
Boundness Issues in CCSL Specifications

Frédéric Mallet1,� and Jean-Viven Millo2

1 Univ. Nice Sophia Antipolis, I3S, INRIA, CNRS, F-06900, France
2 INRIA Sophia Antipolis Méditerranée, I3S, INRIA, CNRS, F-06900, France

Frederic.Mallet@unice.fr

Abstract. The UML Profile for Modeling and Analysis of Real-Time
and Embedded systems promises a general modeling framework to design
and analyze systems. Lots of works have been published on the model-
ing capabilities offered by MARTE, much less on verification techniques
supported. The Clock Constraint Specification Language (CCSL), first
introduced as a companion language for MARTE, was devised to offer
a formal support to conduct causal and temporal analyses on MARTE
models.

This work introduces formally a state-based semantics for CCSL op-
erators and then focuses on the analysis capabilities of MARTE/CCSL
and more particularly on boundness issues.

The approach is illustrated on one simple example where the archi-
tecture plays an important role. We describe a process where the logical
description of the application is progressively refined to take into account
the candidate execution platforms through allocation.

Keywords: Logical Time, Architecture-driven analysis, UML MARTE,
Reachability analysis.

1 Introduction

The uml Profile for Modeling and Analysis of Real-Time and Embedded sys-
tems [1] (marte), adopted in November 2009, has introduced a Time model [2]
that extends the informal Simple Time of The Unified Modeling Language (uml
2.x). This time model is general enough to support different forms of time (dis-
crete or dense, chronometric or logical). Its so-called clocks allow enforcing as
well as observing the occurrences of events and the behavior of annotated uml el-
ements. The time model comes with a companion language called the Clock Con-
straint Specification Language (ccsl) [3] and defined in an annex of the marte
specification. Initially devised as a simple language for expressing constraints
between clocks of a marte model, ccsl has evolved and has been developed
independently of the uml. ccsl is now equipped with a formal semantics [3]
and is supported by a software environment (TimeSquare [4]1) that allows for
the specification, solving, and visualization of clock constraints.

� This work has been partially funded by ARTEMIS Grant N◦269362 – Project
PRESTO - http://www.presto-embedded.eu

1 http://timesquare.inria.fr

L. Groves and J. Sun (Eds.): ICFEM 2013, LNCS 8144, pp. 20–35, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://www.presto-embedded.eu
http://timesquare.inria.fr

Boundness Issues in CCSL Specifications 21

marte promises a general modeling framework to design and analyze sys-
tems. Lots of works have been published on the modeling capabilities offered by
marte, much less on verification techniques supported. While the initial seman-
tics of ccsl is described as a set of rewriting rules [3], this paper proposes as a
first contribution a state-based semantics for each of the kernel ccsl operators.
The global semantics emerging of the parallel composition of ccsl constraints
then becomes the synchronized product of the automaton of each individual con-
straint. Since automaton for some ccsl operators can be infinite, this requires
specific attention to compute the synchronized product. The second contribution
is an algorithm that builds the synchronized product. The algorithm terminates
when the set of states reachable through the synchronized product is finite. The
third contribution is a discussion on a sufficient condition to guarantee that the
synchronized product is actually finite.

Section 2 proposes a state-based semantics for ccsl. Section 3 discusses
boundness issues on ccsl specifications. Section 4 illustrates the use of ccsl
for architecture-driven analysis. It shows how abstract representations of the
application and the architecture are built and how the two models are mapped
through an allocation process. Section 5 makes a comparison with related works.

2 A State-Based Semantics for CCSL Operators

This section starts with a brief introduction to ccsl and then gives a formal
definition of ccsl operators in terms of labeled transition systems. Some of the
ccsl operators require an infinite number of states.

2.1 The Clock Constraint Specification Language

The Clock Constraint Specification Language (ccsl) has been developed to elab-
orate and reason on the logical time model [2] of marte. A technical report [3]
describes the syntax and the semantics of a kernel set of ccsl constraints.

The notion of multiform logical time has first been used in the theory of
Synchronous languages [5] and its polychronous extensions [6]. The use of tagged
systems to capture and compare models of computations was advocated by [7].
ccsl provides a concrete syntax to make the polychronous clocks become first-
class citizens of uml-like models.

A clock c is a totally ordered set of instants, Ic. In the following, i and j
are instants. A time structure is a set of clocks C and a set of relations on
instants I =

⋃
c∈C Ic. ccsl considers two kinds of relations: causal and temporal

ones. The basic causal relation is causality/dependency, a binary relation on I:
�⊂ I × I. i � j means i causes j or j depends on i. � is a pre-order on I, i.e.,
it is reflexive and transitive. The basic temporal relations are precedence (≺),
coincidence (≡), and exclusion (#), three binary relations on I. For any pair of
instants (i, j) ∈ I × I in a time structure, i ≺ j means that the only acceptable
execution traces are those where i occurs strictly before j (i precedes j). ≺ is
transitive and asymmetric (reflexive and antisymmetric). i ≡ j imposes instants

22 F. Mallet and J.-V. Millo

i and j to be coincident, i.e., they must occur at the same execution step, both of
them or none of them. ≡ is an equivalence relation, i.e., it is reflexive, symmetric
and transitive. i # j forbids the coincidence of the two instants, i.e., they cannot
occur at the same execution step. # is irreflexive and symmetric. A consistency
rule is enforced between causal and temporal relations. i � j can be refined
either as i ≺ j or i ≡ j, but j can never precede i.

