
Formal Models of SysML Blocks

Alvaro Miyazawa1, Lucas Lima2, and Ana Cavalcanti1

1 Department of Computer Science, University of York, York, UK
{alvaro.miyazawa,ana.cavalcanti}@york.ac.uk

2 Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
lal2@cin.ufpe.br

Abstract. In this paper, we propose a formalisation of SysML blocks
based on a state-rich process algebra that supports refinement, namely,
CML. We first establish a set of guidelines of usage of SysML block defi-
nition and internal block diagrams. Next, we propose a formal semantics
of SysML blocks described by diagrams that conform to our guidelines.
The semantics is specified by inductive functions over the structure of
SysML models. These functions can be mechanised to support automatic
generation of the CML models.

Keywords: CML, SysML, process algebra, refinement, semantics.

1 Introduction

SysML is an extension of UML 2.0 to support modelling for systems engineering.
In recent years, it has increasingly been supported by a number of tool vendors
such as IBM [13], Atego [1] and Sparx Systems [19].

Our aim is to support the application of formal analysis tools and techniques
at the level of the graphical notations used in current industrial practice. In par-
ticular, in this paper, we present our results on formalising the notion of SysML
blocks including their related elements such as associations, compositions, gen-
eralisations, ports, interfaces and connectors. This is achieved by a denotational
semantics of SysML blocks in the COMPASS modelling language (CML) [22], a
formal specification language that supports a variety of analysis techniques [4].

Whilst SysML is an informal graphical notation, CML builds on well known
and widely used formal specification languages: VDM [9] and CSP [12]. Its ap-
proach to modelling reactive behaviour and its semantic model are those adopted
in the Circus [3] family of refinement languages.

The semantics of both CML and Circus use the Unifying Theories of Pro-
gramming to cater for object-orientation [17], time [18], and synchronicity [2],
for instance.The distinguishing feature of CML and Circus is the support for
modelling at various levels of abstraction, and compositional refinement, includ-
ing formal derivation (or verification) of code.

We present a denotational semantics for blocks in SysML models using CML.
Its main distinctive feature is the fact that it can be used as an integration
context for formal models of other SysML elements such as state machine, activ-
ity and sequence diagrams. The semantic function is formalised via translation

L. Groves and J. Sun (Eds.): ICFEM 2013, LNCS 8144, pp. 249–264, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

250 A. Miyazawa, L. Lima, and A. Cavalcanti

rules, which can be used to generate CML models of blocks automatically; they
are presented in [14]; here we illustrate the modelling approach via examples.
Currently, our translation rules are being used as a basis for an implementation
of a CML semantics of SysML based on the Atego’s Artisan Studio [1]. As far
as we know, there are no formal accounts in the literature of the behavioural
semantics of SysML blocks that support integration with other diagrams.

The CML semantics enables a variety of refinement-based analysis of SysML
models. CML tools [4] include an Eclipse-based development environment (parser
and type-checker) with links to Artisan Studio [1] to support design using SysML
and RT-Tester [20] for test automation, and plug-ins that support the generation
of proof obligations, simulation, theorem proving based on Isabelle/HOL [16],
model checking, and the application of a refinement calculus. The use of CML
to reason about systems of systems is discussed in [22], and compositional
refinement-based reasoning techniques are described and formalised in [15].

In SysML, the behaviour of blocks may be specified by state machine dia-
grams, and operations may be specified by activity diagrams, which describe a
form of flowchart. Sequence diagrams may be used to model particular scenarios
of interaction between elements of the model. Our approach considers process
models for state machine, activity and sequence diagrams. An approach to the
construction of these models is described in [14].

This paper is structured as follows. Sections 2 and 3 briefly present CML
and SysML. Section 4 describes our guidelines of usage of SysML blocks and the
formal model of SysML blocks by means of a simple example. Section 5 discusses
related work and Section 6 summarises our results and discusses future work.

2 CML

A CML specification consists of a number of paragraphs, which at the top level
can declare types, classes, functions, values (i.e., constants), channels, channel
sets, and processes. Both classes and processes declare state components, and
may contain paragraphs declaring types, values, functions and operations. Pro-
cesses also have actions, which provide a behavioural specification including data
operations (using VDM) and interaction patterns (using CSP).

