
Automated Specification Discovery
via User-Defined Predicates

Guanhua He1, Shengchao Qin1,2,�, Wei-Ngan Chin3, and Florin Craciun4

1 Teesside University
2 Shenzhen University

shengchao.qin@gmail.com
3 National University of Singapore

4 Babes-Bolyai University

Abstract. Automated discovery of specifications for heap-manipulating pro-
grams is a challenging task due to the complexity of aliasing and mutability of
data structures. This task is further complicated by an expressive domain that
combines shape, numerical and bag information. In this paper, we propose a com-
positional analysis framework in the presence of user-defined predicates, which
would derive the summary for each method in the expressive abstract domain,
independently from its callers. We propose a novel abstraction method with a bi-
abduction technique in the combined domain to discover pre-/post-conditions that
could not be automatically inferred before. The analysis does not only prove the
memory safety properties, but also finds relationships between pure and shape do-
mains towards full functional correctness of programs. A prototype of the frame-
work has been implemented and initial experiments have shown that our approach
can discover interesting properties for non-trivial programs.

1 Introduction

In automated program analysis, certain kinds of program properties have been well ex-
plored over the last decades, such as numerical properties in linear abstraction domain,
and shape properties for list-manipulating programs in separation domain. However,
previous works have not yet automatically analysed program properties involving com-
plex mixed domains, particularly for programs with sophisticated data structures and
strong invariants involving both structural and pure (numerical and content) informa-
tion. For example, it is still non-trivial to discover program properties, such as a list
becoming sorted during the execution of a program, a binary search tree remaining
balanced before and after the execution of a procedure, or the elements of a list remain
unchanged after reversing the list. This difficulty is not only due to sharing and mutabil-
ity of data structures under manipulation, but is also due to closely intertwined program
properties, such as structural numerical information (length and height), symbolic con-
tents of data structures (bag of values), and relational numerical information (sortedness
and balancedness).

� Corresponding author.

L. Groves and J. Sun (Eds.): ICFEM 2013, LNCS 8144, pp. 397–414, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

398 G. He et al.

In addition to classical shape analyses (e.g. [4,14,24]), separation logic [22] has been
applied to analyse shape properties in recent years [5,8,26]. These works can automati-
cally infer method specifications in the shape domain. Some other works such as [17,18]
also incorporate simple numerical information into the shape domain to allow auto-
mated synthesis of properties like data structure size information.

However, these previous analyses mainly deal with predesignated data structure prop-
erties with fixed numerical templates, such as pointer safety for lists and list length
information. To overcome this limitation, we propose in this paper a compositional
program analysis in a combined abstract domain with shape, numerical and bag infor-
mation. Our analysis not only handles both functional correctness and memory safety
together, but can also discover relationships between shape and pure (numerical and
bag) domains. Unlike traditional approaches [18] which usually analyse the shape first
before turning to pure properties, our approach analyses programs over both domains
at the same time. This is very necessary as verifying functional correctness for certain
programs may require us to consider both shape and pure information at the same time.
Without pure information, a shape analysis may not be able to find useful program
specifications (an example is the merge procedure discussed in [5]). Our approach
can handle this kind of programs smoothly, and we will illustrate our method using the
merge example in Section 2.

Our analysis is compositional. It analyses a program fragment without any given
contextual information, and it analyses each method in a modular way independent of its
callers. To generate the summary (pre-/post-conditions) for each method, our analysis
adopts a new bi-abduction mechanism over the combined domain, which generalises
the bi-abduction technique proposed by Calcagno et al. [5] to a more expressive abstract
domain. In summary, this paper makes the following contributions:

– We have designed a compositional analysis to discover full program specifications
(in the form of pre-/post-conditions involving shape, numerical and bag properties)
with user-given data structure predicates.

– For such an analysis, we have designed a bi-abductive abstract semantics which in-
corporates a generalised bi-abduction procedure to facilitate specification discovery
over the combined abstract domain.

– In addition to a normal abstraction function, we have also proposed a novel abduc-
tive abstraction function over the combined domain. This new abstraction function
allows us to find stronger method specifications that are often necessary for the
successful verification for higher level of functional correctness.

– We have built a prototype system and conducted some initial experiments, which
help confirm the viability and precision of our solution in inferring non-trivial
program specifications.

2 The Approach

In this section we give some preliminaries and illustrate our approach via an example.

Automated Specification Discovery via User-Defined Predicates 399

2.1 Preliminaries

Separation Logic. Separation logic [22] extends Hoare logic to support reasoning about
shared mutable data structures. It provides separation conjunction (∗) to form formulae
like p1 ∗ p2 to assert that two heaps described by p1 and p2 are domain-disjoint.

User-defined Predicates. In our analysis, users are allowed to define inductive predi-
cates in separation logic to specify both separation and pure properties of recursive data
structures. For example, given a data structure data Node { int val; Node next; },
one can define a predicate for a list with its content as

llB(root, n, S) ≡ (root=null∧n=0∧S=∅)∨
(∃v, q, n1, S1 · root�→Node(v, q)∗llB(q, n1, S1)∧n1=n−1∧S=S1
{v})

The parameter root for the predicate llB is the root pointer referring to the list. The
length and content of the list are denoted resp. by n and the bag S, and
 indicates multi-
set (bag) union. If one wants to verify a sorting algorithm, they can specify a non-empty
sorted list as follows:

sllB(root, mi, mx, S) ≡ (root�→Node(mi, null)∧mi=mx∧S={mi})∨
(root�→Node(v, q)∗sllB(q, m1, mx, S1)∧v=mi∧v≤m1∧m1≤mx∧S=S1
{v})

where it keeps track of the minimum (mi) and maximum (mx) values in the list as
well as the bag of all values (S). Note that we use a shortened notation that unbound
variables, such as q, v, m1 and S1, are implicitly existentially quantified.

Such predicates play an important role in our analysis as (i) they are used to help
specify desired properties about data structures under manipulation, and (ii) they serve
as a guide for our analysis to discover desired program specifications. To reduce the
burden of supplying such predicates, we have defined a library of predicates covering
popular data structures and variety of properties.

Entailment. In our work we make use of the separation logic prover SLEEK [7] to prove
whether one formula Δ′ in the combined abstract domain entails another one Δ: Δ′�Δ∗R.
R is called the frame which is useful for our analysis. For instance, by entailment proof

∃y·x �→node(vx, y)∗llB(y, n, S) � llB(x, m, S1)∗R
We can generate the frame R as m=n+1∧S1=S
{vx}.

