
A UTP Semantics for Communicating Processes
with Shared Variables�

Ling Shi1, Yongxin Zhao1, Yang Liu2, Jun Sun3, Jin Song Dong1,
and Shengchao Qin4

1 National University of Singapore
2 Nanyang Technological University, Singapore

3 Singapore University of Technology and Design
4 Teesside University, UK

Abstract. CSP# (Communicating Sequential Programs) is a modelling language
designed for specifying concurrent systems by integrating CSP-like composi-
tional operators with sequential programs updating shared variables. In this paper,
we define an observation-oriented denotational semantics in an open environment
for the CSP# language based on the UTP framework. To deal with shared vari-
ables, we lift traditional event-based traces into hybrid traces which consist of
event-state pairs for recording process behaviours. We also define refinement to
check process equivalence and present a set of algebraic laws which are estab-
lished based on our denotational semantics. Our approach thus provides a rigor-
ous means for reasoning about the correctness of CSP# process behaviours. We
further derive a closed semantics by focusing on special types of hybrid traces;
this closed semantics can be linked with existing CSP# operational semantics.

1 Introduction

Communicating Sequential Processes (CSP) [6], a prominent member of the process
algebra family, has been designed to formally model concurrent systems whose be-
haviours are described as process expressions together with a rich set of compositional
operators. It has been widely accepted and applied to a variety of safety-critical sys-
tems [18]. However, with the increasing size and complexity of concurrent systems,
it becomes clear that CSP is deficient to model non-trivial data structures (for exam-
ple, hash tables) or functional aspects. To solve this problem, considerable efforts on
enhancing CSP with data aspects have been made. One of the approaches is to inte-
grate CSP (CCS) with state-based specification languages, such as Circus [8], CSP-OZ
[4,13], TCOZ [9], CSPσ [3], CSP‖B [11], and CCS+Z [5,16].

Inspired by the related works, CSP# [14] has been proposed to specify concurrent
systems which involve shared variables. It combines the state-based program with the
event-based specification by introducing non-communicating events to associate state
transitions. CSP# integrates CSP-like compositional operators with sequential program

� This work is partially supported by project “ZJURP1100105” from Singapore University of
Technology and Design.

L. Groves and J. Sun (Eds.): ICFEM 2013, LNCS 8144, pp. 215–230, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

216 L. Shi et al.

constructs such as assignments and while loops, for the purpose of expressive mod-
elling and efficient system verification1. Besides, CSP# is supported by the PAT model
checker [15] and has been applied to a number of systems available at the PAT website
(www.patroot.com).

Sun et al. presented an operational semantics of CSP# [14], which interprets the
behaviour of CSP# models using labelled transition systems (LTS). Based on this se-
mantics, model checking CSP# models becomes possible. Nevertheless, the suggested
operational semantics is not fully abstract; two behaviourally equivalent processes with
respect to the operational semantics may behave differently under some process context
which involves shared variables, for instance. In other words, the operational semantics
of CSP# is not compositional and lacks the support of compositional verification of
process behaviours. Thus there is a need for a compositional semantics to explain the
notations of the CSP# language.

Related Work. The denotational semantics of CSP has been defined using two ap-
proaches. On one hand, Roscoe [10] and Hoare [6] provided a trace model, a stable-
failures model and a failures-divergences model for CSP processes. In the trace model,
every process is mapped to a set of traces which capture sequences of event occurrences
during the process execution. In the stable-failures model, every process is mapped to
a set of pairs, and each pair consists of a trace and a refusal. In the failures-divergences
model, every process is mapped to a pair, where one component is the (extension-
closed) set of traces that can lead to divergent behaviours, and the other component
contains all stable failures which are all pairs, and each pair is in the form of a trace and
a refusal. On the other hand, Hoare and He defined a denotational semantics for CSP
processes using the UTP theory [7]. Each process is formalised as a relation between an
initial observation and a subsequent observation; such relations are represented as pred-
icates over observational variables which record process stability, termination, traces
and refusals before or after the observation. Cavalcanti and Woodcock [2] presented an
approach to relate the UTP theory of CSP to the failures-divergences model of CSP.

The original denotational semantics for CSP does not deal with complex data as-
pects. To solve this problem, much work has been done to provide the denotational
semantics for languages which integrate CSP with state-based notations. For example,
Oliveira et al. presented a denotational semantics for Circus based on a UTP theory [8].
The proposed semantics includes two parts: one is for Circus actions, guarded com-
mands, etc., and the other is for Circus processes which contain an encapsulated state,
a main action, etc. However, this proposed semantics assumes that the sets of vari-
ables in processes shall be disjoint when running in parallel or interleaving. Qin et al.
formalised the denotational semantics of Timed Communicating Object Z (TCOZ) [9]
based on the UTP framework. Their unified semantic model can deal with channel-
based and sensor/actuator-based communications. However, shared variables in TCOZ
are restricted to only sensors/actuators.

There exists some work on shared-variable concurrency. Brooks defined a denota-
tional semantics for a shared-variable parallel language [1]. The semantic model only

1 Most integrated formalisms are too expressive to have an automated supporting tool. CSP#
combines CSP with C#-like program instead of Z.

www.patroot.com

A UTP Semantics for Communicating Processes with Shared Variables 217

considers state transitions, and it cannot be directly applied to the semantics of com-
municating processes. Zhu et al. derived an denotational semantics from the proposed
operational semantics for the hardware description language Verilog [19]. In addition,
they derived the denotational semantics from the algebraic semantics for Verilog to
explore the equivalence of two semantic models [20]. Recently, they proposed a prob-
abilistic language PTSC which integrates probability, time and shared-variable concur-
rency [22]. The operational semantics of PTSC is explored and a set of algebraic laws
are presented via bisimulation. Furthermore, a denotational semantics using the UTP
approach is derived from the algebraic laws based on the head normal form of PTSC
constructs [21]. These semantic models lack expressive power to capture more compli-
cated system behaviours like channel-based communications.