Processes are the main elements of a CML specification; systems and their
components are both specified by processes that encapsulate some state and
communicate with each other and the external environment via channels. A
process may declare any number of actions, and must contain an anonymous
main action, which specifies the behaviour of the process.

Other features of CML used in this paper are explained as necessary. For
further details on CML, we refer to [21,22]. An example is presented in Figure 1.

This specification declares a type Item of natural numbers, a constant MAX, two
channels put and get that communicate values of type Item, and four processes.
The first process, Producer, has a state component i whose initial value is 0; it
records the number of items sent through put. Its behaviour is defined by a re-
cursive action that increments i, sends i through put (put.i) and waits one time

Formal Models of SysML Blocks 251

types
Item = nat

values
MAX = 5

channels
put , get: Item

process Producer = begin
state i: nat := 0
@ mu X @ i := i+1; put!i -> Wait (1); X

end
process Consumer = begin

@ mu X @ get?x -> Wait (2); X
end
process Buffer = begin

state b: seq Item
@ mu X @ ([len b > 0] & get !(hd b) -> b := tl b

[] [len b < MAX] & put?x -> b := b^[x]
); X

process System = (Buffer [|{| put ,get |}|]
(Producer ||| Consumer))\{|put ,get|}

Fig. 1. CML excerpt

unit (Wait(1)) before recursing (X). Consumer reads a value x from get (get?x) and
waits two time units before recursing. Buffer maintains a sequence b of values
of type Item, and recursively allows a choice ([]) of communications on put and
get depending on whether b is not empty (len b > 0) or not full (len b < MAX).
The value output via get is the first element of b (hd b), and the value x input
via put is appended to the end of b (b := b^[x]).

The overall specification is given by the process System, which composes in
parallel the three previous processes. Producer and Consumer are composed in
interleaving (|||), that is, without communication, and their composition is put
in parallel ([|{|put,get|}|]) with Buffer synchronising on the channels put and
get. Finally, these channels are made internal using the hiding operator (\).

Another example of a CML model is sketched in Section 4.

3 SysML

SysML is built as a UML profile, that is, it reuses part of the UML metamodel
and extends it with some specific features from system engineering. The classic
software-centric focus of UML, through class and composite structure diagrams,
has been moved to the system level in SysML by the introduction of the block
definition diagram (bdd) and internal block diagram (ibd). The UML notion of
interfaces has been focused in SysML on system-level interfaces by the introduc-
tion of ports, which are located in the boundary of a block and may communicate

252 A. Miyazawa, L. Lima, and A. Cavalcanti

Fig. 2. Block Definition Diagram

service-based data and flow-based items; we identify two sides of a port with
respect to the block that contains it: internal and external. Blocks are based
on UML classes and composite structures with some changes and extensions.
A block is defined in terms of a structural part, which can include constraints,
properties (simple attributes), and parts (that may be typed by another block),
and a behavioural part, which is defined in terms of operations and signals.
Blocks can communicate with each other by sending events, which correspond
to sending a signal or an operation call from one block to another. Whilst signals
and operation calls are elements of the model, signal events and operation call
events are occurrences of the model elements in a particular time point.

A bdd defines a structure of blocks and their relationships such as associa-
tions, generalisations, and dependencies. It is based on UML class diagrams with
restrictions and extensions. Figure 2 shows an example where the block System
is linked by a part-whole association (known in UML as composition) to three
other blocks: Machine, Screen and Monitor. This diagram provides a view of the
main components of the example we use here to illustrate our semantics. The
actual configuration of the parts of System is described by the ibd in Figure 3.

An ibd is a modified version of a UML composite structure diagram. It cap-
tures the internal organization of a block in terms of its parts and the connection
between them. Whilst in a bdd the blocks can be compared to classes, in an ibd
the connected parts resemble instances of classes. Usually, these parts are typed
by other blocks, hence, the diagram explains how the instances of blocks com-
municate with each other. Such communications can be represented by a direct
link between the parts or by connected ports. For example, the ibd in Figure 3
shows that the blocks Monitor and Screen have each one port (p and p2, re-
spectively), Machine has three ports (m1, m2 and p1), and System has one port
(p3). Ports may restrict the kind of communication that can happen between
blocks by specifying interfaces, which define the operations and signals that the

Formal Models of SysML Blocks 253

Fig. 3. Internal Block Diagram

block provides and requires. For instance, the port p1 in Figure 3 provides the
interface I, which contains signals that control the machine, and requires the
interface IO, which contains an operation that allows printing. Further details
of our running example are presented where necessary.