Bi-Abduction. In an earlier work [5], a bi-abductive entailment is proposed for the
shape domain: given two shape formulae G, H, the bi-abduction G ∗ [A]� H ∗ [F] infers
the anti-frame A and the frame F along the entailment proof. An example taken from
[5] is

x �→null∗z �→null∗[list(y)]� list(x)∗list(y) ∗ [z �→null]

where the list(·) predicate describes acyclic, null-terminated singly-linked lists. In
the current work, we will generalise such bi-abductive reasoning to the combined do-
main (involving shape, user-defined predicates, numerical and bag information). A sim-
ple example of the generalised bi-abductive reasoning is

∃y·x �→node(vx, y)∗y �→node(vy, null)∗[A]� sllB(x, mi, mx, S)∗[F]
where A ≡ (vx≤vy) and F ≡ (mi=vx∧mx=vy∧S={vx, vy}).

400 G. He et al.

1 Node merge(Node x, Node y)
2 {
3 if (x == null) {
4 return y;
5 } else if (y == null) {
6 return x;
7 } else
8 if (x.val <= y.val) {

9 Node t = x.next;
10 x.next = merge(t, y);
11 return x;
12 } else {
13 Node t = y.next;
14 y.next = merge(x, t);
15 return y;
16 } }

Fig. 1. Merging two sorted lists

2.2 An Illustrative Example

We illustrate our analysis approach via the merge method (used in the merge-sort),
which has been declared as an unverifiable example in [5], since their analysis does
not keep track of data values stored in the list during their shape analysis. The method
(Fig. 1) merges two sorted lists into one sorted list. Automated specification discovery
for merge is tricky due to two facts: (1) only one input list is fully traversed; (2) both
input lists are required to be sorted. For (1), if we apply the shape abduction [5], we
can only discover two disjoint lists (for precondition) - one ending with null and one
ending with an unknown pointer, which cannot guarantee the memory safety of the
method. For (2), if an analysis cannot infer that the two input lists are sorted, it will
not be able to discover that the output list is sorted, which will not be sufficient for one
to verify the functional correctness of the enclosing merge-sort method. The two input
lists being unsorted also causes the unknown pointer problem mentioned above. To
overcome these difficulties, we propose a compositional analysis in a combined shape
and pure domain, where program properties over the combined domain are processed at
the same time during the analysis. Our analysis adopts a novel bi-abduction mechanism
to help discover program preconditions in the combined domain.

For the merge example, the shape predicate selected for our analysis is slsBwhich
keeps track of the minimal (mi) and maximal (mx) values, bag of values (S) and tail
pointer (p) of a sorted list segment.

slsB(root, mi, mx, S, p) ≡ (root�→Node(mi, p)∧mi=mx∧S={mi})∨
(root�→Node(mi, q)∗sllB(q, m1, mx, S1, p)∧mi≤m1∧m1≤mx∧S=S1
{mi})

Our analysis aims at finding a sound and precise specification (summary) of the method.
Starting from an initial specification (Pre0≡emp,Post0≡false), our analysis iterates
the method body by symbolic execution a number of times until a fixed point is reached
for the pre-/post-condition pair. During the symbolic execution, we use a pair of states
(infP, Curr) to keep track of the precondition that the analysis has discovered (infP)
so far and the current state the execution has reached (Curr), respectively. If the current
abstract state does not meet the precondition required by the current program command,
we use an abductive inference mechanism (mentioned in the previous subsection) to
synthesise a candidate precondition as the missing precondition.

Automated Specification Discovery via User-Defined Predicates 401

For the merge example, the initial specification (Pre0≡emp,Post0≡false) allows
the analysis to skip the branches with recursive calls to merge. The symbolic execution
in the first fixpoint iteration starts from state (infP≡emp,Curr≡emp), since the analysis
assumes no prior knowledge about the starting program state. To enter line 4, the con-
dition x==null needs to be met by the current abstract state. We apply abduction and
discover x=null which is then added to the precondition. Similarly, we have y=null
from the second branch. After the first iteration, a summary is found as

(Pre1≡(x=null ∨ y=null),Post1≡(x=null∧res=y ∨ y=null∧res=x)) (1)

where res denotes the return value. Using this new summary for recursive calls to
merge, symbolically executing the method body again (but with an updated starting
state (infP≡Pre1,Curr≡Pre1) yields the summary (Pre2, Post2):

(Pre2 ≡ x=null ∨ y=null ∨ x�→Node(xv1, xp1)∗y�→Node(yv1, yp1)
∧(xv1≤yv1∧xp1=null ∨ xv1>yv1∧yp1=null),

Post2≡ x=null∧res=y ∨ y=null∧res=x ∨ x�→Node(xv1, xp1)∗y�→Node(yv1, yp1)
∧(xv1≤yv1∧res=x∧xp1=y ∨ xv1>yv1∧res=y∧yp1=x))

(2)
After the third iteration of symbolic execution, we generate a precondition as:

x=null ∨ y=null ∨ x�→Node(xv1, xp1)∗y�→Node(yv1, yp1)
∧ (xv1≤yv1∧xp1=null ∨ xv1>yv1∧yp1=null)

(3)

∨x�→Node(xv1, xp1)∗xp1 �→Node(xv2, xp2)∗y�→Node(yv1, yp1)
∧ (xv1≤yv1∧(xv2≤yv1∧xp2=null ∨ xv2>yv1∧yp1=null))

(4)

∨x�→Node(xv1, xp1)∗y�→Node(yv1, yp1)∗yp1 �→Node(yv2, yp2)
∧ (xv1>yv1∧(xv1≤yv2∧xp1=null ∨ xv1>yv2∧yp2=null))

(5)

Branch (4) says that the program only touches the second node of x list (the list referred
to by x) if xv1≤yv1. Furthermore, if xv2≤yv1, xp2 should be null; otherwise yp1
must be null to guarantee the termination of the method and memory safety. Branch
(5) states a similar condition when touching the second node of y list. The information
kept in this formula is very precise, but keeping such a level of details will not allow
the analysis to scale up. According to the given predicate slsB, we could abstract
the shape of the x list (and that of the y list) to be a sorted list segment. However, the
formula itself does not contain sufficient information for us to carry out this abstraction,
i.e. the sortedness information about the x list (and the y list) is missing. This missing
information is the numerical relation between xv1 and xv2 in the x list (and that between
yv1 and yv2 in the y list). In other words, we need to use abduction to discover xv1≤xv2
(resp. yv1≤yv2) during the abstraction from the shape of the x list (resp. the y list) to a
sorted list segment in the branch (4) (resp. (5)), e.g. for the x list:

x�→Node(xv1, xp1)∗xp1 �→Node(xv2, xp2)∗[xv1≤xv2]� slsB(x, xv1, xv2, xS1, xp2)∗R
The inspiration for this abductive abstraction comes from the definition of the predicate
slsB. We use such predicates to help infer data structure properties that are anticipated
from some program code. Note that a standard abstraction would only be able to obtain
an abstraction of an ordinary list segment without any sortedness information.

