f) is called an intuitionistic
fuzzy decision system (IFDS).

3 Similarity Relation in IFDS

In this section, we construct the intuitionistic fuzzy rough set model based on
similarity relation in IFDS.
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3.1 Similarity Degree

In IFDS, the partition of U which are induced by an equivalence relation is
too much, which is disadvantage to extract knowledge. Thus, we introduce a
similarity degree to express the degree of similarity of two intuitionistic fuzzy
values.

Firstly, we introduce a distance between two intuitionistic fuzzy values.
Xu and Yager [18] defined a distance between two intuitionistic fuzzy values

as follows
Let δ1= 〈μ1,γ1〉 and δ2= 〈μ2,γ2〉 are two intuitionistic fuzzy values, then

dH(δ1, δ2) =
1

2
(|μ1−μ2|+ |γ1−γ2|+ |π1−π2|)

is called the normalized Hamming distance between δ1 and δ2.
But the following example shows that the normalized Hamming distance is

not reasonable for some intuitionistic fuzzy values.

Example 1. Let δ1 = 〈0, 0〉 , δ2 = 〈0.5, 0.5〉 , δ3 = 〈0.2, 0.8〉 , δ4 = 〈0.9, 0.1〉, we
have

dH (δ1, δ2) = dH (δ1, δ3) = dH (δ1, δ4) = 1

Obviously, this is unreasonable.

In order to solve this problem, we use the following the Euclidean distance
between the intuitionistic fuzzy values.

dE (δ1, δ2) =

√
|μ1 − μ2|2 + |γ1 − γ2|2 + |π1 − π2|2

The following example shows that the Euclidean distance is also unreasonable
for some intuitionistic fuzzy values.

Example 2. Let δ1 = 〈0.4, 0.5〉 , δ2 = 〈0, 0.9〉 , δ3 = 〈0.4, 0.1〉, then we have
dE (δ1, δ2) = dE (δ1, δ3) = 0.57, dE (δ2, δ3) = 0.98, so

dE (δ1, δ2) = dE (δ1, δ3) < dE (δ2, δ3)

However, in many applications, we may have d (δ1, δ3) < d (δ1, δ2). Because
the degree of membership is more important than the degree of hesitancy in
reality.

Thus, we give the following weighted Euclidean distance between the intu-
itionistic fuzzy values.

Definition 4. Let δ1= 〈μ1,γ1〉 and δ2= 〈μ2,γ2〉 are two intuitionistic fuzzy val-
ues, then

d (δ1, δ2) =

√
a|μ1 − μ2|2 + b|γ1 − γ2|2 + c|π1 − π2|2

where a, b, c are weighted factors.
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Proposition 1. Let δ1= 〈μ1,γ1〉 and δ2= 〈μ2,γ2〉 are two intuitionistic fuzzy val-
ues, then d (δ1, δ2) is a metric. That is, for any intuitionistic fuzzy values δ1, δ2,
δ3, we have

(1) d (δ1, δ2) ≥ 0, and d (δ1, δ2) = 0 if and only if δ1 = δ2.
(2) d (δ1, δ2) = d (δ2, δ1)
(3) d (δ1, δ2) ≤ d (δ1, δ3) + d (δ3, δ2).

Example 3. We recalculate the distance in example 2 using the new distance.
By taking a = b = 0.4, c = 0.2. We have d (δ1, δ2) = 0.36, d (δ1, δ3) = 0.31,
d (δ2, δ3) = 0.59, so

d (δ1, δ3) < d (δ1, δ2) < d (δ2, δ3) .

It is obvious that the new distance is different from the previous one.
Next, we will use the new distance to define a similarity degree between two

objects in IFDS.

Definition 5. Let IFDS = (U,C ∪D,V, f), for any xi, xj ∈ U , ck ∈ C, the
two intuitionistic fuzzy values f (xi, ck) = 〈μck (xi) , γck (xi)〉 and f (xj , ck) =
〈μck (xj) , γck (xj)〉, the similarity degree based on the weighted Euclidean dis-
tance is defined as follows

simck (xi, xj) = 1− d (xi, xj)

= 1−
√

a|μck (xi)−μck (xj)|2+b|γck (xi)−γck (xj)|2+c|πck (xi)−πck (xj)|2

where a, b, c are weighting factors.

Remark 1. In IFDS, weighting factors can be given according to the need of
different users. In general, a ≥ b > c and a + b + c = 1, 0 ≤ a, b, c ≤ 1.

Property 1. Let IFDS = (U,C ∪D,V, f), for any xi, xj ∈ U , ck ∈ C, the
similarity degree based on the weighted Euclidean distance satisfies

(1) 0 ≤ simck(xi, xj) ≤ 1
(2) simck(xi, xj) = simck(xj , xi)
(3) f(xi, ck) = f(xj , ck) ⇔ simck(xi, xj) = 1
(4) if f(xi, ck)=〈1, 0〉, f(xj , ck)=〈0, 1〉, and a = b = 0.5, then simck(xi, xj) =

0, that is, xi and xj are completely dissimilarity in terms of ck.

3.2 α− Similarity Relation

Based on the similarity degree defined above, we can define α− similarity relation
in IFDS.

Definition 6. Let IFIS= (U,C, V, f), A ⊆ C, α ∈ [0,1], then α−similarity
relation Tα (A) in IFIS is defined as follows

Tα(A) = {(xi, xj) ∈ U × U |simck(xi, xj) ≥ α, ∀ck ∈ A}.

Obviously, Tα(A) is reflexive, symmetric and non-transitive in general.
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Remark 2. Different values of α will determine different similarity relations in
IFDS, which will yield different classifications of the universe U . In general, we
can take the appropriate α according to the distribution characteristics of data
sets.

(1) 0 ≤ α ≤ 1. When α = 0, the classification of U is trivial, consisting of a
unique block. When α = 1, the classification of U is discrete, consisting of all
singletons from U .

(2) With the value of α increases, the classification of U gets finer.
(3) When discrete degree of data sets is greater, we can take smaller the value

of α, and vice versa.

Property 2. Let IFIS= (U,C, V, f), A ⊆ C, α ∈ [0,1], then

Tα (A) =
⋂

ck∈A

Tα (ck) .

Property 3. Let IFIS= (U,C, V, f), A ⊆ C, α ∈ [0,1], then Tα (C) ⊆ Tα (A) .

Definition 7. Let IFDS= (U,C ∪D,V, f), A ⊆ C, α ∈ [0,1], then α− relative
similarity relation Tα (A |D ) in IFDS is defined as follows

Tα (A |D ) = {(xi, xj) ∈ U × U |∀ck ∈ A, simck(xi, xj) ≥ α ∨ fd (xi) =fd (xj)}

3.3 α− Maximal Consistent Block

Li [22] introduced the concept of maximal consistent block in incomplete infor-
mation systems. Zhang [23] introduced the maximal consistent block in interval-
valued information systems. In this section, the concept of α− maximal consis-
tent block is introduced in IFDS.

Definition 8. Let IFIS= (U,C, V, f), A ⊆ C, α ∈ [0,1], α−similarity class is
defined as Sα

A (xi) = {xj ∈ U | (xi, xj) ∈ Tα (A)} .

Definition 9. Let IFIS= (U,C, V, f), A ⊆ C, α ∈ [0,1], M ⊆ U , M is called
α− maximal consistent block if and only if it satisfies

(1) for any xi,xj ∈M , if (xi, xj) ∈ Tα (A), then M is α− similarity class;
(2) if for any xk ∈ U−M , ∃xi ∈M , such that (xi, xk) /∈ Tα (A).

A α− maximal consistent block describes the maximal set of objects in which
all objects are similar to certain extent. The set of α− maximal consistent block
constitutes a completely covering of the universe U , which can be represented
by ξα (A) = {Mα

A (x1) ,Mα
A (x2) , · · · ,Mα

A (xn)}, where Mα
A (xi) is α− maximal

consistent block of xi in terms of A.

Remark 3. According to the need of different users and the distribution char-
acteristics of data sets, we can adjust the value of α to get different maximal
consistent block.
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Property 4. Let IFIS= (U,C, V, f), A ⊆ C, α ∈ [0,1], then for any x ∈ U ,
Mα

C (x) ⊆Mα
A (x) .

Property 5. Let IFIS= (U,C, V, f), A ⊆ C, 0 ≤ α ≤ β ≤ 1, then for any

x ∈ U , Mβ
A (x) ⊆Mα

A (x) .
From the property 4 and 5, with the number of condition attributes in IFDS

or the value of α increases, the classification of the universe U gets finer, and
the granularity of knowledge decreases.

Proposition 2. Let IFIS= (U,C, V, f), A ⊆ C, α ∈ [0,1], then for any x ∈ U ,
we have Tα (A) = Tα (C) ⇔Mα

A (x) = Mα
C (x) .

4 Attribute Reduction Based on Discernibility Matrix in
IFDS

Miao [24] stressed a fact that the definition of a discernibility matrix should be
tied to a certain property. In this section, based on the α− maximal consistent
block, the discernibility matrix is constructed to find out all the relative reducts,
which preserve the relative similarity relation unchanged in IFDS.

Definition 10. Let IFDS= (U,C ∪D,V, f), R ⊆ C is a reduct of C with re-
spect to D if it satisfies the following two conditions

(1) Tα (R |D ) = Tα (C |D )
(2) ∀R′ ⊂ R, Tα (R′ |D ) 	= Tα (C |D )

Definition 11. Let IFDS= (U,C ∪D,V, f), the function ∂C :U → P (Vd) is
called generalized decision, where for any x ∈ U , ∂C (x) = {fd (y) |y ∈ Sα

C (x)}.

In the following, we construct the discernibility matrix to serve as a tool for
discussing and analyzing attribute reduction in IFDS.

Definition 12. Let IFDS= (U,C ∪D,V, f), α ∈ [0,1], its discernibility matrix
M = M(x, y) is a |U | × |U | matrix, in which the element M(x, y) for an object
pair (x, y) is defined by

M(x, y) =

{
{c ∈ C |∀Mα

c (xi) ∈ ξα (c) , {x,y} 	⊆Mα
c (x

i
)} , ∂C (x) 	= ∂C (y)

C, otherwise

Theorem 1. Let IFDS = (U,C ∪D,V, f), R ⊆ C, then

Tα (R |D ) = Tα (C |D ) ⇔ ∀x, y ∈ U,M (x, y) 	= ∅, R ∩M (x, y) 	= ∅.

Proof. ⇒: If fd(x) = fd(y), then M (x, y) = C, the conclusion is true. If fd (x) 	=
fd (y), then Tα (R) = Tα (C) according to Tα (R |D ) = Tα (C |D ). Tα (R) =
Tα (C) ⇔ Mα

R (x) = Mα
C (x) , ∀x ∈ U . ∀y ∈ U , we have (1) if y /∈ Mα

C (x),
then y /∈ Mα

R(x). y ∈ Mα
R (y), so Mα

R (x) 	= Mα
R (y). R ∩ M (x, y) 	= ∅. (2) if

y ∈Mα
C (x), then M (x, y) = C. R ∩M (x, y) 	= ∅.
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⇐: ∀x, y ∈ U , if fd (x) = fd (y), then Tα (R |D ) = Tα (C |D ) hold. If fd (x) 	=
fd (y), we show the proof for Mα

R (x) = Mα
C (x). Proof by contradiction. Suppose

Mα
R (x) 	= Mα

C (x), then Mα
C (x) ⊂ Mα

R (x). According to M (x, y) 	= ∅, x and y
are discernible. y /∈ Mα

C (x). Therefore y ∈ Mα
R (x) , y /∈ Mα

C (x). (Suppose y /∈
Mα

R (x), then Mα
R (x) ⊆ Mα

C (x), Therefore Mα
R (x) = Mα

C (x), contradiction).
That is x and y are maximal consistent in terms of R, but x and y are not
maximal consistent in terms of C. ∀a ∈ R,Mα

a (x) = Mα
a (y). According to

M (x, y) 	= ∅, R ∩M (x, y) = ∅, contradiction.  !

Theorem 2. CORE (C |D ) = {a ∈ C |M (x, y) = {a} x, y ∈ U}.

Proof. ⇒: ∀a ∈ CORE (C |D ) , Tα (C |D ) 	= Tα (C − {a} |D ), thus Tα (C |D ) ⊂
Tα (C − {a} |D ). It indicates that there exists (x1, y1) ∈ Tα (C − {a} |D ), but
(x1, y1) /∈ Tα (C |D ). Thus (∀b ∈ C − {a} , simb (x1, y1) > α)∨(fd (x1) = fd (y1))
and (∃a ∈ C, sima (x1, y1) ≤ α)∧(fd (x1) 	= fd (y1)). There two results imply that
∀b ∈ C−{a} , simb (x1, y1) > α. ThusM (x1, y1)∩(C − {a}) = ∅ and M (x1, y1)∩
C 	= ∅. Thus, M (x1, y1) = {a}.
⇐: For any a ∈ C such that {a} ∈ M , there exists (x1, y1) ∈ U × U sat-

isfying M (x1, y1) = {a}. This indicates that (x1, y1) /∈ Tα (C |D ) , (x1, y1) ∈
Tα (C − {a} |D ). These imply that Tα (C |D ) 	= Tα (C − {a} |D ). Thus, a ∈
CORE (C |D ).  !

Definition 13. The discernibility function of the discernibility matrix M(x, y)
is defined by f(M) = ∧ {∨(M(x, y)) |∀x,y ∈ U,M(x, y) 	= ∅}.

Theorem 3. The reduct set problem is equivalent to the problem of transforming
the discernibility function to a reduced disjunctive form. Each conjunctor of the
reduced disjunctive form is a reduct of IFDS.

Proof. This is a direct result from theorem 1 and the definition of minimal
disjunction form.  !

Algorithm 1: Attribute reduction based on discernibility matrix in
IFDS.

Input: IFDS= (U,C ∪D,V, f)
Output: all relative reducts in IFDS
Step 1. Compute the α− maximal consistent block of every condition at-

tribute;
Step 2. Compute the α− similarity class of every object in the universe in

terms of C;
Step 3. Compute the generalized decision of every object in the universe;
Step 4. Construct the discernibility matrix M in IFDS;
Step 5. Construct the discernibility function f(M);
Step 6. Convert f(M) into a disjunctive normal form;
Step 7. Each disjunctive item in f(M) corresponds to a relative reduct.

Example 4. Table 1 shows an information system security audit risk judgement
decision table in [14]. U = {x1, x2, · · · , x10} includes ten audited objects. The
condition attribute set C = {c1, c2, · · · , c5}.
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Table 1. An information system security audit risk judgement decision table

U c1 c2 c3 c4 c5 d

x1 〈0.2, 0.4〉 〈0.1, 0.7〉 〈0.2, 0.6〉 〈0.6, 0.4〉 〈0.2, 0.8〉 1
x2 〈0.1, 0.7〉 〈0.1, 0.8〉 〈0.3, 0.6〉 〈0.5, 0.2〉 〈0.2, 0.7〉 2
x3 〈0.1, 0.8〉 〈0.1, 0.8〉 〈0.2, 0.8〉 〈0.5, 0.4〉 〈0.6, 0.4〉 1
x4 〈0.1, 0.9〉 〈0.6, 0.3〉 〈0.2, 0.7〉 〈0.2, 0.8〉 〈0.6, 0.4〉 1
x5 〈0.4, 0.6〉 〈0.2, 0.6〉 〈0.2, 0.8〉 〈0.2, 0.8〉 〈0.2, 0.8〉 2
x6 〈0.1, 0.6〉 〈0.2, 0.6〉 〈0.2, 0.8〉 〈0.2, 0.4〉 〈0.2, 0.8〉 1
x7 〈0.6, 0.4〉 〈0.6, 0.4〉 〈0.6, 0.4〉 〈0.7, 0.3〉 〈0.4, 0.6〉 2
x8 〈0.6, 0.2〉 〈0.6, 0.2〉 〈0.8, 0.2〉 〈0.4, 0.6〉 〈0.4, 0.5〉 2
x9 〈0.6, 0.2〉 〈0.6, 0.4〉 〈0.8, 0.2〉 〈0.1, 0.6〉 〈0.8, 0.2〉 3
x10 〈0.6, 0.4〉 〈0.6, 0.4〉 〈0.8, 0.2〉 〈0.8, 0.2〉 〈0.6, 0.4〉 3

Let α = 0.8, a = 0.4, b = 0.4, c = 0.2
Step 1, we compute the α−maximal consistent block of every condition at-

tribute

ξ0.8 (c1) = {{x1, x2, x6} , {x2, x3, x4, x6} , {x2, x3, x5, x6} , {x7, x8, x9, x10} ,
{x5, x7, x10}}

ξ0.8 (c2) = {{x1, x2, x3, x5, x6} , {x4, x7, x8, x9, x10}}
ξ0.8 (c3) = {{x1, x2, x3, x4, x5, x6} , {x2, x7} , {x7, x8, x9, x10}}
ξ0.8 (c4) = {{x1, x2, x3, x7, x10} , {x1, x3, x8} , {x2, x3, x6} , {x4, x5, x8, x9} ,

{x6, x9}}
ξ0.8 (c5) = {{x1, x2, x5, x6, x7, x8} , {x3, x4, x9, x10} , {x3, x4, x7, x8, x10}}

Step 2, we compute the α−similarity class of every object in the universe in
terms of C

[x1]0.8C = {x1, x2} , [x2]0.8C = {x1, x2, x6} , [x3]0.8C = {x3} , [x4]0.8C = {x4} ,
[x5]0.8C = {x5} , [x6]0.8C = {x2, x6} , [x7]0.8C = {x7, x10} , [x8]0.8C = {x8} ,
[x9]

0.8
C = {x9} , [x10]

0.8
C = {x7, x10}

Step 3, we compute the generalized decision of every object in the universe.
The result is represented in the Table 2.

Table 2. An information system security audit risk judgement generalized decision
table

U c1 c2 c3 c4 c5 d ∂C (x)

x1 〈0.2, 0.4〉 〈0.1, 0.7〉 〈0.2, 0.6〉 〈0.6, 0.4〉 〈0.2, 0.8〉 1 {1, 2}
x2 〈0.1, 0.7〉 〈0.1, 0.8〉 〈0.3, 0.6〉 〈0.5, 0.2〉 〈0.2, 0.7〉 2 {1, 2}
x3 〈0.1, 0.8〉 〈0.1, 0.8〉 〈0.2, 0.8〉 〈0.5, 0.4〉 〈0.6, 0.4〉 1 {1}
x4 〈0.1, 0.9〉 〈0.6, 0.3〉 〈0.2, 0.7〉 〈0.2, 0.8〉 〈0.6, 0.4〉 1 {1}
x5 〈0.4, 0.6〉 〈0.2, 0.6〉 〈0.2, 0.8〉 〈0.2, 0.8〉 〈0.2, 0.8〉 2 {2}
x6 〈0.1, 0.6〉 〈0.2, 0.6〉 〈0.2, 0.8〉 〈0.2, 0.4〉 〈0.2, 0.8〉 1 {1, 2}
x7 〈0.6, 0.4〉 〈0.6, 0.4〉 〈0.6, 0.4〉 〈0.7, 0.3〉 〈0.4, 0.6〉 2 {2, 3}
x8 〈0.6, 0.2〉 〈0.6, 0.2〉 〈0.8, 0.2〉 〈0.4, 0.6〉 〈0.4, 0.5〉 2 {2}
x9 〈0.6, 0.2〉 〈0.6, 0.4〉 〈0.8, 0.2〉 〈0.1, 0.6〉 〈0.8, 0.2〉 3 {3}
x10 〈0.6, 0.4〉 〈0.6, 0.4〉 〈0.8, 0.2〉 〈0.8, 0.2〉 〈0.6, 0.4〉 3 {2, 3}
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Step 4, we construct the discernibility matrix in IFDS as follows

M=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

C
C C

{1, 5} {5} C
{1, 2, 4, 5} {2, 4, 5} C C

{1, 4} {4} {4, 5} {1, 2, 5} C
C C {5} {2, 4, 5} {4} C

{1, 2, 3} {1, 2} {1, 2, 3} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4} C
{1, 2, 3} {1, 2, 3, 4} {1, 2, 3} {1, 3} C {1, 2, 3, 4} {4} C

C C {1, 2, 3, 4} {1, 3} {1, 2, 3, 5} {1, 2, 3, 5} {4, 5} {5} C
{1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3} {1, 3, 4} {2, 3, 4, 5} C C {4} {4} C

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Since M is symmetric, we represent M only by elements in the lower triangle

of M , and we use i to denote ci in M .

Step 5, we construct the discernibility function and convert into the disjunctive
normal form as follows

f (M) = c4 ∧ c5 ∧ (c1 ∨ c3) ∧ (c1 ∨ c2)

= (c1 ∧ c4 ∧ c5) ∨ (c2 ∧ c3 ∧ c4 ∧ c5)

Finally, we obtain all the relative reducts {c1, c4, c5}, {c2, c3, c4, c5}. c4 and c5
are the core attributes which can be obtained through the discernibility matrix.

Remark 4. The space and the time complexity of the proposed algorithm based
on discernibility matrix are, respectively, O(|C||U |2) and O(|C|2|U |2). So the
algorithm is suitable for some IFDS which the number of attributes and objects
is less.

5 Conclusion

This paper focus on the classification of the universe and attribute reduction in
IFDS. The new weighted Euclidean distance and a parameter α is used to define
the similarity relation, and an algorithm of attribute reduction based on the
discernibility matrix is designed in IFDS. In the future work, we may develop
some fast algorithms to compute reduction in IFDS.
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Foundation of Shanxi Province (No.2012011011-1) and the Natural Science Foun-
dation of Shanxi Normal University (No.ZR1109).
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Abstract. In real-applications, there may exist missing data and many
kinds of data (e.g., categorical, real-valued and set-valued data) in an in-
formation system which is called as a Hybrid Information System (HIS).
A new Hybrid Distance (HD) between two objects in HIS is developed
based on the value difference metric. Then, a novel fuzzy rough set is
constructed by using the HD distance and the Gaussian kernel. In ad-
dition, the information systems often vary with time. How to use the
previous knowledge to update approximations in fuzzy rough sets is a
key step for its applications on hybrid data. The fuzzy information gran-
ulation methods based on the HD distance are proposed. Furthermore,
the principles of updating approximations in HIS under the variation of
the attribute set are discussed. A fuzzy rough set approach for incre-
mentally updating approximations is then presented. Some examples are
employed to illustrate the proposed methods.

Keywords: Fuzzy Rough Set, Incrementally Learning, Hybrid Informa-
tion Systems.

1 Introduction

Rough Set Theory(RST) is a powerful mathematical tool proposed by Pawlak [1]
for processing inexact, uncertain, or vague information, and it has been widely
used in several research areas including knowledge discovery, pattern recognition,
artificial intelligence, and data mining [2–5].

In fact, categorical, real-valued and set-valued features usually coexist in real-
world databases. A disadvantage of the Pawlak’s rough set is that this model
is concerned with categorical features assuming some discrete values. Some dis-
cretization algorithms can be used to divide the domain of the corresponding
numerical feature into several intervals, but the discretization usually causes
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information loss. Therefore, an extended model of RST, fuzzy rough set, was
proposed to deal with these cases [6, 7].

When developing a fuzzy rough set model, one of important issues is gener-
ating fuzzy relations between the samples and inducing a set of fuzzy granules
with the fuzzy relations. Combined with the Euclidean distance, Gaussian ker-
nels are first introduced to acquire fuzzy relations between samples described by
fuzzy or numeric attributes in order to generate fuzzy information granules in
the approximation space [11]. But the Euclidean distance has difficult to deal
with the categorial and set-valued data, this paper will introduces a new hybrid
distance.

In real-life applications, information systems may be big data [12,13] and vary
with time. In fuzzy rough sets, the generating of fuzzy relations between samples
inevitably elapses a lot of time, and frequently computing the fuzzy relations
will reduce efficiency of the algorithms. Incremental updating approximations is
a feasible solution. In fact, in RST and its extensions, more and more serious
problems are arising due to the big data and dynamic property. Some researchers
have paid attention to the problem of updating approximations of RST and its
extensions incrementally in dynamic information systems [14–26]. Under the
variation of attribute set, Li et al. proposed some approaches for incremental
updating approximations and extracting rules in RST [14–17]. However, the
incremental approach for updating approximations based on fuzzy rough sets
under the variation of attribute set has not been taken into account until now.

The rest of this paper is organized as follows. In Section 2, some preliminar-
ies are introduced. In Section 3, the generating methods of fuzzy information
granules in hybrid information systems are presented. In Section 4, the updating
principles for lower and upper approximations are analyzed under the varia-
tion of attribute set. Some illustrative examples are conducted. In Section 5, we
conclude the paper.

2 Preliminaries

The rough set theory describes a crisp subset of a universe by two definable
subsets called lower and upper approximations [1]. By using the lower and upper
approximations, the knowledge hidden in information systems can be discovered
and expressed in the form of decision rules.

Definition 1. Let (U,R) be a Pawlak approximation space. The universe U 	= ∅.
R ⊆ U×U is an equivalence relation on U . U/R denotes the family of all equiva-
lence classes R, and [x]R denotes an equivalence class of R containing an element
x ∈ U . For any X ⊆ U , the lower approximation and upper approximation of X
are defined respectively as follows:

RX = {x ∈ U |[x]R ⊆ X};
RX = {x ∈ U |[x]R ∩X 	= ∅}. (1)

The concept of fuzzy rough sets was first proposed by Dubois and Prade [6].
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Definition 2. Let R be a fuzzy equivalence relation on U and X be a fuzzy subset
of U . The fuzzy lower and upper approximations of X were defined as

RX(x) = inf
y∈U

{max(1−R(x, y), X(y))};

RX(x) = sup
y∈U

{min(R(x, y), X(y))}. (2)

More generally, Yeung et al. proposed a model of fuzzy rough sets with a pair
of T -norm and S-norm in [10].

RX(x) = inf
y∈U

{S(N(R(x, y)), X(y))};

RX(x) = sup
y∈U

{T (R(x, y), X(y))}. (3)

In [11], based on the Gaussian kernel function, Hu et al. proposed a Gaussian
kernelized fuzzy rough set model with a pair of Tcos-norm and Scos-norm.

Definition 3. Let RG be a Gaussian kernelized Tcos-fuzzy equivalence relation
on U and X be a fuzzy subset of U . The fuzzy lower and upper approximations
of X are defined as

RGX(x) = inf
y∈U

Scos(N(RG(x, y)), X(y));

RGX(x) = sup
y∈U

Tcos(RG(x, y), X(y)). (4)

Where∀x, y ∈ U,RG(x, y) = k(x, y),Tcos(a, b) = max{ab−
√

1− a2
√

1− b2, 0}
is a T -norm, and its dual Scos(a, b) = min{a + b − ab +

√
2a− a2

√
2b− b2, 1}.

In [11], the Gaussian kernel function k(x, y) is definiton as follow.
Let U be a finite universe, and U 	= ∅. The samples are m-dimension vectors.

∀xi, xk ∈ U, xi =< xi1, xi2, ..., xim >, xk =< xk1, xk2, ..., xkm >. The gaussian
kernel function

k(xi, xk) = exp (−||xi − xk||2
2δ2

) (5)

can be used to compute the similarity between samples xi and xk. ||xi − xk|| is
the Euclidean distance between xi and xk.

A disadvantage of the Euclidean distance is that it is concerned with real
values. In fact, categorical, real-valued and set-valued attributes usually coexist
in real-world databases. In next section, a new hybrid distance will be introduced.

3 Gaussian Kernelized Fuzzy Rough Set in Hybrid
Information Systems

Definition 4. A Hybrid Information System (HIS) can be written as (U,C ∪
D,V, f), where U is the set of objects, C = Cr ∪ Cs ∪ Cc, Cr is the real-valued
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attribute set, Cs is the set-valued attribute set, Cc is the categorical attribute set,
D denotes the set of decision attributes, Cr ∩ Cs = ∅, Cr ∩ Cc = ∅, Cs ∩ Cc =
∅, C ∩D = ∅.

Example 1. Table 1 is a HIS with two categorical attributes “Headache”, “Mus-
cle Pain”, a real-valued attribute “Temperature”, a set-valued attribute “Syn-
drome” (denoted as a1, a2, a3, a4, respectively), and a decision attribute d. “?”
denotes the unknown value.

Table 1. A hybrid information systems

U Headache(a1) Muscle Pain(a2) Temperature(a3) Syndrome(a4) d

x1 Sick Yes 40 {C, R, A} Flu

x2 Sick Yes 39.5 {C, R, A} Flu

x3 Middle ? 39 {C} Flu

x4 Middle Yes 36.8 {R} Rhinitis

x5 Middle No ? {R} Rhinitis

x6 No No 36.6 {R, A} Health

x7 No ? ? {A} Health

x8 No Yes 38 {C, R, A} Flu

x9 ? Yes 37 {R} Health

3.1 Hybrid Distance

In HIS, there are different type of attributes, to construct the distance among
objects efficiently, a novel distance function should be presented. Firstly, value
difference under different type of attribute should be defined.

In order to deal with the value difference under the categorical attributes,
Stanfill and Waltz [27] introduced a Value Difference Metric (VDM). Based it,
the normalized value difference under the categorical attributes is defined as:

Definition 5. Let HIS=< U,C ∪ D,V, f >, ∀x, y ∈ U, ∀a ∈ C and a is a cate-
gorical attribute,

vdm(a(x), a(y)) =

√√√√ 1

|U/D|
∑

di∈U/D

(
|a(x) ∩ di|
|a(x)| − |a(y) ∩ di|

|a(y)| )2. (6)

Where |.| denotes support degree, and it is clear that vdm(a(x), a(y)) ∈ [0, 1].
In [27], Wilson et al. also defined value difference under real-valued attributes.

Definition 6. Let HIS=< U,C ∪ D,V, f >, ∀x, y ∈ U, ∀a ∈ C and a is a real-
valued attribute,

vdr(a(x), a(y)) =
|a(x)− a(y)|

4δa
(7)

where δa is the standard deviation under the attribute a.
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In order to deal with the unknown values (denoted by “?”), Wilson et al. also
defined value difference as [27]:

Definition 7. Let HIS=< U,C∪D,V, f >, ∀x, y ∈ U, ∀a ∈ C, a(x) =? or a(y) =
? and x 	= y,

vdi(a(x), a(y)) = 1. (8)

According to Definition 7, the value difference will be set as 1 between an
unknown value and another one.

To set-valued attribute, it can be seen as a set of multiple categorical at-
tributes. For example, to the set-valued attribute d in Table 1, the subset which
has maximum cardinal number in the domain Vd is {C, R, A}. Therefore, at-
tribute d can be divided to three categorical attributes (C, R, A, respectively).
Therefore, set-value {C, R, A}={C=Yes, R=Yes,A=Yes}, {C, R}={C=Yes,
R=Yes,A=?}. Because the value difference between “?” and other values is equal
to 1, the value difference between {C, R, A} and {C, R} is 1/3. Therefore, the
value difference of set-valued attributes is defined as follow:

Definition 8. Let HIS=< U,C ∪ D,V, f >, ∀x, y ∈ U, ∀a ∈ C and a is a set-
valued attribute. Let Va be the domain of a.

vds(a(x), a(y)) = 1− |a(x) ∩ a(y)|
s

(9)

where s is the maximum cardinal number (cardinality) in the subset of Va.

In order to deal with the hybrid and incomplete attributes, according to Def-
initions 5, 6, 7 and 8, a novel Hybrid Distance (HD) can be defined as follows:

Definition 9. Given a HIS, the Hybrid Distance (HD) is defined as:

HD(x, y) =

√√√√ m∑
a=1

d2(a(x), a(y)) (10)

where m is the number of attributes, and

d(a(x), a(y)) =

⎧⎪⎪⎨⎪⎪⎩
1, a(x) =? or a(y) =? and x 	= y
vdm(a(x), a(y)), a is a categorical attribute
vds(a(x), a(y)), a is a set− valued attribute
vdr(a(x), a(y)), a is a real − valued attribute

(11)

Example 2. Based on Example 1, we can compute the HD distance matrix. Ac-
cording to formula (10), the following results hold:

(1) Because attribute a1 is categorical, d(a1(x1), a1(x3)) = vdm(a1(x1), a1(x3))

=
√

1
3 ((22 −

1
3 )2 + (02 −

2
3 )2 + (02 −

0
3 )2) = 0.54.

(2) Because a2(x3) =?, d(a2(x1), a2(x3)) = 1.
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(3) Because attribute a3 is real-valued, d(a3(x1), a3(x3)) = a3(x1)−a3(x3)
4δa3

=

(40− 39)/(4× 1.28) = 0.19.
(4) Because attribute a4 is set-valued, d(a4(x1), a4(x3)) = vds(a4(x1), a4(x3))

= 3−1
3 = 0.67.

HD(x1, x3) = (
4∑

a=1
d2(a(x), a(y)))1/2 =

√
0.542 + 12 + 0.192 + 0.672 = 1.33.

3.2 Generating Fuzzy Relations under the Hybrid Attributes

Based on the gaussian kernel function in Formula (5), the Euclidean distance is
replaced by HD distance, the new gaussian kernel function

kH(xi, xk) = exp (−||xi − xk||2
2δ2

) (12)

||xi − xk|| is the HD distance between xi and xk. We have
(1) kH(xi, xk) ∈ [0, 1];
(2) kH(xi, xk) = kH(xk, xi);
(3) kH(xi, xi) = 1.
Using the new Gaussian kernel function, we can compute the Tcos-equivalence

relation RG in HIS. Furthermore, we can construct a Gaussian fuzzy rough set
model.

Example 3. Base on Table 1, let δ2 = 0.8, each sample is a 4-D vector, the
fuzzy relation between each two samples can be computed by Formula (12). For

example, RG(x1, x3) = kH(x1, x3) = exp(−HD2(x1,x3)
2×0.8 ) = exp(−1.332/1.6) =

0.33. Therefore,

RG =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.99 0.33 0.49 0.30 0.53 0.18 0.76 0.33
1 0.33 0.53 0.30 0.57 0.18 0.79 0.35

1 0.26 0.15 0.29 0.13 0.33 0.14
1 0.48 0.40 0.13 0.61 0.53

1 0.24 0.13 0.30 0.26
1 0.22 0.80 0.26

1 0.22 0.08
1 0.40

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

3.3 Gaussian Kernelized Fuzzy Rough Set in HIS

Let HIS=(U,C ∪D,V, f), U/D = {di}, i = 1, 2, ..., |U/D|. Here we suppose the
following relationships hold: ∀x ∈ di, di(x) = 1; otherwise, di(x) = 0. There-
fore, we can approximate the decision regions with the fuzzy granules induced
by Gaussian function. Based on Definition 3, Hu et al. proposed the following
proposition [11]:
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Proposition 1. HIS=(U,C ∪D,V, f), ∀di ∈ U/D,

RGdi(x) = inf
y/∈di

√
1−RG

2(x, y);

RGdi(x) = sup
y∈di

RG(x, y). (13)

To simple the computing, we can generate the fuzzy lower and upper approx-
imations by the follow proposition:

Proposition 2. HIS=(U,C ∪D,V, f), ∀x ∈ U, ∀di ∈ U/D.

RGdi(x) =
√

1− (sup
y/∈di

RG(x, y))2;

RGdi(x) = sup
y∈di

RG(x, y). (14)

Proof. It is clear that function y =
√

1− x2, x ∈ [0, 1] is a monotonically decreas-
ing function. It is easy to prove that

√
1− (sup(x))2 = inf(

√
1− x2), x ∈ [0, 1].

Therefore, RGdi(x) =
√

1− (sup
y/∈di

RG(x, y))2.

Example 4. Based on Examples 1 and 3, U/D={d1, d2, d3}, d1={x1, x2, x3, x8},
d2 = {x4, x5}, d3 = {x6, x7, x9}. According to Proposition 2,

RGd1(x1) =
√

1− ( sup
y/∈d1

RG(x1, y))2 =
√

1− (sup{0.49, 0.3, 0.53, 0.18, 0.33})2

=
√

1− 0.532 = 0.85.
Similarly, the other lower approximations can be computed as follows.

RGd1 = {0.85/x1, 0.82/x2, 0.96/x3, 0/x4, 0/x5, 0/x6, 0/x7, 0.84/x8, 0/x9}.
RGd2 = {0/x1, 0/x2, 0/x3, 0.79/x4, 0.95/x5, 0/x6, 0/x7, 0/x8, 0/x9}.
RGd3 = {0/x1, 0/x2, 0/x3, 0/x4, 0/x5, 0.61/x6, 0.98/x7, 0/x8, 0.84/x9}.

RGd1(x1) = sup
y∈d1

RG(x1, y) = sup{RG(x1, x1), RG(x1, x2), RG(x1, x3),

RG(x1, x8)} = sup{1, 0.99, 0.33, 0.76}= 1.
Similarly, the other upper approximations can be computed as follows.

RGd1 = {1/x1, 1/x2, 1/x3, 0.61/x4, 0.3/x5, 0.8/x6, 0.22/x7, 1/x8, 0.4/x9}.
RGd2={0.49/x1, 0.53/x2, 0.26/x3, 1/x4, 1/x5, 0.4/x6, 0.13/x7, 0.61/x8, 0.53/x9}.
RGd3 = {0.53/x1, 0.57/x2, 0.29/x3, 0.53/x4, 0.26/x5, 1/x6, 1/x7, 0.8/x8, 1/x9}.

In next section, we apply the fuzzy rough set to design the incremental
updating approximations under the variation of the attribute set.
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4 A Fuzzy Rough Set Approach of Incrementally
Updating Approximations under the Variation of the
Attribute Set

We discuss the variation of approximations in HIS when the attribute set evolves
over time. Given a HIS = (U,C∪D,V, f) at time t, U 	= ∅ and C∩D = ∅. Suppose
there are some attributes enter into HIS or get out of HIS at time t + 1. The
fuzzy equivalence relations will be changed. And then, the fuzzy lower and upper

approximations will be changed too. Let R
(t)
G be the fuzzy equivalence relation

at time t. For each fuzzy set X ⊆ U , the fuzzy lower and upper approximations

are denoted by R
(t)
G X and R

(t)
G X at time t, respectively. Let P ⊆ C denote

the attribute set at time t, RP
G denotes the fuzzy equivalence relation under

the attribute set P . Let R
(t+1)
G be the fuzzy equivalence relation, Qi be the

immigrating attribute set and Qe be the emigrating attribute set at time t + 1.

The fuzzy lower and upper approximations of X are denoted by R
(t+1)
C X and

R
(t+1)
G X , respectively. With these stipulations, we focus on the algorithms for

updating approximations of the decision classes when (1) attributes enter into
the HIS at time t + 1; (2) attributes get out of the HIS at time t + 1.

4.1 The Immigration of Attributes

Given a HIS = (U,C ∪ D,V, f), ∀xi, xk ∈ U . xi, xk can be seen as two m-
dimension vectors, and xi =< xc1

i , xc2
i , ..., xcm

i >, xk =< xc1
k , xc2

k , ..., xcm
k >,

cj ∈ C, and j = 1, ...,m,m = |C|. ∀P ⊆ C, xi, xk can be seen as two m-
dimension vectors denoted as xP

i and xP
k , respectively. xP

i =< xp1

i , xp2

i , ..., xpl

i >,
xP
k =< xp1

k , xp2

k , ..., xpl

k >, pj ∈ P , and j = 1, ..., l, l = |P |. According to formula
(12), the following proposition holds.

Proposition 3. ∀P ⊆ C, ∀xi, xk ∈ U , xi 	= xk.

RP
G(xi, xk) =

∏
pj∈P

R
{pj}
G (xi, xk). (15)

Proof. RP
G(xi, xk) = exp(− ||xP

i −xP
k ||2

2δ2 ) = exp(−

|P |∑

j=1

d2
sa(xij,xkj)

2δ2 )

=
∏

pj∈P

exp(− d2
sa(xij ,xkj)

2δ2 ) =
∏

pj∈P

exp(− ||x
{pj}
i −x

{pj}
k ||2

2δ2 ) =
∏

pj∈P

R
{pj}
G (xi, xk).

Proposition 4. Let Qi be an attribute set immigrating into HIS at time t + 1.
∀di ∈ U/D, and ∀x ∈ U . The fuzzy approximations at time t + 1 are as follows:

R
(t+1)
G di(x) =

√
1− (sup

y/∈di

{R(t)
G (x, y)×

∏
q∈Qi

R
{q}
G (xi, xk)})2;

R
(t+1)
G di(x) = sup

y∈di

{R(t)
G (x, y)×

∏
q∈Qi

R
{q}
G (xi, xk)}. (16)
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Table 2. Attribute a5 is added into HIS

U Headache(a1) Muscle Pain(a2) Temperature(a3) Syndrome(a4)Cough(�a5) d

x1 Sick Yes 40 {C, R, A} Yes Flu

x2 Sick Yes 39.5 {C, R, A} Yes Flu

x3 Middle ? 39 {C} Yes Flu

x4 Middle Yes 36.8 {R} No Rhinitis

x5 Middle No ? {R} No Rhinitis

x6 No No 36.6 {R, A} No Health

x7 No ? ? {A} No Health

x8 No Yes 38 {C, R, A} Yes Flu

x9 ? Yes 37 {R} No Health

Example 5. Based on Example 4, attribute a5 is added into HIS (shown as Table
2). Therefore, P = {a1, a2, a3, a4}, Qi = {a5}.

According to Formula (12), we can compute the fuzzy relation between

each two samples under the attribute set Qi. For example, R
{a5}
G (x1, x4) =

exp(−
1
3 (1+( 2

5 )
2+( 3

5 )
2)

2δ2 ) = 0.73. Therefore,

R
{a5}
G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0.73 0.73 0.73 0.73 1 0.73
1 1 0.73 0.73 0.73 0.73 1 0.73

1 0.73 0.73 0.73 0.73 1 0.73
1 1 1 1 0.73 1

1 1 1 0.73 1
1 1 0.73 1

1 0.73 1
1 0.73

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Because R
(t)
G has been generated in Example 3, ∀xi, xk ∈ U,R

(t+1)
G (xi, xk) =

R
(t)
G (xi, xk)×R

{a5}
G (xi, xk). Therefore,

R
(t+1)
G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.99 0.33 0.36 0.22 0.38 0.13 0.76 0.24
1 0.33 0.39 0.22 0.41 0.13 0.79 0.25

1 0.19 0.11 0.21 0.09 0.33 0.10
1 0.48 0.40 0.13 0.44 0.53

1 0.24 0.13 0.22 0.26
1 0.22 0.58 0.26

1 0.16 0.08
1 0.29

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

According to Proposition 4, the approximations are as follows.
RGd1 = {0.92/x1, 0.91/x2, 0.98/x3, 0/x4, 0/x5, 0/x6, 0/x7, 0.81/x8, 0/x9}.
RGd2 = {0/x1, 0/x2, 0/x3, 0.84/x4, 0.97/x5, 0/x6, 0/x7, 0/x8, 0/x9}.
RGd3 = {0/x1, 0/x2, 0/x3, 0/x4, 0/x5, 0.81/x6, 0.99/x7, 0/x8, 0.84/x9}.
RGd1 = {1/x1, 1/x2, 1/x3, 0.44/x4, 0.22/x5, 0.58/x6, 0.16/x7, 1/x8, 0.29/x9}.
RGd2={0.36/x1, 0.39/x2, 0.19/x3, 1/x4, 1/x5, 0.4/x6, 0.13/x7, 0.44/x8, 0.53/x9}.
RGd3 = {0.38/x1, 0.41/x2, 0.21/x3, 0.53/x4, 0.26/x5, 1/x6, 1/x7, 0.58/x8, 1/x9}.
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4.2 The Emigration of Attributes

Given two attribute sets P,Qe ⊆ C, and Qe ⊂ P,Qe 	= ∅, fuzzy relation RP−Qe

G

(xi, xk) between xi and xk can be computed according to Proposition 3. And
then, the following updating proposition of fuzzy approximations can be gotten.

Proposition 5. Let P ⊆ C, and Qe be the attributes emigrating from HIS at
time t + 1, and Qe ⊂ P . ∀di ∈ U/D, and ∀x ∈ U . The fuzzy lower and upper
approximations at time t + 1 as follows:

R
(t+1)
G di(x) =

√
1− (sup

y/∈di

(R
(t)
G (x, y)/

∏
q∈Qe

R
{q}
G (x, y)))2;

R
(t+1)
G di(x) = sup

y∈di

(R
(t)
G (x, y)/

∏
q∈Qe

R
{q}
G (x, y)). (17)

Table 3. The emigrating of attributes a4, a5

U Headache(a1) Muscle Pain(a2) Temperature(a3) Syndrome(a�

4 ) Cough(a�

5 ) d

x1 Sick Yes 40 {C, R, A} Yes Flu

x2 Sick Yes 39.5 {C, R, A} Yes Flu

x3 Middle ? 39 {C} Yes Flu

x4 Middle Yes 36.8 {R} No Rhinitis

x5 Middle No ? {R} No Rhinitis

x6 No No 36.6 {R, A} No Health

x7 No ? ? {A} No Health

x8 No Yes 38 {C, R, A} Yes Flu

x9 ? Yes 37 {R} No Health

Example 6. Based on Example 5, attribute set {a4, a5} is deleted from HIS
(shown as Table 3). Therefore P = {a1, a2, a3, a4, a5}, Qe = {a4, a5}. Ac-
cording to Proposition 3, we can compute the fuzzy relations under the at-

tribute set Qe. For example, RQe

G (x1, x4)=R
{a4}
G (x1, x4)× R

{a5}
G (x1, x4)=0.55,

R
(t+1)
G (x1, x4) = R

(t)
G (x1, x4)/RQe

G (x1, x4) = 0.36/0.55 = 0.65. Therefore,

R
(t+1)
G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.99 0.43 0.65 0.40 0.56 0.24 0.76 0.43
1 0.44 0.70 0.40 0.61 0.24 0.79 0.46

1 0.48 0.29 0.39 0.24 0.43 0.26
1 0.48 0.74 0.24 0.80 0.53

1 0.44 0.24 0.40 0.27
1 0.29 0.85 0.48

1 0.29 0.15
1 0.52

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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According to Proposition 5, the approximations are as follows:
RGd1 = {0.76/x1, 0.72/x2, 0.88/x3, 0/x4, 0/x5, 0/x6, 0/x7, 0.52/x8, 0/x9}.
RGd2 = {0/x1, 0/x2, 0/x3, 0.6/x4, 0.9/x5, 0/x6, 0/x7, 0/x8, 0/x9}.
RGd3 = {0/x1, 0/x2, 0/x3, 0/x4, 0/x5, 0.52/x6, 0.96/x7, 0/x8, 0.84/x9}.
RGd1 = {1/x1, 1/x2, 1/x3, 0.8/x4, 0.4/x5, 0.85/x6, 0.29/x7, 1/x8, 0.52/x9}.
RGd2 = {0.65/x1, 0.7/x2, 0.48/x3, 1/x4, 1/x5, 0.74/x6, 0.24/x7, 0.8/x8, 0.53/x9}.
RGd3 = {0.56/x1, 0.61/x2, 0.39/x3, 0.74/x4, 0.44/x5, 1/x6, 1/x7, 0.85/x8, 1/x9}.

5 Conclusions

In HIS, the attributes may be hybrid, and possible have unknown values. Based
on this, a new HD formula was designed. Combined with the HD distance and the
Gaussian kernel, a novel fuzzy rough set was constructed. In HIS, the attributes
generally vary with time. The incremental updating principles of upper and
lower approximations of fuzzy rough sets under the variation of the attribute set
were discussed in this paper. Several examples were employed to illustrate the
proposed methods. Our future research work will focus on the validation of the
proposed algorithms in real data sets and the application on feature selection.
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Abstract. Ever since the first hybrid fuzzy rough set model was pro-
posed in the early 1990’s, many researchers have focused on the definition
of the lower and upper approximation of a fuzzy set by means of a fuzzy
relation. In this paper, we review those proposals which generalize the
logical connectives and quantifiers present in the rough set approxima-
tions by means of corresponding fuzzy logic operations. We introduce
a general model which encapsulates all of these proposals, evaluate it
w.r.t. a number of desirable properties, and refine the existing axiomatic
approach to characterize lower and upper approximation operators.

Keywords: fuzzy sets, rough sets, hybridization, lower and upper
approximation, implication, conjunction, axiomatic approach.

1 Introduction

Fuzzy sets [1] generalize classical or crisp sets in a sense that objects can be
assigned intermediary membership degrees to a set or relation, drawn from a
partially ordered set, typically [0, 1]. On the other hand, rough sets [2] charac-
terize a set of objects by means of a lower and an upper approximation, taking
into account an equivalence relation that represents indiscernibility between ob-
jects. Both theories have fostered broad research communities and have been
applied in a wide range of settings. It was recognized early on that they are
complementary, rather than competitive; a first hybrid fuzzy rough set model
was proposed by Dubois and Prade [3] in 1990. Now, more than 20 years later,
interest in fuzzy rough sets is thriving; this is mainly thanks to their proven appli-
cation potential in machine learning, and in particular in feature selection [4–6]
and instance selection [7].

Fuzzy-rough hybridization has been pursued in a variety of ways; in this paper,
we focus on the most common approach, i.e., using fuzzy logical extensions of
the Boolean implication and conjunction, along with infimum and supremum
as extensions of the universal and existential quantifiers. This idea sparked the

D. Ciucci et al. (Eds.): RSFDGrC 2013, LNAI 8170, pp. 169–179, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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seminal proposal in [3], and since then many papers [8–18] have focused on
the refinement of this model using both constructive approaches, which propose
new definitions of approximation operators, and axiomatic approaches, which set
forth a set of axioms or desirable properties, and characterize the operators that
satisfy them.

It was found that through a deliberate choice of fuzzy logical operators, and
the use of a similarity relation (also called fuzzy equivalence relation) to model
approximate indiscernibility, most properties of the original rough set model
can be maintained [8, 9]; on the other hand, from a practical point of view,
the use of similarity relations is not always convenient (see e.g. [6]), and as
De Cock et al. [16] argued, they cause part of the hybridization potential to
remain unexplored. Moreover, also in the crisp case, various types of binary
relations have been considered to replace the indiscernibility equivalence relation,
see e.g. [19, 20]. For all of these reasons, several other authors considered fuzzy
rough set models based on general fuzzy relations [10–15,17].

In this paper, we unify all these approaches under the umbrella of a general
implicator-conjunctor based fuzzy rough set model, imposing minimal restric-
tions on the approximations. After recalling some preliminaries in Section 2, we
present the definitions of the approximations in Section 3, and give a chronolog-
ical overview of special cases studied in the literature. In Section 4, we evaluate
the model w.r.t. desirable properties, while in Section 5, we refine the axiomatic
approach of Wu et al. [13], weakening some of its conditions and proposing
an alternative characterization that caters specifically to residual implications.
Finally, in Section 6, we conclude and outline future work.

2 Preliminaries

2.1 Fuzzy Logical Connectives

A conjunctor is a mapping C : [0, 1]2 → [0, 1] which is increasing in both ar-
guments and which satisfies C(0, 0) = C(0, 1) = C(1, 0) = 0 and C(1, 1) = 1.
It is called a border conjunctor if it satisfies C(1, x) = x for all x in [0, 1]. A
commutative, associative border conjunctor T is called a t-norm.

A disjunctor is a mapping D : [0, 1]2 → [0, 1] which is increasing in both
arguments and which satisfies D(1, 0) = D(0, 1) = D(1, 1) = 1 and D(0, 0) = 0.
It is called a border disjunctor if it satisfies D(0, x) = x for all x in [0, 1]. A
commutative, associative border disjunctor S is called a t-conorm.

A negator is a decreasing mapping N : [0, 1] → [0, 1] which satisfies N (0) = 1
and N (1) = 0. It is involutive if for all x ∈ [0, 1], N (N (x)) = x. The standard
negator Ns is defined by, for x in [0, 1], Ns(x) = 1− x.

Given an involutive negatorN , a conjunctor C and a disjunctor D, the N -dual
of C is a disjunctor DC,N , defined by DC,N (x, y) = N (C(N (x),N (y))), and the
N -dual of D is a conjunctor CD,N , defined by CD,N (x, y) = N (D(N (x), N (y))),
for all x, y in [0, 1]. It can be verified that the N -dual of a t-norm is a t-conorm,
and vice versa.
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An implicator I is a mapping I : [0, 1]2 → [0, 1] satisfying I(1, 0) = 0,
I(1, 1) = I(0, 1) = I(0, 0) = 1 which is decreasing in the first and increasing in
the second argument. If I satisfies I(1, x) = x for all x in [0, 1], it is called a border
implicator, and if it satisfies the exchange principle, I(x, I(y, z)) = I(y, I(x, z))
for all x, y, z in [0, 1], it is called an EP implicator.

Let C, D and N be a border conjunctor, a disjunctor and a negator respec-
tively. The S-implicator ID,N based on D and N is defined by, for x, y in [0, 1],
ID,N (x, y) = D(N (x), y). The R-implicator IC based on C is defined by, for
x, y in [0, 1], IC(x, y) = sup{γ ∈ [0, 1] | C(x, γ) ≤ y}. Both S-implicators and
R-implicators are particular cases of border implicators.

Given an involutive negator N and an implicator I, the induced conjunctor
of I and N is a conjunctor CI,N defined by, for x, y ∈ [0, 1], CI,N (x, y) =
N (I(x,N (y)). It is not necessarily a t-norm.

2.2 Fuzzy Sets and Relations

A fuzzy set A in a non-empty universe set U is a mapping A : U → [0, 1]. The
collection of all fuzzy sets in U is denoted by F(U).

Given α in [0, 1], the constant (fuzzy) set α̂ is defined by, for x in U , α̂(x) = α.
In the crisp case, the only constant sets are ∅ and U .

Let A,B ∈ F(U) and x ∈ U . Given a negator N , the N -complement of A
is defined by (coN (A))(x) = N (A(x)). Given a conjunctor C and a disjunctor
D, the C-intersection and D-union of A and B are defined by (A ∩C B)(x) =
C(A(x), B(x)) and (A ∪D B)(x) = D(A(x), B(x)). If C = min and D = max, we
simply write ∩ and ∪. Given an implicator I, the I-implication of A and B is
defined by (A ⇒I B)(x) = I(A(x), B(x)).

A binary fuzzy relation R in U is a fuzzy set in U × U . We define its in-
verse fuzzy relation R′ by R′(x, y) = R(y, x) for x, y in U . R is called re-
flexive if R(x, x) = 1, symmetric if R(x, y) = R(y, x) and inverse serial if
supx∈U R(x, y) = 1 for all y in U . For a symmetric binary fuzzy relation R,
it obviously holds that R = R′.

Given a t-norm T , R is called T -transitive if for all x, y and z in U ,
T (R(x, y), R(y, z)) ≤ R(x, z). If R is reflexive, symmetric and T -transitive, it is
called a T -similarity relation. When T = min, we shortly speak about a simi-
larity relation. Because the minimum operator is the largest t-norm, a similarity
relation is a T -similarity relation for every t-norm T .

2.3 Lower and Upper Approximations in Rough Set Theory

A classical or Pawlak approximation space is a couple (U,R) consisting of a non-
empty set U and an equivalence relation R in U . The rough approximation of a
crisp set A in U by R is the pair of sets (R↓A,R↑A) defined by, for x ∈ U ,

x ∈ R↓A⇔ (∀y ∈ U)((y, x) ∈ R ⇒ y ∈ A) (1)

x ∈ R↑A⇔ (∃y ∈ U)((y, x) ∈ R ∧ y ∈ A). (2)
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A pair (A1, A2) of sets in U is called a rough set in (U,R) if there is a set A in
U such that A1 = R↓A and A2 = R↑A. Some of the most important properties
of lower and upper approximation in a Pawlak approximation space are listed
in the left hand side of Table 2. Note that we denote the complement of a crisp
set A by Ac.

3 Implicator-Conjunctor Based Model

Many definitions of fuzzy rough sets emerge by faithfully extending Eqs. (1)
and (2) to the [0, 1]-valued case. In particular, Dubois and Prade worked with
a similarity relation R, and replaced the Boolean implication and conjunction
by the S-implicator Imax,Ns (Kleene-Dienes implicator) and the minimum t-
norm, respectively. In this section, we consider a fuzzy approximation space, i.e.,
a couple (U,R) consisting of a non-empty set U and a binary fuzzy relation R
in U , and define a general format for the approximations using implicators and
conjunctors.

Definition 1. Let (U,R) be a fuzzy approximation space, A a fuzzy set in U , I
an implicator and C a conjunctor. The (I, C)-fuzzy rough approximation of A
by R is the pair of fuzzy sets (R↓IA,R↑CA) defined by, for x ∈ U ,

(R↓IA)(x) = inf
y∈U

I(R(y, x), A(y)) (3)

(R↑CA)(x) = sup
y∈U

C(R(y, x), A(y)). (4)

A pair (A1, A2) of fuzzy sets in U is called a fuzzy rough set in (U,R) if there
is a fuzzy set A in U such that A1 = R↓IA and A2 = R↑CA.

In Table 1 we give a chronological overview of special cases of the general
model. Some authors [8,15,18] actually require lower semicontintuity of T instead
of left-continuity, but by a result from [21] these two notions are equivalent for
t-norms. Also, some papers [10,11,13,17] consider fuzzy relations from U to W ,
with both U and W non-empty, finite universes, but here we restrict ourselves to
the case U = W . As can be seen, Wu et al. [10] were the first to consider general
binary fuzzy relations, while Mi and Zhang [11] initiated the use of conjunctors
that are not necessarily t-norms. Also note that the t-norm Tcos used in [18] is
defined, for x, y in [0, 1], by Tcos(x, y) = max(xy−

√
(1− x2)(1 − y2), 0). Its use

is inspired by the fact that some commonly used kernel functions in machine
learning are in fact Tcos-similarity relations.

4 Properties

In the following, we assume that (U,R), (U,R1) and (U,R2) are fuzzy approxi-
mation spaces, A and B are fuzzy sets in U , I is an implicator, C a conjunctor
and N an involutive negator. In the right hand side of Table 2, we show the
extensions of the classical rough set properties to a fuzzy approximation space.
We can prove the following propositions, which mainly generalize known results
obtained in a restricted setting, see e.g. [9].



Implicator-Conjunctor Based Models of Fuzzy Rough Sets 173

Table 1. Overview of special cases of the general fuzzy rough set model

Model Conjunctor Implicator Relation

[3] Dubois & Prade, 1990 min Imax,Ns similarity
[8] Morsi & Yakout, 1998 left-cont. t-norm T IT T -similarity
[9] Radzikowska & Kerre, 2002 t-norm T border implicator I similarity
[10] Wu et al., 2003 min Imax,Ns general
[11] Mi & Zhang, 2004 CIT ,Ns ; IT general

left-cont. t-norm T
[13] Wu et al., 2005 cont. t-norm T implicator I general
[14] Pei, 2005 min Imax,Ns general
[15] Yeung et al., 2005 left-cont. t-norm T IST,N ,N , N involutive general
[15] Yeung et al., 2005 CIT ,Ns ; IT general

left-cont. t-norm T
[16] De Cock et al., 2007 t-norm T border implicator I general
[17] Mi et al., 2008 cont. t-norm T IST ,Ns ,Ns general
[18] Hu et al., 2010 left-cont. t-norm T IST ,Ns ,Ns Tcos-

eft-cont. t-norm T similarity
[18] Hu et al., 2010 CIT ,Ns ; IT Tcos-

left-cont. t-norm T similarity

Proposition 1. If C is the induced conjunctor of I and N , i.e., C = CI,N , then
the duality property holds.

Corollary 1. Let D be the N -dual disjunctor of C. If the pair (I, C) consists of
the S-implicator ID,N and the conjunctor C, then the duality property holds.

Corollary 2. Let T be a left-continuous t-norm and N = NIT . If the pair (I, C)
consists of the R-implicator IT and the t-norm T , then the duality property holds.

To see this corollary, note that CIT ,N = T indeed holds: for x, y in [0, 1],
CIT ,N (x, y) = N (IT (x,N (y))) = N (IT (x, IT (y, 0))) = N (IT (T (x, y), 0)) =
N (N (T (x, y))) = T (x, y).

Proposition 2. If the pair (I, C) consists of the R-implicator IT and the left-
continuous t-norm T , then the adjointness property holds.

Note that in generalizing the adjointness condition to a fuzzy approximation
space, we have replaced R in the right hand side of the equivalence by its inverse
fuzzy relation R′. Clearly, if R is symmetric (which is the case for a Pawlak
approximation space), this modification is redundant.

Proposition 3. If R is reflexive, I is a border implicator and C is a border
conjunctor, then the inclusion property holds.

Corollary 3. Let T and S be a t-norm and its N -dual t-conorm. If R is re-
flexive, and (I, C) = (IS,N , T ) or (I, C) = (IT , T ), then the inclusion property
holds.
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Table 2. Properties in a Pawlak approximation space and their corresponding exten-
sions to a fuzzy approximation space

Name Pawlak approximation space Fuzzy approximation space

Duality R↓A = (R↑Ac)c R↓IA = coN (R↑C(coN (A)))
R↑A = (R↓Ac)c R↑CA = coN (R↓I(coN (A)))

Adjointness R↑A ⊆ B ⇔ A ⊆ R↓B R↑CA ⊆ B ⇔ A ⊆ R′↓IB
Inclusion R↓A ⊆ A R↓IA ⊆ A

A ⊆ R↑A A ⊆ R↑CA
Set monotonicity A ⊆ B ⇒ R↓A ⊆ R↓B A ⊆ B ⇒ R↓IA ⊆ R↓IB

A ⊆ B ⇒ R↑A ⊆ R↑B A ⊆ B ⇒ R↑CA ⊆ R↑CB
Relation monotonicity R1 ⊆ R2 ⇒ R2↓A ⊆ R1↓A R1 ⊆ R2 ⇒ R2↓IA ⊆ R1↓IA

R1 ⊆ R2 ⇒ R1↑A ⊆ R2↑A R1 ⊆ R2 ⇒ R1↑CA ⊆ R2↑CA
Intersection R↓(A ∩ B) = R↓A ∩ R↓B R↓I(A ∩ B) = R↓IA ∩R↓IB

R↑(A ∩ B) ⊆ R↑A ∩ R↑B R↑C(A ∩B) ⊆ R↑CA ∩ R↑CB
Union R↓(A ∪ B) ⊇ R↓A ∪ R↓B R↓I(A ∪ B) ⊇ R↓IA ∪R↓IB

R↑(A ∪ B) = R↑A ∪ R↑B R↑C(A ∪B) = R↑CA ∪ R↑CB
Idempotence R↓(R↓A) = R↓A R↓I(R↓IA) = R↓IA

R↑(R↑A) = R↑A R↑C(R↑CA) = R↑CA
Constant sets R↓∅ = ∅ = R↑∅ R↓I α̂ = α̂

R↓U = U = R↑U R↑Cα̂ = α̂

Proposition 4. The properties of set and relation monotonicity, intersection
and union always hold.

