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Abstract. This work presents a conservative extension of OhCircus,
a concurrent specification language, which integrates CSP, Z, object-
orientation and embeds a refinement calculus. This extension supports
the definition of process inheritance, where control flow, operations and
state components are eligible for reuse. We present the extendedOhCircus
grammar and, based on Hoare and He’s Unifying Theories of Program-
ming, we give the formal semantics of process inheritance and its sup-
porting constructs. The main contribution of this work is a set of sound
algebraic laws for process inheritance. The proposed laws are exercised
in the development of a case study.
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1 Introduction

Several formalisms offer support for modelling behavioural and data aspects of
a system. For instance, CSP-OZ [9], CSP-B [19], Mosca (VDM+CCS) [21] and
Circus [15] are some contributions in this direction. Particularly, Circus is a com-
bination of Z [20] and CSP [10], which includes constructions in the style of
Morgan’s refinement calculus [13]. With the intention to also handle object ori-
entation, the OhCircus [6] language has been proposed as a conservative extension
of Circus.

Circus has a refinement calculus that embodies a comprehensive set of laws
[5,15,18]. These laws are also valid for OhCircus. Nevertheless, although there is
a notion of process inheritance in OhCircus, the current calculus does not include
any laws for dealing with process inheritance. The laws developed in Section 4
aim to contribute to a more comprehensive set of algebraic laws for OhCircus,
taking into account this relevant language feature.

Class inheritance, in the object-orientated paradigm, is a well-established con-
cept [12]; several works, based on the substitutability principle, have developed
theories that recognize suitable inheritance notions between classes [1,12]. On
the other hand, the semantics of process inheritance is not consolidated. Some
of the most well known works [9,14,22] have used the failures behavioural model
of CSP to define a process inheritance relation.

Process inheritance, as originally defined for OhCircus, has a practical dis-
advantage: there is no way of explicitly referencing the inherited elements in
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the subprocesses; as a consequence, there is no support for taking advantage of
redefinitions, which are strongly connected with the concept of inheritance. As
our first contribution, we develop an extended syntax for OhCircus, which allows
reuse of all the process elements, but still keeping processes as encapsulated units
concerning their use in process compositions. Typing rules are developed to vali-
date programs considering the new syntax, and a formal semantics is given in the
Unifying Theories of Programming (UTP) [11]. The second major contribution
of this work is the proposal of sound laws to support the stepwise introduction
or elimination of process inheritance and process elements in the presence of
this feature. We have also mechanised these rules based on the Eclipse Mod-
elling Framework and on the Xtext and the ATL integrated tools. The overall
approach is illustrated through the development of a case study.

In the next section we briefly introduce OhCircus through an example, already
considering the extended grammar we propose. The semantics for process inher-
itance is presented in Section 3. A selection of the proposed laws is given in
Section 4; the laws are exercised in a case study in Section 5. Finally, in Section
6, we present our conclusions and future work.

2 Process Inheritance with Code Reuse

We have extended the syntax of OhCircus in two central ways: the creation of a
new access level to allow visibility of process elements (state and schema oper-
ation) by subprocesses (like the protected mechanism in Java) and the addition
of a new clause to define Z schemas [20], very similar to the Z schema inclusion
feature, with the aim of allowing schema redefinitions.

As originally designed, a process, both in Circus and OhCircus, is a black box
with interaction points through channels that exhibit a behaviour defined by
its main action. Actually, in a subprocess specification, all the definitions of the
superprocess (state components, actions, and auxiliary definitions) are in scope;
this has been motivated by the fact that the main action of the subprocess is
implicitly composed in parallel with the main action of the superprocess. On the
other hand, there is no notation for explicitly referencing the inherited elements
for supporting code reuse, for instance, in operation redefinitions. The effort
of introducing inheritance with this process structure is prohibitive because the
benefits of code reuse cannot be reached and the introduction of a type hierarchy,
by itself, is not enough to justify inheritance, from a practical perspective.

The syntax for the proposed extensions is presented in Figure 1, where the
three central elements of our strategy are underlined. A process is a sequence of
paragraphs, possibly including a state defined in the form of a Z schema (formed
of variable declarations and a predicate), followed by a main action that captures
the active behaviour of the process. A process paragraph (PParagraph) includes
Z schemas (typically defining operations) and auxiliary actions used by the main
action; a paragraph is allowed to refer to one or more Z schemas defined in the
process itself or inherited from its superprocesses, in any level of inheritance.