The above existing work cannot be applied to define the denotational semantics of
CSP# which involves global shared variables. In this paper, we present an observation-
oriented denotational semantics for the CSP# language based on the UTP framework
in an open environment, where process behaviours can be interfered with by the en-
vironment. The proposed semantics not only provides a rigorous meaning of the lan-
guage, but also deduces algebraic laws describing the properties of CSP# processes.
To deal with shared variables, we lift traditional event-based traces into hybrid traces
(consisting of event-state pairs) for recording process behaviours. To handle different
types of synchronisation in CSP# (i.e., event-based and synchronised handshake), we
construct a comprehensive set of rules on merging traces from processes which run in
parallel/interleaving. These rules capture all possible concurrency behaviours between
event/channel-based communications and global shared variables.

Contribution. We highlight our contributions by the three points below.

– The proposed semantic model deals with not only communicating processes, but
also shared variables. It can model both event-based synchronisation and synchro-
nised handshake over channels. Moreover, our model can be adapted/enhanced to
define the denotational semantics for other languages which possess similar con-
currency mechanisms.

– The semantics of processes can serve as a theoretical foundation to develop me-
chanical verification for CSP# specifications, for example, to check process equiv-
alence based on our definition of process refinement, using conventional generic
theorem provers like PVS. In addition, the proposed algebraic laws can act as aux-
iliary reasoning rules to improve verification automation.

– A closed semantics can be derived from our open denotational semantics by focus-
ing on special types of hybrid traces. The closed semantics can be linked with the
CSP# operational semantics in [14].

The remainder of the paper is organised as follows. Section 2 introduces the syntax
of the CSP# language with informal descriptions. Section 3 constructs the observation-
oriented denotational semantics in an open environment based on the UTP framework;
healthiness conditions are also defined to characterise the semantic domain. Section 4
discusses the algebraic laws. Section 5 presents a closed semantics derived from the
open semantics. Section 6 concludes the paper with future work.

218 L. Shi et al.

2 The CSP# Language

Syntax. A CSP# model may consist of definitions of constants, variables, channels, and
processes. A constant is defined by keyword #define followed by a name and a value,
e.g., #define max 5. A variable is declared with keyword var followed by a name and
an initial value, e.g., var x = 2. A channel is declared using keyword channel with
a name, e.g., channel ch. Notice that we use T to denote the types of variables and
channel messages and T will be used in Section 3.1.1. A process is specified in the form
of Proc(i1, i2, . . . , in) = ProcExp, where Proc is the process name, (i1, i2, . . . , in) is
an optional list of process parameters and ProcExp is a process expression. The BNF
description of ProcExp is shown below with short descriptions.

P ::= Stop | Skip – primitives
| a → P – event prefixing
| ch!exp → P | ch?m → P(m) – channel output/input
| e{prog} → P – data operation prefixing
| [b]P – state guard
| P � Q | P � Q – external/internal choices
| P; Q – sequential composition
| P \ X – hiding
| P ‖ Q | P ||| Q – parallel/interleaving
| p | μ p • P(p) – recursion

where P and Q are processes, a is an action, e is a non-communicating event, ch is a
channel, exp is an arithmetic expression, m is a bounded variable, prog is a sequential
program updating global shared variables, b is a Boolean expression, and X is a set of
actions. In addition, the syntax of prog is illustrated as follows.

prog ::= x = exp – assignment
| prog1; prog2 – composition
| if b then prog1 else prog2 – conditional
| while b do prog – iteration

In CSP#, channels are synchronous and their communications are achieved by a
handshaking mechanism. Specifically, a process ch!exp → P which is ready to per-
form an output through ch will be enabled if another process ch?m → P(m) is ready
to perform an input through the same channel ch simultaneously, and vice versa. In
process e{prog} → P, prog is executed atomically with the occurrence of e. Process
[b]P waits until condition b becomes true and then behaves as P. There are two types of
choices in CSP#: external choice P � Q is resolved only by the occurrence of a visible
event, and internal choice P � Q is resolved non-deterministically. In process P ‖ Q,
P and Q run in parallel, and they synchronise on common communication events. In
contrast, in process P ||| Q, P and Q run independently (except for communications
through synchronous channels). Detailed descriptions of the CSP# syntax can be found
in [14].

Concurrency. As mentioned earlier, concurrent processes in CSP# can communicate
through shared variables or event/channel-based communications.

A UTP Semantics for Communicating Processes with Shared Variables 219

Shared variables in CSP# are globally accessible, namely, variables can be read and
written by different (parallel) processes. They can be used in guard conditions, sequen-
tial programs associated with non-communicating events, and expressions in the chan-
nel outputs; nonetheless, they can only be updated in sequential programs. Furthermore,
to avoid any possible data race problem when programs execute atomically, sequential
programs from different processes are not allowed to execute simultaneously.

A synchronisation event, which is also called an action, occurs instantaneously, and
its occurrence may require simultaneous participation by more than one processes. In
contrast, a communication over a synchronous channel is two-way between a sender
process and a receiver process. Namely, a handshake communication ch.exp occurs
when both processes ch!exp → P and ch?m → Q(m) are enabled simultaneously.
We remark that this two-way synchronisation is different from CSPM where multi-way
synchronisation between many sender and receiver processes is allowed [10].

3 The Observation-Oriented Semantics for CSP#

3.1 UTP Semantic Model for CSP#

UTP [7] uses relations as a unifying basis to define denotational semantics for programs
across different programming paradigms. Theories of programming paradigms are dif-
ferentiated by their alphabet, signature and a selection of laws called healthiness con-
ditions. The alphabet is a set of observational variables recording external observations
of the program behaviour. The signature defines the syntax to represent the elements of
a theory. The healthiness conditions identify valid predicates that characterise a theory.