Proposition 5. If R is a reflexive and T -transitive relation, where T is a left-
continuous t-norm and the pair (I, C) consists of the R-implicator IT and the
t-norm T , then the idempotence property holds.

Proposition 6. If R is a reflexive relation, I a border implicator and C a border
conjunctor, then the constant sets property holds.

Summing up, in order to satisfy all properties in Table 2, C should be a left-
continuous t-norm T and I its R-implicator, while R needs to be at least reflexive
and T -transitive. Propositions 2 and 5 do not hold in general for S-implicators,
for instance, Dubois and Prade’s model [3] does not satisfy them.

5 Axiomatic Approach

In the axiomatic approach, we work with unary operators on F(U) and some
axioms to obtain a fuzzy relation R such that the operators behave as approxi-
mation operators with respect to R. Such an approach is useful to get insight in
the logical structure of fuzzy rough sets.
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As our starting point, we use the axiomatic approach developed by Wu et
al. [13], who propose axioms to characterise lower and upper approximations,
which are generalized here for an implicator-conjunctor pair.

Definition 2. Let H,L : F(U) → F(U), C a conjunctor and I an implicator.
H is a C-upper approximation if it satisfies, for all A,Aj ∈ F(U), α ∈ [0, 1],

(H1) H(α̂ ∩C A) = α̂ ∩C H(A)

(H2) H

( ⋃
j∈J

Aj

)
=
⋃
j∈J

H(Aj)

L is an I-lower approximation if it satisfies, for all A,Aj ∈ F(U), α ∈ [0, 1],

(L1) L(α̂⇒I A) = α̂⇒I L(A)

(L2) L

( ⋂
j∈J

Aj

)
=
⋂
j∈J

L(Aj)

Wu et al. required C and I to be a continuous t-norm and implicator, resp.,
but these conditions can be slightly weakened. For this, we can use e.g. results
from [22] obtained in the framework of fuzzy modal logics that can be easily
adapted to approximation operators.

Proposition 7. Let H : F(U) → F(U) and T a left-continuous t-norm. H is a
T -upper approximation if and only if for all A ∈ F(U), H(A) = R↑T A, where
R(x, y) = H({x})(y), for x, y in U .

Proposition 8. Let L : F(U) → F(U) and I an EP implicator that is left-
continuous in its first argument and such that NI is continuous. L is an I-
lower approximation if and only if for all A ∈ F(U), L(A) = R↓IA, where
R(x, y) = NI(L(U \ {x})(y)), for x, y in U .

Adding more axioms to Definition 2, we can characterize specific properties
of the fuzzy relation R, as the following propositions show.

Proposition 9. Let T be a left-continuous t-norm and H a T -upper approxi-
mation. There exists a fuzzy relation R in U such that H = R↑T that is

1. inverse serial ⇔ ∀α ∈ [0, 1] : H(α̂) = α̂ ⇔ H(U) = U
2. reflexive ⇔ ∀A ∈ F(U) : A ⊆ H(A)
3. symmetric ⇔ ∀x, y ∈ U : H({x})(y) = H({y})(x)
4. T -transitive ⇔ ∀A ∈ F(U) : H(H(A)) ⊆ H(A)

Proposition 10. Let I be a border and EP implicator that is left-continuous in
its first argument such that NI is continuous, and L an I-lower approximation.
There exists a fuzzy relation R in U such that L = R↓I that is
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1. inverse serial ⇔ ∀α ∈ [0, 1] : L(α̂) = α̂ and I satisfies x ≤ y ⇔ ∀z ∈ [0, 1] :
I(x, z) ≥ I(y, z)

2. reflexive ⇔ ∀A ∈ F(U) : L(A) ⊆ A
3. symmetric ⇔ ∀x, y ∈ U, α ∈ [0, 1] : L({x} ⇒I α̂)(y) = L({y} ⇒I α̂)(x)
4. T -transitive ⇔ ∀A ∈ F(U) : L(L(A)) ⊆ L(A) for all A in F(U) and I

satisfies I(x, I(y, z)) = I(T (x, y), z) for all x, y, z in [0, 1]

The above propositions characterize lower and upper approximations sepa-
rately. If these operators are dual, we can link them together.

Proposition 11. Let T be a left-continuous t-norm, I an EP implicator that is
left-continuous in its first argument and such that NI is involutive, H a T -upper
approximation and L an I-lower approximation. If H and L satisfy duality w.r.t.
NI, then there exists a binary fuzzy relation R in U such that H = R↑T and
L = R↓I .

A drawback of the above approach is that it excludes some important opera-
tors. For instance, it can be verified that the R-implicator Imin does not satisfy
the conditions of Proposition 8, because NImin is not involutive. However, it
satisfies all properties from Table 2. For this reason, below we introduce and
characterize the alternative notion of a T -coupled pair of approximations.

Definition 3. Let T be a left-continuous t-norm, H,L : F(U) → F(U). We
call (H,L) a T -coupled pair of upper and lower approximations if the following
conditions hold:

(H1,H2) H is a T -upper fuzzy approximation operator

(L2) L

( ⋂
j∈J

Aj

)
=
⋂
j∈J

L(Aj)

(HL) L(A ⇒IT α̂) = H(A) ⇒IT α̂

Proposition 12. Let T be a left-continuous t-norm, H,L : F(U) → F(U).
(H,L) is a T -coupled pair of upper and lower approximations if and only if
there exists a binary fuzzy relation R in U such that H = R↑T and L = R↓IT .

Proof. Assume (H,L) is a T -coupled pair and A ∈ F(U). By (H1, H2), H is a
T -upper approximation, so by Proposition 7, H(A) = R↑T A, where R(x, y) =
H({x})(y), for x, y in U . On the other hand, it can be verified that A =⋂

y∈U ({y} ⇒IT Â(y)), so by (L2) and (HL), we have L(A) =
⋂

y∈U L({y} ⇒IT

Â(y)) =
⋂

y∈U H({y}) ⇒IT Â(y) = R↓IT A.
Conversely, it is clear that R↑T and R↓IT are an upper and a lower approxima-
tion satisfying (H1, H2) and (L2), respectively. To see (HL), let x ∈ U , α ∈ [0, 1],
then

(
R↓IT (A⇒IT α̂)

)
(x) = inf

y∈U
IT (R(y, x), IT (A(y), α)) = inf

y∈U
IT (T (R(y, x),

A(y)), α) = IT (sup
y∈U

T (R(y, x), A(y)), α) = IT ((R↑T A)(x), α) = (R↑T A ⇒IT

α̂)(x).
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Proposition 13. Let T be a left-continuous t-norm and let (H,L) be a T -
coupled pair of upper and lower fuzzy approximation operators. There exists a
binary fuzzy relation R in U × U such that H = R↑T and L = R↓IT that is:

1. inverse serial ⇔ H(U) = U ⇔ ∀A ∈ F(U) : L(A) ⊆ H(A)
2. reflexive ⇔ ∀A ∈ F(U) : L(A) ⊆ A⇔ ∀A ∈ F(U) : A ⊆ H(A)
3. symmetric ⇔ ∀x, y ∈ U : H({x})(y)=H({y})(x) ⇔ ∀A ∈ F(U) : H(L(A)) ⊆

A⇔ ∀A ∈ F(U) : A ⊆ L(H(A))
4. T -transitive ⇔ ∀A ∈ F(U) : L(A) ⊆ L(L(A)) ⇔ ∀A ∈ F(U) : H(H(A)) ⊆

H(A)

Proof. By Proposition 12, we know that there exists a relation R such that
H = R↑T and L = R↓IT .

1. The equivalence between inverse seriality and H(U) = U can be proved
as follows: H(U)(x) = supy∈U T (R(y, x), U(y)) = supy∈U T (R(y, x), 1) =
supy∈U R(y, x). Hence, U = H(U) iff H(U)(x) = 1 for all x ∈ U , iff
supy∈U R(y, x) = 1 for all x ∈ U . The equivalence with L(A) ⊆ H(A)
for all A ∈ F(U) corresponds to [22, Proposition 4].

2. This corresponds to [22, Proposition 5].
3. The first equivalence is proved as in Proposition 9, item 3. The second and

third one correspond to [22, Proposition 9].
4. This corresponds to [22, Proposition 13].

6 Conclusion and Future Work

In this paper, we have studied a general implicator-conjunctor based model for
the lower and upper approximation of a fuzzy set under a binary fuzzy relation.
We reviewed models from the literature that can be seen as special cases, and
enriched the existing axiomatic approach with a new notion of T -coupled pairs of
approximations, which characterize the operations satisfying all relevant proper-
ties of classical rough sets, i.e., left-continuous t-norms and their R-implicators.

An important challenge is to extend the formal treatment to noise-tolerant
fuzzy rough set models, such as those studied in [23–29]. Observing that the
implicator-conjunctor based approximations are sensitive to small changes in
the arguments (for instance, because of their reliance on inf and sup opera-
tions), many authors have proposed models that are more robust against data
perturbation. However, this normally goes at the expense of the properties the
corresponding fuzzy rough set model satisfies.
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Abstract. The Nearest Neighbor (NN) algorithm is a well-known and
effective classification algorithm. Prototype Selection (PS), which pro-
vides NN with a good training set to pick its neighbors from, is an
important topic as NN is highly susceptible to noisy data. Accurate
state-of-the-art PS methods are generally slow, which motivates us to
propose a new PS method, called OWA-FRPS. Based on the Ordered
Weighted Average (OWA) fuzzy rough set model, we express the quality
of instances, and use a wrapper approach to decide which instances to se-
lect. An experimental evaluation shows that OWA-FRPS is significantly
more accurate than state-of-the-art PS methods without requiring a high
computational cost.

Keywords: Ordered Weighted Average, Fuzzy Rough Sets, Prototype
Selection, KNN.

1 Introduction

One of the most well-known and most widely used classification algorithms is
Nearest Neighbors (NN,[1]). This method classifies a test instance t to the class
of the nearest neighbor of t in the training set. Although NN has been proven
to be very useful for many classification problems, it deals with some problems,
among which its sensitivity to noise and its large storage requirements are the
most important ones.

In this work we alleviate these problems by using Prototype Selection (PS,[2]).
This technique removes redundant and/or noisy instances from the training set,
such that the training set requires less storage and such that the NN algorithm
is more accurate. PS techniques that mainly try to improve the classification
accuracy are called edition methods, those that focus on reducing the required
storage are condensation methods. Hybrid PS techniques try to tackle both
problems simultaneously. In this work we develop an editing method.

D. Ciucci et al. (Eds.): RSFDGrC 2013, LNAI 8170, pp. 180–190, 2013.
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Many PS methods have been proposed in the literature, a comprehensive
overview can be found in [2]. When the algorithm does not make use of a specific
classifier to classify the entire training set, the method is called a filter method.
Condensation methods do use a specific classifier, the NN classifier in our case,
to classify the entire training data to obtain a quality assessment of a certain
prototype subset. Filter methods are generally faster and less accurate, while
wrapper methods are slower and more accurate. Many wrapper PS algorithms
are evolutionary based, like CHC [3], GGA [4,5] or SSMA [6], while others use
other search heuristics like RMHC [7] or RNG [8]. Most of the filter methods are
based on the NN algorithm itself, like AllKNN [9] or MENN [10]. The method
that we develop is a wrapper.

Although many researchers have focused on developing fuzzy rough feature
selection [11] algorithms, there is not much literature on fuzzy rough PS yet.
Nevertheless, fuzzy rough set theory [12] is a good tool to model noisy data.
To the best of our knowledge, the only fuzzy rough based PS method is FRIS
[13]. This method selects those instances that have a fuzzy positive region higher
than a certain threshold. This method has some problems, the main one being
that the method’s performance highly relies on a good threshold selection.

In this work, we propose a new fuzzy rough based PS method that assesses
the quality of instances using Ordered Weighted Average (OWA) fuzzy rough set
theory [14], a more robust version of fuzzy rough set theory, and automatically
selects an appropriate threshold.

The remainder of this work is structured as follows. In Section 2, we first
discuss three OWA fuzzy rough quality measures that can be used to assess the
quality of instances, and then show how these measures can be used to carry out
PS. In Section 3, we evaluate our algorithm, called OWA Fuzzy Rough Prototype
Selection (OWA-FRPS), and we conclude in Section 4.

2 Ordered Weighted Average Based Fuzzy Rough
Prototype Selection

In this section we present our new PS method. In the first subsection we define
three measures to assess the quality of instances, and in the second subsection
we demonstrate how we can use these measures to carry out PS.

2.1 Assessing the Quality of Instances Using OWA Fuzzy Rough
Sets

First we introduce some notations. We consider a decision system (X,A∪ {d}),
consisting of n instances X = {x1, . . . , xn}, m attributes A = {a1, . . . , am} and
a decision attribute d /∈ A. We denote by a(x) the value of an instance x ∈ X
for an attribute a ∈ A. We assume that each continuous attribute a ∈ A is
normalized, that is, ∀x ∈ X : a(x) ∈ [0, 1]. The categorical attributes can take
values in a finite set. The decision attribute d is categorical too and assigns a
class d(x) to each instance x ∈ X .
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We associate a fuzzy indiscernibility relation R : X × X → [0, 1] with the
decision system as follows. First, we calculate the fuzzy indiscernibility Ra for
each feature a ∈ A separately. When a is categorical, Ra(x, y) = 1 for x, y ∈ X
if a(x) = a(y) and Ra(x, y) = 0 otherwise. When a is continuous, Ra(x, y) =
1− |a(x)− a(y)| for all x, y ∈ X .

Next, we combine these separate fuzzy indiscernibility relations using a t-norm
T (the Lukasiewicz t-norm1 in this paper):

∀x, y ∈ X : R(x, y) = T (Ra(x, y))︸ ︷︷ ︸
a∈A

(1)

This fuzzy indiscernibility relation is the keystone of fuzzy rough set theory. A
fuzzy set S can be approximated by its fuzzy rough lower approximation

∀x ∈ X : (R ↓ S)(x) = min
y∈X

I(R(x, y), S(y)) (2)

with I the Lukasiewicz implicator2 in this paper, and by its upper approximation

∀x ∈ X : (R ↑ S)(x) = max
y∈X

T (R(x, y), S(y)) (3)

The fuzzy lower approximation expresses to what extent instances similar to x
also belong to S , while the upper approximation expresses to what extent there
exist instances that are similar to x and belong to S.

These concepts can be used to assess the quality of instances. First, note that
we can consider the class [x]d of an instance x ∈ X as a fuzzy set in X :

∀y ∈ X : [x]d(y) =

{
1 if d(x) = d(y)
0 else

(4)

which can be considered as the crisp set that contains all instances that have
the same class as x.

If we want to assess the quality of an instance x, we can use the lower ap-
proximation of [x]d :

(R ↓ [x]d)(x). (5)

This value expresses to what extent instances similar to x also belong to the
same class as x. Another option is to use the upper approximation of [x]d:

(R ↑ [x]d)(x) (6)

which expresses to what extent there exist instances that are similar to x and
that belong to the same class as x.

Both measures are particularly meaningful in the context of NN classification,
because they rate instances highly if they are surrounded by neighbors of the

1 The Lukasiewicz t-norm is the mapping T : [0, 1]2 → [0, 1], such that ∀a, b ∈
[0, 1], T (a, b) = max(0, a+ b− 1).

2 The Lukasiewicz implicator is the mapping I : [0, 1]2 → [0, 1], such that ∀a, b ∈
[0, 1], I(a, b) = min(1− a+ b, 1).
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same class: the lower approximation measure is high for x if there are no instances
from a different class that are near (similar) to x, while the upper approximation
measure is high if there exist neighbors from the same class.

In [14] it was noted that the traditional fuzzy rough approximations are highly
susceptible to noise, as they use the crisp min and max operators, such that sin-
gle instances can drastically influence the approximation values. A solution to
this problem is to use OWA fuzzy rough sets [14], which replace these crisp
operators by softer OWA operators [15]. Recall that, given a weight vector

W = 〈w1, . . . , wn〉 for which
n∑

i=1

wi = 1 and ∀i ∈ 1, . . . , n, wi ∈ [0, 1], the OWA

aggregation of n values s1, . . . , sn is given by:

OWAW (s1, . . . , sn) =

n∑
i=1

witi, (7)

where ti = sj if sj is the ith largest value in s1, . . . , sn.
When 〈0, . . . , 0, 1〉 is used as weight vector, the minimum operator is retrieved,

which is the operator that is used in the traditional fuzzy lower approximation.
We replace this minimum by a less strict operator that still has the characteristics
of a minimum operator, that is, we consider a weight vector with ascending
weights, such that lower values get higher weights, and higher values get lower
weights. In this work we use the weight vector Wmin = 〈w1, . . . , wn〉 where

∀i ∈ 1, . . . , n : wi =
i

n(n + 1)/2
. (8)

Completely analogously, we can define the OWAWmax operator that softens the
maximum operator. Its weights Wmax = 〈w1, . . . , wn〉 are defined as follows in
this paper:

∀i ∈ 1, . . . , n : wi =
n− i + 1

n(n + 1)/2
. (9)

Replacing the strict minimum and maximum operators in the traditional defini-
tions of fuzzy lower and upper approximation leads to the following more robust
definitions of OWA fuzzy rough sets:

∀x ∈ X : (R ↓OWA S)(x) = OWAWmin

y∈X

I(R(x, y), S(y)) (10)

∀x ∈ X : (R ↑OWA S)(x) = OWAWmax

y∈X

T (R(x, y), S(y)) (11)

We will use this OWA fuzzy rough set model, leading to the following three
quality measures:

∀x ∈ X : γL(x) = (R ↓OWA [x]d)(x), (12)

∀x ∈ X : γU (x) = (R ↑OWA [x]d)(x), (13)

and
∀x ∈ X : γLU (x) = (R ↓OWA [x]d)(x) + (R ↑OWA [x]d)(x) (14)
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2.2 OWA-FRPS

Based on the quality measures γ defined in the previous subsection, we can
formulate an algorithm to find a good subset of instances. We obviously want
to select the instances with a high γ value and remove those with a low γ value,
but now the question raises what threshold to use.

The main idea of our approach is to use the γ values of all instances in X as
threshold. We calculate the leave-one-out training accuracy of the corresponding
reduced subsets of instances and select the threshold that corresponds to the
highest accuracy. More specifically, we carry out the following steps:

1. Calculate the γ(x) values for all instances x ∈ X .
2. Remove the duplicates among all these γ values, the final set of γ values,

which will all be considered as thresholds, is G = {τ1, . . . , τp}, p ≤ n.
3. For each of the thresholds τ ∈ G, consider the following subset: Sτ = {x ∈

X |γ(x) ≥ τ}.
4. Calculate the training leave-one-out accuracy of each of these subsets using

the LOO procedure in Algorithm 1.
5. Select the subsets Sτi1

, . . . , Sτis with the highest leave-one-out accuracy.
Note that multiple subsets can correspond to the same leave-one-out ac-
curacy.

6. Return the subset Smedian(τi1 ,...,τis)
.

Algorithm 1. LOO, procedure to measure the training accuracy of a subset of
instances using a leave-one-out approach

Input: Reduced decision system (S,A ∪ {d}) (S ⊆ X).
acc ← 0
for x ∈ X do

if x ∈ S then
Find the nearest neighbor nn of x in S \ {x}

else
Find the nearest neighbor nn of x in S

end if
if d(nn) = d(x) then

acc → acc+ 1
end if

end for
Output: acc

We illustrate the algorithm with an example. Consider the decision system in
Table 1, with ten instances, two continuous features and one categorical feature.
The values γLU are given in the last column for each instance. There are no
duplicates, so the set of thresholds consists of the ten values in the last column
of Table 1. In Table 2, we show the corresponding subsets. In order to calculate
the training leave-one-out accuracy, we need the Euclidean distances between
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the instances, which are given in Table 3. In the last two columns of Table 2, the
instances that are correctly classified using the subset Sτ are given, together with
the training accuracy. The subsets corresponding to the highest LOO training
accuracy are Sτ1 , Sτ3 and Sτ9 , and subset Sτ3 = {x1, x3, x5, x9} will be returned
by the OWA-FRPS algorithm.

Table 1. Decision system with 2 continuous features (a1 and a2) and one categorical
feature (a3). The class is given in column d and the value for the γLU measure is shown
in the last column.

a1 a2 a3 d γLU

x1 0.2 0.4 A 0 1.02
x2 0.3 0.3 A 1 1.016
x3 1 0 B 0 1.16
x4 0.7 0.9 B 1 1.07
x5 0.4 0.3 A 0 1.05
x6 0.3 0.6 A 1 1.01
x7 0.4 1 B 0 1.06
x8 0.3 0.2 B 1 1.15
x9 0.7 0.5 A 0 1.17
x10 0 0.1 A 1 1.14

Table 2. Thresholds τ considered in the OWA-FRPS algorithm and corresponding
subsets of instances Sτ

Threshold τ Corresponding subset Sτ Correctly classified instances LOO training accuracy

1.02 {x1, x3, x4, x5, x7, x8, x9, x10} {x1, x5, x6, x9, x10} 0.5
1.016 {x1, x2, x3, x4, x5, x7, x8, x9, x10} {x5} 0.1
1.16 {x3, x9} {x1, x3, x5, x7, x9} 0.5
1.07 {x3, x4, x8, x9, x10} {x2, x4, x5} 0.3
1.05 {x3, x4, x5, x7, x8, x9, x10} {x4, x5, x9} 0.3
1.01 {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} {x5, x9} 0.2
1.06 {x3, x4, x7, x8, x9, x10} {x2, x5} 0.2
1.15 {x3, x9, x10} {x3, x5, x7} 0.3
1.17 {x9} {x1, x3, x5, x7, x9} 0.5
1.14 {x3, x9, x10} {x3, x5, x7} 0.3

Table 3. Euclidean distance between the instances

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 0.000 0.082 0.775 0.707 0.129 0.129 0.683 0.592 0.294 0.208
x2 0.082 0.000 0.726 0.712 0.058 0.173 0.707 0.580 0.258 0.208
x3 0.775 0.726 0.000 0.548 0.695 0.785 0.673 0.420 0.668 0.819
x4 0.707 0.712 0.548 0.000 0.695 0.645 0.183 0.465 0.622 0.843
x5 0.129 0.058 0.695 0.695 0.000 0.183 0.705 0.583 0.208 0.258
x6 0.129 0.173 0.785 0.645 0.183 0.000 0.624 0.622 0.238 0.337
x7 0.683 0.707 0.673 0.183 0.705 0.624 0.000 0.465 0.668 0.810
x8 0.592 0.580 0.420 0.465 0.583 0.622 0.465 0.000 0.645 0.606
x9 0.294 0.258 0.668 0.622 0.208 0.238 0.668 0.645 0.000 0.465
x10 0.208 0.208 0.819 0.843 0.258 0.337 0.810 0.606 0.465 0.000
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3 Experimental Evaluation

In this section we carry out an experimental evaluation to demonstrate the
benefits of OWA-FRPS over other PS methods.

3.1 Experimental Set-Up

We use 28 datasets from the KEEL dataset repository3. The characteristics of
these datasets are listed in Table 4. As our main focus is to improve the accuracy
of NN, we compare OWA-FRPS with 12 PS algorithms that are most accurate
according to the study performed in [2]. Additionally, we also compare OWA-
FRPS to FRIS [13] with parameter value α = 10. In Table 5, we give an overview
of the algorithms we consider with references to the literature. Note that we use
three versions of the new OWA-FRPS algorithm, depending on which measure
is used to rank the instances.

For each dataset and PS method, we carry out the following 10 fold cross
validation procedure. For each fold, we apply the PS method to the remain-
ing folds (the train data) and then let NN find the nearest neighbors of the
test instances in this reduced training set. We report the average classification
accuracy, reduction and running time over the 10 folds.

3.2 Results

In Table 6, we show the average accuracy, reduction (the percentage of removed
instances) and running time (in seconds) over all datasets. First, we note that
on average, the OWA-FRPS-LU algorithm is more accurate than the other ver-
sions, which shows that both the lower and upper approximation contribute to
the quality assessment of the instances. All OWA-FRPS algorithms outperform
the state-of-the-art PS algorithms. From now on, we continue the analysis with
OWA-FRPS-LU, to which we simply refer to as OWA-FRPS. To test if the im-
provement is significant, we carry out the statistical Friedman test and Holm
post hoc procedure [21]. The Friedman ranks and the adjusted p-values of the
Holm post hoc procedure are listed in Table 7. The OWA-FRPS algorithm has
the best (i.e. lowest) rank. The low adjusted p-values confirm that OWA-FRPS
is significantly more accurate than the state-of-the-art PS algorithms.

The reduction rate of the OWA-FRPS algorithms is about 30 percent, which
is not as high as some of the evolutionary PS methods, but as the focus of our
method is to improve the accuracy rather than reducing the storage needs, this
result is of less importance.

The running time is of more interest to us. OWA-FRPS is slower than 6 other
methods, but these methods have considerably lower accuracy rates. The running
time of OWA-FRPS is shorter than the running times of the most accurate PS
methods, so although OWA-FRPS is a wrapper and obtains excellent accuracy
results, it does not come with the extra computational cost that wrapper PS
methods typically have.

3 www.keel.es

www.keel.es
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Table 4. Datasets used in the experimental evaluation with their number of instances
(#Inst.), number of features (#Feat.) and number of classes (#Cl.)

Name #Inst. #Feat. #Cl. Name #Inst. #Feat. #Cl.

appendicitis 106 7 2 housevotes 232 16 2
australian 690 14 2 iris 150 4 3
automobile 150 25 6 led7digit 500 7 10
balance 625 4 3 lymphography 148 18 4
bands 365 19 2 mammographic 830 5 2
breast 277 9 2 new thyroid 215 5 3
bupa 345 6 2 pima 768 8 2
crx 653 15 2 saheart 462 9 2
dermatology 358 34 6 sonar 208 60 2
ecoli 336 7 8 vehicle 846 18 4
glass 214 9 7 vowel 990 13 11
haberman 306 3 2 wine 178 13 3
hayesroth 160 4 3 wisconsin 683 9 2
heart 270 13 2 zoo 101 16 7

Table 5. Overview of the algorithms evaluated in the experimental study

Name Description Reference

AllKNN NN based filter method [9]
CHC Evolutionary based wrapper method [3]
GGA Evolutionary based wrapper method [4,5]
HMNEI Hit and miss network based filter method [16]
MENN NN based filter method [10]
ModelCS Tree-based filter method [17]
MSS Spatial-based filter method [18]
POP Spatial-based filter method [19]
RMHC Random mutation hill climbing wrapper method [7]
RNG Graph based wrapper method [8]
RNN NN based filter method [20]
SSMA Evolutionary wrapper method [6]
FRIS Fuzzy rough based filter method [13]
OWA-FRPS-LU New OWA-FRPS method based on the quality

measure that takes into account both the lower
and upper approximation

-

OWA-FRPS-L New OWA-FRPS method based on the quality
measure that takes into account the lower approx-
imation

-

OWA-FRPS-U New OWA-FRPS method based on the quality
measure that takes into account the upper approx-
imation

-
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Table 6. Average results of the PS methods averaged over all datasets, ordered ac-
cording to performance. Reduction is the ratio of removed instances, running time is
given in seconds.

Accuracy Reduction Running Time

OWA-FRPS-LU 0.8087 CHC 0.9681 POP 0.0083
OWA-FRPS-L 0.8053 GGA 0.9391 MSS 0.0297
OWA-FRPS-U 0.7948 SSMA 0.9356 ModelCS 0.0306
RNG 0.7901 RNN 0.9111 MENN 0.0474
CHC 0.7893 RMHC 0.9015 FRIS 0.0576
ModelCS 0.7892 HMNEI 0.5383 AllKNN 0.0580
GGA 0.7863 MENN 0.4723 HMNEI 0.0714
AllKNN 0.7837 MSS 0.4632 OWA-FRPS-U 0.1834
SSMA 0.7828 OWA-FRPS-U 0.3462 OWA-FRPS-L 0.1880
FRIS 0.7808 AllKNN 0.3377 OWA-FRPS-LU 0.2031
RMHC 0.7799 OWA-FRPS-L 0.3247 RNG 2.6473
HMNEI 0.7785 OWA-FRPS-LU 0.2766 RNN 6.3661
POP 0.7741 RNG 0.2323 SSMA 14.9963
MENN 0.7705 ModelCS 0.1152 CHC 16.3427
MSS 0.7674 FRIS 0.0799 RMHC 18.2093
RNN 0.7614 POP 0.0484 GGA 42.9252

Table 7. Values of the statistics of the Friedman test and Holm post hoc procedure
that compares OWA-FRPS-LU to the state-of the-art algorithms. The second column
shows the Friedman ranks, the third column the Holm adjusted p-values.

Method Friedman Rank Adj. p-value

RNN 10 0.003846
MSS 10 0.004167
POP 9 0.004545
RMHC 8 0.005
FRIS 8 0.005556
MENN 7.5 0.00625
HMNEI 7 0.007143
SSMA 7 0.008333
AllKNN 7 0.01
GGA 7 0.0125
ModelCS 7 0.016667
CHC 6.5 0.025
RNG 6 0.05
OWA-FRPS-LU 4 -

4 Conclusion and Future Work

In this paper, we proposed a new PS method based on the OWA fuzzy rough
set model, called OWA-FRPS. In order to select a subset of instances from
the training set that improves the classification of the NN classifier, OWA-
FRPS ranks the instances according to a OWA fuzzy rough measure, and then
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automatically selects a suitable threshold to select the final subset of instances.
An experimental evaluation on several datasets shows that our method achieves
accuracy rates that are better than those of state-of-the-art PS methods, and
moreover, OWA-FRPS is considerably faster.

As future directions, we would like to expand the use of OWA-FRPS for other
classifiers like SVM and to improve OWA-FRPS for imbalanced datasets, that is,
datasets for which one class is significantly more present than the other [22,23].
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Abstract. This paper presents an intuitionistic fuzzy (IF) rough relational database 
model. The IF rough relational database model extends the IF and rough relational 
database models along with an IF rough relational algebra for querying. The 
usefulness of this model was illustrated with the Diabetic patients of Tripura where 
the various types of uncertainties are presented. For this study, first we design our 
database with an IF rough E-R diagram, created our database schema using an IF 
rough data definition and manipulation language (DDL and DML). Using IF Rough 
SQL-like languages, we then illustrate how the IF rough relational database may be 
queried and how the results are better than those of conventional databases.  

1 Introduction 

The explosive growth in databases has generated an urgent need for new techniques 
and tools that can intelligently transform the processed data into useful information 
and knowledge. There has been lot of works on diabetic databases. Breault [7] used 
rough sets on Diabetic Databases to see the accuracy in predicting diabetic status. The 
diabetic databases contain mostly imprecise data. Significant work has been done in 
incorporating uncertainty management in databases using theories like probability, 
rough sets, fuzzy sets, and IF sets etc. We see that Wong [12] model can process only 
incomplete information, Bagai and Suderraman [2] pointed out that their model can 
process incomplete and inconsistent information.  Beaubouef and Petry [3,4] model 
can process uncertainty. In this paper we apply “IF rough relational database 
model”[9], for handling impreciseness and uncertain data for diabetic databases. We 
utilize the notions of indiscernibility from rough set theory coupled with the idea of 
membership and non-membership values from IF set theory. 

2 Preliminaries 

2.1 IF Set [1] 

An IF set A in a nonempty set X is A = {( x, μA(x), νA(x)) : x ∈ X }, where μA(x) and 
νA(x) are functions from X to I = [0, 1] such that 0 ≤ μA(x) + νA(x) ≤ 1, ∀ x ∈ X. The 
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numbers μA(x) and νA(x) represent the degree of membership and degree of non-
membership for each element x ∈ X to A respectively. The quantity πA(x) = 1 – 
(μA(x) + νA(x)) is called the degree of indeterminacy or hesitation of the element x ∈ 
X to the IF set A. 

2.2 Rough Set [11] 

Let R be an indiscernibility relation on universal set U. The pair A = (U, R) is called a 
Pawlak approximation space. Then for any non-empty subset X of U, the sets 

}][:{ XxUxXR R ⊆∈= and }][:{ φ≠∩∈= XxUxXR R
 are respectively, called 

the lower and the upper approximations of X in A. The set approximation XR , 

)( XRU−  and )( XRXR −  are described as R-positive region, R-negative region and 

R-boundary region respectively, where [x]R denotes the equivalence class of the 
relation R containing the element x. X  is said to be definable set, if )()( XRXR = . 

Otherwise X is said to be rough set. 

2.3 IF Rough Set [9] 

Let U be a universe and X, a rough set in U. An IF rough set A in U is characterized 
by a membership function ]1,0[: →UAμ  and a non-membership function 

]1,0[: →UAν  such that ( ) ( ) 0,1 == XRXR AA νμ  or ( ) ( ) ]0,1[],[ =xx AA νμ  if )( XRx∈
and ( ) ,1,0)( =−=− XRUXRU AA νμ  or ( ) ( ) ]1,0[],[ =xx AA νμ if XRUx −∈ , 

( ) ( ) .10 ≤−+−≤ XRXRXRXR AA νμ  

2.4 IF Rough Relational Database Model [9] 

In this model, a tuple ti takes the form (di1, di2, . . , dim, di[μ ,ν]) where dij is a domain 
value of a particular domain set Dj and di[μ ,ν]∈[0, 1], the domain for IF membership 
and non-membership values denoted as di[μ ,ν] = [diµ,diν]. In the relational database, dij

∈Dj. In the IF rough relational database except for the membership and non-
membership values dij ⊆ Dj where dij ≠ φ.  

Definition 1. Let P(Di) be the power set of Di. An IF rough relation R is a subset of the 
product set P(D1) × P(D2) × . . . P (Dm) × D[μ,ν], where D[μ,ν] is the domain for mem- 
bership and non-membership value of the closed interval [0,1] and P(Di) = P(Di) - φ. 
Example  For a specific relation, R, membership and non-membership are determined 
semantically. Given that D1 is the set of names of patients, D2 is the set ‘description’ 
attributes of Blood pressure, (Anil, Very Severe, [1,0]) ;  (Gopal, {Mild, Severe},  [0.6, 
0.2]) are elements of the relation R (Patient Name, Blood pressure, [μ, ν]). 
Definition 2. Let ti  = (di1, di2, ...,dim, di[µ,ν]) be an IF rough tuple. An interpretation of 
ti is a tuple α = (a1, a2, ..., am,n; a[µ,ν]) where aj ∈ dij for each domain Dj. 

Definition 3. Two tuples ti and tj are redundant if and only if they possess an identical 
interpretation.  
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Definition 4. Two sub-tuples X = (dx1, dx2, ..., dxm, dx[µ,v]) and Y = (dy1, dy2, ..., dym, 

dy[µ,v]) are roughly-redundant, R if for some [p]  ⊆  [dxj] and [q] ⊆  [dyj], [p] = [q] for 
all j = 1,2, ..., m.  

2.5 Set Operations and Relational Operations [9] 

The set operations and relational operations on subsets of tuples are shown below. 

IF Rough Difference: The IF rough difference between T1 and T2 is an IF rough 
relation T = T1- T2 

}.]),[,,..,(]),[,,..,({}

]),[,,..,({]),[,,..,(}]),[,,..,(:]),[,,..,({
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IF Rough Union: The IF rough union between T1 and T2 is an IF rough relation  
T= T1∪T2, where )],(),([)(}:{

2121 ttMAXtandTRTRttTR TRTRTR μμμ =∪∈=  
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IF Rough Intersection: The IF rough intersection between T1 and T2 is an IF rough 
relation  T= T1∩T2, where )],(),([)(}:{

2121 ttMINtandTRTRttTR TRTRTR μμμ =∩∈=  
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3 Application: The Diabetic Patient Database 

3.1 Extraction of Information 

Diabetes Mellitus has become the most common chronic diseases among people of 
Tripura. The information is recorded by investigators from G.B. Pant hospital, I.G.M. 
hospital and private medical practitioners of Agartala. A proforma was filled up with 
the required information after a verbal interview of the patients and from the 
documents of the patient who were above 35 years of age. It is possible that some of 
the information may be uncertain or unavailable. Perhaps spoken words may be 



194 C. Gangwal, R.N. Bhaumik, and S. Kumar 

unclear. Sometimes it is possible to make a ‘‘good guess’’ at the uncertain part, at the 
same time acknowledging the fact that uncertainty is present.  

Another problem arises when there are more than one investigators recording data 
about patients. If there are inconsistencies in categorizing data, we may not know 
which observation, if either, is more correct than the other. Through, the IF rough 
relational database model, we can incorporate all of these types of uncertainty, rather 
than discarding the data as invalid. 

A database system was designed based on a case study of diabetic patients via 
Entity Relationship Diagram (ERD), relational Model and Implementation in SQL 
server. The ERD is outlined below. 

3.2 Database Design 

Entity Relationship (ER) Diagram 
First, we design a database by using some types of semantic model and create an IF 
rough ER diagram. There are five tables namely Patients, Personal and family 
history(PFH), Demographic, General physical examination(GPE) and Laboratory 
investigation(LI) with different attributes. Attributes that allow equivalent values are 
denoted by * . The ER diagram of our database is shown in Fig.1.  

IF Rough Data Definition Language 
We introduce an IF rough data definition language (IFRDDL) to define the IF rough 
relations and indiscernibility relation. First, we create a base table by IFRDDL 
command. A simple table containing three items of information about patients is 
formed [Table 1]. The table is named “Patients” and stores information about each 
 

 
Fig. 1. An IF rough E-R diagram for the Diabetic Patients Database 
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patient’s ID number, first name and surname. It also contains an attributes called 
[MU, NMU] which draws values from the range [0, 1]. Additionally, we specify 
whether or not we can allow indiscernibility values for each attribute. This is defined 
by including ‘‘IND’’ along with the attribute line of the table definition. 

IFRCREATE TABLE PATIENTS ( 
 PID    DECIMAL(3), 
 FIRST NAME   CHAR(25), 
 SURNAME   CHAR(25) IND, 
 MU, NMU   CHAR(10), 
 PRIMARY KEY (PID)); 

PATIENTS (Table 1): The patient table has attributes PID, First Name, Surname and 
MU, NMU. The membership and non-membership value is to manage the attribute 
‘Surname’. 
Similarly, PERSONAL AND FAMILY HISTORY[Table-3], DEMOGRAPHIC 
[Table-4], GENERAL PHYSICAL EXAMINATION[Table-5], LABORATORY 
INVESTIGATION[Table-6] and INDISCERNIBILITY[Table-2] tables are created. 

Now, the database schema has been defined where actual data is stored. Data values 
for all attributes including the membership and non-membership value are inserted 
into the specified relation. If a value for [MU,NMU] is not included, it is 
automatically assigned a default value from [1,0]. This saves considerable data entry 
time. 

The IF rough counterpart to SQL’s INSERT is IFRINSERT: 

IFRINSERT 
INTO DEMOGRAPHIC   
VALUES (2, 44, M, Govt.Service,{Low, Normal},{Shamali Bagar, 
Abhoynagar}, [0.4, 0.5] ); 

The IFRINSERT command is used to enter tuples in the INDISCERNIBILITY relation. 
The IFRINDISCERNIBILITY relation is a special one, used only for the grouping of 
similar attribute values into equivalence classes. Therefore, we introduce some new 
commands that will facilitate the creation of classes of equivalent values. All membership 
and non-membership values for tuples in this relation are automatically set to [1,0]. The 
indiscernibility identifier PID serves to specify values that are indiscernible. The actual 
value of PID is irrelevant, as long as all tuples belonging to a given class have identical 
values for the attribute PID. Therefore, it is needed to specify the values grouped into a 
class, and the system can set up the tuples in the INDISCERNIBILITY relation.  

Special Commands 
1 IFRCLASS To create a new equivalence class 
2 IFRREMOVE CLASS  To remove a value from a class. 
3 IFRDELETE CLASS  To delete an entire class including all its member. 

4 IFR ADD CLASS  To add a value to a class, rather than create a new class. 

5 IFR DELETE    To delete tuples. 

6 IFR UPDATE To update tuples 
7 IFR DROP  To drop Tables 
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4 Implementation in SQL Server 

SQL server is software where we can store huge amount of information via a database. 
In this server we can execute the queries conveniently by SQL query language. 

SQL queries for the IF Rough Relational Database 

Based on our data definition language for the IF rough relational database on SQL, we 
present some SQL like queries to our diabetic database. 
Question1: List all  BP categories  from General Physical Examination. 
IFR Query: SELECT (GPE.BP) 

    FROM GPE  
Output1: 

 
 

Question 2: Find names and surname of all female patients who are house wife and 
taken non-veg. 
IFR Query: SELECT ( Demographic.PID),(Patients.Name),(Patients.Surname), 
(Demographic.sex),(Demographic.Occupation),(PFH.diet) 
FROM  PFH, Demographic, Patients 
WHERE ((demographic.sex= 'F')and (Demographic.Occupation ='House wife') and 
(PFH.Diet ='Non-veg')) and (PFH.PID =Demographic.PID) and (PFH.PID = 
Patients.PID)); 

Output 2: 

 
 

This IF rough relational database model can help the medical experts for the 
queries of impreciseness on diet and surname as shown above.  

5 Conclusion 

This paper concerns the modeling of imprecision and vagueness in diabetic databases 
of Tripura through the IF rough relational database model which is easy to understand 
and to use. The IF rough E-R diagram is also shown here.  It is more efficient model 
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of the uncertainty through the use of indiscernibility and membership and non-
membership values. Finally, this IF rough relational model can serve the better 
purpose of medical experts. 
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Appendices 

Table 1. Patients Table 2. Indiscernibility 

PID Name Surname MU NMU 

1 Saroj  Ambuly 1 0 

2 Bishnu 
Pada  

Saha 1 0 

3 Rekho  Bhawmik 1 0 

…     

199 Narayan Debnath 1 0 

200 Gori {Chakrbroty, 
Bhattacharjee} 

0.5 0.5 

 

IndClass Description 
1 Low 
1 Below normal 

1 Slightly below 
normal 

2 Slightly above 
normal 

2 Mild 
3 High 

3 Moderate 

4 Very high  
4 Severe 
4 Very severe 

Table 3. Personal and Family History 
 

PID Smoking Alcohol Duration Diet Exercise MU NMU 
1 Yes No Small Non-veg Yes 1 0 
2 No No Small Non-veg Yes 1 0 
3 No No Small Non-veg No 1 0 
…        
199 No No Small Non-veg Yes 1 0 
200 No No Small Non-veg Yes 1 0 

Table 4. Demographic 

PID Age Sex Occupation Income Address MU NMU 
1 58 M Retired High Palace 

compound,Agar
tala 

1 0 

2 44 M Govt.service {Low,No
rmal} 

{ShamaliBagar,
Aboynagar} 

0.4 0.5 

3 43 F Housewife High Krishnanagar 1 0 
…        
199 52 M Govt.service High {Gourabasti,Jog

endranagar} 
0.6 0.3 

200 36 F Housewife Normal Krishnanagar 1 0 

Table 5. General Physical Examination 

PID Built BMI BP Anaemia Oedema MU NMU 
1 Average Normal High normal No No 1 0 
2 Average Normal Normal Yes Yes 1 0 
3 Average Obesity {Normal,high 

normal} 
No No 0.7 0.2 

…..        
199 Average Normal High normal No No 1 0 
200 Average Normal Normal No No 1 0 
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Table 6. Laboratory Investigation 

PID FBS Cholesterol LDL HDL Hb% HbA1c MU NMU 
1 High Normal 85 42 Normal Low 1 0 
2 High Normal 101 50 Normal Low 1 0 

3 High Normal 77 41 Low High 1 0 
…         
199 Normal Normal 61 30 Normal High 1 0 
200 High Medium 122 52 Normal Low 1 0 

Table 7. Summary of  Attributes 

Attributes Description  Attributes   Description 
History of smoking Yes 

No 
Anaemia  Yes 

 No 
History of alcohol Yes 

No 
Oedema Yes 

No 
Duration of 
Diabetics (Years) 

Small :<5 
Large: <10 
Very large: >10 

HbA1c(%)   7  =   Low 
7-8 = Normal 
>8 =  High 

Diet Veg  
Non-Veg 

Hemoglobin (Hb 
%) 

<12: Low 
>12 :Normal 

Exercise Yes 
No 

Built Average 
Fatty 
Very fatty 
Lean 

Sex  M= male 
F = female 

Caste general 
Sched. Caste 
Schedule tribes 
others 

Body Mass Index= 
Weight in kilograms 
/( Height in Meters x 
Height in Meters )  

Under weight =  <15 
Normal=  15-23 
Over weight=  23-25 
Obesity=   >25 

Education Illiterate  
Primary 
Secondary 
Graduate 
Master degree 
Technical 

Blood Pressure(in 
mm of Hg)   
Diastolic-Systolic 

Diastolic  /  Systolic  
Very severe=  >110 / >185       
Severe= 100-110 /165-185 
Mild=  90-99 / 140-164 
High normal= 80-89/125-139 
Normal=  70-79 /105-124 
Low normal= 60-69/ 90-104 
Low=  50-59 / 70-89 
Very low = 40-49 / 55-69 

Occupation Govt.service 
Private serv. 
Business 
Retired 
Housewife 

Lipid Profile 
Total 
cholesterol,[LDL-
C, HDL-C and 
TGs] 

Normal= <120/<80               
Medium= 120-129/80-85       
High=  130-159/86-99       
Very high =  ≥160/≥100         

Income - Per capita      
            (Rs.) 

Low= 1000-
2000 
Normal= 2000-
4000  
High=  >4000

Fasting Blood 
Sugar (mg/dl) 

Normal =  <100       
High =   101-150        
Very High  =   >150 
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Abstract. There are many representations of Petri nets. One of the
most known and applicable representations is the matrix one. Such repre-
sentation enables an easy implementation of different kinds of concurrent
algorithms for Petri nets. The aim of this paper is to present a matrix
representation of parameterised fuzzy Petri nets. Recently, this net model
has been proposed as a new class of fuzzy Petri nets. It extends, in a nat-
ural way, the fuzzy Petri nets by introducing two parameterised families
of sums and products.

Keywords: matrix representation, parameterised fuzzy Petri nets,
knowledge representation, approximate reasoning, decision support
systems.

1 Introduction

Petri nets are widely used in both theoretical analysis and practical modelling
of concurrent systems. Recently, Petri nets have been gaining a growing in-
terest among researchers engaged in Artificial Intelligence field due to its ad-
equacy for knowledge representation and the approximate reasoning process
[1],[3],[4],[10],[11],[12],[14],[15]. Several extensions have been proposed for Petri
nets in the last four decades improving different aspects: hierarchical nets, high
level nets, temporal nets [2],[5],[6],[9]. An additional improvement comes with
the investigation of the connection between logic and Petri nets. Logical propo-
sitions can be associated with Petri nets allowing for logical reasonings about the
modelled system and its behaviour. In all these Petri net models, though, only
well-known pieces of information are taken into account. The collected book [1]
focuses on the current state-of-the-art in the use of fuzziness in Petri nets.

Petri nets can be represented in many ways. One of the most known and
applicable representations of Petri nets is the matrix one. The development of the
matrix Petri net theory provides a useful tool for dealing with many problems in
the analysis of Petri nets. Matrix representation of classical Petri nets has been
presented earlier in the literature, e.g. [2],[8],[9]. The matrix approach to the
representation and analysis of extended fuzzy Petri nets presented in [3] seems
promising but also has some drawbacks concerning, in particular, the matrix
operations which are very complicated and unnatural.

The aim of this paper is to present the matrix representation of parame-
terised fuzzy Petri nets (PFPNs) introduced in the paper [10]. The application

D. Ciucci et al. (Eds.): RSFDGrC 2013, LNAI 8170, pp. 200–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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of PFPNs in knowledge representation and fuzzy reasoning process has been
presented in [11]. PFPNs extend the existing fuzzy Petri nets [1] by introduc-
ing two parameterised families of sums and products, which are supposed to
function as substitute for the min and max operators appearing in the classical
fuzzy Petri nets. PFPNs are more flexible than the traditional ones, as in the
former class the user has the chance to define the parameterised input/output
operators. The choice of suitable operators for a given fuzzy reasoning process
and the speed of reasoning process are very important, especially in real-time
decision support systems.

The matrix representation is one of the most convenient representations of
Petri nets in the domain of modern computer programming. Moreover, there
exist the automated computation systems, e.g. Matlab, Mathematica, Maple,
which make it possible to solve many computing problems, especially those with
matrix and vector formulations. Our approach enables us to carry out a fuzzy
reasoning process using, for example, the computation systems mentioned above
(cf. [3]). However, this issue is not considered in the paper. Here, we present
only formal background for the matrix representation of PFPNs. Using the
matrix representation, we can view any PFPN as a collection of matrices and
vectors whose components are real numbers, strings or triples of real functions.
However, its behaviour can be characterised by means of simple matrix equations
or inequalities.

There are several possibilities for increasing the usefulness of PFPNs. They
concern different ways of a net operating. In this paper we assume that a PFPN
can operate in two main modes: single firings or steps. Steps are a generalisation
of net work in the mode of single firings. The net work in the mode of steps can
be treated as a simultaneous firing of a selected set of enabled transitions or a
single firing of them in any order.

The proposed matrix representation of PFPNs allows to implement parallel
firing of independent transitions in one reasoning step easily by using natural
operations on matrices. Moreover, it is significantly simpler than the matrix
representation provided for the extended fuzzy Petri nets in [3]. The matrix net
representation discussed here can also be applied immediately to the classical
fuzzy Petri nets as well as to the extended fuzzy Petri nets in order to obtain
both more convenient representation of these nets and quite natural operations
on matrices.

The paper is organised as follows. In Sect. 2 we give a brief introduction to
PFPNs. Sect. 3 describes the matrix representation of PFPNs. It is the main
contribution of the paper. In Sect. 4 we provide some conclusions related to our
approach and further investigations.

2 Preliminaries

Basic operations in the classical fuzzy set theory such as the intersection and
the union, are defined by using the minimum and maximum operators. However,
some other definitions of these operations are often employed, too. In particular,
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for the intersection and the union parameterised families of sums and products
are used. As the parameterised ones are also used for defining PFPNs, we give
the example of parameterised family of sum S(a, b, v) and product T (a, b, v) used
in this paper, where: S(a, b, v) = a+b−(2−v)∗a∗b

1−(1−v)∗a∗b , T (a, b, v) = a∗b
v+(1−v)∗(a+b−a∗b) ,

and v ∈ (0,∞).
For more details about parameterised families of sums and products one shall

refer to [7].
A parameterised fuzzy Petri net (PFP -net) is a tuple N = (P, T, S, I, O, α, β,

γ,Op, δ,M0) where: P = {p1, . . . , pn} is a finite set of places ; T = {t1, . . . , tm}
is a finite set of transitions ; S = {s1, . . . , sn} is a finite set of statements ; I :
T → 2P is the input function; O : T → 2P is the output function; α : P → S
is the statement binding function; β : T → [0, 1] is the truth degree function;
γ : T → [0, 1] is the threshold function; Op is a finite set of parameterised
operators ; the sets P , T , S, Op are pairwise disjoint and card(P ) = card(S);
δ : T → Op × Op × Op is the operator binding function; M0 : P → [0, 1] is the
initial marking.

We say that the place p is an input place of a transition t if p ∈ I(t). Analo-
gously, we say that the place p′ is an output place of a transition t if p′ ∈ O(t).

Let N be a PFP -net. A marking of N is a function M : P → [0, 1].
Example 1. Consider a PFP -net such that: P = {p1, . . . , p5}; T = {t1, t2}; S =
{s1, . . . , s5}; I(t1) = {p1, p2}, I(t2) = {p2, p3}; O(t1) = {p4}, O(t2) = {p5};
α(pi) = si for i = 1, . . . , 5; β(t1) = 0.7, β(t2) = 0.8; γ(t1) = 0.4, γ(t2) =
0.3; Op = {S(.), T (.)}; δ(t1) = (S(.), T (.), S(.)), δ(t2) = (T (.), T (.), S(.)); and
M0 = (0.6, 0.4, 0.7, 0, 0). If we take parameterised families of sums and products
mentioned above and a parameter value v = 1, then S(a, b, 1) = sP (a, b) =
a+b−a∗b (the probabilistic sum) and T (a, b, 1) = tP (a, b) = a∗b (the algebraic
product).

For more detailed information about PFPNs the reader is referred to [10].

3 Matrix Representation

Using the matrix representation, we can view a structure of any PFPN as a
collection of matrices and vectors whose components are real numbers, strings
or triples of real functions. However, its dynamics can be characterised by means
of simple matrix equations or inequalities. Before introducing the description we
recall some concepts and auxiliary notation.

3.1 Basic Concepts and Notation

For any vector function g, g′ : X → %, where X is a nonempty set, and % is the
set of all real numbers, we denote in a classical way: g + g′ (the sum), g− g′ (the
difference), g = g′ (the equality relation), and g ≤ g′ (the inequality relation).
By Y T we denote the transposed matrix of a matrix Y .

Let N = (P, T, S, I, O, α, β, γ,Op, δ,M0) be a PFP -net, t ∈ T , I(t) = {pi1, . . . ,
pik} be a set of input places of a transition t, β(t), γ(t) ∈ [0, 1], M be a mark-
ing of N , and v be a parameter value for a parameterised family of sums and
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products. Moreover, let Inv be an input parameterised operator belonging to
one of the classes: parameterised sums or products, and Outv1 , Outv2 be output
parameterised operators belonging to the class of parameterised products and
the class of parameterised sums, respectively. These three operators correspond
to a transition t.

In order to define enabling and firing rules for a PFP -net by means of ma-
trices, at first we introduce four auxiliary one column n-vector functions tγ , t−,
t0, t+ (vectors with n-coordinates) as follows:

tγ : P → [0, 1] for p ∈ P , and tγ(p) =
{
γ(t) for p ∈ I(t),
0 otherwise.

The function tγ attaches a threshold value, i.e., the number γ(t), to each input
place of a transition t. It is called a selecting transition function.

t− : P → [0, 1] for p ∈ P , and t−(p) =
{
Inv(M(pi1), . . . ,M(pik)) for p ∈ I(t),
0 otherwise.

The function t− describes aggregating tokens from the input places of a tran-
sition t. It is called an aggregating token function.

t0 : P → [0, 1] for p ∈ P , and t0(p) =
{
M(p) for p ∈ I(t),
0 otherwise.

The function t0 describes memorizing tokens residing in the input places of a
transition t by a marking M . It is called a memorizing token function.

t+ : P → [0, 1] for p ∈ P , and

t+(p) =
{
Outv1(Inv(M(pi1), . . . ,M(pik), β(t)) if p ∈ O(t),
0 otherwise.

The function t+ describes transferring tokens to the output places of a transi-
tion t after its firing by a marking M . It is called a transferring token function.

It is worth to observe that values of the vector function tγ do not depend on
actual marking M of a net N , whereas the values of three remaining functions
do.

3.2 Structure

The alternative for the definition of PFPNs as a structure N = (P, T, S,
I, O, α, β, γ,Op, δ,M0) is defining a tuple of matrices (Nin, Nout, SA, SB, SC , SD,
M0) representing input function I, output function O, statement binding func-
tion α, truth degree function β, threshold function γ, operator binding func-
tion δ and initial marking M0, respectively. Each of the two first matrices,
i.e., Nin, Nout, consists of n rows (each row corresponds to one place p ∈ P ,
n = card(P )) and m columns (each column corresponds to one transition t ∈ T ,
m = card(T )). The elements of these matrices are defined as follows: an input in-
cidence matrix Nin(p, t) = t−(p), an output incidence matrix Nout(p, t) = t+(p).
The remaining five matrices are one-row vectors. They are defined as follows:
one row n-vector SA of statements such that SA(p) = α(p) for p ∈ P ; one row
m-vector SB of truth degree values such that SB(t) = β(t) for t ∈ T ; one row
m-vector SC of threshold values such that SC(t) = γ(t) for t ∈ T ; one row m-
vector SD of triples of parameterised operators such that SD(t) = δ(t) for t ∈ T ;
one row n-vector M0 of initial marking.
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We assume that sets P and T have been ordered in the following way: P =
{p1, . . . , pn} and T = {t1, . . . , tm}.

For PFPNs one can determine all components of a structure N = (P, T, S, I,
O, α, β, γ,Op, δ,M0) in a one-to-one way on the basis of matrices Nin, Nout, SA,
SB, SC , SD,M0. This means that both representations of PFPNs (set-
theoretical and matrix) are equivalent in this sense.

3.3 Dynamics

There exist several possibilities for increasing the usefulness of Petri nets. They
concern different ways of a net operating. A Petri net can operate in two main
modes: single firings or steps. Now, we define these modes for the PFPNs using
matrix notation.

Single Firings. Let Op be the set of parameterised operators defined as in
the definition of the PFP -net, and Inv, Outv1 , Outv2 ∈ Op be the parameterised
input/output operators with a given parameter value v. Moreover, let X =
(x1, . . . , xn) and Y = (y1, . . . , yn) be the n-dimensional vectors, where xi, yi ∈
[0, 1]. By opp(X,Y ) we denote the n-dimensional vector Z = (z1, . . . , zn) such
that zi = opp(xi, yi), where p ∈ {Inv, Outv1 , Outv2}, i = 1, . . . , n. In other words,
the components of the vector Z are the result of parameterised input/output
operations for the corresponding components of the vectors X and Y .

Let N = (P, T, S, I, O, α, β, γ,Op, δ,M0) be a PFP -net, t ∈ T , and tγ , t−, t0,
t+ be vectors defined in subsection 3.1, corresponding to a transition t. Moreover,
let M be a marking of N with a parameter value v.

A transition t ∈ T is enabled for marking M and a parameter value v, if the
value of parameterised input operator Inv for the transition t is greater than, or
equal to, the value of threshold function γ corresponding to t, i.e., t− ≥ tγ .
Mode 1. If M with a parameter value v is a marking of N enabling a transition
t and M

′
is the marking derived from M by firing t, then

M
′

=

{
opOutv2

(MT − t0, t+) if t fires by M,
undefined otherwise.

In this mode, a procedure for computing the marking M ′ is as follows. If the
transition t is enabled by M with a parameter value v, then at first the difference
of the two vectors MT and t0 is computed and then the output operation opOutv2

for the value of the difference and the vector t+ is determined (the first condition
from M

′
definition). In other case, i.e., if the transition t is not enabled for M

with a parameter value v, a new marking M
′

is not determined (the second
condition from M

′
definition).

Mode 2. If M with a parameter value v is a marking of N enabling a transition
t and M

′
is the marking derived from M by firing t, then

M
′

=

{
opOutv2

(MT , t+) if t fires by M,
undefined otherwise.

The main difference in the definition of the marking M
′

presented above
(Mode 2 ) concerns input places of the fired transition t. In Mode 1 numbers are
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removed from all input places of the fired transition t (cf. the first definition
condition of Mode 1 ), whereas in Mode 2 all numbers are copied from input
places of the fired transition t (the first definition condition of Mode 2 ).

We say that t fires from a marking M with a parameter value v to M
′
.

Example 2. Let N = (P, T, S, I, O, α, β, γ,Op, δ,M0) be a PFP -net from Exam-
ple 1. Describe this net by means of matrices: Nin, Nout, SA, SB, SC , SD, M0,
where: Nin = ((0.76, 0), (0.76, 0.28), (0, 0.28), (0, 0), (0, 0)), Nout = ((0, 0), (0, 0),
(0, 0), (0.53, 0), (0, 0.22)),SA = (s1, s2, s3, s4, s5), SB = (0.7, 0.8), SC = (0.4, 0.3),
SD = ((sP , tP , sP ), (tP , tP , sP )), and M0 = (0.6, 0.4, 0.7, 0, 0). The vectors t1

γ ,
t2

γ , t1−, t2−, t10, t20, t1+, t2+ have the form by the initial marking M0 as fol-
lows: t1γ = (0.4, 0.4, 0, 0, 0)T , t2γ = (0, 0.3, 0.3, 0, 0)T , t1− = (0.76, 0.76, 0, 0, 0)T ,
t2

− = (0, 0.28, 0.28, 0, 0)T , t10 = (0.6, 0.4, 0, 0, 0)T , t20 = (0, 0.4, 0.7, 0, 0)T , t1+
= (0, 0, 0, 0.53, 0)T , t2+ = (0, 0, 0, 0, 0.22)T . It is easy to see that the transition
t1 is enabled by the initial marking M0, but the transition t2 is not. This follows
from the fact that: t1

− ≥ t1
γ and t2

− < t2
γ . After firing the transition t1 in

Mode 1 by the marking M0 we obtain a new marking M ′ = sP(M0T − t1
0, t1

+)
= (0, 0, 0.7, 0.53, 0).
Remark. It is also worth pointing out that the matrix representation of PFPNs
proposed in this paper is significantly simpler than the one provided for the
extended fuzzy Petri nets in [3] and more general than that presented in [13].

Steps. Steps are a generalisation of net work in the mode of single firings. In
the paper we consider two kinds of steps: simple and generalised. The definitions
of these concepts are presented below. The net work in the mode of steps can
be treated as a simultaneous firing of a selected set of enabled transitions or a
single firing of them in any order.

Let N = (P, T, S, I, O, α, β, γ,Op, δ,M0) be a PFP -net, U ⊆ T and M be a
marking of N with a parameter value v.

A nonempty set U of transitions is called a simple step by a marking M (re-
garding to transitions concurrency) with a parameter value v if they are enabled
by M and pair-wise concurrent (i.e., there are no transitions which have joint
input and output places).

A nonempty set U of transitions is called a generalised step (or simply a step)
by a marking M with a parameter value v if they are enabled by M and can be
fired simultaneously.
Remark. In the definition of a step we do not demand the concurrency of tran-
sitions with a step U , but we demand only the possibility of its simultaneous
firing. This means that if the sets of input places and output places for transi-
tions belonging to the step U are not pairwise disjoint, thus simultaneous firing
of those transitions will be possible only in Mode 2. This definition is a natural
generalisation of the simple step definition.

Before formulating a definition of next marking after firing a (simple) step we
still need additional concepts and notation.

Let N = (P, T, S, I, O, α, β, γ,Op, δ,M0) be a PFP -net, U = {ti1, . . . , tik}
⊆ T be a step (a simple step), and let tij

γ (tij−, tij0, t+ij) be a selecting transi-
tion (an aggregating token, a memorizing token, a transferring token) function
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corresponding to the transition tij , j = 1, . . . , k. By Uγ , U−, U0, U+ we de-
note vectors such that: Uγ = max(ti1

γ , . . . , tik
γ), U− = max(ti1

−, . . . , tik
−),

U0 = max(ti1
0, . . . , tik

0), U+ = opOutv2
(ti1

+, . . . , tik
+), where Outv2 is any sec-

ond output operator defined in PFP -net definition. In particular situation this
output operator can be replaced by the generalised maximum operator max,
i.e., the maximum operation regarded to vectors.