6 J. Dihego, P. Antonino, and A. Sampaio

OhProcessDefinition ::= process N =̂ [extends N] Process

Process ::= begin
PParagraph∗

[state N Schema-Exp | Constraint]
PParagraph∗

• Action
end

| . . .

PParagraph ::= SchemaText | N =̂ Action
| [PQualifier] N SchemaText

SchemaText ::= ((Ξ | Δ) N)+ [Declaration+] [super.N+] [Predicate]

Schema-Exp ::= ([PQualifier] Declaration)∗

PQualifier ::= protected

N ::= identifier

Fig. 1. OhCircus extended syntax

A process might extend only one process; multiple inheritance is not allowed,
mainly due to the possible duplication and ambiguity that arise from this feature.

A Z schema can be defined using an explicitly access modifier, protected, or,
if no modifier is used, the default level (inherited but not directly referenced by
subprocesses) is adopted. Only Z schemas in the protected level are eligible for
use in a super clause. The overriding of protected schemas is also supported and
it allows a subprocess to redefine a protected schema introduced in or inherited
by the closest superprocess up in the inheritance tree.

Similarly to schemas it is allowed to define an access level for each state
component. It generates some restrictions in the subprocess state component
declaration. This new syntax and its restrictions are exemplified in the sequel.

2.1 An Example

We model the standard concept of an abstract unbounded buffer considering
the extensions we propose to OhCircus (see Figure 2). The relevant channels are
start , input and output . The first one is a signal for the buffer initialization, and
the other two communicate inputs and outputs, respectively. We introduce the
process Buffer that implements the buffer concept in OhCircus. The singleton
state component of the Buffer process is a sequence of natural numbers, which is
used to implement the behaviour of a queue. It is initialized by the Init schema.

The behaviour of the buffer is to input and output on different channels,
according to a FIFO policy. Whenever it is empty, it cannot refuse to input and,
whenever it is non-empty, it cannot refuse to output. The schema Add receives
and adds an element to the buffer, by storing it in the end of the sequence
representing the queue. The schema Remove retrieves and removes an element
from the buffer (the head of the sequence). The behaviour of the Buffer process
is given by a main action in the style of CSP, but may also reference the process
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channel input , output : N
channel start

process Buffer =̂ begin

state St
protected queue : seqN

Init
St ′

queue ′ = 〈〉

protected Add
ΔSt
e? : N

queue ′ = 〈e?〉 � queue

protected Remove
ΔSt
e! : N

#queue > 0
e! = last queue
queue ′ = front queue

Input =̂ input?e → Add
Output =̂ (#queue > 0)&

var e : N • Remove; output !e → SKIP

• start → Init ;
μX • (Input � Output); X

end

Fig. 2. Buffer specification in (extended) OhCircus

paragraphs. The process Buffer , after engaging in an event communicated by the
start channel, executes its initializer Init . The operator ‘;’ stands for sequential
composition, and indicates that if and only if start → Init finishes successfully
the process behaves like μX • (A); X , a recursive process that behaves like
A and if A terminates successfully it behaves again like A, and so on. In our
example, A stands for an external choice of input and output actions (Input �
Output). The Input action receives an input value through the channel input
and then behaves like the Add operation; this establishes a binding between the
variable e in the input communication and the homonymous input variable in
the schema Add . In the case of the Output action, a local variable is introduced
to create a binding with the corresponding variable in the Remove schema. Then
its value is communicated through the output channel.

We provide specialisation of this abstract unbounded buffer, BufferImp (see
Figure 3). It has a flexible capacity that duplicates whenever it is full. It is pos-
sible to query the ratio size/capacity. Furthermore, it provides double addition
capability.

The schema Add in BufferImp uses the super clause to reuse the original
behaviour of the Add operation of Buffer , plus duplicating the buffer length
whenever it is full. The schema Add2 adds two elements to the buffer by se-
quential executions of the Add operation. The operation FactorCapacity gives
the ratio between the buffer’s size and length. In Z, Ξ is used to indicate that
the state is unchanged by the operation, whereas Δ indicates the possibility of
state modification. The main action, after initializing the buffer initial length,
recursively offers the behaviour Input2 � Fac. The local action Input2 receives
two elements through the channel input2, adding them to the buffer by behaving
as Add2. The action Fac uses the Z schema FactorCapacity to inform the ratio
size/length.