By applying such an abductive abstraction against the predicateslsB and then join-
ing the branches with the same shape, the precondition from two iterations becomes:

x=null ∨ y=null ∨ slsB(x, xmi0, xmx0, xS0, xp0) ∗ slsB(y, ymi0, ymx0, yS0, yp0)
∧ (xmx0≤ymx0 ∧ xp0=null ∨ xmx0>ymx0 ∧ yp0=null)

402 G. He et al.

Continuing the analysis, the fixed point of the program summary (Pre,Post) is reached:

Pre≡x=null ∨ y=null ∨ slsB(x, xmi0, xmx0, xS0, xp0)∗
slsB(y, ymi0, ymx0, yS0, yp0)∧(xmx0≤ymx0∧xp0=null∨xmx0>ymx0∧yp0=null),

Post≡x=null∧res=y ∨ y=null∧res=x ∨ slsB(x, xmi1, xmx1, xS1, xp1)
∗slsB(y, ymi1, ymx1, yS1, yp1)∧xS0	yS0=xS1	yS1∧xmi1=xmi0∧ymi1=ymi0∧
(xmi0≤ymi0∧res=x∧xp1=y∧xmx1≤ymi1∨xmi0>ymi0∧res=y∧yp1=x∧ymx1≤xmi1

The essential steps to terminate the search for suitable preconditions are abstraction
and widening. Both operators are tantamount to weakening a state, and they are over-
approximations and are sound for the synthesis of postconditions. However, when such
steps are applied to the synthesis of preconditions, it may make the precondition too
weak for the program to establish the postcondition. So after the analysis, we shall use
a forward analysis process to check the discovered summary (a similar process is also
carried out in [5]).

From this example, we observe that the memory safety is not only related to the
shape of data structures, but may also relate to data values stored in them. For the
merge example, our analysis can find that one input list is traversed to its end, i.e. until
null is reached, and the other input list is partially traversed till it reaches an element
that is larger than the maximal value of the former list. As captured in the inferred
precondition, the rest of the list will not be accessed by the program. Similarly, the
inferred postcondition captures a fairly precise specification that represents the merged
list using two list segments that either begins from x or from y, depending on which of
the two input lists contains the smallest element.

3 Language and Abstract Domain

To simplify presentation, we employ a strongly-typed C-like imperative language in
Fig. 2 to demonstrate our approach. A program Prog written in this language consists
of declarations tdecl, which can be data type declarations datat (e.g. Node in Section 2),
predicate definitions spred (e.g. llB and slsB), as well as method declarations meth.
The definitions for spred and mspec are given later in Fig. 3. We assume that methods
come with no specifications (i.e. no mspec∗ part), and our proposed analysis will dis-
cover them. Our language is expression-oriented, and thus the body of a method (e) is
an expression formed by program constructors. Note that d and d[v] represent respec-
tively heap-insensitive and heap sensitive commands. kτ is a constant of type τ . The
language allows both call-by-value and call-by-reference method parameters, separated
with a semicolon (;). These parameters allow each iterative loop to be directly converted
to an equivalent tail-recursive method, where mutations on parameters are made visible
to the caller via pass-by-reference. This technique of translating away iterative loops is
standard and is helpful in further minimising our core language.

Our specification language (in Fig. 3) allows (user-defined) shape predicates spred
to specify program properties in our combined domain. Note that such predicates are
constructed with disjunctive constraints Φ. We require that the predicates be well-
formed [7]. The first parameter of a predicate is the pointer referring to the data struc-
tures itself. A conjunctive abstract program state σ has mainly two parts: the heap

Automated Specification Discovery via User-Defined Predicates 403

Prog ::= tdecl∗ meth∗ tdecl ::= datat | spred
datat ::= data c { field∗ } field ::= t v t ::= c | τ
meth ::= t mn ((t v)∗; (t v)∗) mspec∗ {e} τ ::= int | bool | void
e ::= d | d[v] | v:=e | e1; e2 | t v; e | if (v) e1 else e2
d ::= null | kτ | v | new c(v∗) | mn(u∗; v∗)
d[v] ::= v.f | v1.f :=v2 | free(v)

Fig. 2. A Core (C-like) Imperative Language

(shape) part κ in the separation domain and the pure part π in convex polyhedra do-
main and bag (multi-set) domain, where π consists of γ, φ and ϕ as aliasing, numerical
and multi-set information, respectively. kint is an integer constant. The square symbols
like �, ,
 and � are multi-set operators. The set of all σ formulae is denoted as
SH (symbolic heap). During the symbolic execution, the abstract program state at each
program point will be a disjunction of σ’s, denoted by Δ. Its set is defined as PSH. An
abstract state Δ can be normalised to the Φ form [7].

spred ::= p(root, v∗) ≡ Φ Φ ::=
∨

σ∗ σ ::= ∃v∗·κ∧π
mspec ::= requires Φpr ensures Φpo

Δ ::= Φ | Δ1∨Δ2 | Δ∧π | Δ1∗Δ2 | ∃v·Δ
κ ::= emp | v �→c(v∗) | p(v∗) | κ1 ∗ κ2 π ::= γ ∧ φ
γ ::= v1=v2 | v=null | v1 �=v2 | v �=null | γ1∧γ2
φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1=b2 a ::=s1=s2 | s1≤s2
s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2) | |B|
ϕ ::= v∈B | B1=B2 | B1�B2 | B1�B2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1	B2 | B1�B2 | B1−B2 | ∅ | {v}

Fig. 3. The Specification Language.

Using entailment [7], we define a partial order over these abstract states:
Δ � Δ′ =df Δ′ � Δ ∗ R

where R is the (computed) residue part. And we also have an induced lattice over these
states as the base of fixpoint calculation for our analysis.

The memory model of our specification formulae can be found in [7]. In our analysis,
variables include both program and logical variables.

4 Generalised Bi-abduction for the Combined Domain

We present a new bi-abduction procedure over the combined domain (which generalises
the previous bi-abduction [5] over only the shape domain).