Let N = (P, T, S, I, O, α, β, γ,Op, δ,M0) be a PFP -net, U ⊆ T be a step (a
simple step), U0 be a step memorizing token function corresponding to transi-
tions from U , U+ be a step transferring token function corresponding to transi-
tions from U .
Mode 1. If M is a marking of N with a parameter value v enabling a step U and
M

′
the marking derived from M by firing transitions from U , then

M
′

=

{
opOutv2

(MT − U0, U+) if U fires by M,
undefined otherwise.

In this mode, a procedure for computing the marking M
′

is similar to ap-
propriate procedure corresponding to PFPNs and Mode 1 presented above.
The difference is that present procedure uses steps instead of single transitions.
Remaining stages of the procedure are analogous to the previous procedure con-
cerning Mode 1.
Mode 2. If M is a marking of N with a parameter value v enabling a step U and
M

′
the marking derived from M by firing transitions from U , then

M
′

=

{
opOutv2

(MT , U+) if U fires by M,
undefined otherwise.

The difference in the definitions of marking M
′

presented above (Mode 2 )
and Mode 1 is analogous to the PFPNs concerning single transitions instead
of steps.

We say that a step (a simple step) U fires from a marking M with a parameter
value v to M

′
.

A step (a simple step) U by a marking M with a parameter value v is called
maximal, if there is no step (simple step) U ′ by M with the parameter value v
such that U ′ ⊃ U .

These definitions are illustrated by the following example.
Example 3. Consider a PFP -net in Example 1. A set of transitions U = {t1, t2}
is a step by the marking M = (0.6, 0.5, 0.7, 0, 0) with a parameter value v = 1
and the same parameterised families of sums and products as in Example 1
in Mode 2 for this net. The vectors Uγ , U−, U0, U+ have the form: Uγ =
(0.4, 0.4, 0.3, 0, 0)T , U− = (0.8, 0.8, 0.35, 0, 0)T , U0 = (0.6, 0.5, 0.7, 0, 0)T , U+ =
(0, 0, 0, 0.56, 0.28)T for the step U by M with v = 1 for this net. It is easy to see
that the step U by M with v = 1 is enabled, because U− ≥ Uγ . After firing U by
M with v = 1 in Mode 2 we obtain a new marking M ′ = (0.6, 0.5, 0.7, 0.56, 0.28).
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4 Conclusions

In this paper we have proposed a matrix representation of PFPNs. This repre-
sentation enables an easy implementation of different concurrent algorithms for
PFPNs in modern programming languages or computational environments. In
particular, taking into account parallel firing rules in a step we can speed up the
reasoning process represented by a given PFPN . In further investigations we
will consider this representation of PFPNs in order to show its practical use
in fuzzy reasoning process as well as in dynamical systems taking into account
fuzzy control [16],[17] among others.
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Abstract. The essence of granular computing (GrC) is to replace the
concept of points in classical mathematics by that of granules. Usual
fuzzy number systems are obtained by using type I fuzzy sets as granules.
These fuzzy number systems have a common weakness - lack of existence
theorem. Let R be the real number system, the trapezoidal membership
functions at r ∈ R is a base of fuzzified topological neighborhood system
FNS(r). By taking FNS(r) as the granule, a new (but not type I) fuzzy
number system F is formed. Surprisingly, we have found that such a new
F is abstractly isomorphic to the classical real number system.

Keywords: Fuzzy numbers, Fuzzified topological neighborhood systems,
Granular computing, Qualitative fuzzy set, Topology.

1 Introduction

What is a real number, a vector, a point in Euclidean plane or etc.? Due to
the nature of mathematics, these questions are answered in a ”whole sale” style.
Namely, mathematicians have to define first the real number system, the vector
spaces, Euclidean planes, and etc. (often axiomatically), then answer to the
question by saying that an element of them is a real number, a vector, a point
and etc. respectively.

What is a fuzzy number? There are plenty of answers. What is a fuzzy number
system? There are no very clear cut answers. The ”standard” constructions of
fuzzy numbers (of type I fuzzy sets) are, more or less, given in the following
ways: Let R be the set of real numbers.

1. Type I hypothesis: For each real number r ∈ R, there is associated a unique
membership function fr : R −→ I that represents a very special fuzzy set,
namely, the fuzzy number associated to r. Let FR = {fr | r ∈ R} be the
collection of such membership functions.

2. Constructions of mathematical structure on FR: Binary operations, such as
”addition” and ”multiplication”, are then introduced into FR (and may be
some other structures). The collection FR, together with such a mathemat-
ical structure, forms the ”standard” fuzzy number system.

D. Ciucci et al. (Eds.): RSFDGrC 2013, LNAI 8170, pp. 208–215, 2013.
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However, the constructions of mathematical structure on FR are incomplete: It
needs to show that there exists (can be constructed) a set FR of membership
functions such that (1) for each real number there is a unique membership func-
tion in FR, and (2) the ”sum” and ”product” of ”addition” and ”multiplication”
of two members in FR are some members of FR again, in the jargon of math-
ematics, there is a construction of FR such that FR is closed under algebraic
operations. (1) is satisfied by hypothesis, but (2) has not be shown in literature.

For example, by Type I hypothesis, membership functions f6, f2, f3, f4 and
f1.5 have been selected. But, there are no proofs for the following equalities:

f6 = f2 ' f3 = f4 ' f1.5 = f5 ' f1.2 = . . .

We shall call these equalities consistency conditions. In other words, without
proving the consistency condition, FR, as a mathematical system, may not exists;
see the second paragraph of Section 4.

The primary purpose of this paper is to reformulate these ”standard” fuzzy
numbers into a mathematical system that meets the consistency conditions. This
system is, however, not in Type I theory, but in a very general Type II, called
qualitative fuzzy set theory [8].

At first, the final theorem is a surprise: the new fuzzy number is a copy of the
classical real number system.

However, if we do a little deeper analysis, we can see that this answer should be
the expected one. A trapezoidal fuzzy number (its membership function contains
an non-empty open crisp interval) is a ”real world” approximation of a real
number. So the collection of such approximations should converge to the the
real number system; we show this in Section 4.

We also illustrate the idea in a more ”commonly” used approximations. The
collection of n-digits decimals ∀ n ∈ Z+ (positive integers) has been used as ap-
proximations for centuries. The system of such n-digits ∀ n ∈ Z+ does converge
to real number system; this is proved by the concept of topology; see Section 3.

What is granular computing (GrC)? In 1996, granular computing (GrC) [12]
was coined to label Zadeh’s idea: GrC is a new mathematics, in which the concept
of points in classical mathematics, is replaced by that of granules. Note that
Zadeh’s idea actually appeared in [10]. In fact, a more formal example in model
theory of such an idea did exist a few years ahead [4]; the non-standard real
number system (hyperreal) could be viewed as a “new” system, in which each
real number r is replaced by a granule of “r + infinitesimals”.

By taking a granule at p as the largest neighborhood system LNS(p) among
all topologically equivalent NS(p) (see Example 1, Item 4), in GrC 2011 [9], LNS
was axiomatized. That means Zadeh’s idea is formally realized:

• This set of axioms defines the mathematics of GrC.

Using Zadeh’s style of expressing, the granule, that has been axiomatized, is a
granular variable that takes neighborhood N ∈ LNS(p) as values. The concept
of neighborhood systems (NS) was introduced in [7,6], and LNS(p) can also be
regarded as a NS(p) that meets the super set condition (see Definition 1).
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This paper is organized as follows: In Section 2, we review the concept of
topological neighborhood system TNS(p), p ∈ R, then in Section 3, the algebraic

operations are introduced among TNS(p) ∈ 22
R

. In Section 4, we fuzzify the idea,
and in Section 5, we state our conclusions.

2 Topological Neighborhood System (TNS)

First, we need to recall the concept of topology. Next few paragraphs are taken
from [5] and the axioms are from (Chapter 1, Exercise B).

Definition 1. The pair (U,TNS(U)) is called a topological space (or TNS-space),
if TNS(U) = {TNS(p) : p ∈ U} is defined as follows: For each p ∈ U , let TNS(p)
be the family of all subsets, called neighborhoods, that satisfies the following ax-
ioms:

1. If N ∈ TNS(p), then p ∈ N ;
2. If N and M are members of TNS(P ), then N ∩M ∈ TNS(p);
3. superset condition: If N ∈ TNS(p) and N ⊂M , then M ∈ TNS(p);
4. If N ∈ TNS(p), then there is a member M of TNS(p) such that M ⊂ N and

M ∈ TNS(y) for each y in M (that is, M is a neighborhood of each of its
points).

Definition 2. A base B(p) of TNS(p) of a point p is a family of neighborhoods
such that every neighborhood N ∈ TNS(p) contains a member of the family B(p).

Example 1. (Bases of TNS of R)

1. ∀ p ∈ R, let us consider the collection B(p) = {N1(p) = (p − 1/10n, p +
1/10n), n ∈ Z+}. This collection B(p) is a base of the TNS(p). N1 is the
uncertainty region of the n-digits decimal number of p.

2. Let TNS(p) be the maximal collection of subsets, in which each subset con-
tains an N1(p) for some n ∈ Z+}, where Z+ is positive integers. Then
TNS(U) = {TNS(p)} is the TNS of real number system; it is routine to
verify that the four axioms in Definition 1 are satisfied.

3. Another base of TNS of real numbers can also be defined by using base other
than 10 the collection {N2(p)|N2(p) = (p−ε, p+ε), where ε = 1/bn,where b is
any positive integer. This base leads to the same maximal collection TNS(U).

4. In the theory of neighborhood system (NS), which is the ultimate general-
ization of topology, the notation for maximal collection is LNS(U). So, if
we interpret the topology as a special kind of NS, then TNS(U) = LNS(U).
This may explain a bit more on LNS that is mentioned in the Section of
Introduction.
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3 The Real Number System RT Defined by Topology

Let the universe R of discourse in this section be the real number system. The

main idea is to introduce the algebraic structure into RT ⊂ 22
R

, for example,

TNS(p)⊕ TNS(q) ∈ 22
R

and TNS(p)⊗ TNS(q) ∈ 22
R

, between two TNS.

Definition 3. The real number system R is a complete order field.

The real number system can be defined in many ways; we take the axiomatic
approach ([1] p.98). Here ”order field” refers to the usual ”college algebra” (four
kinds of operations and order relations that satisfy various kinds of laws), and
term ”complete” means: Any bounded below set has the greatest lower bound.
For example, the rational number system Q is not a complete order field because
the set A = {x ∈ Q|x >

√
2} ⊂ Q dose not have the greatest lower bound,

while R is a complete order field. For R, the greatest lower bound of its subset
B = {x ∈ R|x >

√
2} ⊂ R is

√
2.

Before, we give the new definition of fuzzy numbers, we will show in this sec-
tion that the real number system can be defined by the collection of topological
neighborhood system (TNS).

Definition 4. (GrC based real number system RT ) GrC based real number
system is:

RT = {p̄ | p̄ = TNS(p), p ∈ R},

with appropriate algebraic structure that will be introduced below.

For mathematical students, this is a fairly routine to verify that RT defined
above, indeed, forms the complete ordered field. Since this is in computer science
paper, we shall sketch few key points.

Definition 5. (Subset operations in an algebraic system) Let X,Y ⊆ E be two
subsets of an algebraic system (E, ·). The operator ◦ between X and Y is defined
as

X ◦ Y = {x · y| ∀ x ∈ X, ∀ y ∈ Y },

or in terms of the convolution of characteristic functions

χX◦Y (z) = max
x·y=z

min(χX(x), χY (y)), (x, y, z) ∈ R3.

where · is a binary operator in E.

Proposition 1. If · is commutative or associative, then ◦ is commutative or
associative respectively.

In practice (for example, in the coset multiplication in group theory), we do not
use new notation ◦, but (by abuse of notation) use the notation · of the given
binary operations. By applying Definition 5 twice (to neighborhoods (⊆ R), then
to TNS (⊆ 2R), we have
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Definition 6. (External algebraic operations) ∀ p̄, q̄ ∈ RT ,

p̄⊕′ q̄ ≡ {N(p) + N(q) | N(p) ∈ TNS(p), N(q) ∈ TNS(q)}

p̄'′ q̄ ≡ {N(p) ·N(q) | N(p) ∈ TNS(p), N(q) ∈ TNS(q)},
where (in the following formulas, we use ”·”, instead of ”◦”),

N(p) + N(q) = {r1 + r2|r1 ∈ N(p), r2 ∈ N(q)},

(χN(p)+N(q)(z) = max
x+y=z

min(χN(p)(x), χN(q)(y)), (x, y, z) ∈ R3).

N(p) ·N(q) = {r1 · r2|r1 ∈ N(p), r2 ∈ N(q)},
(χN(p)·N(q)(z) = max

x·y=z
min(χN(p)(x), χN(q)(y)), (x, y, z) ∈ R3),

These 2 external operations induce the following 2 inclusions.

Proposition 2. ∀ p̄, q̄ ∈ RT ,

p̄⊕′ q̄ ⊆ p + q; p̄'′ q̄ ⊆ p · q.

We shall explain the first inclusion: p̄⊕′ q̄ consists of all possible {N(p) +N(q)}.
From Example 1, there are bases (of 1/10t-neighborhoods) for TNS(p) and
TNS(q). Namely, there are (p − 1/10n, p + 1/10n) ⊆ N(p), for some integer
n, and (q − 1/10m, q + 1/10m) ⊆ N(q), for some integer m. Obviously, we can
find a 1/10s-neighborhood of p + q so that (p + q − 1/10s, p + q + 1/10s) ⊆
(p − 1/10n, p + 1/10n) + (q − 1/10m, q + 1/10m). This inclusion implies that
N(p)+N(q) ∈ TNS(p+q), by the Axiom of supper set condition in Definition 1.
Similar proof works for the other inclusion too.

The two inclusions induce two following internal operations in RT

Definition 7. ∀ p̄, q̄ ∈ RT ,

p̄⊕ q̄ ≡ p + q : p̄' q̄ ≡ p · q

Definition 8. Algebraic system with two operators (E, ◦1, ◦2) is called a bi-
operator algebra.

For example (RT ,⊕,') just introduced and (R,+, ·) are bi-operator algebras.
Let us side track a little bit. The existence of the 2 internal operations imply

the consistent conditions. For example 6̄ = 2 · 3 ≡ 2̄ ' 3̄ = . . . 6̄ = 1 + 5 ≡
1̄⊕ 5̄ = . . . .

Next, we introduce the order relation into (RT ,⊕,') by

p̄ < q̄ ⇔ p < q.

Now, we have (RT ,⊕,', >). With these, we shall prove the following main
theorem.
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Theorem 1. (RT ,⊕,', >) is a complete order field.

Let p ∈ R, then the map: p̄ −→ p is a one-to-one onto map, because R is a
Hausdorff space. In Definition 7, we have defined p̄⊕ q̄ ≡ p + q, and p̄⊗ q̄ ≡ p · q,
so the two compositions below,

p̄⊕ q̄ −→ p + q −→ p + q; p̄⊗ q̄ −→ p · q −→ p · q,

imply that the map from (RT ,⊕,') to (R,+, ·) is an isomorphism of bi-operator
algebras. Since this isomorphism (and its inverse) preserves all the identities and
inequalities among elements, the isomorphism actually is a complete order field
isomorphism. QED.

4 Fuzzy Number System F
This section is the main subject of this paper. A new mathematic system called
”fuzzy number system” will be formally defined.

Let N(0) be a neighborhood of 0 in R. We claim that N(0) 	= N(0) + N(0):
From group theory, the equality holds only if NS(0) is a abelian subgroup of
R. There is no bounded abeliam subgroup in R, so we proved the claim. This
shows that for characteristic functions, and hence for membership functions, FR

cannot be closed under the ”addition” that is defined by convolution; similar
conclusion can be drawn for ”multiplications”. This counter example implies
that FR, together with the algebraic operations defined by convolutions, such
as [3], are not closed under algebraic operations. To show that FR with some
algebraic operations is a well-defined mathematical system, an explicit proof of
closed-ness is needed; that seems lacking in the literature.

4.1 The Universe of Membership Functions

First, we have to specify the membership functions. In Type I fuzzy control,
the outputs are control functions. So in most cases, they are continuous func-
tions. Therefore the membership functions used in control are likely the con-
tinuous functions. Unfortunately, this choice will exclude out the classical sets
from fuzzy set theory (characteristic functions are not continuous functions). So
we choose the functions of continuous almost everywhere (a.e.) as our universe
of discourse, where ”continuous a.e.” means a function whose continuous points
are almost everywhere, in other words, whose set of discontinuous points has
measure zero [2].

4.2 Fuzzification of Topology

Definition 9. (fuzzification of neighborhood system) The fuzzification FNS(p),
called fuzzy neighborhood system, of topological neighborhood system TNS(p) con-
sists of all membership functions fi defined on R that contain (as ”inclusion” of
fuzzy sets), at least, one subset N that is an element TNS(p).
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Observe that in this case all membership functions have some ”flat top”; we call
them ”trapezoidal” membership functions.

Definition 10. (GrC Based Fuzzy numbers) Fuzzy number system is:

F = {p̃ | p̃ = FNS(p), p ∈ R},

with appropriate algebraic structure that will be introduced below.

Here are the external operations:

Definition 11. ∀p̃, q̃ ∈ F ,

p̃⊕′ q̃ ≡ {fp � fq|fp ∈ p̃, fq ∈ q̃},

fp �′ fq(z) ≡ max
x+y=z

min(fp(x), fq(y)), (x, y, z) ∈ R3.

p̃⊗′ q̃ ≡ {fp � fq|fp ∈ p̃, fq ∈ q̃}.
fp �′ fq ≡ max

x·y=z
min(fp(x), fq(y)), (x, y, z) ∈ R3.

The two external operations induce the following fuzzy-inclusions

Proposition 3. ∀p̃, q̃ ∈ F ,

p̃⊕′ q̃ ⊆ p̃ + q; p̃⊗′ q̃ ⊆ p̃ · q.

Note that 1/10t-neighborhoods are also a base for p̃ (as well as p̄), so the same
reasoning for p̄ (Proposition 2) does work for p̃ mathematically.

The 2 inclusions induce the following 2 internal operations

Definition 12. ∀p̃, q̃ ∈ F ,

p̃ + q ≡ p̃⊕ q̃; p̃ · q ≡ p̃⊗ q̃.

These operations are simple generalizations of the convolutions defined on char-
acteristic functions (the generalized formulas were used in [3]). As in RT , we
will introduce the order relation into (F ,⊕,') by

p̃ < q̃ ⇔ p < q.

So we have (F ,⊕,', >).
Again, let us have some side tracks, the 2 internal operations imply the con-

sistent conditions: r̃ = p̃ ⊗ q̃ = r̃ ⊕ s̃ ∀ p, q, r, s ∈ R for all possible
decompositions of the real number r with respect to multiplication and addi-

tions respectively. For example, 6̃ = 2̃ · 3 ≡ 2̃' 3̃ = . . . 6̃ = 1̃ + 5 ≡ 1̃⊕ 5̃ = . . . .
With these, we shall prove the following main theorem

Theorem 2. (F ,⊕,', >) is a complete order field.

The same proof for Theorem 1 will work for F by considering a similar map
p̃ −→ p.
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5 Conclusion – The Meanings of Computing in F and RT

In applications, we often use n-digits, say n=2, decimals, instead of the real
numbers R, to do the computation. Then, the infinitely many numbers in the
interval [0, 1] have reduced to 100 2-digits representations, 0.00, 0.01, . . .0.99;
each number represents a crisp interval (a neighborhood). So 2-digits computa-
tion is an interval or neighborhood computing. The theory in Section 3 (TNS or
GrC computing) says, if n increases, 1/10n-interval computing will converge to
real number computing.

If we fuzzified the 2-digits numbers, then it means we are computing in trape-
zoidal fuzzy numbers, the theory in Section 4 (LNS or GrC computing) guar-
antees that, if we decrease the length of the flat top, the computations will be
eventually converge to the real number computations.

This paper gives n-digits and fuzzy n-digits computing some theoretical
foundations.
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Abstract. Some performance analyses in complex network (e.g., short-
est path, etc.) are complicated. Generally, human have natural ability
to solve complex problems by approximating the optimal solution step
by step. The granular computing model based on QST (Quotient Space
Theory) provides not only a hierarchical description from fine to coarse
but also an effective approach from coarse to fine to solve these complex
problems. This paper proposes some methods on complex network per-
formance analysis based on QST. Firstly, maximum cover network chain
is used to solve the shortest path problem. Then, a method to find the
optimal path of a weighted network is put forward. Finally, dynamic net-
work is decomposed into a series of static networks to solve the maximum
flow problem in dynamic network. Theoretical proofs and experimental
results show that QST is an effective tool for complex problem solving.

Keywords: Quotient Space, Performance Analysis, Shortest Path, Op-
timal Path, Dynamic Network.

1 Introduction

The basic idea of QST is that ”one of the basic characteristics in human problem
solving is the ability to conceptualize the world at different granularities and
translate from one abstraction level to the others easily” [1]. In recent years, we
have further studied the relationships among the quotient space theory, fuzzy
set theory, and rough set theory [3, 4, 12-19]. A unified representation of these
theories is given to describe fuzzy. The solving of complex problem is simplified
by a hierarchical description based on QST. We developed a set of its applications
in path planning, temporal planning, robot motion planning, heuristic search [1,
2], etc. There are many complicated problems in complex networks, such as
the shortest path, optimal path [10-11], etc. Recently, we have applied QST
into complex network analysis and made some progresses [5, 6, 8, 9]. This paper
summarizes the achievements we have made, and presents a method for dynamic
network performance analysis.
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The rest of this paper is organized as follows. Section 2 briefly proposes the
quotient space theory and discusses how to apply it to network analysis. Section
3 and Section 4 puts forward the shortest path solving and optimal path finding
based on QST, respectively. Section 5 presents the dynamic network analysis.
Conclusions are given in Section 6.

2 Method of Quotient Space

A problem is described as a triplet (X, f, T ), where X is the universal, f is the
attribute and T is the structure (or topology). Given an equivalence relation R
on X , the quotient set corresponding to X , f and T is denoted by[X ],[f ] and
[T ], respectively. ([X ], [f ], [T ]) is called the quotient space of (X, f, T ). Then,
the principles ”truth preserving” and ”falsity preserving” in quotient spaces is
established [1, 20]. These principles are used to speed up the problem solving.

First of all, we discuss how to apply QST into network analysis.
Let N = (V,E) be an unweighted network, where V is the set of nodes and

E is the set of edges. R1 is an equivalence relation on V , and N1 = (V1, E1) is
the quotient space corresponding to R1 which is denoted by N > N1.

Definition 1. Let N > N1 > ... > Nn be a quotient space chain, for x ∈ N ,
(x, [x1], [x2], ...[xn]) is called hierarchical coordinates of x with respect to quotient
space chain, for short: hierarchical coordinates of x.

Quotient space theory of problem solving construct a quotient space chain
firstly, then choosing a certain quotient space and solving the corresponding
problem in Ni, after that, choosing a finer quotient space Nj , j < i and solving
the corresponding problem in Nj . The above steps are repeated until the whole
problem solving is completed.

3 Method of Quotient Space for the Shortest Path

Given a network N = (V,E) and a, b ∈ V , the shortest path between a and b is
denoted by the minimal number of nodes from a to b .

We use the method of QST to solve shortest path. First, we construct a proper
quotient space.

Definition 2. Suppose a complete subgraph C of network N is a maximum
complete subgraph if and only if C is not a proper subset of other complete
subgraphs.

Definition 3. Given a network N = (V,E) and a set of maximum complete
subgraphs {Ci|i = 1, ..., k}, if

⋃
Vi = V ,

⋃
Ei = E, then {Ci|i = 1, ..., k} is called

maximum complete cover of N = (V,E).
Quotient space of complex network is constructed by maximum complete

cover.

Definition 4. Given a network N and a maximum complete cover {Ci|i =
1, ..., k}, a maximum complete subgraph Ci is regarded as a node, if two
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maximum complete subgraphs have common points, then the corresponding two
nodes are connected. The network obtained by this method is called the first level
maximum cover network, denoted by N1 (the quotient network of N). Similarly,
suppose Ni is the ith level cover network and Ni+1 is the first level maximum
cover network of Ni, then Ni+1 is called the (i + 1)th maximum cover network
of N .

Definition 5. Given a maximum cover network chain (N > N1 > ... > Ni), if
a node a in Ni could cover all nodes in V ,where V is the set of nodes in N . a
is called a complete node. If Ni have complete node and Ni−1 does not contains
any complete node. Then we say (N > N1 > ... > Ni) is the maximum complete
cover network chain of N , for short, cover network chain.

Definition 6. Given a maximum complete cover network chain (N > N1 > ... >
Ni) of network N , suppose a0 ∈ V, ai0 ∈ Vi, and a0 ∈ ai0, then the hierarchical
coordinates of a0 with respect to (N > N1 > ... > Ni) is (a00 = a0, a

1
0, ..., a

i
0) ,

where aj−1
0 ∈ aj0, 0 < j ≤ i, aj0 is a node in quotient space Nj.

Definition 7. Given a network N and its first level maximum cover network N1,
suppose L is the shortest path from a to b in N , and L = {a0 = a, a1, ..., ak =
b}. We construct a path L1 = {a10, ..., a1k−1} in N1, where ai, ai+1 ∈ a1i , i =
0, 1, ...k − 1, then a1i 	= a1j , i 	= j . Hence, the path L in N was mapped into

L1 = {a10, ..., a1k−1} in N1, where p1(a0) = a10, p1(ai) = a1i−1 ∩ a1i , i ≥ 1, p1(b) =
a1k−1 ,L1 is called the projection of L in N1, denoted by L1 = p1(L). Generally,
suppose Li−1 is the projection of L in Ni−1, the projection of Li−1 in Ni is Li,
Li is called the projection of L in Ni.

Given a network N , L is supposed to be the shortest path from a to b in N ,
the necessary and sufficient condition of L = {a = a0, a1, ..., ak = b} is that:
Li = pi(L) is the shortest path from ai0(a0 ∈ ai0) to aik−i(ak ∈ aik−i) in Ni,

where Li is the projection of L in the ith level cover network. It is the truth
preserving principle of shortest path. We can translate the problem of shortest
path L into the corresponding shortest path problem Li in Ni . After that, we
are backtracking to Li−1, so L could be got by i− 1 steps.

The algorithm about finding the shortest path for two given nodes by using
maximum cover network chain is illustrated as follows, which is called pyramid
algorithm.

Algorithm 1. pyramid algorithm

Input: (N > N1 > ... > Ni), (a = a0
0, a

0
1, ..., a

i
0) ,(b = b00, b

1
0, ..., b

i
0 = ai

0)
Output: L0

1: Choosing a quotient space Ni satisfies: for j ≤ i, a, b do not belong to the same aj
k

simultaneously.
2: Construct path Li−j = (ai−j

0 , ai−j
1 , ..., ai−j

j = bi−j
0 )(all nodes are different).

3: If i �= j, then
4: Construct path Li−j−1 = (ai−j−1

0 , ai−j−1
1 , ..., ai−j−1

j+1 = bi−j−1
0 ).

5: else return L0 = (a = a0
0, a

0
1, ..., a

0
i = b)
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Given a, b ∈ V , the shortest path between a and b can be solved by follow
steps.

1) Suppose (N > N1 > ... > Ni) is the maximum cover network chain of
N . Choosing a quotient space Ni. Ni satisfies the following conditions: ∃ai0 ∈
Vi, a, b ∈ ai0, for arbitrary j ≤ i, a, b do not belong to the same ajk simultaneously,
where a, b are two nodes in V . Let (a = a00, a

0
1, ..., a

i
0) ,(b = b00, b

1
0, ..., b

i
0 = ai0) be

the hierarchical coordinates of a, b.
2) Because a, b belong to the same node in Ni .There exist ai−1

0 , ai−1
1 , a ∈

ai−1
0 , b ∈ ai−1

1 and ai−1
0 , bi−1

0 ∈ ai0. Construct path Li−1 = (ai−1
0 , ai−1

1 ).

3) Suppose we have a path Li−j = (ai−j
0 , ai−j

1 , ..., ai−j
j = bi−j

0 )(all nodes are

different). If i 	= j, take ai−j−1
k−1 ∈ ai−j

k−a ∩ ai−j
k , k = 1, ..., j, moreover, there exist

ai−j−1
0 , ai−j−1

j+1 , a ∈ ai−j−1
0 , b ∈ ai−j−1

j+1 , ai−j−1
0 ∈ ai−j

0 , ai−j−1
j+1 ∈ ai−j

j . Construct

path Li−j−1 = (ai−j−1
0 , ai−j−1

1 , ..., ai−j−1
j+1 = bi−j−1

0 ).

4) Finally, L0 = (a = a00, a
0
1, ..., a

0
i = b) is got until i = j. L0 is the shortest

path from a to b with the length of i.

Let the hierarchical coordinates of a, b be two hypotenuse of the triangle.
ai−2
1 ∈ ai−1

0 ∩ bi−1
0 , so we have (ai−2

0 , ai−2
1 , ..., bi−2

0 ). Generally, suppose we have

(aj0, a
j
1, ..., b

j
0), j < i. Taking aj−1

k ∈ ajk−1∩ajk, then we got (aj−1
0 , aj−1

1 , ..., aji−j =

bj0).
By the above method, finally we got L0 = (a = a00, a

0
1, ..., a

0
i = b), where

ai−t
j ∈ ai−t+1

j−1 ∩ ai−t+1
j , j = 1, ..., t− 2, ai−t

t−1 ∈ ai−t+1
t−2 ∩ bi−t+1

0 .

Shortest path:L(a, b) = (a, a01, a
0
2, ..., a

0
i−1, b).

a0i

ai−1
0 , bi−1

0

ai−2
0 , ai−2

0 , bi−2
0

ai−3
0 , ai−3

1 , ai−3
2 , bi−3

0

ai−4
0 , ai−4

1 , ai−4
2 , ai−4

3 , bi−4
0

......

a00 = a, a01, a
0
2, ......, a

0
i−1, b

0
0 = b

Suppose (N > N1 > ... > Nm) is the maximum cover network chain of
N . ∀a, b ∈ V ,where V is the set of nodes in N , the length of shortest path
= j ⇐⇒ ∃Nj, and ajk ∈ Vj , a, b ∈ ajk, for arbitrary i < j, a, b do not belong to

the same node of Nk, where j < m and ajk denote the kth element in Nj .

4 Optimal Path of Weighted Network

We already have the method for shortest path finding which is solved by finding
the path with minimal number of nodes. It is common in daily life, for example, in
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order to avoid the traffic light, we hope to avoid more crossroads as possible as we
can. Actually, there also exist many other factors, such as road condition, traffic
condition, etc. These factors can be regarded as weights of the network. An optimal
path is the path that connects any pair of nodes with the maximal weight. We will
discuss the optimal path problem of weighted network in this section.

Complex network was represented by weighted graph. Suppose N = (V,E,
w(e)) is the weighted network. Where V is a finite set of nodes, E is the set of
edges, w : E → R+, w(e) ∈ [0, d], is the weight number(bandwidth, flow, etc.).

Suppose the set of weights of all edges is {d1 > d2 > ... > dk}. An equivalence
relation R(di) is given to acquire the corresponding quotient space for weighted
network.

Definition 8. Equivalence relation R(di):
a ∼ b⇐⇒ ∃a = a1, a2, ..., am = b, w(aj , aj+1) ≥ di, aj , aj+1 ∈ V, j = 1, ...,m−

1, i = 1, ..., k
The quotient space corresponding to R(di) is Ni = {ai1, ..., ain}, i = 1, ..., k and

ai1, ..., a
i
n ∈ Vi. Obviously, N > N1 > ... > Nk is a hierarchical quotient space

chain.
The elements in N is represented by hierarchical structure:
Suppose z ∈ V and the hierarchical coordinates of z is (z0, z1, ..., zk) where

zi ∈ N , and N is the set of natural number. Projection pi : X → Xi, if pi(z)
belongs to the ith element of Xi, then, let the ith element zi of z be t.

Definition 9. ∀a, b ∈ V, di, a, bis di connected⇐⇒There exists a path from s to
b with weight number ≥ di.

Theorem 1. ∀a = (a0, a1, a2, ..., ak), b = (b0, b1, b2, ..., bk) ∈ V, di, a, b is di
connected⇐⇒ ai = bi,where a = (a0, a1, a2, ..., ak), b = (b0, b1, b2, ..., bk) denote
the hierarchical coordinates.

The proof of theorem 1 is in [5].
Using quotient space chain and hierarchical coordinates, the problem of short-

est path in original space could be transform into the problem of shortest path
in different quotient spaces. The solving process is from coarse to fine which
greatly reduces the complexity of problem solving [4].In [5], we presented an
approximate algorithm to finding the optimal path. We also carried out some
comparison experiments. Table 1 is one of the experiment results. More details
about the algorithm and experiment are in [5].

Table 1. Total CPU time (in seconds) in the random network

100 200 300 400 500

optimal path 0.397 1.356 3.112 6.634 12.171

Dijkstra 1.719 9.797 91.141 656.391 1002.125

Floyd 0.940 4.220 118.630 212.030 511.560
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5 Analysis of Dynamic Network

This section analyzes the maximum flow in dynamic network base on QST.
Let N = (V,E, de(v, t)) be the given dynamic network, where V is the set of

nodes (also regard as domain of definition), E is the set of edges (regard as the
topological structure T ), de(v, t), e ∈ E, v is one vertex of edge e and t ∈ [t0, t1]
represents the trafficability in x of edge e at the time of t (regard as attribute f
). Given a source node a, sink node b, initial moment t0. Suppose the direction
of fluid is from a to b . Given a time period [t0, t2], there are two problems. The
first problem is the maximum flow of b during the period [t0, t2]. And the second
is how to calculate the maximum flow of node b at t2 .The goal of dynamic
network analysis in this section is to calculate the maximum flow.

The main theorem about maximum flow in static network is the minimum cut
theorem. Extending minimum cut theorem to dynamic situations is not only the
theory needs, but also has great significance in applications. For example, for a
big river, how to predict the downstream flood peak with the flow conditions
measured from upstream hydrological station when the river basin has heavy
rains. This is a typical relationship problem between minimum cut and maximum
flow. The properties of minimum cut and maximum flow in dynamic network
are discussed as follows.

Fig. 1. Example of dynamic network Fig. 2. Streamlines of (d,6)

Fig. 3. Streamlines of (d,7) Fig. 4. Merging (d,6) and (d,7)
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Definition 10. Given a dynamic network N , source node a, sink node b and the
moment t, the maximum flow of b in moment t is the most probable maximum
outflow of b.

Maximum flow defined in definition 10 is not additivity as illustrated as fol-
lows.

Example 1. Maximum flow defined in definition 10 is not additivity. Suppose
the maximum flow of all edges is 1 with except for edge (bd) which is 2. Obviously,
static maximum flow from a to d is 2.

Here we discuss the dynamic maximum flow problem. The length of edges are
given: (ab) = 4, (cd) = 2, (ac) = 3, (cb) = 1, (bd) = 2. (Suppose time is discrete
and flow rate c = 1 for convenience).

Question: The maximum flow of (d,6).
First of all, calculating all streamlines of (d,6):
((a,0),(b,4),(d,6)), ((a,1),(c,4),(d,6)), ((a,0),(c,3),(b,4),(d,6)). Streamline

((a,0), (b,4), (d,6)) represents a path: start from point a at moment 0, arrived
point b at moment 4 and at moment 6 arrived point d. The other paths have
the similar meaning.

From Fig. 2, a unit of fluid start from point a at the moment of 0, flow through
(acbd), arrived point b at moment 6(as the dashline shows). Another unit of fluid
start from point a, flow throughabd), arrived point d at t=6 (as the solid arrow
shows). At t=1,a unit of fluid start from point a, flow throughacd,arrived point
b at t=6(as dotted arrow shows). Hence, the maximum flow of b at t=6 are 3.

Similarly, the maximum flow of (d,7) is 3 (as Fig. 3 shows).
The two networks are merged as Fig. 4. Edge ((a,1), (c,4)) have two stream-

lines with flow equals to 1, but the trafficability is 1. So only one path could
choose between ((a,1),(c,4),(d,6)) and ((a,1),(c,4),(b,5)(d,7)). Hence, the max-
imum flow of b during the period [6, 7] is 5 < 6. This example shows that
maximum flow is not additivity.

The concepts in static network are not suitable in dynamic network. Therefore,
we propose two definitions with additivity to decompose the dynamic net-work
into a combination of static networks.

Definition 11. Suppose that the fluid always flow along the shortest path be-
tween source node a and sink node b (if the shortest path is congested, then
flow along the second short path). According to this rule, the maximum outflow
of b at moment t is the maximum flow from a to b at moment t, denoted by
t−maximum.

Maximum flow by definition 11 have the properties as follows.

Theorem 2. Maximum flow has the property of additivity.

proof. Suppose time is discrete for convenience. Let the maximum flow of b in
moment t, t + 1 are S(t), S(t + 1). Suppose the maximum flow from t to t + 1 is
S, the goal is to prove that S = S(t) + S(t + 1).

Obviously, S ≤ S(t) + S(t + 1) , so we need to prove ’<’ is false. We can use
the proof by contradiction to prove it.
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Suppose ’<’ is true. So there exist a flow arrived b in moment t flow along a
path, and it also arrived b in moment t+1 flow along another path (the increase
of flow is caused by double counting). It is contradict with definition 11. So we
have S = S(t) + S(t + 1).

Definition 12. Total flow is maximal. Suppose the flow is defined by some
specific methods. From initial moment t0 to arbitrary moment t(t0 < t), if the
total outflow of b is maximal. We say that the flow has the property: total flow
is maximal.

Theorem 3. Maximum flow has the property that total flow is maximal.

proof. Suppose the maximum flow defined by definition 11(denoted by method
1) of exit node b from t0 to t1 is s1. And the maximum flow defined by another
definition (denoted by method 2) of exit node b from t0 to t1 is s2, s2 > s1. Also
suppose the time is discrete for convenience. Let S1(t), S2(t) be the total flow of
method 1 and method 2 from moment t0 to moment t.

Because S1(t0) = S2(t0) = 0, we suppose S1(k − 1) = S2(k − 1), the goal
is to prove S1(k) = S2(k). Suppose S2(k) > S1(k), let S2(k) − S2(k − 1) =
s2, S1(k)− S1(k − 1) = s1, so, the flow in moment k by method 2 is at least s2,
that is to say, at least s2 units of flow with the shortest path equals to k. From
this view, there exist at least s2 units of flow arrived at b by method 1. It is
contradict with the hypothesis s1 < s2.

So we have S1(k) = S2(k).
For an arbitrary period [tm, tn], we treat the tm − maximum and the tn −

maximum as a granule, respectively. And then we get a coarser granule by
merging the two granules. The maximum flow of [tm, tn] can be acquired by the
property of additivity. The analysis of maximum flow in dynamic network could
be decomposed into the analysis of the corresponding static networks by the
concept of t-maximum and its additivity.

6 Conclusion

QST is an effective theory for complex problem solving, it provides a coarse
to fine hierarchical description of complex problem. The applying of QST in
complex network analysis is proposed in this paper. Based on QST, the method
for solving shortest path by maximum cover network chain is proposed. For
weighted network, the method of optimal path finding is proposed according
to the characteristics of weighted network. In order to overcome the drawback
that some of the static network concepts cannot be extended to dynamic network
directly. We first decompose the dynamic network into a series of static networks.
Then, analyze the static network and got the corresponding maximum flow (t−
maximum) respectively. The maximum flow of dynamic network can be easily
obtained by the property of additivity.
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Abstract. Extension of a covering approximation space has been successfully
applied to attribute reduction of covering-based rough sets. While the algorithms
to solve attribute reduction are almost greedy ones. As a generalization of linear
algebra and graph theory, matroids provide well-established platforms for greedy
algorithms. In this paper, we introduce induction of a covering approximation
space through transversal matroids, and then study its relationship with extension
of the covering approximation space. Generally, the induced space of a covering
approximation space generates more exact approximations than itself. Based on
this, we investigate the relationship between induction of a covering approxima-
tion space and its extension. In fact, the induced space of a covering approxima-
tion space generates a bigger covering lower approximation and smaller covering
upper approximation than the extended space. These interesting results demon-
strate the potential for studying attribute reduction of covering-based rough sets
by matroidal approaches.

Keywords: Covering-based rough set, transversal matroid, approximation oper-
ators, closure operator, attribute reduction.

1 Introduction

Rough set theory was proposed by Pawlak [10] to deal with granularity and vagueness
in data analysis. The advantage of rough set theory is that it does not need any additional
information about data, it has been successfully applied to various fields such as process
control, economics, medical diagnosis, biochemistry, environmental science, biology,
chemistry, psychology, and conflict analysis. However, the classical rough set theory is
based on an equivalence relation or a partition on a universe, which is too restrictive for
many applications. Scholars have proposed several interesting and important extensions
of the rough set model [6, 9, 11–14, 17, 22, 23, 25, 26, 30, 31].

Particularly, through a covering instead of a partition on a universe, Zakowski [26]
defined the concepts of covering lower and upper approximation operators and intro-
duced covering-based rough sets. A covering information system, in which each at-
tribute induces a covering rather than a partition, is emerged. Since then, many authors
studied properties of covering lower and upper approximation operators [11, 27–29, 32]
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and employed covering-based rough sets to deal with covering information/decision
systems [1, 4, 17–19]. In order to obtain a smaller reduction than the existing methods,
Wang et al. [19] introduced extension of a covering approximation space and success-
fully applied it to attribute reduction of covering decision systems. The key idea of [19]
is that the approximation ability of a covering is improved by extension since the ex-
tended space of a covering approximation space generates more exact approximations
than itself. While the algorithms to solve the problem of attribute reduction are almost
greedy ones. As a generalization of linear algebra and graph theory, matroids provide
well-established platforms for greedy algorithms. Recently, many authors have com-
bined rough sets and matroids [2, 5, 7, 8, 15, 16, 20, 21, 33] and employed matroidal
approaches to attribute reduction [20]. In this paper, we introduce induction of a cov-
ering approximation space through transversal matroids and compare it to extension of
the space.

On the one hand, for a covering of a universe, it can induce a transversal matroid.
We present an expression of the closure of any single point set with respect to this
transversal matroid through the covering itself. Through the closure of any single point
set with respect to this transversal matroid, a new covering from the matroid is gener-
ated. We call the ordered pair with the universe and the new covering the induced space
of the original covering approximation space. Moreover, we prove the induced space of
a covering approximation space generates a bigger covering lower approximation and
a smaller covering upper approximation than itself. On the other hand, based on the
above results, we study the relationship between induction of a covering approximation
space and its extension. Generally, the induced space of a covering approximation space
generates more exact approximations than the extended space. These interesting results
suggest the potential for employing matroids to study some problems of covering-based
rough sets, such as attribute reduction.

The remainder of this paper is organized as follows. In Section 2, some basic def-
initions and related results about covering-based rough sets and matroids are intro-
duced. Section 3 proposes the induced space of a covering approximation space through
transversal matroids and studies its relationship with the original covering. In Section 4,
for a covering approximation space, we compare the induced space and the extended
one on approximation ability. Section 5 concludes this paper.

2 Preliminaries

In this section, we review some basic definitions and related results of covering-based
rough sets and matroids.

2.1 Covering-Based Rough Set Model

Some relevant concepts of covering-based rough sets will be introduced in this subsec-
tion [30].

Definition 1. (Covering) Let U be a universe of discourse and C a family of subsets of
U . If none of subsets in C is empty and ∪C = U , then C is called a covering of U .
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Definition 2. (Covering approximation space) Let U be a universe and C a covering
of U . We call the ordered pair (U,C) a covering approximation space.

Neighborhood is an important concept in covering-based rough sets and has been
widely applied to knowledge classification and feature selection.

Definition 3. (Neighborhood) Let (U,C) be a covering approximation space. For all
x ∈ U , NC(x) = ∩{K ∈ C : x ∈ K} is called the neighborhood of x with respect to
C.

A pair of covering lower and upper approximation operators were proposed through
the concept of neighborhood.

Definition 4. (Covering lower and upper approximation operators) Let (U,C) be a
covering approximation space. For any X ⊆ U ,

LC(X) = {x ∈ U : NC(x) ⊆ X},
HC(X) = {x ∈ U : NC(x) ∩X 	= ∅},

where LC, HC are covering lower, upper approximation operators, respectively.

2.2 Matroid Model

There are many different but equivalent ways to define a matroid. In the following
definition, we introduce a matroid from the viewpoint of independent sets.

Definition 5. (Matroid [3]) A matroid is a pair M = (U, I) consisting of a finite
universe U and a collection I of subsets of U called independent sets satisfying the
following three properties:
(I1) ∅ ∈ I;
(I2) If I ∈ I and I ′ ⊆ I , then I ′ ∈ I;
(I3) If I1, I2 ∈ I and |I1| < |I2|, then there exists u ∈ I2 − I1 such that I1 ∪ {u} ∈ I,
where |I| denotes the cardinality of I .

Since the above definition of matroids focuses on independent sets, it is also called
the independent set axioms of matroids. In a matroid, the rank function generalizes the
maximal independence in vector subspaces.

Definition 6. (Rank function [3]) Let M = (U, I) be a matroid and X ⊆ U .
rM(X) = max{|I| : I ⊆ X, I ∈ I},

where rM is called the rank function of M.

Through the dependency between an element and a subset of a universe, the closure
operator of a matroid is introduced.

Definition 7. (Closure operator [3]) Let M = (U, I) be a matroid and X ⊆ U . For
any u ∈ U , if rM(X) = rM(X∪{u}), then u depends on X . The subset of all elements
depending on X of U is called the closure of X with respect to M and denoted by
clM(X):

clM(X) = {u ∈ U : rM(X) = rM(X ∪ {u})},

where clM is called the closure operator of M.
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The closure operator uniquely determines the matroid and vice versa. That is, we can
introduce a matroid in terms of closure operators.

Proposition 1. (Closure axioms [3]) Let cl : 2U → 2U be an operator. Then there
exists a matroid M such that cl = clM iff cl satisfies the following conditions:
(CL1) For all X ⊆ U , X ⊆ cl(X);
(CL2) For all X,Y ⊆ U , if X ⊆ Y , then cl(X) ⊆ cl(Y );
(CL3) For all X ⊆ U , cl(cl(X)) = cl(X);
(CL4) For all X ⊆ U, x, y ∈ U , if y ∈ cl(X ∪ {x})− cl(X), then x ∈ cl(X ∪ {y}).

3 Induction of Covering Approximation Space through
Transversal Matroid

As a branch of matroid theory, transversal theory reflects the relationships between
collections of subsets of a nonempty set and their matroidal structures. It presents how
to induce a matroid, namely, transversal matroid, by a family of subsets of a set. We
first introduce the notion of transversal matroid.

Definition 8. (Transversal [3]) Let F = F(J) = {Fj : j ∈ J} be a family of subsets
of U . A transversal of F is a set T ⊆ U for which there exists a bijection π : T → J
such that t ∈ Fπ(t). A partial transversal of F is a transversal of its subfamily.

In order to illustrate tansversals of any family of a nonempty set, we present the
following example.

Example 1. Suppose U = {a, b, c, d}, F = F(J) = {K1,K2,K3} and its index set
J = {1, 2, 3}, whereK1 = {a, b, c},K2 = {c, d} and K3 = {b, d}. Then T = {a, b, c}
is a transversal of F since there exists a bijection π : T → J such that t ∈ Kπ(t),
where π(a) = 1, π(c) = 2 and π(b) = 3. Similarly, suppose J ′ = {1, 2} ⊆ J . Then
T ′ = {c, d} is a transversal of F(J ′), so it is also a partial transversal of F.

For a family of subsets of a universe, all its partial transversals satisfy the inde-
pendent set axioms of matroids. Therefore, a matroid, called transversal matroid, is
introduced based on a family of subsets of a universe.

Definition 9. (Transversal matroid [3]) Let F = F(J) = {Fj : j ∈ J} be a family of
subsets of U . We call M(F) = (U, I(F)) the transversal matroid induced by F, where
I(F) is the family of all the partial transversals of F.

As a special family of a universe, a covering can generate a transversal matroid. An
example is presented to illustrate transversal matroids based on coverings.

Example 2. Suppose U = {a, b, c, d} and C = {K1,K2} is a covering of U , where
K1 = {a, b, c},K2 = {c, d}. According to Definition 8, ∅, {a}, {b}, {c}, {d}, {a, c},
{a, d}, {b, c}, {b, d}, {c, d} are partial transversals of C. Therefore I(C) = {∅, {a},
{b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}, where I(C) is the family of inde-
pendent sets of the transversal matroid induced by C.
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From the above definition, a transversal matroid can be induced by a covering through
transversal theory. Conversely, a covering is also induced by a matroid.

Proposition 2. LetM = (U, I) be a matroid. Then {clM({x}) : x ∈ U} is a covering
of U .

Proof. According to (CL1) of Proposition 1, we have x ∈ clM({x}) for any x ∈ U .
Then ∪

x∈U
clM({x}) = U . Therefore, {clM({x}) : x ∈ U} is a covering of U .

For a matroid M, we denote the covering {clM({x}) : x ∈ U} as C(M).

Proposition 3. Let M = (U, I) be a matroid. For all x ∈ U ,
NC(M)(x) = clM({x}).

Proof. According to (CL1) of Proposition 1, x ∈ clM({x}) for all x ∈ U . Accord-
ing to (CL2) and (CL3) of Proposition 1, for any x, y ∈ U , if x ∈ clM({y}), then
clM({x}) ⊆ clM({y}). According to Definition 3 and Proposition 2, NC(M)(x) =

∩
x∈clM({y})

clM({y}) = clM({x}).

Through the above two inductions between a covering and a matroid, an induced
space of a covering approximation space is obtained.

Definition 10. Let (U,C) be a covering approximation space andM(C) the transver-
sal matroid. The ordered pair (U,C(M(C))) is called the induced space of (U,C)
through the transversal matroid, where C(M(C)) is called the induction of C through
the transversal matroid.

In order to investigate the relationships between covering lower approximations of
a covering approximation space and ones of its induced space, we study the closure of
any single point set in the following theorem. First, we introduce the concept of repeat
degree with respect to a covering.

Definition 11. (Repeat degree [24]) Let (U,C) be a covering approximation space.
For all X ⊆ U , |{K ∈ C : X ⊆ K}| is called the repeat degree of X with respect to
C and denoted as dC(X).

We give an example to illustrate the notion of repeat degree as follows.

Example 3. (Continued from Example 2) Suppose X = {a, c, d} and Y = {b, c}. Then
dC(X) = |{K ∈ C : X ⊆ K}| = |∅| = 0 and dC(Y ) = |{K ∈ C : Y ⊆ K}| =
|{K1}| = 1.

Theorem 1. Let (U,C) be a covering approximation space andM(C) the transversal
matroid. For all x ∈ U ,

clM(C)({x}) = {x} ∪ {u ∈ U : dC({x}) = dC({u}) = dC({x, u}) = 1}.

Proof. According to Definition 6, we need to prove that rM(C)({x}) = rM(C)({x, u})
⇔ dC({x}) = dC({u}) = dC({x, u}) = 1. According to Definitions 6, 8, 9 and 11,
rM(C)({x}) = rM(C)({x, u}) ⇔ {x, u} /∈ I(C) ⇔ {x, u} is not a partial transversal
of C⇔ dC({x}) = dC({u}) = dC({x, u}) = 1.
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Example 4. (Continued from Example 2) Since dC({a}) = 1, dC({b}) = 1,
dC({c}) = 2, dC({d}) = 1, dC({a, b}) = 1, dC({a, c}) = 1, dC({a, d}) = 0,
dC({b, c}) = 1, dC({b, d}) = 0 and dC({c, d}) = 1. Therefore,
clM(C)({a}) = {a, b}; clM(C)({c}) = {c};
clM(C)({b}) = {a, b}; clM(C)({d}) = {d}.

In fact, the covering induced by a matroid is a partition of the universe. The following
proposition is presented to confirm this.

Proposition 4. Let (U,C) be a covering approximation space andM(C) the transver-
sal matroid. Then C(M(C)) is a partition of U .

Proof. According to Proposition 2, we have C(M(C)) = {clM(C)({x}) : x ∈ U}
is a covering of U . Then we need to prove only for any x, y ∈ U , clM(C)({x}) ∩
clM(C)({y}) = ∅ if clM(C)({x}) 	= clM(C)({y}).
Suppose clM(C)({x}) ∩ clM(C)({y}) 	= ∅. Then there exists z ∈ U such that z ∈
clM(C)({x}) and z ∈ clM(C)({y}). According to Theorem 1, we obtain dC({x}) =
dC({z}) = dC({x, z}) = 1 and dC({y}) = dC({z}) = dC({z, y}) = 1. Therefore,
x ∈ clM(C)({z}) and y ∈ clM(C)({z}). That is, clM(C)({x}) = clM(C)({z}) and
clM(C)({y}) = clM(C)({z}), i.e., clM(C)({x}) = clM(C)({y}) which is contradic-
tory with clM(C)({x}) 	= clM(C)({y}). Hence for any x, y ∈ U , if clM(C)({x}) 	=
clM(C)({y}), then clM(C)({x}) ∩ clM(C)({y}) = ∅.

Covering lower and upper approximation operators of this paper are based on neigh-
borhoods. The following proposition presents the relationship between the neighbor-
hoods of a covering approximation space and the ones of its induced space.

Proposition 5. Let (U,C) be a covering approximation space. For any x ∈ U ,
NC(M(C))(x) ⊆ NC(x).

Proof. According to Proposition 3 and Theorem 1, NC(M(C))(x) = {x} ∪ {u ∈ U :
dC({x}) = dC({u}) = dC({x, u}) = 1}. We prove NC(M(C))(x) ⊆ NC(x) under
two different conditions.
(1) dC({x}) = 1.
According to Definition 11, |{K ∈ C : x ∈ K}| = 1. Suppose x ∈ Kx ∈ C.
Therefore NC(x) = Kx. For any u ∈ NC(M(C))(x), dC({x, u}) = 1, then u ∈ Kx,
i.e., NC(M(C))(x) ⊆ Kx. Hence NC(M(C))(x) ⊆ NC(x).
(2) dC({x}) 	= 1.
We see NC(M(C))(x) = {x}. Since x ∈ NC(x), then NC(M(C))(x) ⊆ NC(x).

Based on the above proposition, we obtain that the induced space of a covering ap-
proximation space generates a bigger covering lower approximation and a smaller cov-
ering upper approximation than itself.

Theorem 2. Let (U,C) be a covering approximation space. For all X ⊆ U , LC(X) ⊆
LC(M(C))(X) and HC(M(C))(X) ⊆ HC(X).

Proof. For all x ∈ LC(X), according to Definition 4, NC(x) ⊆ X . According to
Proposition 8, NC(M(C))(x) ⊆ NC(x). Therefore, NC(M(C))(x) ⊆ X . Hence
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x ∈ LC(M(C))(X), i.e., LC(X) ⊆ LC(M(C))(X).
For all x ∈ HC(M(C))(X), NC(M(C))(x) ∩ X 	= ∅. Since NC(M(C))(x) ⊆ NC(x),
then NC(x) ∩X 	= ∅. Therefore, x ∈ HC(X), i.e., HC(M(C))(X) ⊆ HC(X).

According to Theorem 2, we see the approximation ability of a covering can be
improved by induction. The following example is given to confirm this.

Example 5. (Continued from Example 2) Suppose X1 = {a, b} and X2 = {c, d}. Then
the covering lower and upper approximations of X1 and X2 in (U,C) are as follows.
LC(X1) = ∅, HC(X1) = {a, b};
LC(X2) = {c, d}, HC(X2) = {a, b, c, d}.
According to Definition 6 and Definition 7, clM(C)({a}) = clM(C)({b}) = {a, b},
clM(C)({c}) = {c}, clM(C)({d}) = {d}. Then C(M(C)) = {{a, b}, {c}, {d}}.
Then the covering lower and upper approximations of X1 and X2 in (U,C(M(C)))
are as follows.
LC(M(C))(X1) = HC(M(C))(X1) = {a, b};
LC(M(C))(X2) = HC(M(C))(X2) = {c, d}.
Therefore, the covering lower and upper approximations of X1 and X2 in (U,C) and
(U,C(M(C))) have the following relationships.
LC(X1) ⊆ LC(M(C))(X1); HC(M(C))(X1) ⊆ HC(X1);
LC(X2) ⊆ LC(M(C))(X2); HC(M(C))(X2) ⊆ HC(X2).

4 A Comparison between Extension of Covering Approximation
Space and Its Induction through Transversal Matroid

In this section, we introduce extension of a covering space and compare it with the in-
duction proposed in Section 3. In real problems, if an element of a covering includes all
the objects in a universe, it is clear that this kind of element is useless for problem solv-
ing. Therefore, Wang and Hu [19] did not discuss coverings with this kind of element.
In this paper, we also do not discuss this case.

For any X of a universe U , we denote ∼ X as the complement of X in U . At first,
we introduce the concepts of the complement of a covering and the extension of the
covering.

Definition 12. ([19]) Let (U,C) be a covering approximation space. C∼ = {∼ K :
K ∈ C} is called the complement of C.

Example 6. (Continued from Example 2) By the above definition, we have C∼ = {∼
K1,∼ K2}, where ∼ K1 = {d},∼ K2 = {a, b}.

Definition 13. ([19]) Let (U,C) be a covering approximation space. The ordered pair
(U,C�) is called the extended space of (U,C), where C� = C ∪ C∼ is the extension
of C.

Wang and Hu have proved that the extended space of a covering approximation space
generates more exact approximations than itself.
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Proposition 6. ([19]) Let (U,C) be a covering approximation space and X ⊆ U . Then
LC(X) ⊆ LC�(X) and HC�(X) ⊆ HC(X).

In order to compare the covering lower and upper approximations of the induced
space and ones of the extended space, we investigate the relationship between the neigh-
borhoods of the induction and ones of the extension. We first study some properties of
the neighborhoods of extension of a covering.

Lemma 1. Let (U,C) be a covering approximation space. Then C� = (C�)∼.

Proposition 7. Let (U,C) be a covering approximation space. Then {NC�(x) : x ∈
U} is a partition of U .

Proof. We see ∪
x∈U

NC�(x) = U . Then we need to prove for any x, y ∈ U , if NC�(x) 	=
NC�(y), then NC�(x) ∩NC�(y) = ∅.
We first prove if z ∈ NC�(x), then x ∈ NC�(z). According to Definition 3 and
Lemma 1, z ∈ NC�(x) ⇔ ∀K ∈ C�(x ∈ K → z ∈ K) ⇔ ∀K ∈ C�(z ∈∼
K → x ∈∼ K) ⇔ ∀ ∼ K ∈ C�(z ∈∼ K → x ∈∼ K) ⇔ x ∈ NC�(z). That is, if
z ∈ NC�(x), then NC�(x) = NC�(z).
Suppose NC�(x) ∩ NC�(y) 	= ∅. Then there exists z ∈ U such that z ∈ NC�(x)
and z ∈ NC�(y), i.e., NC�(x) = NC�(z) and NC�(y) = NC�(z). In other words,
NC�(x) = NC�(y) which is contradictory with the condition NC�(x) 	= NC�(y).
Therefore, for any x, y ∈ U , if NC�(x) 	= NC�(y), then NC�(x) ∩NC�(y) = ∅.

In order to illustrate the above result, we give an example as follows.

Example 7. (Continued from Examples 2 and 6) We have C� = {{a, b, c}, {c, d}, {d},
{a, b}}. Then, NC�(a) = {a, b}, NC�(b) = {a, b}, NC�(c) = {c} and NC�(d) = {d}.
Therefore, {NC�(x) : x ∈ U} is a partition of U .

In the following proposition, we will study the relationship between the neighbor-
hoods of the induction and ones of the extension.

Proposition 8. Let (U,C) be a covering approximation space and x ∈ U .
NC(M(C))(x) ⊆ NC�(x).

Proof. According to Proposition 3 and Theorem 1, NC(M(C))(x) = {x} ∪ {u ∈ U :
dC({x}) = dC({u}) = dC({x, u}) = 1}. We prove NC(M(C))(x) ⊆ NC�(x) under
two different conditions.
(1) dC({x}) = 1.
Suppose x ∈ Kx ∈ C. For any u ∈ NC(M(C))(x), dC({u}) = dC({x, u}) = 1.
According to Definition 11, we see that u ∈ Kx and u /∈ K , i.e., u ∈∼ K for all
K ∈ C− {Kx}. Therefore, u ∈ NC� . Hence NC(M(C))(x) ⊆ NC�(x).
(2) dC({x}) 	= 1.
We see NC(M(C))(x) = {x}. Since x ∈ NC�(x), then NC(M(C))(x) ⊆ NC�(x).

In the following theorem, we see the induced space of a covering approximation
space generates a bigger covering lower approximation and a smaller covering upper
approximation than the extend space of the covering approximation space.
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Theorem 3. Let (U,C) be a covering approximation space and X ⊆ U . Then LC�(X)
⊆ LC(M(C))(X) and HC(M(C))(X) ⊆ HC�(X).

Proof. According to Proposition 8, NC(M(C))(x) ⊆ NC�(x) for any x ∈ U .
For all x ∈ LC�(X), according to Definition 4, NC�(x) ⊆ X . Therefore,NC(M(C))(x)
⊆ X . Hence x ∈ LC(M(C))(X), i.e., LC�(X) ⊆ LC(M(C))(X).
For all x ∈ HC(M(C))(X), NC(M(C))(x) ∩ X 	= ∅. Since NC(M(C))(x) ⊆ NC�(x),
then NC�(x) ∩X 	= ∅. Therefore, x ∈ HC�(X), i.e., HC(M(C))(X) ⊆ HC�(X).

The following example is presented to confirm that the approximation ability of in-
duction of a covering is more stronger that extension of the covering.