The semantics of process inheritance is given by the parallel composition
of the main action of the subprocess with that of its immediate superprocess.
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channel length : N1

channel input2 : N.N
channel fc : R

process BufferImp =̂
extends Buffer begin

state St
length : N1

#queue ≤ length

Init
St ′

length? : N1

length ′ = length?

Add
ΔSt
super Add

#queue = length⇒ length ′ = length ∗ 2

Add2 =̂ Add o
9 Add [ f ?/e? ]

FactorCapacity
ΞSt
fc! : R

fc! = #queue div length

Input2 =̂ input2?e?f → Add2
Fac =̂ var fc : N • FactorCapacity ; fc!fc → SKIP

• length?length → Init ;
μX • (Input2 � Fac); X

end

Fig. 3. BufferImp: a subprocess of Buffer

The formal details are the subject of the next section. In our example, the
semantics of BufferImp is given by the parallel composition of its main action
with the Buffer main action. The schema Add is redefined in BufferImp and,
by dynamic binding, the redefined version is the one considered when the main
action of BufferImp is executed. Although relatively simple, this example already
illustrates one of our contributions: the extension of OhCircus to allow operation
redefinition and reuse in process inheritance.

3 Semantics

Three models to define the behaviour of a CSP process are formally established
in [10,17]: traces, failures and failures-divergences. A trace s ∈ traces(P) of a pro-
cess P is a finite sequence of symbols recording the events in which it has engaged
up to some moment in time. Another model to describe the process behaviour
is based on failures. A failure f ∈ failures(P) is a pair (s ,X ) meaning that after
the trace s ∈ traces(P), P refuses all events in X . Finally, failures-divergences
extend the failures model with the addition of the process divergences. A di-
vergence of a process is defined as a trace after which the process behaves like
Chaos , the most nondeterministic CSP process.

Perhaps the most well-established notion of process inheritance is that defined
in [22], in which a process Q is a subprocess of P if the following refinement
holds in the failures model: P � (Q \ (αQ − αP)), where αP is the alphabet
of a process P (set of events in which the process can engage), S1 − S2 stands
for set subtraction, and P \ S for a process that behaves as P but hiding the
events in the set S . Considering the failures semantics, the previous refinement
holds if and only if failures (Q .act \ (αQ .act − αP .act)) ⊆ failures(P .act).
This notion of inheritance from [22] is the same adopted in OhCircus. This is
reflected in the obligation that a subprocess main action (its behaviour) must
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refine, in the failures semantics, the main action (hiding the new events) of
its superprocess. In this way the substitutability principle is satisfied. We have
actually formally verified this refinement for Buffer and BufferImp presented in
the previous section, as can be found in [8].

A complete account of the Circus denotational semantics based on Hoare and
He’s Unifying Theories of Programming [11] is presented in [15]. As OhCircus is
a conservative extension of Circus we can use the semantics defined in [15] as
a basis to formalise the process inheritance notion. So if two processes P and
Q have, respectively, P .act and Q .act as their main actions, Q extends P ⇔
P .act �F Q .act \ (αQ − αP). Here we adopt the same model as that of [22],
and consider only failres (not divergences). The reason is that we use hiding in
our formulation, and this can introduce divergences, which, in general, makes
the failures-divergences refinement fail to hold.

3.1 Semantics of Inheritance

We define a semantics for process inheritance, from which we prove algebraic laws
that deal with this feature. Particularly, we define a mapping from processes with
inheritance into regular processes, whose semantics is completely defined in [15].
Therefore, it is possible to formally prove the soundness of the proposed set of
laws. We give a UTP semantics for a new parallel operator, which turned out to
be necessary in the definition of inheritance, as well as for the super clause and
the protected mechanism. Consider the processes Super and Sub below:

process Super
state st =̂ st1 ∧ st2
pps1
pps2
• act

end

process Sub =̂ extends Super
state st
pps
• act

end

In the above definition of Super we assume that the state st can be split into
state schemas st1 and st2; these are assumed to be qualified with protected and
default visibility mechanisms, respectively. The same visibility considerations
are assumed for the schemas Super .pps1 and Super .pps2. In the process given
below, Super .pps2

ref is obtained from Super .pps2 by eliminating the paragraphs
redefined in Sub.pps . Then, given the above considerations, the meaning of Sub
is defined as:

Sub =̂

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

begin state =̂ Super .st ∧ Sub.st
Super .pps1∧ Ξ Sub.st

Super .pps2
ref

∧ Ξ Sub.st

Sub.pps
• Super .act [[Super .st | Super .st ∧ Sub.st ]]Sub.act

end

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

In the context of Sub, paragraphs in Super .pps do not modify the state ele-
ments in Sub.st . The Z schema expression ΞSub.st captures this state preser-
vation. The effect of Super .pps1∧ Ξ Sub.st is to ensure that no paragraph in
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Super .pps1 modifies state elements in Sub.st ; the same is true of paragraphs
in Super .pps2

ref . Although all components of Super are in the scope of Sub,
only its protected components can be directly accessed by the original declared
elements of Sub; as already explained, those with the default qualification cannot
be accessed by Sub. Because Super .act can refer to any schema in Super .pps1 or
in Super .pps2, and these to any state in Super .st , we need to bring all protected
and default elements from Super to Sub.

Concerning the main action in the semantics of Sub, it is given by the parallel
composition of the main action of Sub with that of Super , but we need to impose
a protocol concerning access to the shared state elements. This required the
definition of a new parallel operator for OhCircus, as further explained in the
sequel.

3.2 A New Parallel Operator

As originally proposed for Circus (and OhCircus), the notation for parallel com-
position of actions A1 and A2, synchronising on the channels in the set cs is given
by A1[[ns1 |cs |ns2]]A2, such that the final state of the variables in ns1 is given by
A1 and those variables in ns2 by A2, with the restriction ns1 ∩ns2 = ∅. It avoids
conflicts about what action will determine the final value of a possible shared
variable. With this operator, it is not possible to capture the semantics of pro-
cess inheritance concerning the behaviour of the action in the subprocess. This
becomes evident from the main action of Sub, Super .act [[Super .st | Super .st ∧
Sub.st ]]Sub.act presented above. The restriction that the two sets (ns1 and ns2)
must be disjoint can be relaxed if we consider that the changes made in a state
component by a schema sc in a subprocess cannot contradict the changes made
by sc in its superprocess, since the former refines the latter; it follows the same
principle described in [12]. Also, note that, in the semantics of process inheri-
tance, we do not need the synchronization set cs , as there is no channel to be
shared by a sub and a super process. So our extension is based on a simpler form
of parallelism that is actually an interleaving.

Before giving the semantics of the new parallel operator, we introduce some
basic notions of the UTP. There are four pairs of observational variables used to
define the behaviour of a reactive program in the UTP: the boolean variable okay
indicates whether the system has been properly started in a stable state; okay ′

means subsequent stabilisation in an observable state; tr records the events in
which a program has engaged at some moment (tr ′ records such events at a later
moment); the boolean variable wait distinguishes the intermediate observations
of waiting states from final observations on termination; in a stable intermediate
state, wait ′ has true as its value (a false value for wait ′ indicates that the program
has reached a final state); all the events that may be refused by a process before
the program has started are elements of ref , and possibly refused events at a
later moment are referred by ref ′. In addition to these observational variables,
v and v ′ stand, respectively, for the initial and intermediate or final values of all
program variables.
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M||| =̂ tr ′ − tr ∈ (1.tr − tr ||| 2.tr − tr)

∧

⎛

⎜

⎜

⎝

(

(1.wait ∨ 2.wait) ∧
ref ′ ⊆ (1.ref ∪ 2.ref )

)

�wait ′�
¬ 1.wait ∧ ¬ 2.wait ∧ MSt

⎞

⎟

⎟

⎠

MSt =̂ ∀ v • (v ∈ ns1 ∧ v /∈ ns2
⇒ v ′ = 1.v)

∧ (v ∈ ns2 ∧ v /∈ ns1 ⇒ v ′ = 2.v)
∧ (v ∈ ns1 ∩ ns2⇒ v ′ = 1.v = 2.v)
∧ (v /∈ ns1 ∪ ns2⇒ v ′ = v)