404 G. He et al.

Given σ and σ1, the bi-abduction procedure σ ∗ [σ′] � σ1 ∗ σ2 (shown in Fig. 4)
aims to find the anti-frame part σ′ and the frame part σ2 such that σ ∗ σ′ � σ1 ∗ σ2

where σ and σ1 can be the current program state and the precondition of next instruc-
tion, respectively. Our abduction procedure can handle more than one predicates in the
analysis, while the shape abduction [5] caters for only one specified shape predicate
domain. Another advance is that we can infer numerical and bag properties together
with the shape formulae as the anti-frame to improve the precision of the analysis.

σ � σ1 ∗ true σ1 � σ ∗ σ′ σ ∗ σ′ � σ1 ∗ σ2

σ ∗ [σ′]� σ1 ∗ σ2

Residue

σ � σ1 ∗ true σ1 � σ ∗ true σ0 ∈ unroll(σ) data no(σ0) ≤ data no(σ1)

σ0 � σ1 ∗ σ′ or σ0 ∗ [σ′
0]� σ1 ∗ σ′ σ ∗ σ′ � σ1 ∗ σ2

σ ∗ [σ′]� σ1 ∗ σ2

Unroll

σ � σ1 ∗ true σ1 � σ ∗ true σ1 ∗ [σ′
1]� σ ∗ σ′ σ ∗ σ′ � σ1 ∗ σ2

σ ∗ [σ′]� σ1 ∗ σ2

Reverse

σ � σ1 ∗ true σ1 � σ ∗ true σ ∗ σ1 � σ1 ∗ σ2

σ ∗ [σ1]� σ1 ∗ σ2

Missing

σ � σ1 ∗ σ′
1 ∗ true σ1 ∗ σ′

1 � σ ∗ true σ � σ′
1 ∗ true

σ ∗ [σ′]� σ1 ∗ σ′
2 σ ∗ σ′ � σ1 ∗ σ′

1 ∗ σ2

σ ∗ [σ′]� (σ1 ∗ σ′
1) ∗ σ2

Remove

Fig. 4. Bi-Abduction rules

The 1st rule Residue triggers when the LHS (σ) does not entail the RHS (σ1) but the
RHS entails the LHS with some formula (σ′) as the residue. This rule is quite general
and applies in many cases. For instance, if LHS is emp (σ), RHS is x �→Node(xv, xp)(σ1),
the RHS can entail the LHS with residue x �→Node(xv, xp)(σ′). The abduction then
checks whether σ plus the frame σ′ implies σ1 ∗ σ2 for some σ2 (emp in this example),
and returns x �→Node(xv, xp) as the anti-frame.

The 2nd rule Unroll deals with the case where neither side entails the other, e.g. for
slsB(x, xmi, xmx, xS, null) as LHS and ∃p, u, v·x �→Node(u, p) ∗ p �→Node(v, null)
as RHS. As the shape predicates in the antecedent σ are formed by disjunctions ac-
cording to their definitions (like slsB), its certain disjunctive branches may imply
σ1. As the rule suggests, to accomplish abduction σ ∗ [σ′]� σ1 ∗ σ2, we first un-
fold σ (σ0 ∈ unroll(σ)) and try entailment or further abduction with the results (σ0)
against σ1. If it succeeds with a frame σ′, then we confirm the abduction by ensur-
ing σ ∗ σ′ � σ1 ∗ σ2. For the example above, the abduction returns ∃u, v·xS={u, v} as
the anti-frame σ′ and discovers the nontrivial frame u=xmi ∧ v=xmx ∧ u≤v as σ2.
The function data no returns the number of data nodes in a state, e.g. it returns 1 for
x �→Node(v, p) ∗ llB(p, n, T). This syntactic check prevents unlimited number of times
of unrolling from happening when the abduction procedure invokes this rule recursively.
The unroll unfolds all shape predicates once in σ, normalises the result to a disjunctive
form (

∨n
i=1 σi), and returns the result as a set of formulae ({σ1, ..., σn}).

Automated Specification Discovery via User-Defined Predicates 405

The 3rd rule Reverse handles the case where neither side entails the other, and the
2nd rule does not apply, e.g. ∃p, u, v, q·x �→Node(u, p)∗p �→Node(v, q) as LHS and ∃xS·
slsB(x, xmi, xmx, xS, xp) as RHS. In this case the antecedent cannot be unfolded as it
contains only data nodes. As the rule suggests, it reverses two sides of the entailment
and applies the second rule to uncover the constraints σ′

1 and σ′. Then it checks that the
LHS (σ), with σ′ added, does entail the RHS (σ1) before it returns σ′. For the example
above, the anti-frame is inferred as u≤v.

When an abduction procedure is conducted, the first three rules should be attempted
exhaustively in the given order; if they do not succeed in finding a solution, then the
rule Missing is invoked to add the consequence to the antecedent, provided that they are
consistent. It is effective for situations like x �→Node(,) � y �→Node(,), where we
should add y �→node(,) to the LHS directly. In our analysis, we assume that different
variables refer to different nodes unless aliasing is suggested in the program code. For
example, the if-statement if (x == y){c} suggests that x and y are aliased in code c.
Note that when the third rule is applied, the abduction procedure in the premise, namely
σ1∗[σ′

1]�σ∗σ′, is not allowed to apply the third rule again. This is to prevent an infinite
number of applications of the third rule.

If the first four rules fail, the Remove rule then tries to find a part of consequent (σ′
1)

which is entailed by the antecedent. The abduction is then applied to the remaining part
of the consequent (σ1) to discover the anti-frame (σ′). For example, the bi-abduction
question llB(x, n, S)∧n>2∗[σ′]� x �→Node(v1, p1) ∗ y �→Node(v2, p2) ∗ σ2 needs this
rule to remove x �→Node(v1, p1) from consequent before applying the Missing rule to
find the anti-frame σ′ = y �→Node(v2, p2).

Our earlier work [20] gives a restricted form of abduction focusing on discovering
pure information with the assumption that either complete or partial shape informa-
tion is available. Our bi-abduction algorithm presented here generalises it to cater for
full specification discovery scenarios, whereby, we do not have the hints to guide the
analysis anymore due to the absence of shape information in pre/post-conditions; but at
the same time we can have more freedom as to what missing information to discover.
One observation on abduction is that there can be many solutions of the anti-frame σ′

for the entailment σ ∗ σ′ � σ1 ∗ σ2 to succeed. Therefore, we define “quality” of anti-
frame solutions with the partial order � given in the previous section, i.e. the smaller
(weaker) one is regarded as better. We prefer to find solutions that are (potentially lo-
cally) minimal with respect to � and consistent. However, such solutions are generally
not easy to compute and could incur excess cost (with additional disjunction in the anal-
ysis). Therefore, our abductive inference is designed more from a practical perspective
to discover anti-frames that should be suitable as preconditions for programs, and the
partial order � sounds more like a guidance of the decision choices of our abduction
implementation, rather than a guarantee to find the theoretically best solution.