Example 8. Let U = {a, b, c, d} and C = {K1,K2} where K1 = {a, b, c},K2 =
{a, c, d}.
Suppose X1 = {a, b} and X2 = {c, d}. Then the covering lower and upper approxima-
tions of X1 and X2 in (U,C) are as follows.
LC(X1) = ∅, HC(X1) = {a, b, c, d};
LC(X2) = ∅, HC(X2) = {a, b, c, d}.
According to the definition of extension of a covering, we have C� = {K1,K2,∼
K1,∼ K2} = {{a, b, c}, {a, c, d}, {d}, {b}}. Thus, the covering lower and upper ap-
proximations of X1 and X2 in (U,C�) are as follows.
LC�(X1) = {b}, HC�(X1) = {a, b, c};
LC�(X2) = {d}, HC�(X2) = {a, c, d}.
According to the definition of induction of a covering through its transversal matroid,
we have C(M(C)) = {clM(C)(x) : x ∈ U} = {{a}, {b}, {c}, {d}}. Hence, the cov-
ering lower and upper approximations of X1 and X2 in (U,C(M(C))) are as follows.
LC(M(C))(X1) = {a, b}, HC(M(C))(X1) = {a, b};
LC(M(C))(X2) = {c, d}, HC(M(C))(X2) = {c, d}.
The results show that the covering lower and upper approximations of X1 and X2 in
(U,C), (U,C�) and (U,C(M(C))) have the following relationships.
LC(X1) ⊆ LC�(X1) ⊆ LC(M(C))(X1); HC(M(C))(X1) ⊆ HC�(X1) ⊆ HC(X1);
LC(X2) ⊆ LC�(X2) ⊆ LC(M(C))(X2); HC(M(C))(X2) ⊆ HC�(X2) ⊆ HC(X2).

5 Conclusions

In this paper, we propose induction of a covering approximation space through transver-
sal matroids and study its relationship with extension of the covering approximation
space. Generally, the induced space of a covering approximation space generates more
exact approximations than the extended space. That is, the approximation ability of
induction of a covering is more stronger than extension of the covering. These interest-
ing results demonstrate the potential for studying attribute reduction of covering-based
rough sets by matroidal approaches. However, the problem of attribute reduction in
rough sets is NP-hard, and the algorithms to solve it are almost greedy ones. While
matroids provide well-established platforms for greedy algorithm foundation and im-
plementation. In future works, we will design an algorithm by matroidal approaches to
solve some problems in covering-based rough sets, such as attribute reduction.
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Abstract. In this paper, six types of optimistic multi-covering rough set mod-
els and six types of pessimistic multi-covering rough set models are proposed in
multi-covering approximation space. From three different points of views, rela-
tionships among multi-covering rough set models are deeply investigated. They
are relationships among optimistic multi-covering rough set models, relationships
among pessimistic multi-covering rough set models, and relationships among op-
timistic and pessimistic multi-covering rough set models. The obtained results
provide a theoretical foundation for the further discussions of multi-covering
rough sets.

Keywords: Comparison, Multi-covering approximation space, Multigranulation,
Rough set model.

1 Introduction

The covering rough set models are important extensions of the rough set model [1].
In [2], Samanta presented sixteen covering rough set models and studied their im-
plication lattices, six of which were also being systematically studied by W. Zhu in
[3,4,5,6,7,8]. The first covering rough set model was proposed by Zakowski [9] through
extending Pawlaks rough set theory from partition to covering. Following Zakowski’ s
work, Pomykala proposed the second covering rough set model in 1987 [10]. His main
method was the interior operator which is adopted by the topology theory. The defi-
nition of the third type of upper approximation operation [11] is believed to be more
reasonable than those of the first and second types, but no properties of this new class of
covering generalized rough sets have been discussed. By combining the definitions of
three types of covering rough sets, Zhu and Wang proposed the fourth covering rough
set model in [6]. From the topological point of view, Zhu presented the fifth covering
rough set model in [7], and explored the detailed properties of lower and upper approxi-
mations for this new type of rough sets. It is worth noting that the lower approximations
of these five models are same. Then, in [8], the sixth covering rough set model was de-
fined by Zhu. This model includes not only the covering upper approximation but also
the covering lower approximation.
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From the viewpoint of the multigranulation approach, Qian and Liang et al. [12] pro-
posed the concept of the multigranulation rough set by using a family of the equivalence
relations instead of single one. And the multigranulation rough set models (MGRS) are
given [12]. Their MGRS can be used to analyze distributed data, and it is more reason-
able than Pawlak’s rough set in practical applications [12,13].

By considering an evaluation system which involved many experts, the experts in the
same field or in different fields may provide the results of the assessment independently.
It can form a multi-covering approximation space on the domain. In the multi-covering
approximation space, the multi-covering rough set models are proposed by combing
covering rough set with multigranulation approach. A comparative analysis is adopted
to study the relationships among these models. The research work is carried out from
three aspects. They are the relationships among the optimistic multi-covering rough set
models, the relationships among the pessimistic multi-covering rough set models, and
the relationships among the optimistic and pessimistic multi-covering rough set models.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce
the fundamental concepts of covering based rough set models and the multigranulation
rough set model. In Section 3, multi-covering based rough set models is presented.
Section 4 is focused on the relationships among multi-covering based rough set models.
Results are summarized in Section 5.

2 Preliminary Concepts

2.1 Covering Based Rough Set Models

In this section, we will review some basic concepts which are involved in covering
based rough set models. According to Zhu’s work [3,4,5,6,7,8], six types of covering
based rough set models are introduced as follows.

Definition 1. [8] Let C be a covering of U , x ∈ U , the minimal description of x is
defined as

MdC(x) = {K ∈ C|x ∈ K ∧ (∀S ∈ C ∧ x ∈ S ∧ S ⊆ K ⇒ K = S)}. (1)

Definition 2. [8] Let C be a covering of U , x ∈ U , the neighborhood of x is defined
as

NeighborC(x) = ∩{K|x ∈ K ∈ C}. (2)

The definitions of the six covering lower and upper approximations are given as
follows.

Definition 3. [8] Let C be a covering of U , ∀X ⊆ U . The first covering lower approx-
imation set CLC(X) and the first covering upper approximation set FHC(X) with
respect to the covering C are defined as follows:

CLC(X) = ∪{K ∈ C|K ⊆ X}; (3)

FHC(X) = CLC(X) ∪ {Md(x)|x ∈ X − CLC(X)}. (4)
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Definition 4. [8] Let C be a covering of U , ∀X ⊆ U . The second, the third, the
fourth, and the fifth covering upper approximation sets with respect to the covering C
are denoted by SHC(X), THC(X), RHC(X), IHC(X), where

SHC(X) = ∪{K|K ∈ C,K ∩X 	= ∅}; (5)

THC(X) = ∪{MdC(x)|x ∈ X}; (6)

RHC(X) = CLC(X) ∪ {K ∈ C|K ∩ (X − CLC(X)) 	= ∅}; (7)

IHC(X) = CLC(X) ∪ {NeighborC(x)|x ∈ X − CLC(X)}. (8)

Definition 5. [8] Let C be a covering of U , ∀X ⊆ U . The sixth covering lower ap-
proximation set XLC(X) and the sixth covering upper approximation set XHC(X)
with respect to the covering C are defined as follows:

XLC(X) = {x|NeighborC(x) ⊆ X}; (9)

XHC(X) = {x|NeighborC(x) ∩X 	= ∅}. (10)

Following Wang’s work [14], relationships among six types of covering rough set
models have been presented. The details are shown in Theorems 1.

Theorem 1. [14] Let C be a covering of U , ∀X ⊆ U . The six types of covering rough
set models have some inclusion relations as follows:

1. CLC(X) ⊆ XLC(X);
2. IHC(X) ⊆ FHC(X) ⊆ THC(X) ⊆ SHC(X);
3. IHC(X) ⊆ FHC(X) ⊆ RHC(X) ⊆ SHC(X);
4. XHC(X) ⊆ SHC(X).

2.2 Multigranulation Rough Set

The multigranulation rough set (MGRS) [12] is constructed on the basis of a family
of indiscernibility relations, and it is different from Pawlak’s rough set [1], which is
constructed on the basis of a single indiscernibility relation.

In Qian’s MGRS, two different models have been defined. The first one is the opti-
mistic MGRS, the second one is the pessimistic MGRS [12].

The target of Qian’s optimistic MGRS is approximated through a family of the indis-
cernibility relations. In lower approximation, the word ”optimistic” is used to express
the idea that in multi independent granular structures, we need only at least one granular
structure to satisfy with the inclusion condition between equivalence class and target.
The upper approximation of optimistic multigranulation rough set is defined by the
complement of the lower approximation.

Definition 6. [12] Let I be an information system in which A1, A2, · · · , Am ⊆ AT ,
then ∀X ⊆ U , the optimistic multigranulation lower and upper approximations are
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denoted by
∑m

i=1 Ai
O

(X) and
∑m

i=1 Ai

O
(X), respectively,

m∑
i=1

Ai

O

(X) = {x ∈ U |[x]A1 ⊆ X ∨ [x]A2 ⊆ X ∨ · · · ∨ [x]Am ⊆ X}; (11)

m∑
i=1

Ai

O

(X) = ∼
m∑
i=1

Ai

O

(∼ X) (12)

where [x]Ai (1 ≤ i ≤ m) is the equivalence class of x in terms of set of attributes Ai,
∼ X is the complement of set X .

Theorem 2. [12] Let I be an information system in which A1, A2, · · · , Am ⊆ AT ,
then ∀X ⊆ U , we have

m∑
i=1

Ai

O

(X) = {x ∈ U |[x]A1 ∩X 	= ∅ ∧ [x]A2 ∩X 	= ∅ ∧ · · · ∧ [x]Am ∩X 	= ∅}.

By Theorem 2, we can see that though the optimistic multigranulation upper approx-
imation is defined by the complement of the optimistic multigranulation lower approxi-
mation, it can also be considered as a set in which objects have non–empty intersection
with the target in terms of each granular structure.

In Qian’s pessimistic MGRS [12], the target is still approximated through a family
of the indiscernibility relations. However, it is different from the optimistic case. In
lower approximation, the word ”pessimistic” is used to express the idea that in multi
independent granular structures, we need all the granular structures to satisfy with the
inclusion condition between equivalence class and target. The upper approximation of
pessimistic multigranulation rough set is also defined by the complement of the pes-
simistic multigranulation lower approximation.

Definition 7. [12] Let I be an information system in which A1, A2, · · · , Am ⊆ AT ,
then ∀X ⊆ U , the pessimistic multigranulation lower and upper approximations are

denoted by
∑m

i=1 Ai
P

(X) and
∑m

i=1 Ai

P
(X), respectively,

m∑
i=1

Ai

P

(X) = {x ∈ U |[x]A1 ⊆ X ∧ [x]A2 ⊆ X ∧ · · · ∧ [x]Am ⊆ X}; (13)

m∑
i=1

Ai

P

(X) = ∼
m∑
i=1

Ai

P

(∼ X). (14)

Theorem 3. [12] Let I be an information system in which A1, A2, · · · , Am ⊆ AT ,
then ∀X ⊆ U , we have

m∑
i=1

Ai

P

(X) = {x ∈ U |[x]A1 ∩X 	= ∅ ∨ [x]A2 ∩X 	= ∅ ∨ · · · ∨ [x]Am ∩X 	= ∅}.
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Different from the upper approximation of optimistic multigranulation rough set, the
upper approximation of pessimistic multigranulation rough set is represented as a set
in which objects have non–empty intersection with the target in terms of at least one
granular structure.

3 Multi-covering Based Rough Set Models

Definition 8. Let U is a nonempty set, C1, C2, · · · , Cm are m coverings of U . If C =
{C1, C2, · · · , Cm}, then the ordered pair (U,C) is called as multi-covering approxi-
mation space.

3.1 Optimistic Multi-covering Based Rough Set Models

In the multi-covering approximation space, each covering lower approximation set in-
duced by one single covering approximation space is regarded as the set of certain
objects in multi-covering approximation space. They are one of the separate ”granu-
lar”. At least one ”granular” in multi granular should meet the requirements. Thus, we
call them optimistic models. The lower approximation set in the multi-covering approx-
imation space is the union of covering lower approximation set induced by one single
covering approximation space.

Definition 9. In multi-covering approximation space (U,C), C = {C1, C2, · · · , Cm},
∀X ⊆ U . The first type of optimistic multi-covering lower approximation set CLO

C(X)
based on multi-covering C is defined as follows:

CLO
C(X) =

⋃m

i=1
CLCi(X). (15)

Similar to Theorem 3, optimistic multi-covering upper approximation set can also
obtained by the intersection operation on single covering upper approximation sets.

Definition 10. In multi-covering approximation space (U,C), C = {C1, C2, · · · ,
Cm}, ∀X ⊆ U . The first type of optimistic multi-covering upper approximation set
FHO

C(X) based on multi-covering C is defined as follows:

FHO
C(X) =

⋂m

i=1
FHCi(X). (16)

Definition 11. In multi-covering approximation space (U,C), C = {C1, C2, · · · ,
Cm}, ∀X ⊆ U . The second, the third, the fourth, and the fifth types of optimistic multi-
covering upper approximation sets with respect to multi-covering C are denoted by
SHO

C(X), THO
C(X), RHO

C(X), and IHO
C(X) respectively, where

SHO
C(X) =

⋂m

i=1
SHCi(X); (17)

THO
C(X) =

⋂m

i=1
THCi(X); (18)

RHO
C(X) =

⋂m

i=1
RHCi(X); (19)

IHO
C(X) =

⋂m

i=1
IHCi(X). (20)



Multi-covering Based Rough Set Model 241

Definition 12. In multi-covering approximation space (U,C), C = {C1, C2, · · · ,
Cm}, ∀X ⊆ U . The six type of optimistic multi-covering lower and upper approxi-
mation sets with respect to multi-covering C are denoted by XLO

C(X) and XHO
C(X)

respectively, where

XLO
C(X) =

⋃m

i=1
XLCi(X); (21)

XHO
C(X) =

⋂m

i=1
XHCi(X). (22)

3.2 Pessimistic Multi-covering Based Rough Set Models

In the multi-covering approximation space, each covering lower approximation set in-
duced by one single covering approximation space is regarded as one of the separate
”granular”. If all ”granular” in multi granular must meet the requirements, we call them
pessimistic models. The lower approximation set in the multi-covering approximation
space is the intersection of covering lower approximation set induced by one single
covering approximation space.

Definition 13. In multi-covering approximation space (U,C), C = {C1, C2, · · · ,
Cm}, ∀X ⊆ U . The first type of pessimistic multi-covering lower approximation set
CLP

C(X) based on multi-covering C is defined as follows:

CLP
C(X) =

⋂m

i=1
CLCi(X). (23)

Similar to Theorem 3, pessimistic multi-covering upper approximation set can also
obtained by the union operation of single covering upper approximation sets.

Definition 14. In multi-covering approximation space (U,C), C = {C1, C2, · · · ,
Cm}, ∀X ⊆ U . The first type of pessimistic multi-covering upper approximation set
FHP

C(X) based on multi-covering C is defined as follows:

FHP
C(X) =

⋃m

i=1
FHCi(X). (24)

Definition 15. In multi-covering approximation space (U,C), C = {C1, C2, · · · ,
Cm}, ∀X ⊆ U . The second, the third, the fourth, and the fifth types of pessimistic
multi-covering upper approximation sets with respect to multi-covering C are denoted
by SHP

C(X), THP
C(X), RHP

C(X), and IHP
C(X) respectively, where

SHP
C(X) =

⋃m

i=1
SHCi(X); (25)

THP
C(X) =

⋃m

i=1
THCi(X); (26)

RHP
C(X) =

⋃m

i=1
RHCi(X); (27)

IHP
C(X) =

⋃m

i=1
IHCi(X). (28)



242 L. Wang, X. Yang, and C. Wu

Definition 16. In multi-covering approximation space (U,C), C = {C1, C2, · · · ,
Cm}, ∀X ⊆ U . The six type of pessimistic multi-covering lower and upper approx-
imation sets with respect to multi-covering C are denoted by XLP

C(X) and XHP
C(X)

respectively, where

XLP
C(X) =

⋂m

i=1
XLCi(X); (29)

XHP
C(X) =

⋃m

i=1
XHCi(X). (30)

4 Relationships among Multi-covering Based Rough Set Models

4.1 Relationships among Optimistic Multi-covering Based Rough Set Models

In this section, we will systematically explore the relationships between two optimistic
multi-covering lower approximation sets and the relationships among six optimistic
multi-covering upper approximation sets. In multi-covering approximation space (U,
C), C = {C1, C2, · · · , Cm}, ∀X ⊆ U . By comparing the two more optimistic cover-
ing lower approximation sets, we have the following theorem:

Theorem 4. CLO
C(X) ⊆ XLO

C(X).

Theorem 4 shows that the first optimistic multi-covering lower approximation set is
belong to the sixth optimistic multi-covering lower approximation set.

In multi-covering approximation space (U,C), C = {C1, C2, · · · , Cm}, ∀X ⊆ U .
By comparing with the six types of optimistic multi-covering upper approximation sets,
the following some conclusions can also be found:

Theorem 5. IHO
C(X) ⊆ FHO

C (X) ⊆ THO
C(X) ⊆ SHO

C(X).

Theorem 6. IHO
C(X) ⊆ FHO

C (X) ⊆ RHO
C(X) ⊆ SHO

C(X).

Theorem 7. XHO
C(X) ⊆ SHO

C(X).

4.2 Relationships among Pessimistic Multi-covering Based Rough Set Models

In this section, we will systematically explore the relationships between two pessimistic
multi-covering lower approximation sets and the relationships among six pessimistic
multi-covering upper approximation sets. In multi-covering approximation space (U,
C), C = {C1, C2, · · · , Cm}, ∀X ⊆ U . By comparing the two more pessimistic cover-
ing lower approximation sets, we have the following theorem:

Theorem 8. CLP
C(X) ⊆ XLP

C(X).

By comparing with the six types of pessimistic multi-covering upper approximation
sets, the following several conclusions can also be found:

Theorem 9. IHP
C(X) ⊆ FHP

C(X) ⊆ THP
C(X) ⊆ SHP

C(X).

Theorem 10. IHP
C(X) ⊆ FHP

C(X) ⊆ RHP
C(X) ⊆ SHP

C(X).

Theorem 11. XHP
C(X) ⊆ SHP

C(X).
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4.3 Relationships among Optimistic and Pessimistic Multi-covering Based
Rough Set Models

In multi-covering approximation space (U,C), C = {C1, C2, · · · , Cm}, ∀X ⊆ U .
Relationships among optimistic and pessimistic multi-covering lower approximations
are concluded as follows:

Theorem 12. CLP
C(X) ⊆ CLO

C(X).

Theorem 13. XLP
C(X) ⊆ XLO

C(X).

Theorem 14. There is no inclusion relation between XLP
C(X) and CLO

C(X).

Relationships among optimistic and pessimistic multi-covering upper approxima-
tions can also be found:

Theorem 15. In multi-covering approximation space (U,C), C = {C1, C2, · · · , Cm},
∀X ⊆ U . We have

1. FHO
C(X) ⊆ FHP

C(X);
2. SHO

C(X) ⊆ SHP
C(X);

3. THO
C(X) ⊆ THP

C(X);
4. RHO

C(X) ⊆ RHP
C(X);

5. IHO
C(X) ⊆ IHP

C(X);
6. XHO

C(X) ⊆ XHP
C(X).

Theorem 16. In multi-covering approximation space (U,C), C = {C1, C2, · · · , Cm},
∀X ⊆ U . We have

1. FHO
C(X) ⊆ FHP

C(X) ⊆ THP
C(X) ⊆ SHP

C(X) ;
2. FHO

C(X) ⊆ FHP
C(X) ⊆ RHP

C(X) ⊆ SHP
C(X) ;

3. THO
C(X) ⊆ THP

C(X) ⊆ SHP
C(X);

4. RHO
C(X) ⊆ RHP

C(X) ⊆ SHP
C(X);

5. IHO
C(X) ⊆ IHP

C(X) ⊆ FHP
C(X) ⊆ RHP

C(X) ⊆ SHP
C(X) ;

6. IHO
C(X) ⊆ IHP

C(X) ⊆ FHP
C(X) ⊆ THP

C(X) ⊆ SHP
C(X) ;

7. XHO
C(X) ⊆ SHP

C(X) .

5 Conclusions

In this paper, we have introduced the multigranulation theory into the multi-covering
approximation space, and the optimistic and pessimistic multi-covering rough set mod-
els have been presented. Inclusion relations have been found among the optimistic and
pessimistic multi-covering lower and upper approximation sets. We will further study
on the relationships of approximations accuracy measures among multi-covering rough
set models. Furthermore, the knowledge discovery method in the multi-covering ap-
proximation space will be carried out in the future.
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Abstract. In this paper, Boolean vector algebra theory is introduced
into rough set theory. A theoretical framework of Boolean covering ap-
proximation space is proposed, and based on the principle of traditional
covering rough set theory, a pair of lower and upper approximation oper-
ators on a Boolean covering approximation space are defined. Properties
of the lower and upper approximation operators are investigated in de-
tail. The duality of the lower and upper approximation operators, and
lower and upper definable Boolean vectors are discussed. Finally, reduc-
tions of lower and upper approximation operators are explored.

Keywords: Boolean vector, Boolean covering approximation space,
Rough sets, Reduction.

1 Introduction

Rough set theory proposed by Pawlak [12] is an important tool to deal with
inexact, uncertain and insufficient information in information systems. Lower
and upper approximation operators are two basic concepts in rough set models.
By using them, knowledge hidden in an information system may be expressed in
the form of decision rule. Rough set theory has been successfully applied to many
areas, for example, feature selection [3], rule extraction [13], granular computing
[9], and so on.

Traditional rough set model is based on equivalence relations on the universe
of discourse. However, as pointed out by some scholars, equivalence relation or
partition is still restrictive for many applications, i.e. many practical data sets
can not be dealt with by traditional rough sets. Thus, some generalized rough
set models have been proposed to meet a variety of needs in recent years, for
example, binary relation based rough sets [10], covering rough sets [1,5,19], prob-
abilistic rough sets [15,16], etc. As a meaningful extension of traditional rough
set model, covering rough sets are taken to deal with more complex practical
problems which the traditional one can not handle [11]. Various types of cover-
ing rough set models are proposed [8,17,20], and relationships between covering
rough sets and other types of rough sets are also discussed [14,21]. Alternatively,
on reduction of covering rough sets is paid much attention by some authors
[2,11,18,19].
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Boolean matrix theory [4] is an important mathematical method to deal with
many practical problems such as industrial control and electronic circuit design,
etc. As for set theory, a subset and a binary relation on a universe can be
formulated naturally as a Boolean vector and a Boolean matrix, respectively, and
some computations of sets or relations can also be implemented by numerical
methods of Boolean matrix theory. Therefore, it is meaningful to use Boolean
vector algebra approach to investigate rough sets. However, little work has been
done on the study of rough set theory by means of Boolean vector algebra
theory. In [7], by means of Boolean matrix, invertible lower and upper rough
approximation operators based on binary relation are investigated. In [6], the
simultaneous Boolean equation solutions are studied using a rough set method,
and the connection between rough set theory and Dempster-Shafer theory of
evidence is also discussed. So far, it forcan not be found that Boolean vector
algebra theory has been used for the study of covering rough sets in the literature.
In this paper, Boolean vector algebra method is introduced to covering rough set
theory for the first time. As a result, a theoretical framework of covering rough set
theory is established in Boolean vector algebra. By some given Boolean vectors,
lower and upper approximations of an arbitrary Boolean vector are defined,
and properties of approximation operators are explored. Meanwhile, reduction
of lower and upper approximation operators are also discussed.

2 Pawlak Rough Sets and Boolean Vector Space

In this section, we review some basic knowledge about Pawlak rough sets and
Boolean vector space.

2.1 Pawlak Rough Sets

Let (U,R) be a Pawlak approximation space, where U is a non-empty and finite
set called universe of discourse, and R is a binary equivalence relation on U . For
any X ⊆ U , the lower and upper rough approximations of X in (U,R) can be
defined respectively by:

R(X) = ∪{E ∈ U/R|E ⊆ X}, R(X) = ∪{E ∈ U/R|E ∩X 	= ∅},

where U/R denotes the set of all equivalence classes of R.
In general, for any X ⊆ U , R(X) ⊆ X ⊆ R(X). And

– X is said to be lower rough definable if R(X) = X ;
– X is said to be upper rough definable if X = R(X);
– X is said to be rough definable if R(X) = X = R(X).

It is evident that three classes of rough definable sets of a Pawlak approxima-
tion space are identical.
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2.2 Boolean Vector Space

As for basic notions and kowledge of Boolean vector and Boolean matrix, please
refer to [4]. Here, the join, meet and negative Boolean operations are expressed
by ∨, ∧ and ¬, respectively, and Vn denotes the sets of all n-dimensional Boolean
row vectors. 0 and 1 denote the Boolean vectors with all 0 entries and 1 entries,
respectively.

Definition 1. A subset W ⊆ Vn is called a Boolean vector subspace, or simply
a vector subspace, if α ∨ β ∈ W for all α, β ∈ W .

Let W ⊆ Vn, denote [W ] = {∨D|D ⊆ W}, where ∨D represents the join of
all Boolean vectors of D. Then it is clear that [W ] is a vector subspace of Vn,
and [W ] is called the vector subspace spanned (or generated) by W .

Definition 2. A Boolean vector α ∈ Vn is said to be dependent on W ⊆ Vn if
α ∈ [W ]. A subset W ⊆ Vn is said to be dependent if at least one of the Boolean
vectors is dependent on the rest of the Boolean vectors. If W is not dependent,
then it is called independent.

Therefore, W ⊆ Vn is independent if and only if for any α ∈ W , α is not
dependent on W − {α}.

Definition 3. Let W1,W2 ⊆ Vn. W1 is said to can be represented by W2 if
W1 ⊆ [W2]. If W1 can be represented by W2, and W2 can be represented by W1,
then we say W1 and W2 are equivalent.

Obviously, W1 and W2 are equivalent if and only if [W1] = [W2].

Definition 4. Let W ⊆ Vn and B ⊆ W . B is called a basis of W if B is
independent, and [W ] = [B].

Proposition 1. The unique basis exists for any set of Boolean vectors unequal
to 0.

If W ⊆ Vn is independent, then the basis of W is itself.

Proposition 2. Let W1,W2 ⊆ Vn. Then W1 is equivalent to W2 if and only if
W1 and W2 have the same basis.

Definition 5. Let W ⊆ Vn. The number of vectors in the basis of W is called
the rank of W denoted by r(W ).

Proposition 3. Let W1,W2 ⊆ Vn. If W1 and W2 are equivalent, then r(W1) =
r(W2).

It should be pointed out that if r(W1) = r(W2) then W1 and W2 may not be
equivalent.
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3 Boolean Covering Approximation Spaces

W ⊆ Vn with nonzero vectors is called a covering of Vn if
∨

W = 1. Further,
a covering P of Vn is called a partition of Vn if for any α, β ∈ P , α = β or
α ∧ β = 0.

Definition 6. A pair (Vn,W ) is called a Boolean covering approximation space
if W is a covering of Vn. For any α ∈ Vn, a pair of lower and upper approxima-
tions, W (α) and W (α), are defined by

W (α) =
∨
{β ∈ W |β ≤ α},W (α) =

∨
{β ∈W |β ∧ α 	= 0}.

The pair W and W are called lower and upper approximation operators on
(Vn,W ), respectively.

It is clear that for any α ∈ Vn, W (α) and W (α) belong to [W ].

Example 1. Let W = {α1, α2, α3, α4}, where α1 = (1, 1, 0, 0, 0), α2 = (0, 1, 1,
1, 0), α3 = (0, 1, 0, 0, 1), and α4 = (0, 0, 1, 1, 0). Then (V5,W ) is a Boolean cov-
ering approximation space. Taking α = (1, 0, 1, 1, 0), we can find

{αi ∈W |αi ≤ α} = {α4}, {αi ∈W |αi ∧ α 	= 0} = {α1, α2, α4}.

By Definition 6 we have

W (α) = α4 = (0, 0, 1, 1, 0),W(α) = α1 ∨ α2 ∨ α4 = (1, 1, 1, 1, 0).

From Definition 6, the following theorem can be easily derived.

Theorem 1. Let (Vn,W ) be a Boolean covering approximation space.

(L0) W (0) = 0, (U0) W (1) = 1;

(L1′) W (1) = 1, (U0′) W (0) = 0;

(L1) α ≤ β ⇒W (α) ≤W (β), (U1) α ≤ β ⇒W (α) ≤ W (β);

(L2) W (α ∧ β) ≤ W (α) ∧W (β), (U2) W (α ∨ β) = W (α) ∨W (β);

(L3) W (α) ≤ α, (U3) α ≤ W (α);

(L4) ∀α ∈ [W ] ⇔W (α) = α;

(L5) W (α) = W (W (α));

(L6) W (α) = W (W (α)).

Definition 7. Let (Vn,W ) be a Boolean covering approximation space and α ∈
Vn. α is said to be lower or upper definable if W (α) = α or W (α) = α, respec-
tively.

Example 2. Let W = {α1, α2, α3}, where α1 = (1, 1, 0, 0, 0), α2 = (0, 1, 1, 0, 0),
and α3 = (0, 0, 0, 1, 1). Then (V5,W ) is a Boolean covering approximation space.
Taking α = (1, 1, 1, 0, 0) and β = (0, 0, 0, 1, 1), by Definition 6 we have

W (α) = (1, 1, 1, 0, 0),W(β) = (0, 0, 0, 1, 1).

So W (α) = α, W (β) = β. Therefore, α is lower definable, and β is upper
definable.
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Property (L4) of Theorem 1 shows that a Boolean vector of Vn is lower de-
finable in (Vn,W ) if and only if it belongs to [W ].

Theorem 2. Let (Vn,W ) be a Boolean covering approximation space and α ∈
Vn. Then α is upper definable if and only if for any β ∈ W , β ∧ α 	= 0 implies
β ≤ α.

Proof. Assume that W (α) = α. By Definition 6, for any β ∈ W , if β ∧ α 	= 0,
then β ≤W (α). By the assumption we have β ≤ α.

Conversely, if for any β ∈W , β∧α 	= 0 implies β ≤ α, then
∨
{β ∈ W |β∧α 	=

0} ≤ α, that is, W (α) ≤ α. Combining α ≤W (α) we get W (α) = α.

Theorem 3. Let (Vn,W ) be a Boolean covering approximation space and α ∈
Vn. Then α is upper definable if and only if ¬α is upper definable.

Proof. Assume that α is upper definable, that is, W (α) = α. Then for any
β ∈ W , if β ∧ α 	= 0, then β ≤ α. For any β ∈ W , if β ∧ ¬α 	= 0, then β 	≤ α,
thus β ∧α = 0, equivalently β ≤ ¬α. According to Theorem 2 we conclude that
¬α is upper definable.

As α = ¬(¬α), by the above proof we know that if ¬α is upper definable,
then α is upper definable.

Example 3. Let W be the covering of V5 in Example 2 and let α = (1, 1, 0, 0, 0).
From Definition 6 we can compute W (α) = (1, 1, 0, 0, 0) = α. Thus, α is upper
definable. Alternatively, ¬α = (0, 0, 1, 1, 1), by Example 2 we know that ¬α is
upper definable.

It should be noted that in general, W and W may not be dual to each other,
that is, they may not satisfy the following equations:

W (α) = ¬W (¬α) or W (α) = ¬W (¬α), ∀α ∈ Vn.

Theorem 4. Let (Vn,W ) be a Boolean covering approximation space. Then W
and W are dual to each other if and only if W is a partition of Vn.

Proof. (⇒) For any α ∈ W , clearly W (α) = α. By the duality of W and W , we
have ¬α = W (¬α). So, for any β ∈W , if β ∧¬α 	= 0, then β ≤ ¬α, equivalently
α∧β = 0. Thus, for any α, β ∈W , if α∧β 	= 0, then α∧¬β = 0 and β∧¬α = 0,
that is, α ≤ β and β ≤ α, thus α = β. We conclude that W is a partition of Vn.

(⇐) Let α ∈ Vn. It is clear that W = {β ∈W |β∧¬α = 0}∪{β ∈W |β∧¬α 	=
0}. Thus,

1 = ∨W = (∨{β ∈ W |β ∧ ¬α = 0}) ∨ (∨{β ∈ W |β ∧ ¬α 	= 0}).

Since β ∧ ¬α = 0 is equivalent to β ≤ α, by Definition 6 we have 1 = W (α) ∨
W (¬α). On the other hand, since {β ∈W |β∧¬α = 0}∩{β ∈ W |β∧¬α 	= 0} = ∅,
and W is a partition of Vn, it is easy to verify that W (α)∧W (¬α) = 0. Therefore,
W (α) = ¬W (¬α), or W (¬α) = ¬W (α).
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The equation in (L2) of Theorem 1 holds only under some conditions.

Theorem 5. Let (Vn,W ) be a Boolean covering approximation space. Then for
any α, β ∈ Vn, W (α ∧ β) = W (α) ∧W (β) if and only if [W ] is a σ-algebra.

Proof. (⇒) To prove that [W ] is a σ-algebra, it only need proving that for any
α, β ∈ W , α ∧ β ∈ [W ]. For any α, β ∈ W , since W (α) = α and W (β) = β,
from W (α ∧ β) = W (α) ∧W (β), it follows that α ∧ β = W (α ∧ β). By (L4) of
Theorem 1 we have α ∧ β ∈ [W ].

(⇐) It is clear that W (α ∧ β) ≤ W (α) ∧W (β). Conversely, for any γ ∈ W , if
γ ≤W (α)∧W (β), then there are θ, δ ∈ W such that θ ≤ α, δ ≤ β, and γ ≤ θ∧δ.
Since θ ∧ δ ∈ [W ], there are γ1, · · · , γk ∈ W such that θ ∧ δ = γ1 ∨ · · · ∨ γk. As
θ ∧ δ ≤ α∧ β, we have γ1 ∨ · · · ∨ γk ≤ α∧ β. Thus, γi ≤ α∧ β, i = 1, · · · , k, from
γ ≤ γi, i = 1, · · · , k, it follows that γ ≤ W (α ∧ β). Therefore, W (α) ∧W (β) ≤
W (α ∧ β). We conclude that W (α ∧ β) = W (α) ∧W (β) for any α, β ∈ Vn.

4 Reduction of Boolean Covering Approximation Space

Theorem 6. Let (Vn,W1) and (Vn,W2) be two Boolean covering approximation
spaces. Then (Vn,W1∪W2) is also a Boolean covering approximation space, and
for any α ∈ Vn,

W1 ∪W2(α) = W1(α) ∨W2(α), W1 ∪W2(α) = W1(α) ∨W2(α).

Proof. It directly proved by Definiton 6.

Theorem 7. Let (Vn,W1) and (Vn,W2) be two Boolean covering approximation
spaces. Then W1 ∪W2 = W1 if and only if W2 can be represented by W1.

Proof. (⇒) From W1 ∪W2(α) = W1(α) for all α ∈ Vn, we can see that [W1 ∪
W2] = [W1]. It is clear that W2 ⊆ [W2] ⊆ [W1 ∪W2]. So, W2 ⊆ [W1], that is, W2

can be represented by W1.
(⇐) Assume that W2 ⊆ [W1]. For any β ∈ W2 and α ∈ Vn, if β ≤ α, then

β ≤ W2(α). From W2 ⊆ [W1], we have β ∈ [W1]. There are β1, · · · , βk ∈W1 such
that β = β1 ∨ · · · ∨ βk. Clearly, βi ≤ α, i = 1, · · · , k, from which it follows that
βi ≤ W1(α), i = 1, · · · , k, which implies that β ≤ W1(α). Therefore, W2(α) ≤
W1(α) for all α ∈ Vn. Accoring to Theorem 6 it is got that W1 ∪W2(α) = W1(α)
for all α ∈ Vn.

Corollary 1. Let (Vn,W1) and (Vn,W2) be two Boolean covering approximation
spaces. Then W1 ≤W2 if and only if W1 can be represented by W2.

Theorem 8. Let (Vn,W1) and (Vn,W2) be two Boolean covering approximation
spaces. Then W1 = W2 if and only if W1 and W2 are equivalent.

Proof. It immediately follows from Corollary 1.

Theorem 9. Let (Vn,W1) and (Vn,W2) be two Boolean covering approximation
spaces. Then W1 = W2 if and only if W1 and W2 have the same basis.
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Proof. It follows from Theorem 8 and Proposition 2.

From Theorem 8 and Proposition 3, the below conclusion follows.

Corollary 2. Let (Vn,W1) and (Vn,W2) be two Boolean covering approximation
spaces. If W1 = W2, then r(W1) = r(W2).

Theorem 10. Let (Vn,W1) and (Vn,W2) be two Boolean covering approxima-
tion spaces. If for any α ∈ W1, there is β ∈ W2 such that α ≤ β, then W1 ≤W2.

Proof. For any β1 ∈W1, if β1 ≤W1(α), that is, β1 ∧α 	= 0, as there is β2 ∈W2

such that β1 ≤ β2, we have β2 ∧ α ≥ β1 ∧ α, then it follows that β2 ∧ α 	= 0.
Thus, β1 ≤ β2 ≤ W2(α). We conclude that W1(α) ≤ W2(α), ∀α ∈ Vn, that is,
W1 ≤W2.

Theorem 11. Let (Vn,W1) and (Vn,W2) be two Boolean covering approxima-
tion spaces. If for any α1 ∈ W1, α2 ∈ W2, there are β2 ∈ W1, β1 ∈W2 such that
α1 ≤ β1 and α2 ≤ β2, then W1 = W2.

From Theorem 11 we have the following conclusion.

Theorem 12. Let (Vn,W ) be a Boolean covering approximation space and D ⊆
W . If for any α ∈W −D, there is β ∈ D such that α ≤ β, and for any α ∈ D,
there is no β ∈ D − {α} such that α ≤ β, then D = W , and C 	= W for all
C ⊂ D.

5 Conclusions

In this paper, according to covering rough set theory, we establish a theoretical
framework of rough set theory in Boolean vector algebra. The notions of Boolean
covering approximation space, and lower and upper approximation operators are
proposed, some properties of lower and upper approximation operators are inves-
tigated. Some sufficient and necessary conditions under which some properties of
approximation operators hold are obtained. Lower and upper definable Boolean
vectors are discussed, and approaches for judging them are given. Finally, reduc-
tions of lower and upper approximation operators are studied. Some sufficient
and necessary conditions of lower approximation operator reduction are gained.
Especially, a sufficient condition of upper approximation operator reduction is
gotten. Introducing Boolean vector algebra to covering rough set theory may
help us not only to uncover the mathematical essence of covering rough set
theory, but also to develop simple computation methods of covering rough sets.
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Abstract. Interval-valued fuzzy soft set (IVFSs) is a new and effective
mathematical tool used for processing incomplete and uncertain data. In
order to describe and measure uncertain information of IVFSs perfectly,
dynamic analysis of granular computing based on covering about IVFSs
is originally discussed in this paper. Firstly, the α-dominance relation
between any two objects in IVFSs is built by constructing the possibility
degree or the weighted possibility degree after standardization, then α-
dominance class and α-covering approximation space of IVFSs could be
generated on this relation. Secondly, knowledge capacity is proposed to
measure the granular information through introducing concepts of the
description set and the indistinguishability set. Finally, an illustrative
example shows dynamic changes of uncertain information under different
granular structure.

Keywords: IVFSs, possibility degree, the weighted possibility degree,
α-dominance relation, α-covering approximation space, dynamic, knowl-
edge capacity.

1 Introduction

The real world is full of uncertainty, imprecision and vagueness. In fact, most
of the concepts we are meeting in everyday life are vague rather than precise.
However, most of traditional mathematical tool for formal modeling, reasoning
and computing are crisp, deterministic and precise in character, so the classical
methods are not always suitable. To solve these problems, some theories such as
probability theory, fuzzy set theory[1], intuitionistic fuzzy set theory[2], rough
set theory[3], vague set theory[4], and interval mathematic[5] are proposed as
efficient tools to deal with different types of uncertainties. However, all these
theories have their inherent limitation which is pointed out by Molodtsov[6] be-
cause of their inadequacy of the parameterization tools of the theory. In 1999,
Molodtsov[6] initiated soft set theory as a new mathematical tool for dealing
with uncertainties which is free from the difficulties affecting existing methods.
This theory has proven useful in many different fields such as the smoothness of
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functions, game theory, operations research, Riemann integration, Perron inte-
gration, probability theory, and measurement theory[6,7].

Up to the present, research on soft sets has been very active, and there have
been many progresses concerning practical applications of soft theory. Maji et
al.[8,9] discussed many operations of soft set and firstly applied soft set theory
in decision making. Actually, soft set can be combined with other uncertain
theories, such as Roy and Maji[10] originally extended the soft set to fuzzy
soft set(FSs) and presented a theoretic approach to cope with decision making
problems. Then Kong et al.[11] revised the Roy-Maji method by considering
“fuzzy choice values”. Feng et al.[12] further discussed the application of fuzzy
soft sets to decision making in an imprecise environment and firstly proposed
an adjustable approach by using level soft set. Similar to[12], Jiang et al.[13]
extended this adjustable approach to intuitionistic fuzzy soft set. Majumda and
Samanta constructed similarity measures in fuzzy soft set in[14].

In many fuzzy decision making applications the related membership functions
are extremely individual (dependent on experts’ evaluation of alternatives) and
thus cannot be lightly confirmed. It is more reasonable to give an interval-valued
data to describe degree of membership; in other words, we can make use of
interval-valued fuzzy sets which assign to each element an interval that approx-
imates the “real” (but unknown) membership degree. In respond to this, Yang
et al.[15] defined a hybrid model called interval-valued fuzzy soft sets and in-
vestigated some of their basic properties. They also presented an algorithm to
solve decision making problems based on interval-valued fuzzy soft sets. Feng
et al.[16] gave deeper insights into interval-valued fuzzy soft set based decision
making discussed in[15].

Nowadays, few people have made granularity analysis for IVFSs, the main
reason may be that it’s hard to find an equivalence relation or preference re-
lation to generate granular structure. Inspired by[17], we try to investigate the
granularity analysis of IVFSs. The remainder of this paper is organized as fol-
lows: To facilitate our discussion, we first recall the interval-valued fuzzy soft sets
in Section 2. In Section 3, we briefly introduce the possibility degree between
any two objects in universe of IVFSs, then construct the α-dominance class of
IVFSs, and these classes institute a covering of universe. Section 4 is discussed
the dynamic analysis of granular computing based on α-covering approximation
space. In Section 5, an illustrative example is given to reflect dynamic changes
of uncertain information under different granular structure. Finally, we conclude
the paper with a summary in Section 6.

2 Preliminaries

In this section, some basic concepts and notions will be introduced. let U be an
non-empty set, called initial universal set of objects and E is a set of parameters
in relation to U which is often the set of attributes, characteristics or properties
of objects. Let P (U) denote the power set of U . According to[6], the concept of
soft sets is defined as follows.
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Definition 1.([6]) (Soft set) A pair (F,E) is called a soft set over U , where F
is a mapping given by F : E → P (U).
By definition, a soft set (F,E) over the universe U can be regarded as a param-
eterized family of subsets of the universe U , which gives an approximation (soft)
description of the objects in U . As pointed out by Molodtsov[6], for any parame-
ter e ∈ E, the subset F (e) ⊆ U may be considered as the set of e-approximation
elements in the soft set (F,E). It is worth noting that F (e) may be arbitrary:
some of them may be empty, and some may have nonempty intersection.

Definition 2.([10]) (FSs) Let F (U) denotes the set of all fuzzy subset of U ,
a pair (F,E) is called a fuzzy soft set over U , where F is a mapping given by
F : E → F (U).
In this definition, fuzzy subsets are used as substitutes for the crisp subsets.
Hence every soft set may be considered as a fuzzy soft set. Also it is obvious
that a fuzzy set could be naturally viewed as a fuzzy soft set whose parameter set
is a singleton. Generally speaking, F (e) is a subset in U , ∀e ∈ E. Following the
standard notations, F (e) can be typically be written as F (e) = {(x, F (e)(x)) :
x ∈ U}.
Definition 3.([5]) (IVFs) An interval-valued fuzzy set X̂ on an universe U is a
mapping such that

X̂ : U → Int([0, 1]),

where Int([0, 1]) stands for the set of all closed subintervals of [0, 1], the set of
all interval-valued fuzzy sets on U is denoted by ℘(U).
Suppose that X̂ ∈ ℘(U), ∀x ∈ U, μX̂ = [μ−

X̂
(x), μ+

X̂
(x)] is called the degree of

membership an element x to X̂. μ−
X̂

(x) and μ+

X̂
(x) are referred to as the lower

and upper degrees of membership x to X̂ where 0 ≤ μ−
X̂

(x) ≤ μ+

X̂
(x) ≤ 1.

Definition 4.([15]) (IVFSs) A pair (F̃ , E) is called an interval-valued fuzzy soft
set (IVFS) over U , where F̃ is a mapping given by F̃ : E → ℘(U).
An interval-valued fuzzy soft set is a parameterized family of interval-valued
fuzzy subsets of U . ∀e ∈ E, F̃ (e) is called the interval fuzzy value set of the
parameter e. It is easy to see that fuzzy soft sets are special case of IVFSs since
interval-valued fuzzy sets are extensions of classical fuzzy sets. According to
characters of the IVFSs, every IVFSs could be represented in form of a matrix, so
an IVFSs (F̃ , E) can be described as (F̃ , E) = ([μ−

ij , μ
+
ij ])m×n = [F̃ (ej)(xi)]m×n.

3 α-Dominance Class on the Possibility Degree of IVFSs

3.1 Standardized Methods of the IVFSs

In real-life, the attribute always has two types, namely benefit-type and cost-
type. In order to eliminate the effect of different physical dimensions to decision
making, we need conduct a pretreatment for every IVFSs. Suppose (F̃ , E) �
([μ−

ij , μ
+
ij ])m×n is an IVFSs, and E = {e1, e2, . . . , en} is the set of attributes,

U = {x1, x2, . . . , xm} is the object set. Let matrix R = (r̃ij)m×n = ([r−ij , r
+
ij ])m×n
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be the standardization of (F̃ , E), where [r−ij , r
+
ij ] satisfies r−ij =

μ−
ij

∑
m
i=1 μ+

ij

, r+ij =

μ+
ij

∑m
i=1 μ−

ij

(ej is benefit-type) or r−ij =
(μ+

ij)
−1

∑m
i=1(μ

−
ij)

−1
, r+ij =

(μ−
ij)

−1

∑m
i=1(μ

+
ij)

−1
(ej is cost-

type).

3.2 The Possibility Degree of IVFSs

Definition 5. (Possibility degree) Suppose R = (r̃ij)m×n = ([r−ij , r
+
ij ])m×n is

the standardization of (F̃ , E) , the possibility degree of the object xi is superior
to xk is defined by

P (xi ≥ xk) =
1

n

n∑
j=1

{
r+ij − r−kj
lij + lkj

[1− I(r−ij ≥ r+kj)− I(r+ij ≤ r−kj)] + I(r−ij ≥ r+kj)}.

Where lij = r+ij−r−ij , lkj = r+kj−r−kj .i, k = 1, 2, . . . ,m.I(·) is an indicator function.

In fact, the coefficient 1/n may be viewed as attribute weights of E. Inspired by
this notion, the weighted possibility degree can be defined as follow.

Definition 6. (Weighted possibility degree) Suppose R = (r̃ij)m×n =

([r−ij , r
+
ij ])m×n is the standardization of (F̃ , E), E = {e1, e2, . . . , en} is attributes

set, the attribute weights is ω = {ω1, ω2, . . . , ωn},
∑n

j=1 ωj = 1, 0 ≤ ωj ≤ 1, j =
1, 2, . . . , n. The weighted possibility degree of the object xi is superior to xk is
defined by

Pω(xi ≥ xk) =

n∑
j=1

ωj{
r+ij − r−kj
lij + lkj

[1− I(r−ij ≥ r+kj)− I(r+ij ≤ r−kj)] + I(r−ij ≥ r+kj)}.

Where lij = r+ij−r−ij , lkj = r+kj−r−kj .i, k = 1, 2, . . . ,m.I(·) is an indicator function.

Proposition 1. P (xi ≥ xk) and Pω(xi ≥ xk) satisfy following properties.
(1)0 ≤ P (xi ≥ xk) ≤ 1, 0 ≤ Pω(xi ≥ xk) ≤ 1;
(2)P (xi ≥ xk) = 1

2 , Pω(xi ≥ xk) = 1
2 ;

(3)P (xi ≥ xk) + P (xi ≤ xk) = 1, Pω(xi ≥ xk) + Pω(xi ≤ xk) = 1.
Proof. The proof could be obtained easily according to definition 5 and 6.

3.3 α-Dominance Class and α-Covering Approximation Space of
IVFSs

According to section 3.2, the (or weighted) possibility degree between any two
objects of U could be constructed, then we can obtain a (or weighted)possibility
degree matrix P = [Pki]m×m � [P (xi ≥ xk)]m×m (or P = [Pω

ki]m×m � [Pω(xi ≥
xk)]m×m). For convenience, we take the possibility degree for example in follow-
ing discussion. In fact, the possibility degree measures the dominance relation
between two objects, and every dominance relation could generate dominance
class for a given universe.
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Definition 7. Suppose P is the possibility degree matrix of (F̃ , E), α(∈ [0, 1])
is a constant, for every xk ∈ U , the α-dominance class [xk]≥α of the object xk

can be defined by [xk]≥α = {xi ∈ U : P (xi ≥ xk) ≥ α}.
Obviously, every α-dominance class [xk]≥α(k = 1, 2, . . . ,m) is a subset of U ,
and all α-dominance classes of objects constitute a covering of U , namely U =
∪m
k=1[xk]≥α, we call Cα = {[xk]≥α : xk ∈ U}mk=1 is α-covering of U , and (U,Cα)

constitute a α-covering approximation space.

4 Dynamic Granularity Analysis Based on α-Covering
Approximation Space

In fact, there usually exist some overlaps in the granulation of practical prob-
lems, traditional partition model cannot deal with them, while the covering
model may play an essential role in some respects. In α-covering approximation
space, objects of U construct particles by α-dominance relation. For an element
in U , granularity level may change with adjusting α, this suggests uncertainty
is decided by the α-dominance relation in covering granular space, and granu-
lar structure changes along with α. So we construct some measure methods to
describe these dynamic granular structure.

Definition 8. Let (U,Cα) be a α-covering approximation space, α ∈ [0, 1], for
∀x ∈ U , the description set of x in(U,Cα) is defined by DesCα(x) = {K :
K ∈ Cα ∧ x ∈ K}. The indistinguishability set of x in (U,Cα)is defined by
IndCα(x) = ∩{K : K ∈ DesCα(x)}.
Definition 9. Let (U,Cα) be a α-covering approximation space, α ∈ [0, 1],where
U is non-empty finite objects set called universe, Cα = {[xk]≥α : xk ∈ U}mk=1

is a α-covering of U ,the knowledge capacity measurement of Cα is defined as
follows:

M(Cα) =

⎧⎨⎩1 |[xk]≥α| = 1, k = 1, 2, . . . ,m

1−
∑

xk∈U

|IndCα(xk)|/|U |2 otherwise .

where | · | denotes the cardinal number of the set.
In which, when the granular of α-covering Cα is the thickest universe relation,
namely Cα = {U}, it is minimum value 0 of the α-covering’s knowledge capacity,
this shows that it contains the most uncertain information. When the granular
of Cα is the thinnest, namely |[xk]≥α| = 1, k = 1, 2, . . . ,m, it is maximum value
1 of α-covering’s knowledge capacity, and suggests the uncertainty of universe
U is the weakest.

Proposition 2. Let (U,Cα) and (U,Cβ) be two covering approximation spaces,
α, β ∈ [0,1], if for ∀x ∈ U, IndCα(x) = IndCβ

(x),then M(Cα) = M(Cβ).

Definition 10. Let (U,Cα) and (U,Cβ)be two covering approximation spaces,
α, β ∈ [0,1], if for ∀K ∈ Cα,there exist S ∈ Cβ make K ⊂ S be true, and for
∀S ∈ Cβ , there exist K ∈ Cα make K ⊂ S be true, then we call covering Cα is
thinner than Cβ , denoted by Cα ≤ Cβ .
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Proposition 3. Let Cα and Cβ be two coverings, if α > β, then Cα ≤ Cβ .

Proposition 4. Let (U,Cα) and (U,Cβ) be two covering approximation spaces,
α, β ∈ [0, 1], if α ≥ β, then M(Cα) ≥ M(Cβ).
Proof. By α ≥ β, we have Cα ≤ Cβ . For ∀K ∈ Cα, ∃S ∈ Cβ , s.t.K ⊂ S,
and ∀S ∈ Cβ , ∃K ∈ Cα, s.t.K ⊂ S. Hence ∀xk ∈ U , we have DesCα(xk) ⊂
DesCβ

(xk). So IndCα(xk) ⊂ IndCβ
(xk), then |IndCα(xk)| ≤ |IndCβ

(xk)|, namely
1−

∑
xk∈U

|IndCα(xk)|/|U |2 ≥ 1−
∑

xk∈U

|IndCβ
(xk)|/|U |2, therefore from definition

9, we have M(Cα) ≥M(Cβ).
Proposition 4 indicates that by adjusting values of α, we could obtain different
granular structures, and make dynamic analysis for uncertain information.

5 Illustrative Examples

A company wants to select a manager, let U = {x1, x2, . . . , x6}, be the set of
candidates, the attribute set E = {e1, e2, . . . , e6}, where e1=ideological moral-
ity, e2=work attitude, e3=work style, e4=knowledge structure, e5=leadership,
e6=market developing ability. Suppose after statistical process, every candidate’s
assess information under the various attributes can be expressed as IVFSs over
U , denoted by (F̃ , E) (Table 1). Since all attributes in are benefit-type, after
standardization, we obtain the matrix R = (r̃ij)m×n = ([r−ij , r

+
ij ])m×n(Table 2).

According to definition 5, by computing the possibility degree between any two
objects in U , we obtain the possibility degree matrix P .

P =

⎛⎜⎜⎜⎜⎜⎜⎝
0.5000 0.4288 0.4117 0.4973 0.4166 0.4982
0.5712 0.5000 0.4908 0.5946 0.5124 0.5934
0.5883 0.5092 0.5000 0.6228 0.5109 0.6016
0.5072 0.4054 0.3772 0.5000 0.4080 0.4840
0.5824 0.4876 0.4891 0.5920 0.5000 0.6057
0.5018 0.4066 0.3984 0.5160 0.3943 0.5000

⎞⎟⎟⎟⎟⎟⎟⎠
Table 1. The value of (F̃ , E)

e1 e2 e3 e4 e5 e6
x1 [0.4000,0.7000] [0.5000,0.6000] [0.2000,0.5000] [0.2000,0.8000] [0.1000,0.7000] [0.6000,0.9000]
x2 [0.3000,0.5000] [0.1000,0.9000] [0.1000,0.7000] [0.1000,0.5000] [0.2000,0.4000] [0.3000,0.8000]
x3 [0.4000,0.5000] [0.2000,0.6000] [0.3000,0.6000] [0.4000,0.6000] [0.0000,0.3000] [0.4000,0.7000]
x4 [0.5000,0.8000] [0.4000,0.9000] [0.5000,0.7000] [0.7000,0.9000] [0.1000,0.3000] [0.4000,0.6000]
x5 [0.2000,0.4000] [0.1000,0.4000] [0.3000,0.9000] [0.3000,0.5000] [0.5000,0.6000] [0.2000,0.9000]
x6 [0.4000,0.7000] [0.3000,0.5000] [0.4000,0.8000] [0.6000,0.8000] [0.4000,0.9000] [0.2000,0.5000]

When α = 0.45, we could calculate 0.45-dominance class and the description
set of every object(Table 3).

By definition 8, calculate the indistinguishability set of every object as follows:
IndC0.45(x1) = {x1, x4, x6}, IndC0.45(x2) = {x1, x2, · · · , x6}, IndC0.45(x3) =
{x1, x2, · · · , x6},
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Table 2. The value of R

e1 e2 e3 e4 e5 e6
x1 [0.1111,0.3182] [0.1282,0.3750] [0.0476,0.2778] [0.0488,0.3478] [0.0313,0.5385] [0.1364,0.4286]
x2 [0.0833,0.2273] [0.0256,0.5625] [0.0238,0.3889] [0.0244,0.2174] [0.0625,0.3077] [0.0682,0.3810]
x3 [0.1111,0.2273] [0.0513,0.3750] [0.0714,0.3333] [0.0976,0.2609] [0.0000,0.2308] [0.0909,0.3333]
x4 [0.1389,0.3636] [0.1026,0.5625] [0.1190,0.3889] [0.1707,0.3913] [0.0313,0.2308] [0.0909,0.2857]
x5 [0.0556,0.1818] [0.0256,0.2500] [0.0714,0.5000] [0.0732,0.2174] [0.1563,0.4615] [0.0455,0.4286]
x6 [0.1111,0.3182] [0.0769,0.3125] [0.0952,0.4444] [0.1463,0.3478] [0.1250,0.6923] [0.0455,0.2381]

Table 3. 0.45-dominance class and the description set

0.45-dominance class the description set

[x1]
≥0.45 : {x1, x4, x6} DesC0.45(x1) : [xk]

≥0.45, k = 1, 2, · · · , 6
[x2]

≥0.45 : {x1, x2, · · · , x6} DesC0.45(x2) : [x2]
≥0.45, [x3]

≥0.45, [x5]
≥0.45

[x3]
≥0.45 : {x1, x2, · · · , x6} DesC0.45(x3) : [x2]

≥0.45, [x3]
≥0.45, [x5]

≥0.45

[x4]
≥0.45 : {x1, x4, x6} DesC0.45(x4) : [xk]

≥0.45, k = 1, 2, · · · , 6
[x5]

≥0.45 : {x1, x2, · · · , x6} DesC0.45(x5) : [x2]
≥0.45, [x3]

≥0.45, [x5]
≥0.45

[x6]
≥0.45 : {x1, x4, x6} DesC0.45(x6) : [xk]

≥0.45, k = 1, 2, · · · , 6

IndC0.45(x4) = {x1, x4, x6}, IndC0.45(x5) = {x1, x2, · · · , x6}, IndC0.45(x6) =
{x1, x4, x6}.

According to definition 9, M(C0.45) = 1− (3 + 6 + 6 + 3 + 6 + 3)/36 = 9/36.
Similar to above discussion, when α = 0.50, calculate 0.50-dominance class

and the description set(Table 4).

Table 4. 0.50-dominance class and the description set

0.50-dominance class the description set

[x1]
≥0.50 : {x1} DesC0.50(x1) : [xk]

≥0.50, k = 1, 2, · · · , 6
[x2]

≥0.50 : {x1, x2, x4, x5, x6} DesC0.50(x2) : [x2]
≥0.50, [x3]

≥0.50

[x3]
≥0.50 : {x1, x2, · · · , x6} DesC0.50(x3) : [x3]

≥0.50

[x4]
≥0.50 : {x1, x4} DesC0.50(x4) : [xk]

≥0.50, k = 2, 3, · · · , 6
[x5]

≥0.50 : {x1, x4, x5, x6} DesC0.50(x5) : [x2]
≥0.50, [x3]

≥0.50, [x5]
≥0.50

[x6]
≥0.50 : {x1, x4, x6} DesC0.50(x6) : [x2]

≥0.50, [x3]
≥0.50, [x5]

≥0.50, [x6]
≥0.50

By definition 8, calculate the indistinguishability set of every object as follows:

IndC0.50(x1) = {x1}, IndC0.50(x2) = {x1, x2, x4, x5, x6}, IndC0.50(x3) =
{x1, x2, · · · , x6},
IndC0.50(x4) = {x1, x4}, IndC0.50(x5) = {x1, x4, x5, x6}, IndC0.50(x6) =
{x1, x4, x6}.

Thus M(C0.50) = 1− (1 + 5 + 6 + 2 + 4 + 3)/36 = 15/36.
Since 0.50 > 0.45, the result is M(C0.50) > M(C0.45), the conclusion of propo-

sition 4 has been checked. On the other hand, it suggests that the uncertain
information of covering C0.50 is less than C0.45, that is to say, the granularity of
the space (U,C0.50) is thinner than (U,C0.45).
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6 Conclusions

The dynamic analysis problems of IVFSs based on granular computing problems
have been investigated in this paper. In order to build α-dominance relation of
IVFSs, we present a new measure called the weighted possibility degree among
objects in universe, and this relation could generate α-dominance class and α-
covering approximation space of IVFSs. Furthermore, for the sake of observing
dynamic changes of granularity under different precision, the concept of knowl-
edge capacity is proposed. The example reflects that the dynamic changes of
IVFSs’ granular space based on the value of α changes. Actually, the knowledge
capacity becomes larger along with the granularity of covering becomes thinner.
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Abstract. The aim of this paper is to investigate the multiple attribute
group decision making(MGDM) problems under linguistic information,
in which attribute weights and the expert weights are completely un-
known, and the attribute values take the form of linguistic variables.
Firstly, an objective method based on information granularity and en-
tropy is proposed for acquiring attribute weights. The expert weights
by use of attribute weights and the relative entropy are obtained. Sec-
ondly, we utilize the numerical weighting linguistic average operator to
aggregate the linguistic variables corresponding to each alternative, and
rank the alternatives according to the linguistic information. Finally, an
illustrative example is given to verify practicality and effectiveness of the
developed approach.

Keywords: multiple attribute group decision making, linguistic infor-
mation, information granularity, entropy, relative entropy.

1 Introduction

Since MGDM problems with linguistic information have a wide application back-
ground, both theory and application of linguistic MGDM problems have received
extensive attentions[1 − 11]. Slowinski[1] defined four classes of multi-attribute
decision problems, depending on the structure of their representation, its inter-
pretation and the kind of questions related. Then, they characterized the rough
set methodology for each particular class of decision problems. Kacprzyk[2] pro-
posed two types of measurements: consensus degrees and proximity measures.
The first one is used to assess the agreement among all the experts’ opinions,
while the second one is used to find out how far the individual opinions are
form the group opinion. Both types of measurements are computed at three dif-
ferent levels of representation of information: pair of alternatives, alternatives
and experts. They have also shown how to make the measurement of consensus
possible in multi-granular linguistic GDM problems, it was necessary to unify
the different linguistic term sets into a single linguistic term. People usually
combine MGDM methods with the four decision models to deal with linguistic
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MGDM problems: approximate model based on extension principle[3]; ordered
language model[4]; 2-tuple model[5,6] and the model that computes with words
directly[7]. Wei[6] proposed two extended 2-tuple aggregation operators, based
on which a method for linguistic multiple attribute group decision making prob-
lems was proposed. Wu[8] put forward a maximizing deviation method based on
linguistic weighted arithmetic averaging operator and non-linear optimization.
Boran[9] combined TOPSIS method with intuitionistic fuzzy set to deal with
linguistic MGDM problems based on intuitionistic fuzzy weighted averaging op-
erator. Xu[10] presented a linguistic hybrid averaging operator and studied some
desirable properties of the above operator, then developed a practical approach
to MGDM problems in linguistic setting. Xu[11] presented a uniform approach
based on linguistic evaluation scale by introducing the concepts of virtual term
and virtual term index, and then proposed a method based on the term indices
for group decision making problems with multiple attribute linguistic informa-
tion by defining the additive weighted mean operator and the hybrid aggregation
operator. In addition, some researchers[12− 14] also transformed linguistic in-
formation into fuzzy numbers (such as trapezoidal fuzzy numbers or triangular
fuzzy numbers), and developed other linguistic MGDM methods by processing
the above fuzzy numbers. By transforming multi-granularity uncertain linguistic
terms into trapezoidal fuzzy numbers, Fan[14] proposed a group decision making
method based on the extended TOPSIS method. In [15] based on the existing
MGDM methods with linguistic information, three key evaluation indices are
presented to measure the results of MGDM from different aspect by Pang, et
al. Different decision makers may provide multi-granular linguistic information
in multi-criteria group decision making problems, so Herrera-Viedma et al. de-
fined the measurements of consensus to help gain the more rational decision
results[16], and paper[17] provided a way to use multi-granular linguistic model
for management decision making in performance appraisal.