For each programming paradigm, programs are generally interpreted as relations
between initial observations and subsequent (intermediate or final) observations of the
behaviours of their execution. Relations are represented as predicates over observational
variables to capture all aspects of program behaviours; variables of initial observations
are undashed, constituting the input alphabet of a relation, and variables of subsequent
observations are dashed, constituting the output alphabet of a relation.

The challenge of defining a denotational semantics for CSP# is to design an appro-
priate model which can cover not only communications but also the shared variable
paradigm. To address this challenge, we blend communication events with states con-
taining shared variables. Namely, we introduce hybrid traces to record the interactions
of processes with the global environment; each trace is a sequence of communication
events or (shared variable) state pairs.

3.1.1 Observational Variables
The following variables are introduced in the alphabet of observations of CSP# process
behaviour. Some of them (i.e., ok, ok′, wait, wait′, ref , and ref ′) are similar to those in
the UTP theory for CSP [7]. The key difference is that the event-based traces in CSP
are changed to hybrid traces consisting of event-state pairs.

– ok, ok′: Boolean describe the stability of a process.
ok = true records that the process has started in a stable state, whereas ok = false
records that the process has not started as its predecessor has diverged.
ok′ = true records that the process has reached a stable state, whereas ok′ = false
records that the process has diverged.

220 L. Shi et al.

– wait, wait′: Boolean distinguish the intermediate observations of waiting states
from the observations of final states.
wait = true records that the execution of the previous process has not finished, and
the current process starts in an intermediate state, while wait = false records that
the execution of the previous process has finished and the current process may start.
wait′ = true records that the next observation of process is in an intermediate state,
while wait′ = false records that the next observation is in a terminated state.

– ref , ref ′: PEvent denote a set of actions and channel inputs/outputs that can be
refused before or after the observation. The set Event denotes all possible actions
and channel input/output directions (e.g., ch?, ch!). An input direction ch? denotes
any input through channel ch, and a channel output direction ch! denotes any output
through channel ch.

– tr, tr′: seq((S × S⊥) ∪ (S × E)) record a sequence of observations (state pairs or
communication events) on the interaction of processes with the global environment.
• S is the set of all possible mappings (states), and a state s : VAR → T is a

function which maps global shared variables VAR into values of T.
• E is the set of all possible events, including actions, channel inputs/outputs and

synchronous channel communications. Note that non-communicating events
are excluded from the set.

• S × S⊥ is the set of state pairs, and each pair consists of a pre-state recording
the initial variable values before the observation and a post-state recording the
final values after the observation. S⊥ =̂ S ∪ {⊥} represents all states, where
the improper state ⊥ indicates non-termination. Remark that the state pair is
used to record the observation for the sequential program.

• S × E denotes a set of occurring events under the pre-states. The reason of
recording the pre-state is that the value of the expression which may contain
shared variables in a channel output shall be evaluated under this state.

3.1.2 Healthiness Conditions

Healthiness conditions are defined as equations in terms of an idempotent function φ
on predicates. Every healthy program represented by predicate P must be a fixed point
under the healthiness condition of its respective UTP theory, i.e., P = φ (P).

In CSP#, a process can never change the past history of the observations; instead, it
can only extend the record, captured by function R1. We use predicate P to represent
the semantics of the CSP# process below.
R1: R1(P) = P ∧ tr ≤ tr′

The execution of a process is independent of the history before its activation, cap-
tured by function R2.
R2: R2(P(tr, tr′)) = �s P(s, s � (tr′ − tr))

As mentioned earlier, variable wait distinguishes an waiting state from the final state.
A process cannot start if its previous process has not finished, or otherwise, the values
of all observational variables are unchanged, characterised by function R3.
R3: R3(P) = II � wait � P
where P � b � Q =̂ b ∧ P ∨ ¬b ∧ Q and II =̂ (¬ok ∧ tr ≤ tr′) ∨ (ok′ ∧ tr′ =
tr ∧ wait′ = wait ∧ ref ′ = ref). Here II states that if a process is in a divergent state,

A UTP Semantics for Communicating Processes with Shared Variables 221

then only the trace can be extended, or otherwise, it is in a stable state, and the values
of all observational variables remain unchanged.

When a process is in a divergent state, it can only extend the trace. This feature is
captured by function CSP1.
CSP1: CSP1(P) = (¬ok ∧ tr ≤ tr′) ∨ P

Every process is monotonic in the observational variable ok′. This monotonicity
property is modelled by function CSP2 which states that if an observation of a pro-
cess is valid when ok′ is false, then the observation should also be valid when ok′ is
true.
CSP2: CSP2(P) = P; (ok ⇒ ok′ ∧ tr′ = tr ∧ wait′ = wait ∧ ref ′ = ref)

The behaviour of a process does not depend on the initial value of its refusal, captured
by function CSP3.
CSP3: CSP3(P) = Skip; P

Similarly, when a process terminates or diverges, the value of its final refusal is
irrelevant, characterised by function CSP4.
CSP4: CSP4(P) = P; Skip

If a deadlocked process refuses some set of events offered by its environment, then
it would still be deadlocked in an environment that offers even fewer events, captured
by function CSP5
CSP5: CSP5(P) = P ||| Skip

We below use H to denote all healthiness conditions satisfied by the CSP# process.

H = R1 ◦ R2 ◦ R3 ◦ CSP1 ◦ CSP2 ◦ CSP3 ◦ CSP4 ◦ CSP5

From the above definition, we can see that although CSP# satisfies the same healthiness
conditions of CSP, observational variables tr, tr′ in our semantic model record addi-
tional information for shared variable states. We adopt the same names for the idempo-
tent functions used in CSP for consistency. In addition, function H is idempotent and
monotonic [2,7].