In the next section, to explain our approach to define CML models of SysML
blocks, we present the formal model of our running example.

4 Formal Models of SysML Blocks

We assume that the SysML model is sufficiently complete to allow the derivation
of a well formed CML model. This assumption is decomposed in a number of
guidelines that can be divided into three groups:

Entity Definition. These guidelines require that elements such as operations,
blocks and associations are defined somewhere in the model. For instance, it
requires that operations are defined either via the action language, a state
machine or an activity diagram.

Instance Definition. These guidelines require that enough information about
the instances of composite blocks is available. For instance, it requires that
the parts of a composite block and their interconnections are specified.

Simplification Assumptions. These guidelines provide alternatives to the use
of certain elements, where they have an equivalent counterpart, or define how
they can be used. An example of such guidelines is the requirement that

254 A. Miyazawa, L. Lima, and A. Cavalcanti

asynchronous operations are modelled as signals. This requirement stems
from the fact that the meaning in SysML of an asynchronous operation with
return value is unclear and that asynchronous operations without return
values and signals can be considered equivalent. In this case, the guidelines
propose the use of signals as an alternative to asynchronous operations.

The full list of guidelines can be found in [14]. A SysML model that respects
our guidelines has the following structure. It is formed by blocks that may have
properties and offer services defined by operations and signals. A simple block
contains properties, operations, signals and ports, whilst a composite block con-
tains parts that are typed by blocks and ports. A block is defined in the SysML
metamodel and its content is obtained from the diagrams that refer to it.

Our CML definition of a SysML block is specified by a semantic function that
calculates the model of a block in terms of the models of its parts. This semantic
function is formalised by translation rules, whose compositional nature makes
traceability viable as they allow us to identify which parts of the CML model
that they define correspond to particular elements of a given SysML model.
Moreover, as opposed to ad hoc rules for model transformation, the semantic
function formalised by our translation rules can be encoded in a theorem prover
to support both the validation of the semantics and the analysis of the model
using techniques based on theorem proving.

4.1 Structure of Models

We model a block as a CML process, where the state characterised by its prop-
erties is encapsulated (not accessible externally). For this reason, access to prop-
erties as well as interaction via operations and signals are modelled as commu-
nications through channels. The CML process that models a block can receive
requests to read and write to the block’s properties, as well as signals and op-
eration calls. Each of these requests are received through CML channels whose
names are the names of the blocks properties prefixed by set_ and get_, or the
name of the block appended with _op and _sig. Finally, a channel _addevent is
used to delegate the treatment of event to the environment, which, for instance,
can be a process that models an activity or a state machine diagram.

In general, a SysML model may contain a number of blocks that are not related
to each other. In this case, our CML model consists of a number processes, one
for each block, that are also not related to each other. An analysis needs therefore
to focus on a particular process.

The model of a simple block is formed by the parallel composition of two
or more basic processes: one specifying the behaviour of the block’s parent,
another called simple_ process, modelling the behaviour of the block itself, and
the remaining modelling the block’s ports. This allows the reuse of the model of
the parent block to reflect the structure of the SysML model in CML. A CML
process that models a composite block is defined in terms of the processes that
model its parts and ports.

Formal Models of SysML Blocks 255

Table 1. SysML-CML correspondence

SysML element CML element
Simple block Process
Composite block Process
Port Process
Connector Channel
Interface Class
Operation call Record type
Signal Record Type
Event Communication

A port is modelled by a process that uses four channels: ext_op, ext_sig,
int_op and int_sig. The first two allow the port to interact with a component
external to the block by sending and receiving signals and operation calls as well
as responses to operation calls. The last two are used to communicate with the
model of the block. The behaviour of a port is to restrict which values can be
received at each channel, and relay the accepted values to the equivalent channel
on the other side of the port.

Table 1 shows the correspondence between elements of a SysML model and
elements of CML. In general, a SysML element that exhibits some form of be-
haviour, namely, blocks and ports, are modelled by CML processes; connectors,
which specify communication links, are modelled by channels; static elements
(i.e, without intrinsic behaviour), namely operational calls and signals, are mod-
elled by record types, and interfaces, which are collections of static elements are
modelled by classes. Operation calls are considered static because they specify
the message that is sent to blocks, not the behaviour of the operation itself,
which is usually specified by a state machine or activity diagram. Events, like
the communication of signals, are modelled by CML communications.