To develop a new method to evaluate the results of MGDM problems on
linguistic information is aim of this paper. The rest of the paper is organized
as follows. Section 2 introduces the operational laws of linguistic variables and
briefly reviews the NWLA operator and the relative entropy. In section 3 we
present an new methods for MGDM based on the entropy and the relative en-
tropy under linguistic environment. A practical example is given in Section 4.
Section 5 concludes the paper.

2 Preliminaries

We consider a finite and totally ordered discrete linguistic label setS = {sl|l =
−L, . . . ,−1, 0, 1, . . . , L}, where l is a positive integer, sl represents a linguistic
variable and satisfies sq > sl if q > l.

Example 1. A set of five labels: S = {s−2 = very thin, s−1 = thin, s0 =
fair, s1 = fat, s2 = very fat}. Obviously, the mid linguistic label s0 represents
an assessment of “indifference”, and with the rest of the linguistic labels be-
ing placed symmetrically around it. To preserve all the given information, the
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discrete label set S̄ = {sl|l ∈ [−Q,Q]}, where Q(Q > L) is a lager rational
number. If sl ∈ S, then sl is termed an original linguistic label, otherwise, sl
is termed a virtual linguistic label. For example, consider the discrete linguistic
label set S given in Example 1, all the linguistic labels in S are original linguistic
labels, the other linguistic labels which do not belong to S, such as s−0.5 and
s1.5, are virtual linguistic labels, here s−0.5 denotes a linguistic label located
between “thin” and “fair”, and s1.5 denotes a linguistic label located between
“fat” and “very fat”.

In general, an expert uses the original linguistic labels to evaluate alternatives,
and the virtual linguistic labels can only appear in operation.

Definition 1.[7] Consider any two linguistic labels sα, sβ ∈ S̄, we define their
operational laws as follows:
(1) sα ⊕ sβ = sα+β ;
(2) λsα = sλα, λ ∈ [0, 1].

Definition 2.[18] Let NWLA: Sm → S̄, if

NWLAw(sα1, sα2, . . . , sαm) = w1sα1 ⊕ w2sα2 ⊕ · · · ⊕ wmsαm �
m⊕
j=1

wjsαj

where w = (w1, w2, . . . , wm) is the weighting vector of the linguistic variable
sαj , and wj ≥ 0, j = 1, 2, . . . ,m,

∑m
j=1 wj = 1, sαj ∈ S̄, then NWLA is called a

numerical weighting linguistic average (NWLA) operator.

Definition 3.[19] Let xi, yi ≥ 0, i = 1, 2, . . . , n, and
∑n

i=1 xi =
∑n

i=1 yi = 1,
we define the relative entropy between discrete probability distributions X =
(x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) as follows:

h(X,Y ) =

n∑
i=1

xi ln(
xi

yi
).

3 An Approach to Multiple Attribute Group
Decision-Making under Linguistic Setting

Throughout this section, let D = (d1, d2, . . . , dt) be a set of experts, and U =
(u1, u2, . . . , ut) be a weight vector of experts which is completely unknown, where
uk ≥ 0(k = 1, 2, . . . , t),

∑t
k=1 uk = 1. Let O = (o1, o2, . . . , on) be a set of

alternatives, A = (a1, a2, . . . , am) be a finite set of attributes. Suppose A(k) =

(a
(k)
ij )m×n is the decision matrix, where a

(k)
ij ∈ S̄ takes the form of linguistic

value, given by the expert dk ∈ D, for alternative oi ∈ O with respect attribute

aj ∈ A. w(k) = (w
(k)
1 , w

(k)
2 , . . . , w

(k)
m ) be a weight vector of attributes under the

expert k which is also completely unknown, where w
(k)
j ≥ 0(j = 1, 2, . . . ,m),∑m

j=1 w
(k)
j = 1.
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3.1 Attribute Weights Acquisition Based on Information
Granularity

Given aj ∈ A, let ind(aj) = (oi, op)|a(k)ij = a
(k)
pj = sl}, apparently, ind(aj) is

the equivalence relation on O, and O/ind(aj) is the partition of O, shortly and
conveniently denoted by O/ind(aj) = {[o1]aj , [o2]aj , . . . , [on]aj}.

Definition 4. Let O/ind(aj) = {[o1]aj , [o2]aj , . . . , [on]aj}, then the entropy E
(k)
aj

of the attribute aj given by an expert dk is defined as:

E(k)
aj

= − 1

|O|

n∑
i=1

log
|[oi]|aj

|O| , j = 1, 2, . . . ,m, k = 1, 2, . . . , t. (1)

where |[oi]aj | is the cardinality of the equivalence class of oi.

Obviously, we have 0 ≤ E
(k)
aj ≤ ln|O|. There are two special cases, one is that

every alternative has all the same linguistic value sl under the attribute aj, then

E
(k)
aj = 0. The other is that each alternative has unique linguistic value under the

attribute aj , E
(k)
aj = ln|O|. In the former case, the attribute aj contribute nothing

to the decision making process, so we can set less weight even 0 for it. While in
the latter case, the aj can distinguish the alternatives from each other, so we can

set more weight for it. Just like shannon entropy, the information entropy E
(k)
aj

can depict the distinguish ability of the attribute aj . Therefore we can construct
attribute weights based on the following thoughts: For a fixed expert, the more
entropy value of one attribute, the bigger weight of this attribute. So we propose

the attribute weighting method based on the entropy E
(k)
aj in the following, the

weight of the attribute aj under the expert dk is given by

w
(k)
j =

E
(k)
aj

m∑
j=1

E
(k)
aj

. (2)

Apparently, w
(k)
j ≥ 0,

∑m
j=1 w

(k)
j = 1(j = 1, 2, . . . ,m, k = 1, 2, . . . , t).

3.2 Expert Weights Acquisition Based on the Relative Entropy

Owing to relative entropy usually describes discrimination information, we utilize
the relative entropy to measure the difference evaluation results between indi-
vidual expert and others. The discrimination decrease along with the smaller
relative entropy value for an expert, then such an evaluation results given by
the expert are better. Therefore, the expert should be assigned a bigger weight;
Otherwise, such an expert should be evaluated as a very small weight. From
Eq. (2) we know all the attribute value W = (w(1), w(2), . . . , w(t))T , where

w(k) = (w
(k)
1 , w

(k)
2 , . . . , w

(k)
m ). Combining these two aspects, we have



A Novel MGDM Method Based on Information Granularity 265

Definition 5. The expert weight uk is presented by

uk =
1−Hk

t∑
k=1

(1 −Hk)

. (3)

where Hk =
t∑

p=1

m∑
j=1

w
(k)
j ln

w
(k)
j

w
(p)
j

is the relative entropy between the expert dk and

others.

3.3 Aggregate Methods and Group Decision-Making Process

In the following we shall utilize the NWLA operators to aggregate the linguistic
variables corresponding to each alternative, and rank the alternatives by means
of the linguistic information.

Utilize the decision information given in matrix A(k), and the operator:

zi = NWLAk
U,W (a

(k)
i1 , a

(k)
i2 , . . . , a

(k)
im )

=

t⊕
k=1

uk

m⊕
j=1

w
(k)
j a

(k)
ij , k = 1, 2, . . . , t, j = 1, 2, . . . ,m. (4)

Then we rank oi and select the best one(s) in accordance with the values of
zi(i = 1, 2, . . . , n).

Based on the above analysis, we develop a practical method for solving the
MGDM problems, in which the information about attribute weights and the
expert weights are completely unknown, and the attribute values take the form
of linguistic variables.

The method involves the following steps:

Step 1. Let A(k) = (a
(k)
ij )n×m be a linguistic decision matrix, given by an expert

dk, for the alternative oi ∈ O with respect attribute aj ∈ A. We have E(k) =

(E
(k)
a1 , E

(k)
a2 , . . . , E

(k)
am ) by using Eq. (1).

Step 2. We solve the formula Eq. (2) to determine the attribute weights w(k) =

(w
(k)
1 , w

(k)
2 , . . . , w

(k)
m ), k = 1, 2, . . . , t.

Step 3. We get the expert weights U = (u1, u2, . . . , ut) by use of Eq. (3).
Step 4. Utilize the the attribute weights and expert weights and by Eq. (4), we
obtain the aggregated values zi of the alternatives oi(i = 1, 2, . . . , n).
Step 5. Rank all the alternatives oi by using the overall values zi(i = 1, 2, . . . , n)
and then get the most desirable one(s).

4 Illustrative Example

Suppose an investment company, which wants to invest a sum of money in the
best option. The appropriate invest from among ten alternatives O = {o1, o2, . . . ,
o10}. The selection decision is made on the basis of four subjective attributes A =
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{a1, a2, . . . , a4}. There are three expert D = {d1, d2, d3}. The expert compare
these ten companies with respect to the four attributes by using linguistic, and

construct the linguistic decision matrix A(k) = (a
(k)
ij )10×4(k = 1, 2, 3), as listed

in tables 1-3.where s−1 = poor, s0 = fair, s1 = good. In what follows, we apply
the developed procedure to the selection of best investment company from the
potential company oi(i = 1, 2, . . . , 10).

Table 1. The linguistic decision matrix A(1)

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
a1 s1 s−1 s−1 s1 s−1 s0 s0 s1 s1 s0
a2 s1 s0 s−1 s0 s−1 s0 s−1 s−1 s−1 s1
a3 s0 s−1 s−1 s−1 s−1 s−1 s0 s1 s0 s0
a4 s1 s0 s0 s0 s0 s0 s−1 s0 s0 s0

Table 2. The linguistic decision matrix A(2)

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
a1 s1 s−1 s1 s1 s0 s0 s−1 s1 s1 s0
a2 s0 s0 s0 s0 s−1 s−1 s−1 s−1 s−1 s1
a3 s1 s−1 s−1 s0 s−1 s−1 s0 s1 s0 s−1

a4 s1 s0 s0 s0 s0 s0 s0 s0 s0 s0

Table 3. The linguistic decision matrix A(3)

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
a1 s0 s−1 s−1 s−1 s−1 s−1 s0 s1 s1 s0
a2 s1 s0 s−1 s−1 s−1 s0 s1 s1 s−1 s0
a3 s0 s−1 s−1 s0 s−1 s−1 s0 s0 s0 s−1

a4 s1 s0 s1 s−1 s0 s0 s−1 s0 s0 s0

We compute the weight of the attribute w(1) = (w
(1)
1 , w

(1)
2 , w

(1)
3 , w

(1)
4 ) by the

method given in section 3.
O/a1 : {{o1, o4, o8, o9}, {o6, o7, o10}, {o2, o3, o5}}
O/a2 : {{o1, o10}, {o2, o4, o6}, {o3, o5, o7, o8, o9}}
O/a3 : {{o8}, {o1, o7, o9, o10}, {o2, o3, o4, o5, o6}}
O/a4 : {{o1}, {o2, o3, o4, o5, o6, o8, o9, o10}, {o7}}

Step 1: E
(1)
a1 = − 1

10 (log 4
10 + log 3

10 + log 3
10 + log 4

10 + log 3
10 + log 3

10 + log 3
10

+ log 4
10 + log 4

10 + log 3
10 ) = 1.0889

E
(1)
a2 = 1.0297, E

(1)
a3 = 0.9433, E

(1)
a4 = 0.6390

Step 2: w
(1)
1 =

E(1)
a1

∑4
j=1 E

(1)
aj

= 1.0889
1.0889+1.0297+0.9433+0.6390 = 0.294

w
(1)
2 = 0.278, w

(1)
3 = 0.255, w

(1)
4 = 0.173.

Likewise, we can get

w
(2)
1 = 0.309, w

(2)
2 = 0.284, w

(2)
3 = 0.309, w

(2)
4 = 0.098.
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w
(3)
1 = 0.278, w

(3)
2 = 0.278, w

(3)
3 = 0.187, w

(3)
4 = 0.257.

Step 3: Then we obtain that

H1 =
3∑

p=1

4∑
j=1

w
(1)
j ln

w
(1)
j

w
(p)
j

= w
(1)
1 ln

w
(1)
1

w
(2)
1

+ w
(1)
2 ln

w
(1)
2

w
(2)
2

+ w
(1)
3 ln

w
(1)
3

w
(2)
3

+ w
(1)
4 ln

w
(1)
4

w
(2)
4

+ w
(1)
1 ln

w
(1)
1

w
(3)
1

+ w
(1)
2 ln

w
(1)
2

w
(3)
2

+ w
(1)
3 ln

w
(1)
3

w
(3)
3

+ w
(1)
4 ln

w
(1)
4

w
(3)
4

= 0.0558

H2 = 0.1245, H3 = 0.1467
Therefore, we get the weight of experts:

u1 =
1−H1∑3

k=1(1−Hk)
= 0.353, u2 = 0.328, u3 = 0.319.

Step 4: By NWLA operators, we obtain the overall values zi of the alternatives
oi(i = 1, 2, . . . , 10):

z1 = s0.6659, z2 = s−0.5458, z3 = s−0.4232, z4 = s−0.1451, z5 = s−0.7168

z6 = s−0.4432, z7 = s−0.3463, z8 = s0.3867, z9 = s0.0139, z10 = s0.0185

Step 5: Rank all the alternatives oi by using alternatives zi(i = 1, 2, . . . , 10):

o1 + o8 + o10 + o9 + o4 + o7 + o3 + o6 + o2 + o5

and thus o1 is the best choice.

5 Conclusions

In this article, we have investigated the MGDM problems, in which the attribute
values take the form of linguistic variables, and the information about attribute
weights and the expert weights are completely unknown. In order to determine
the attribute weights, a new entropy formula is proposed based on information
granularity. Especially, for the situations where the information about the ex-
pert weights is completely unknown, we have provided an objective method for
obtaining the expert weights. A new method has also been developed for ranking
alternatives. A practical application of the developed method to selection of best
investment company has also been given.
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The Impacting Analysis on Multiple Species

Competition
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Abstract. Based on the predicted climatic data from 2041 to 2050 and
the climatic data and the distribution data of the three tree species
that Larix gmelinii, Betula platyphylla Suk and Picea koraiensis Nakai
from 1981 to 1990 in Northeast China, 12 climatic factor indicators are
extracted by using the theory and methods of hierarchical clustering
and fusion technology related fuzzy proximity relations. The prediction
mathematical model of tree species distribution is built by using the sta-
tistical theory and methods, its algorithm is studied, and the predicted
distribution figures produced by single tree species and the ones pro-
duced by multiple tree species competition are obtained. By analyzing
the prediction, the distributions of three tree species drift to the north.
Furthermore, the climate change and competition among species are the
main impact factors for predicting distributions of three tree species.

Keywords: Granular computing, tree species, climatic factors, hierar-
chical clustering, clustering fusion, distribution prediction.

1 Introduction

Global warming has now become the undoubted fact [1]. The climate factors
change has profound impact on global ecosystem, especially terrestrial ecosys-
tem, global phenology and species distribution [2]. Therefore the species distri-
bution prediction under climate change is always one of the central issues of the
climate change.

Parmesan and Yohe found that migration of species distribution is associated
with climate change by analyzing distribution change of more than 1700 species
in past 20-140 years [3]. Root et al. found that 80% of species migration is highly
correlated to temperature change through the integrated analysis on 1473 species
in 143 researches [4]. Some scholars also studied the impact of climate change on
a variety of plants and animals, [5-7]. Recently, the impacting analysis on species
distribution in different time sequences is increasingly focused on [1]. Erasmus et
al. chose annually and monthly mean temperature, annually and monthly max-
imum temperature, etc [5]. Luoto et al. chose temperature and precipitation in
the coldest month, accumulated temperature of greater than 5oC, etc [6]. Fors-
man et al. chose annually mean temperature, temperature and precipitation in

� Corresponding author.
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breeding season, etc [7]. These studies all shown that species distribution predic-
tion is closely related to the climatic factors such as temperature, precipitation,
evaporation in the distribution. Therefore extracting appropriate climatic factor
from the climate data of different time sequences is critical to species distribu-
tion prediction.

As the typical tree species in Northeast China, Larix gmelinii, Betula platy-
phylla Suk and Picea koraiensis Nakai have the very high ecological and economic
value [8-10]. On the basis of climate data in the distribution of species, this paper
analyzes the impact on their distributions from 2041 to 2050.

2 Data Source

The study area is located in Northeast China, including Liaoning, Jilin, Hei-
longjiang and eastern Inner Mongolia, belonging to temperate continental mon-
soon climate. Its area is 147 square kilometer, accountting for 15.3% of the
national land area. Based on the survey data provided by Shenyang institute of
applied ecology of CAS over the years and the related literatures, the distribu-
tion data of three tree species in Northeast China from 1981 to 1990 is obtained
by applying GIS. The original distributions (OD) of three tree species are shown
in Fig.1. The climate scenario data is obtained by applying MIROC-RegCM
based on the data from 1951 to 2000 in China, including 20C3M (1951-2000)
and SRESA1B (2001-2100). The average climate data in Northeast China from
1981 to 1990 and from 2041 to 2050 are obtained, and the grid point numbers
of Larix gmelinii, Betula platyphylla Suk and Picea koraiensis Nakai denotes
M1 = 197943, M2 = 155989, M3 = 13085, respectively. The 5 climatic factors
data such as monthly mean evaporation, monthly mean precipitation, monthly
mean temperature, monthly mean maximum temperature and monthly mean
minimum temperature in the distributions of three tree species are extracted.

Fig. 1. OD of three tree species in Northeast China, where the red, the blue and the
turquoise is Larix gmelinii, Betula platyphylla Suk, Picea koraiensis Nakai, respectively
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3 Data Processing

3.1 Extracting Climatic Factor Indicators

On the basis of the above climatic factors data, the research is carried out on
extracting the climatic factors impacting tree species in Northeast China by
using the hierarchical clustering and fusion technology related fuzzy proxim-
ity relations [11-14]. Synthesizing the 5 climatic factors, we obtain that the
optimal cluster of the 12 months in the distributions of three tree species is
{{1, 2, 3, 4, 10, 11, 12} , {5, 6, 7, 8, 9}}.The result can be interpreted as that the
growing period of three tree species is May to September and the non-growing
period of them is January to April and October to December every year. These
coincide with the conclusions of the related references [15-17]. Therefore, 12 cli-
matic factor indicators impacting three tree species are extracted as follows: E,
P , T , Tmax, Tmin denotes the annually monthly mean evaporation, precipita-
tion, temperature, maximum temperature and minimum temperature, respec-
tively; E5−9, P5−9, T5−9, Tmax5−9, Tmin5−9 denotes the monthly mean evapo-
ration, precipitation, temperature, maximum temperature and minimum tem-
perature during May to September, respectively; Tmax1−4,10−12, Tmin1−4,10−12

is the monthly mean maximum temperature and the monthly mean minimum
temperature during January to April and October to December.

3.2 Basic Assumptions

The research work is carried out based on the following assumptions.

Assumption 1: The data on the 12 climatic factor indicators in tree species
distribution is a random distribution, respectively.

Assumption 2: The dependence of tree species on climatic factors is stable
and independent, regardless of the change of the biological and ecological char-
acteristics of tree species, especially their adaptive changes on climatic factors.

Assumption 3: The numerical values of the 12 climatic factor indicators in
tree species distribution limit the range of adaptable distribution of tree species.

Form Assumption 1 and 3, the adaptable distribution area of species is deter-
mined by the probability related climatic factors. In this paper, the probability
of the optimal adaptable distribution (OAD), the one of the medium adaptable
distribution (MAD) and the one of the general adaptable distribution (GAD) is
token 90% (α = 0.1), 95% (α = 0.05) and 99% (α = 0.01), respectively.

Assumption 4: The distribution of species in the same ecological community
meets Gauss competitive exclusion principle (Gauss, 1934).

Assumption 5: All tree species have the same annually diffusion rate under
the natural state.

3.3 Confidence Intervals of Climatic Factor Indicators

On the basis of the climatic factors data in OD, the confidence intervals at the
level 1 − α of 12 climatic factor indicators in three tree species distribution are
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processed. Let The data of a climatic factor index be x1 x2, · · · , xn, its order
statistics is marked x(1), x(2), · · · , x(n), satisfying x(1) � x(2) � · · · � x(n). So
the steps for calculating the confidence interval [a, b] at the level 1 − α of the
index are as follows: (1) Take [x(k), x(m)] by using the optimal model min{|
x(m) − x(k) | |(m − k + 1)/n � 1 − α)}; (2) Calculate a = (x(k) + x(k−1))/2,
b = (x(m) + x(m+1))/2. So the confidence intervals at the level 1 − α of 12
climatic factor indicators in the three tree species distribution are calculated.
For example, the results of Larix gmelinii are shown in Table 1. The other tables
are omitted, here.

Table 1. Confidence intervals at the level 1− α of 12 climatic factor indicators in the
original distribution of Larix gmelinii

Indicator E E5−9 P P5−9 T Tmax

α = 0.1 [43.84,51.73] [82.94,97.66] [51.80,84.58] [92.40,154.66] [-4.09,0.51] [8.33,13.36]
α = 0.05 [43.68,55.39] [82.98,105.66] [49.82,87.30] [90.68,162.14] [-4.64,0.93] [7.98,14.17]
α = 0.01 [43.68,61.58] [82.70,115.20] [47.02,93.18] [86.68,174.66] [-5.14,2.74] [7.28,15.32]

Indicator Tmin T5−9 Tmax5−9 Tmin5−9 Tmax1−4,10−12 Tmin1−4,10−12

α = 0.1 [-14.54,-9.96] [10.62,15.68] [24.12,29.66] [0.74,5.64] [-3.04,1.90] [-25.81,-21.19]
α = 0.05 [-15.18,-9.63] [10.06,15.98] [23.60,30.12] [0.36,5.90] [-3.51,2.61] [-26.09,-20.26]
α = 0.01 [-15.68,-7.95] [9.46,17.34] [23.00,31.34] [-0.26,6.74] [-3.91, 4.21] [-26.81,-18.44]

3.4 Predicting Single Tree Species Distribution

According to Assumption 1-3 and Table 1, an algorithm for predicting the dis-
tribution of single tree species from 2041 to 2050 is given. For example, the
algorithm for predicting distribution of Larix gmelinii is given as follows.

Algorithm A:
Step 1: Take out the data ysijk of each grid point (i, j) from the predicted data
of 2041-2050 on 5 climatic factors, where i denotes column number of each data
matrix, j is row number, k is month number, s = 1, 2, 3, 4, 5 are the 5 indicators
respectively, and Ω = {(i, j)|i = 1, 2, · · · , 3930, j = 1, 2, · · · , 1923}.
Step 2: Statistically calculate the 12 climatic factor indicators of each point
in grid Ω based on Step 1, the results are expressed as Zt

ij respectively, t =
1, 2, · · · , 12 is respectively the 12 climatic factor indicators. Thus matrices Zt on
the 12 climatic factor indicators is obtained.
Step 3: Given α, test the numerical values of the 12 climatic factor indicators
of 2041-2050 in each point in OD of Larix gmelinii based on Table 1 and Step
2. If their values are in the confidence intervals at the level 1 − α, the point is
reserved. So, the reserved area of Larix gmelinii from 2041 to 2050 is obtained.
Step 4: Based on the reserved area, select a circle of points (Note: Extending
a circle denotes extending 1 km), where the points are extension points. By
testing every climatic factor indicator in each extension point, if an extension
point passes the test, it is a reserved point and added it into the reserved area.
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Step 5: Repeat Step 4 until no extension point passes the test or extension
number reaches K.
Step 6: Output the points in the reserved area.

Remark 1: In Step 6, K is computed as follows. If the natural diffusion rate of
species is t (km/year), then the diffusion distance is r · t (km) after t years, and
K = [r · t], where the value r depends on the biological characteristics of species.
Under natural state, the natural diffusion speeds of three tree species are slow,
so we take r = 1 km/year. For example, there are 60 years from 1981-1990 year
to 2041-2050 year, and the diffusion distance is 60 km, so K = 60. In a general
way, we can adjust the grid interval to determine the value of K. For example,
adjusting the grid interval to be a = r (km), 60 years have passed from 1981-
1990 year to 2041-2050 year, so K = 60.

By Algorithm A, the OAD, MAD and GAD produced from Larix gmelinii in
Northeast China from 2041 to 2050 are shown in Fig. 2. Similarly, we obtain
the predicted figures about OAD, MAD and GAD of Betula platyphylla Suk and
Picea koraiensis Nakai, here we omit them.

OAD MAD GAD

Fig. 2. Prediction of OAD, MAD and GAD of Larix gmelinii in Northeast China from
2041 to 2050, where the red denotes the OD and the blue is the prediction distribution

The point number in OAD, MAD, GAD and OD are shown in Table 2.

Table 2. The statistical table of point number in OAD, MAD, GAD and OD

Species OD OAD MAD GAD

Larix gmelinii 197943 10337 40398 165160
Betula platyphylla Suk 155989 230881 296109 520776
Picea koraiensis Nakai 13085 167 1204 21254

The prediction figures of three tree species, especially Larix gmelinii and Be-
tula platyphylla Suk, have a lot of overlap. These reflect that three tree species
have the similar niche and they usually form mixed forest [18].



274 H.-B. Yan and X.-Q. Tang

3.5 Predicting Multiple Tree Species Competition Distribution

According to Assumption 4 and 5, and the distribution prediction about sin-
gle tree species in section 3.4, an algorithm for predicting the distribution by
multiple species competition from 2041 to 2050 is given as follows.

Algorithm B:
Step 1: Test the values of the 12 climatic factor indicators of 2041-2050 in each
point in the OD of 3 tree species based on Zt in Algorithm A and the corre-
sponding confidence interval tables. If all climatic factor indicator values of a
tree species in a point are in the corresponding confidence intervals at the level
1 − α, the point is reserved. Thus the reserved areas of the 3 tree species are
obtained, marked the reserved areas of three tree species is respectively S1, S2

and S3, and S0 = ∪3
i=1Si, S0 = Ω \ S0.

Step 2: Select a circle of extending points to the outside S0, and test each new
extending point: If the extending point only pass the testing of a tree species, the
point is added into the reserved area of the tree species; If the extending point
adapts to 2 or more tree species simultaneously, the point belongs to the tree
species reserved area that it is the nearest to the point according to Assumption
4 and 5; If no new point is incorporated into the reserved area of a certain tree
species in a certain round test, stop the extension of this tree species, and con-
tinue the extension of the other tree species.
Step 3: Repeat Step 2 until no extension point passes the test or extension
number reaches K.
Step 4: Output the points in the reserved areas.

By Algorithm B, the optimal adaptable competition distribution (OACD) ,
the medium adaptable competition distribution (MACD) and the general adapt-
able competition distribution (GACD) produced by three tree species competi-
tion from 2041 to 2050 are shown in Fig.3. Furthermore, the point number in
OACD, MACD, GACD and OD are shown in Table 3.

OACD MACD GACD

Fig. 3. Prediction of OACD, MACD and GACD of three tree species in Northeast
China from 2041 to 2050, where the red, the blue and the turquoise is respectively
Larix gmelinii, Betula platyphylla Su and Picea koraiensis Nakai
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Table 3. The statistical table of point number in OACD, MACD, GACD and OD

Species OD OACD MACD GACD

Larix gmelinii 197943 10123 39084 142713
Betula platyphylla Suk 155989 224506 268324 403689
Picea koraiensis Nakai 13085 165 957 1329

4 Discussion and Conclusions

From the predicted figures about single tree species distribution from 2041 to
2050, the corresponding characteristics are obtained as follows: (1) Vast area in
OD is no longer suitable for the survival of three tree species; (2) The distribu-
tions of three tree species drift to the north under climate change. Furthermore,
Larix gmelinii and Betula platyphylla Suk drift to the northwest, and Picea ko-
raiensis Nakai drifts to the northeast. These phenomena are consistent with the
conclusions of the related references [3,19,20]; (3) The distribution areas reduce
significantly, especially Larix gmelinii and Picea koraiensis Nakai.

Based on Table 2,3 and Fig.3, the compared table of OAD, MAD, GAD,
OACD, MACD and GACD related to OD are shown in Table 4.

Table 4. The percentages of the area of OAD, MAD, GAD, OACD, MACD and GACD
related to the area of OD

Species OAD MAD GAD OACD MACD GACD

Larix gmelinii 5.22% 20.41% 83.44% 5.11% 19.75% 72.10%
Betula platyphylla Suk 148.01% 189.83% 333.85% 143.92% 172.01% 258.79%
Picea koraiensis Nakai 1.28% 9.20% 162.43% 1.26% 7.31% 10.16%

From Table 4, the impacts on their distributions by introducing the competition
mechanism among three tree species can be interpreted as follows: (1) The com-
petitiveness of Larix gmelinii is the strongest in three tree species, i.e., it has the
apical dominance, and the climate change is not conducive to its survival. So, the
climate change is an important impact factor for predicting its distribution; (2)
The competitiveness of Picea koraiensis Nakai is the weakest among the three tree
species, and the climate change is conducive to the its survival. Thus, the competi-
tion among species is an important impact factor for predicting its distribution; (3)
The competitiveness of Betula platyphylla Suk is medium, and the climate change is
conducive to its survival. Thus, the climate change and competition among species
are the main impact factors for predicting its distribution.
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Abstract. The topological properties of coverings and their corresponding cov-
ering approximation operators have drawn special attention because these topo-
logical properties have important applications in rough sets. In this paper, we
present some topological characterizations for three covering approximation op-
erators. In the first part, we present certain topological characterizations for the
covering lower approximation operator in an infinite universe, while the topo-
logical characterizations for the first and the second types of covering upper
approximation operators are studied in a finite universe. In the second part, the
relationships among three operators and the relationships among three topolog-
ical spaces are established. In a word, topology theory provides useful tools to
study covering-based rough sets.
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1 Introduction

Covering is an important data structure and it is widely used to represent data sets in
practical applications [1, 3, 10]. As a useful tool to deal with covering data, covering-
based rough sets have been attracting more and more research interest [9, 11, 14, 16].
However, diverse problems in covering-based rough sets are NP-hard and the algo-
rithms to solve them are almost greedy ones. In order to establish applicable mathemat-
ical structures for these problems, covering-based rough sets are combined with some
other theories and methods, especially, topology. The topology provides mathematical
tools and interesting topics in studying information systems and rough sets [5–7, 13].
Therefore, the connection between covering-based rough sets and topology has deep
theoretical and practical significance beyond doubt.

In this paper, we present topological characterizations for three covering approxima-
tion operators. In the first part, some topological characterizations for three covering
approximation operators are studied. In an infinite universe, certain necessary and suf-
ficient conditions are given to make a covering lower approximation operator into an
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interior operator. Similarly, we also discuss the other two covering upper approxima-
tion operators in a finite universe. In the second part, the three operators and the three
topological spaces corresponding to them are compared.

The paper is organized as follows. In Section 2, we present some fundamental con-
cepts of covering-based rough sets and topology. Section 3 presents some topological
characterizations for three covering approximation operators. In Section 4, we compare
three covering approximation operators and the topological spaces corresponding to
them. Section 5 conclusions this paper.

2 Basic Definitions

In this section, we present some fundamental concepts relative to Pawlak’s rough sets,
covering-based rough sets and topology.

2.1 Pawlak’s Rough Sets and Covering-Based Rough Sets

In Pawlak’s rough set theory, the lower and upper approximation operations are two key
concepts. Let U be a finite set and R an equivalence relation of U . ∀X ⊆ U , the lower
and upper approximations of X are defined as follows, respectively:
R∗(X) =

⋃
{Pi ∈ U/R : Pi ⊆ X},

R∗(X) =
⋃
{Pi ∈ U/R : Pi

⋂
X 	= ∅}.

Proposition 1. [8] Let ∅ be the empty set and−X the complement of X in U . Pawlak’s
rough sets have the following properties:
(1L) R∗(U) = U (1H) R∗(U) = U
(2L) R∗(∅) = ∅ (2H) R∗(∅) = ∅
(3L) R∗(X) ⊆ X (3H) X ⊆ R∗(X)
(4L) R∗(X

⋂
Y ) = R∗(X)

⋂
R∗(Y ) (4H) R∗(X

⋃
Y ) = R∗(X)

⋃
R∗(Y )

(5L) R∗(R∗(X)) = R∗(X) (5H) R∗(R∗(X)) = R∗(X)
(6L) R∗(−X) = −R∗(X) (6H)R∗(−X) = −R∗(X)
(7L) X ⊆ Y ⇒ R∗(X) ⊆ R∗(X) (7H) X ⊆ Y ⇒ R∗(X) ⊆ R∗(X)
(8L) R∗(R∗(X)) = R∗(X) (8H) R∗(R∗(X)) = R∗(X)
(9L) ∀K ∈ U/R,R∗(K) = K (9H) ∀K ∈ U/R,R∗(K) = K

Next, we review some concepts of covering-based rough sets and some types of
covering approximation operators. If C is a family of nonempty subsets of U and

⋃
C =

U , then C is called a covering of U . Let C be a covering of U and x ∈ U . Denote
Md(x) = {K ∈ C : x ∈ K and ∀S ∈ C(x ∈ S and S ⊆ K ⇒ K = S)},
I(x) =

⋃
x∈K K and N(x) =

⋂
x∈K K . Md(x), I(x) and N(x), which are called the

minimal description of x, the indiscernible neighborhood of x and the neighborhood of
x, were first proposed in [2], [12] and [13], respectively. For all x ∈ U , if |Md(x)| = 1
then C is called a unary covering. This concept was first proposed in [12]. The following
definition reviews some types of covering approximation operators.

Definition 1. [15] Let C be a covering of U and X ⊆ U . One can define the operators
as follows:
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CL(X) =
⋃
{K ∈ C : K ⊆ X},

SL(X) = {x ∈ U : ∀K ∈ C(x ∈ K ⇒ K ⊆ X)} = {x ∈ X : I(x) ⊆ X},
FH(X) = CL(X)

⋃
(
⋃
{
⋃

Md(x) : x ∈ (X \ CL(X))}),
SH(X) =

⋃
{K : K

⋂
X 	= ∅} =

⋃
{I(x) : x ∈ X},

IH(X) = CL(X)
⋃
{N(x) : x ∈ X \ CL(X)} =

⋃
x∈X N(x),

CL, FH , SH and IH are called the covering lower approximation operator, the first,
the second and the fifth type of covering upper approximation operators, respectively.
Note that the operators SH and SL are dual. With respect to the properties of Pawlak’s
rough sets listed in Proposition 1, the following holds.

Proposition 2. [15] SL has properties (1L), (2L), (3L), (4L) and (7L) of Proposition
1, and SH has the properties (1H), (2H), (3H), (4H) and (7H) of Proposition 1.

Proposition 3. [13] IH has properties (1H), (2H), (3H), (4H), (5H), (7H) and (9H) of
Proposition 1.

2.2 Topology

In this subsection, we remind some concepts of topology which can be found in [4].

Definition 2. A topological space is a pair (U, T ) consisting of a set U and a family T
of subsets of U satisfying the following conditions:
(O1) ∅, U ∈ T .
(O2) T is closed under arbitrary unions.
(O3) T is closed under finite intersections.

The subsets of U belonging to the topology T are called the open sets of the space,
and their complements are called closed sets. A family of sets B ⊆ T is called a base
for a topology T if any open set can be expressed as a union of some elements of B. A
topology in which any open set is simultaneously closed is called a clopen topology.

Proposition 4. Let U be a set. The operator cl : P (U) → P (U) (resp. i : P (U) →
P (U)) is a closure (resp. an interior) operator of a topological space if and only if it
satisfies the following axioms.
(I): ∀X,Y ⊆ U , cl(X

⋃
Y ) = cl(X)

⋃
cl(Y ) (resp. i(X

⋂
Y ) = i(X)

⋂
i(Y )),

(II): ∀X ⊆ U,X ⊆ cl(X) (resp. i(X) ⊆ X),
(III): cl(∅) = ∅ (resp. i(U) = U ),
(IV): ∀X ⊆ U, cl(cl(X)) = cl(X) (resp. i(i(X)) = i(X)).

3 Topological Characterization for Three Covering
Approximation Operators

In covering-based rough sets, any set is approximated by basic knowledge, and accuracy
is heavily determined by the knowledge, as well. For the reasons, it is necessary for us
to study the introduced operators in details.
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3.1 Topological Characterization for the Operator CL

In this subsection, we present some topological characterizations for the covering lower
approximation operator in an infinite universe.

Lemma 1. CL has properties (1L), (2L), (3L), (5L), (7L) and (9L) of Proposition 1 in
an infinite universe.

The following proposition presents a necessary and sufficient condition for operator
CL to satisfy property (4L) of Proposition 1.

Proposition 5. Let C be a covering of U . ∀X,Y ⊆ U , CL(X
⋂

Y ) = CL(X)
⋂

CL(Y ) iff ∀K1,K2 ∈ C and x ∈ K1

⋂
K2, there exists K ∈ C such that x ∈ K ⊆

K1

⋂
K2.

Proof. (“⇒”:) As we know, for all K ∈ C, CL(K) = K . According to the assump-
tion, we know for all K1,K2 ∈ C, CL(K1

⋂
K2) = CL(K1)

⋂
CL(K2). Hence

CL(K1

⋂
K2) = K1

⋂
K2. If x ∈ K1

⋂
K2, then x ∈ CL(K1

⋂
K2), that is,

there exists K ∈ C such that x ∈ K ⊆ K1

⋂
K2. (“⇐”:) According to Lemma

1, CL(X
⋂

Y ) ⊆ CL(X)
⋂

CL(Y ). Now we need to prove CL(X)
⋂

CL(Y ) ⊆
CL(X

⋂
Y ). For all x ∈ CL(X)

⋂
CL(Y ), there exist K1,K2 ∈ C such that x ∈

K1 ⊆ X and x ∈ K2 ⊆ Y , that is, x ∈ K1

⋂
K2 ⊆ X

⋂
Y . According to the assump-

tion, there exists K ∈ C such that x ∈ K ⊆ K1

⋂
K2, thus x ∈ CL(X

⋂
Y ). Hence

CL(X)
⋂

CL(Y ) ⊆ CL(X
⋂

Y ).

Based on the result, a necessary and sufficient condition for operator CL to be an
interior operator is presented.

Corollary 1. Let C be a covering of U . CL is an interior operator iff ∀K1,K2 ∈ C
and x ∈ K1

⋂
K2, there exists K ∈ C such that x ∈ K ⊆ K1

⋂
K2.

In fact, we can show the other necessary and sufficient condition for operator CL to
be an interior operator from the viewpoint of unary covering.

Lemma 2. [5] Let C be a covering of U . C is unary iff ∀K1,K2 ∈ C and x ∈ K1

⋂
K2,

there exists K ∈ C such that x ∈ K ⊆ K1

⋂
K2.

Corollary 2. CL is an interior operator iff covering C is unary.

The following proposition provides another necessary and sufficient condition for
operator CL to be an interior operator in terms of topological bases.

Lemma 3. [4] A family A of U is a base for a topology T on U iff ∀K1,K2 ∈ A and
x ∈ K1

⋂
K2, there exists K ∈ A such that x ∈ K ⊆ K1

⋂
K2.

Proposition 6. CL is an interior operator iff covering C is a base for a topology TCL =
{X ⊆ U : CL(X) = X}.

Proof. (“⇐”:) It is obvious. (“⇒”:) We need to prove C is a base for a topology TCL.
For all K ∈ C, CL(K) = K . Then C ⊆ TCL. For all X ∈ TCL, X = CL(X) =⋃
{K ⊆ U : K ⊆ X}. Hence, C is a base of TCL.
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3.2 Topological Characterization for the Operator FH

In this subsection, we provide some topological characterizations for the first type of
covering upper approximation operator in a finite universe. First, we introduce a result.

Lemma 4. [16] C is a unary covering iff FH is a closure operator.

We find that the condition for FH to be a closure operator is the same as the one
which makes CL an interior operator. Therefore, some necessary and sufficient condi-
tions for FH to be a closure operator are provided by the operator CL.

Proposition 7. Let C be a covering of U . The following statements are equivalent.
(1) FH is a closure operator.
(2) TCL is a topology on U .
(3) C is a base of TCL.
(4) Md(x) = {N(x)}.

Proof. We just prove (4). By definition, if C is a unary covering of U , then for any x,
|Md(x)| = 1. Since N(x) =

⋂
Md(x), N(x) ∈ Md(x). Conversely, if Md(x) =

{N(x)}, then N(x) ∈ C. Thus |Md(x)| = 1, that is, C is a unary covering.

Based on the above results, one may consider that the operator CL and the operator
FH induce the same topology. In other words, they are dual. Indeed, that is not so. An
example is provided to illustrate the problem.

Example 1. Let C = {{1, 5}, {1, 2, 5}, {3, 4}} be a covering of U = {1, 2, 3, 4, 5}.
Then Md(1) = Md(5) = {{1, 5}}, Md(2) = {{1, 2, 5}} and Md(3) = Md(4) =
{{3, 4}}. Thus C is a unary covering. Let X = {2, 3, 4}. CL(X) = CL({2, 3, 4}) =
{3, 4} and the dual of CL(X), that is,−CL(−X) is−CL({1, 5}) = {2, 3, 4}.FH({2,
3, 4}) = CL({2, 3, 4})

⋃
(
⋃
{
⋃

Md(x) : x ∈ X\CL(X)}) = {3, 4}
⋃
{
⋃

Md(2)} =
{3, 4}

⋃
{
⋃
{{1, 2, 5}}} = {3, 4}

⋃
{1, 2, 5} = U , it follows that FH(X) = U 	=

−CL(−X) = {3, 4}. Thus CL and FH are not dual operators.

Now that the topologies induced by CL and FH are not the same. One may think
that which topology is the one induced by the operator FH .

Proposition 8. If C is a unary covering of U , then FH = IH and TFH = TIH .

Proof. According to (4) of Proposition 7 and the definition of FH and IH , FH = IH .
Based on Proposition 3 and 4, IH is a closure operator and TIH = {−X : IH(X) =
X} is a topology. Therefore TFH = TIH .

3.3 Topological Characterization for the Operator SH

In this subsection, we characterize the second type of covering upper approximation
operator from the viewpoint of topology. Now, we remind the following result.

Lemma 5. [5] Let C be a covering of U . SH is a closure operator iff {I(x) : x ∈ U}
is a partition of U .
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The following proposition presents the other equivalence characterization for oper-
ator SH to be a closure operator from the viewpoint of covering itself. First, we can
obtain the following result.

Proposition 9. Let C be a covering of U . {I(x) : x ∈ U} is a partition of U iff C
satisfies (TRA) condition: ∀x, y, z ∈ U , x, z ∈ K1 ∈ C, y, z ∈ K2 ∈ C, there exists
K3 ∈ C such that x, y ∈ K3.

Proof. (“⇐”): ∀x, y ∈ U , I(x)
⋂

I(y) = ∅ or I(x)
⋂

I(y) 	= ∅. If I(x)
⋂

I(y) 	= ∅,
then there exists z ∈ I(x) and z ∈ I(y). According to the definition of I(x) and I(y),
there exist K1,K2 such that x, z ∈ K1 and y, z ∈ K2. According to the hypothesis,
we know there exists K3 ∈ C such that x, y ∈ K3. Now we need to prove only I(x) =
I(y). ∀u ∈ I(x), there exists K ∈ C such that u, x ∈ K . Since x, y ∈ K3, there exists
K

′ ∈ C such that u, y ∈ K
′
, that is, u ∈ I(y), thus I(x) ⊆ I(y). Similarly, we can

prove I(y) ⊆ I(x). Hence, I(x) = I(y), that is, {I(x) : x ∈ U} forms a partition of
U . (“⇒”): ∀x, y, z ∈ U , x, z ∈ K1 ∈ C and y, z ∈ K2 ∈ C, we can obtain z ∈ I(x)
and z ∈ I(y). That implies I(x)

⋂
I(y) 	= ∅. Since {I(x) : x ∈ U} forms a partition

of U , I(x) = I(y). Thus there exists K3 ∈ C such that x, y ∈ K3.

Corollary 3. C is a covering satisfying the (TRA) condition iff SH is a closure
operator.

Therefore, we can present some fundamental properties of the topology induced by
operator SH .

Proposition 10. Let C be a covering of U . If C satisfies the (TRA) condition, then
TSH = {−X : SH(X) = X} is a clopen topology on U and {I(x) : x ∈ U} is a base
of TSH .

Proof. According to Corollary 3, we know that if {I(x) : x ∈ U} is a partition of U
then SH coincides with Pawlaks upper approximation operator, which is well-known
to be a closure operator of a clopen topology. Since SH(I(x)) = I(x) for all x ∈ U ,
{I(x) : x ∈ U} ⊆ TSH . Since for all X ∈ TSH , X = SH(X) = SL(X) =⋃

x∈X I(x). Therefore {I(x) : x ∈ U} is a base of TSH .

4 Relationships among Above Three Topological Spaces

In this section, we study the relationships among above three operators and the relation-
ship among the three topological spaces induced by them in a finite universe.

Proposition 11. If C is a covering of U satisfying the (TRA) condition, then
CL(SL(X)) = SL(X) for all X ⊆ U .

Proof. For all X ⊆ U , CL(SL(X)) =
⋃
{K ∈ C,K ⊆ SL(X)}. For all x ∈

CL(SL(X)), there exists K ∈ C such that x ∈ K ⊆ SL(X), x ∈ SL(X). Con-
versely, for all x ∈ SL(X), then I(x) ⊆ X . Thus there exists K ∈ C such that
x ∈ K and I(x)

⋂
I(y) 	= ∅ for all y ∈ K . From Proposition 9, {I(x) : x ∈ U}

is a partition. Then for all y ∈ K , I(y) = I(x) ⊆ X , that is, K ⊆ SL(X). Hence,
SL(X) ⊆ CL(SL(X)).
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Combining Proposition 10 with Proposition 11, we obtain the following result.

Proposition 12. If CL and SH are closure operators, then TSH ⊆ TCL.

The above proposition points out that TCL is finer than TSH , but the converse dose
not hold. The following proposition presents a necessary and sufficient condition for
these two topological spaces to be equal.

Proposition 13. The family C is a partition of U iff TSH = TCL.

Proof. (“⇒”): Since C is a partition, we know CL = R∗ and SH = R∗. Because R∗

and R∗ are dual operators, thus TSH = TCL. (“⇐”): If C is not a partition, then there
exist K1,K2 ∈ C such that K1

⋂
K2 	= ∅. Thus K1 −K2 	= ∅ or K2 −K1 	= ∅. We

might as well suppose K1−K2 	= ∅, then K2 ⊂ K1

⋃
K2 ⊆ I(x) for all x ∈ K1

⋂
K2.

Hence, I(x) � K2. According to the definition of SL, we know x /∈ SL(K2), that is,
SL(K2) 	= K2. Thus K2 /∈ TSL = TSH , i.e. TSH 	= TCL which contradicts the
assumption that TSH = TCL. Therefore, C is a partition.

Now, we study the relation between the topologies induced by FH and SH ,
respectively. Similarly, we present the relation between FH and SH firstly.

Proposition 14. If C is a unary covering of U , then FH(SH(X)) = SH(X) for all
X ⊆ U .

Proof. According to Proposition 3 and 8, FH = IH and SH(X) ⊆ IH(SH(X)) for
all X ⊆ U . Now we need to prove IH(SH(X)) ⊆ SH(X). ∀x ∈ IH(SH(X)), there
exists y ∈ SH(X) such that x ∈ N(y). Since y ∈ SH(X), there exists z ∈ X such
that y ∈ I(z), that is, there exists K ∈ C such that y, z ∈ K , thus x ∈ N(y) ⊆ K . So
x, y, z ∈ K which implies x ∈ I(z), that is, x ∈ SH(X). Therefore, FH(SH(X)) =
SH(X).

The following proposition establishes the relationship between the topologies
induced by FH and SH , respectively.

Proposition 15. If FH and SH are closure operators, then TSH ⊆ TFH .

Proof. If FH is a closure operator, then C is unary. From Proposition 14, we have
X = SH(X) = FH(SH(X)) = FH(X) for all X ∈ FSH . This implies X ∈ FFH ,
thus FSH ⊆ FFH . For all X ∈ TSH , −X ∈ FFH because FSH ⊆ FFH . Then
X ∈ TFH . Therefore TSH ⊆ TFH .

The above proposition shows that TFH is finer than TSH , but the converse dose not
hold, as one can verify the following example.

Example 2. Assume the same covering as in Example 1. Then C is a unary covering.
We can also obtain I(1) = I(2) = I(5) = {1, 2, 5} and I(3) = I(4) = {3, 4},
then {I(x) : x ∈ U} is a partition. Therefore SH and FH induced by C are clo-
sure operators and FSH = {∅, {1, 2, 5}, {3, 4}, U} and FFH = {∅, {1, 5}, {1, 2,
5}, {3, 4}, U}. Since TSH is a clopen topology, we know TSH = FSH and TFH =
{∅, {2, 3, 4}, {1, 2, 5}, {3, 4}}. It is obvious TSH ⊆ TFH but TFH � TSH .

When C is a partition, these three topologies are the same.

Proposition 16. C is a partition iff TSH = TCL = TFH .
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5 Conclusion

This paper has presented the topological characterizations for three covering approxi-
mation operators and established the relationships among the topological spaces corre-
sponding to them. However, there are still many problems to be solved, for example,
we can apply the topological spaces to the issues of covering reductions.
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1 Department of Logic and Philosophy of Science,
Maria Curie-Sk�lodowska University, Lublin, Poland

marcin.wolski@umcs.lublin.pl
2 Institute of Computer Science,
University of Bia�lystok, Poland
anna.gom@math.uwb.edu.pl

Abstract. The paper addresses the problem of concept formation (in
other words, knowledge granulation) in the framework of rough set the-
ory. The proper treatment of this problem requires taking into account
both the dynamics of the universe and different scales at which con-
cepts may be formed. These both aspects have been already separately
discussed in rough set theory, with special emphasis put upon the Gran-
ular Computing paradigm as a suitable framework to deal with different
scales of description. Following the example of the game Life, construed
by Hawking as a simple means of explaining the process of concept for-
mation in science, we shall describe a corresponding dynamics in Pawlak
information systems.

Keywords: concept, rough set, granular computing, Scott system.

1 Introduction

The main methodological assumption of rough set theory [9] is that knowledge
about a universe of objects is given it terms of concepts, that is, definable, with
respect to gathered pieces of information, subsets of the universe – the most
explicit expression of this assumption may be found in [10]. Undefinable sets
are then approximated by a pair of definable sets (concepts). As is well-known,
this (original) framework has two important features: it is static, that is, the
universe does not change; it is flat, that is, there is a single scale from which the
universe is described. However, in the real science (a) the universe is dynamic
and (b) there are different scales used in descriptions of the universe; e.g., atomic
scale, molecular scale, there are also different macroscopic scales, e.g., galaxies.
Therefore, the full treatment of the problem of concept formation (knowledge
granulation) requires addressing both (a) and (b).

Regarding (a), the problem of the universe extension by new objects has been
already discussed in the framework of rough sets in, e.g., [13]; more general
discussion of dynamics in Pawlak information systems may be found in, e.g.,
[2]. Regarding (b), this problem to a large extent is addressed by the Granular
Computing (GrC) methodology, e.g. [11], which has been extensively developed
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since its introduction by Zadeh [15]. The GrC methodology assumes computing
with words rather than letters (or symbols). In other words, sometimes we may
compute with particles, but other time we may need to compute with molecules
or even galaxies. Thus, we may compute at different scales. The GrC paradigm
may be considered as a systematic study of this phenomenon in the context of
computer science.

Hawking in [6] uses the game Life [4] to explain to the reader how new concepts
emerge on different scales while observing a simple and dynamic configuration of
cells. Following the very same example we would like to describe the process of
concept formation (knowledge granulation) – addressing both (a) and (b) – in the
framework of rough set theory. To this end, we start with Pawlak information
systems, allow dynamics as considered in [2] (so objects may both enter and
exit the system), and then provide a formal description of a “zoom-out” scale.
Of course, these scales could be described in terms of different theories. In the
paper we decided to choose Scott information systems [12]. The motivation is
purely theoretical and may be shortly described as follows. Both rough sets and
generalised rough sets [1,7,8] can be represented in the increasing form or disjoint
form. Each form requires its own partial order and the corresponding infimum
and supremum operations. The problem of which role may be played in rough set
theory by both orders taken together was suggested by Marek and Truszczyński
in [8]. An answer for the disjoint representation of generalised roughs sets was
given in, e.g., [14]. Here we would like to complete this research and to show
how both orders can be applied to the increasing representation. In consequence,
we shall obtain Scott information systems regarded as coarser scales which are
compatible with Pawlak information systems.

2 Rough Sets and Game of Life

2.1 Conways’s Life Game

Game of life, also known as Life, was invented by Conway in 1970 [4] and imme-
diately became a topic of interest for biologists, physicists, mathematicians and
computer scientists. Life is played on an array of squares, where each square can
be “alive” (black) or “dead” (white). The rules (representing interactions with
an environment) according to which squares change their states are very simple:

1. A live square with two or three live neighbours stay alive.
2. A dead square with exactly three live neighbours change its state and be-

comes a live cell.
3. In all other cases a cell dies or, if it is dead, remains dead.

Although Life is a very simple game, it can generate conglomerations of squares
which are equivalent to universal Turing machines. Thus, the final “product” of
this game can be really complex. As Hawking put it [6], Life demonstrates that
although the “physics” (i.e. basic granules) is very simple, the “chemistry” (i.e.
higher order granules) may be very rich and complicated. At the micro scale there
are only dead or live cells, but under macro scales there are different concepts of
pulsars, gliders or even glider guns, where the latter ones give birth to new gliders.
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2.2 Rough Sets

In the present section we briefly recall basic concepts from rough set theory
which are relevant to our study.

Definition 1 (Information System). A quadruple I = 〈U,Att, V al, f〉 is
called an information system, where:

– U is a non–empty finite set of objects;
– Att is a non–empty finite set of attributes;
– V al =

⋃
A∈Att V alA, where V alA is the (non-empty) value–domain of the

attribute A;
– f : U×Att ,→ V al is a partial information function, such that for all A ∈ Att

and a ∈ U , when f(a,A) is defined, then f(a,A) ∈ V alA.

If f is a total function, i.e. f(a,A) is defined for all a ∈ U and A ∈ Att, then
the information system I is called complete; otherwise, it is called incomplete.

When f is generalised to a function from U × Att to P(V al), where P(V al) is
the powerset of V al, then the information system is nondeterministic. In what
follows we focus our attention on complete and deterministic systems.

If we distinguish in an information system two disjoint classes of attributes
AttC and AttD, called condition and decision attributes, respectively, then the
system will be called a decision table.

An information system I gives rise to an equivalence relation E, called an
indiscernibility relation, defined as:

E = {(a, b) : ∀A ∈ C ⊆ Att. ∀X ∈ V al (f(a,A) = X ⇔ f(b, A) = X)}.

Customarily, E is often written as IND(Att), the partition induced by the
relation IND(Att) is denoted by U/IND(Att), and [a]IND(Att) denotes the
equivalence class of IND(Att) defined by a ∈ U . A simple generalisation of
(U, IND(Att)) is given by the concept of an approximation space:

Definition 2 (Approximation Space). A pair (U,E), where U is a non-
empty set and E is an equivalence relation on U , is called an approximation
space. A subset X ⊆ U is called definable, if X =

⋃
Y for some Y ⊆ U/E,

where U/E is the family of equivalence classes of E (the quotient set of E).

Definition 3 (Approximation Operators). Let (U,E) be an approximation
space. For every concept X ⊆ U , its E-lower and E-upper approximations are
defined as follows, respectively:

X = {a ∈ U : [a]E ⊆ X}, X = {a ∈ U : [a]E ∩X 	= ∅}.

By the usual abuse of language and notation, the operator : P(U) → P(U)
sending X to X will be called the lower approximation operator, whereas the
operator : P(U) → P(U) sending X to X will be called the upper approxi-
mation operator.
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Definition 4 (Increasing Representation of Rough Sets). For an approx-
imation space (U,E) and X ⊆ U , a pair (X,X) is called an increasing repre-
sentation of X.

The set U \X is often called an exterior of X and denoted by Ext(X), whereas
Bnd(X) = X \X is the boundary region of X .

It is a standard methodological assumption that a given information system
represents merely a sample or fragment of a bigger universe. In the course of
extending the universe of objects, we can change the underlying cells by addition
of a new object or we can regard this object as a rule how to change the states
of cells. Following GrC methodology [11,15] and Life [4] we would like to regard
the expansion of the universe as a method of changing the states of cells. So, as
Zadeh would put it [15], the idea is to compute with a word, not with its letters.
Following Life [4] we would like to assign to each cell a state. Suppose now that
we are given a decision table and we would like to approximate the extension
X of D ∈ AttD (where D is Boolean, that is, a property). So we compute X ,
Bnd(X) and Ext(X). In this way we have assigned cells their initial states: the
cells belonging to the lower approximation X are alive or black ; cells from the
boundary region Bnd(X) or grey; cells form the exterior of X are white. The set
of grey and black cells associated with a single attribute D would be regarded
a single conglomeration (similarly like, e.g., a glider in Life). What will happen
when a new object a is added?

2.3 Rules of Game

The rules of the game are straightforward and very simple. They have a de-
scriptive character rather than normative. Firstly, let us fix X as the extension
of D ∈ AttD in the initial state of the game. Secondly, the new object a may
satisfy D or may not. Suppose the former case; then a may be similar to some
b ∈ X or may not. If it similar to b whose equivalence class [b]E is black, then
[b]E remains black. If [b]E is grey then it remains grey. If a is not similar to any
object in X , but it similar to some b in Ext(X) then [b]E is changed from white
to grey. If a is not similar to any object except itself then nothing is changed.
Now suppose that a does not satisfy D, then, as previously, it may be similar to
some objects from X . If a is similar to b whose equivalence class [b]E is black,
then [b]E is changed to grey. If [b]E is grey, then it remains grey. As earlier, if
a is not similar to any object except itself then nothing is changed. Of course,
white cells remain white.

Let us once again emphasise that the underlying partition of the universe is
unchanged; what changes are states of cells (equivalence classes). Thus, we can
regard a partition like an array of cells which can be in one of the three states:
“alive” (black), “possibly alive” (grey) and “dead” (white). A sequence of new
objects defines the rules of according to which cells change their states.
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According to the rules of our game the upper approximation X increases, the
lower approximation X decreases and the boundary region Bnd(X) increases.
No cell dies. In order to make the game more interesting and similar to Life,
let us allow cells to die. It can be done in a number of ways. In this paper we
follow suggestions given by Ciucci in [2], who assumes that an object may exit
the information system. A natural example is given by an object which was
confirmed to satisfy some D and later it turned out that this confirmation was
(methodologically) invalid. So, apart from the list of new objects, let be given
a list of “old” objects which are supposed to leave the system – these objects
will be marked by “exit”. If all objects which satisfy D and belong to a given
grey or black cell are marked by “exit”, then the cell becomes dead (white). If
all objects from a grey cell which do not satisfy D are marked “exit” then the
cell becomes black. In this way during the game the approximations of a given
attribute D are really dynamic.

2.4 Scott Systems and Higher-Order Granules/Concepts

Let be given an information system I = 〈U,Att, V al, f〉, D = {D1, D2, . . . , Dm}
a set of decision Boolean attributes, and a sequence (+−an)n≥1 of objects which
we will add or erase from the system: new (added) objects will be denoted by
+a, whereas objects which are supposed to leave the system (i.e. “exit”) by
−a. The extension of each Di before the game is denoted by |Di|. Thus the

initial state of the game is given by U0 = {(X i, X i) : X i = |Di|}. The state

Uj = {(X i
j , X

i
j) : X i = |Di|} is defined in the obvious way on the basis of: (a)

the previous state of the game Uj−1 = {(X i
j−1, X

i
j−1)}, (b) the object +

−aj to
be added or removed, and (c) the rules of our game. It is worth emphasising that

for any n it holds that X i
n ⊆ X i

n. In other words, the initial state of the game
consists of rough sets and during the game we obtain the generalised rough sets
(X,Y ), where both sets X ⊆ Y are definable (exact) [1,7,8].

As written above, each Di can be construed as a conglomeration of cells. Now
we would like to consider the task of grouping these conglomerations into higher
order granules (i.e. granules which would represent concepts formed at coarser
scales).

From purely mathematical point of view, each conglomeration is represented
as a pair of sets (X1, X2). Of course, sets can be partially ordered by the standard
set inclusion ⊆ and generate a lattice. Let us recall now a pre-bilattice product
from bilattice theory [3,5].

Definition 5 (Pre-Bilattice Product). Let L1 and L2 be two complete
lattices. Define a pre-bilattice product L1 ◦ L2 by:

– the carrier set is L1 × L2;
– (a1, a2) ≤k (b1, b2) iff a1 ≤L1 b1 and a2 ≤L2 b2;
– (a1, a2) ≤t (b1, b2) iff a1 ≤L1 b1 and b2 ≤L2 a2;

for all a1, b1 ∈ L1 and a2, b2 ∈ L2.
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The case where these two complete lattices are actually families of sets ordered
by ⊆ is the easiest and most relevant to our game. In what follows, the meet
and join operators corresponding to ≤k will be denoted by ∧k and ∨k, whereas
∧t and ∨t will denote these operators for ≤t [5,3]:

(X1, X2)∧k(Y1, Y2) = (X1∩Y1, X2∩Y2), (X1, X2)∨k(Y1, Y2) = (X1∪Y1, X2∪Y2),

(X1, X2)∧t(Y1, Y2) = (X1∩Y1, X2∪Y2), (X1, X2)∨t(Y1, Y2) = (X1∪Y1, X2∩Y2).