3.2 Process Semantics

In this section, we construct an observation-oriented semantics for all CSP# process
operators based on our proposed UTP semantic model for CSP#. The semantics is de-
fined in an open environment; namely, a process may be interfered with by the en-
vironment. In Section 3.1.1, we have defined a hybrid trace to record the potential
events and state transitions in which a process P may engage; for example, the trace
tr′ = 〈(s1, s′1)〉 � 〈(s2, a2)〉 describes the transitions of process P. In an open environ-
ment, tr′ may contain an (implicit) transition (s′1, s2) as the result of interference by the
environment where states s′1 and s2 can be different.

In the following, we first illustrate our semantic definitions of three important pro-
cess operators: synchronous channel output/input, data operation prefixing, and parallel
composition. These three process operators are non-trivial and frequently used in com-
plex concurrent systems with the involvement of channel-based communications and
shared variables. We further present the semantics of other process operators and re-
finement at the end; detailed semantic definitions of the complete CSP# language are
available in our technical report [12].

222 L. Shi et al.

3.2.1 Synchronous Channel Output/Input

In CSP#, messages can be sent/received synchronously through channels. The synchro-
nisation is pair-wise, involving two processes. Specifically, a synchronous channel com-
munication ch.exp can take place only if an output ch!exp is enabled and a correspond-
ing input ch?m is also ready.

ch!exp → P =̂ H

⎛

⎝ok′ ∧
⎛

⎝

ch? �∈ ref ′ ∧ tr′ = tr
�wait′�
∃ s ∈ S • tr′ = tr � 〈(s, ch!A[[exp]](s))〉

⎞

⎠

⎞

⎠ ; P

The above semantics of synchronous channel output depicts two possible behaviours:
when a process is waiting to communicate on channel ch, it cannot refuse any channel
input over ch provided by the environment to perform a channel communication (rep-
resented by predicate ch? �∈ ref ′), and its trace is unchanged; or a process performs
the output through ch and terminates without divergence. Since the environment may
interfere with the process behaviour and make a transition on the shared variable states,
we use state s to denote the initial state before the observation (also named pre-state).
The observation of the trace is recorded as a tuple (s, ch!A[[exp]](s)), where the value
of the output message is evaluated under the pre-state s. Here function A defines the
semantics of arithmetic expressions, and its definition is available in [12]. After the out-
put occurs, the process behaves as P. Note that the semantics of sequential composition
“; ” is defined in Section 3.2.4.

ch?m → P(m) =̂ ∃ v ∈ T •
⎛

⎝H

⎛

⎝ok′ ∧
⎛

⎝

ch! �∈ ref ′ ∧ tr′ = tr
�wait′�
∃ s ∈ S • tr′ = tr � 〈(s, ch?v)〉

⎞

⎠

⎞

⎠ ; P(v)

⎞

⎠

As shown above, the semantics of synchronous channel input is similar to channel out-
put except that when a process is waiting, it cannot refuse any channel output provided
by the environment, and after the process receives a message v from channel ch, its
trace is appended with a tuple (s, ch?v). In addition, parameter m cannot be modified in
process P; namely, it becomes constant-like and its value is replaced by value v.

3.2.2 Data Operation Prefixing

In CSP#, sequential programs are executed atomically together with the occurrence of
an event, called data operation. The updates on shared variables are observed after the
execution of all programs as illustrated below.

e{prog} → Skip =̂ H

⎛

⎜

⎜

⎝

ok′ ∧

⎛

⎜

⎜

⎝

tr′ = tr � 〈(s,⊥)〉 ∧ wait′

� ∃ s ∈ S • (s,⊥) ∈ C[[prog]]�
∃ s′ ∈ S • (tr′ = tr � 〈(s, s′)〉

∧(s, s′) ∈ C[[prog]]) ∧ ¬wait′

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

If the evaluation of the program does not terminate (represented by predicate (s,⊥) ∈
C[[prog]]), then the process is in a waiting state, and its trace is extended with the record
of non-termination. On the other hand, if the evaluation succeeds and terminates, then
the process terminates and the state transition is recorded in the trace. In our definition,

A UTP Semantics for Communicating Processes with Shared Variables 223

the non-communicating event is not recorded in the trace since such an event would
not synchronise with other events; instead, its effect can be described by the updates
on variable states. Thus the non-communicating event is used as a label to indicate the
updates on shared variables. Note that post-state s′ after the observation is associated
with the pre-state s under the semantics of sequential programs ((s, s′) ∈ C[[prog]]).
Function C defines the semantics of programs by structured induction [17] as follows.

C[[x = exp]] = {(s, s[n/x]) | s ∈ S ∧ n = A[[exp]](s)}
C[[prog1; prog2]] = {(s, s′) | ∃ s0 ∈ S • (s, s0) ∈ C[[prog1]]

∧(s0, s′) ∈ C[[prog2]]} ∪
{(s,⊥) | (s,⊥) ∈ C[[prog1]]}

C[[if b then prog1 else prog2]] = {(s, s′) | B[[b]](s) = true ∧ (s, s′) ∈ C[[prog1]]} ∪
{(s, s′) | B[[b]](s) = false ∧ (s, s′) ∈ C[[prog2]]}

C[[while b do prog]] = {(s, s′) | (s, s′) ∈ C[[μX • F(X)]]}

where, F(X) =̂ if b then prog; X else skip, μX • F(X) =̂
⋂

n Fn(true), C[[skip]] =
{(s, s) | s ∈ S}, and C[[true]] = {(s, s′) | s ∈ S, s′ ∈ S⊥}.

The data operation prefixing process e{prog} → P is thus defined as sequential
composition of data operation and P.

e{prog} → P =̂ (e{prog} → Skip); P

3.2.3 Parallel Composition

The parallel composition P ‖ Q executes P and Q in the following way: (1) common
actions of P and Q require simultaneous participation, (2) synchronous channel output
in one process occurs simultaneously with the corresponding channel input in the other
process, and (3) other events of processes occur independently.