4.2 Integration with other SysML Model Elements

In our approach, the processes that model state machine and activity diagrams
accept events through a channel addevent. These events are added to an event
pool and are processed according to the semantics of the element (state machine
or activity diagram). The processing of events may lead to the generation of new
events as well as to changes to the state of the block that is associated with state
machine or activity diagram. The models of sequence diagrams use the channels
of the blocks included in the diagram.

To obtain the integrated model of a block whose behaviour is specified by a
state machine diagram or whose operations are specified by activity diagrams,
the processes that model the state machine and activity diagrams are composed
in parallel with the process that models the block. Each of these processes syn-
chronise on the events associated with a channel _addevent whose parameters
include the operations and signals treated by the activity or state machine di-
agrams. For instance, if a state machine diagram treats the operations check,

256 A. Miyazawa, L. Lima, and A. Cavalcanti

Fig. 4. Integrated Model Analysis Approach

and an activity diagram responds to a signal off, the synchronisation sets should
be as follows. The first synchronisation set includes all events of the channel
addevent where the first three parameters (representing the instance, source and
target of a signal or operation call) are unrestricted and the fourth is limited to
values whose type is the input record type of the operation check. Similarly, the
second synchronisation set includes all events of the channel addevent where the
first three parameters are unrestricted and the fourth is limited to values of the
record type of the signal off.

Figure 4 illustrates an approach to the analysis of SysML models by estab-
lishing consistency between a sequence diagram, which describes possible valid
traces, and the SysML model described by the blocks, and activity and state ma-
chine diagrams. The integrated CML model can be validated by reasoning tools,
like a model checker, in order to check whether the system model is compatible
with the flows of execution specified by the sequence diagram.

In the following sections, we present in more detail the model of blocks.

4.3 Structure of the CML Specification

Figure 5 gives an overview of the formal model of our example; it consists of a
number of type declarations that encode the operations and signals found in the
model, and classes that group some of these types. Additionally, channels and
processes are declared to model SysML connectors and blocks.

A global type ID is used to identify instances of blocks as well as instances
of model elements such as ports and states. It is declared as sequences of type
token, which is the most unspecified type in CML, supporting only comparison.
The use of sequences to identify instances allows us to produce unique identifiers
based on the hierarchical structure of the models.

Next, a number of types are declared: two for each operation and one for each
signal. These types encapsulate the parameter of the operations and signals. All
the operation types are gathered in the type OPS, and similarly all signal types
are gathered in the type S. These two types are then joined to form the type of all
messages MSG. Next, classes are defined to declare the types of operations, signals
and messages that correspond to the operations and signals of a block, port or
interface. In the case of a port, the class is defined in terms of the interface
classes and further distinguishes operations and signals according to the type of
interface: provided or required.

Formal Models of SysML Blocks 257

types
ID = seq of token
check_I = <check_I > ... fix = <fix > ...
OPS = check_I | check_O | print_I | print_O
S = fix | on | off
MSG = OPS | S

class I_types = ...
channels

c_m1_p.ops: nat*ID*ID*OPS
...
c_p1_p2.sig: nat*ID*ID*S

process Machine = ...
process Screen = ...
class Monitor_types ...
channels

Monitor_op : nat*ID*ID*OPS Monitor_sig : nat*ID*ID*S
Monitor_addevent : nat*ID*ID*MSG

process simple_Monitor = ...
process bare_Monitor = id: ID @ simple_Monitor (id)
process Monitor = ...
process System = ...

Fig. 5. Overview of the formal model of the example in Figure 2 and 3

Next, for each connector, two channels are declared. The values communicated
by these channels correspond to instances of operation calls and signals dispatch;
they identify the instance of the call or dispatch (using a natural number), the
source and destination of the message (using ID values), and the message itself
including any parameters (a value of type OPS or S).

Finally, the models of each of the blocks and ports are declared. These include
new types and channel declarations as well as processes and channel sets.

4.4 Simple Blocks

The model of a simple block comprises a class, a number of channels and three
processes. Figure 5 shows an overview of the declarations associated with the
block Monitor in Figure 2. First, the class containing the types of signals and
operations of the block is declared, and then the three channels previously de-
scribed: _op, _sig, _addevent. Finally, the three processes that specify the be-
haviour of the block are declared.