5 Analysis Algorithm

Our proposed analysis algorithm is given in Fig. 5. It takes three input parameters: T as
the set of method specifications that are already inferred, the procedure to be analysed
t mn ((t x)∗; (t y)∗) {e}, and a pre-set upper bound n on the number of shared logical
variables that we keep during the analysis.

406 G. He et al.

As in a standard abstract interpretation framework, our analysiscarries out the fixed-
point iteration until a fixed-point (Prei,Posti) (for some i) is reached. To infer the
pre-conditions, our abstract semantics is equipped with bi-abduction over the combined
domain. To allow the discovery of more precise preconditions, our abstraction proce-
dure is also equipped with abduction, yielding the novel abductive abstraction (absa)
for precondition discovery. The postcondition inference still employs the normal ab-
straction mechanism (abs).1

Fixpoint Computation in the Combined Domain
Input: T , t mn ((t x)∗; (t y)∗) {e}, n
Local: i := 0; Prei := emp,Posti := false;
1 T ′ := T ∪ {t mn ((t x)∗; (t y)∗) requires Pre0 ensures Post0 {e}};
2 repeat

3 i := i+ 1;

4 (Prei,Posti) := |[e]|AT ′(Prei−1,Prei−1);

5 (Prei,Posti) := (absa
†(Prei), abs

†(Posti));

6 (Prei,Posti) := (join†(Prei−1,Prei), join
†(Posti−1,Posti));

7 (Prei,Posti) := (widen†(Prei−1,Prei),widen
†(Posti−1,Posti));

8 if Prei=false or Posti=false or cp no(Prei)>n or cp no(Posti)>n
· then return fail end if

9 T ′ := T ∪ {t mn ((t x)∗; (t y)∗) requires Prei ensures Posti {e}};
10 until T ′ does not change
11 Post = |[e]|T ′Prei;

12 if Post = false or Post � Posti ∗ true then return fail
13 else return T ′

14 end if

Fig. 5. Main analysis algorithm

We first set the precondition as emp and postcondition as false which signifies
that we know nothing about the method (line 1). Then for each iteration, a forward bi-
abductive analysis is employed to compute a new pre-/post-condition (line 4) based on
the current specification. The analysis performs abstraction on both pre-/post-conditions
obtained to maintain the finiteness of the shape domain. The obtained results are joined
with the results from the previous iteration (line 6), and a widening is conducted over
both to ensure termination of the analysis (line 7). If the analysis cannot continue due to
a program bug, or cannot keep the number of shared logical variables/cutpoints (counted
by cp no) within a specified bound (n), then a failure is reported (line 8). At the end of
each iteration, the inferred summary is used to update the specification of mn (line 9),
which will be used for recursive calls (if any) of mn in next iteration. Finally we judge
whether a fixed-point is already reached (line 10). The last few lines (from line 11)

1 The analysis uses lifted versions of these operations (indicated by †), which will be explained
in more detail later.

Automated Specification Discovery via User-Defined Predicates 407

ensure that inferred specifications are indeed sound using a standard abstract semantics
(without abduction). Any unsound specifications will be ruled out.

Intuitively, the join† operator is applied over two abstract states, and tries to find a
common shape as an abstraction for the separation part of both states. If such common
shape is found, it performs convex hull and bag join for the pure parts. Otherwise it
keeps a disjunction of the two states. The widen† is analogous to join† . The difference
is that we expect the heap portion of the first state is subsumed by the second one, and
then it applies the pure widening for the pure part. The formal definitions of join† and
widen† and other details are left in our report [13] due to page limit.

Bi-Abductive Abstract Semantics. As shown in Fig. 5, our analysis employs two ab-
stract semantics: a bi-abductive abstract semantics (i.e. the one equipped with abduc-
tion) (line 4), and an underlying abstract semantics (i.e. the one without abduction)
(line 11). We first give the definition of the underlying semantics. Its type is defined as

|[e]| : AllSpec → PSH → PSH

where AllSpec contains procedure specifications. For some program e and its given
precondition Δ, the semantics calculates the postcondition |[e]|T Δ, for a given set of
method specifications T .

The essential constituents of the underlying semantics are the basic transition func-
tions from a conjunctive abstract state (σ) to a conjunctive or disjunctive abstract state
(σ or Δ) below:

unfold(x) : SH → PSH[x] Unfolding

exec(d[x]) : AllSpec → SH[x] → PSH Heap-sensitive execution

exec(d) : AllSpec → SH → PSH Heap-insensitive execution

where SH[x] denotes the set of conjunctive abstract states in which each element has x
exposed as the head of a data node (x�→c(v∗)), and PSH[x] contains all the (disjunctive)
abstract states, each of which is composed by such conjunctive states. Here unfold(x)
rearranges the symbolic heap so that the cell referred to by x is exposed for access
by heap sensitive commands d[x] via the second transition function exec(d[x]). The
third function defined for other (heap insensitive) commands d does not require such
exposure of x.

The unfolding function is defined by the following two rules:

σ � x�→c(v∗) ∗ σ′

unfold(x)σ � σ

σ � p(x, v∗) ∗ σ′ p(root, v∗)≡Φ

unfold(x)σ � σ′ ∗ [x/root, u∗/v∗]Φ

The symbolic execution of heap-sensitive commands d[x] (i.e. x.fi, x.fi := w, or
free(x)) assumes that the rearrangement unfold(x) has been done prior to execution:

σ � x�→c(v1, .., vn) ∗ σ′

exec(x.fi)(T)σ � σ ∧ res=vi

σ � x�→c(u∗) ∗ σ′

exec(free(x))(T)σ � σ′

σ � x�→c(v1, .., vn) ∗ σ′

exec(x.fi := w)(T)σ � σ′ ∗ x�→c(v1, .., vi−1, w, vi+1, .., vn)

408 G. He et al.

The symbolic execution rules for heap-insensitive commands are as follows:

exec(k)(T)σ =df σ ∧ res=k

exec(x)(T)σ =df σ ∧ res=x

isdatat(c)

exec(new c(v∗))(T)σ =df σ ∗ c(res, v∗)

t mn ((ti ui)
m
i=1; (t

′
i vi)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [x′
i/ui]

m
i=1 ◦ [y′i/vi]ni=1 σ � ρΦpr ∗ σ′

ρo = [ri/vi]
n
i=1 ◦ [x′

i/u
′
i]
m
i=1 ◦ [y′i/v′i]ni=1 ρl = [ri/y

′
i]
n
i=1 fresh logical ri

exec(mn(x1, .., xm; y1, .., yn))(T)σ � (ρlσ
′) ∗ (ρoΦpo)

The first three rules deal with constant (k), variable (x) and data node creation
(new c(v∗)), respectively, while the last rule handles method invocation. The test is-
datat(c) returns true iff c is a data node. In the last rule, the call site is ensured to meet
the precondition of mn, as signified by σ � ρΦpr ∗ σ′. In this case, the execution suc-
ceeds and the post-state of the method call involves mn’s postcondition as signified by
ρoΦpo.