Ui({v ′
1, . . . , v

′
n}) = i .v ′

1 = v1 ∧ . . .
∧ i .v ′

n = vn

Fig. 4. The semantics of our new parallel operator

The formal semantics of the new parallel operator is presented in Figure 4.
The merge function M||| is responsible for merging the traces of two actions, and
the final values of state components (MSt), local variables and also those of the
remaining UTP observational variables; ||| takes of two traces and gives a set
containing all the possible combinations of them. In M||| the sequence of traces
generated by the execution of A1 and A2, (tr

′ − tr) must be a sequence gener-
ated by the interleave composition of the traces of A1 and A2. The interleaving
terminates only if both actions do so. So if wait ′ is true it is because one of the
actions has not finished, 1.wait ∨ 2.wait , and the refusals is contained or equals
to the refusals of A1 and A2 together. Otherwise if wait ′ is false it means that
both actions has terminated ¬ 1.wait ∧ ¬ 2.wait and the state components and
local variables have changed according to the predicate generated by MSt . To
avoid name conflicts in the predicate we use a renaming function Ui that prefixes
with i the variables in these actions.

This predicate says that each variable in v is changed by A1 if it belongs
uniquely to ns1, by A2 if it belongs uniquely to ns2. If v ∈ ns1∩ns2, A1 and A2

must agree in the final value of v .

4 Laws

This section presents a small selection of a comprehensive set of algebraic laws
for OhCircus, particularly addressing specifications with a process hierarchy. The
complete set of laws can be found in [8], together with their proofs; these laws
range from simple transformations to introduce/eliminate state elements or para-
graphs, to more elaborate laws that capture moving elements between super and
subprocesses, some of which are presented in this paper. Each law is presented
in the form pds1 =pds pds2, meaning that the set of process declarations pds1
has the same semantics as the set of process declarations pds2 in the context of
process declarations pds . When a law is valid for any context, we omit the pa-
rameter pds . A law may also have a provided clause that contains the premises
that must be satisfied before its application. As an algebraic law has always two
directions of application, we must define the premises for each direction.
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Law 1 (process elimination)

pds pd1 = pds
where
pd1 = process P =̂ [extends Q ] begin • Skip end
provided
(↔) ¬ occurs(P , pds)
(←) occurs(Q , pds)

A process that has its main action as Skip (and is not referenced by other
processes) does not affect the meaning of a program in OhCircus, even if it
extends an existing process. We use the notation occurs(R, pds) to represent the
fact that the process R is used (as superprocess or in a process composition)
by at least one process in pds . For a left to right application of this law, the
first proviso guarantees that the process P is not used in pds . For a right to
left application, the first proviso ensures that the process declared in pd1 has
a fresh name in pds , whereas the second proviso guarantees that Q must have
been previously declared, so that it can be used as a valid superprocess of P. The
double arrow in the provided clause means that the condition applies in both
directions; otherwise the condition applies only in the direction pointed by the
arrow.

Law 2 (super elimination)

This law (see Figure 5) removes the super clause from a schema. To remove
super sc from a schema sc in R, it is necessary that there exists a protected
schema sc, in a superprocess of R, as made explicit in the figure. This super-
process must be the closest process to R in its hierarchy. If P .sc has the super
clause, this is first resolved; as a process hierarchy is a finite structure, it is al-
ways possible to find a schema without super. The symbol � stands for the Z
notation Ξ or Δ. This law is a direct consequence of the semantics of super and
has no side condition.

Law 3 (splitting a schema among processes)

If part of the behaviour of a schema in a superprocess (including a subset of
the state components, related declarations and a predicate) are relevant only
for one of its subprocesses, we can introduce a redefinition of this schema in
the subprocess and move this part of the original schema to the subprocess as
a redefinition of a schema in the superprocess with the remaining part of the
original schema.