The details of the process simple_Monitor are shown in Figure 6. This process
is parametrised by a value that identifies an instance of the block. For example,
the process that models the part monitor1 in Figure 3 is an instantiation of
the process Monitor with an identifier id^[mk_token(monitor1)], where id is the
identifier of an instance of the block System.

258 A. Miyazawa, L. Lima, and A. Cavalcanti

process simple_Monitor = id: ID @ begin
state enabled : Bag := empty_bag
actions

Monitor_state = Skip
Monitor_requests = mu X @ (

Monitor_op ?n?o!id?x:(is_Monitor_types ‘check_I (x)) -> (
[is_Monitor_types ‘check_I (x)] &

Monitor_addevent !n!o!id!x -> Skip;
enabled := bunion(enabled , Monitor_types ‘check_O)

) [] Monitor_op ?n?o!id?x:(in_bag(x,enabled)) -> (
[is_Monitor_types ‘check_O (x)] &

enabled := bdiff(enabled , Monitor_types ‘check_O)
) [] ...

); X
@ Monitor_state [||{}|{ enabled }||] Monitor_requests

end

Fig. 6. Process simple_Monitor

The process simple_Monitor declares a state containing all the properties of
the block, and an extra component enabled whose type is a bag of elements of the
type OPS. This component models the responses to operation calls that the block
can communicate, and since multiple calls to the same operation may occur, this
state component must be able to hold any number of identical values, thus the
use of a bag. The component enabled is initialised with the empty bag. Next,
two actions are declared: the first controls access to the state components that
model block properties, and the second controls the communication of operation
and signal messages. The two actions are composed in interleaving to specify the
overall behaviour of the process (main action).

Since Monitor does not have properties, the state of the process declares a
single component, namely enabled, and the action that controls the access to the
block properties is declared as Skip, that is, the action that terminates imme-
diately. If a block has properties, the state declares corresponding components,
and this action recursively offers a choice between reading or writing to the state
components through the channels set_ and get_.

The second action Monitor_requests controls which signals and operation calls
can be accepted by the block, and which values can be communicated as a re-
sponse to an operation call. This action is recursive; each cycle corresponds to the
handling of a signal or operation call, or the response to an operation call. Each
cycle offers a choice between receiving values of an input record type or sending
values of an output record type on the channel Monitor_op, and receiving values
of a signal record type on the channel Monitor_sig. The input types that can be
received are restricted to those in the class Monitor_types, which contains the
signal, input and output record types of the signals and operations in the block

Formal Models of SysML Blocks 259

Monitor. The restriction of the communication is achieved by constraining the
parameter x of the communication Monitor_op?n?o!id?x, which corresponds to
a signal or operation call, with the predicate is_Monitor_types‘check_I(x). The
function is_Monitor_types‘check_I becomes available in the CML specification
when the type Monitor_types‘check_I is declared.

After receiving any value x of the input record type of one of the operations
in the block, the event is communicated through the channel Monitor_addevent
(and can then be treated by the environment, perhaps characterised by state
machine or activity diagrams, as explained in Section 4.2). Since values of out-
put record types can only be communicated after a corresponding input record
type value has been received (that is, an operation can only terminate after
it has been started), after sending the event through Monitor_addevent, all the
possible values of the output record type of the operation are added to the bag
enabled.

The second possible communication in a cycle of the recursion restricts the
possible values of output record types that can be communicated. Only val-
ues that are in the component enabled can be communicated as a response to
an operation call. Once the communication is completed, one instance of each
value of the appropriate output record type is removed from the bag. The third
choice treats signals in a way similar to the treatment of operation calls just
explained.

The two actions Monitor_state and Monitor_requests are composed in in-
terleaving to define the main action of the process. The interleaving operator
[{}||{enabled}] partitions the state between the actions to avoid race condi-
tions. In the process simple_Monitor, the first action has no write access to the
state, and the second action has write access to the state component enabled.

Processes prefixed by bare_ model SysML’s generalisation (inheritance) re-
lation as interleaving. If a block A has parents B and C, the process bare_A is
the interleaving of simple_A, bare_B and bare_C, renaming the channels of the
last two processes to match those of simple_A. This is necessary to allow signals
and operations defined in the parents’ models to be communicated through the
channel of A. The process bare_Monitor in Figure 7 is just the instantiation of
simple_Monitor because Monitor does not have parents.