In this paper, we consider discrete sets of instants only, so that the instants
of a clock can be indexed by natural numbers. For a clock c ∈ C, and for any
k ∈ N

�, c[k] denotes the kth instant of c.

2.2 CCSL Clocks and Relations

Definition 1 (Labeled Transition System). A Labeled Transition System
[8] over a set A of actions is defined as a tuple A = 〈S, T, s0, α, β, λ〉 where
– S is a set of states,
– T is a set of transitions,
– s0 ∈ S is the initial state,
– α, β : T → S denote respectively the source state and the target state of a

transition,
– λ : T → A denotes the action responsible for a transition,
– the mappings 〈α, λ, β〉 : T → S ×A× S are one-to-one so that T is a subset

of S ×A× S.

In the context of ccsl, the actions are clocks. For each ccsl clock c, we
build the Labeled Transition System Clockc = 〈S, T, α, β, λ〉 over Ac = {c, ε}
such that

– S = {s}, T = {t, e}, s0 = s,
– α(t) = α(e) = β(t) = β(e) = s,
– λ(t) = c and λ(e) = ε.

The ε action allows for doing nothing. This is to allow composition with other
LTSs. Clocka is given in Figure 1.a as an illustration.2

Definition 2 (Synchronization constraint). Given n sets of actions A1, . . . ,
An, a synchronization constraint is a subset I of A1 × . . .×An.

Definition 3 (Synchronized product). If, for i = 1, . . . , n, Ai = 〈Si, Ti, s0i,
αi, βi, λi〉 is a labeled transition system over Ai, and if I ⊆ A1 × . . . × An is a
synchronization constraint, the synchronized product [8] of Ai with respect to I
is the labeled transition system 〈S, T, s0, α, β, λ〉 over the set I defined by

– S = S1 × . . .× Sn, s0 = s01 × . . .× s0n,
– T = {〈t1, . . . , tn〉 ∈ T1 × . . .× Tn|〈λ1(t1), . . . , λn(tn)〉 ∈ I},
– α(〈t1, . . . , tn〉) = 〈α1(t1), . . . , αn(tn)〉,

2 The ε transitions are not shown to simplify the drawings. In all the presented LTSs,
it is always possible to do nothing by remaining in the same state.

Boundness Issues in CCSL Specifications 23

– β(〈t1, . . . , tn〉) = 〈β1(t1), . . . , βn(tn)〉,
– λ(〈t1, . . . , tn〉) = 〈λ1(t1), . . . , λn(tn)〉.
Synchronization constraints allow for capturing the semantics of ccsl poly-

chronous operators. In this section, we focus on ccsl (binary) relations.

Relation 4 (Coincidence). Given two clocks c1 and c2, coincidence c1 = c2
is the synchronized product of Clockc1 and Clockc2 with respect to the synchro-
nization constraint I = {〈c1, c2〉, 〈ε, ε〉} (Fig. 1.b).
Relation 5 (Subclocking). ccsl subclock (c1 ⊂ c2) is the synchronized
product of Clockc1 and Clockc2 with respect to the synchronization constraint
I = {〈c1, c2〉, 〈ε, c2〉, 〈ε, ε〉} (Fig. 1.c).

Relation 6 (Exclusion). Figure 1.d illustrates ccsl excludes (c1 # c2) de-

fined as the synchronized product of Clockc1 and Clockc2 with respect to the
synchronization constraint I = {〈c1, ε〉, 〈ε, c2〉, 〈ε, ε〉}.

a 〈c1, c2〉 〈c1, c2〉

〈ε, c2〉

〈c1, ε〉

〈ε, c2〉

(a) Clocka (b) c1 = c2 (c) c1 ⊂ c2 (d) c1 # c2

Fig. 1. Primitive CCSL relations as Labeled Transition Systems

2.3 CCSL Bounded Expressions

In ccsl, expressions allow for the creation of new clocks based on existing ones.
Expressions can also be represented as labeled transition systems. Union and
intersection are two simple examples of ccsl expressions.

Expression 7 (Union). u � c1+c2 (u is the union of c1 and c2) is represented
by the synchronized product of Clockc1, Clockc2 and Clocku with respect to the
synchronization constraint I = {〈c1, c2, u〉, 〈c1, ε, u〉, 〈ε, c2, u〉, 〈ε, ε, ε〉} (Fig. 2.a).
Expression 8 (Intersection). i � c1.c2 (i is the intersection of c1 and c2) is
represented by the synchronized product of Clockc1, Clockc2 and Clocki with re-
spect to the synchronization constraint I = {〈c1, c2, i〉, 〈c1, ε, ε〉, 〈ε, c2, ε〉, 〈ε, ε, ε〉}
(Fig. 2.b).

Those two expressions are stateless (one state). Other expressions are stateful
and require building dedicated LTS to express their semantics.