The state components of P (see Figure 6) are partitioned in two sets st1 and
st2. P .sc, on the right-hand side, changes only st1, but st2 is left undefined.
R.sc includes P .sc and explicitly constrains the values of the st2 components
according to the predicate pred2; this requires that the state components in this
set have the protected access level. Finally there must be no redefinitions of P .sc
except in the subprocesses of R.
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process P =̂ extends Q
state st
protected sc
�st decls

pred

pps
• act

process R =̂ extends P
state st
sc
�st decls super sc

pred

pps
• act

=

process P =̂ extends Q
state st
protected sc
�st decls

pred

pps
• act

process R =̂ extends P
state st
sc
�st � P .sc.st
decls P .sc.decls

pred P .sc.pred

pps
• act

Fig. 5. super elimination

process P =̂ extends Q
state st1 ∧ protected st2
protected sc
�st1 � st2
decls1 decls2

pred1 pred2

pps
• act

end

process R =̂ extends P
state st
pps
• act

end

=pds

process P =̂ extends Q
state st1 ∧ protected st2
protected sc =̂

[�st1 decls1 | pred1]
pps
• act

end

process R =̂ extends P
state st
protected sc =̂

[�st2 decls2 super sc | pred2]
pps
• act

end

provided
(↔) ∀S ∈ pds | S ≤ P ∧ ¬ (S ≤ R) • ¬ occurs(st2 ,S .pps) ∧ ¬ occurs(st2 , S .act) ∧
¬ impact(st1, st2)
(→) PL(st2) ∧ N (sc) /∈ N (R.pps)

Fig. 6. splitting a schema among processes

In the provided clause in Figure 6, the function N defines the set of pro-
cess names of a set of process declarations. We overload the function occurs in
occurs(sc,R.act), occurs(sc,R.pps) and occurs(sc,R.sc). The former represents
the fact that the schema sc is used in R.act ; the second, the fact that sc is used
in R.pps ; the latter the fact that sc is referenced via the super clause in R.sc.
PL(sc) represents the fact that sc is a protected schema, and impact(st1, st2) is
true iff the value of a state component st1 is affected by the value of st2.

Law 4 (move action to subprocess)

If the main action of a process P (see Figure 7) can be written as a parallel
composition of two actions act1 and act2, that access exclusively st1 and st2,
respectively, we can move one of these actions (in this case, act2) to a subprocess
of P , say R. The state components in st2 must be protected, so it is possible to
refer to them in the R’s main action. This law changes the behavior of P , so
it cannot be extended by any process in pds except for R and its subprocesses
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process P =̂ extends Q
state st1 ∧ st2
pps
• act1[[st1 | st2]]act2

end

process R =̂ extends P
state st
pps
• act

=pds

process P =̂ extends Q
state st1 ∧ st2
pps
• act1

end

process R =̂ extends P
state st
pps
• act [[st | st2]]act2

provided
(↔)∀S | S ∈ pds ∧ S �= R • ¬ occurs(P , S)
(→)PL(st2)

Fig. 7. move action to subprocess

process P =̂ extends Q
state st1 ∧ st2
pps
• act

end

process R =̂ extends P
state st
pps
• act

=pds

process P =̂ extends Q
state st1
pps
• act

end

process R =̂ extends P
state st ∧ st2
pps
• act

provided
(↔)st2 is protected
(→) ∀S | S ≤ P ∧ ¬ (S ≤ R) • ¬ occurs(st2 ,S .pps) ∧ ¬ occurs(st2 ,S .act)
(←) ∀S | S ≤ P ∧ ¬ (S ≤ R) • st2 /∈ PS(S .st)

Fig. 8. move state component to subproces

(indirectly). Finally, P cannot be used by any process declared in pds , except
via inheritance as already mentioned.

Law 5 (move state component to subproces)
A state component st2 (see Figure 8) of a process P can be moved to one of
its subprocesses, say R, if st2 is not used by P neither by its subprocesses,
except those that are also subprocesses of R, including itself. For these, the state
component st2 will be inherited from R instead of P , and no restriction must
be applied to them. It must be clear that st2 is unique through the P process
hierarchy. The provisos consider P .st2 as a protected element. The function PS
yields, from a set of state components, those in the protected level.

Law 6 (move a protected schema to subprocess)
To move a schema sc (see Figure 9) from P to R, where R < P , it is necessary,
if sc is protected, that it is not being used by P , neither by its subprocesses,
except for those that are also subprocesses of R. Note that we can apply this
law, even if a subprocess of P (except for R) has a redefinition of sc.