Monitor, depicted in Figure 7, is the parallel composition of bare_Monitor
and the process modelling the port p (port_p) with its p_int_op and p_int_sig
channels (see Section 4.6) renamed to the corresponding channels in the block
Monitor. The renaming is necessary to synchronise these channels and the chan-
nels of the block to model the fact that values received in the port of a simple
block are relayed to the block. This parallel composition synchronises on the
channels Monitor_op and Monitor_sig where the source and destination of the
communication are the block and the port, and vice-versa. That is, the events on
those channels that communicate values between the port and the block. These
events are then made internal through the hiding operator (\) because the com-
munication between a block and its ports is implicit in the SysML model.

260 A. Miyazawa, L. Lima, and A. Cavalcanti

Fig. 7. Structure of the process Monitor

4.5 Composite Blocks

The model of a composite block is a process that composes in parallel the models
of its parts and ports. The pattern of communication within the parallelism
is determined by the connectors between the parts and ports. The channels
associated with a connector are used to rename the channels of processes that
model the blocks or ports to which the connector is attached. The renamed
processes are then composed in parallel synchronising on the channels associated
with the connectors. Figure 8 gives an overview of the structure of System.

The body of the process System is defined as the parallel composition of five
processes (four parts and one port), whose channels have been renamed with
the channels associated with any connectors reaching the block or its ports,
synchronising on the channels associated with the connectors. For instance, the
process Machine(...) has the external channels of the ports m1, m2 and p1
renamed to the channels of the connectors from m1 to p, m2 to p, p1 to p3, and
p1 to p2, and similarly the channels of the processes that model the ports p, p2
and p3 are renamed with the channels of these connectors. The synchronisation
between these channels is depicted in Figure 8 by the curves lines connecting the
processes (represented by boxes). Whilst in the case of ports in the parts of the
block the renaming occurs on the external channels of the port, in the case of
ports in the block itself, the renaming takes place on the channel associated with
the internal side of the port. This can be observed in Figure 8 by the connection
between the channels (straight lines with black dot) p3_int_op and p1_ext_op,
and the channels p3_int_sig and p1_ext_sig. The renaming of port channels by
connector channels is necessary because the ports of a block may be linked to

Formal Models of SysML Blocks 261

Fig. 8. Overview of the model of the block System

different connectors in different contexts, and thus the link must be established
at the level of the port process instantiation, and not in its declaration.

4.6 Ports

The models of ports consist of a class, four channels and one process. The class
differs from that of blocks and interfaces in that it distinguishes between opera-
tions and signals contributed by provided and required interfaces; it defines six
types, three for provided interfaces and three for required interfaces. These types
identify the input, output and signal record types that are defined in terms of
the interfaces. For port p1, the type of provided signals is defined as the type S
of the provided interface I.

The four channels declared for a port allow the communication of operation
and signal records from both sides of the port (internal and external). These
channels are used in the process port_p1 to restrict the kind of message that can
be received in the port depending on the direction, and also to relay the message
to the appropriate destination. For instance, calls for provided operations (values
of a provided input record type) can only be received on the external channel
p1_ext_op. In this case, the port relays the message through the internal channel
p1_int_op. Notice that whilst the message is received by the port (third param-
eter of the communication is id), it relays the message from the port to some
unknown target (?y). This reflects the fact that the target of the message is not
determined until the port is associated with a block. This is achieved through
renaming as shown in Figure 8 by the connection between the channels.

262 A. Miyazawa, L. Lima, and A. Cavalcanti

process port_p1 = id: ID @ begin
@ mu X @ (

p1_ext_sig ?i?o!id?x:(is_p1_types ‘P_S) ->
p1_int_sig .i.id?y.x -> Skip

[] p1_int_sig ?i?o!id?x:(is_p1_types ‘R_S) ->
p1_ext_sig .i.id?y.x -> Skip

[] p1_ext_op ?i?o!id?x:(is_p1_types ‘P_I) ->
p1_int_op .i.id?y.x -> Skip

[] p1_int_op ?i?o!id?x:(is_p1_types ‘P_O) ->
p1_ext_op .i.id?y.x -> Skip

[] p1_ext_op ?i?o!id?x:(is_p1_types ‘R_O) ->
p1_int_op .i.id?y.x -> Skip

[] p1_int_op ?i?o!id?x:(is_p1_types ‘R_I) ->
p1_ext_op .i.id?y.x -> Skip

); X
end

Fig. 9. Overview of the communication patterns of a port

The complete formalisation of the semantics of SysML blocks as well as state
machine, activity and sequence diagrams can be found in [14].