24 F. Mallet and J.-V. Millo

〈c1, c2, u〉

〈ε, c2, u〉〈c1, ε, u〉

〈c1, c2, i〉

〈ε, c2, ε〉〈c1, ε, ε〉

(a) u is the union of c1 and c2 (b) i is the intersection of c1 and c2

Fig. 2. Union and intersection of clocks

Expression 9 (Binary delay). The binary delay (delayed � base $ n) is
represented by a dedicated labeled transition system Delay(n) = 〈S, T, s0, α, β, λ〉
over A = {init, steady, ε} with n+ 1 states such that

– S = {d0, d1, . . . , dn}, T = {t0, t1, . . . , tn, e0, . . . , en}, s0 = d0,
– α(ti) = di and α(ei) = di for i ∈ {0 . . . n},
– β(ti) = di+1 for i ∈ {0 . . . n} and β(tn) = dn,

β(ei) = di for i ∈ {0 . . . n},
– λ(ti) = init for i ∈ {0 . . . n − 1} and λ(tn) = steady and λ(ei) = ε for

i ∈ {0 . . . n}.
init denotes a preliminary phase during which the base clock must tick alone.

steady is a phase where both clocks base and delayed become synchronous for
ever.

The binary delay is a particular case of a more general synchronous expression
called FilteredBy (denoted �). f � c � u.(v)ω defines the clock f as a subclock
of c according to two binary words u and v.

Definition 10 (Binary word). A binary word w is a function, w : N
� →

{0, 1,⊥}, such that (∃l ∈ N
�, w(l) = ⊥) =⇒ ((∀i > l)(w(i) = ⊥)).

Definition 11 (Length of a binary word). If w is a binary word, len(w)
(denoted |w|) is called its length. len : (N� → {0, 1,⊥}) → N ∪ {ω}. If ∀i ∈
N

�, w(i) �= ⊥ then |w| = ω and w is said to be an infinite word, otherwise w is
a finite word. When w is finite, |w| = min(i ∈ N, w(i + 1) = ⊥).
Definition 12 (Exponentiation of a binary word). Let n be a positive nat-
ural number (n ∈ N

�). Let v be a finite binary word. w = vn is a finite binary
word such that |w| = n ∗ |v| and ∀i ∈ 1..n, ∀j ∈ {1..|v|}, w(i ∗ j) = v(j).

Definition 13 (Infinitely periodic binary word). Let v be a finite binary
word. w = (v)ω is an infinite binary word such that ∀i ∈ N, ∀j ∈ {1..|v|}, w(i ∗
|v|+ j) = v(j).

Definition 14 (Concatenation of binary words). Let u and v be two binary
words, u is finite. w = u.v is a binary word such that (i ≤ |u| =⇒ w(i) = u(i))∧
(i > |u| =⇒ w(i) = v(i− |u|)), ∀i ∈ N

�. If v is infinite, then w is infinite. If v
is finite, then w is finite and such that |w| = |u|+ |v|.

Boundness Issues in CCSL Specifications 25

Expression 15 (Filtering). If u and v are two finite binary words, the LTS
for ccsl expression FilteredBy is defined as follows. f � c � u.(v)ω is the LTS
Filter(u, v) = 〈S, T, s0, α, β, λ〉 over A = {zero, one, ε} with n+ 1 states s.t.,

– S = {s1, . . . , s|u|+|v|}, T = {t1, . . . , t|u|+|v|, e1, . . . , e|u|+|v|}, s0 = s1,
– α(ti) = si for i ∈ {1 . . . |u|+ |v|},
– β(ti) = si+1 for i ∈ {1 . . . |u|+ |v| − 1} and β(t|u|+|v|) = s|u|+1,
– λ(ti) = zero if u(i) = 0 and λ(ti) = one if u(i) = 1, for i ∈ {1 . . . |u|}
– λ(ti+|u|) = zero if v(i) = 0 and λ(ti+|u|) = one if v(i) = 1, for i ∈ {1 . . . |v|}
– α(ei) = si and β(ei) = si and λ(ei) = ε for i ∈ {1 . . . |u|+ |v|}.
The label one denotes instants where both f and c tick together. The label

zero when c ticks alone. Actually, Delay is just a particular case of filter with u =
0n and v = 1. Another interesting special case is when u = 0d and v = 1.0p−1,
for d ∈ N

� and p ∈ N. This defines a periodic pattern Periodic(d, p), where d
is called the offset and p the period. Delay(n) is also a particular periodic case
with an offset of n and a period of 1.

Expression 16 (Sampling). sampled � trigger sampledOn base is the LTS
Sampled = 〈S, T, s0, α, β, λ〉 over A = {base, trig, sample, allε} with 2 states
such that,

– S = {s1, s2}, T = {b, bs, sa1, sa2, t1, t2, e1, e2}, s0 = s1,
– α(b) = β(b) = s1 and λ(b) = base,
– α(sai) = β(sai) = si and λ(sai) = all for i ∈ {1 . . .2},
– α(ti) = si and β(ti) = s2 and λ(ti) = trig for i ∈ {1 . . .2},
– α(bs) = s2 and β(bs) = s1 and λ(bs) = sample,
– α(ei) = β(ei) = si and λ(ei) = ε for i ∈ {1 . . . 2}.
SampledOn is an expression that produces a clock s if and only if a trigger

has ticked since the previous tick of a sampling clock (base). Labels base and
trig respectively denote instants where clocks base and trigger tick alone. Label
sample denotes instants where both clocks base and sampled tick simultane-
ously. Label all denotes instants where all the three clocks base, trigger and
sampled tick simultaneously.