To move a protected schema R.sc to P , where R < P , we must guarantee
that neither P nor its subprocesses, except for those that are also subprocesses
of R, have a schema named sc.
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process P =̂ extends Q
state st
protected sc
pps
• act

end

process R =̂ extends P
state st
pps
• act

=pds

process P =̂ extends Q
state st
pps
• act

end

process R =̂ extends P
state st
protected sc
pps
• act

provided
(↔) ∀S | S < P ∧ ¬ (S < R) • ¬ occurs(sc, S .pps) ∧ ¬ occurs(sc, S .act)

Fig. 9. move a protected schema to subprocess

Law 7 (subprocess extraction)
In the initial specification of a system it is common to model processes with
a very specific behaviour that hides a generic behaviour specialized in face of
a particular situation. We propose a law (see Figure 10) that extracts from a
process this generic behaviour as a superprocess specializing it with a subprocess.
This promotes code reuse and favors a better conceptual representation of the
system. The set R.pps ′2 in R stands for the schemas in P .pps2 affected by the
law, and the set P .pps ′′2 stands for the updated set P .pps2.

Particularly, it can be proved (see Figure 10) from laws 1, 4, 3, 6, 2 and 5
(LHS stands for the left hand side of the law). First Law 1 is applied creating the
process P ′; It is easy to observe that P ′ is equivalent to P . In the next step we
apply a double renaming [P ,R/P ′,P ] (which clearly preserves the behaviour,
since the semantics of P is preserved) followed by Law 4, which moves some
elements from R to P . Law 3 is then applied for each schema in R.pps2; the
set R.pps ′2 stands for the schemas in R.pps2 affected by the law and P .pps ′′2 for
those created in P ; as part of this transformation, Laws 6 and 2 are needed when
there are protected schemas involved, but we omit these details for conciseness.
Finally, Law 5 is applied to move of the unused state components of R to P .

An important issue is a notion of completeness for the proposed set of laws,
particulary with respect to inheritance. Our measure for the completeness of
the proposed laws is whether their exhaustive application is capable to remove
all subprocesses from the target specification. Broadly, by exhaustively applying
Law 7, from right to left, we are able to completely remove process inheritance
from the specification. In practice, however, it is more common to apply the laws
in the opposite direction, since the purpose in design evolution is to introduce
(rather than eliminating) inheritance.

5 Case Study

Consider the process Buffer as defined in Figure 11. Our intention is to transform
this design into a more reusable one, as presented in Section 2.1 (see Figures 2
and 3). The process Buffer (in Figure 11) encompasses two abstractions: an
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process P =̂ extends Q
state st1 ∧ st2
pps1∧ Ξ st2

pps2
• act1[[st1 | st1 ∧ st2]]act2

end

=pds

process R =̂ extends Q
state st1
pps1
pps ′2
• act1

end

process P =̂ extends R
state st2
pps ′′2
• act2

end

provided
(↔) R /∈ N (pds)
proof

LHS = [Law 1]

process P =̂ extends Q
state st1 ∧ st2
pps1∧ Ξ st2

pps2
• act1[[st1 | st1 ∧ st2]]act2

end

process P ′ =̂ extends P
• Skip

end

= [Law4]

[P ,R/P ′,P ]

process R =̂ extends Q
state st1 ∧ st2
pps1∧ Ξ st2

pps2
• act1

end

process P =̂ extends R
• act2

end

=[Law 3]

process R =̂ extends Q
state st1 ∧ st2
pps1∧ Ξ st2

pps ′2
• act1

end

process P =̂ extends R
pps ′′2
• act2

end

=[Law 5]

process R =̂ extends Q
state st1
pps1
pps ′2
• act1

end

process P =̂ extends R
state st2
pps ′′2
• act2

end

Fig. 10. subprocess extraction

abstract unbounded buffer with no concerns about memory space, and a more
concrete specialisation that deals with practical memory limitations and offers
more functionalities: memory size monitoring and double buffer addition.

Separating these concerns increases reuse and maintainability, and the nature
of the design is more faithfully reflected. To achieve these benefits Law 7 (sub-
process extraction) can be applied generating the two processes shown in Section
2.1. A key point, before applying the law, is the adaptation of the specification
of BufferImp to exactly match the left-hand side of Law 7.

Figure 12 shows part of the adaptations we need to perform to apply this law.
As a first step, the schemas Add and Remove are signed as protected. Then,
the process state is represented as a conjunction of St1 and St2; the initialization
schema and main action are split accordingly. These transformations are justified
by laws of actions, which are not our focus here but can be found in [5]. With



Algebraic Laws for Process Subtyping 17

channel input , input2, output : N
channel length : N1

channel fc : R
channel start

process Buffer =̂ begin

state St
queue : seqN
length : N1

#queue ≤ length

Init
St ′

length? : N1

queue ′ = 〈〉
length ′ = length?