A lifting function † is defined to lift unfold’s domain to PSH:

unfold†(x)
∨

σi =df

∨
(unfold(x)σi)

and this function is overloaded for exec to lift both its domain and range to PSH:

exec†(d)(T)
∨

σi =df

∨
(exec(d)(T)σi)

Based on the transition functions above, we can define the abstract semantics for a
program e as follows (where loops are already translated into tail-recursions):

|[d[x]]|T Δ =df exec†(d[x])(T) ◦ unfold†(x)Δ
|[d]|T Δ =df exec†(d)(T)Δ
|[e1; e2]|T Δ =df |[e2]|T ◦ |[e1]|T Δ
|[x := e]|T Δ =df [x′/x, r′/res](|[e]|T Δ) ∧ x=r′ fresh logical x′, r′

|[if (v) e1 else e2]|T Δ =df (|[e1]|T (v∧Δ)) ∨ (|[e2]|T (¬v∧Δ))

We shall now present the definitions of our bi-abductive abstract semantics. Its type is

|[e]|A : AllSpec → (PSH × PSH) → (PSH × PSH)

It takes a piece of program code and a specification table, and maps a pair of (dis-
junctive) set of symbolic heaps to another such pair (where the first in the pair is the
accumulated precondition and the second is the current state). It relies on the following
two basic functions:

Unfold(x) : (SH× SH) → (PSH ×PSH)
Exec(ds) : AllSpec → (SH× SH) → (PSH × PSH)

The definitions of both functions are given below:

Unfold(x)(σ′, σ) =df

if (σ∗[σm]� x �→c(y∗)∗true for fresh logical vars y∗) ∧ (σ′∗σm � false)
then let Δ=unfold(x)(σ∗σm) in (σ′∗σm,Δ)
else (σ′, false)

Exec(ds)(T)(σ′, σ) =df let Δ=exec(ds)(T)σ in (σ′,Δ)
where ds is either d[x] or d, except for procedure call

Automated Specification Discovery via User-Defined Predicates 409

t mn ((ti ui)
m
i=1; (t

′
i vi)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [x′
i/ui]

m
i=1 ◦ [y′

i/vi]
n
i=1 σ ∗ [σ′

1]� ρΦpr ∗ σ1 σ′∗σ′
1 � false

ρo = [ri/vi]
n
i=1 ◦ [x′

i/u
′
i]
m
i=1 ◦ [y′

i/v
′
i]
n
i=1 ρl = [ri/y

′
i]
n
i=1 fresh logical vars ri

Exec(mn(x1..m; y1..n))(T)(σ′, σ) =df (σ′ ∗ σ′
1, (ρoΦpo)∗(ρlσ1))

The Unfold function firstly tests (using bi-abduction) whether the node x�→c(y∗) is in
σ, if not, abduction is applied to find the missing σm. If σ′ and σm do not contradict, it
unfolds σ ∗ σm to expose x (via the unfold function defined earlier in this section), and
adds σm to precondition. Otherwise, it returns false for the current state.

The Exec function symbolically executes the command ds (via the exec function
defined earlier in this section) and translates the current state σ to a disjunction of new
states Δ. The special case is the method invocation, which may require bi-abduction to
be applied for the current state. When the method mn is invoked, we take its current
specification (Φpr, Φpo) from T , and substitute the formal parameters ui and vi by the
current arguments x′

i and y′i respectively. Note that prime notations x′
i and y′i denote the

current values of xi and yi in the current state σ. Then we apply bi-abduction from the
current state σ to the precondition ρΦpr. If it succeeds, the discovered missing state σ′

1

will be propagated back to the precondition σ′ to help make the symbolic execution to
succeed. The postcondition of mn, Φpo is substituted by ρo in order to be added to the
current state. Since the variables yi are call-by-reference, we let ri to be the intermediate
variables, while the variables y′i denote the latest values.

A lifting function † is defined to lift Unfold’s and Exec’s domains:

Unfold†(x)
∨
(σ′

i, σi) =df

∨
(Unfold(x)(σ′

i, σi))

Exec†(ds)(T)
∨
(σ′

i, σi) =df

∨
(Exec(ds)(T)(σ′

i, σi))

Based on the above functions, the bi-abductive abstract semantics is defined as follows:

|[d[x]]|AT (Δ′,Δ) =df Exec†(d[x])(T) ◦ Unfold†(x)(Δ′,Δ)

|[d]|AT (Δ′,Δ) =df Exec†(d)(T)(Δ′,Δ)

|[e1; e2]|AT (Δ′,Δ) =df |[e2]|AT ◦ |[e1]|AT (Δ′,Δ)

|[x := e]|AT (Δ′,Δ) =df [x′/x, r′/res](|[e]|AT (Δ′,Δ ∧ x=r′)) fresh logical x′, r′

|[if (v) e1 else e2]|AT (Δ′,Δ) =df (|[e1]|AT (Δ
′, v∧Δ)) ∨ (|[e2]|AT (Δ′,¬v∧Δ))