2.4 Unbounded Relations

Unbounded operators can be modeled with labeled transition systems that have
an infinite but countable number of states.

Relation 17 (Precedence). Precedence left ≺ right is a labeled transition
system Precedes = 〈S, T, s0, α, β, λ〉 over A = {left, right, both, ε} s.t.,
– S = {pi|i ∈ N}, T = {li, ri, lri, ei|i ∈ N}, s0 = pi,
– α(li) = α(ei) = α(lri) = pi ∧ α(ri) = pi+1, ∀i ∈ N,
– β(li) = pi+1 ∧ β(ri) = β(ei) = β(lri) = pi, ∀i ∈ N,
– λ(li) = left ∧ λ(ri) = right ∧ λ(lri) = both ∧ λ(ei) = ε, ∀i ∈ N.

26 F. Mallet and J.-V. Millo

Label left denotes instants where clock left must tick alone. Label right
denotes instants where clock right must tick alone. Label both denotes instants
where the two clocks must tick simultaneously. This operator is called unbounded
because the drift between a and b is not bounded, i.e., a can tick infinitely
often without b ticking at all. This operator is not symmetrical. Even though
a is unconstrained, b on the contrary is constrained to be always a little late
compared to a. b is said to be slower than a, or a is faster than b.

2.5 Unbounded Expressions

In ccsl, there are two unbounded expressions that constrain neither a nor b:
Inf and Sup.

Expression 18 (Infimum). Inf(a, b) is the labeled transition system Inf =
〈S, T, s0, α, β, λ〉 over A = {left, right, both, left inf, right inf, ε} such that

– S = {si|i ∈ Z}, T = {inci, deci, ti, ei|i ∈ Z}, s0 = s0,
– α(inci) = α(deci) = α(bothi) = α(ei) = si, ∀i ∈ Z,
– β(bothi) = β(ei) = si and β(inci) = si+1 and β(deci) = si−1, ∀i ∈ Z,
– λ(inci) = left inf if i ≥ 0, and λ(inci) = left if i < 0, ∀i ∈ Z

– λ(deci) = right inf if i ≤ 0, and λ(deci) = right if i < 0, ∀i ∈ Z

– λ(bothi) = both and λ(ei) = ε, ∀i ∈ Z

Inf(a, b) is the slowest clock that is faster than both a and b. In most cases,
Inf(a, b) is neither a nor b but a clock that sometimes tick simultaneously with
a (when a is in advance over b), sometimes it ticks simultaneously with b (when
a is late compared to b) and sometimes it ticks simultaneously with a and b
(when none of them precedes the other one). This LTS is infinite on both sides.

By definition Inf(a, b) � a and Inf(a, b) � b, which means that if Inf(a, b)

is somehow constrained (i.e., by a synchronous operator like filter), then this
propagates the constraint on both a and b. Additionally, the tickings of Inf(a, b)
are constrained (and bounded) by all the clocks faster than either a or b.

Expression 19 (Supremum). Sup(a, b) is a labeled transition system Sup =
〈S, T, s0, α, β, λ〉 over A = {left, right, both, left sup, right sup, both sup, ε}
such that

– S = {si|i ∈ Z}, T = {inci, deci, ti, ei|i ∈ Z}, s0 = s0,
– α(inci) = α(deci) = α(bothi) = α(ei) = si, ∀i ∈ Z,
– β(bothi) = β(ei) = si and β(inci) = si+1 and β(deci) = si−1, ∀i ∈ Z,
– λ(inci) = left if i ≥ 0, and λ(inci) = left sup if i < 0, ∀i ∈ Z

– λ(deci) = right if i ≤ 0, and λ(deci) = right sup if i < 0, ∀i ∈ Z

– λ(bothi) = both if i �= 0 and λ(ei) = ε, ∀i ∈ Z, and λ(both0) = both sup

Sup(a, b) is defined as the fastest clock that is slower than both a and b.

In most cases, Sup(a, b) is neither a nor b. By definition a � Sup(a, b) and

b � Sup(a, b), which means that the constraints imposed on Sup(a, b) do not
directly impact neither a or b. However, whenever a clock c is known to be
slower than either a or b, then it is also slower than Sup(a, b), i.e., (∃c such that

a � c ∨ b � c) =⇒ Sup(a, b) � c.

Boundness Issues in CCSL Specifications 27

3 Boundness Issues on CCSL Specifications

When several ccsl constraints are put in parallel, the composition is defined as
the synchronized product of the LTSs of the operators. However, since some of
the LTSs for the primitive operators are infinite (e.g., Relation 17, or Expres-
sions 18-19), the synchronized product might end up being infinite. However,
even though the product is potentially infinite, in some cases, only a finite sub-
set of the synchronized product is reachable from the initial state. Section 3.1
shows a case where the product of infinite LTSs is finite. The algorithm used
in that subsection only terminates when the product is actually finite. The fol-
lowing section discusses a sufficient condition to decide whether the product
is actually finite and therefore whether the algorithm proposed in Section 3.1
actually terminates.