Add
ΔSt
e? : N

queue ′ = 〈e?〉� queue
#queue = length⇒

length ′ = length ∗ 2

Remove
ΔSt
e! : N

#queue > 0
e! = last queue
queue ′ = front queue

Add2 =̂ Add o
9 Add [ f ?/e? ]

FactorCapacity
ΞSt
fc! : R

fc! = #queue div length

Input =̂ input?e → Add
Output =̂ (#queue > 0)&

var e : N • Remove; output !e → SKIP

Input2 =̂ input2?e?f → Add2
Fac =̂ var fc : N • FactorCapacity ; fc!fc → SKIP

• start → length?length → Init ;
μX • (Input � Output � Input2 � Fac); X

end

Fig. 11. Buffer without inheritance

these transformations we can apply Law 7. As explained in the previous section,
it embodies several small transformations, resulting in the design in Section 2.1.

6 Conclusions

In this work we proposed a set of sound algebraic laws for OhCircus, with focus
on process inheritance. As far as we are aware, this is an original contribution,
as it seems to be the first systematic characterization of a comprehensive set
of laws for process inheritance in the context of rich data types and access
control for state and behaviour components. With this goal in mind we started
by defining a notion of process inheritance in OhCircus. Extending the model of
process inheritance [22] for CSP, based on the failures model [10], we defined the
semantics for process inheritance in OhCircus.

The original design of OhCircus makes process components invisible even for
its subprocesses, which prevents code reuse. This motivated us to extend the
syntax and the semantics of OhCircus through the creation of a new access level
to signalise the superprocess elements that will be visible to its subprocesses.
This also required the definition of typing rules [8] for the new constructs, but
we were able to achieve a conservative extension of OhCircus [5,15,18], despite the
fact that we needed to introduce a new parallel operator, and its UTP semantics,
to be able to define the meaning of process inheritance.

We illustrated our overall strategy in a case study where we apply some of the
proposed laws. In [8] we address soundness in detail. We have also developed a
tool to support our strategy based on the Eclipse Modelling Framework (EMF),
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process Buffer =̂ begin

state =̂ St1 ∧ St2
. . .

St1
protected queue : seqN

St2
length : N1

#queue ≤ length

protected Add
ΔSt
e? : N

queue ′ = 〈e?〉� queue
#queue = length⇒

length ′ = length ∗ 2

. . .
• start → Init1;

μX • (Input � Output); X
[[St1 | St1 ∧ St2]]

length?length → Init2;
μX • (Input2 � Fac); X

end

Fig. 12. Buffer adaptations

which was chosen mostly because of the facility for integrating the variety of
tools needed, which is archived by the use of a default metamodel, Ecore, across
most of EMF technologies. Among EMF tools, we used Xtext for describing the
OhCircus language, and ATL (Atlas Transformation Language) to encode the
algebraic laws and to carry out the mechanised application of the laws. These
have not been addressed here for space limitations.

Several works have addressed notions of behavioural subtyping [7,12,16,22]
[1,2,3,4]. In [1,12] a subtype relation is defined in terms of invariants over a
state, in addition to pre/post conditions and constraint rules over methods. The
other cited works define a subtype relation based on models like failures and
failures-divergences proposed for CSP, relating refinement with inheritance [22].

In [12] a subtype is allowed add new methods, provided there exists a function
that maps these new methods as a combination of the supertype methods; this
is not allowed in [22]. Here we allow, in a subtype, new methods like in [12] and
even new state components, method overriding, reducing non-determinism, and
methods that change both inherited and declared attributes.

Previous works have proposed refinements and algebraic laws for Circus [5,18]
and these are consequently applicable to OhCircus. In [18] the meaning of re-
finement of processes and their actions are defined based on forward simulation.
It also provides an iterative development strategy, involving the application of
simulation, action and, most importantly, process refinement. In this context,
our work complements [18] with a formal notion of process inheritance and the
associated laws.

The mechanization of the formal semantics of Circus given in the UTP is
provided in [15]. The extension of this work for OhCircus, in the form proposed
here, is our next immediate goal.
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