Thus, starting from I = 〈U,Att, V al, f〉, D = {D1, D2, . . . , Dm}, and the list
(+−an) of object to be added or removed, for every stage n of the game we can
build two lattices:

Uk
n = 〈Uk

n ,∧k,∨k〉, U t
n = 〈U t

n,∧t,∨t〉,

both having Un = {(X i
n, X

i
n) : X i = |Di|} as the generator.

In the paper we focus our attention upon a lattice Uk
n ; this lattice would

represent possible interactions between Di regarded as conglomerations of cells.
The lattice U t

n is less interesting from the perspective of rough set theory since its
operations may produce objects which are not generalised rough sets; however,
the partial order ≤t underlying U t

n will be of great importance.
The appeal of Life comes mainly from the fact that although the basic rules

are very simple, new complex concepts emerge quite naturally. For example, in
the rules of game there is no concept such as “glider”, “move” or “collide”, but
on a macro scale we can deduce such laws as: gliders move diagonally. Similarly,
we would like to introduce into this game some more complex concepts saying
that some number conglomerations of cells form a new structure (of higher order
than its components).

Let us recall that objects are taken from Uk
n and our aim is to find a recipe

for gathering them into collections. We shall define this recipe by means of ∨t

from U t
n. A collection X of objects (X1, X2) ∈ Uk

n will be called compatible only
if
∨

t X is a generalised rough set [1,7,8]. Now we need a mathematical structure
within which compatible sets arise naturally. Interestingly, compatibility may be
regarded as consistency in Scott information systems:

Definition 6 (Scott Information System). A Scott information system is
an ordered quadruple 〈T,Con, a0,-〉, where T is a set of tokens (information
atoms), a0 the least informative atom, Con a family of finite subsets of T , and
- ⊆ Con× T , which satisfies the following conditions:

– if a ∈ X ∈ Con, then X - a;
– if X - Y and Y - a, then X - a;
– if X - a, then X ∪ {a} ∈ Con;
– for all a ∈ T it holds that {a} ∈ Con;
– for all X ∈ Con, X - a0;
– if X ∈ Con and Y ⊆ X, then Y ∈ Con;

where X - Y means X - a for all a ∈ Y .
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As a set of tokens we take the elements of Uk
n and call a set X ⊆ Uk

n consistent iff
it is empty or form a compatible set. Now, our aim now is to define - in terms of
≤k and ≤t. The main constraint is, of course, the condition that if a ∈ X ∈ Con,
then X - a. It seems that we may define four entailment relations:

Xn -∧
k (X1, X2) iff

∧
k
Xn ≤k (X1, X2);

Xn -∨
k (X1, X2) iff (X1, X2) ≤k

∨
k
Xn;

Xn -∧
t (X1, X2) iff

∧
t
Xn ≤t (X1, X2);

Xn -∨
t (X1, X2) iff (X1, X2) ≤t

∨
t
Xn.

However, -∧
t has not the least informative atom; the only candidate is (U, ∅),

which is not a generalised rough set.

Proposition 1. The following quadruples form Scott information systems:

– 〈Uk
n , Con, (∅, ∅),-∨

k 〉;
– 〈Uk

n , Con, (U,U),-∧
k 〉;

– 〈Uk
n , Con, (∅, U),-∨

t 〉.

However, when we consider further notions from Scott information systems, only
one on them will remain intuitive.

Definition 7 (Ideal and Total Elements). The ideal elements of an infor-
mation system are subsets X of T such that:

– X is consistent: every finite subset of X belongs to Con;
– closed under entailment: if Y ⊆ X and Y - a, then a ∈ X.

An ideal element X is called total iff it is maximal with respect to the inclusion.

From the perspective of ideal and total elements, the only intuitive Scott infor-
mation system among the three described above is 〈Uk

n , Con, (∅, U),-∨
t 〉. Total

elements would represent (Boolean) attributes D which are definable in terms
of AttC (that is, AttC includes all pieces of knowledge needed to define D). In-
deed, starting from X = {(X,X)} and closing it under the entailment -∨

t we
shall obtain an ideal element I. This element is also total. When we start from
X = {(X,Y )} and close it under the entailment we shall obtain an ideal element
J which is not total since J ⊆ I. The other cases -∨

k and -∧
k are much less

intuitive; the natural candidates which would generate total elements are (U,U)
and (∅, ∅), respectively. But, both elements have been considered as providing
no information.

In consequence, starting from an information system I = 〈U,Att, V al, f〉,
a set D = {D1, D2, . . . , Dm} of Boolean attributes, and a list of object (+−aj)
(to be added or removed) we may obtain – for every phase n of this game



292 M. Wolski and A. Gomolińska

– an intuitive Scott information system 〈Uk
n , Con, (∅, U),-∨

t 〉 which provides a
natural granulation of objects from Uk

n after considering the object +
−an. The

list (+−aj) may be regarded as a process of interactions of an information system
with an environment and the sequence of Scott systems 〈Uk

n , Con, (∅, U),-∨
t 〉

would represent an evolution of this information system. Then two processes
represented by +

−an and +
−bn, respectively, may be defined equivalent provided

that the respective Scott systems are equivalent.
Summing up, in the paper we have described dynamics in Pawlak information

systems [9] resulting from expansion/contraction of the universe of objects. We
have followed the GrC methodology [11,15], and taking the inspirations from
Conway’s game Life [4], decided to change merely the states of equivalence
classes in the course of expansion/contraction process. In result, rough sets have
been converted into generalised rough sets [1,7,8]. In order to define a “zoom-
out” scale for concept formation, these new sets have been grouped into families
by means of bilattice orderings [3,5]. Finally, we have described these families in
terms of Scott information systems and consistent sets [12].
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Abstract. This paper proposes an incremental version of a soft cluster-
ing approach under uncertainty. The possibility theory and the k-modes
algorithm are combined together in an incremental way to deal with two
aspects of uncertainty. On one hand, the possibility theory deals with
uncertain values of attributes of instances using possibility distributions
and handles the belonging of objects to different clusters based on possi-
bilistic membership degrees. On the other hand, the incremental aspect
is studied in this new method by adding clusters without re-clustering
initial instances. Experimental results clearly demonstrate the advan-
tages of our proposal in a variety of databases using different evaluation
criteria.

Keywords: Incremental clustering, possibility theory, k-modes method,
possibilistic membership, possibility degree.

1 Introduction

Incremental clustering has been widely applied in various fields [5], [6], [7], [8].
It can be obtained by adding instances, attributes, and clusters over time. The
main advantage of incremental clustering methods is the possibility to minimize
the use of the main memory, to save time and to adapt the dynamic changes in
real-word (e.g. detection of new groups of customers when selling goods).

As uncertainty appears frequently in real-world problems (e.g. when measur-
ing blood pressure, temperature or humidity levels), many uncertainty theories
have been proposed in order to deal with uncertain framework. Possibility the-
ory is a well-known uncertainty theory for handling uncertainty and leading to
a better decision making. This theory has been successfully combined with hard
and soft clustering methods such as [1], [2], [3].

Combining uncertain soft clustering methods with incremental learning is of
great interest because they complement each other. Uncertain soft clustering
approaches describe with more precision the similarities between instances of
databases and clusters. They take into consideration the degree of uncertainty
of knowledge. As a result, we obtain objects that belong to different clusters
based on membership degrees. However, incremental clustering offers multiple

D. Ciucci et al. (Eds.): RSFDGrC 2013, LNAI 8170, pp. 293–303, 2013.
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advantages by improving the final partitions without re-clustering initial objects,
and hence saving time, through the use of results.

In this paper, we propose an incremental possibilistic k-modes method (IPKM)
which combines possibility theory and incremental learning with k-modes algo-
rithm. First, the proposed approach deals with uncertain values of attributes
through possibilistic degrees then, it indicates the possibilistic membership of
each object to different clusters. Finally, we study an incremental aspect of this
soft clustering approach by adding new clusters over time and updating the
partitions without re-clustering initial instances.

The rest of the paper is structured as follows: Section 2 and section 3 pro-
vide an overview of the possibility theory and the k-modes method. Section 4
presents details of our proposal i.e. the incremental possibilistic k-modes. Section
5 analyses experimental results.

2 Possibility Theory

Possibility theory is a well-known uncertainty theory proposed by Zadeh in [10]
then, improved through various works (e.g. Dubois and Prade [11]).

2.1 Possibility Distribution

Given the universe of discourse Ω = {ω1, ω2, ..., ωn}, the possibility distribution
function denoted by π can be defined in either numerical or qualitative setting.
π associates to each element (or state) ωi from Ω [10] a possibility degree taking
values from the scale L. In our case, we deal with the quantitative setting of the
possibility theory where we have numerical possibility degrees and L = [0, 1].
Based on π, some concepts can be defined such that:

– The normalization described by maxi {π (ωi)} = 1.
– The extreme cases of knowledge namely: the complete knowledge presented

by ∃ω0, π (ω0) = 1 and π (ω) = 0 otherwise and the total ignorance defined
by ∀ω ∈ Ω, π (ω) = 1.

2.2 Possibilistic Similarity Measure

The information affinity [9] (detailed in Equation (1)) is a well-known possibilis-
tic similarity measure. It is applied on two normalized possibility distributions
π1, π2 in order to measure their similarity.

InfoAff (π1, π2) = 1− 0.5 [D (π1, π2) + Inc (π1, π2)] . (1)

with D(π1, π2) = 1
n

∑n
i=1 |π1 (�i)− π2 (�i)| , Inc (π1, π2) = 1− max

(π1 (�)Conj π2 (�)) and ∀ω ∈ Ω,ΠConj (ω) = min (Π1 (ω) , Π2 (ω)).
Note that if IA (π1, π2) is smaller than IA (π1, π3), π1 is considered more

similar with π2 than π3.
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3 The K-Modes Method and Its Extension

3.1 The SKM

The standard k-modes method denoted in this paper by SKM [14] [15] is a
clustering method dealing with large categorical data sets. It is a modified version
of the k-means algorithm [12] that uses a simple matching dissimilarity measure
and a frequency-based function in order to cluster objects into k clusters.

Given two objects X1=(x11, x12, ..., x1m) and X2=(x21, x22, ..., x2m) with
m categorical attributes. The simple matching method (d ∈ [0, 1]) is defined in
Equation (2):

d (X1, X2) =

m∑
t=1

δ (x1t, x2t) . (2)

In fact, δ (x1t, x2t) = 0 when x1t = x2t and it is equal to 1 otherwise. As a
consequence, d takes the value of 0 when all the values of attributes relative to
X1 and X2 are similar and takes the value of m otherwise. Generally, given a set
of n objects S = {X1, X2, ..., Xn} with its k-modes Q = {Q1, Q2, ..., Qk} and k
clusters C = {C1, C2, ..., Ck}, it is possible to aggregate it into k ≤ n clusters.
The minimization of the clustering cost function is given by:

min D(W,Q) =
k∑

j=1

n∑
i=1

ωi,jd(Xi, Qj) (3)

where W is an n×k partition matrix and ωi,j ∈ {0, 1} is the membership degree
of Xi in Cj .

Although it is successful when clustering large categorical databases, the SKM
has a several issues while clustering objects in an uncertain framework. Data sets
can contain uncertainty at different levels (e.g. in attributes values of instances
and/or in the belonging of objects to different clusters). To overcome this draw-
back, many researchers have reported and analyzed this issue and introduced
modifications to the SKM parameters such as [1], [2], [3], and [4]. The next
subsection, presents the KM-PF [4] which uses the possibility theory to handle
uncertainty when clustering instances to k clusters.

3.2 The KM-PF

The k-modes under possibilistic framework denoted by KM-PF [4] is an uncertain
clustering approach based on the k-modes and the possibility theory. It is an
improved version of two possibilistic approaches proposed in [1] and [2].

On the one hand, the KM-PF uses the possibility theory to deal with uncer-
tainty in the attributes’ values of instances and assigns possibilistic degrees of
membership describing the similarity between the instances and clusters. On the
other hand, the k-modes algorithm is used to cluster each uncertain object to
several clusters.
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The KM-PF uses an uncertain training set created artificially by defining a
possibility distribution for each attribute. The possibilistic distribution expresses
the extent to which the attribute value is true. Moreover, the KM-PF adapts a
possibilistic measure that computes the similarity between each uncertain object
and modes. It also defines possibilistic membership degrees for updating the
modes.

4 Incremental Possibilistic K-Modes

4.1 Parameters

Our proposal uses the following parameters:

1. An uncertain training set: We artificially create an uncertain training set.
It contains both certain and uncertain values of attributes. Each value of
the attributes relative to different instances are replaced by a possibility
degree with respect to the real attributes’ values. Thus all objects and modes
have possibility values. These values describe the degree of uncertainty. By
presenting the values of modes through possibility degrees, the final results
will depend less on the initial partition.

2. The possibilistic similarity measure: Each attribute is presented through a
possibility distribution relative to a particular object. As a result, to compute
the possibilistic similarity between objects and modes we have to sum the
information affinity [9] applied on the possibility distributions of the modes
and objects. We apply the IA(X1, X2) which is given by:

IA(X1, X2) =

∑m
j=1 InfoAff(π1j, π2j)

m
. (4)

where m is the total number of attributes.
3. The possibilistic membership degrees: They present values from [0, 1] de-

scribing the similarities between each instance of the training set and all
clusters.We use ωij to denote the degree of belonging of the object i to the
cluster j. Note that there are two extreme cases, the first one is when ωij = 1.
In this case, the object i is considered as very similar to the mode of the
cluster j. The second one is obtained for ωij = 0 where the object i does
not belong to the cluster j because there is no similarity between i and the
mode of j. The possibilistic membership degree is obtained by computing
the possibilistic similarity measure (Equation (4)).

4. The update of clusters’ modes: We randomly choose k initial modes taken
from the objects of the training set. The update of these modes depends on
the degrees of possibility assigned to each object and the membership values
ωij . The following steps describes how to update the k modes:
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– For each cluster j, we compute the number of instances that have the
highest value of ωij such that: NOj = countj(maxi ωij).

– We define a new parameter W which expresses the weight assigned for
the initial (k′) and added (n) clusters. It is given by:

Wj =

{
NOj

total number of objects
if NOj �= 0,

1
total number of objects +1

otherwise.
(5)

– We compute the values of the new mode M ′
j as follows:

∀j ∈ k,M ′
j = Wj ×Modej . (6)

Using this formula, the new mode will depend on the number of the most
similar objects to it.

5. The addition of n new clusters after getting the final partition from k′ initial
clusters: It consists of improving the obtained partition by adding n clusters
without re-clustering the initial instances. We assign to the added clusters
n modes from the set of objects after removing the k′ objects chosen as k′

first modes. Then, we have to compute the ωij of the added clusters and the
initial instances and to update our method.

4.2 Algorithm

Begin

1. Randomly select (k′ = k − n) initial modes, one mode for each cluster.
2. Compute the possibilistic similarity measure IA between instances and modes

using Equation (4) then determine the membership degree ωij of each object
to the k′ clusters.

3. Allocate an object to the k′ clusters using the possibilistic membership.
4. Compute the weight Wj for each cluster j using Equation (5) then, update

the cluster mode using Equation (6).
5. Retest the similarity between objects and modes. Reallocate objects to clusters

using possibilistic membership degrees then update the modes.
6. Repeat (4) until all clusters are stable.
7. Add n new clusters and compute the possibilistic similarity measure IA be-

tween the objects and new clusters. Determine the ωij of the objects relative
to the added clusters.

8. Re-compute the weight Wj for each cluster j using Equation (5) then, update
the cluster mode using Equation (6).

9. Repeat (4) and (5) until all clusters are stable.

End
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5 Experiments

5.1 The Framework

We used several real-world data sets taken from UCI machine learning repository
[13]. They consist of Balloons (Bal), Soybean (S) Post-Operative Patient (POP),
Balance Scale (BS), Solar-Flare (SF) and Car Evaluation (CE) data sets. Note
that the number of classes of these databases represents the k clusters to form.
Table 1 describes these data sets.

Table 1. Description of the data sets

Databases #Instances #Attributes #Classes

Balloons (Bal) 20 4 2

Soybean (S) 47 35 4

Post-Operative Patient (POP) 90 8 3

Balance Scale (BS) 625 4 3

Solar-Flare (SF) 1389 10 3

Car Evaluation (CE) 1728 6 4

We have artificially introduced uncertainty in the values of attributes of in-
stances of UCI data sets. Each categorical value has been presented by a possi-
bility degree taken from [0, 1]. We have two extreme cases detailed with examples
(see Table 2, Table 3 and Table 4) as follows:

Table 2. Example of four instances of Balloons data set

Attribute information Color Size Act Age

Color yellow, purple X1 yellow small stretch adult

size large, small X2 yellow small stretch child

act stretch, dip X3 yellow small dip adult

age adult, child X4 yellow small dip child

Classes inflated True, False

1. Certain case (certain attributes’ values): where the new values of attributes
are set with respect to the case of complete knowledge in possibility theory. In
other words, each true value of the training set is replaced by the possibility
degree 1. The remaining values take the possibility degree 0.

2. Uncertain case (uncertain values of attributes): Only true values take the
possibility degree 1, all remaining values can have degrees from ]0, 1[.
Note that Table 3 and Table 4 contain values created artificially, which are
randomly generated by our program.
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Table 3. Pre-treatment of the values of objects from Balloons data set in certain case

yellow purple small large stretch dip adult child

X1 1 0 1 0 1 0 1 0

X2 1 0 1 0 1 0 0 1

X3 1 0 1 0 0 1 1 0

X4 1 0 1 0 0 1 0 1

Table 4. Pre-treatment of the values of objects from Balloons data set under
uncertainty

yellow purple small large stretch dip adult child

X1 1 0.127 1 0.445 1 0.075 1 0.259

X2 1 0.097 1 0.276 1 0.054 0.239 1

X3 1 0.278 1 0.162 0.45 1 1 0.431

X4 1 0.157 1 0.119 0.083 1 0.123 1

5.2 Evaluation Criteria

The evaluation criteria consist of the accuracy [14] AC =
∑k

j=1 aj

T (where aj is
the correctly classified objects from the total number of object n), the error rate
ER = 1 − AC, the iteration number (IN) and the execution time (ET). The
IN denotes the number of iterations needed to classify the objects after adding
new clusters. The ET is the time taken to get the final partition. Note that high
value of AC implies better clustering results.

5.3 Experimental Results

This section details the results obtained from experimentation using the artificial
databases and the evaluation criteria. We compare the incremental method to
the SKM and KM-PF then, we analyze all results. Our study is divided into
two parts relative to the certain case corresponding to the complete knowledge
in possibility theory and uncertain case where attributes’ values take random
possibility degrees. Note that we cross validate by dividing observations into
training and test sets. Besides, the experiments are carried out for six different
modes and the average of accuracy is calculated.

Certain Case. We define a possibility distribution for each attribute of object
expressing the extent to which the actual value is true. In other words, each true
value takes the degree 1 and the remaining values take 0. This case describe
the complete knowledge in possibility theory where only the value known by
certainty is allowed to take 1 and all other uncertain values take 0.
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Table 5 shows the results based on the error rate, the iteration number and
the execution time.

Table 5. The incremental possibilistic k-modes IPKM vs. SKM and KM-PF

Bal S POP BS SF CE

k’ 1 3 2 2 2 3

ER 0.57 0.54 0.42 0.36 0.27 0.32

SKM IN 5 7 8 7 10 9

ET/s 10.35 11.9 13.73 29.41 1794.35 2580.03

ER 0.37 0.38 0.3 0.29 0.16 0.28

KM-PF IN 2 4 4 2 3 2

ET/s 0.27 1.07 1.16 7.3 42.27 76.53

ER 0.37 0.38 0.3 0.29 0.16 0.28

IPKM IN 2 4 4 2 3 2

ET/s 0.27 1.07 1.16 7.3 42.27 76.53

k 2 4 3 3 3 4

ER 0.48 0.4 0.32 0.22 0.13 0.2

SKM IN 9 10 11 13 14 11

ET/s 14.55 16.08 17.23 37.81 2661.634 3248.613

ER 0.26 0.22 0.25 0.17 0.07 0.11

KM-PF IN 3 6 6 2 6 4

ET/s 0.9 1.34 1.4 8.51 55.39 89.63

k= k’+n n=1

ER 0.25 0.2 0.2 0.15 0.07 0.08

IPKM IN 3 4 5 2 4 2

ET/s 0.7 1.02 0.82 5.32 33.7 69.5

Looking at Table 5 and using k′ clusters, we remark that the incremental
method provides the same results as the KM-PF. Both of them generate better
results (i.e. less error rate, IN and ET ) than the SKM.

After increasing k′, the IPKM improves its results by adding a new cluster
(n = 1) without re-clustering initial objects but by using the k′ partitions. Our
proposal reduces the error rate, the number of iteration and uses less time than
the SKM and the KM-PF. The use of stable partitions considerably improves
the accuracy of the IPKM compared to the other methods. In fact, SKM and
KM-PF need more time to cluster the instances to k new clusters.



Incremental Possibilistic K-Modes 301

Uncertain Case. In this case, we handle uncertain databases where the value
of each categorical object is replaced by a possibility degree that belongs to
]0, 1]. We have also introduced two new parameters in order to better analyze
the results. They consist of the parameters A and d which define respectively the
percentage of uncertain attributes in the training set and the degree of possibility
of each replaced attribute value. Table 6 presents the average of the error rate
generated by our proposal and the KM-PF.

Table 6. The average of error rate of the IPKM vs KM-PF

Bal S PO BS SF CE

KM-PF and IPKM k’ 1 3 2 2 2 3

A < 50% and 0<d<0.5 0.43 0.31 0.35 0.3 0.28 0.19

A < 50% 1 and 0.5≤d≤ 1 0.42 0.35 0.39 0.29 0.17 0.23

A ≥ 50% and 0<d<0.5 0.27 0.29 0.31 0.19 0.11 0.18

A ≥ 50% and 0.5≤d≤ 1 0.34 0.3 0.38 0.3 0.2 0.19

n=1 k=k’+n 2 4 3 3 3 4

A < 50% KM-PF 0.36 0.23 0.27 0.21 0.14 0.13

and 0<d<0.5 IPKM 0.35 0.2 0.25 0.2 0.13 0.1

A < 50% 1 KM-PF 0.35 0.27 0.29 0.2 0.11 0.17

and 0.5≤d≤ IPKM 0.33 0.25 0.26 0.2 0.1 0.15

A ≥ 50% KM-PF 0.19 0.2 0.22 0.13 0.09 0.1

and 0<d<0.5 IPKM 0.15 0.17 0.18 0.11 0.09 0.09

A ≥ 50% KM-PF 0.27 0.21 0.28 0.2 0.13 0.12

and 0.5≤d≤ 1 IPKM 0.26 0.2 0.25 0.2 0.11 0.1

From Table 6, we notice that the IPKM provides the same error rate as the
KM-PF when we use k′ initial modes. By adding a new cluster i.e. k = k′+1 the
IPKM uses the latest partition to continue the clustering task. Thus, the IPKM
computes the possibilistic membership degrees of all instances to the new cluster
then, updates the clusters’ modes until we get a stable partition. However, the
KM-PF re-clusters all objects from beginning by taking a new number of clusters
which is k.

Table 7 details the IN and ET of the proposed approach and the KM-PF,
which shows that the IPKM needs the same number of iteration and time as the
KM-PF to get the final partition when we deal with k′ clusters.

Furthermore, when we increase the number of clusters by 1 (k = k′ + 1), the
KM-PF is forced to re-cluster all instances using this new number of clusters
which makes the clustering process longer and wastes time. In contrast to the



302 A. Ammar, Z. Elouedi, and P. Lingras

Table 7. The IN and ET of the IPKM vs KM-PF

Bal S PO BS SF CE

KM-PF and IPKM k’ 1 3 2 2 2 3

The IN of the main program 3 4 8 2 8 4

The elapsed time in seconds 0.67 0.76 0.95 9.65 56.78 90.3

n=1 k=k’+n 2 4 3 3 3 4

The IN of the main program KM-PF 3 4 8 2 8 4

IPKM 2 2 4 2 4 3

The elapsed time in seconds KM-PF 0.67 0.76 0.95 9.65 56.78 90.3

IPKM 0.42 0.53 0.71 7.87 35.67 82.54

KM-PF, the IPKM introduces the new cluster in the existing partitions by using
results given in the step before.

The ability of the IPKM to add clusters and avoiding re-clustering initial
instances are its main advantages. Generally, the incremental aspect on which
the possibilistic k-modes is based has obviously improved the results of both the
SKM and KM-PF by providing lower error rate and IN and especially by saving
much execution time.

6 Conclusion

In this paper we have proposed a new clustering approach that deals with the
k-modes method in an uncertain framework and using incremental learning. We
used the possibility theory to deal with two levels of uncertainty in the k-modes
method, namely in the attribute values and in the belonging of objects to several
clusters. Then, we studied the incremental aspect of the possibilistic k-modes by
adding n new clusters and without re-clustering initial instances.

After testing our proposal using different evaluation criteria and comparing
it to the SKM and KM-PF, our incremental possibilistic k-modes shows its
performance by providing less error rate than the SKM and the KM-PF with
less execution time.
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Abstract. In this article we investigate an impact of inclusion of dif-
ferent data types into a clustering process. As a case-study we use re-
ports from the EWID database which is a system used by Polish State
Fire Service for documenting incidents. Each incident reported in that
database is characterized by a set of quantitative attributes and by nat-
ural language descriptions of the cause, scene and the course of actions
undergone by firefighters. We show that the utilization of both of those
data types for a clustering purpose can be beneficial in terms of semantic
homogeneity of the resulting groups. We argue that such clusters might
serve as a useful tool in the firefighters’ training process.

Keywords: Semantic clustering, interactive learning, heterogeneous data.

1 Introduction

The national fire & rescue services are typically equipped with incident data
reporting systems (IDRS) which gather information about the conducted actions.
Implementations of IDRS usually remain at the level of simple reporting, with no
attempt to model domain knowledge related to the risks and logistics of rescue
actions, and with no possibility to organize and analyze the data in a truly
meaningful way. Semantically driven data organization is important in order to
reason about events that are both well-supported in available data sets and easy
to understand by the users. It is important to operate with bigger clusters or
granules of objects in order to assign them with statistics that reflect the model’s
types and dynamics. The usage of domain knowledge in order to build granules
with both semantically and statistically meaningful descriptions is the key to
create models of complex real-world phenomena, in a process that one may call
as a granular knowledge discovery.
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One possible way to build a system of granules, i.e., discover the knowledge in
a form of groups (collections, granules) of data entities (basic data objects), is by
clustering them. In applications, such us the one presented in this article, where
both data and the knowledge is inherently imprecise, vague and incomplete, the
discovery (identification) of clusters naturally leads us to usage of tools from the
inventory of soft computing. In the particular application to our data, these tools
are related to semantic knowledge processing and soft clustering.

Typically, soft clustering is understood as a technique that makes use of clus-
ters with “soft” boundaries, e.g., rough or fuzzy. In our case the clusters them-
selves are crisply defined and once clustering is done the element belongs to only
one of the clusters (granules). The “softness” in the approach described in this
paper is associated with the definition of data objects. They are characterized
using imprecise attributes and the similarity between them is a mere reflection
of their semantic relatedness that we are trying to model. The main challenge
is, in fact, to provide a relatively simple clustering algorithm with good quality
input, so that the resulting clusters are meaningful and useful. The requirement
for the resulting clusters (granules) to be meaningful is very important, as the
evaluation of data is done by hand and is limited to a relatively small sample (see
Section 3). It should be mentioned, that the approach presented in the paper
may also be extended by using a soft clustering algorithm (e.g. fuzzy C-means
instead of k-means) but, since the evaluation and interpretation of the results in
this case is still ahead of us, we only address this case as a direction for further
investigations (see Section 6).

The data objects that we are dealing with are the records from EWID system
– the IDRS of Polish State Fire Service (see Section 2). The records in EWID
contain heterogeneous information, a mix of binary/numerical attributes with
descriptions in natural language. From prior knowledge and following the advice
of domain experts we have established a general rule that drives our investigation.
Namely: Emergences with similar combinations of threats should be considered
similar. Therefore we construct our method for evaluation of cluster coherency
based on the Threats Matrix (see Sections 3,5), a special representation of threats
present in a given F&R operation. The Threats Matrix is created by hand and
used as a tool to evaluate the automatic grouping (semantic clustering) of records
in EWID.

One of the most important problem during the granule creation is definition
of coherency of the granules. The artificial numerical measures like Silhouette
width [1] or Calinski-Harabasz index [2], could not reflected the complex phe-
nomena like an emergency scene. In order to define a more proper measure we
introduced an abstract layer which helps to compare the similarity of incidents.

The goal of creating proper groups of incidents using semantic clustering is
motivated by the need for identification and classification of general types of
operations with respect to a presence of particular types of threats and particular
types of threatened objects. Such a classification would be extremely helpful
in evaluating the actions of commanders at the scene. It will also serve as an
excellent tool for preparing the material used in training of firefighters. The main
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principle is that no threat at the fire ground should be left without a proper
reaction of the Fire Service. Also, specific threats generate specific actions, so
it is of paramount importance to give the firefighters the ability and tools to
recognize the threat scenario and act accordingly.

The paper is organized as follows. First we introduce EWID and describe the
kinds of data that we are able to extract from it (Section 2), then we describe the
process of data preparation and incident labeling (evaluation) by domain experts
(Section 3). Next we present the techniques and experimental framework used
to perform the clustering (Section 4) and present the evaluation of the obtained
results (Section 5). We conclude with discussion and presentation of possible
directions of further work in Section 6.

2 The EWID Reporting System

Each of approximately 500 Fire and Rescue Units (JRG) of the State Fire Service
of Poland (PSP) on average conducts around 3 fire and rescue actions daily. After
every single action there is a report created in an internal computer system of
PSP called EWID. The data collected in the EWID database is divided into two
sections – structured (database fields) and unstructured (a description in natural
language (NL)). Every day around 1 500 reports are uploaded to the Headquarter
of the State Fire Service of Poland. Commanders are oblige to manually fill the
structure part of the report, which contain over 500 positions. Then, they have
to describe in their own words a cause, conditions at the scene and their actions.
Due to the amount of data that needs to be provided during a submission, many
reports contain wrong or incomplete information. These errors distort statistics
and impede analysis of the data.

The structural part consists of attributes describing all types of incidents.
Depending on a category of an incident, the number of attributes that take
values different than zero varies between 120 and 180 for a report. The most of
the attributes are boolean (True/False) type but there are also numerical values
(e.g. fire area, amount of water used). The natural language description part is
an extension to the attribute part. It was designed to store information, which
can not be represented in a form of a set of attributes. Unfortunately there is no
clear regulation what should be written in the NL part. Therefore, in this part a
full spectrum of data, from detailed information such as time coordinates to very
general and brief descriptions can be found. The simple statistics reveal that the
NL part contains approximately three sentences which describe the situation at
the fire ground, actions undertaken by a commander and weather conditions.

To this day, the EWID has stored reports on approximately 7 million incidents.
Undoubtedly, the EWID is a rich source of information about threats arising at
the incident scene and about appropriate but sometimes also flawed counter-
measures. However, this database is difficult to process and to analyze. One of
the reasons for this is the curse of dimensionality and the necessity of processing
the natural language descriptions. The simple methods tend to not reflect the
phenomena behind the EWID data, therefore more sophisticated methods are
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needed. Recently, a few papers were published which present more advanced ap-
proaches to analyzing such data. They utilize the methods from the data mining
domain [3–5], text mining [6] or even the granular computing approach [7]. How-
ever, in our opinion even the most promising algorithms for knowledge discovery
should interact with domain experts.

When analyzing data such as Fire Service reports, an expert can interpret
their semantics, find interesting patterns or cases and can guide the direction
of the research. The works of Poelmans et. al (see [8–10]) show that domain
experts supported by tools for pre-processing the information and presenting it
in a way convenient for the experts, may help in discovering important knowledge
from structured and unstructured data (e.g. police reports). Therefore, we are
interested in developing tools that could facilitate work of experts by organizing
the available data into meaningful categories. One way to approach this task is to
devise reliable and scalable algorithms for partitioning the data into semantically
homogeneous clusters [11].

3 Data Collection and Processing

In our experiments we used a subset of all EWID data corresponding to incidents
reported in Warsaw, in the years between 1992 and 2011. We selected only the
reports representing the category of fires in residential buildings. This data set
consisted of 31 556 reports.

In the labeling process, the experts were requested to use a pre-defined frame-
work, so called Threats Matrix. The task of recognition and categorization of
threats and threatened object is formalized in the handbook of tactics of Ger-
man Fire Service [12]. After arriving at a fire ground or an emergency scene,
German commanders have to evaluate and recognize the appearing threats. In
order to do this systematically and not to miss any of the threats they have to
fill the Threats Matrix (in German – Gefahrenmatrix) [12]. The Threats Matrix
helps to identify the threats emerging at the scene and the objects to which
those threats apply. The columns of the matrix represent the possible threats,
and the rows correspond to objects which could be threatened. Table 1 depicts
the Threats Matrix.

In German language, column names of the Threats Matrix were chosen so
that they could be easily remembered. In order to help fire brigade comman-
ders in memorizing all the threats, the German names were chosen so that
they form the pattern AAAA-C-EEEE which corresponds to Angstreaktion,
Atemgifte, Atomare Strahlung, Ausbreitung, Chemische Stoffe, Einsturz, Elek-
trizitÃďt, Erkrankung, Explosion. The sign ’–’ in the table indicates that the
threat does not apply to the object. German commanders use the Threats Ma-
trices to better organize their actions at the fire ground.

We created a special methodology for labeling the EWID reports [13] with
the risks defined in the Threats Matrix. The labeling process consists of two
main phases: the tutorial phase and the labeling phase. The tutorial phase is
focused on introducing the Threats Matrix and the layout of the EWID incident
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Table 1. The Threats Matrix used by German commanders. Legend: A1 – Fear, A2
– Toxic smoke, A3 – Radiation, A4 – Fire spreading, C – Chemical substances, E1 –
Collapse, E2 – Electricity, E3 – Disease or injury, E4 – Explosion.

Threat/object A1 A2 A3 A4 C E1 E2 E3 E4
People (ME)
Animals (T)

Environment (U) – – – –
Property (S) – – –

Rescuers (MA)
Equipment (G) – – –

reports to experts. It is divided into three consecutive parts. In the first part,
experts were introduced to the format and the purpose of the Threats Matrix.
In the second part, some examples of filled Threats Matrices are presented and
discussed with the experts. In the third part, experts receive an exemplary EWID
report together with a corresponding filled Threats Matrix.

The labeling phase consists of many evaluation steps. In every step the experts
were provided with a single EWID report. On the ground of the information
about the incident described in the report, they are asked to evaluate threats
which appeared during the incident and to fill in the Threats Matrix. Every
report description used in our experiment was labeled by only one expert. In
total, we collected 406 labeled incident descriptions. Since it is reasonable to
assume that similar incidents are characterized by similar threats, we use the
labeled documents to evaluate semantic homogeneity of different clusterings of
our data.

4 Experimental Settings

In our experiments we wanted to find out what impact on a granulation of data
has a choice of EWID reports’ representation. Since the reports have two parts
that convey different types of information (the structured and natural language
parts) and require different preprocessing, we were interested which of them
is more important. We also wanted to check whether a concatenation of those
two seemingly different representations can be beneficial for identification of
semantically homogeneous clusters in the data.

We performed the experiment in R System [14]. The two parts of the in-
cident reports were subjected to different preprocessing steps. Attributes from
the structured part, which took only a single value (zero) on the preselected
set of 31 556 reports were removed from the data set. From the remaining 353
attributes, those with numerical values were linearly scaled into the [0, 1] in-
terval. Next, the vectors representing each report were normalized (value of
each of the attributes was divided by the Euclidean norm of the vector).
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After preprocessing, an information system was constructed and represented by
a sparse matrix implemented list of entity-attribute-value (EAV) triples in the
slam library1.

The natural language parts of the reports underwent a typical preprocessing
for textual data. First, the strings representing descriptions of causes, the site
and the course of the F&R services intervention were tokenized and stop-words
that corresponded to irrelevant phrases were removed. A dictionary of stop-words
was built by a domain expert. The remaining words were lemmatized using the
Morfologik2 software. Next, bag-of-words representations of the reports were
created and each incident description was associated with a numerical vector
of TF-IDF weights of the terms. If the term wi, that corresponds to the i-th
position in a vector representation of a report d ∈ D, appeared ni times in this
report, then TF-IDF weight of wi in d is defined as:

di = tfi × idfi =
ni∑
j=1 nj

× log
|D|

|{r ∈ D : wi ∈ r}| .

All the TF-IDF vectors were normalized. Due to their sparsity, they were also
stored in a from of a sparse matrix with 9 632 columns corresponding to different
terms.

Having the numerical representations of the two parts of the EWID reports
we were able to easily combine them by concatenating the corresponding vec-
tors. In this way we obtained three information systems representing our data.
The first one was based on information from the structural part, the second
represented natural language description of incidents and the third one was a
hybrid of the first two. Our main goal in the experiment was to find out which
of those representations is more suitable for extracting data granules consisting
of semantically similar incidents.

5 Evaluation of Semantic Homogeneity

To perform clustering of data we utilized the spherical k-means algorithm im-
plemented in R library skmeans. The algorithm is very similar to the classical
k-means, but instead of the Euclidean distance it uses the cosine distance3 which
makes it more suitable for dealing with high-dimensional data. In order to thor-
oughly evaluate impact of the different data representations on semantic homo-
geneity of clusters we compare the results obtained for 20 different values of the
parameter k in a range between 2 and 100. We used the pclust as a clustering
method with the number of repetitions set to 25.

We began by comparing values of an internal clustering quality measure ob-
tained for each representation of data and different values of k. For this purpose,
1 The documentation of the package can be found in the CRAN repository:
http://cran.r-project.org/web/packages/slam/index.html

2 Morfologik project page http://morfologik.blogspot.com
3 In practice, the cosine distance which is equal to arc cosine of two vectors, is approx-

imated by a function dist(x, y) = 1− cosine(x, y) that does not satisfy the triangle
inequality.

http://cran.r-project.org/web/packages/slam/index.html
http://morfologik.blogspot.com
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Fig. 1. A comparison of internal average silhouette widths of clusterings into an in-
creasing number of groups and using different representations of the incidents. The
figure shows average values from 5 repetitions of the experiment.

we decided to use the average silhouette width measure which is described in
details in [15]. The results of this comparison are shown in Figure 1.

Since values of the silhouette width are always in the [−1, 1] interval and the
representations of the data were normalized before the experiment, it is mean-
ingful to compare different clusterings using this particular measure. From the
figure it seems that the structural part conveys information that allows to iden-
tify more distinct granules of the data. The silhouettes of the clusterings on
the structural and the textual data for different values of k are strongly nega-
tively correlated. The separability of clusters computed using the textual part
of the data increases with the increasing number of groups. At the same time
the silhouettes of clusterings performed on the structured part systematically
diminishes. Interestingly, separability of clusters obtained from the hybrid rep-
resentation is usually much lower than in the case of the other two and seems to
be independent of the number of considered groups.

Although the internal measure seems to favour the structural information,
we still wanted to verify whether the separability with regard to the cosine dis-
tance corresponds to semantic homogeneity of the clustering. As it was already
mentioned in Section 3, the semantic similarity of incidents requiring involve-
ment of F&R services can be considered in terms of the associated risks and
threats. Because of this fact, for the evaluation of semantic coherency we could
utilize the reports that were labeled with pairs of threats and threatened objects
(i.e. the risks – see Section 3) by experienced commanders.
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Fig. 2. A comparison of semantic homogeneity of clusterings into an increasing number
of groups and using different representations of the incidents. The figure shows average
values from 5 repetitions of the experiment.

Following the research described in [16] we defined an analogical measure of
the semantic homogeneity. If Ti and Tj are the sets of labels (threats) associated
with i-th and j-th incidents from our validation set, then their dissimilarity can
be defined as:

F1dissim(Ti, Tj) = 1− 2 · precision(Ti, Tj) · recall(Ti, Tj)

precision(Ti, Tj) + recall(Ti, Tj)
,

where

precision(Ti, Tj) =
|Ti ∩ Tj |
|Ti|

and recall(Ti, Tj) =
|Ti ∩ Tj |
|Tj|

.

A semantic dissimilarity between two groups of labeled incidents G1 and G2

can be defined as an average F1dissim between pairs of incidents from different
groups:

semDissim(G1, G2) =

∑
Ti∈G1,Tj∈G2

F1dissim(Ti, Tj)

|G1| · |G2|
.

If for a division of data into groups we denote by G(Ti) the labeled incidents
that belong to the same group as Ti, and by V we denote the validation set of all
incidents labeled by the commanders, then we can define a semantic homogeneity
of Ti as:
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homogeneity(Ti) =
B(Ti)−A(Ti)

max
(
A(Ti), B(Ti)

) , where

A(Ti) = semDissim(Ti, G(Ti) \ Ti) and
B(Ti) = semDissim(Ti, V \G(Ti)).

As the semantic homogeneity of a clustering we will take the average semantic ho-
mogeneity of incidents from our validation set. Values of this measure computed
for clusterings into different number of groups and using different representations
of data are shown in Figure 2.

The evaluation results clearly show advantages of using the hybrid representa-
tion of the incidents from the EWID system. The clusterings obtained from the
combined structural and textual parts of the reports achieved the highest scores
for nearly all values of k. Moreover, even when results of one of the other repre-
sentations were significantly lower for a partitioning into a particular number of
clusters, the semantic homogeneity of the clustering in the combined attribute
space remained robust. It is also worth mentioning that comparing to random
divisions into groups, the semantic homogeneities of all investigated clusterings
were significantly higher.

6 Conclusions and Future Work

The experimental evaluation of the proposed method for incident clustering
based on heterogeneous (structural+text) data representation shows improve-
ment in terms of semantic coherence and usability of resulting clusters. More-
over, we have confirmed our previous claim that the internal measures of cluster
quality are inappropriate for our task. The lack of semantic context makes these
measures hardly relevant as they are unable to capture the kind of objects’ re-
latedness we are looking for. The clustering supported by the evaluation based
on expert knowledge collected with a use of Threat Matrices led us also to a
conclusion, that in the existing framework of the EWID system the NL descrip-
tion part of an incident report is absolutely crucial and that we cannot expect
meaningful results from approaches that ignore this component. At the same
time, this description is in the most cases insufficient to obtain a complete un-
derstanding of the incidents. All in all, the heterogeneous approach seems to be
the most logical and promising.

The clustering of incidents and the resulting clusters have already proven to be
a helpful addition to evolution of models and processes used in the training and
evaluation of Fire Service operations. In particular, they have a positive influence
on robustness of decision making process of commanders at the scene. We are
fully aware that our method of semantic measurements of cluster homogeneity
is tied to the specific data set. However, we strongly believe that the expertise
gained through our experiments would be also useful in other domains, such
as police reports or medical reords, where data is stored in similar manner as
fire&rescue reports.
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In the immediate future we plan to investigate the scenario in which not only
the objects (cluster elements) are “soft” but also the clusters are constructed
in a “soft” way. That would entail using clustering techniques that create soft
granules, i.e., clusters that may overlap. Such an effect may be achieved using
fuzzy clustering algorithms such as the fuzzy c-means or fuzzy-spherical-k-means.
The clustering model that makes it possible for an incident to belong to many
clusters in various degrees holds a promise for better detection of incident reports
that are either erroneous (due to incomplete or careless input) or atypical (rare
and important). Detection of both kinds of unusual situations may significantly
improve the decision making processes that are based on the EWID data and
might be helpful in a training process of Fire Service commanders.
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Abstract. Correlation clustering relies on a relation of similarity (and
the generated cost function). If the similarity relation is a tolerance re-
lation, then not only one optimal partition may exist: an object can be
approximated (from lower and upper side) with the help of clusters con-
taining the given object and belonging to different partitions. In practical
cases there is no way to take into consideration all optimal partitions.
The authors give an algorithm which produces near optimal partitions
and can be used in practical cases (to avoid the combinatorial explosion).
From the practical point of view it is very important, that the system of
sets appearing as lower or upper approximations of objects can be taken
as a system of base sets of general (partial) approximation spaces.

Keywords: Rough clustering, correlation clustering, set approximation.

1 Introduction

Clustering is a task of grouping a set of objects in such a way, that the objects
in the same cluster (group) are more similar to each other, than to the objects
in the other clusters. This clustering gives a partition (disjoint set of sets) of
the whole set of the objects. A member of a partition is called cluster in the
following. There are many algorithms to construct this partition (see [1] for a
recent survey). Some of them assign a distance to each pair of objects, and are
based on the distance or on the density of objects to connect or separate them. It
is common to use these algorithms for discrete and even categorical data, where
the concept of distance is unnatural. Algorithms finally produce a partition or
a tree of subsets [2]. As in most cases the number of groups is given [3], clusters
can be generated from the tree in the latter case easily.

There is an exceptional clustering method: the correlation clustering [4–6].
In this case the number of clusters is not given in advance, but there is a cost
function which has to be minimized. In correlation clustering no attribute is
taken into account, but there is a relation of similarity. At the beginning this
relation was total, but here it is assumed that it is partial, and moreover is
symmetric, and reflexive naturally; so it is a partial tolerance relation [7, 8].
This means that two object can be similar, dissimilar, or it is possible, that
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there is no information about their similarity: namely no one compared them
yet, or they are incomparable. There is no degree of similarity or dissimilarity
as given in [9], the correlation clustering can manage alone the inconsistencies
of the tolerance relation.

Let matrix M = (mij) be the matrix of the partial relation RM of similarity:
mij = 1 whenever objects i and j are similar, mij = −1 whenever objects i and
j are dissimilar, and mij = 0 otherwise. A partition of a set S is a function p :
S → N. Objects x and y (x, y ∈ S) are in the same cluster at partitioning p, if
p(x) = p(y).

The cost function counts the negative cases i.e. it gives the number of cases
whenever two dissimilar objects are in the same cluster, or two similar objects
are in different clusters. The cost function of a partition p and a relation RM

with matrix M is

f(p,M) =
1

2

∑
i<j

(mij + |mij |)−
∑
i<j

δp(i)p(j)mij ,

where δ is the Knockecker delta symbol [10]. For a fixed relation the partition
with the minimal cost function value is called optimal. Solving a correlation
clustering problem is equivalent to minimizing its cost function, for the fixed
relation. If the value of this optimal cost function is 0, the partition is called
perfect.

It is easy to check that the solution cannot be generally perfect for a simi-
larity relation. Take the relation on the left of Fig. 1. The dashed line denotes
dissimilarity and the normal line similarity. E.g. a man (a) similar to a Paris
doll (b) by its shape, and to a mouse (c) by its organs, but the doll and the
mouse are dissimilar. On the right, Fig. 1 shows all the partition of these ob-
jects, where rectangles indicates the clusters. The thick lines denote the pairs
which are counted in the cost function. In the upper row the value of the cost
function is 1 (in each case), while in the two other cases it is 2 and 3, respectively.

The number of partition can be given by the Bell number [11], which grows
exponentially. Hence, in general — even in the case of some dozens of objects
— the optimal partition cannot be determined in reasonable time, thus a search

Fig. 1. Minimal frustrated similarity graph and its partitions
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algorithm which produces a near optimal partition would be more useful in
practical cases. The authors examined the effectiveness of the most common
methods for correlation clustering, and constructed some new effective ones [12].
The latter methods allow us to get a near optimal solution even for relations on
thousand objects in reasonable time.

A typical application of clustering is to add new objects to the clusters deter-
mined before based on a sample set of objects. At our methods the complexity of
determining the cluster of a new object is O(n2) in general, but when restructur-
ing is unavoidable it is O(n3). There are some methods where the complexity of
adding a new object to the clusters is O(n), but in this case the starting clusters
cannot be modified.

The structure of the papers is as follows. After reviewing some important
properties of correlation clustering, the authors show how it can be used to
construct lower and upper approximations of an object based on a given sim-
ilarity (tolerance) relation. In many practical cases there is no way (without
combinatorial explosion) to give the exact approximations relying on all optimal
clustering processes and so an approximation algorithm is applied to get the ap-
proximations based on near optimal ones. The results are visualized in different
examples. Finally the problem of handling noise is discussed.

2 Rough Correlation Clustering

The traditional correlation clustering produces a partition, where an object be-
longs to exactly one cluster, but in many cases an object could be added to
several clusters. Clustering algorithms usually use a random number generator,
so the cluster containing a given object is determined by a random factor. In
medical database, for example, it can cause some unacceptable results.

For us the similarity is a rough relation in the sense, that it is not an equiva-
lence relation, and so there is no well–defined partition behind it, but there are
some different partitions produced by optimal clustering processes: an object
may belong to several clusters (belonging to different partitions) at the same
time. If we take into consideration all optimal partitions, three different cases
appear. Two objects

– always are in the same cluster,
– always are in different clusters, or
– sometimes are in the same and sometimes are in different clusters.

At first take the relation in Fig. 1. There are three optimal partitions (in the
upper row). There is no other object which is always in the same partition as
the object a in these cases. The same is true for objects b and c.

Let the lower approximation of the object x be the set of objects which are
always in the same partition with x. Hence the lower approximation of a is a
singleton, containing a (in the following l(a) = {a}). The lower approximations
of b and c are similar. These lower approximations are denoted by grey rectangles
in Fig. 2.



318 L. Aszalós and T. Mihálydeák

Fig. 2. Lower and upper approximations of the relation of Fig.1

Let the upper approximation of the object x be the set of objects which
are at least once in the same partition with x. The third partition in Fig. 1
contains all objects, so the upper approximation is a set containing all of them
(u(a) = u(b) = u(c) = {a, b, c}).

Let us define the concepts more formally. If p1, . . . , pn are the optimal par-
titions of S for relation RM , then the lower approximation of x ∈ S is l(x) =
{y|pi(x) = pi(y), for all 1 ≤ i ≤ n}, and upper approximation of x is u(x) =
{y|pi(x) = pi(y), for some 1 ≤ i ≤ n}. By definition l(x) ⊆ u(x), for any ob-
ject x. Moreover this definition satisfies Lingras and Peters’ criteria [13] on rough
clustering.

Remark that functions l and u assign sets to objects. They approximate ob-
jects by sets. The approximation l is strict in the sense, that if one could fill
some information gap at the original relation RM , or, by other words, narrow
the partiality of RM , then for the improved lower approximation l′ the following
holds: l(x) ⊆ l′(x) for any object x. Similarly the approximation u is tolerant:
for the improved upper approximation u′, for any object x, u′(x) ⊆ u(x) holds.
Hence the truth — real similarity relation — is between the two approximations.

Note, that this definition does not use the tolerance relation RM in a such
direct way, as Kryszkiewicz [14] did for set approximations. Here the optimal
partitions are determined by the tolerance relation, and the partitions generate
the lower and the upper approximations. An optimal partition can overwrite the
tolerance relation: it can put two objects into the same cluster, while they are
dissimilar by RM , and can put two objects into different clusters while they are
similar by RM . Therefore this method could produce a more precise clustering
by reconditioning the tolerance relation.

By using a different notation, if P (x) denotes the cluster of x in partition p,
i.e. P (x) = {y|p(x) = p(y)}, then l(x) = ∩iPi(x) and u(x) = ∪iPi(x).

On the base of these approximations two relation can be defined: xRly iff
x ∈ l(y) and xRuy iff x ∈ u(y). It is left to the reader, to check that the relation
of Rl is an equivalence relation, and the members of l(x) for some object x are
indiscernible with respect to Rl. Moreover the S/Rl gives the Rl-elementary sets
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in the Pawlak sense. The set of lower approximations B = {l(x)|x ∈ S} can be
treated as a one-layered base system. The relation Ru is not transitive, so it
cannot be an equivalence relation in general. But the reflexivity and symmetry
holds, as they can be proved easily by their definition.

Let us see a more complicated case! We generated 13 points randomly in the
unit square, as Fig. 3 shows. Two points are similar, if their Euclidean distance
is less than or equal to 0.2, and they are dissimilar, if their distance is greater
or equal to 0.8. If their distance greater than 0.2 but less than 0.8 we didn’t
want to decide about their similarity, in these cases the relation is not defined.
Dissimilarity holds only between object m and object b, d, g, h and l. Object b,
d, g, h and l are similar to each other, except g and l; object e is similar to c
and j, but c and j are not similar. Similarly object k is similar to i and f , but i
and f are not similar.

Fig. 3. Randomly generated points on the unit square

Our software1 checked all the 27, 644, 437 different partitions, and found 37
optimal ones. In these case the value of the cost function is 0, so these partitions
are perfect. The generated lower and upper approximations of the points of
similarity is presented in Fig. 4. The figure on the left express the lower and
upper approximations. The figure on the right shows the same without names.
Here the ith column and ith row of the picture correspond to one object. Different
rows denote different objects. The rows are grouped in a such way, that the
objects with the same lower approximations follow each others. Hence it does
not present the exact lower and upper approximation for a selected object, but
it demonstrates the structure of all approximations. It can be useful at large set
of objects.

1 It is available at http://www.inf.unideb.hu/~aszalos/roughclusters
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Fig. 4. Rough clusters of the points of Fig. 3 with dissimilarity ≥ 0.8

The lower and upper approximations correspond to the expectations in Fig. 4.
E.g. b /∈ u(m), as object b and m are dissimilar, and in perfect clustering dis-
similar elements are in different clusters. Moreover f ∈ l(i), because both of
them are similar to object k, and in perfect clustering the similar objects are
in the same cluster. Hence object f and k are in the same cluster, like k and i.
Therefore f and i need to be in the same cluster.

If we take the same points in Fig. 3, but the dissimilarity begins at distance
0.5, then m differs from each object, but a, f and k. There is no relation between
a and m, so they can be in the same or in different clusters, so a ∈ u(m) and
a /∈ l(m). There are 4 perfect clusterings, so k /∈ u(m), because object k is
similar to object i which differs from m. Object f is similar to k, so f /∈ u(m).
The same pairs are similar as before, so the lower approximations are the same,
but there is a new limit for dissimilarity, so the upper approximation changed
dramatically as Fig. 5 shows on the left.

Fig. 5. Rough clusters of the points of Fig. 3 with dissimilarity ≥ 0.5 (on the left)
and the same when singletons are handled specially as introduced in Section 5 (on the
right)
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3 Approximation by Means of Approximations

As it was mentioned before, in the case of large sets there is no effective way to
find all optimal partitions. Hence it is not possible to get the exact (based on all
optimal partitions) lower and upper approximations. We tested the partitions of
the first natural numbers, with respect to the similarity based on the number
of common divisors. But even in the case of 50 numbers there are millions of
optimal partitions, thus an exhaustive search is not admissible here.

Let’s approximate the optimal partitions. Use a search method, and gener-
ate the lower and upper approximations from the best (maybe not optimal)
partitions.

To demonstrate this kind of approximation, 500 points are generated on the
unit square. The points and the result of the clustering are in Fig. 6. In general it
is a dirty test to use any clustering method on a random data to get something,
because the concept of distance is missing, e.g. the scale factor of the different
attributes is not known. At our test the relation RM of the similarity is given.
It is the same as before, two objects are similar, if their Euclidean distance is
less than or equal to 0.2; and they are dissimilar, if their distance is greater or
equal to 0.5.

Fig. 6. Rough clustering of 500 random points on the unit square

Our algorithm was run 1, 10, 100 and 1000 times, and their best results were
similar, as Table 1 shows. The generated lower and upper approximations were
almost the same in the last two cases. Relying on these results it is very probable
that there is no need to use many iterations to get different near optimal results.
We note that a similar result appeared when the dissimilarity started at 0.8 and
this gave thousands of best solutions which generated many small sets as lower
approximations.
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Table 1. Trials to find the optimal partitions

Trials No. best partitions Value of the cost function

1 1 2613
10 1 2613

100 3 2613
1000 4 2613

Fig. 7. Lower and upper approximations based on 1, and 4 partitions

As Fig. 6 shows, the approximations differ only at some points, hence the
lower and upper approximations are very close to the real clusters.

If there is only one best partition, then the lower and upper approximations
are the same: l(x) = u(x) for all objects x. Hence the figure on the left in
Fig. 7 contains 5 big and 3 very small squares. (The small squares are at the
right bottom of the picture.) The structure on the right is more complicated: it
contains 6 singleton clusters. These singletons are similar to some big clusters,
as the grey lines show on the right and on the bottom. This means, that e.g. the
signs × and the star on the left near to 0.6 can belong to plus signs in Fig. 6.
This star sign can belong to dotted squares and filled circles, too.

4 Handling of Singletons

Usually the objects which do not belong to any bigger cluster are treated as
noise, and not taken into account. This can be done in this case, too. The lower
approximations in Fig. 7 has 3 and 6 singletons, respectively; but it is hard to
notice them. Hence they can be left out. There are two possibilities to do this:

1. The process is the same: take all best partitions Pi, and construct l(x) =
∩iPi(x), but the base system does not contains singletons:

B = {l(x)|l(x) 	= {x}, x ∈ S} .

The base system remains one-layered, but became partial [15].
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2. The singletons are left out from the best partitions. This complicates the
former results. For example take the simplest frustrated similarity relation
in Fig. 1 In this case P1(a) = {a, b}, P2(a) = {a, c} and P3(a) = {a, b, c}, so

l̂(a) = {a}, as before. P1(b) = {a, b}, P3(b) = {a, b, c}, so l̂(b) = {a, b}. P2(b)

is singleton, so it is not counted. Similarly l̂(c) = {a, c}. Before the relation

Rl was an equivalence relation, but here it no longer holds. E.g. a ∈ l̂(c),

but c /∈ l̂(a). Moreover if base system is defined as

B̂ =
{
l̂(x)|x ∈ S

}
,

then a ∈ l̂(b) and a ∈ l̂(c), so the base system is not one-layered.
If object x differs from many ones, and hence in the best partitions it is

always a singleton, then the best way to define l̂(x) is as an empty set (empty

intersection of empty sets). This means that the property x ∈ l̂(x) will not
hold in this case. Hence the third property (in Mitra at all [16]) — if x is
not a member of any lower approximation, then it belongs to two or more
upper approximations — does not hold, because x cannot be a member of
any upper approximation.

We repeated the calculations with this approximation variant. The figures
in Fig. 4 remain the same, and Fig. 5 on the left changed only at one point
(on the bottom left): as h is singleton in each optimal partition, but it is in

the same cluster than a, therefore a ∈ l̂(h). In reverse a is not singleton in
three cases, and it is in the same cluster as h only once. Hence h ∈ û(a),

but h /∈ l̂(a), as Fig. 5 on the right demonstrates. Moreover repeating the
calculations of clustering 500 points, the result is almost the same as in
Fig. 7, just the 3 clusters on the bottom right are deleted, because they were
singletons in all optimal partition. This result is the same as the result of
former variant.

5 Conclusion and Further Work

In this paper the authors showed that if a relation RM is given, then the base
system of an approximation space could be generated. The next step is to create
this relation for some common task in data mining, and compare results with [17].

As the original relation changes, the optimal partitions could be different [18].
Our software could easily follow this modification, and find the best partitions,
and regenerate the base system. Hence we are interested in the complexity issues
of this kind of dynamism in real world applications.
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Abstract. This paper uses a novel recursive meta-profiling technique where pro-
files from one set of objects dynamically change the representation of another
set of objects. Two profiling schemes evolve in parallel influencing each other
through indirect recursion. This is demonstrated with the help of a yelp.com
dataset consisting of businesses and reviewers. A business is represented by static
information obtained from the database and dynamic information obtained from
clustering of reviewers who reviewed the business. Similarly, the reviewer rep-
resentation augments the static representation from the database with profiles of
businesses who are reviewed by these reviewers. The resulting service provides a
facility for users to find similar businesses/reviewers based on the grading of the
business, easy/hard grading, and types of businesses. It also provides a succinct
profile of business/reviewer based on these factors, so users can put the reviews
in context.

1 Introduction

At yelp.com, a business can be represented by an information granule consisting of the
number of five-star, four-star, ..., one-star reviews received. A reviewer can be similarly
represented by an information granule consisting of votes, five-star, four-star, ..., one-
star reviews submitted. Traditionally, data mining process begins with representation of
objects based on raw data from the dataset. The number of different star reviews for
the businesses and by the reviewers can be easily retrieved from the yelp.com database.
These can be used in data mining activities such as clustering to create the profiles of
businesses and reviewers. Clustering is an unsupervised learning process that groups
similar objects. It can be used to create profiles of businesses based on type of reviews
received or profiles of reviewers based on types of reviews submitted. However, this
only grades the businesses based on the reviews. It does not tell us how easy or hard the
reviewers were. This project addresses that issue by evolving business profiles in paral-
lel with profiles of reviewers, These profiles recursively enhance the static information
obtained from the database. For example, we add the profiles of businesses that were
reviewed by a reviewer in the reviewer representation. Similarly, we add the profiles

� Video link: http://www.mtriff.com/yelp/video.php
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of reviewers who reviewed a business in the representation of the business. This cre-
ates an indirectly recursive definition of businesses and reviewers. The meta-profiling
algorithm proposed in this paper iterates through bi-directional connections between
businesses and reviewers to resolve the indirect recursive representations. The resulting
meta-profiles of businesses will also describe the profiles of reviewers (created as part
of the integrated meta-clustering) who reviewed the businesses. On the other hand, the
meta-clusters of reviewers will also contain information about the profiles of businesses
who were reviewed by the reviewers from a given cluster. That means that the readers
not only know how the businesses are graded, but how easy or hard the reviewers are.
Similarly, if a reader chooses to follow a reviewer, she can find out how easy or hard
the reviewers are as well as the popularity of the businesses graded by the reviewer. The
profiles from the the clustering are further refined by additional filters that will help
users focus on types of businesses. The resulting service provides a facility for users to
find similar businesses/reviewers based on the grading of the business, easy/hard grad-
ing, and types of businesses. It also provides a succinct profile of a business/reviewer
based on these factors, so users can put the reviews in context.

1.1 Crisp Clustering Using k-means

k-means clustering is one of the most popular statistical clustering techniques [3]. The
objective is to assign n objects to k clusters. The process begins by randomly choosing k
objects as the centroids of the k clusters. The objects are assigned to one of the k clusters
based on the minimum value of the distance d(xl, ci) between the object vector xl and
the cluster vector ci. The distance d(xl, ci) can be the standard Euclidean distance.

After the assignment of all the objects to various clusters, the new centroid vectors
of the clusters are calculated as:

ci =

∑
xl∈ci

xl

| ci |
, where 1 ≤ i ≤ k.

Here | ci | is cardinality of cluster ci. The process stops when the centroids of
clusters stabilize, i.e. the centroid vectors from the previous iteration are identical to
those generated in the current iteration.