3.1 Finite Synchronized Product of Infinite LTSs

Considering n LTSs such that, for i = 1, . . . , n, Ai = 〈Si, Ti, s0i, αi, βi, λi〉 and
one synchronization constraint I ⊆ A1 × . . .× An, the synchronized product of
Ai with respect to I is a labeled transition system 〈S, T, s0, α, β, λ〉 over the set
I constructed as described in Algorithm 1.

Algorithm 1. Synchronized product through reachability analysis
Let S ← ∅, T ← ∅,
Let s0← s01 × . . .× s0n
Let S′ ← {s0}
while S’ is not empty {

Let st = st1 × . . .× stn be one element of S′

Let S ← S ∪ {st}
Let S′ ← S′ \ {st}
∀t = 〈t1, . . . , tn〉 ∈ T1 × . . .× Tn such that

(∀i ∈ {1 . . . n})(αi(ti) = sti) and λ1(t1)× . . .× λn(tn) ∈ I {
Let st′ = β1(t1)× . . .× βn(tn)
if st′ /∈ S then S′ ← S′ ∪ {st′}
T ← T ∪ {t}, α(t) = st, β(t) = st′, λ(t) = λ1(t1)× . . .× λn(tn),

}
}
Theorem 1. Algorithm 1 terminates if and only if the product has a finite num-
ber of states.

Proof. S′ is initialized with one state. At each iteration, one state st is removed
from S′ and added to S. All the outgoing transitions of st are computed. If
C is the set of clocks, there are at most 2|C| outgoing transitions. Some of
these transitions may be inconsistent. For each transition the target state st′ is
computed and added to S′ if not already present in S. This condition guarantees
that the same state is not visited twice. The algorithm terminates when S′ is
empty. S′ becomes empty when all the targeted state are already in S (have

28 F. Mallet and J.-V. Millo

already been visited). If the set of reachable states is finite then when all the
states are in S then S′ is necessarily empty. Therefore, when the set of reachable
states is finite the algorithm terminates.
If there is an infinite number of reachable states, then S′ is never empty and the
algorithm never terminates. ��

Let us take as an example the following ccsl specification: (a ≺ b) ∧ (a′ �
a $ 1) ∧ (b ≺ a′). This specification is defined as the synchronized product of
Precedes (Relation 17), Delay(1) (Expression 9), Precedes (Relation 17 again).

Initially, s0 = p0 × d0 × p0. The first precedes (state p0) imposes b not to
tick, the second precedes (state p0) prevents a

′ from ticking whereas the delay
(state d0) only allows a to tick alone without a′. Therefore the only outgoing
transition consists in making a ticks alone going into the state s1 = p1×d1×p0.
At this stage S′ = {s1} and S = {s0}. From s1, the first precedes (state p1) does
not impose any constraint while the second one (state p0) still prevents a

′ from
ticking. The delay (state d1) only allows making a and a′ tick simultaneously.
Since a′ cannot tick, then a cannot tick either, so only b can tick leading to
state s2 = p0 × d1 × p1. Therefore S = {s0, s1} and S′ = {s2}. From s2, the
first precedes prevents b from ticking, the second relation also prevents b from
ticking. The delay only allows a and a′ to tick simultaneously. Taking this (sole)
solution leads to s1, which is already in S, so no new state is added to S′. S′

being therefore empty, the algorithm terminates with S = {s0, s1, s2} (Fig. 3).

s0 = p0 × d0 × p0 s1 = p1 × d1 × p0 s2 = p0 × d1 × p1

〈a, ε, ε〉 〈ε, b, ε〉

〈a, ε, a′〉

Fig. 3. CCSL alternation: synchronized product of two precedences and one delay

This particular construction is very frequent, it has been called Alternation
and is denoted a ∼ b. Increasing the delay from 1 to n makes a particular rela-

tion, called bounded precedence and denoted as a ≺n b: a ∼ b ≡ a ≺1 b.
Previous works on ccsl were always assuming a bound for all ccsl opera-
tors, whereas here the bound is computed by reachability analysis. However,
the (semi) algorithm sketched above may not terminate when the synchronized
product is not finite.

3.2 A Sufficient Condition for Having a Bounded CCSL
Specification

We have seen in the previous subsection that knowing in advance whether
the synchronized product is finite is important. Indeed, when it is not finite,

Boundness Issues in CCSL Specifications 29

Algorithm 1 does not terminate. This section discusses ways to determine whether
the system is finite or not. The problem is similar to safety issues in process net-
works [9]. In process networks, a channel is k-safe it the channel can contain at
most k tokens. A process network is k-safe if all its channels are k-safe. However,
testing that a process network is k-safe is undecidable in the general case [10].
However, the problem becomes decidable if we restrict to a special kind of pro-
cess networks, i.e., the marked graphs [11] or their extension, the synchronous
data flow (SDF) graphs [12].