In CSP, the semantics of parallel composition is defined in terms of the merge oper-
ator ‖M in UTP [7], where the predicate M captures how to merge two observations. To
deal with channel-based communications and shared variable updates in CSP#, we here
define a new merge predicate M(X) to model the merge operation. The set X contains
common actions of both processes (denoted by set X1) and all synchronous channel
inputs and outputs (denoted by set X2). Namely,

P ‖ Q =̂

(

P[0.ok, 0.wait, 0.ref , 0.tr/ok′,wait′, ref ′, tr′] ∧
Q[1.ok, 1.wait, 1.ref , 1.tr/ok′,wait′, ref ′, tr′]

)

; M(X)

where

M(X) =̂

⎛

⎜

⎜

⎜

⎜

⎝

(ok′ = 0.ok ∧ 1.ok) ∧
(wait′ = 0.wait ∨ 1.wait) ∧
(ref ′ = (0.ref ∩ 1.ref ∩ X2) ∪ ((0.ref ∪ 1.ref) ∩ X1)

∪ ((0.ref ∩ 1.ref)− X1 − X2))
(tr′ − tr ∈ (0.tr − tr ‖X 1.tr − tr))

⎞

⎟

⎟

⎟

⎟

⎠

; Skip

Our defined predicate M(X) captures four kinds of behaviours of a parallel composi-
tion. First, the composition diverges if either process diverges (represented by predicate

224 L. Shi et al.

ok′ = 0.ok ∧ 1.ok). Second, the composition terminates if both processes termi-
nate (wait′ = 0.wait ∨ 1.wait). Third, the composition refuses synchronous channel
ouputs/inputs that are refused by both processes (0.ref ∩ 1.ref ∩X2), all actions that are
in the set X1 and refused by either process ((0.ref ∪1.ref)∩X1), and actions that are not
in the set X1 but refused by both processes ((0.ref ∩1.ref)−X1−X2). Last, the trace of
the composition is a member of the set of traces produced by the trace synchronisation
function ‖X as elaborated below.

Function ‖X models how to merge two individual traces into a set of all possible
traces; there are 9 cases from 6 groups. In the following definitions, s, s′, s1, s′1, s2, s′2
are representative elements of variable states, a, a1, a2 are representative elements of
actions, ch is a representative element of channel names, and v is a value with type T.

– When one of the input traces is empty, (1) if both input traces are empty, the result
is a set of an empty sequence (denoted by case-1); (2) if only one input trace is
empty, the result is determined based on the first observation of that non-empty
trace: (i) if that observation is an action in the set X which requires synchronisation,
then the result is a set containing only an empty sequence, or otherwise, the first
observation is recorded in the merged trace (case-2); if the first observation is (ii) a
channel input/output/communication (case-3) or (iii) a state pair (case-4), then the
observation is recorded in the merged trace.
case-1 〈 〉 ‖X 〈 〉 = {〈 〉}

case-2 〈(s, a)〉 � t ‖X 〈 〉 =
{{〈 〉} if a ∈ X

{〈(s, a)〉� l | l ∈ t ‖X 〈 〉} otherwise

case-3 〈(s, h)〉�t ‖X 〈 〉 = {〈(s, h)〉�l | l ∈ t ‖X 〈 〉}, where h ∈ {ch?v, ch!v, ch.v}
case-4 〈(s, s′)〉� t ‖X 〈 〉 = {〈(s, s′)〉� l | l ∈ t ‖X 〈 〉}

– When a communication is over a synchronous channel, (1) if the first observations
of two input traces match (see Definition 1 below), then a synchronisation may
occur (denoted by the set G1) or at this moment a synchronisation does not occur
(denoted by the set G2), or otherwise, a synchronisation cannot occur. Here, two
observations are matched provided that both channel input and output from two
processes respectively are enabled under the same pre-state.

Definition 1 (Match). Given two pairs p1 = (s1, h1) and p2 = (s2, h2), we say
that they are matched if both s1 = s2 and {h1, h2} = {ch?v, ch!v} are satisfied,
denoted as match(p1, p2).

case-5 〈(s1, h1)〉� t1 ‖X 〈(s2, h2)〉� t2 =

{G1 ∪ G2 match((s1, h1), (s2, h2))
G2 otherwise

where h1, h2 ∈ {ch?v, ch!v, ch.v}, G1 =̂ {〈(s1, ch.v)〉� l | l ∈ t1 ‖X t2}, and G2 =̂

{〈(s1, h1)〉�l | l ∈ t1 ‖X 〈(s2, h2)〉�t2}∪{〈(s2, h2)〉�l | l ∈ 〈(s1, h1)〉�t1 ‖X t2}.
– When two actions (a1 and a2) are synchronised, there are five cases with respect

to the initial states (s1 and s2) and actions from the first observation of two input
traces: (1) both actions are in the set X but different, (2) actions from X are the same
but under different pre-states, (3) actions from X are the same and under the same
pre-state, (4) one of the actions is not in X, and (5) both actions are not in X. As

A UTP Semantics for Communicating Processes with Shared Variables 225

shown in case-6 below, the result is a set containing only an empty sequence for
cases (1) and (2). A synchronisation occurs under case (3), although it is postponed
to occur under case (4). Either action can occur for case (5).
case-6 〈(s1, a1)〉� t1 ‖X 〈(s2, a2)〉� t2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{〈 〉} a1, a2 ∈ X ∧ a1 �= a2

{〈 〉} a1, a2 ∈ X ∧ a1 = a2 ∧ s1 �= s2
{〈(s1, a1)〉� l | l ∈ t1 ‖X t2} a1, a2 ∈ X ∧ a1 = a2 ∧ s1 = s2
{〈(s1, a1)〉� l | l ∈ t1 ‖X 〈(s2, a2)〉� t2} a1 �∈ X ∧ a2 ∈ X