5 Related Work

Graves [10] proposes a representation of a restricted subset of SysML block
diagrams in OWL2, which is a language for knowledge representation based
on a description logic. Ding and Tang [5] proposes a representation of SysML
block diagrams directly in a description logic. In both cases, block diagrams are
restricted to include only associations and simple blocks.

Graves and Bijan [11] extend [10] by encoding SysML diagrams into a type
theory that axiomatises block diagram notions of types, properties and operators.
Both bdds and ibds are covered, but dynamic aspects of SysML diagrams, such
as the treatment of operation calls, are not.

All these works focus on generating a set of axioms that specify a system
based on a SysML diagram, and then using techniques for the underlying logic
to check properties. Although Graves and Bijan [11] describe model refinement
as theory refinement (that is, modification of the knowledge base aiming at
achieving consistency), they do not elaborate on the topic, and it is not clear
what properties are preserved by this notion of refinement.

Evans and Kent [6] describes the pUML approach, which aims at strength-
ening the meta-model semantics of UML via a precise semantics. This work
focusses on the semantics of generalisation and packages, and provides a number
of extra well-formedness conditions. Dynamic aspects of UML models are not
discussed, and it is not clear how the pUML approach tackles such aspects.

The work presented in [8] is the closest to ours. It formalises UML-RT struc-
ture diagrams in CSP-OZ [7], and whilst the treatment of composition and

Formal Models of SysML Blocks 263

connectors is similar to ours, the semantics does not cover issues related to
operation calls and integration with other diagrams.

6 Conclusions

In this paper, we have presented a behavioural model of SysML blocks that
includes simple and composite blocks, generalisation, association and composi-
tion relations, standard ports and connectors, interfaces, operations, properties
and signals. To the best of our knowledge, this is the first formalisation of the
behavioural semantics of a comprehensive subset of the block notation.

The main characteristics of our approach are the compositionality of the gen-
erated models, the use of parallelism to compose different aspects of the system
and the support for refinement. These aspects make it possible to apply compo-
sitional analysis techniques [15], and refinement strategies to obtain equivalent
models better suited to alternative analysis techniques (e.g., model checking).

The most interesting aspects of our models are the treatment of operation
calls, the use of interleaving to model inheritance, and the use of parallelism
to model block composition. Finally, whilst the models of ports are simple, the
use of interface classes in the specification of a port’s communication protocol
proved important to preserve the compositionality of our models.

The functions that characterise our semantics are specified by translation
rules, which take elements of the SysML abstract syntax and produce the corre-
sponding CML elements. The complete set of translation rules for SysML blocks
can be found in [14]. These rules are currently being implemented in Artisan
Studio to support the automatic generation of CML from SysML models. This
work is being carried out by our industrial partners at Atego, and the revision
of the rules by a SysML expert and the process of mechanising the rules have
helped us partially validate our semantics.

As future work, we plan to further validate our semantics by completing the
automation of the translation rules, simulating the models using the CML tools,
applying refinement strategies for model simplification, and analysing models via
model-checking. Finally, we plan to encode the translation rules in Isabelle/HOL
and prove general properties of our semantics.

Acknowledgement. This work is supported by the EU FP7 Project COM-
PASS (http://www.compass-research.eu).