So the idea here is to transform the ccsl specification into a Marked Graph
(MG). Since MGs do not have any notion of simultaneous action, the full se-
mantics of ccsl cannot be captured but it can still capture an abstraction of
relative rates at which the clocks execute. Then, if the resulting MG is safe, the
corresponding ccsl specification would be bounded. If it is not safe, then it does
not say much of the ccsl specification since we consider only an approximation
of ccsl semantics. Therefore, the safety of the underlying MG would only be a
sufficient condition for a ccsl specification to be bounded.

For instance, let us look at Figure 4. The boxes are computation nodes
(here clocks). The circles are unbounded channels working as a FIFO with non-
blocking writes and blocking reads. ccsl clocks define triggering conditions just
like MG computation nodes. ccsl constraints impose conditions that determine
the relative rates at which each clock can tick. Similarly, MG edges also deter-
mine some dependencies and evolution rates between the MG actions.

a a’

1

b

Fig. 4. CCSL delay as a Marked Graph

The arc (channel + edges) from a to b captures the specification a ≺ b.
Every time the node a executes, it produces one token (data) into its output
communication channel. The node b can only execute if at least one token is
available in its input channel. When b executes it consumes one token from its
input channel. Therefore, the node b can compute its ith execution only after
a has computed its ith execution. This is the exact same semantics as a ≺ b
except that there is no temporal notion associated with MGs, and no notion of
simultaneity, only of data dependency or causality.

30 F. Mallet and J.-V. Millo

The whole figure actually captures as a MG the ccsl specification used in the
previous section: (a ≺ b)∧(a′ � a $ 1)∧(b ≺ a′). Each operator brings its own
data/rate dependencies. The parallel composition of the operators consists in
putting together all these dependencies. The cycle (a-a’) at the bottom captures
the delay. Both clocks must tick at the same rate but a is always one tick ahead
of a′.

Classical results on data flow process networks show that this graph is 1-
safe since all nodes are within a cycle and both cycles (a-b-a’-a and a-a’-a)
have exactly one initial token. This means that the three clocks a, b and a′

must execute at the same speed and therefore that the corresponding ccsl
specification has a finite number of states. The state being the differences of
ticks between the different clocks (the number of tokens in the places).

4 Example: CCSL for Capturing the Architecture,
Application and Allocation

To illustrate the approach, we take an example inspired by [13], that was used for
flow latency analysis on AADL3 specifications [14]. However, with ccsl we are
conducting different kinds of analyses, section 5 discusses some common points
with classical real-time scheduling analysis.

4.1 Application

Figure 5 (on the top) considers a simple application described as a uml struc-
tured class. This application captures two inputs in1 and in2, performs some
calculations (step1, step2 and step3) and then produces a result out. This appli-
cation has the possibility to compute step1 and step2 concurrently depending on
the chosen execution platform. This application runs in a streaming-like fashion
by continuously capturing new inputs and producing outputs.

t1 t2

100 Hz 50 Hzad application

step1

step2

step3

sharedMemory

in1

in2

out

Fig. 5. Simple application

3 AADL stands for Architecture & Analysis Description Language.

http://www.aadl.info

Boundness Issues in CCSL Specifications 31

To abstract this application as a ccsl specification, we assign one clock to
each action. The clock has the exact same name as the associated action (e.g.,
step1). We also associate one clock with each input, this represents the capturing
time of the inputs, and one clock with the production of the output (out). The
successive instants of the clocks represent successive executions of the actions or
input sensing time or output release time. The basic ccsl specification is:

in1 � step1 ∧ step1 ≺ step3 (1)

in2 � step2 ∧ step2 ≺ step3 (2)

step3 � out (3)

Eq. 1 specifies that step1 may begin as soon as an input in1 is available. Exe-
cuting step3 also requires step1 to have produced its output. Eq. 2 is similar for
in2 and step2. Eq. 3 states that an output can be produced as soon as step3 has
executed. Note that ccsl precedence is well adapted to capture infinite FIFOs
denoted on the figure as object nodes. Such a specification is clearly unbounded,
therefore TimeSquare cannot perform any kind of exhaustive analysis and can
only produce a particular schedule that matches the specification.

One way to reduce the state-space is to bound the drift between the inputs and
the outputs. This means limiting the parallelism by slowing down the production
of outputs when several computations are still on-going. This can easily be done
by adding a ccsl constraint like Eq. 4.

Sup(in1, in2) ∼ out (4)

Reachability analysis as described in Section 3 tells us that the composition
is still not bounded because bounds on Sup(in1, in2) do not imply bounds on
both in1 and in2. To have a complete finite systems, we can for instance replace
Eq. 4 by Eq. 5.

Inf(in1, in2) ∼ out (5)

By doing so, our reachability analysis algorithm converges and produces a
bounded state-space.4.