Quality of clustering is an important issue in application of clustering techniques to
real world data. A good measure of cluster quality will help in deciding various param-
eters used in clustering algorithms. One such parameter that is common to most clus-
tering algorithms is the number of clusters. Several cluster validity indices have been
proposed to evaluate cluster quality obtained by different clustering algorithms[1,2].
Many of the cluster validity measures are functions of the sum of within-cluster scatter
to between-cluster separation. The scatter within the ith cluster, denoted by Si, and the
distance between cluster ci and cj , denoted by dij , are defined as follows:

Si =

(
1

| ci |
∑
x∈ci

distance(x, ci)

)1/q

(1)

dij = distance(ci, cj) (2)
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where ci is the center of the ith cluster. |ci| is the number of objects in ci. distance(x,y)
is the distance between two vectors. Depending upon the application, we can choose any
distance function. Two popular distance functions are Euclidean distance and inverse
of cosine similarity function. This study uses Euclidean distance.

We can sum up the scatter within cluster for all the clusters in a clustering scheme C
as:

S(C) =
k∑

i=1

Si (3)

Similarly, between-cluster distance for a clustering scheme can be summed as:

D(C) =

k∑
i=1

k∑
j=1

dij (4)

It is advisable to plot both of these measures for the datasets under study. Usually, the
scatter within cluster starts rising rapidly, while distance between cluster starts falling
rapidly when the number of clusters falls below a certain value. The knee of the curves
can be used as the range for determining an appropriate number of clusters. We will
demonstrate this process for all the datasets used in this study.

Table 1. Static and dynamic parts of reviewer data

Reviewer Static representation (sr) Dynamic representation (dr)
ID Total * ** *** **** ***** votes bc1 bc2 bc3 bc4 bc5 bc6 bc7

sr1 sr2 sr3 sr4 sr5 sr6 sr7 dr1 dr2 dr3 dr4 dr5 dr6 dr7

r1 6 0 0 17 33 50 11 0 17 17 17 17 0 33
r3 9 0 22 0 33 44 6 22 0 67 11 0 0 0
ri ... ... ... ... ... ... ... ... ... ... ... ... ... ...
rnr 18 6 0 17 67 11 32 11 6 39 28 0 6 11

2 Recursive Profiling Algorithm

Since K-means algorithm depends on randomly selected initial centroids of the clusters,
we apply the algorithm multiple times and choose a clustering scheme that has the most
compact clusters. Cluster compactness and manual inspection of cluster centroids was
used to determine the optimal number of clusters.

On yelp.com, a business is reviewed by many reviewers and a reviewer reviews
many businesses creating a bi-directional graph. Our clustering of reviewers is going
to use profiles derived from the clustering of businesses, and vice versa. Let R =
{r1, r2, . . . , rnr} be the set of reviewers and B = {b1, b2, . . . , bnb} be the set of busi-
nesses. Here, nr = 43, 873 is the number of reviewers and nb = 11, 537 is the number
of businesses in yelp.com dataset. Furthermore, let RC = {rc1, rc2, . . . , rckr} be
the clustering scheme of reviewers and BC = {bc1, bc2, . . . , bckb} be the clustering
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Table 2. Static and dynamic parts of business data

Business Static representation (sb) Dynamic representation (db)
ID Total * ** *** **** ***** rc1 rc2 rc3 rc4 rc5 rc6 rc7

sb1 sb2 sb3 sb4 sb5 sb6 db1 db2 db3 db4 db5 db6 db7
b1 67 7 10 12 58 12 3 2 18 5 59 6 8
b2 4 0 0 25 25 50 50 0 0 0 25 0 25
bi ... ... ... ... ... ... ... ... ... ... ... ... ...
bnb 18 0 11 11 61 17 13 0 0 0 73 0 13

Fig. 1. Plot of within cluster scatter for businesses

scheme of businesses. After studying the compactness of clusters shown in Fig. 2 and
resulting centroids, it was decided that the number of reviewer clusters kr = 7. The
knee of the curve for the scatter within cluster shows that the scatter starts rising rapidly
after kr = 11. The increase in the scatter intensifies after kr = 7. Similarly, the number
of business clusters based on the knee of the curve for scatter within clusters shown in
Fig. 1 was decided to be 7, i.e. kb = 7, as 7 is just about the middle of the knee of the
curve.

The reviewer rj is represented by a static data part srj and dynamic data part drj ,
i.e. rj = (srj ,drj) as shown in Table 1. Here, srj is the data that are extracted
from the raw dataset such as types of reviews (total, *,**,***,****,*****,votes). The
dynamic part drj will be derived from the clustering of businesses. We will represent
drj = (mj1,mj2, · · · ,mjkb), where mji is the normalized count of businesses that the
reviewer rj reviewed that falls in bci cluster of businesses.
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Fig. 2. Plot of within cluster scatter for reviewers

1. Cluster the businesses using their static representations, i.e. a business bj = sbj , where
sbj is a vector of attribute values retrieved from the transaction data set.

2. Calculate the dynamic representation drj of a reviewer rj :

drj = (mj1,mj2, ..., mjkb), (5)

where mji is the count of businesses from cluster bci who were reviewed by reviewerrj

in the previous clustering of businesses.
3. Cluster the reviewers with concatenation of static and dynamic representations, i.e. a re-

viewer rj = (srj ,drj),
4. Calculate the dynamic representation dbj of a business cj :

dbj = (mj1,mj2, ..., mjk), (6)

where mji is the count of reviewers from cluster rci who reviewed business bj in the
previous clustering of reviewers.

5. Cluster the businesses with concatenation of static and dynamic representations, i.e. a re-
viewer bj = (sbj ,dbj),

6. If the values of dbj for a business bj or the values of dri for a reviewer ri have changed,
go back to step 2.

Fig. 3. Proposed indirectly recursive meta-clustering algorithm
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Similiarly, the business bi will be represented by a static data part sbi and dynamic
data part dbi, i.e. bi = (sbi,dbi) as shown in Table 2. The static part sbi will represent
the number of reviews (total, *,**,***,****,*****) received for the business from the
raw dataset, while the dynamic part dbi will be derived from the clustering of reviewers.
That is, dbi = (mi1,mi2, · · · ,mikr), where mij is the normalized count of reviewers
that reviewed the business bi that falls in rcj cluster from the clustering of reviewers.
Since we do not have any clustering results at the beginning of the iterative process, we
first cluster businesses based solely on the static part. The subsequent clustering of both
businesses and reviewers will use the static and dynamic representations. The iterations
will stop when values of the dynamic parts drj and dbi for all objects stabilize. Fig. 3
provides the formal description of the proposed iterative meta-clustering algorithm.

3 Experiments with the Yelp.com Dataset

The dataset from the Yelp dataset challenge consisted of 11,537 businesses, 43,837
users, and 229,907 reviews for Phoenix, Arizona. It was decided to represent each busi-
ness based on the total number of reviews, and percentage of reviews from each rating
category going from one-star to five-star. Similarly, a reviewer was also represented by
total number of reviews, and percentage of reviews from each rating category (one-star
to five-star) were submitted by the reviewer as well as the number of votes received
by the reviewer. The above-mentioned static information was retrieved directly from
the Yelp dataset. As mentioned earlier, this static information was supplemented by the
connections between the reviewers and the businesses. For each business, we created
a list of reviewers who reviewed the business. The categorization of these reviewers
made up the dynamic representation of the business as shown in Table 2. Similarly,
we created a list of businesses reviewed by each reviewer. This list was used to create
categorization of businesses that went into the dynamic representation of the reviewer
as shown in Table 1. A statistical summary of static data obtained from the yelp.com
dataset is shown in Table 3 for businesses and in Table 4 for reviewers. The statistical
summary suggests a skewed distribution. Based on this, as well as Fig. 1 and Fig. 2, we
chose to increase the number of clusters from five to seven. This allowed for separation
of some of the higher value objects into small clusters of their own.

The parallel meta-clustering, described in Fig. 3, created the meta-centroids for var-
ious categories of businesses and reviewers. The data extraction and preparation was

Table 3. Summary of static business data

Measure Total * ** *** **** *****

Min. 3 0 0 0 0 0
1st Qu. 4 0 0 0 6.25 12.2
Median 6 3.509 0 10.43 30 32.97
Mean 19.93 12.718 9.123 13.91 28.32 35.93

3rd Qu. 16 20 15.094 25 41.28 55.26
Max. 844 100 100 100 100 100
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Table 4. Summary of static reviewer data

Measure Total * ** *** **** ***** votes

Min. 1 0 0 0 0 0 0
1st Qu. 1 0 0 0 0 0 0
Median 2 0 0 0 0 33.33 2
Mean 4.921 12.76 8.598 9.523 26.56 42.57 14.56

3rd Qu. 4 0 0 0 50 100 5
Max. 588 100 100 100 100 100 14933

Table 5. Centroids from iterative meta-clustering of business data

Static representation (sb) Dynamic representation (db) Size
Cluster Total * ** *** **** ***** rc1 rc2 rc3 rc4 rc5 rc6 rc7

ID sb1 sb2 sb3 sb4 sb5 sb6 db1 db2 db3 db4 db5 db6 db7
bc1 12 16 19 31 22 12 6 1 3 1 69 10 10 2510
bc2 11 6 5 7 22 61 21 1 5 1 60 6 6 2644
bc3 101 6 9 16 37 31 3 0 20 2 65 4 6 852
bc4 13 6 7 12 55 20 8 1 3 1 75 5 8 2764
bc5 5 6 3 2 6 83 63 0 6 1 20 7 3 1449
bc6 5 51 11 9 14 15 11 1 5 2 34 42 6 1214
bc7 335 3 6 14 39 38 4 0 7 22 60 2 5 104

performed using a number of Python scripts. The meta-clustering algorithm was im-
plemented using a UNIX bash script that iteratively called an R program for cluster-
ing and a Python program for creating dynamic representations of clustering. K-means
clustering used 1000 iterations and was applied 10 times to get compact clusters. The
dynamic representation seemed to stabilize after 21 iterations of indirectly recursive
meta-clustering. On a high performance computing cluster provided by ace-net.ca the
meta-clustering took only one minute.

The business clusters are shown in Table 5 and the meta-centroids of the reviewer
clusters are shown in Table 6. The last column in each table shows the size of each
cluster. The resulting business profiles are more refined than conventional clustering
process as they use associations with the profiles of the reviewers that reviewed the
business. We can describe these enhanced profiles as follows:

bc1 Ambivalently rated even by softies - Modest number of evenly spread reviews,
most coming from rc5, which tends to give mostly four stars reviews.

bc2 Well rated by softies - Modest number of reviews mostly five and four stars, most
coming from rc5 and rc1, which tend to give mostly four and five stars reviews.

bc3 Well rated by balanced reviewers - Large number of reviews mostly four and five
stars with noticeable three stars, most coming from rc5 (gives mostly four stars)
and rc3 (capable of giving two and three stars).

bc4 Reasonably rated by mostly softies - Modest number of reviews mostly four and
five stars, most coming from rc5, which tends to give mostly four stars reviews.
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Table 6. Centroids from iterative meta-clustering of reviewer data

Static representation (sr)
Cluster Total * ** *** **** ***** votes

ID sr1 sr2 sr3 sr4 sr5 sr6 sr7

rc1 2 2 2 2 4 91 2
rc2 443 2 6 26 46 20 13074
rc3 3 4 13 12 6 65 4
rc4 2 6 8 10 29 47 3
rc5 10 3 6 12 64 15 25
rc6 2 63 18 12 3 5 2
rc7 180 5 9 23 39 24 2235

Dynamic representation (dr) Size
Cluster bc1 bc2 bc3 bc4 bc5 bc6 bc7

ID dr1 dr2 dr3 dr4 dr5 dr6 dr7

rc1 9 34 6 16 29 3 3 8922
rc2 19 17 32 16 2 4 10 2
rc3 2 3 84 3 1 1 5 8805
rc4 2 2 7 2 1 1 84 5064
rc5 12 11 42 21 1 2 10 14094
rc6 26 12 21 12 4 23 2 6908
rc7 17 12 36 18 1 2 13 78

bc5 Sparsely but very well rated by softies - Fewest number of reviews mostly five
stars, most coming from rc1 and rc5, which tend to give mostly four and five stars
reviews.

bc6 Sparsely and lowly rated by both hard and soft groups - Fewest number of
reviews mostly one and two stars, most coming from rc6 (gives one stars reviews)
and rc5 (gives four stars reviews).

bc7 Reasonably rated by many softies - Largest number of reviews mostly four and
five stars with noticeable three stars, most coming from rc5 (gives mostly four
stars) and rc4 (gives mostly five and four stars).

The association of reviewer information with business cluster is inversely applicable
to the reviewer profiles, which are refined using the profiles of the businesses who are
reviewed by these reviewers. These augmented reviewer profiles can be described as:

rc1 Infrequent and very soft, cover the spectrum - Very few and almost exclusively
five star reviews, spread evenly across most business clusters.

rc2 Extremely prolific and balanced, do not cover most and least popular This
group of two is essentially an outlier with a large number of reviews and votes,
and these users should be treated separately as prolific reviewers. Their reviews
are mostly four, three, and five stars. They do not have too many reviews for bc5
and bc6 (which do not receive too many reviews), and bc7 which receive most
reviews.
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Fig. 4. Clicking on a business profile label brings up the profile
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Fig. 5. Displaying statistics and list for a business profile
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rc3 Infrequent and balanced, cover favourite businesses - Very few and mostly five
star reviews, but fair amount of two and three stars as well. Most reviews are for
bc3, which has large number of four and five stars.

rc4 Infrequent and soft, cover popular and favourites - Very few and mostly five
and four star reviews. Almost all reviews are for bc7, which has very large number
of four and five stars.

rc5 Somewhat prolific and balanced, cover almost all the spectrum - Modest num-
ber of reviews and votes: mostly four, five, and three stars. They do not have too
many reviews for bc5 and bc6 (which do not receive too many reviews).

rc6 Infrequent and hard cover the spectrum -Very few and mostly one and two star
reviews. The reviews are spread evenly across most business clusters.

rc7 Prolific and balanced, cover popular places - Large number of reviews and votes
are mostly four, three, and five stars. They do not have too many reviews for bc5
and bc6 (which do not receive too many reviews).

4 How Yelp.com Can Use These Results

We have created a website that provides a facility for users to find businesses/reviewers
based on the grading of the business, easy/hard grading, and types of businesses. It also
provides a succinct profile of a business/reviewer based on these factors, so users can
put the reviews in context. Fig. 3 shows a collage of screenshots of business profile
labels and a business profile that will appear by clicking on a label. Fig. 3 shows the
statistics for the business profile and the list of business corresponding to a given profile.
The interface for browsing reviewer profile is similar.

A reader can also choose to follow a group of reviewers which have the same profile
or look at reviews of all the businesses with similar profile. In such a case, the profiles
described in the previous section are further filtered using the types of businesses. The
meta-profiles of businesses describe the profiles of reviewers who reviewed the busi-
nesses. Similarly, the meta-profiles of reviewers contain the profiles of businesses who
were reviewed by the reviewers. That means that the readers not only know how the
businesses are graded, but how easy or hard the reviewers are.

A video: http://www.mtriff.com/yelp/video.php demonstrates the service. The web-
site lists the profile labels of businesses and reviewers. Users can click on the profiles
that interest them, which brings down sliding windows that show more information
about the profile and gives a list of business categories for each profile. Depending on
the business category chosen, a preview of reviews from the list appears for browsing.
A similar facility is provided for the reviewer profiles.

5 Summary and Conclusions

This paper describes a novel meta-clustering algorithm that operates in a granular net-
work consisting of businesses and reviewers on a site such as yelp.com. The clustering
of businesses and reviewer evolves in parallel.

The profiles of businesses that are evolved in the process are used in the represen-
tation of reviewers. Similarly, the profiles of reviewers are used in the representation



336 M. Triff and P. Lingras

of business. This leads to an indirect recursion in the object representation. The recur-
sive profiles created through meta-clustering not only describe the characteristics of a
business but those of the reviewers who reviewed the business. Similarly, the reviewer
profiles combine characteristics of the reviewer and the businesses they review.

The proposed meta-clustering allows the readers to put the reviews in context. The
readers can tell how strict or easy and prolific the reviewers who reviewed a business
are. The readers can also choose to follow the group of reviewers that follow certain
types of businesses.

The paper is supplemented by a website http://www.mtriff.com/yelp/ and
video http://www.mtriff.com/yelp/video.php to demonstrate the effectiveness of our
approach.
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Abstract. Rough clustering has gained increasing attention in the last
decade with applications in such diverse areas like bioinformatics, traffic
control and retail. The relationship between rough clustering and, in par-
ticular, fuzzy and possibilistic concepts is still a topic that is raised first
and foremost by practitioners who are looking for an adequate clustering
algorithm. Therefore, we compare rough k-means to fuzzy c-means, pos-
sibilistic c-means and to classical k-means in our paper. We show that
rough k-means is closer related to classical k-means than to fuzzy and
possibilistic c-means. Besides brief theoretical evaluations we perform
illustrative experiments on artificial data and the IRIS data.

Keywords: k-Means, Rough k-Means, Soft Clustering.

1 Introduction

Clustering algorithms are widely used in data mining. Probably the most well-
known approach is the k-means algorithm [4,8] which assigns objects unam-
biguously to clusters. However, many real life applications are characterized by
ambiguous situations and vagueness. To address such situations soft clustering
algorithms have been proposed. Prominent examples are Bezdek’s fuzzy c-means
(FCM) [1,2] and Krishnapuram and Keller’s possibilistic c-means (PCM) [5]. In
2004, Lingras and West suggested rough k-means (RKM) [7] as a further soft
clustering approach. For a survey on rough clustering the reader is referred to
Lingras and Peters [6]. Although its relationship to established hard and soft
clustering approaches has been discussed rough clustering is still challenged by
the following questions: (1) what are its differences to hard, fuzzy or possibilistic
clustering and (2) when should rough clustering been used. Peters et al. [11] pro-
vided an overview on soft clustering. In contrast to this we provide a perspective
from rough clustering and treat possibilistic clustering pari passu to hard and
fuzzy clustering. The paper is organized as follows. In Section 2 we discuss some
fundamental differences between these hard and soft clustering approaches. In
the subsequent section we present illustrative examples comparing RKM to hard,
fuzzy and possibilistic clustering approaches. A discussion and summary section
concludes the paper.
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2 Soft Clustering

Soft clustering algorithms like FCM, PCM and RKM can be considered as gener-
alizations of the classical k-means (see Fig. 1). Fuzzy and possibilistic clustering
can be regarded as one sub-family of hard k-means generalizing its binomial
degrees of similarity {0, 1} to continuous values in [0, 1] intervals.

k-Means

FCM

PCM
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Uncertainty

{0, 1}
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= 1
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Fig. 1. Generalizations of the k-Means

Rough clustering forms another sub-family by adding a uncertainty dimension
to classical k-means. As in classical k-means objects surely belong to a cluster
(positive region of a cluster) or they surely do not belong to the cluster (its
negative region). Beyond these two regions the boundary in rough clustering
is characterized by objects that only may belong to a cluster. Hence, the bi-
nomial membership degrees of hard k-means are generalized towards trinomial
memberships (see Tab. 1).

Table 1. Range of the Membership Degrees

Algorithm Membership
Valence Grades λi,k Restrictions for an Object i

k-Means Bivalent λi,k ∈ {0, 1}
K∑

k=1

λi,k = 1

RKM Trivalent λi,k, λ̂i,k ∈ {0, 1}
(

K∑
k=1

λi,k = 1 ∧
K∑

k=1

λ̂i,k = 0

)
∨(

K∑
k=1

λi,k = 0 ∧
K∑

k=1

λ̂i,k ≥ 2

)
FCM Continuous λi,k ∈ [0, 1]

K∑
k=1

λi,k = 1

PCM Continuous λi,k ∈ [0, 1]
K∑

k=1

λi,k ≤ 1
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3 Experimental Evaluations

3.1 Experiments on Artificially Generated Data

Description of the Artificially Generated Data. In our comparative study
we use four artificially generated two-dimensional data sets which can be de-
picted in figures and descriptively interpreted. The four data sets consist of 30
objects each (see Fig. 2). Each of them has been designed to supposedly address
the specific strengths of each of the four algorithms. They have the following
characteristics:

– Data Set 1 (ADS1) - Two separated clusters (Fig. 2:UpperLeft). The data
set is designed for the k-means which supposedly performs well when clusters
are clearly separated.

– Data Set 2 (ADS2) - Two separated clusters with two objects “in-between”
(Fig. 2:UpperRight). The data set is designed for RKM which provides a
buffer zone for objects between clusters.

– Data Set 3 (ADS3) - Two overlapping clusters (Fig. 2:LowerLeft). The data
set is designed for the FCM which supposedly performs well when clusters
are overlapping.

– Data Set 4 (ADS4) - Two separated clusters and additionally one outlier
(Fig. 2:LowerRight). The data set is designed for PCM which supposedly
performs well in the presence of outliers.

Fig. 2. Data Sets
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Note, the difference between clusters with objects in-between (like ADS2) and
overlapping clusters (ADS3) is difficult to define precisely since the transition
between these data constellations is blurry. As will be seen, our experiments
provide similar results for these data sets.

Results of the Experiments. In our experiments, we apply the refined version
of RKM as suggested in [10]. We obtain the following results in our experiments.

ADS1 - Separated Clusters. This data set was designed to supposedly suite the
k-means best.

– k-Means. As assumed k-means performs well on data set ADS1. Not surpris-
ingly it assigns all objects to the correct clusters.

– Rough k-Means. In the case of RKM we obtain an empty boundary. All
objects are assigned to the lower approximations of the two clusters. Hence,
the results are identical to those obtained by k-means.

– Fuzzy c-Means. All objects have membership degrees higher than 0.8 to their
most similar clusters. This indicates well separated clusters. Defuzzification
leads to identical results as obtained by k-means.

– Possibilistic c-Means. Due the relaxed constraint regarding the memberships
of PCM the obtained membership degrees are generally lower than in fuzzy
clustering. The sum of the memberships degrees goes even down to 0.2 for
some objects. However, when we analyze the relative memberships of the
objects (λi,1/λi,2) similar results as obtained by k-means can be derived by
defuzzification.

All clustering algorithms perform well on ADS1. FCM and PCM provide
continuous membership degrees; for a hard decision defuzzification is required.
k-means and RKM deliver identical hard classifications of the objects; these two
algorithms are the preferred choice for the analysis of non-overlapping clusters.

ADS2 - Clusters with Objects In-Between. This data set was designed to sup-
posedly suite RKM best.

– k-Means. The k-means algorithm separates the clusters as depicted in Figure
3:UpperLeft.1 However, classifying the objects this way seems to be not
optimal for the objects close to the separating line since these objects are
similar to both clusters, a fact that cannot be disclosed by the k-means
results.

– Rough k-Means. The approximations obtained by RKM are shown in Figure
3:UpperRight. Two objects are in the boundary region of both sets indicating
that they cannot be assigned clearly to one or the other cluster. If required,
the boundary could be expanded and would contain a higher number of
objects then.

1 Note, the separating lines in all figures do not represent actual boarder lines.
The displayed lines are for demonstration purposes only.
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Fig. 3. Some Clustering Results

– Fuzzy c-Means. An identical result to the one by k-means is obtained when
the fuzzy partition is defuzzified. However, the membership degrees clearly
show how representative the objects are for a particular cluster. While the
objects close the separating line have similar membership degrees to both
clusters, objects in the center region of a cluster have high membership
degrees to this cluster and low degrees to the other.

– Possibilistic c-Means. Due the relaxed constraint regarding the memberships
of PCM the obtained membership degrees are lower than in fuzzy clustering.
However, results are comparable to those provided by FCM.

The results confirm that FCM as well as PCM are adequate methods for
clusters with objects in-between. The k-means algorithm struggles to deliver
intuitive results. RKM appears to be a good compromise balancing the needs for
hard decisions (k-means) and continuous membership degrees (FCM and PCM).
It distinguishes between objects that surely belong to a cluster and objects that
are similar to more than one cluster.

ADS3 - Overlapping Clusters. This data set was designed to supposedly suite
FCM best. The results equal the results obtained for the ADS2 data set (objects
in-between). The main difference is that the number of objects in-between has
grown in comparison to ADS2 so that the clusters clearer overlap. Hence, we
discuss the results only briefly here. In k-means the objects in the overlapping
region of the clusters are assigned to the lower left cluster (Fig. 3:LowerLeft). For
RKM the results are depicted in Figure 3:LowerRight. Two of the objects in the
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overlapping region of the clusters are assigned to the boundary region of both
sets. Depending on the selection of the initial parameters the number of objects
in the boundary may vary. The results of rough clustering show the unclear
membership status of these objects. Using FCM, objects in the center of the
overlapping region get similar membership degrees to both clusters indicating
their status between the clusters. After defuzzification these objects belong to
the lower left cluster like in k-means. Basically the same applies to the PCM.

ADS4 - Clusters with an Outlier. This data set was designed to supposedly suite
PCM best.

– k-Means. In k-means the outlier object is assigned to the upper right cluster
practically ignoring it as an outlier.

– Rough k-Means. In RKM the outlier is the only object assigned to the bound-
ary region of both clusters showing its status as an object with unclear
memberships. See Peters [9] for more on outliers in RKM.

– Fuzzy c-Means. After defuzzification the results of FCM are similar to those
provided by k-means. Now, the outlier belongs to the lower left cluster.
However, analyzing the results in detail shows that the outlier has almost
identical membership degrees to both clusters. This is an indicator that the
object lies in-between the clusters or is an outlier.

– Possibilistic c-Means. The sum of the outlier’s membership degrees to both
clusters is significantly below 1 indicating it as an outliers. Hence, PCM
performs well in the presence of outliers.

Possibilistic c-means performs well for data that contain outliers. FCM also
indicates outliers by assigning them similar membership degrees. However, it
does not have the capability to distinguish between outliers and objects in over-
lapping regions like PCM has. The result provided by k-means is not convincing
since it does not identify the outlier. RKM assigns the outlier - and only the out-
lier - to the boundary region indicating its unclear membership. Hence, RKM is
a good enhancement of k-means in the presence of outliers. However, a drawback
still remains: like FCM RKM does not distinguish between outliers and objects
in overlapping regions.

3.2 Experiments on the IRIS Data

Description of the IRIS Data. Now we analyze the relationship of k-means
and RKM in more details. Therefore, we exclude FCM and PCM from the experi-
ments. We apply k-means and RKM to the IRIS data [3]. This data set is suitable
for our evaluation since one class (IRIS1) is separated from the remaining two
(IRIS2, IRIS3) and these two classes overlap. Therefore, the IRIS data provide
similar characteristics like our artificially generated data sets ADS1 (separated
clusters) and ADS2 (objects in-between) and ADS3 (overlapping clusters). Only
ADS4 (data with an outlier) cannot be represented by the IRIS data. In all
experiments the number of clusters is set to K = 3 (clusters CL1, CL2, and
CL3).
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Results of the Experiments. As reference we perform k-means first (experi-
ment E0). Then we perform 11 experiments E1, ..., E11 on RKM with increasing
thresholds from ζ = 1.0 to 2.0 in 0.1 steps. The weight of the lower approxima-
tion is set to w = 0.9. The results of E0, E1 (ζ = 1.0), E3 (ζ = 1.2), and E11
(ζ = 2.0) are presented in more detail in the following paragraphs.

Experiment E0: k-Means. Regarding the separated class IRIS1 no classification
error is observed. For the overlapping classes IRIS2 and IRIS3 we observe 16
classification errors. Two objects of IRIS2 are wrongly assigned to cluster CL3
and 14 objects of class IRIS3 are assigned to CL2.

Experiment E1: Rough k-Means (ζ = 1.0). In experiment E1, an empty bound-
ary region is obtained, i.e., RKM melts down to k-means.

Experiment E3: Rough k-Means (ζ = 1.2). The results for experiment E3 are
summarized in Table 2. In comparison to experiment E1 the initial settings
have been relaxed so that the boundary region is larger than in E1. Hence, the
boundary region functions as a buffer zone for the objects between the clusters
CL2 and CL3. As a trade-off a lower number of objects has been assigned to the
correct clusters. The clustering results are summarized in Table 2 (with � (�)
objects assigned to correct (wrong) clusters/lower approximations and ∼ objects
assigned to boundary regions).

Experiment E11: Rough k-Means (ζ = 2.0). RKM converges towards similar
solutions for ζ ≥ 2.0. Hence, we will briefly discuss the results for ζ = 2.0. Only
4 objects are correctly classified, while 144 objects are in the boundary region.

Table 2. Summarized Clustering Results for E3

k-Means Rough k-Means # Objects
� � 131
� ∼ 3
� ∼ 3
� � 13

0

50

100

150

1 1.5 2

Fig. 4. Number of Objects in Boundary Regions (IRIS)
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Obviously, the given parameters lead to an oversized buffer region. Figure 4
displays the number of objects in boundary regions for the eleven experiments.

4 Discussion and Conclusion

The following considerations play an important role to understand the differ-
ences between RKM and alternative clustering algorithms analyzed in this paper.
RKM is regarded as a soft computing clustering algorithm like fuzzy and pos-
sibilistic c-means. However, our experiments show that the results of k-means
and RKM are identical for separated clusters. For data sets with overlapping
classes RKM provides a useful buffer zone between the clusters. Outliers are
assigned to the clusters’ boundaries indicating that they are not belonging to a
certain cluster. We regard these characteristics as useful enrichments of classical
k-means. While fuzzy and possibilistic clustering form one sub-family (adding
ambiguity based on similarity) of hard k-means rough clustering establishes a
second sub-family (adding uncertainty due to missing or wrong information).
So, RKM is closely related to k-means and only linked via k-means to fuzzy and
possibilistic c-means.
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Abstract. The purpose of this study is to develop a kidnapping event detection 
scheme for intelligent video surveillance by frame-based classification which is 
able to assort each frame into a kidnapping or normally accompanying situa-
tion. In this study, for generating training data from videos, a semi-automatic 
video annotation tool named INHA-VAT is used. Also, we developed a frame-
based event classifier using Bayesian network model to distinguish the frame of 
kidnapping situations from one of accompanying ones. When a video has more 
frames of kidnapping situation than the threshold ratio after two people meet in 
the video, the proposed scheme detects and notifies the occurrence of kidnap-
ping event. To check the feasibility of the proposed scheme, we also performed 
the accuracy evaluation against test videos. According to the experiment results, 
the proposed scheme could detect kidnapping situations appropriately according 
to the threshold ratio. 

Keywords: Kidnapping detection, intelligent video surveillance, frame-based 
event classification, Bayesian network, discriminative features.  

1 Introduction 

Recently, CCTVs(closed-circuit televisions) are widely used for security purposes, 
especially for obtaining criminal evidence. Although there have been some controver-
sies about the privacy problem concerned with CCTVs, the usefulness of CCTVs is 
above suspicion and proved by actual cases where CCTVs were successfully used for 
solving criminal events. Therefore it seems that the demand of CCTV is continuously 
increased since these positive cases highlight the need of CCTV [1]. 

Nowadays, in most cases, one human operator monitors several CCTVs alone [2]. 
But, according to previous studies, one operator could effectively monitor only up to 
16 cameras at once and this number varied depending on the complexity of screen 
layout [3]. Also, according to the experimental results of previous studies, operator 
who monitors two or more CCTVs at the same time might miss 45% of dangerous 
situations after 12 minutes and 95% after 22 minutes, respectively [4]. It shows the 
critical limitation of real-time manual monitoring of CCTVs by human operators. 
Furthermore, current CCTV systems are mainly used only for obtaining evidences 
since they simply record videos to storage devices, and monitoring or searching  
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functions are done manually. Another drawback of the current CCTV systems is that 
they are unable to recognize unusual events automatically in real-time from videos. 

To overcome these limitations of real-time CCTV systems, previous studies have 
suggested several real-time automatic recognition methods of human activities. How-
ever, they are only available to detect simple activities such as passing through a door 
or roaming around a shop, not to detect complex human interactions like kidnapping, 
accompanying, or fighting. 

In this study, to develop a kidnapping detection scheme for intelligent video sur-
veillance system, we created several scenes of kidnapping situations and accompany-
ing ones, respectively and record them as sample video data. Also, as the ground truth 
data for training and testing of frame-based event classification scheme, we manually 
extracted Region of Interest (ROI) for human object from the sample videos by using 
INHA-VAT [5]. We also developed a frame-based event classifier which can assort 
each frame into kidnapping or accompanying situation with respect to the discrimina-
tive features related to the variation patterns of ROIs and speed of ROIs in the con-
secutive frames in a video. Then, we suggested a kidnapping detection scheme for 
intelligent video surveillance system based on the developed frame-based classifier. 
Using the developed kidnapping event detection scheme within intelligent CCTV 
system, it is possible that the system automatically analyzes video and recognizes 
kidnapping events in real-time, and then directly notifies them to CCTV operators to 
cope with the situations.  

The remainder of this paper is organized as follows. In section 2, we discuss  
shortly the related works on human activity recognitions. Section 3 explains how we 
defined and extracted the discriminative features from videos to develop the frame-
based event classifier. Then, we also describe how this classifier can be used in the 
kidnapping detection scheme. Section 4 explains the result of the performance evalua-
tions of the developed kidnapping detection scheme against various situations.  
Finally, we describe the conclusion and future work in section 5. 

2 Related Work 

In [6], human activities from video recorded in a shopping center are classified into 
the predefined types of human activities. This work is to develop automatic monitor-
ing system which assists CCTV operators. In this classification, the system considered 
all trajectories concerning common activities which are related with typical human 
moving routes at the shopping center such as a person entering a shop, leaving a shop 
or just passing in front of a shop. But, in all frames of each video, regions of the doors 
or of the glass walls in a shop are previously identified. And only horizontal(x-axis) 
directions of human trajectories are considered. That means it recognizes only simple 
human activities within the given constraints. Suppose that a man appears on the right 
side of screen and that side indicates the region of the door of a shop. Here, when the 
man comes through the door, the rate of change of the x-coordinate is getting smaller 
while x-coordinate of man’s ROI moves from the right side to the center of the 
screen. Therefore, x-coordinate corresponding to the time is used to classify and to 
recognize activities.  
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In [7], system automatically recognizes human activities from consecutive video 
frames recorded in a room. Here, significant types of human activities are: leaving 
out, sitting down or standing up, using computer, picking up or putting down objects, 
opening or closing cabinet and so on. In this system, human activities are recognized 
by referring pre-knowledge about the structures of the room. So, human activities are 
modeled as a state transition diagram. The system recognizes a state change from one 
state to others according to the changes of the screen, the location of human, and the 
location of the tracked object. For instance, if the state of cabinet was “closed” at the 
previous frame, it would be changed to “opened” at the present frame after recogniz-
ing the change of the cabinet region image. But, this changes the state of the object 
only by recognizing the change of image at the region of the object. Hence, if the 
amount of pre-knowledge is not enough, there might be some constraints with the 
recognition of human activities since this system is too much dependent on pre-
knowledge. 

In [6] and [7] both two systems can recognize specified regions or human’s simple 
activities, but could not recognize events occurred between two or more people. 
Therefore, the systems are not able to recognize human’s complex activities as un-
usual events. And also, since activities are defined only based on the specified re-
gions, the change occurred in other regions cannot be recognized. 

Hence, to solve these problems of previous studies, we have defined and extracted 
various features which can be used as clues to distinguish between kidnapping and 
accompanying for each frame from sample videos. Using these features we develop a 
frame-based event classifier and then we also suggest kidnapping detection scheme 
for intelligent video surveillance based on the training results about kidnapping  
(or accompanying) by using data mining techniques. 

3 Kidnapping Event Detection Scheme 

3.1 Frame-Based Event Classifier 

The videos used in this study are about the situations that two people run into each 
other at parking lot. Like images shown in Figure 1, four videos were recorded for 
general accompanying situations while nine videos for kidnapping situations, totally 
thirteen sample videos were directed and recorded by ourselves. The average length 
of video is 285 frames for about 20 seconds. 

To generate training and testing data, we created several scenes of kidnapping situ-
ations and accompanying ones, respectively and recorded them as sample videos. 
Then, we generated ground truth data from these sample videos by using INHA-VAT 
which is developed by ourselves as a video annotation tool [5]. Simply, INHA-VAT 
is a semi-automatic video annotation system which is helpful to effectively generate 
annotation data including basically location and size of object’s ROI for each frame. 
With this system, we can generate annotation data by drawing rectangles each of 
which indicates ROI for each object. This system also can save the generated ground 
truth data such as x and y coordinates of the ROI’s center point, width, height, and so 
on in XML format to be used as training data for building a frame-based event  
classifier.  
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Fig. 1. A general accompanying situation (top) and a kidnapping situation (bottom) 

From the annotation data of videos, we generated the training data for all frames 
after two people meet in each video. That is, from the annotation data, we generated 
14 attributes as the candidate of discriminative features as shown in Table 1 which 
will be used to distinguish between kidnapping situations and accompanying ones.  

From the annotation data of consecutive frames in a video, we could calculate the 
difference and the change rate of feature values between the former frame and the 
latter one. In this way, we generated 14 candidate attributes given in Table 1. Also, 
we considered Maxwidth_rate attribute and Maxheight_rate attribute which are ob-
tained at the rate of width (and height) of ROI after encountering / maximum sum of 
humans’ widths (and heights) before encountering, respectively. 
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Table 1. 14 candidates of discriminative features for the frame-based event classifier  

Attribute Name Description 
Width_rate Change rate of ROI widths to the previous frame  
Height_rate Change rate of ROI heights to the previous frame 

Width_rate + Height_rate Sum of Width_rate and Height_rate 
X_distance Difference of ROI X-axis value from the previous frame 
Y_distance Difference of ROI Y-axis value from the previous frame 

All_distance Difference of ROI values from the previous frame 
X_rate Change rate of ROI X-axis value to the previous frame 
Y_rate Change rate of ROI Y-axis value to the previous frame 

X_rate + Y_rate Sum of X_rate and Y_rate 
Width_sub Difference of ROI width from the previous frame 
Height_sub Difference of ROI height from the previous frame 

Width_sub + Height_sub Sum of Width_sub and Height_sub 

Maxwidth_rate 
(Width of ROI after encountering) / (Maximum sum of hu-

mans’ widths before encountering) 

Maxheight_rate 
(Height of ROI after encountering) / (Maximum value of hu-

mans’ heights before encountering) 

 
However, in general, to build a classifier we use only the effectively discriminative 

features among all considerable candidates in data mining field. This step is referred 
to as feature selection (or attributes selection) [8]. We do feature selection step against 
14 candidate features by WEKA’s attribute selection function to know which 
attributes have a decisive effect on the classification of situations. WEKA[8], an open 
data mining tool offers feature selection functions which select more discriminative 
features than others from the candidates. That means, feature selection schemes 
choose features that have more discriminative power for the classifications than oth-
ers. There are various options which WEKA supports for feature selection and here 
we choose the following options since these are the default setting: 
 

Attribute Evaluator: CfsSubsetEval 
Search Method: BestFirst 

 
By using the feature selection of WEKA with the above option, 4 attributes, X_rate, 
X_rate + Y_rate, Maxwidth_rate, and Maxheight_rate are selected from 14 candidate 
attributes. Here, with 10-folds cross validation, we measured the accuracy of classifi-
cation of video frames into kidnapping situations or accompanying situations for three 
classification model; a Bayesian network model(named BayesNet in WEKA), a deci-
sion tree model(named J48 in WEKA), and a support vector machine(named SMO in 
WEKA) with only selected-attributes. 10-folds cross validation is an accuracy testing 
method which divides data sets into 90% for training and the remaining 10% for test-
ing and repeatedly tests with different data subsets. Measured result is given in  
Table 2.   
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choosing the appropriate threshold value is very important to detect kidnapping event 
without false alarms. It can be defined according to the types and environments of 
intelligent video surveillance applications.  

4 Experiments 

For performance evaluation of the proposed kidnapping event detection scheme, we 
measured the accuracy of testing thirteen videos; nine kidnapping videos and four 
general accompanying videos. Here, we checked the number of the misclassified 
frames after the first meeting frame of the each test video. The measurement results 
for two kinds of situations are given in Table 3 and Table 4, respectively.  

In Table 3, the number of misclassified frames which are classified into accompa-
nying situation from kidnapping videos is up to 4 and in average about 1 while, in 
Table 4, the number of misclassified frames from accompanying videos is up to 24 
and in average about 14. In kidnapping situations, misclassified frames constitute up 
to 6.7% of whole video frames. On the other hand, in general accompanying situation, 
misclassified frames constitute up to 42.86% of whole video frames.  

Table 3. Number of misclassified frames for kidnapping videos 

Video Number of Misclassified Frames 
kidnap1.avi 2 
kidnap2.avi 0 
kidnap3.avi 0 
kidnap4.avi 1 
kidnap5.avi 0 
kidnap6.avi 0 
kidnap7.avi 2 
kidnap8.avi 0 
kidnap9.avi 4 

Table 4. Number of misclassified frames for accompanying videos 

Video Number of Misclassified Frames 
accompany1.avi 9 
accompany2.avi 8 
accompany3.avi 24 
accompany4.avi 15 

Here, we checked that accompanying situations are likely to have more misclassi-
fied frames than kidnapping situations. One possible reason for this result is that we 
used more videos for kidnapping situation than for accompanying situation to get 
better detection accuracy against kidnapping situations while generating classifier by 
using data mining techniques. Another possible reason is that these misclassifications 
may be caused from the detection error of human object’s ROI recognized by our 
human detection module. But although low performance of human recognition  
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algorithm makes some misclassifications, it is unlikely to make misjudgment about 
kidnapping situation since this study focused on the recognition of kidnapping situa-
tion and false negative (recognizing kidnapping as accompanying) ratio is higher than 
false positive (recognizing accompanying as kidnapping) ratio. 

The most misclassified video about accompanying is “accompany3.avi” and its 
cumulative result of misclassifications is given in Figure 4 as an example. Here, the 
frame numbers of x-axis stand for the sequence number after the first meeting frame 
in that video. In Figure 4, the number of misclassified frames has been linearly in-
creased after frame number 19. It shows that the number of misclassified frames has 
not been increased from the beginning of this video. Hence, the kidnapping detection 
scheme is able to recognize whether kidnapping situation or accompanying situation 
by setting T of formula (1) with the maximum number of misclassified frames in 
general accompanying situation, 43%. 

 

Fig. 4. Cumulative result of misclassifications corresponding to frame number 

5 Conclusion 

In this study, a kidnapping event detection scheme is proposed in which a frame-
based event classifier is used to distinguish kidnapping situation and general accom-
panying ones. To classify kidnapping situations and general accompanying situation 
for each frame in video, we generated human’s ROI information using INHA-VAT 
and self-developed human recognition algorithm. Based on the basic attributes of 
humans’ ROI, we selected 4 discriminative features which have more discriminative 
power than others. Using only these 4 attributes, we developed a frame-based event 
classifier of Bayesian network model which assorts each frame into kidnapping  
situation or accompanying ones.  
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The kidnapping event detection scheme consists of three phases; initial human de-
tection phase, identifying phase of the first meeting frame where two people meet first 
in the input video, and kidnapping detection phase. Based on the human detection 
information, the system identifies the first meet frame in a video. Then, against all 
frames after the first meeting frame in the input video, the frame-based event classifi-
er classifies into kidnapping situations or accompanying ones. When the ratio of the 
number of kidnapping situations to the number of accompanying one after the first 
meeting frame is higher than the threshold defined based on the surveillance purposes 
and environments, the kidnapping event detection scheme detects and notifies the 
occurrence of kidnapping event in the input video. Also, from the experiment results, 
we recognized the developed kidnapping event detection scheme can distinguish be-
tween kidnapping situations and accompanying ones and finally detect kidnapping 
events well with the appropriate threshold value.  

As future works, we will try to develop other event detection scheme which is 
possible to recognize not only kidnapping and accompanying situations, but also other 
situations that may arise in human society. 
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Abstract. The main aim of the article is to present a decision-making
system using dispersed knowledge. The article introduces the system
with dynamically generated coalitions. The local knowledge bases, on
the basis of which a similar classification for the test object is made,
are combined into a coalition. In the proposed system, the classification
process can be divided into several steps. In the first step we describe
the classification of a test object made on the basis of local knowledge
base, by probability vectors over decision classes. We cluster local knowl-
edge bases with respect to similarities of probability vectors. For every
cluster, we find a kind of combined information. Finally, we classify the
test object using the method for the conflict analysis. The main aim of
the paper is to present the results of experiments on medical data. In
experiments the situation is considered in which medical data from one
domain are collected in many medical centers. We want to use all of the
collected data at the same time in order to make a global decisions.

Keywords: decision-making system, global decision, coalition, conflict
analysis.

1 Introduction

In recent years, distributed decision making has become of increasing impor-
tance and awareness in decisions making and decisions analysis. Modern society,
with its overwhelming diversity of interests and developments and its ever grow-
ing complexity, can no longer be understood and governed by the paradigm of
centralized decision making. Nowadays, the amounts of information stored in
repositories are still increasing so centralized processing and analyzing this in-
formation is difficult. Furthermore, information are frequently collected in many
separate units. For example, in the medical field often in different medical cen-
ters, information from one domain, are collected. The problem, which is consid-
ered in this article, concerns the use of many local knowledge bases at the same
time in the process of global decision-making.

In this paper a new approach to the organization of the system’s structure
that uses dispersed knowledge is proposed. In earlier papers [9,13,14], a system
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in which local knowledge bases having common conditional attributes form a
group was considered. Additionally, in the paper [9] the use of rough set theory
in the process of global decision-making was considered. The paper describes the
application of the conditional attributes reduction technique to local knowledge
bases. In general it was found that in most cases the use of attribute reduction
in a decision-making system using dispersed knowledge reduces the error rate of
classification.

The new approach is based on the assumption that one group should contain
the knowledge bases on the basis of which a similar classification for the test ob-
ject is made. In this paper, a system, in which knowledge bases will be combined
into groups (coalitions) in a dynamic way, is proposed. For every group, a kind
of combined information is determined. Since the sets of attributes, conditions
on the basis of which agents classify the test object do not have to be disjoint, an
inconsistency in knowledge can occur. Therefore, a method for the elimination
of inconsistencies in the knowledge is discussed here. Finally, the test object is
classified by voting among clusters, using the combined information from each
of clusters. The problem of conflict analysis arises because the inference is being
conducted in groups of knowledge bases. By a conflict, we mean a situation in
which conflicting decisions are taken for the specified set of conditions on the
basis of knowledge stored in different groups of knowledge bases. The main aim
of this article is to verify the effectiveness of the system in case of using dispersed
medical data.

The concept of distributed decision making is widely discussed in the paper
[10]. The concept of taking a global decision on the basis of local decisions is
also used in issues concerning the multiple model approach. Examples of the
application of this approach can be found in the literature [1,12]. Also in many
other papers [3,11], the problem of using distributed knowledge is considered.
This paper describes a different approach to the global decision-making process.
We assume that the set of local knowledge bases that contain information from
one domain is pre-specified. The only condition which must be satisfied by the
local knowledge bases is to have common decision attributes.

An important issue which is discussed in this article is the coalition formu-
lation. In the papers of Z. Pawlak [7,8], a model is considered, which describes
a conflict situation in which the agents have decided to analyze the conflict by
using a peaceful method. In such a situation the relations of conflict, friendship
and neutrality were defined. In this paper, some issues of conflict analysis and
coalition formation that were given in Pawlak’s model are used. There are many
different approaches to the analysis of medical data, including the nondetermin-
istic decision rules [6] and cluster analysis and decision units conception [5].

The paper is organized as follows. The second section introduces the defini-
tions and describes the organization of a decision-making system. This section
is divided into three parts. The first part of this section explains how coalitions
are created. The second part describes the structure of a decision-making sys-
tem. The last part of the second section presents the methods of elimination of
inconsistencies in the knowledge and conflict analysis. The third section shows a
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description and the results of experiments carried out using some medical data
sets. The article concludes with a short summary in the fourth section.

2 Notations and Definitions of Decision-Making System
Using Dispersed Knowledge

We assume that the set of local knowledge bases that contain dispersed medical
data from one domain is pre-specified. The only condition which must be sat-
isfied by the local knowledge bases is to have common decision attributes. We
assume that each local knowledge base is managed by one agent, which is called
a resource agent.

Definition 1. We call ag in Ag = {ag1, . . . , agn} a resource agent if he has
access to resources represented by a decision table Dag := (Uag, Aag, dag), where
Uag is a finite nonempty set called the universe; Aag is a finite nonempty set of
conditional attributes, V a

ag is a set of attribute a values; dag is referred to as a

decision attribute, V d
ag is called the value set of dag.

We want to designate homogeneous groups of resource agents. The agents who
agree on the classification for a test object into the decision classes will be
combined in the group. This is a new approach to the structure of a decision-
making system using dispersed knowledge.

2.1 Forming Coalitions

In this section the relation of friendship and the relation of the conflict between
agents will be defined, and the process of combining resource agents into clus-
ters, which are groups of agents remaining in the relation of friendship, will be
described. Definitions of the relations of friendship and conflict as well as the
method for determining the intensity of conflicts were taken from the papers of
Z. Pawlak [7,8].

Let there be given a test object x̄ for which we want to generate a global
decision. Let for the object x̄ the values of conditional attributes belonging to
the set

⋃n
i=1 Aagi be defined. In order to determine groups of agents, from each

decision table of a resource agent Dagi , i ∈ {1, . . . , n} and from each decision
class Xagi

v , v ∈ V dagi , the smallest set containing at least m1 objects is chosen,
for which the values of conditional attributes bear the greatest similarity to
the test object. The value of the parameter m1 is selected experimentally. The
subset of relevant objects is the union of the sets of objects selected from all
decision classes. In order to determine the subset of relevant objects, the measure
of similarity is used. In the proposed system any similarity measures could be
applied. Since the data sets, which are examined in experiments, have qualitative,
quantitative and binary attributes, the Gower similarity measure [14] is used.

The next stage in the process of generating groups of agents is to determine
the vectors of values specifying the classification of the test object made by the
agents. So, for each resource agent, the vector that indicates the level of certainty
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with which the decisions are taken by the agent for the test object is generated.
Each coordinate of the vector is determined on the basis of relevant objects that
were previously selected from the decision table of the resource agent. Thus, for
each resource agent i ∈ {1, . . . , n}, a c-dimensional vector [μ̄i,1(x̄), . . . , μ̄i,c(x̄)] is
generated, where the value μ̄i,j(x̄) means the certainty with which the decision
vj ∈ V d, j ∈ {1, . . . , c}, c = card{V d} is made about the object x̄ by the resource
agent agi. The value μ̄i,j(x̄) is defined as follows:

μ̄i,j(x̄) =

∑
y∈Urel

agi
∩X

agi
vj

s(x̄, y)

card{U rel
agi ∩Xagi

vj }
, i ∈ {1, . . . , n}, j ∈ {1, . . . , c}, (1)

where c = card{V d}, U rel
agi is the subset of relevant objects selected from the

decision table Dagi of a resource agent agi and Xagi
vj is the decision class of the

decision table of resource agent agi; s(x, y) is the measure of similarity between
objects x and y.

On the basis of the vector of values defined above a vector of rank assigned to the
values of the decision attribute is specified. The vector of rank is defined as follows:
rank 1 is assigned to the values of the decision attribute which are taken with
the maximum level of certainty. Rank 2 is assigned to the values of the decision
attribute that have the maximum level of certainty in the set of decisions that
have not received the rank 1, etc. Proceeding in this way for each resource agent
agi, i ∈ {1, . . . , n}, the vector of rank [ri,1(x̄), . . . , ri,c(x̄)] will be defined.

Relations between agents are defined by their views on the classification of
the test object x̄ to the decision class. We define the function φx̄

vj for the test

object x̄ and each value of the decision attribute vj ∈ V d; φx̄
vj : Ag×Ag → {0, 1}

φx̄
vj (agi, agk) =

{
0 if ri,j(x̄) = rk,j(x̄)
1 if ri,j(x̄) 	= rk,j(x̄)

where agi, agk ∈ Ag. (2)

Definition 2. Agents agi, agk ∈ Ag are in a friendship relation due to the object
x̄ and decision class vj ∈ V d, which is written R+

vj (agi, agk), if and only if

φx̄
vj (agi, agk) = 0. Agents agi, agk ∈ Ag are in a conflict relation due to the

object x̄ and decision class vj ∈ V d, which is written R−
vj (agi, agk), if and only

if φx̄
vj (agi, agk) = 1.

We also define the intensity of conflict between agents using a function of distance
between agents. We define the distance between agents ρx̄ for the test object x̄:
ρx̄ : Ag ×Ag → [0, 1]

ρx̄(agi, agk) =

∑
vj∈V d φx̄

vj (agi, agk)

card{V d} , where agi, agk ∈ Ag. (3)

Definition 3. We say that agents agi, agk ∈ Ag are in a friendship relation due
to the object x̄, which is written R+(agi, agk), if and only if ρx̄(agi, agk) < 0.5.
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Agents agi, agk ∈ Ag are in a conflict relation due to the object x̄, which is
written R−(agi, agk), if and only if ρx̄(agi, agk) ≥ 0.5.

The two ways to create dynamic groups of knowledge bases are considered.

Dynamically Generated Disjoint Clusters
The dynamically generated disjoint clusters containing agents which are in the
friendship relation are defined as follows. Using the definitions of the function of
distance between agents, we determine the distance between each pair of resource
agents. Then the cluster generation process is initiated as follows. Initially, each
resource agent is treated as a separate cluster. These two steps are performed
until the stop condition (which is given in the first step) is met.

1. One pair of different clusters is selected (in the very first step a pair of
different resource agents) for which the distance reaches a minimum value.
If the selected value of the distance is less than 0.5, then agents from the
selected pair of clusters are combined into one new cluster. Otherwise, the
clustering process is terminated.

2. After defining a new cluster, the values of the distances between the clusters
are recalculated. The following method for recalculating the value of the
distance is used. Let ρx : 2Ag × 2Ag → [0, 1], let Di be a cluster formed from
the merger of two clusters Di = Di,1 ∪Di,2 and let it be given a cluster Dj

then

ρx(Di, Dj) =

⎧⎪⎪⎨⎪⎪⎩
ρx(Di,1,Dj)+ρx(Di,2,Dj)

2 if ρx(Di,1, Dj) < 0.5 and
ρx(Di,2, Dj) < 0.5

max{ρx(Di,1, Dj), ρ
x(Di,2, Dj)} if ρx(Di,1, Dj) ≥ 0.5 or

ρx(Di,2, Dj) ≥ 0.5

The proposed clustering process is similar to the hierarchical agglomerative
clustering method. However, the proposed method has a clearly defined stop con-
dition. The stop condition is based on the assumption that one cluster should not
contain two resource agents that are in a conflict relation due to the test object.

Dynamically Generated Clusters with a Non-Empty Intersection
The dynamically generated clusters with non-empty intersection containing
agents which are in the friendship relation are defined as follows.

Definition 4. Let Ag be the set of resource agents. A cluster due to classifi-
cation of the object x is the maximum, due to the inclusion relation, subset of
resource agents X ⊆ Ag such that

∀agi,agk∈X R+(agi, agk). (4)

Thus, the cluster is the maximum, due to the inclusion relation, set of resource
agents remaining in the friendship relation due to the object x.

An algorithm for clusters generation due to classification of the object x is
as follows. We assume that a set of resource agents Ag is given, and the value
ρx(agi, agk) is determined for each agi, agk ∈ Ag. Some initial values X1 =
Ag, i = 1, j = 1 are established.
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1. While i ≤ j, the following is executed:
(a) Values of the distance function are checked ρx(agl, agk) for each pair of

agents agl, agk ∈ Xi. If there is a pair of agents agl, agk ∈ Xi such that
ρx(agl, agk) ≥ 0.5 then j = j + 1 and the two following sets are defined:
Xj = Xi \ {agl}, Xi = Xi \ {agk}.

(b) The above step is executed until the set Xi will satisfy the condition:
ρx(agl, agk) < 0.5 for each pair of agents agl, agk ∈ Xi. If this condition
is met, then i = i + 1.

2. From the sets Xi, i = 1, . . . , j the largest sets, due to the inclusion relation
are selected. Selected sets are the clusters due to the classification of the
object x.

2.2 Structure of a Decision-Making System Using Dispersed
Knowledge

After the completion of the clustering process, for both systems (with disjoint
clusters or clusters with a non-empty intersection), a synthesis agent as is defined
for each cluster that contains at least two resource agents. If a single resource
agent forms a cluster, it becomes the synthesis agent. In this way, a hierarchical
structure of the system is created. At the lowest level of the hierarchy there are
resource agents, and at a higher level there are synthesis agents.

Definition 5. By the multi-agent decision-making system with dynamically gen-

erated clusters we mean WSDdyn
Ag =

〈
Ag, {Dag : ag ∈ Ag}, {Asx :

x is a classified object}, {δx : x is a classified object}
〉

where Ag is a finite set

of resource agents; {Dag : ag ∈ Ag} is a set of decision tables of resource agents;
Asx is a finite set of synthesis agents defined for clusters dynamically generated
for the test object x, δx : Asx → 2Ag is a injective function which each synthesis
agent assigns a cluster generated due to classification of the object x.

2.3 Elimination of Inconsistencies in the Knowledge and Conflict
Analysis

On the basis of the knowledge of agents from one cluster, local decisions are
taken. An important problem that occurs when taking a global decision is to
eliminate inconsistencies in the knowledge stored in different knowledge bases.
This problem stems from the fact that the system has the general assumptions
and we do not require that the sets of conditional attributes of decision tables are
disjoint. We understand inconsistency of knowledge to be situations in which,
on the basis of two different knowledge bases that have common attributes and
for the same values for common attributes using logical implications, conflicting
decisions are made.

In previous papers some methods of elimination inconsistencies in the knowl-
edge have been proposed [9,13,14]. In this paper, one of these methods - the
approximated method of the aggregation of decision tables, will be used.
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This method for the elimination of any inconsistencies in the knowledge will
be implemented for resource agents belonging to one cluster. The essence of the
method is to create objects of the aggregated decision table from the relevant
objects selected from the decision table of a resource agent. The new objects are
constructed by combining objects from the decision tables of the resource agents
that belong to one cluster, but only those objects are combined for which the
values of the decision attribute and common conditional attributes are equal.
The approximated method of aggregation of decision tables was proposed and
described in detail in the paper [13].

Conflict analysis is implemented after completion of the process of inconsisten-
cies elimination in knowledge, because then the synthesis agents have access to
the knowledge on the basis of which they can independently establish the value
of a local decision to just one cluster. Two methods to resolve the conflict anal-
ysis will be used in this paper: the method of weighted voting and the method
of a densitybased algorithm. These methods allow the analysis of conflicts and
enable to generate a set of global decisions. In the case of the density-based
method the generated set will contain not only the value of the decisions that
have the greatest support of knowledge stored in local knowledge bases, but also
those for which the support is relatively high. These methods were discussed in
detail in the paper [13].

3 Experiments

The aim of the experiments is to examine the quality of the classification made on
the basis of dispersed medical data by the decision-making system with dynam-
ically generated clusters. An additional objective is to compare the effectiveness
of this system with the results obtained in the papers of other authors [2,4]
who have used the medical data in non-dispersible form. For each knowledge
bases from medical domain the results of using classical classification algorithms
and decision-making system using dispersed knowledge are presented. For the
experiments the following data, which are in the UCI repository, were used:
Lymphography data set, Primary Tumor data set. Both sets of data was ob-
tained from the University Medical Centre, Institute of Oncology, Ljubljana,
Yugoslavia (M. Zwitter and M. Soklic provided this data). Lymphography is a
medical imaging technique in which a radiocontrast agent is injected, and then
an X-ray picture is taken to visualize structures of the lymphatic system. This
test method gives great service especially in the evaluation of cancer stage of
the lymphatic system. In the Primary Tumor data set, on the basis of values of
attributes such as histologic-type, supraclavicular etc. a decision is taken where
(of 22 organs) the cancer cells are located. In order to determine the efficiency of
inference of the multi-agent decision-making system with respect to the analyzed
data, each data set was divided into two disjoint subsets: a training set and a
test set. Table 1 gives a numerical summary of the data sets.

We will consider a situation in which medical data from one domain are col-
lected in different medical centers. We want to use all of the collected data at
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Table 1. Data set summary

Data set # The training set # The test set # Conditional # Decision
attributes classes

Lymphography 104 44 18 4
Primary Tumor 237 102 17 22

the same time in order to make a global decisions. This approach not only al-
lows the use of all available knowledge, but also should improve the efficiency
of inference. In order to consider the discussed situation it is necessary to pro-
vide the knowledge stored in the form of a set of decision tables. Therefore, the
training set was divided into a set of decision tables. Divisions with a differ-
ent number of decision tables were considered. For each of the data sets used,
the decision-making system with five different versions (with 3, 5, 7, 9 and 11
resource agents) were considered. For these systems, we use the following desig-

nations: WSDdyn
Ag1 - 3 resource agents; WSDdyn

Ag2 - 5 resource agents; WSDdyn
Ag3 -

7 resource agents; WSDdyn
Ag4 - 9 resource agents; WSDdyn

Ag5 - 11 resource agents.
Note that the division of the data set was not made in order to improve the
quality of the decisions taken by the decision-making system, but in order to
store the knowledge in a distributed form. We consider the situation, that is
very common in life, in which data are collected in different medical centers as
separate knowledge bases. The division of the data set into the decision tables of
resource agents was carried out as follows. In the first step, the cardinality of the
set of conditional attributes in each decision table of a resource agent was deter-
mined and the number of common conditional attributes of the decision tables
was defined. These values were defined by the authors. Then, the conditional
attributes were randomly assigned to the decision tables so that the conditions
which were defined earlier were met and each conditional attribute that appears
in the data set is included in at least one set of the conditional attributes of the
decision tables. The decision attribute in the decision tables is the same as the
decision attribute in the data set. Each universe of the decision tables includes
all of the objects from the data set.

The measures of determining the quality of the classification are:

– estimator of classification error e in which an object is considered to be
properly classified if the decision class used for the object belonged to the
set of global decisions generated by the system;

– estimator of classification ambiguity error eONE in which object is consid-
ered to be properly classified if only one, correct value of the decision was
generated to this object;

– the average size of the global decisions sets dWSDdyn
Ag

generated for a test set.