{〈(s1, a1)〉� l | l ∈ t1 ‖X 〈(s2, a2)〉� t2}
∪
{〈(s2, a2)〉� l | l ∈ 〈(s1, a1)〉� t1 ‖X t2}

a1 �∈ X ∧ a2 �∈ X

– When the merge operation is on an action a and channel input ch?v, output ch!v,
communication ch.v, or a post-state s′2, (1) if a is from the set X, then its occurrence
is postponed (G3), (2) or otherwise, either observation from two processes occurs
(G3 ∪ G4).

case-7 〈(s1, a)〉� t1 ‖X 〈(s2, h)〉� t2 =

{G3 if a ∈ X
G3 ∪ G4 otherwise

where h ∈ {ch?v, ch!v, ch.v, s′2}, G3 =̂ {〈(s2, h)〉� l | l ∈ 〈(s1, a)〉� t1 ‖X t2}, and

G4 =̂ {〈(s1, a)〉� l | l ∈ t1 ‖X 〈(s2, h)〉� t2}.
– When the merge operation is over two state pairs or the operation is on a state

pair and a channel input/output/communication, either observation from two pro-
cesses can occur as only one process can update shared variable(s) at a time when
processes run in parallel.
case-8 〈(s1, s′1)〉 � t1 ‖X 〈(s2, h)〉 � t2 = {〈(s1, s′1)〉 � l | l ∈ t1 ‖X 〈(s2, h)〉 �
t2} ∪ {〈(s2, h)〉� l | l ∈ 〈(s1, s′1)〉� t1 ‖X t2} where h ∈ {s′2, ch?v, ch!v, ch.v}

– Finally , function ‖X is symmetric.
case-9 t1 ‖X t2 = t2 ‖X t1

3.2.4 Other Processes and Refinement

The semantics of other processes is the same as those counterparts in the CSP model [7]
except state guard ([b]P) and interleaving (P ||| Q) due to the involvement of shared
variables as we illustrate below.

For process [b]P, shared variables can be read in the Boolean expression b, and b
is evaluated simultaneously with the occurrence of the first event of process P. That is
to say, the evaluation of b is under the pre-state of the first observation of process P
(B[[b]](π1(head(tr′ − tr)))), and if the evaluation returns true, then the process behaves
as P, or otherwise, the process behaves as process Stop. Here, function B defines the
semantics of Boolean expressions, function π1 selects the first element of a tuple, and
function head returns the first element of a sequence.

Process P ||| Q runs independently except for the communications through syn-
chronous channels. Thus, we define the semantics of the interleaving operator in a sim-
ilar way of handling parallel operator (in Section 3.2.3) except that the set X contains
only synchronous channel inputs/outputs.

226 L. Shi et al.

P; Q =̂ ∃ obs0 • (P[obs0/obs′] ∧ Q[obs0/obs])2

[b]P =̂ P � (tr < tr′ ∧ B(b)(π1(head(tr′ − tr))) = true) � Stop

P ||| Q =̂ P ‖M(X) Q

Refinement calculus is designed to produce correct programs, assisting in the soft-
ware development. In the UTP theory, it is expressed as logic implication; an imple-
mentation (denoted as predicate P) satisfying a specification (denoted as predicate S) is
formally expressed by universal quantification implication ∀ a, a′, · · · • P ⇒ Q, where
a, a′, · · · are all the variables of the alphabet, which must be the same for the specifica-
tion and implementation. The universal quantification implication is usually denoted as
[P ⇒ Q]. The definition of refinement in CSP# is given as below.

Definition 2 (Refinement). Let P and Q be predicates for processes with the same
shared variable state space, the refinement P � Q holds iff [P ⇒ Q].

The refinement ordering in our definition is strong; every observation that satisfies P
must also satisfy Q. The observation includes all process behaviours, i.e., stability, ter-
mination, traces, and refusals. Moreover, the record of the trace considers both variable
states and event occurrences. For example, given a process P = [x = 2]b → Skip �

[x �= 2]c → Skip, and a process Q = [x = 2]b → Skip � [x �= 2]d → Skip, the re-
finement P � Q does not hold although one observation satisfies both processes when
x is equal to 2. A counterexample is that when x is not equal to 2, processes P and Q
perform action c and d, respectively.

Notice that we only allow that in the trace sequence of process P, every element shall
be the same as its counterpart in Q. In other words, our refinement prevents atomic pro-
gram operations updating shared variables from being refined by non-atomic program
operations which make the same effect. For example, given a process P = e{x =
x + 1} → e{x = x + 1} → Skip, and a process Q = e{x = x + 2} → Skip, the
refinement P � Q does not hold.

Definition 3 (Equivalence). For any two CSP# processes P and Q, P is equivalent to
Q if and only if P � Q ∧ Q � P.

Lemma 1. All process combinators defined in the CSP# language are monotonic.

Theorem 1. The open semantics of CSP# is compositional.

The proofs of Lemma 1 and Theorem 1 are available in appendix.

4 Algebraic Laws

In this section, we present a set of algebraic laws concerning the distinct features of
CSP#. All algebraic laws can be established based on our denotational model. That is
to say, if the equality of two differently written processes is algebraically provable, then
the two processes are also equivalent with respect to the denotational semantics. More-
over, these algebraic laws can be used as auxiliary reasoning rules to provide an easier

2 The term obs represents the set of observational variables ok, wait, tr, and ref , as is the case of
obs0 and obs′.

A UTP Semantics for Communicating Processes with Shared Variables 227

way to prove process equivalence during the theorem proving procedures. Due to the
space limitations, proofs that the algebraic laws are sound with respect to the denota-
tional semantics are available in [12].