This kind of analysis is useful to detect invalid ccsl specifications. For in-
stance, had we replaced Eq. 4 by Eq. 6 instead of Eq. 5, we would have obtained
a finite result but with a typical case of deadlock in ccsl. Indeed, if from the ini-
tial state s0, we decide to fire in1 (resp. in2) alone, then Eq. 6 prevents in1+in2
from ticking again before out ticks. But since in2 (resp. in1) was not produced
and therefore step2 was not executed, then step3 cannot execute either since
it requires both step1 and step2. If step3 cannot execute, then out cannot be
produced, which then results in a deadlock.

in1 + in2 ∼ out (6)

4 The algorithm is available as an Eclipse update site on
http://timesquare.inria.fr/sts/update_site/

http://timesquare.inria.fr/sts/update_site/

32 F. Mallet and J.-V. Millo

4.2 Execution Platform and Allocation

Once the application is designed, then ccsl can also be used to capture the ex-
ecution platform. Figure 5 (bottom part) shows the selected execution platform:
two tasks with different activation periods. The basic ccsl specification of the
execution platform is given as follows:

t1 � ms � (1.09)ω (7)

t2 � t1 � (1.0)ω (8)

Eq. 8 is a pure logical relationship between t1 and t2 that states that thread
t2 is twice slower than thread t1, i.e., it is periodic on t1 with period 2 and
offset 0. Eq. 7 is also a periodic relation, but relative to ms, a particular clock
that denotes milliseconds. Being periodic on ms with a period of 10 makes t1 a
100 Hz clock and therefore t2 a 50 Hz clock.

When the execution platform is specified, the remaining task is to map the
application onto the execution platform. In marte, this is done through an
allocation. In ccsl, this is done by refining the two specifications with new
constraints that specify this allocation. Since both step2 and step3 are allocated
on the same thread, then their execution is exclusive (Eq. 9). Then, the thread
being periodic, the inputs are sampled according to the period of activation of
the threads (Eqs. 10-11). Then step3 needs inputs from both step1 and step2
before executing but it can execute only according to the sampling period of t1
since step3 is allocated to t1 (Eq. 12). Finally, all steps can only execute when
their input data have been sampled (Eq. 13).

step2 # step3 (9)

in1 s � in1 sampledOn t1 (10)

in2 s � in2 sampledOn t2 (11)

d3 s � Inf(step1, step2) sampledOn t1 (12)

in1 s � step1 ∧ in2 s � step2 ∧ d3 s � step3 (13)

All these new constraints do not change anything on the finiteness of the
whole system. They only reduce the set of possible executions. If the application
specification was finite, then its allocated version is still finite. If it was infinite,
they it remains infinite. Whether it is finite or not, TimeSquare can produce an
execution of this specification (see Fig. 6). On this schedule the dashed arrows
denote precedence relations, while the (red) vertical lines denote coincidence
relations. Note that the fact that ms is a physical clock does not impact the
calculus, it only impacts the visual representation of the schedule.

5 Related Work

The transformation of ccsl into labeled transition systems has already been
attempted in [15,16]. However, in those attempts, the ccsl operators were

Boundness Issues in CCSL Specifications 33

Fig. 6. A valid schedule for the allocated application (Fig. 5)

bounded because the underlying model-checkers cannot deal with infinite la-
beled transition systems. The purpose of this work is to deal with unbounded
operators.

In [17], there was an initial attempt to provide a data structure suitable
to capture infinite transition systems based on a lazy evaluation technique. A
similar structure could be used in our case except that we consider clocks with
only two states (instead of three): tick or stall. Clock death is still to be further
explored.

The kind of applications addressed in section 4 is very close to models usually
used in real-time scheduling theories. However, such theories usually rely on
task models that abstract real applications. Originally they were rather simple
(e.g., independent periodic tasks only for Rate Monotonic Analysis). Always
more sophisticated models now appear in the literature. They are all based on
numerous distinct parameters, providing numerical constraint values for timing
aspects (dispatch time, period, deadline, jitter drift. . .). Tasks are considered
as iterations of jobs (or jobs as instances of tasks). In our view, the successive
timing values for characteristic feature of successive jobs can each be seen as a
logical clock, and the time constraint relations between such clocks are usually
expressed as simple equalities and bounded inequalities that fall well into the
range of ccsl constructs descriptive power.

Classical (non real-time) scheduling, on its side, provides generally models
where the initial constraints are less on timing and more on dependencies or
on exclusive resource allocation. But resulting schedules are almost always of
modulo periodic nature, here again matching the ccsl expressiveness.

Usually, authors [18,19,20] rely on ”physical-by-nature” timing, found in the-
oretical models such as Timed Automata [21]. The distinctive difference is that
timed automata assume a global physical time. Timed events are then con-
strained by value relations between so-called clocks (a different notion from our
logical clocks), which are devices measuring physical time as it elapses.

Our work also bears some similarity with previous attempts by Alur and
Weiss [22,23], which define schedules as infinite words expressed in regular ex-
pressions and then construct corresponding Büchi automata.