In the description of the results of experiments for clarity some designations
for algorithms have been adopted: A(m2) - the approximated method of the
aggregation of decision tables; W - the method of weighted voting; G(ε,MinPts)
- the method of a density-based algorithm.
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The results of the experiments with the Lymphography data set are presented
in Table 2. In the table the following information is given: the name of multi-
agent decision-making system (System); the algorithm’s symbol (Algorithm); the
three measures discussed earlier e, eONE , dWSDdyn

Ag
; the time t needed to analyse

a test set expressed in minutes. Based on the results of the experiments given
in Table 2, the following conclusions can be drawn. In most cases better results
for the system with dynamically generated clusters with non-empty intersection
were obtained comparring to the decision-making system with dynamically gen-
erated disjoint clusters. The results of the experiments with the Primary Tumor
data set are presented in Table 3. Again, better results were obtained for the
system with dynamically generated clusters with non-empty intersection.

The papers [2,4] also shows the experiments with the Lymphography and
the Primary Tumor data set. Data in the non-dispersible form were examined.
Table 4 presents the results given in this papers. Presented, in this paper, results

Table 2. Summary of experiments results with the Lymphography data set

Dynamically generated clusters with non-empty intersection

System Algorithm e eONE d
WSD

dyn
Ag

t

WSDAg1 A(1)G(0.0625; 2) 0.091 0.591 1.5 0.01
m1 = 2 A(1)G(0.0105; 2) 0.159 0.273 1.114 0.01

WSDAg2 A(1)G(0.062; 2) 0.068 0.523 1.455 0.01
m1 = 1 A(1)G(0.0245; 2) 0.182 0.386 1.205 0.01

WSDAg3 A(1)G(0.0515; 2) 0.114 0.545 1.432 0.01
m1 = 1 A(1)G(0.0005; 2) 0.159 0.273 1.114 0.01

WSDAg4 A(1)G(0.0625; 2) 0.114 0.568 1.455 0.01
m1 = 1 A(1)G(0.052; 2) 0.136 0.455 1.318 0.01

WSDAg5 A(1)G(0.069; 2) 0.114 0.568 1.455 0.07
m1 = 2 A(1)G(0.054; 2) 0.182 0.545 1.364 0.07

Dynamically generated disjoint clusters

System Algorithm e eONE d
WSD

dyn
Ag

t

WSDAg1 A(1)G(0.0624; 2) 0.091 0.591 1.545 0.01
m1 = 2 A(1)G(0.0092; 2) 0.182 0.295 1.159 0.01

WSDAg2 A(1)G(0.0775; 2) 0.136 0.636 1.500 0.01
m1 = 2 A(1)G(0.029; 2) 0.159 0.364 1.205 0.01

WSDAg3 A(1)G(0.0858; 2) 0.136 0.591 1.455 0.01
m1 = 2 A(1)G(0.0006; 2) 0.159 0.273 1.114 0.01

WSDAg4, m1 = 2 A(1)G(0.0702; 2) 0.136 0.455 1.318 0.01

WSDAg5 A(1)G(0.084; 2) 0.159 0.614 1.477 0.07
m1 = 1 A(1)G(0.0672; 2) 0.182 0.545 1.364 0.07
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Table 3. Summary of experiments results with the Primary Tumor data set

Dynamically generated clusters with non-empty intersection

System Algorithm e eONE d
WSD

dyn
Ag

t

WSDAg1, m1 = 5 A(2)G(0.00549; 2) 0.373 0.814 3.020 0.01

WSDAg2, m1 = 17 A(3)G(0.0009; 2) 0.343 0.814 2.990 0.02

WSDAg3, m1 = 2 A(1)G(0.0006; 2) 0.353 0.892 3.784 0.02

WSDAg4, m1 = 3 A(3)G(0.00556; 2) 0.353 0.912 3.765 0.05

WSDAg5, m1 = 1 A(2)G(0.0001; 2) 0.314 0.922 4.294 0.33

Dynamically generated disjoint clusters

System Algorithm e eONE d
WSD

dyn
Ag

t

WSDAg1, m1 = 5 A(2)G(0.00549; 2) 0.373 0.814 3.020 0.01

WSDAg2, m1 = 17 A(3)G(0.0003; 2) 0.353 0.814 2.990 0.02

WSDAg3, m1 = 5 A(5)G(0.00573; 2) 0.373 0.912 3.755 0.02

WSDAg4, m1 = 4 A(3)G(0.0063; 2) 0.343 0.902 3.667 0.05

WSDAg5, m1 = 6 A(1)G(0.0003; 2) 0.333 0.941 4.294 0.33

can not be compared uniquely with the results shown in Table 4. Because the
decision-making system, described in the paper, generates a set of decisions,
while Table 4 shows the results of algorithms that generate one decision. It
should be noted that for the Lymphography data set the average size of the
global decisions sets is small, since it is close to the value 1. In the case of the
Primary Tumor data set the average size of the global decisions sets is between
3 and 4, note that there are 22 decision classes. This means that this result
may be considered as a quite good result. However, the quality of classification
has significantly improved in comparison with the results shown in Table 4.
Moreover, very important advantage of the proposed decision-making system
is the possibility of using dispersed knowledge, which are collected in different
medical centers.

Table 4. Results of experiments from other papers

Lymphography Primary Tumor

Algorithm Error rate Algorithm Error rate

Bayes 0.17 Bayes 0.61
AQR 0.24 AQR 0.65
CN2 0.22 CN2 0.63
AQ15 0.18 AQ15 0.59

Human Experts 0.15 Human Experts 0.58
Random Choice 0.75 Random Choice 0.95
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4 Conclusions

In this paper a new approach to structure creation of decision-making system
using dispersed knowledge was proposed. In this approach dynamically generated
disjoint clusters and dynamically generated clusters with non-empty intersection
are used. In the experiments, which are presented in the article, dispersed medical
data have been used: Lymphography data set, Primary Tumor data set. The
usage of dispersed medical data is very important, because in many medical
centers, information from one domain, are collected. Thus, these data are in
the dispersed form. Based on the presented results of experiments it can be
concluded that the proposed decision-making system achieve good results for
dispersed medical data.
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Abstract. Image segmentation is an essential step in almost all image
processing applications and very critical particularly for medical images.
Image segmentation procedure segments an image into appropriate num-
ber of regions. Several techniques have been proposed and experimented
to obtain effective image segmentation. Clustering is one of the com-
monly used image segmentation techniques.

There exist ambiguous regions in an image and segmenting these re-
gions correctly is a challenging task. Different clustering approaches are
explored by researchers to deal these ambiguous regions in order to ob-
tain better image segmentation. We propose rough clustering approach
to explicitly determine ambiguous regions from an image. Once ambigu-
ous regions are identified segmentation would be easier.

In this paper we present our experiments of image segmentation us-
ing crisp K-means clustering algorithms and rough K-means (RKM)
clustering algorithms. With the help of various images we demonstrate
that RKM algorithm is able to determine ambiguous regions distinctly
whereas K-means forced pixels of ambiguous regions to either region.
Furthermore, we analyze how other soft clustering techniques deals with
ambiguous regions.

Keywords: clustering, K means, Rough k means, rough sets, Fuzzy sets,
Image segmentation.

1 Introduction

Image analysis process initiates with the task of segmentation [29]. The effective-
ness of later steps of image analysis rely on the quality of a segmentation process.
Hence, considerable efforts are taken to improve the probability of successful seg-
mentation. Image segmentation has wide spread applications in many fields in-
cluding multimedia databases, color image and video transmission over internet,
digital broadcasting, interactive TV, video-on-demand, computer-based training,
distance education, video-conferencing [8]. The focus areas of research fields where
image segmentation used are computer science, geography, medical imaging, crim-
inal justice, and remote sensing. Medical Image Processing (MIP) in particular
deals with sensitive and demands very high precision of segmentation.
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The process of clustering is differentiated as Key word based clustering and
Content based clustering [24]. In key word based clustering - the identical fea-
tures of clusters are recognized by the keyword specified from the user. Content
based clustering [26] works on features of image such as shapes, texture, color
etc. Clustering algorithms are differentiated based on their cluster model, as
hierarchical clustering, centroid-based clustering, distribution-based clustering,
Density - based clustering etc.

K- means clustering method is very popular for pattern recognition [6,15]. In
K-means clustering a centroid vector is computed for every cluster. The cen-
troid is chosen randomly with an aim to minimize the overall distance within
the clusters. Both supervised and unsupervised clustering techniques are used
in image segmentation. In supervised clustering method [3], grouping is done
according to user feedback. In unsupervised clustering, the images with high
features similarities to the query may be very different in terms of semantics.
The K-means clustering algorithm needs some initial cluster set and if these are
chosen incorrectly, the K-means algorithm fails to produce good segmentation.

A conventional clustering algorithm such as K-means categorizes an image
pixel into precisely one cluster. This is well and good when all pixels in an im-
age are clearly separable and can be segmented in different segments without
any ambiguity. But for an image having ambiguous regions we need different
approach of clustering. Ambiguous region of a medical image might get seg-
mented forcefully as a wrong region, which ultimately may cause harm to a
patients. Fuzzy clustering [16,23,17], Evidential Clustering and rough set clus-
tering [22,4,20] provide an ability to specify the membership of an image pixel
to multiple clusters, which can be useful in real world applications of image seg-
mentation. We propose to test RKM algorithm to determine whether it can find
out ambiguous regions from an image.

The remaining paper is organized as follows. Section 2 presents related work
in this field of image segmentation using various clustering approaches. Section
3 describes in short about rough clustering. We present our experimental details
and discuss the results obtained in section 4 followed by conclusions in section 5.

2 Related Work

Several techniques are used for medical image segmentation. We review a few
approaches that use some sort of clustering as a basis of image segmentation.
A new marker controlled watershed algorithm along with k means algorithm
for medical image analysis. In this watershed transform is used to segment gray
matter, white matter and cerebrospinal fluid from magnetic resonance (MR)
brain image [18].

A new Genetic Approach on Medical Image Segmentation by Generalized
Spatial Fuzzy C-Means Algorithm (GSFCA). The algorithm improved the level
of accuracy and efficiency of image segmentation [1]. A new framework of con-
tent based image retrieval was put forward with integration of semantic cluster
classifier with K - Means algorithm. Subrajeet Mohapatra et al. [16] proposed
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new hybrid algorithm fuzzy algorithm with the segmentation of leukocytes and
their components. The work incorporates the combination of both rough sets and
fuzzy sets in clustering framework performance. The improved Hybrid Cluster-
ing Algorithm is presented for fast, accurate and noise adaptive clinical analysis
of brain MRI [23]. The concept of lower and upper approximations of rough
sets is incorporated to make the segmentation robust to noise. The images are
pre-processed with a neighborhood averaging spatial filter. Rough set approxi-
mations are also proposed for image segmentation by [7]. FCM based algorithms
in terms of segmentation accuracy for both noise-free and noise-inserted MR
images [9,30]. The comparative study proposed by Li Hao [5] shows that all
segmentation algorithms especially the thresholding algorithms are sensitive to
noise and face difficulty in segmenting images with low contrast and inhomoge-
neous regions. For complex medical images, these general algorithms can only be
used as parts of a more sophisticated algorithm. A modified, FCM based on two
stages was proposed [2]. In this rough set theory was incorporated with FCM by
reduction theory the initial clusters centers at first cluster set is eliminated.

Either crisp K-means or flexible clustering algorithms (FCM, ECM or RKM)
are used for image segmentation in above mentioned research proposals. How-
ever, we propose to use RKM to determine ambiguous regions from an image.

The short description of Rough K-means algorithms is presented in the next
section.

3 Rough Clustering Approach

In addition to clearly identifiable groups of objects, it is possible that a data
set may consist of several objects that lie on the fringes [27]. The conventional
clustering techniques mandate that such objects belong to precisely one cluster.
Such a requirement is found to be too restrictive in many data mining applica-
tions [9]. In practice, an object may display characteristics of different clusters.
In such cases, an object should belong to more than one cluster, and as a result,
cluster boundaries necessarily overlap. Fuzzy set representation of clusters, using
algorithms such as fuzzy C-means, makes it possible for an object to belong to
multiple clusters with a degree of membership between 0 and 1 [10]. In some
cases, the fuzzy degree of membership may be too descriptive for interpreting
clustering results. Rough set based clustering provides a solution that is less re-
strictive than conventional clustering and less descriptive than fuzzy clustering.

Lingras and West [12] provided an efficient alternative based on an extension
of the K-means algorithm [15]. Incorporating rough sets into K-means clustering
requires the addition of the concept of lower and upper bounds. The incorpora-
tion required redefinition of the calculation of the centroids to include the effects
of lower and upper bounds. The next step was to design criteria to determine
whether an object belongs to the lower and upper bounds of a cluster.
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The rough K-means approach has been a subject of further research. Peters
[19] discussed various refinements of Lingras and West’s original proposal [12].
These included calculation of rough centroids and the use of ratios of distances
as opposed to differences between distances similar to those used in the rough
set based Kohonen algorithm described in [13]. The rough K-means [14] and its
various extensions [28] have been found to be effective in distance based clus-
tering. However, there is no theoretical work that proves that rough K-means
explicitly finds an optimal clustering scheme. Moreover, the quality of clustering
that is maximized by the rough clustering is not precisely defined [25]. We com-
pare crisp and rough clustering algorithm results and present our observations
in section 4.

Rough K-Means Algorithm. We represents each cluster ci, 1 ≤ i ≤ k, using
its lower A(ci) and upper A(ci) bounds. All objects that are clustered using the
algorithm follow basic properties of rough set theory such as:

(P1) An object x can be part of at most one lower bound

(P2) x ∈ A(ci) =⇒ x ∈ A(ci)

(P3) An object x is not part of any lower bound

�
x belongs to two or more upper bounds.

Algorithm 1 depicts the general idea of the algorithm. The values of p, wlower ,
wupper are finalized based on the experiments described in [14]. A new set of
centroids emerges at the end of individual iteration and objects are reassigned
to the lower/upper bound of appropriate clusters.

Like crisp clustering, the cluster membership of an object in case of rough
clustering is also determined by the distance of an object from the cluster cen-
troids. Additionally, in order to determine whether an object belongs to a lower
bound of a single cluster or to an upper bound of two or more clusters the
roughness parameter ’threshold’ (p) is introduced. The procedure to determine
the cluster membership for rough clustering is given below. For each object vec-
tor, v, let d(v, cj) be the distance between itself and the centroid of a cluster
cj . Let d(v, ci) = min1≤j≤k d(v, cj). The ratios d(v, cj)/d(v, ci), 1 ≤ i, j ≤ k,
are compared with a cut-off value to determine the membership of an object
v. This parameter is called as a threshold. Let T = {j : d(v, cj)/d(v, ci) ≤
threshold and i 	= j}.

1. If T 	= ∅, v ∈ A(ci) and v ∈ A(cj), ∀j ∈ T . Furthermore, v is not part of any
lower bound. The above criterion guarantees that property (P3) is satisfied.

2. Otherwise, if T = ∅, v ∈ A(ci). In addition, by property (P2), v ∈ A(ci).

In next section we discuss details of our experiments with image segmentation
using RKM and KM.
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Data:
k: the number of clusters,
D(n, m): a data set containing n objects where each object has m dimensions,
Result: A set of clusters. Each cluster is represented by the objects in the

lower region and in boundary region (upper bound),

p: a roughness threshold value (1.4);
w lower: relative importance assigned to lower bound (0.75);
w upper: relative importance assigned to upper bound (0.25);
arbitrarily choose k objects from D as the initial cluster centers (centroids);
repeat

(re)assign each object to lower/upper bounds of appropriate clusters by
determining its distance from each cluster centroid;
update the cluster centroids using number of objects assigned to the cluster;

until no change ;

Algorithm 1. The rough K-means clustering algorithm

4 Experimental Setup and Results

In order to test the usefulness of RKM algorithm in determination of ambiguous
regions from images, we decided to implement the RKM and K-means algorithms
on a few images and observed the resulting segmentation.

The step by step procedure implemented to obtain image segmentation using
K means and RKM clustering is as given below.

1. We decided to focus on gray level medical images.
2. The two dimensional intensity matrix of an image is clustered using K-means

function of Matlab.
3. According to the K-means clustering an image is reconstructed. Now image

shows separate segments.
4. For rough K-means clustering we used a RKM algorithm that is implemented

in Java.
5. The same two dimensional intensity matrix of an image is inputted to ob-

tain rough clusters. Pixels that belong to upper approximation regions of
multiple clusters are ambiguous and presented distinctly in resulting image
segmentation.

6. Based on RKM result the image is segmented with an additional region that
corresponds to ambiguous region of an image.

We experimented with various images and most of these images are medical
images. With the help of following three distinct images we would like to put
forth our observations.

A brain image has three distinct regions that correspond to three important
constituents of brain namely normal brain tissues, ventricles and cerebrospinal
fluid (CSF), and pathology of brain. Figure 2(a) shows an original brain image.
Figure 2(b) is a K-means clustered image segmentation in which three regions
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Fig. 1. Brain Image Segmentation

Fig. 2. Mammogram Image Segmentation

Fig. 3. Peacock Image Segmentation

are displayed but some pixels are misplaced into other region. Figure 2(c) is a
RKM clustering based image segmentation in which ambiguous region is clearly
indicated by white pixels.

Mammogram images are segmented to determine if there is a presence of
tumor in breast. Incorrect segmentation may lead to wrong diagnosis. Hence, in
case of lack of detail information a pixel should not be assigned to any region
as done in K-means clustering based image segmentation in Figure 3(b). RKM
clustering based image segmentation is shown in Figure 3(c). Here ambiguous
region is marked with white pixels.

In original peacock image as shown in Figure 4(a) we can see overlapping
of peacock tail and branch. Proper distinction is necessary. Figure 4(b) and
4(c) shows K-means and RKM clustering based image segmentation. Ambiguous
pixels are marked with white color in rough clustering result image (Figure 4(c)).
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We can observe that in all images an ambiguous region is clearly identified by
RKM clustering. It is presented with white pixels. Whereas images segmented
using K-means could not identify ambiguous regions as the ambiguous pixels are
pushed to one of the existing regions.

5 Conclusions

In this paper, rough set based k-means algorithm was proposed to visualize
the ambiguous area distinctly. We experimented with number of images and
observed that RKM clustering algorithm is able to determine ambiguous regions
present in medical images successfully. More work shall be performed in future
to determine if RKM can be used to determine ambiguous regions from colored
images.

References

1. Chintalapalli, M.: Image segmentation by clustering (using Mahalanobis distance)
2. Jobin Christ, M.C., Parvathi, R.M.S.: Magnetic Resonance Brain Image Segmen-

tation. International Journal of VLSI design & Communication Systems (VL-
SICS) 3(4), 121–133 (2012)

3. Grira, N., Crucianu, M., Boujemma, N.: Unsupervised and semi-supervised clus-
tering: a brief survey, France (2005)

4. Haldar, A., Dasgupta, A.: Colour image segmentation using rough set K-means
algorithm. Int. Jor. of Computer Applications 57(12) (2012)

5. Hao, L.: Registration-Based Segmentation of Medical Images. School of Computing
National University of Singapore (2006)

6. Hartigan, J.A., Wong, M.A.: Algorithm AS136: A K-Means Clustering Algorithm.
Applied Statistics 28, 100–108 (1979)

7. Hirano, S., Tsumoto, S.: Rough representation of a region of interest in medical
images. Int. J. Approx. Reasoning 40(1-2), 23–34 (2005)

8. Ikonnomakis, N., Plataniotis, K.N., Venetsanopoulos, A.N.: Colour image segme-
natiaon for multimedia applications. Jor. of Intelligent and Robotics Systems 28,
5–20 (2000)

9. Jain, A.K.: Data Clustering: 50 Years Beyond K-Means. Department of Computer
Science & Engineering, Michigan State University, East Lansing, Michigan 48824
USA

10. Jain, A.K.: Fundamentals of Digital Image Processing, 1st edn. Pearson Education,
India (2003)

11. Ji, Z., Sun, Q., Xia, Y., Chen, Q., Xia, D., Feng, D.: Generalized rough fuzzy c-
means algorithm for brain MR image segmentation. Computer Methods and Pro-
grams in Biomedicine 108(2), 644–655 (2012)

12. Lingras, P., West, C.: Interval Set Clustering of Web Users with Rough K-Means.
Journal of Intelligent Information Systems 23, 5–16 (2004)

13. Lingras, P.: Applications of rough set based K-means, kohonen SOM, GA clus-
tering. In: Peters, J.F., Skowron, A., Marek, V.W., Or�lowska, E., S�lowiński, R.,
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Abstract. This paper presents a platform to bridge datamining tech-
niques and concepts in the field of neurosciences with state-of-the-art
data mining, in particular domain adaptation. In non-clinical environs,
once an exhaustive search for a particular item of knowledge seems to be
impractical, there is the natural tendency to switch to heuristic methods
to expedite the search. Conversely, when neuroscientists are in the same
situation, they will trust exhaustive searches rather than heuristics such
as clinical decision-support systems (CDSS). This is particularly when
electroencephalography (EEG) sequences are used to search for patho-
logic oscillations in the brain. The purpose of this paper is to promising
results illustrating how an intelligent agent can data mine explicit types
of pathologic oscillations in the human brain.

1 Introduction

In previous using work the authors have shown that in a domain of time versus
amplitudinal strength in EEGs of a person during seizure, the neural oscilla-
tions of artifact remain stationary in continuous clustered segments while the
neural oscillations seizure activity move (see Figure 1) [10]. To validate this
the authors used their rough set-based discretization and clustering tool called
neuroClusteringTM. The reason why the clustering tool could create these three
distinct clusters is because when the human brain is working efficiently there is
a precise interaction of neural activities that renders oscillatory synchronization
[13], [8], [3], [5], which creates a harmonic ebb and flow of electricity observable
on an electroencephalogram (EEG). Conversely, when one develops a neurologi-
cal pathology this synchronization breaks down. Discovering classifiers for these
pathologic oscillations is crucial in finding their cures. This will only change
when a CDSS incorporates intelligence that can learn in one domain and retrain
itself across another domain. In the continuing goal to establish an autonomous
machine-learning CDSS for detecting pathologic oscillations from a plurality of
EEG domains for neuroscientists, the authors present a state-of-the-art rough
set theory methodology that embraces domain adaptation. The paper will now
illustrate how discretizing and clustering EEG signals in this manner is also
conducive for domain adaptation. First we review neuroClusteringTMthen we
address the motivation for the experiments, domain adaptation, along with the
experiment process and results.
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Figure 1082

I                                  II                             III

IV

Fig. 1. neuroClusteringTM: (I) Original
EEG is split with a spline to extract change of
time and Riemann sum values. (II) Each point
represents one instance of change of time versus
Riemann during 0.333 seconds. (III) FCM cen-
troid of the cluster in II is instantiated onto
(IV) which has three distinct areas. Bottom
right cluster rdefines artifact. Bottom left left
is ”normal” activity Upper cluster is seizure.

neuroClusteringTM: The abil-
ity discretize large portions of sig-
nal based EEGs allows a machine
to convert large portions of com-
plex fourier transforms to small
2-dimensional arrays of x, y mem-
bers. Now if this format is con-
ducive for domain adaptation we
can train off of neurodiagnostic
domain consisting of many ”pa-
tients” and quickly match the
closest patients to a new pa-
tient. This would yield a new
resource for studying the ab-
normal synchronization processes
found in the pathologic oscilla-
tions associated with neuropsy-
chiatric disorders. It is known in
the field of neurodiagnostic stud-
ies, that proper overall interpreta-
tion of EEG findings rely on valid
correlations of associated clinical
semiology identifying specific os-
cillatory states [7]. Problems such
as the subjective nature of what
constitutes a seizure [16] and
the insurmountable resources re-
quired to have machines learn and identify pathologic oscillations is unaccept-
able. To do this let X = x1, x2, ..., xN represent the finite set and 2 ≤ c ≤ N is
an integer. The objective was to partition data set X into c clusters where one
assumes that c is known [15]. With classical sets one defines a hard partition as a
family of subsets {Ai|1 ≤ i ≤ c ⊂ P (X)} where Ai jointly contain all the data in
X, which must be not empty, pairwise disjoint and

⋃c
i=1 Ai should reconstruct

X [14]. We need μik to attain real values in [0,1] therefore fuzzy partitioning is
used as a generalization of hard partitioning where we let X = [x1, x1, ..., xN ]
represent the finite set where 2 ≤ c ≤ N be an integer where the fuzzy parti-
tioning space for X is the set Mfc = uij ∈ RN×c|μik ∈ [0, 1], ∀i, k; where the
i-th column of U contains values of the membership function of the i-th fuzzy
subset of X and constrains the sum of each column to 1. This means that total
membership of each xk in X equals 1 thus making the distribution of the mem-
berships (artifact or seizure) amongst the c fuzzy subsets flexible in nature. For
discretization, the authors used a quantitative indice to evaluate the efficiency
of this rough clustering algorithm, incorporating the concepts of rough sets cap-
turing the average degree of completeness of knowledge of all the clusters [11].
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2 Domain Adaption Experiments

As seen in Figure 2(a), the classic setting for machine learning is single domain
learning where the goal is to have an input x that predicts a corresponding output
y, x → y, where we assume that x and y are drawn against some probability
distribution of the joint pair x and y, (x, y) ∼ Pr[x, y]. For example, our x’s may
be a post neurosurgery ICU patient’s (patient) EEG and our goal is to have a
machine predict whether that patient is incurring a fatal pathologic oscillation.
As the author has seen over the past few years applying rough set theory to
patients in the neuro ICU ward where the goal is to learn what one, if any, of
the hundreds of seizures a post brain surgery will have will be a fatal one - the
type that shuts off bodily functions and only alert the neurosurgeon of this event
and not the others, simply takes too long. By the time the machine has learned
and trained off of the same patient the patient has left the hospital, the neuro
surgeon has had 60 false positives a day or in one cade, the patient died.

(a)

(b) (c)

L

TS

TS 11

TS nn

TS 22

TS n-1n-1

FT

S & T

Fig. 2. Domain AdaptationTM: (a) Classical, D : Rk → R. (b) This paper, where

domain adaptation where DR
K→R

1 , and (c) Future work 4 DR
K→R

w,x,y,z.

Enter domain adaptation which is based off of its critical ”Single Good Hy-
pothesis”; ∃h∗, εS(h∗), εT (h∗)small. which is in essence saying, for us in the
neuro ICU ward that there exists, somewhere out there, a classification rule that
is based off of previous patients (S) who were also in this neuro ICU ward, that
correctly predicts a particular type of pathologic oscillation in both the train-
ing Pn’s EEG data and the target Pn+1’s EEG data where the error is small.
Note that in Shared Support the two distributions are similar while in Shared
Representation Learning the two distributions are completely different.As shown
in Figure 2(b) we now we have two distributions, a source (S) distribution and
a target (T) distribution. The source distribution, (x, y) ∼ PrS [x, y], is the
training distribution where classification rules are derived from many previous
patients while the target (T) distribution, (x, y) ∼ PrT [x, y], is the test dis-
tribution which may elicit rules derived from the closest match of the previous
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patients that were in the neuro ICU ward. Many methodologies can be used to
do this including, Covariate Shift [6], Representation Learning [1], Feature Based
Supervised Adaptation [4]and Parameter Based Supervised Adaptation [17], to
name a few. This is represented in Figure 2 by the swapping of the colors repre-
senting the stars for normal, the circles for artifact and the squares for seizure,
the colors of interior white and full colors in the three aforementioned shapes
are swapped out across the cross/ cut lines between the S and T’s. in Note that
in Figure 2(a) the new patient when using classical KDD and applying domain
adaptation terminology upon it, is actually is actually both the source(S) and
the target (T) distribution.

Figure 1082

ICU Patient 1082

(a)

Figure 0499

ICU Patient 0499

(b)

Fig. 3. EEG Clustering: 2 of 2000 ICU “patients”: Dotted line bisects seizures above
normal & artifact clusters below

The goal of the experiments was to recognize the confidence of classification
rules of a plurality of synthesized patients according to how well their values
distinguish between the instances of the same and different classes close to one
another. Using Scala we created 2,000 patient’s EEGs with some having no
seizures, some have two seizures, some having no artifact and some have two sets
of artifact (see Figure 3). We selected a cohort of 670 patients, P001, P002 ... P670

to only be trained by using the classical iterations for learning and training. We
set a predefined threshold from an expert epileptologist and our optimal subset
was randomly chosen by selecting a random 33% of the values. We performed
the iterations 6 times. Next, using a J48 Generator in Weka we submitted the
training to a tester and then trained off of another randomly chosen 33% of the
synthesized data [9] which is based off of Quinlan’s original bagging and boosting
methodology [12]. In the classic supervised learning context we determine how
effective a system performs on test data by bounding the empirical error of the

training data with the expected error on the test data εtest ≤ ε̂train +
√

complexity
n

where the complexity may be Girosi, Rademacher, etc., and as the number of
training entities increases so do the test and training errors converge. In Domain
Adaption however, the test error εtest is measured on a new distribution [2].
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Fig. 4. Initial Results: Domain Adaptation
(solid line) started off consistently below the
classical KDD (dotted line’s) confidence levels

To test the hypothesis the au-
thors ran J48 algorithms twice on
two randomly selected sets of 670
synthesized patients. In cohort1
six iterations of training and learn-
ing on 66 randomly selected pa-
tients off the same distribution
were run using Naive Bayes (clas-
sical)(see dotted line in Figure 4).
In cohort2 six iterations of train-
ing off the source distribution were
trained on 66 randomly selected
patient from cohort2 (see solid line
in Figure 4) and learned on the 66
”new” patients.

3 Conclusions and Future Work

As seen in Figure 2(c), the future work is the motivation behind this paper. In
(c) where iwe move towards a new class of machine learning that can adapt, and
select all the closest S1’s to T1s, adapt, and select all the closest S2’s to T2’s
which could be animal databases, and then adapt, and select all the closest S3’s
to T3’s which could be conversations between doctors. To make this model move
closer towards how humans think, it must also apply many Sn’s to the closest
Tn’s which could be YouTube, textbooks, strings, arrays, audio and ... essentially
all inhomogenous databases that right now cannot possibly be fused to the Final
Target FT. As seen in these experiment results, in all the domain adaptation
cases, the results started lower than the classical KDD results varying from 21%
to 53% on the first iteration but soon surpassed the classically trained patients’
confidence levels. We are concerned that we do not understand exactly why the
domain adaptation starts off lower. The focus in these experiments was to see
if we could make domain adaptation work and compare it to a classical KDD
approach - hence the focus was not the drilling down into the resultants each
step of the way. The authors are already performing work to compare the same
type of randomly selected patients to many more types and see what the results
tell us. The end result is that domain adaptation is showing strong results and
opening up many doors allowing machine learning to learn off of one distribution
and train on another. More so, with more testing we may soon qualify to test
these results on real human in the post neurosurgery ICU wards at Anschutz
Medical School in early 2014.
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Abstract. In an open card sorting study of 356 facial photographs,
each of 25 participants created an unconstrained number of piles. We
consider all 63,190 possible pairs of photos: if both photos are in the
same pile for a participant, we consider them as rated similar; otherwise
we consider them as rated dissimilar. Each pair of photos is an attribute
in an information system where the participants are the objects. We
consider whether the attribute values permit accurate classification of the
objects according to binary decision classes, without loss of generality. We
propose a discernibility coefficient to measure the support of an attribute
for classification according to a given decision class pair. We hypothesize
that decision class pairs with the support of many attributes are more
representative of the data than those with the support of few attributes.
We present some computational experiments and discuss opportunities
for future work.

1 Introduction

Card sorting [7] is an accessible technique to elicit data about participant im-
pressions of various stimuli. We consider the analysis of data from a card sorting
study of 356 facial photographs (178 Caucasian and 178 First Nations). The
photographs were laminated on 5 by 4 inch cards. Participants were asked to
view photos one at a time and place each photo on a pile with photos which they
judged to be similar, without disturbing existing piles. The number of piles was
not constrained. Within the 25 participants, the number of piles made ranged
between 4 and 38. For each participant, photos in the same pile were considered
to be rated as similar (distance of 0) and photos in different piles were considered
to be rated as dissimilar (distance of 1). In this way, we attached a rating to
each of the 63,190 pairs that can be made from 356 photos. Participants rated
the similarity of each photo in relation to other photos. The smallest unit of
this similarity judgement is the photo pair, so therefore the photo pairs are the
attributes in this information system. Only a small fraction of these comparisons
were made directly, specifically amongst the photo being placed and whichever
photos were visible at the tops of existing piles. The study and a preliminary
� This paper benefitted from discussions with Dominik Ślęzak.
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analysis has been described elsewhere [4]. From that preliminary analysis, it
was hypothesized that different strategies for sorting the photos may be used
amongst the participants studied.

We continue to work at identifying and understanding the different strategies
that may be at work. The earlier work looked for meaningful ways to distinguish
between 2 groups. In particular, we looked at various qualities inherent in or
identified about the photos as the basis for constructing decision class pairs. In
this paper, we continue the search for identifiable strategies from a quantitative
perspective. Although we still consider binary decision classes, each of these
decision classes may be later further subdivided as required.

Gathering the ratings for each pair of photos (attribute) from each participant
led to a binary vector of length 25 that became associated with the attribute.
Some photos were not recorded during data entry, so the distance for pairs formed
with these photos was -1. Our approach reported here replaced each -1 within
these binary vectors with 0 and 1 in turn to generate all possible alternative
patterns in new binary vectors. In cases when an attribute had an incomplete
original binary vector (containing -1 values), the attribute became associated
with all newly generated binary vectors. Any duplicate binary vectors were re-
moved with the associated attributes moved to the single remaining instance of
the vector. The result of this process was a list 28,379 unique binary vectors.
Following Table 1, each of the vectors was assigned an ID. None of the unique
vectors was the inverse of another vector in the list.

Table 1. Sample binary vectors. Each bit position represents a participant (object).
The table shows the IDs associated with binary vectors: interpreted as integers, vectors
are valued from 0 to 2n−1−1 on the left and from 2n−1 to 2n−1 on the right. Interpreted
as a decision class specification, all objects with the same value are assigned to the same
decision class. Therefore, a vector and its inverse have the same ID. The first row does
not have an ID because the vector and its inverse do not contain both 0 and 1.

ID Binary Vector Inverse Vector
- 000 111
1 001 110
2 010 101
3 011 100

Each bit position in the binary vector represents a participant (object). These
binary vectors have 2 possible interpretations. On the one hand, each vector
represents the values for a particular attribute. A zero (0) indicates that the
particular participant judged the photo pair to be similar (distance = 0). A
one (1) indicates that the particular participant judged the photo pair to be
dissimilar (distance = 1). On the other hand, each vector represents a possible
way to assign the objects into 2 decision classes. Participants with the same
value are assigned to the same decision class. (See Table 1 for more detail.)

The unique vectors distilled from participant data represent only a very small
fraction of the total possible ways to divide 25 participants into 2 groups, yet
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they are an appealing starting point because they record real participant be-
haviour. If we look amongst them for evidence of differing strategies employed
by participants in the judgement of facial similiarity, we may be encouraged to
find attributes that allow a highly accurate classifier to be built for a particular
binary decision class specification. We suggest that this is a necessary but not
a sufficient criterion for identification of “good” decision class pairs. We suggest
that a better indication of “good”-ness for a decision class pair is the number of
attributes from which a highly accurate classifier can be built.

Our approach, reported here, has been to develop a measure of discernibil-
ity that can be easily computed and used to quantitatively assess how well a
particular attribute can be used to discern objects according to a given deci-
sion class pair. These results were calibrated in a small test with the Rough Set
Exploration System [2].

The rest of the paper is organized in the following way. Section 2 discusses dis-
cernibility and develops new measures related to discernibility. Section 3 details
some computational experiments, including the use of the Rough Set Exploration
System [2]. Section 4 presents some conclusions based on the obtained results
and discusses some opportunities for future work.

2 Discernibility

Discernibility is a key idea in rough set theory [6,8], and it can be applied here
to understand participant judgements in 2 ways:

– by examining all judgements made by pairs of participants (objects): It is
possible for a pair of participants to disagree about every attribute, in which
case the participants would be readily discernible. It is also possible for a pair
of participants to agree about every attribute, in which case the participants
would be indiscernible.

– by examining all judgements made about each attribute: It is possible for
all participants to agree with each other about an attribute, in which case
the attribute would not contribute to the discernibility of the participants.
It is not possible for all participants to disagree with each other about an
attribute, because each participant rates an attribute as either “Similar” (0)
or “Dissimilar” (1). For a given vector, the product of the number of 0’s
and the number of 1’s indicates the amount of “disagreement” (discernibil-
ity). Equation 1 defines the maximum discernibility possible within a binary
vector of length n.

We focus our attention here on those vectors with maximum discernibility
(which contain either 12 zeroes and 13 ones or 13 zeroes and 12 ones). In this
way, we hope to focus on the most informative attributes [1]. By doing so, we
are left with 1705 vectors out of the total 28,379 with which we began.

In these vectors, 156 out of the 300 possible pairs of participants are different
(either 01 or 10) and only 300 - 156 = 144 of the possible pairs of participants
are the same (either 00 or 11). Beginning with a vector that specifies the binary
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decision classes, we wish to compare it with attribute vectors to see how well
the decision class pair represents the observed data.

Choi et al. [3] present 75 different ways to assess the similarity between 2
binary vectors. The task of assessing the discernibility of a binary vector with
respect to another is somewhat different. As outlined in Table 1, we consider
that a vector and its inverse represent the same assignment of objects to decision
classes. This interpretation is different than Janusz and Ślęzak [5], for example,
who regarded inverse vectors as complementary rather than similar. In our case,
we are concerned with values on diagonals of the contingency table (see Table 2).

Table 2. Contingency table consistent with Choi et al. [3]. Rows labelled as x0 and
x1 indicate respectively 0’s and 1’s in vector x. Columns labelled as y0 and y1 indicate
respectively 0’s and 1’s in vector y. Dcoeff(x, y) = 1 if a+ d = n or b+ c = n.

y0 y1 sum
x0 a c a+ c

x1 b d b+ d

sum a+ b c+ d a+ b+ c+ d = n

Dmax =

{
(n
2
)2 when n is even

(n
2
)× ((n

2
) + 1) when n is odd

(1)

Dcoeff (x, y) =
ad+ bc

Dmax
(2)

Ddist(x, y) = 1−Dcoeff (x, y) (3)

Given n objects, there will be
(
n
2

)
pairs of objects. Consider that each of

these objects is assigned to 1 of 2 decision classes. Pairs of objects from different
decision classes will be discernible with respect to an attribute if the values for
that attribute are different for these pairs of objects. Equation 1 defines the
maximum number of object pairs with objects from different decision classes.
Dcoeff(x, y), defined in Equation 2, compares 2 binary vectors (one a decision
class specification and the other containing attribute values) and computes the
number object pairs from different decision classes that have different attribute
values over the maximum number of such pairs. The range for the Dcoeff(x, y) is
[0, 1]. Notice that Dcoeff(x, y) = Dcoeff(y, x) for any pair of vectors, x and y. The
coefficient is meant to answer the question “Does the attribute with values given
by x help to discern objects in decision classes specified by y?” If Dcoeff = 1
(or close to it), the answer is “Yes”. Either ad or bc = Dmax, which means that
the attribute values match the decision class specification (or its inverse) exactly
(what was earlier called a “splitting pair” [4]). If Dcoeff = 0 (or close to it), the
answer is “No”. Either ac or bd = Dmax, and the attribute contributes nothing
to the discernibility of the decision classes. This value will only occur if all of the
attribute values are the same. Equation 3 defines a distance in terms of Dcoeff .
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Table 3. Three sample binary vectors, labelled as A, B, and C for brevity, are com-
pared. (Following the convention outlined in Table 1, their numerical IDs are as fol-
lows: A = 350655, B = 350639, and C = 11184810.) To the right of each pair of
vectors is the contingency table for the comparison. Dcoeff (A,B) = 144/156 = 0.923
and Dcoeff (A,C) = (56 + 25)/156 = 0.519.

ID Values
A 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1
B 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0

B0 B1

A0 0 12
A1 12 1

ID Values
A 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1
C 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

C0 C1

A0 7 5
A1 5 8

3 Experimentation

Each of the 1705 vectors, in turn, was interpreted as the decision class specifi-
cation, in preparing to apply the rough set attribute reduction methodology [6].
Dcoeff was computed for all attribute vectors with respect to the given decision
class specification, and the average coefficient was computed for each candidate
decision class specification. We then chose the vectors with the maximum and
minimum average, represented in Table 4. In addition to the interpretation of
support for a decision class specification, the average coefficient can also be in-
terpreted as a measure of the importance of the attribute(s) associated with
each vector. In this case, the coefficient answers the question “Is this attribute
important in discerning objects?” If Dcoeff = 1 (or close to it), the answer is
“Yes”. If Dcoeff = 0 (or close to it), the answer is “No”.

Table 4. Max. (Dcoeff average = 0.590) and Min. (Dcoeff average = 0.515) vectors,
compared. Dcoeff (max,min) = 0.5.

ID Values
Max. 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0
Min. 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1

Max0 Max1

Min0 7 6
Min1 6 6

Hepting et al. [4] focused on reducing the number of attributes required as in-
put to RSES [2] in order to accurately classify participants according to a decision
class pair. Instead of looking only for the existence of an accurate classification
via RSES, this work is concerned with exploring the limits of an accurate classi-
fication: how many different attributes support accurate classification according
to a specified decision class pair? We hypothesize that candidate decision class
pairs with the support of many attributes are more representative of the data
than those with the support of few attributes.
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Table 5. Summary of results from 2 sets (Max., left and Min., right) of runs of RSES.
Data from each bin was run 10 times and averages are reported. Dashes indicate that
the bin had no data.

Nbr. Avg. Avg. Std. Avg. Avg.
Bin Attr. Coeff. Acc. Dev. Red. Rule
0.95 0 - - - - -
0.90 5 0.923 1 0 1.32 12
0.85 15 0.853 0.977 0.037 1.88 33.8
0.80 25 0.845 0.992 0.024 1.61 29.4
0.75 25 0.788 0.969 0.040 1.85 35.8
0.70 25 0.731 0.915 0.067 2.46 51
0.65 25 0.692 0.862 0.087 1.92 37.6
0.60 25 0.636 0.846 0.103 2.9 65.7
0.55 25 0.596 0.808 0.075 2.6 54.8
0.50 25 0.545 0.746 0.115 3.53 85

Max.

Nbr. Avg. Avg. Std. Avg. Avg.
Bin Attr. Coeff. Acc. Dev. Red. Rule
0.95 0 - - - - -
0.90 0 - - - - -
0.85 0 - - - - -
0.80 0 - - - - -
0.75 0 - - - - -
0.70 0 - - - - -
0.65 5 0.673 0.823 0.089 2.36 19.4
0.60 25 0.634 0.838 0.133 2.67 57.1
0.55 25 0.596 0.769 0.103 2.84 62.8
0.50 25 0.545 0.662 0.121 3.64 82.2

Min.

For both of the Min. and Max. vectors, we created bins for Dcoeff between
0.5 and 1.0 in increments of 0.05. RSES input files were generated to test the
classification accuracy using up to 25 attributes from only 1 specified bin. The
bins, the number of attributes in each bin, and the average coefficient value for
the bin are indicated in Table 5.

AB CD

EF AG
Rule Dec. Class Nbr. Classified

EF = Similar & AG = Similar 0 11
EF = Similar & AG = Dissimilar 0 1

EF = Dissimilar & AG= Similar 0 1
EF = Dissimilar & AG = Dissimilar 1 12

Fig. 1. Photo pairs AB and CD are associated with vector “Max”. Pairs EF and AG are
the attributes in one of the reducts, followed by corresponding rules for classification.
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HI

JI KL MN
Rule Dec. Class Nbr. Classified

JI = Similar & KL = Similar & MN = Dissimilar 0 2
JI = Similar & KL = Dissimilar & MN = Dissimilar 0 8

JI = Dissimilar & KL = Dissimilar & MN = Dissimilar 0 3
JI = Similar & KL = Dissimilar & MN = Similar 1 2

JI = Dissimilar & KL = Similar & MN = Similar 1 5
JI = Dissimilar & KL = Similar & MN = Dissimilar 1 4
JI = Dissimilar & KL = Dissimilar & MN = Similar 1 1

Fig. 2. Photo pair HI is associated with vector “Min”. Pairs JI, KL, and MN are the
attributes in one of the reducts, followed by corresponding rules for classification.

After creating the various input files, we followed a standard procedure with
RSES [2], as follows: Preprocessing: split the input table of 25 objects into 2
equal parts (1 for training and 1 for testing); Training: calculate up to 10 reducts
from the training data using the genetic algorithm in RSES; Testing: generate
rules from the reducts and test the results by classifying the testing data. Each
input file was processed 10 times and the averages are reported in Table 5: aver-
age accuracy (including standard deviation), average reduct length, and average
number of rules. All results had 100 percent coverage, which means that the
classifier based on the reducts generated from an ensemble of reducts was able
to recognize everything, which is valuable in itself.

To explore some of the data in Table 5 in more detail, each of Figure 1 (for the
Max. vector) and Figure 2 (for the Min. vector) illustrate the attribute(s) associ-
ated with the vector, a reduct generated from the whole (unsplit) data table taken
from the respective top bin , and the rules associated with that reduct.

4 Conclusions and Future Work
The computation of the Dcoeff is an appealing approach to understanding the
structure of results of card sorting exercises because it can be done very quickly.
The limited experiment presented here has provided encouraging support for our
hypothesis, but more work needs to be done. For example, for the same average
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coefficient value, is it better to have fewer attributes with higher coefficient or
more attributes with lower coefficient values?

Many of the vectorswithhighest average coefficients are close to each other.This
leads to opportunities to analyze the structure of the decision classes (representing
strategies) that are best-supported by the data. By the same token, the similarity
of the photo pair attributes associated with the Max. and Min. vectors respectively
are noticeably different - something that provides more support for this approach.

In hindsight, it is becoming clear that too many (356) photos were used in
the original sorting study. The process outlined here has the potential to sharply
reduce the number of photos considered. If this process can successfully deter-
mine important attributes (such as photo pairs AB and CD in Figure 1), it may
be possible to effectively run card sorting studies with a large number of stimuli
that could be reduced based on this kind of quantitative analysis.

It is not possible to assess how well 2 decision classes are formed without
testing all potential decision classes. There are 16,777,215 (224 − 1) ways to
create 2 decision classes for 25 participants, and the inexpensive computation of
Dcoeff can facilitate their review.
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Abstract. This paper presents an unsupervised learning system that
develops an associative memory structure that combines two or more
channels of input/output such that input on one channel will correctly
generate the associated response at the other channel and vice versa. A
deep learning architecture is described that can reconstruct an image of a
MNIST handwritten digit from another paired handwritten digit image.
In this way, the system develops a kind of supervised classification model
meant to simulate aspects of human associative memory. The system uses
stacked layers of unsupervised Restricted Boltzmann Machines connected
by a hybrid associative-supervised top layer to ensure the development of
a set of high-level features that can reconstruct one image given another
in either direction. Experimentation shows that the system reconstructs
accurate matching paired-images that compares favourably to a back-
propagation network solution.

1 Introduction

Humans learn knowledge by experiencing the world through their senses. Raw
data is received at one or more sensory organs, such as the eyes and ears, and
related signals are pass to the nervous system. The exact mechanism by which
these experiences affect the structure of the human nervous system and how new
memory is formed is not well understood [5]. This is a primary goal of research
in neuroscience and artificial intelligence, particularly those working in the area
of computational learning.

Deep learning architectures, or DLA, provide an exciting new substrate upon
which to explore possible computational and representational models of how
knowledge is acquired, consolidated and used [1]. Prior work has investigated
the use of DLAs and unsupervised learning methods to develop models for a
variety of purposes including auto-associative memory, pattern completion, and
clustering as well as generalization and classification [3].

Our long-term research objective is to create a system that is capable of
“showing us what it hears and telling us what it sees” using a DLA. This will
require an architecture that can work with three sensory and motor modalities:
audio, optical, and vocal. This program of study is meant to accomplish sev-
eral objectives. Chief among these is the investigation of unsupervised learning
methods that can create a model capable of generalization and classification from
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one input modality to another (eg. from optical to vocal). We are interested in
how this can be done without resorting to any form of supervised learning. We
are also interested in the abstract layers of features generated in a DLA for one
modality channel and at the intersection of two or more channels – How do these
features compare to what we know of the human nervous system? Finally, we
are interested in knowledge transfer in a DLA using unsupervised methods for
learning new tasks and new modalities.

In this paper we take a first step by examining a DLA that is capable of learn-
ing paired-associate images at two input channels. The DLA must reconstruct
the matching image at channel A when it observes a paired image at channel B,
and vice versa. By doing so the system uses unsupervised learning to develop an
associative memory model that performs a form of classification from one chan-
nel to another. The system uses layers of Restricted Boltzmann Machine (RBM)
machines stacked into a DLA. We will show that such a DLA can work quite
well when assisted with supervised learning at only the highest level represen-
tation. Experimentation shows qualitatively and quantitatively that the system
generates reasonably accurate matching images, as compared to a traditional
Back-Propagation (BP) network solution.

2 Background

Artificial Neural Networks (ANN) are one of the most commonly used machine
learning techniques. Although a variety of ANNs are used in modeling highly
complex tasks like image recognition, many do not work in the same fashion
as the human nervous system. For example, supervised BP ANNs are good
for modeling complex mapping relations between input and output domains,
but are not so good for recalling input patterns. Humans have the capability
of recovering complete information, from partial information, using associative
memory. When a child learns the characteristics of a cat, he or she learns both
the appearance of the cat as well as the sound it makes. Later, on seeing a
picture of a cat, the child can recall the sound a cat makes [5]. An associative
ANN simulates aspects of how collections of neurons store and recall associative
memories. Geoffrey Hinton, University of Toronto, advocates using Boltzmann
Machine associative networks to simulating human brain structure [3]. After a
Boltzmann Machine has been trained on a set of patterns, it has the ability to
reconstruct one of those patterns from a partial or noisy version of the pattern.

Boltzmann Machines: A Boltzmann Machine (BM) is a stochastic neural
network of binary neurons that is capable of reconstructing a stored pattern
from a partial pattern [2]. A BM is made up of two layers of binary neurons, or
units, that are either visible or hidden. All the neurons in the visible and hidden
layers are inter-connected forming a complete graph. Given some input on its
visible units, a BM will settle into an equilibrium state with energy E =

∑
i Ei;

where Ei = −
∑

i
=j sisjwij − bisi, where si and sj are states of two neurons,
i and j, wij is the weight of the connection between them and bi is the bias
weight for neuron i [2]. After being trained, the BM will settle into a memory
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Fig. 1. RBM Training Process Fig. 2. Stacking Multi-level RBMs

state at equilibrium closest to the initial state of the neurons [2]. The activation
function of a BM converts a weighted input and a temperature parameter, T ,
to a probability given by pi=on = 1

1+exp(−ΔEi
T )

[2]. The neuron only comes on

if its probability is greater than a random value. The energy E of the BM is
affected by the global temperature T value that declines from a maximum value
to 1 based on a predetermined schedule [2]. This technique helps the system
from getting stuck in a local minima during the early stages of recall. As the
temperature reduces to T = 1 the system moves towards a state of equilibrium,
which will reconstruct the nearest stored pattern.

Learning is slow in BMs that have many hidden nodes. This is because the
weight update equation requires sampling each neuron i for each training exam-
ple, and then sampling the states of all other neurons j in order to compute Ei.
The algorithm continues until the network reaches a state of equilibrium where
its change in state is below a threshold.

Restricted Boltzmann Machines (RBM): An RBM is a variant of a BM
that is meant to overcome the problem of long training times by limiting the
number of connections in its network and using an approximate weight update
algorithm. RBMs have both visible and hidden layers of neurons just like BMs,
however all intra-layer connections are restricted [3]. When training data xi is
given to the visible neurons vi, the RBM temporarily clamps their states and
frees the states of hidden binary neurons hj . Node hj turns on with probability
pj = 1

1+exp(−bj−
∑

i wijvi)
. The visible units are then unclamped and node vi turns

on with probability pi = 1
1+exp(−bi−

∑

j wijhj)
. The system computes the overall

energy E = −
∑

i bivi −
∑

j bjhj −
∑

i

∑
j vihjwij where bi and bj are the bias

terms for their respective nodes [2]. The RBM computes the mean squared error
(MSE) between the reconstructed input value x′

i and the original input value
xi and reduces it with a gradient-decent algorithm that changes the weights,
wij . The state hi of hidden neuron i keeps changing with i’s probably pi during
training, and weight wij updates until either the global energy E or the probably
pi exceeds a threshold. At any point in time, with probability pi, neuron i will
reconstruct the input data xi.
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As shown in Figure 1, the weights are updated as per the following formula
Δwij = ε(< vihj >0 − < vihj >1), which is an approximation of the gradient
of the log likelihood [3]. This method of weight update is called contrastive
divergence (CD). The CD algorithm is guaranteed not to get stuck in a local
minima. The system is trained until the hidden layer is capable of reconstructing
the original input pattern at the visible units to the desired level of accuracy.
After training, the hidden layer weights of the RBM have learned the feature
distribution of the input space, that is wij , gives the probability of feature hj

given input vi.

Deep Learning Architectures: Most objects are made up of several other
smaller parts or features. For example, a car is a combination of smaller features
like wheels and a frame. Breaking it down further, a wheel is made up of smaller
features like tires and rims. The higher-level abstraction is a car, whereas, the
lower-level abstraction is a tire. Deep learning methods aim at learning feature
hierarchies with features from higher levels of the hierarchy formed by the com-
position of lower level features [1,7].

One of the advantages of RBMs is that they can be stacked as layers to learn
high level features of input data. As shown in Figure 4 the hidden layer of one
RBM can be used as the input layer for a second RBM [1]. This second RBM
layer will learn the feature distribution of the hidden layer of the first RBM.
As layers are stacked the network learns increasing complex combinations of
features from the original data.

These systems are capable of doing unsupervised clustering of unlabeled data
based on a hierarchy of features. Hence, it is called deep learning or deep feature
learning. Neuroscience studies have shown that the mammalian brain has a deep
learning architecture with multiple levels of abstraction corresponding to differ-
ent areas of the neocortex [6]. Many feel that RBM deep learning architectures
develop a hierarchy of features in a fashion similar to the mammalian brain. Hin-
ton has presented research on recognizing hand-writing images of digits, which
simulates human vision, by using stacked RBMs [3].

3 Theory

The objective of this research is to develop a learning system that can memorize
and recall knowledge using an associative memory network. The learning system
should be able to recall the pattern from the associative network on one sensory
modality given data on another sensory modality. The network will be trained
such that when it is given an image, it will generate an associated image and in
this way indicate the classification of the first image.

To achieve this goal, instead of using traditional labeled datasets, two or
more unlabeled datasets are used to support unsupervised feature generation.
The deep learning architecture (DLA) of the learning system is composed of two
major parts, a hybrid associative-supervised memory network and two or more
associative sensory channel networks (see Figure 3). The sensory channel net-
works are designed for the reconstruction of incoming sensory data. The hybrid
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Fig. 3. Two channels DLA Fig. 4. BP ANN used in Experiment 1

associative-supervised memory network, which ties the sensory channel networks
together, can be modeled with an RBM associative network [4].

The associative memory at the top of the DLA shown in Figure 3 simulates a
human’s long-term memory that combines separate channel features. The DLA
will be given a variety of paired-associate handwritten digit images to learn.
The challenge for our DLA at the top level is to create features of the digit
images for one channel when presented with the only the features of the other
channel [4]. To develop a more accurate model, we currently untie the associative
memory weights and use the BP algorithm to fine-tune them using the posterior
probabilities gathered from hidden layer 2 and 2’. When training to generate
features of channel 2, the BP algorithm uses posteriors at hidden layer 2 as the
inputs, and posteriors at hidden layer 2’ as the supervised signal, and vice versa.

4 Experiment 1

Two empirical studies were carried out using two different data sets. The first
experiment used the MNIST handwritten dataset. The second experiment used
a synthetic dataset of handwritten digits. In both experiments, five pairs of odd
and even digits were associated with each other 1-2, 3-4, 5-6, 7-8, and 9-0. A
model using the DLA architecture described in Section 3 and two standard BP
networks were trained and compared. One BP network is used for mapping from
odd to even digits and another BP network is used for mapping from even to
odd digits. Both methods were challenged to reconstruct the image of one digit
from its paired-associate image.

Objective: The objective of this experiment is to compare unsupervised DLA
with a supervised BP ANN approach to learning paired-associate images. As
shown in Figure 3, each learning system is trained such that when a handwritten
digit image is provided, the system will generate its paired digit image.

Material and Methods: This experiment uses a dataset of paired 28 x 28 gray-
scale images of handwritten digits from MNIST database [3] as described above.
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Table 1. Percent accuracy of test set reconstruction

Algorithm 1→2 2→1 3→4 4→3 5→6 6→5 7→8 8→7 9→0 0→9 Average

DLA 93.5 98.0 75.5 96.5 90.0 87.0 88.5 91.0 92.0 92.0 90.4

BP ANN 100.0 43.5 89.5 92.0 88.5 96.0 88.5 88.0 91.5 94.0 81.6

Fig. 5. Examples of reconstruction results from DLA and BP ANN

A dataset of 5000 examples is used to train the learning system. The training
process stops when the maximum iteration (300) is reached or MSE exceeds the
pre-set threshold. We use another set of 1000 examples as the validation set to
monitor the BP fine-tuning training to avoid under-fitting and over-fitting. An
independent set of 1000 examples is used as a test set. The odd digit image of
a test example is used to test the reconstruction of its corresponding even digit
image, and vice versa.

A deep learning architecture of RBMs is used to develop an unsupervised
learning model for the problem. The architecture is in accord with Figure 3.
A channel network is composed of two RBM layers, each of which contains 500
hidden neurons. Successively, hidden layers 1 and 1’ and then layers 2 and 2’ will
develop more abstract features of the original images [3]. Hidden layers 1 and
2 will learn a generative DLA representation of the odd digits. Hidden layers
1’ and 2’ will learn a generative DLA representation of the even digits. The
associative top layer contains 3000 neurons. It will bring together the features
of layers 2 and 2’ to create mapping functions that can reconstruct an image on
one channel from the image on the other.

We developed two BP networks to learn the same paired-associate mapping.
One network is trained to map odd digit images to even digits, the other vice
versa. Both BP networks use the architecture shown in Figure 4. The BP network
uses the same training set, validation set and testing set as the DLA.

The accuracy of reconstruction is measured by testing the output images using
Hinton’s DLA handwritten digits classification software. This software is known
to classify MNIST dataset of handwritten digits with only 1.15% errors [3]. We
passed the input images and the reconstructed images through Hinton’s software
to determine their accuracy. We note that the accuracy of Hinton’s classification
software is high because it was developed by using the BP algorithm to fine-tune
all the weights of a DLA to classify an image. Our work is focused on generating
paired images without little or no supervised learning.

Results and Discussion: Using Hinton’s software, we tested reconstruction on
the testing set. The results are shown in Table 1. On average, the DLA model
generated images that were 90.4% accurate, and the BP ANN generated images
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Fig. 6. The templates for each digit Fig. 7. Examples of digits with 10% noise

that were 81.6% accurate. Figure 5 shows examples of reconstruction done by
the DLA and BP ANN. One can see that the images generated by the DLA are
clearer than those generated by the BP ANN. We conjecture that the DLA is
able to better differentiate features from noise as compared to the BP network.
We designed Experiment 2 to investigate this further.

5 Experiment 2

Objective: The objective of this experiment is to compare the DLA method to
the BP ANN in overcoming noise injected into synthetic training examples. The
DLA in this study uses only the unsupervised CD algorithm to train it’s model.

Material and Methods: This experiment uses a synthetic dataset that con-
tains five different categories of 10 x 5 paired images, similar to that used in
Experiment 1 and shown in Figure 6. To create a variety of examples such as
shown in Figure 7, 10% random noise was added to each template image to pro-
duce 20 instances of each digit, or 200 in total. The first 100 of these images are
used as a training set while the remaining 100 is used as a test set.

A deep learning architecture of RBMs, in accord with Figure 3, is used to
develop an unsupervised learning model. To achieve our goal of using a purely
unsupervised DLA, we stack a 3-layer RBM to model the associative memory
network instead of using a hybrid associative-supervised RBM. Each of these lay-
ers contains 100 hidden neurons. The training process stops when the maximum
iteration (100) is reached. As in Experiment 1, we developed two BP networks
to learn the same paired-associate mapping. Both BP networks used the archi-
tecture shown in Figure 4 with 40 neurons in the layer 1 and 3 and 20 neurons in
layer 2. The BP network uses the same training set and testing set as the DLA,
and 30 of the 100 examples from the training set is used as the validation set.

The accuracy of reconstruction was measured by comparing the similarity
between reconstructed images and their corresponding target template images.
We compute the pixel root mean square error (RMSE) between the generated
image and its corresponding data template (without noise). The RMSE gives an
average difference between corresponding pixels in these two images.

Results and Discussion: The RMSE of the reconstruction images is shown
in Table 2. The DLA out-performs the BP network in generating the images
in the presence of noise. Figure 8 and 9 show a set of example digit images
reconstructed by the DLA.
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Table 2. Percent accuracy of test set reconstruction

Algorithm 1→2 2→1 3→4 4→3 5→6 6→5 7→8 8→7 9→0 0→9 Average

DLA 95.30 93.52 94.15 93.65 94.01 94.99 94.86 87.96 94.5 94 93.7

BP ANN 74.61 78.33 73.59 82.06 76.73 77.07 70.31 77.98 79.45 71.18 75.75

Fig. 8. Reconstruction of even digits Fig. 9. Reconstruction of odd digits

6 Conclusion

We have presented work on an unsupervised learning system that is able to
develop an associative memory structure that combines two or more channels of
input or output. Our desire is to have the input on one channel correctly generate
the associated response at the other channel and vice versa. Our long-term goal
is to develop learning systems that are able to learn the relationships between
different sensory input and/or motor output modalities similar to humans.

In this paper we present a deep learning architecture (DLA) that can recon-
struct an image of a MNIST handwritten digit from another paired handwrit-
ten digit and vice versa. In this way, the system develops a kind of supervised
classification model meant to simulate aspects of human associative memory.
The system uses stacked layers of unsupervised Restricted Boltzmann Machines
(RBM) connected by a hybrid associative-supervised top layer to ensure the de-
velopment of a set of high-level features that can reconstruct one image when
given another in either direction. Experimentation shows qualitatively (by view-
ing the generated images) and quantitatively (test set statistics) that the system
reconstructs reasonably accurate matching images that compare favourably to a
back-propagation network solution.

In future work, a full Boltzmann Machine will be used as the top-level as-
sociative memory replacing the BP fine-tuning of the current RBM top layer
weights. In the long term, the DLA will be expanded to generate sound when
provided an image or conversely generate an image when it hears a sound.
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