State Guard
guard - 1 [b1]([b2]P) = [b1 ∧ b2]P
guard - 2 [b](P1 op P2) = [b]P1 op [b]P2 where, op ∈ {‖,�,�}
guard - 3 [false]P = Stop
guard - 4 [true]P = P
guard - 1 enables the elimination of nested guards. guard - 2 shows the distribution of
the state guard through parallel composition, external choice and internal choice. guard
- 3 shows that process [false]P behaves like Stop because its guard can never be fired.
guard - 4 shows that process [true]P always activates the process P.

Sequential Composition
seq - 1 (P1; P2); P3 = P1; (P2; P3)
seq - 2 P1; (P2 � P3) = (P1; P2) � (P1; P3)
seq - 3 (P1 � P2); P3 = (P1; P3) � (P2; P3)
seq - 4 P = Skip; P
seq - 5 P = P; Skip
seq - 1 shows that sequential composition is associative. seq - 2, 3 show the distribution
of sequential composition through external choice. seq - 4, 5 show that process Skip is
the left and right unit of sequential composition, respectively.

Parallel Composition
par - 3 Skip ‖ P = P = P ‖ Skip
par - 1, 2 show that parallel composition is commutative and associative. Consequently,
the order of parallel composition is irrelevant. par - 3 shows that process Skip is the unit
of parallelism.

5 The Closed Semantics

So far, we have constructed an open semantics for CSP#. Namely, the denotational
semantics is defined in an open environment. The interference by the environment is
implicitly captured in the hybrid trace which collects the potential events or state tran-
sitions in which a process may engage. For example, given a trace 〈(s1, s′1)〉� 〈(s2, e)〉,
the transition from state s′1 to s2 is implicit, and it is performed by the environment. In
addition, the environment can change the states, so it is not necessary to ensure that state
s′1 is the same as s2. Thus the system and environment alternate in making transitions.
From Theorem 1, the open semantics maintains the compositionality of the processes.
Therefore, it supports compositional verification of process behaviours.

However, if we look at it in another light, there is no need to retain all possible
transitions from the environment if we have already built the model of the whole system
or the behaviour of the environment has been modelled as a process. In this situation, we
attempt to consider a closed semantics for the CSP# language. Fortunately, the closed

228 L. Shi et al.

semantics does not need to be defined from the scratch; it can be generated from the
open semantics. Thus, we first introduce the definition of closed traces to judge which
trace exactly describes the process behaviour in a closed environment.

Definition 4 (Closed Trace). A hybrid trace tr is closed, represented as cl(tr), if it
satisfies the following two conditions.

(1) For any state pair which is not the last element in the trace, the post-state is
passed as the pre-state of its immediate subsequent element, i.e., ∀ 0 ≤ i < #tr −
1, ∃ s, s′ ∈ S • (tri = (s, s′) ⇒ s′ = π1(tr(i+1)))

3.

(2) For any event which is not the last element in the trace, it should share the same
pre-state with its immediate subsequent element, i.e., ∀ 0 ≤ i < #tr − 1, ∃ s ∈ S, a ∈
E • (tri = (s, a) ⇒ s = π1(tr(i+1))).

Informally speaking, a closed trace has this property: two adjacent elements in the
trace are associated by a common state; the post-state of the former equals to the pre-
state of the latter if the former is a state transition; the pre-state is shared if the former
is an event. Note that every element in a hybrid trace has a pre-state but only the state
transition possesses a post-state because the pre-state is not changed when an event
occurs. Since the environment cannot update the shared state, a closed trace is identified
as the behaviour of the process in the closed environment. For convenience, given a set
of hybrid traces, denoted as the set HT, we define CL(HT) to represent the set of all
closed traces in HT. Obviously, we have CL(HT) ⊆ HT.

Now, we can generate the closed semantics (denoted by [[P]]closed) from the open
semantics ([[P]]open) for any communicating process P. The relation between them is
revealed by Definition 5.

Definition 5 (Closed Semantics). [[P]]closed =̂ [[P]]open ∧ cl(tr) ∧ cl(tr′)

According to the open semantics, two processes that are semantically equivalent can
generate the same traces tr, tr′. Further, any two closed traces generated from their open
traces are the same. Thus the equality with respect to the open semantics is preserved
by the closed semantics, which is shown in Theorem 2.

Theorem 2. [[P]]open = [[Q]]open ⇒ [[P]]closed = [[Q]]closed

However, we cannot imply that [[P]]open = [[Q]]open is true when [[P]]closed = [[Q]]closed

holds. Furthermore, given that [[P]]closed = [[Q]]closed, the law P ‖ R = Q ‖ R may be
invalid; the compositionality fails in the closed semantics as shown by Example 1.

Example 1. Given a process P = a{x = 2} → ([x = 2]b → Skip � [x �= 2]c → Skip),
and a process Q = a{x = 2} → ([x = 2]b → Skip � [x �= 2]d → Skip), the closed
semantics of processes P and Q is the same, while their open semantics is not the same
because after executing the event a, process P may execute event c, and process Q
may execute event d when the value of variable x is not equal to 2 in their pre-states.
Therefore, given a process R = e{x = 3} → Skip, there is a case that after executing
the events a and e sequentially, process P ‖ R will execute event c while process Q ‖ R
will execute event d, and thus the law P ‖ R = Q ‖ R is not satisfied.

3 tri returns the (i + 1)th element of the sequence tr.

A UTP Semantics for Communicating Processes with Shared Variables 229

6 Conclusion

In this work, we have proposed an observation-oriented semantics in an open environ-
ment for the CSP# language based on the UTP framework. The formalised semantics
covers different types of concurrency, i.e., communications and shared variable paral-
lelism. In addition, a set of algebraic laws have been proposed based on the denota-
tional model for communicating processes involving shared variables. Furthermore, a
closed semantics has been derived from the open denotational semantics by focusing
on the particular hybrid traces. Our next step is to encode our proposed semantics into
a generic theorem prover and in turn to validate the algebraic laws using the theorem
proving techniques. Ultimately, we can verify the correctness of system behaviours in
a theorem prover which may solve the common state space explosion problem.