34 F. Mallet and J.-V. Millo

6 Conclusion

We have presented a state-based semantics of a kernel subset of ccsl, a lan-
guage that relies on logical clocks to express logical and temporal constraints.
Each ccsl operator (relation or expression) is defined as a label transition sys-
tem, that may have either a finite or infinite number of states. The parallel
composition of ccsl constraints is defined as the synchronized product of the
primitive label transition systems. A (semi)algorithm is proposed to actually
build the synchronized product of infinite transition systems by assuming that
only a finite number of states are accessible in the product. The algorithm only
terminates on that condition. Then a discussion is made on how data flow process
networks could be used as a sufficient condition to decide that the synchronized
product is actually finite. All the approach is illustrated on a simple example
often used in AADL and where a simple application is allocated onto a two
processor architecture. The work presented here improves on previous attempts
to support exhaustive analyses of ccsl specifications. Indeed, previous works
were only considering a priori bounded ccsl operators to guarantee the finite-
ness of the composition, while here no assumption is made on the boundness of
primitive operators.

As a future work, we should extend and prove that data flow process net-
works can actually be used to detect finite compositions of any unbounded
ccsl operators. Whereas it is pretty much clear that synchronous operators
and regular asynchronous operators (like precedes, inf, sup) are always covered
by synchronous data flow graphs, it is much less clear for mix operators like
sampledOn. This aspect has only been briefly touched here to underline the fact
that on simple examples our algorithm is actually useful.

References

1. OMG: UML Profile for MARTE, v1.0. Object Management Group. (November
2009) formal/2009-11-02

2. André, C., Mallet, F., de Simone, R.: Modeling time(s). In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 559–573.
Springer, Heidelberg (2007)

3. André, C.: Syntax and semantics of the Clock Constraint Specification Language
(CCSL). Research Report 6925, INRIA (May 2009)

4. DeAntoni, J., Mallet, F.: Timesquare: Treat your models with logical time. In:
Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 34–41. Springer,
Heidelberg (2012)

5. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proc. of the IEEE 91(1), 64–83 (2003)

6. Le Guernic, P., Talpin, J.P., Le Lann, J.C.: Polychrony for system design. Journal
of Circuits, Systems, and Computers 12(3), 261–304 (2003)

7. Lee, E.A., Sangiovanni-Vincentelli, A.L.: A framework for comparing models of
computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 17(12), 1217–1229 (1998)

8. Arnold, A.: Finite transition systems - semantics of communicating systems. Int.
Series in Computer Science. Prentice Hall (1994)

Boundness Issues in CCSL Specifications 35

9. Kahn, G.: The semantics of simple language for parallel programming. In: IFIP
Congress, pp. 471–475 (1974)

10. Buck, J.T.: Scheduling Dynamic Dataflow Graphs with Bounded Memory Using
the Token Flow Model. PhD thesis, U.C. Berkeley (1993)

11. Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked directed graphs. J. Com-
put. Syst. Sci. 5(5), 511–523 (1971)

12. Lee, E., Messerschmitt, D.: Synchronous data flow. Proceedings of the IEEE 75(9),
1235–1245 (1987)

13. Feiler, P.H., Hansson, J.: Flow latency analysis with the architecture analysis and
design language. Technical Report CMU/SEI-2007-TN-010, CMU (June 2007)

14. Society of Automotive Engineers, SAE Architecture Analysis and Design Language
(AADL) (June 2006) document number: AS5506/1

15. Yin, L., Mallet, F., Liu, J.: Verification of MARTE/CCSL time requirements in
Promela/SPIN. In: ICECCS, pp. 65–74. IEEE Computer Society (2011)

16. Gascon, R., Mallet, F., DeAntoni, J.: Logical time and temporal logics: Compar-
ing UML MARTE/CCSL and PSL. In: Combi, C., Leucker, M., Wolter, F. (eds.)
TIME, pp. 141–148. IEEE (2011)

17. Romenska, Y., Mallet, F.: Lazy parallel synchronous composition of infinite tran-
sition systems. In: ICTERI. CEUR Workshop Proc., vol. 1000, pp. 130–145 (2013)

18. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Times: A tool
for schedulability analysis and code generation of real-time systems. In: Larsen,
K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 60–72. Springer,
Heidelberg (2004)

19. Krčál, P., Yi, W.: Decidable and undecidable problems in schedulability analysis
using timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 236–250. Springer, Heidelberg (2004)

20. Abdeddaim, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theoret-
ical Computer Science 354(2), 272–300 (2006)

21. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

22. Alur, R., Weiss, G.: Regular specifications of resource requirements for embedded
control software. In: IEEE Real-Time and Embedded Technology and Applications
Symp., pp. 159–168. IEEE CS (2008)

23. Alur, R., Weiss, G.: Rtcomposer:a framework for real-time components with
scheduling interfaces. In: Int. Conf. on Embedded Software, EMSOFT 2008, pp.
159–168. ACM (2008)

	Boundness Issues in CCSL Specifications
	1 Introduction
	2 A State-Based Semantics for CCSL Operators
	2.1 The Clock Constraint Specification Language
	2.2 CCSL Clocks and Relations
	2.3 CCSL Bounded Expressions
	2.4 Unbounded Relations
	2.5 Unbounded Expressions

	3 Boundness Issues on CCSL Specifications
	3.1 Finite Synchronized Product of Infinite LTSs
	3.2 A Sufficient Condition for Having a Bounded CCSL

	4 Example: CCSL for Capturing the Architecture, Application and Allocation
	4.1 Application
	4.2 Execution Platform and Allocation

	5 Related Work
	6 Conclusion
	References