Abductive Abstraction. As we mentioned earlier in the merge example, to verify such
programs may require very precise preconditions that a standard abstraction mechanism
may fail to achieve. To cater for such a need, we design a novel abductive abstraction
function absa, which equips abstraction with an abductive reasoning capacity where
necessary. In such scenarios, user-specified predicates can offer some guidance in the
abstraction in order to discover extra data structure properties for precondition. The new
abductive abstraction function is given as follows:

absa(σ ∧ x0=e) =df σ[e/x0]

absa(σ ∧ e=x0) =df σ[e/x0]

x0 /∈ Reach(σ)

absa(H(c)(x0, v
∗) ∗ σ) =df σ ∗ true

410 G. He et al.

p2(u
∗
2) ≡ Φ H(c1)(x, v

∗
1) ∗ σ1 � p2(x, v

∗
2) ∧ π2

Reach(p2(x, v
∗
2) ∧ π2 ∗ σ3) ∩ {v∗1} = ∅

absa(H(c1)(x, v
∗
1) ∗ σ1 ∗ σ3) =df p2(x, v

∗
2) ∧ π2 ∗ σ3

p2(u
∗
2) ≡ Φ H(c1)(x, v

∗
1) ∗ σ1 � p2(x, v

∗
2) ∧ π2

H(c1)(x, v
∗
1)∗σ1∗[σ′]� p2(x, v

∗
2)∧π2 Reach(p2(x, v

∗
2)∧π2∗σ3)∩{v∗1}=∅

absa(H(c1)(x, v
∗
1) ∗ σ1 ∗ σ3) =df p2(x, v

∗
2) ∧ π2 ∗ σ3

where H(c)(x, v∗) denotes x�→c(v∗) if c is a data node or c(x, v∗) if c is a predicate.
The function Reach(σ) returns all pointer variables which are reachable from free vari-
ables in the abstract state σ. The first two rules eliminate logical variables, and the third
rule drops heap garbage that is unreachable from program variables. The fourth rule
combines shape formulae and eliminate logical pointer variables which are not reach-
able from other program variables. The predicate p2 is selected from the user-defined
predicates environments and it is the target shape to be abstracted to.

The last rule applies when the state H(c1)(x, v∗1)∗σ1 cannot be abstracted to the pred-
icate p2 using standard abstraction but can be abstracted to predicate p2 with the help
of abductive reasoning. When applying such an abstraction function during the precon-
dition discovery, the extra information σ′ discovered by abduction will be propagated
back to the precondition to improve the precision.

The lifting function is applied for absa to lift both its domain and range to disjunctive
abstract states PSH: absa

† ∨σi =df

∨
absa(σi), allowing it to be used in the analysis.

The soundness and termination of our analysis are given in the technical report [13].

6 Experiments and Evaluation

We have implemented a prototype system and evaluated it over a number of heap-
manipulating programs to test the viability and precision of our approach. Our experi-
mental results were achieved with an Intel Core 2 Quad CPU 2.66GHz with 8GB RAM.
We have also defined a library of predicates covering popular data structures and variety
of properties. These properties can be grouped in the following categories: MS (memory
safety): all memory accesses are safe, no dangling/null pointers dereferences; SC (same
content): the content of the final data structure remains the same as that of the input
data structure; IN (insertion): the input data is inserted into the final data structure; SO

(sorted): data structures are sorted according to a criterion, eg. in case of a list each
node’s content is less than or equal to its successor’s; BS (binary search): data structures
are binary search trees; DL (double-linked list): data structures are double-linked lists;
and AL (AVL tree): data structures are AVL trees. The predicates required as input by
our tool can be selected from the library or can be supplied by users, according to the
input program data structures and the properties of interest. Usually, the upper bound
of cutpoints is set to be twice the number of input program variables to improve the
precision. Some of our results are presented in Table 1.

In comparison to previous approaches, the first observation concerns the precision
of our analysis. Since our tool uses a combined domain it can discover more expressive
specifications to guarantee memory safety and functional correctness. For example in
case of the take program which traverses the list down for a user-specified number n of

Automated Specification Discovery via User-Defined Predicates 411

Table 1. Experimental Results. The column LOC is for the number of program lines; Time
expresses our tool running time (in seconds); Prop denotes the inferred specification properties.

Prog. LOC Time Prop
Singly Linked List
create 10 1.12 MS

delete 9 1.20 MS/SO

insert 9 1.16 MS/SO/IN
traverse 9 1.35 MS/SO/SC

length 11 1.28 MS/SO/SC

append 11 1.47 MS/SO/SC

take 12 1.28 MS/SO/SC

reverse 13 1.72 MS/SC

filter 15 2.37 MS/SO

Sorting algorithm
insert sort 32 2.72 MS/SC/SO

merge sort 78 4.18 MS/SC/SO

quick sort 70 5.72 MS/SC/SO

select sort 45 3.16 MS/SC/SO

Prog. LOC Time Prop
Doubly Linked List
create 15 1.47 MS/DL

append 24 2.53 MS/DL/SC/SO

insert 22 2.32 MS/DL/IN/SO

Binary Search Tree
create 18 2.58 MS/BS

delete 48 4.76 MS/BS

insert 22 3.57 MS/BS/IN
search 22 2.78 MS/BS/SC

height 15 1.56 MS/BS/SC

count 17 1.63 MS/BS/SC

flatten 32 2.74 MS/BS/DL/SC/SO

AVL Tree
insert 114 27.57 MS/BS/AL/IN
delete 239 34.42 MS/BS/AL

nodes, we can find that the input list length must be no less than n. However the previ-
ous tools based on shape domains (like Abductor [5]) can only discover a precondition
that requires the input list to be non-empty which would not be sufficient to guarantee
memory safety. Moreover more complex functional properties regarding the data struc-
tures content (like SO for merge program but in general for all sorting programs) can
also not be discovered by the previous tools (like Abductor) based on a simple shape
domain. There are other tools (like Xisa [6] or Thor [18]) that can work on a combined
domain but require certain annotations to guide their analysis. Thor [18] requires shape
information for each input parameter and Xisa [6] requires shape information for pro-
gram variables used in loops. Since our shape domain includes tree data structures, our
tool is able to discover complex functional specifications for binary search trees and
AVL trees in contrast to the previous approaches. For example in case of the flatten
program our tool is able to discover that the input data structure is a binary search
tree while the output data structure is a sorted doubly linked list having the same data
content (values stored inside the nodes) as that of the input.

The second observation regarding our experimental results is that the analysis may
discover more than one correct specification for some programs. For example, given
two predicates, ordinary linked list and sorted list, we can obtain two specifications for
most of the sorting algorithms. When there are more than one user-supplied predicate
definitions, the analysis can have multiple choices during the abstraction. Multiple spec-
ifications can be useful in program verification, e.g. the sorted version for the append
method, where the two input lists and the output list are all sorted, is useful in the ver-
ification of quick sort, while the sorted list version for the insert method is also
useful to help verify the functional correctness of insert sort.