Acknowledgements. The authors thank Jim Woodcock for insightful comments in the
initial discussion.

References

1. Brookes, S.D.: Full abstraction for a shared-variable parallel language. Inf. Comput. 127(2),
145–163 (1996)

2. Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in unifying theories of program-
ming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE 2004. LNCS, vol. 3167, pp.
220–268. Springer, Heidelberg (2006)

3. Colvin, R., Hayes, I.J.: CSP with Hierarchical State. In: Leuschel, M., Wehrheim, H. (eds.)
IFM 2009. LNCS, vol. 5423, pp. 118–135. Springer, Heidelberg (2009)

4. Fischer, C.: Combining Object-Z and CSP. In: FBT, pp. 119–128 (1997)
5. Galloway, A.J., Stoddart, W.J.: An Operational Semantics for ZCCS. In: ICFEM, pp.

272–282 (1997)
6. Hoare, C.: Communicating Sequential Processes. Prentice-Hall (1985)
7. Hoare, C., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
8. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP Semantics for Circus. Formal Asp. Com-

put. 21(1-2), 3–32 (2009)
9. Qin, S., Dong, J.S., Chin, W.-N.: A Semantic Foundation for TCOZ in Unifying Theories of

Programming. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805,
pp. 321–340. Springer, Heidelberg (2003)

10. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall (1997)
11. Schneider, S., Treharne, H.: CSP Theorems for Communicating B Machines. Formal Asp.

Comput. 17(4), 390–422 (2005)
12. Shi, L.: A UTP Semantics for Communicating Processes with Shared Variables. Technical

report, NUS (2013), http://www.comp.nus.edu.sg/˜shiling/Tech13.pdf
13. Smith, G.: A Semantic Integration of Object-Z and CSP for the Specification of Concurrent

Systems. In: Fitzgerald, J.S., Jones, C.B., Lucas, P. (eds.) FME 1997. LNCS, vol. 1313, pp.
62–81. Springer, Heidelberg (1997)

14. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating Specification and Programs for System
Modeling and Verification. In: TASE, pp. 127–135 (2009)

15. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer,
Heidelberg (2009)

16. Taguchi, K., Araki, K.: The State-Based CCS Semantics for Concurrent Z Specification. In:
ICFEM, pp. 283–292 (1997)

http://www.comp.nus.edu.sg/~shiling/Tech13.pdf

230 L. Shi et al.

17. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction. MIT
Press, Cambridge (1993)

18. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal Methods: Practice and
Experience. ACM Comput. Surv. 41(4) (2009)

19. Huibiao, Z., Bowen, J.P., Jifeng, H.: From Operational Semantics to Denotational Semantics
for Verilog. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, pp.
449–464. Springer, Heidelberg (2001)

20. Zhu, H., He, J., Bowen, J.P.: From algebraic semantics to denotational semantics for verilog.
In: ISSE, vol. 4(4), pp. 341–360 (2008)

21. Zhu, H., Qin, S., He, J., Bowen, J.P.: PTSC: probability, time and shared-variable concur-
rency. In: ISSE, vol. 5(4), pp. 271–284 (2009)

22. Zhu, H., Yang, F., He, J., Bowen, J.P., Sanders, J.W., Qin, S.: Linking Operational Seman-
tics and Algebraic Semantics for a Probabilistic Timed Shared-Variable Language. J. Log.
Algebr. Program. 81(1), 2–25 (2012)

Appendix

A Proof of Lemma 1

Proof. We show here the proof of monotonicity for the parallel composition opera-
tor, and the proofs of monotonicity for other operators are available in our technical
report [12].
Case: Parallel Composition Given any two processes P and Q such that P � Q and
synchronisation events of process P ‖ R and process Q ‖ R are the same (denoted as set
X), P ‖ R � Q ‖ R holds.
First, we have two auxiliary lemmas in our proof, whose proofs are available in [12].

Lemma 2. (P ∧ R) � (Q ∧ R), provided that P � Q.

Lemma 3. (P; R) � (Q; R), provided that P � Q.

P � Q [Definition 2]
= [P ⇒ Q] [predicate calculus]
= [P[0.obs/obs′] ⇒ Q[0.obs/obs′]] [Definition 2]
= P[0.obs/obs′] � Q[0.obs/obs′] [Lemma 2]

=
(P[0.obs/obs′] ∧ R[1.obs/obs′]) �
(Q[0.obs/obs′] ∧ R[1.obs/obs′]) [Lemma 3]

⇒ (P[0.obs/obs′] ∧ R[1.obs/obs′]); M(X) �
(Q[0.obs/obs′] ∧ R[1.obs/obs′]); M(X)

[3.2.3]

= P ‖ R � Q ‖ R �

In a similar proof, the predicate R ‖ P � R ‖ Q also holds given the same assumption
as above. �

B Proof of Theorem 1

Proof. Given process combinator F and processes P,Q such that P and Q are equivalent
with respect to the open semantics, we have P � Q and Q � P according to Definition
3. According to Lemma 1, both F(P) � F(Q) and F(Q) � F(P), which indicates
F(P) = F(Q), i.e., the open semantics is compositional. �

	A UTP Semantics for Communicating Processeswith Shared Variables
	1 Introduction
	2 The CSP# Language
	3 The Observation-Oriented Semantics for CSP#
	3.1 UTP Semantic Model for CSP#
	3.2 Process Semantics

	4 Algebraic Laws
	5 The Closed Semantics
	6 Conclusion
	References