References

1. Artisan Studio, http://atego.com/products/artisan-studio/ (accessed: April
11, 2013)

2. Gancarski, P., Butterfield, A.: The Denotational Semantics of slotted-Circus. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 451–466.
Springer, Heidelberg (2009)

http://www.compass-research.eu
http://atego.com/products/artisan-studio/

264 A. Miyazawa, L. Lima, and A. Cavalcanti

3. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A Refinement Strategy
for Circus. Form. Asp. Comp. 15(2-3), 146–181 (2003)

4. Coleman, J.W., Malmos, A.K., Larsen, P.G., Peleska, J., Hains, R., Andrews, Z.,
Payne, R., Foster, S., Miyazawa, A., Bertolini, C., Didier, A.: COMPASS Tool
Vision for a System of Systems Collaborative Development Environment. In: 7th
International Conference on System of Systems Engineering, pp. 451–456 (2012)

5. Ding, S., Tang, S.Q.: An approach for formal representation of SysML block dia-
gram with description logic SHIOQ(D). Proceedings of the 2nd ICIIS 2, 259–261
(2010)

6. Evans, A., Caskurlu, B.: Core Meta-Modelling Semantics of UML: The pUML Ap-
proach. In: France, R.B. (ed.) UML 1999. LNCS, vol. 1723, pp. 140–155. Springer,
Heidelberg (1999)

7. Fischer, C.: CSP-OZ: A combination of Object-Z and CSP. In: Bowmann, H.,
Derrick, J. (eds.) FormalMethods for Open Object-Based Distributed Systems
(FMOODS 1997), vol. 2, pp. 423–438. Chapman & Hall, Ltd. (1997)

8. Fischer, C., Olderog, E.-R., Wehrheim, H.: A CSP View on UML-RT Structure Di-
agrams. In: Hussmann, H. (ed.) FASE 2001. LNCS, vol. 2029, pp. 91–108. Springer,
Heidelberg (2001)

9. Fitzgerald, J., Larsen, P.G.: Modelling Systems – Practical Tools and Techniques
in Software Development, 2nd edn. Cambridge University Press (2009)

10. Graves, H.: Integrating SysML and OWL. In: Proceedings of OWL: Experiences
and Directions (2009)

11. Graves, H., Bijan, Y.: Using formal methods with SysML in aerospace design and
engineering. Ann. Math. Artif. Intel., 1–50 (2011)

12. Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Inc. (1985)
13. Rational Rhapsody Architect for Systems Engineers, http://www-142.ibm.com/

software/products/us/en/ratirhaparchforsystengi (accessed: April 11, 2013)
14. Miyazawa, A., Albertins, L., Iyoda, J., Cornélio, M., Payne, R., Cavalcanti, A.:

Final report on combining SysML and CML. Technical report, COMPASS (2013)
15. Oliveira, M., Sampaio, A., Antonino, P., Ramos, R., Cavalcanti, A., Woodcock, J.:

Compositional analysis and design of CML models. Technical report, COMPASS
(2013)

16. Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer,
Heidelberg (1994)

17. Santos, T., Cavalcanti, A., Sampaio, A.: Object-Orientation in the UTP. In: Dunne,
S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 18–37. Springer, Heidelberg
(2006)

18. Sherif, A., Cavalcanti, A., Jifeng, H., Sampaio, A.: A Process Algebraic Frame-
work for Specification and Validation of Real-time Systems. Form. Asp. Comp. 22,
153–191 (2010)

19. Sparx Systems’ Enterprise Architect supports the Systems Modeling Language,
http://sparxsystems.com/products/mdg/tech/sysml/ (accessed: April 11, 2013)

20. RT-Tester, http://verified.de/en/products/rt-tester (accessed: April 11,
2013)

21. Woodcock, J., Cavalcanti, A., Coleman, J., Didier, A., Larsen, P.G., Miyazawa, A.,
Oliveira, M.: CML Definition 0. Technical Report D23.1, COMPASS (2012)

22. Woodcock, J., Cavalcanti, A., Fitzgerald, J., Larsen, P., Miyazawa, A., Perry, S.:
Features of CML: A formal modelling language for Systems of Systems. In: 7th
International Conference on System of Systems Engineering, pp. 1–6 (2012)

http://www-142.ibm.com/software/products/us/en/ratirhaparchforsystengi
http://www-142.ibm.com/software/products/us/en/ratirhaparchforsystengi
http://sparxsystems.com/products/mdg/tech/sysml/
http://verified.de/en/products/rt-tester

	Formal Models of SysML Blocks
	1 Introduction
	2 CML
	3 SysML
	4 Formal Models of SysML Blocks
	4.1 Structure of Models
	4.2 Integration with other SysML Model Elements
	4.3 Structure of the CML Specification
	4.4 Simple Blocks
	4.5 Composite Blocks
	4.6 Ports

	5 Related Work
	6 Conclusions
	References