412 G. He et al.

7 Related Work and Conclusion

Dramatic advances have been made in synthesising specifications for heap-
manipulating programs. The local shape analysis [8] infers loop invariants for list-
processing programs, followed by the SpaceInvader/Abductor tool to infer full method
specifications over the separation domain, so as to verify pointer safety for larger in-
dustrial codes [5,26]. The SLAyer tool [9] implements an inter-procedural analysis for
programs with shape information. A combination of shape and bag abstraction is used
in [25] to verify linearizability. Compared with them, our abstraction is more general
since it is driven by predicates and is not restricted to linked lists. To deal with size in-
formation (such as number of nodes in lists/trees), Thor [18] transfers a heap-processing
program to a numerical one, so that size properties can be obtained by further analysis.
A similar approach [10] combines a set domain (for shape) with its cardinality domain
(for corresponding numerical information) in a more general framework. Compared
with these works, our approach can discover specifications with stronger invariants such
as sortedness and bag-related properties, which have not been addressed in the previous
works. The analyses [6,19,20] can all handle shape and numerical information over a
combined domain, but require user given preconditions for the program whereas here
we compute the whole specification at once. Recently, Rival and Chang [23] propose
an inductive predicate to summarise call stacks along with heap structures in a context
of a whole-program analysis. In contrast our analysis is modular.

There are also other approaches that can synthesise shape-related program invari-
ants. The shape analysis framework TVLA [24] is based on three-valued logic. It is ca-
pable of handling complicated data structures and properties, such as sortedness. Guo
et al. [11] report a global shape analysis that discovers inductive structural shape invari-
ants from the code. Kuncak et al. [15] develop a role system to express and track refer-
encing relationships among objects. Hackett and Rugina [12] can deal with AVL-trees
but is customised to handle only tree-like structures with height property. Bouajjani et
al. [2,3] propose a program analysis in an abstract domain with SL3 (Singly-Linked List
Logic) and size, sortedness and multi-set properties. However, their heap domain is re-
stricted to singly-linked list only, and their shape analysis is separated from numerical
and mutli-set analyses. Compared with these works, separation logic based approaches
benefit from the frame rule with support for local reasoning.

There are also approaches which unify reasoning over shape and data using either a
combination of appropriate decision procedures inside Satisfiability-Modulo-Theories
(SMT) solvers (e.g. [21,16]) or a combination of appropriate abstract interpreters inside
a software model checker (e.g. [1]). Compared with our work, their heap domains are
mainly restricted to linked lists.

Conclusion. We have reported a program analysis which automatically discovers pro-
gram specifications over a combined separation and pure(numerical and bag) domain.
The novel components of our analysis include an abductive abstract semantics and an
abductive abstraction mechanism (for precondition discovery)in the combined domain.
We have built a prototype system and the initial experimental results are encouraging.

Acknowledgement. This work was supported in part by EPSRC project EP/G042322.

Automated Specification Discovery via User-Defined Predicates 413

References

1. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: Concretizing
the convergence of model checking and program analysis. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg (2007)

2. Bouajjani, A., Dragoi, C., Enea, C., Sighireanu, M.: On inter-procedural analysis of programs
with lists and data. In: PLDI (2011)

3. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: Abstract domains for automated rea-
soning about list-manipulating programs with infinite data. In: Kuncak, V., Rybalchenko, A.
(eds.) VMCAI 2012. LNCS, vol. 7148, pp. 1–22. Springer, Heidelberg (2012)

4. Bozga, M., Iosif, R., Lakhnech, Y.: Storeless semantics and alias logic. In: PEPM (2003)
5. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by means

of bi-abduction. J. ACM 58(6) (2011)
6. Chang, B.Y.E., Rival, X.: Relational inductive shape analysis. In: POPL (2008)
7. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and bag

properties via user-defined predicates in separation logic. Sci. of Comp. Prog. 77 (2012)
8. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation logic.

In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 287–302. Springer,
Heidelberg (2006)

9. Gotsman, A., Berdine, J., Cook, B.: Interprocedural shape analysis with separated heap ab-
stractions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 240–260. Springer, Heidelberg
(2006)

10. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking partition sizes.
In: Shao, Z., Pierce, B.C. (eds.) POPL (2009)

11. Guo, B., Vachharajani, N., August, D.I.: Shape analysis with inductive recursion synthesis.
In: PLDI (2007)

12. Hackett, B., Rugina, R.: Region-based shape analysis with tracked locations. In: POPL
(2005)

13. He, G., Qin, S., Chin, W.N., Craciun, F.: Automated specification discovery in a com-
bined abstract domain - reseach report (2012), http://pls.tees.ac.uk/˜guan/
fullspec/techreport.pdf

14. Jonkers, H.: Abstract storage structures. In: Algorithmic Languages (1981)
15. Kuncak, V., Lam, P., Rinard, M.C.: Role analysis. In: POPL (2002)
16. Lahiri, S.K., Qadeer, S.: Back to the future: revisiting precise program verification using smt

solvers. In: POPL (2008)
17. Magill, S., Tsai, M.-H., Lee, P., Tsay, Y.-K.: Thor: A tool for reasoning about shape and arith-

metic. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 428–432. Springer,
Heidelberg (2008)

18. Magill, S., Tsai, M.-H., Lee, P., Tsay, Y.-K.: Automatic numeric abstractions for heap-
manipulating programs. In: POPL (2010)

19. Qin, S., He, G., Luo, C., Chin, W.N., Chen, X.: Loop invariant synthesis in a combined
abstract domain. Journal of Symbolic Computation 50 (2013)

20. Qin, S., Luo, C., Chin, W.-N., He, G.: Automatically refining partial specifications for pro-
gram verification. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 369–385.
Springer, Heidelberg (2011)

21. Rakamarić, Z., Bruttomesso, R., Hu, A.J., Cimatti, A.: Verifying heap-manipulating pro-
grams in an smt framework. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y.
(eds.) ATVA 2007. LNCS, vol. 4762, pp. 237–252. Springer, Heidelberg (2007)

22. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS (2002)
23. Rival, X., Chang, B.Y.E.: Calling context abstraction with shapes. In: POPL (2011)

http://pls.tees.ac.uk/~guan/fullspec/techreport.pdf
http://pls.tees.ac.uk/~guan/fullspec/techreport.pdf

414 G. He et al.

24. Sagiv, M., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM
Trans. Program. Lang. Syst. 24(3) (2002)

25. Vafeiadis, V.: Shape-value abstraction for verifying linearizability. In: Jones, N.D.,
Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 335–348. Springer, Heidelberg
(2009)

26. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scalable
shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 385–398. Springer, Heidelberg (2008)

	Automated Specification Discoveryvia User-Defined Predicates
	1 Introduction
	2 The Approach
	2.1 Preliminaries
	2.2 An Illustrative Example

	3 Language and Abstract Domain
	4 Generalised Bi-abduction for the Combined Domain
	5 Analysis Algorithm
	6 Experiments and Evaluation
	7 Related Work and Conclusion
	References

