Deadline Analysis of AUTOSAR OS Periodic
Tasks in the Presence of Interrupts

Yanhong Huang!, Jodo F. Ferreira??3, Guanhua He?,
Shengchao Qin%>**, and Jifeng He'

! Bast China Normal University
2 Teesside University
3 HASLab/INESC TEC, Universidade do Minho
4 Shenzhen University
{yhhuang, jifeng}@sei.ecnu.edu.cn,
{jff,g.he,s.qin}0tees.ac.uk

Abstract. AUTOSAR, the open and emerging global standard for au-
tomotive embedded systems, offers a timing protection mechanism to
protect tasks from missing their deadlines. However, in practice, it is
difficult to predict when a deadline is violated, because a task missing
its deadline may be caused by unrelated tasks or by the presence of
interrupts. In this paper, we propose an abstract formal model to rep-
resent AUTOSAR OS programs with timing protection. We are able to
determine schedulability properties and to calculate constraints on the
allowed time that interrupts can take for a given task in a given period.
We implement our model in Mathematica and give a case study to illus-
trate the utility of our method. Based on the results, we believe that our
work can help designers and implementors of AUTOSAR OS programs
check whether their programs satisfy crucial timing properties.

Keywords: AUTOSAR, timing protection, interrupts, periodic fixed
priority scheduling, real-time operating systems.

1 Introduction

The increasing complexity of automobile Electronic Control Units (ECUs) de-
mands standards and methods that support a systematic and reliable approach
to the development of automotive software systems. One of such emerging stan-
dards is AUTOSAR [1], an initiative led by major automotive OEMs, suppliers
and tool vendors to standardize an automotive software architecture. It contains
a list of specifications to describe the architecture, including the AUTOSAR
Operating System (OS) specification which presents the essential requirements
that AUTOSAR OS implementations must follow.

One of the main novelties in AUTOSAR OS is a timing protection mech-
anism, whose main goal is to prevent tasks from missing their deadlines. The
specification suggests the configuration of certain time constraints, like bounding
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the execution time of each task and interrupt service routine (ISR). However,
in practice, it is difficult to predict when a deadline is violated, because a task
missing its deadline may be caused by delays in unrelated tasks. The problem
becomes even more challenging when interrupts are enabled, because interrupts
can occur at anytime and it is difficult to estimate the time they may take.

In recent works, Bertrand et al. [9] pay attention to the AUTOSAR OS tim-
ing protection mechanism. They analyze the mechanism and compare it with
other similar mechanisms used in comparable real-time operating systems. They
implement the mechanism in a simulation tool and find that “smart configura-
tions” allow better results. However, they do not provide a model that can be
directly used by developers to predict deadline faults. Moreover, they do not
consider the possibility of interrupts occurring. Hladik et al. [I0] provide AU-
TOSAR OS designers with some usable analysis techniques and corresponding
design guidelines. Their work is close to ours, but we focus on periodic tasks.
We define a formal model for periodic tasks that can be interrupted by ISRs;
our healthiness conditions can directly help the designers configuring the time
constraints of periodic tasks mentioned in the specification of the AUTOSAR
OS timing protection mechanism. In another work, Schwarz et al. [20] have con-
sidered the problem of interrupts occurring in OSEK/VDX OSes. They provide
a static analysis for detecting data races between tasks running with different
priorities as well as methods to guarantee transactional execution of procedures.
However, their focus is on memory safety problems caused by interrupts, whilst
our focus is on timing safety.

In this paper, we develop an abstract formal model to represent AUTOSAR
OS periodic tasks and to help designers and implementors of AUTOSAR OS
programs to analyze and predict deadline faults in their programs. In summary,
the main contributions of our work are:

— An abstract formal model that can be used to analyze and predict deadline
faults in AUTOSAR OS programs. We define two healthiness conditions,
depending on whether interrupts are enabled. Developers of AUTOSAR OS
programs can use these healthiness conditions to statically check whether
their programs will miss any deadline.

— Based on the model that we develop, we show how to compute the time
that interrupts (including sporadic tasks triggered by interrupts) are allowed
to take during the execution of tasks. Given that in practice specifications
usually mention time intervals (e.g., “interrupt service routines can take n
ms, as long as n is between 1ms and 5ms”), rather than showing how to
obtain particular times, we show how to derive general time constraints; by
focusing on general constraints, developers can consider time intervals.

— To illustrate the practicality of our model, we implement it in Mathematica
[8]. This allows the automatic calculation of time constraints for interrupts.
We also analyze a simple, yet non-trivial, case study. Based on the results,
we believe that the work presented in this paper can help designers and
implementors of AUTOSAR OS programs check that their programs satisfy
crucial timing properties.
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The remainder of the paper is organized as follows: Section 2 introduces AU-
TOSAR OS, its timing protection mechanism, and the goals and assumptions
that we have made. We conclude that section with a simple example illustrating
the underlying challenges. In Section 3, we define an abstract model to represent
AUTOSAR OS periodic tasks. We define two healthiness conditions that can be
used to predict deadline faults in Section 4 and Section 5 respectively. Section 5
also presents how to calculate the maximum available time that interrupts can
take during the execution of a given task in a given period. In Section 6, we put
the method developed into practice to analyze a case study. Finally, we conclude
the paper in Section 7, where we discuss related work and further directions to
develop the work presented.

2 Background

In this section, we explain the main characteristics of AUTOSAR OS [1] and of
its timing protection mechanism. We also present and justify the assumptions
that we have made. We conclude with an example that illustrates the problem
we want to tackle and may help the reader understand subsequent sections.

On AUTOSAR OS.
AUTOSAR (AUTomotive Open System ARchitecture) is an open and standard-
ized automotive software architecture, jointly developed by automobile manu-
facturers, suppliers and tool developers. One of the specifications included in
AUTOSAR is AUTOSAR OS, which specifies AUTOSAR operating systems.
The two main identities discussed in AUTOSAR OS are tasks and interrupt
service routines (ISR). Each task and ISR are statically associated with a pro-
gram. There are two types of tasks: basic and extended tasks. The difference is
that the AUTOSAR OS event mechanism is only applied to extended tasks. In
other words, basic tasks do not block whereas extended tasks can block until
a given event happens. Each task has a priority and AUTOSAR OS suggests
a priority-based scheduling policy. Because two tasks cannot occupy the same
resource at the same time, AUTOSAR OS prescribes a priority ceiling protocol.
As a result, each resource is given a ceiling priority that is set at least to the
highest priority of all tasks that access a resource or any of the resources linked
to this resource. If a task requires a resource, and its current priority is lower
than the ceiling priority of the resource, the priority of the task is raised to the
ceiling priority of the resource. The priority of the task is reset to its initial pri-
ority after releasing the resource. Regarding ISRs, there are also two categories:
category 1 and category 2. The main difference is that ISRs of category 1 (ISR1)
cannot be controlled by the kernel, while ISRs of category 2 (ISR2) are similar to
basic tasks. Contrary to ISR2, ISR1 cannot use any operating system services.
That means ISR2 may activate tasks.

On AUTOSAR OS Timing Protection Mechanism.

AUTOSAR is derived from OSEK/VDX [2], an open and widely used indus-
try standard for automotive embedded systems that does not offer any protec-
tion mechanism. One of the novelties is that AUTOSAR extends OSEK/VDX
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with memory and timing protection mechanisms. Before the publication of AU-
TOSAR, two extensions were proposed to equip OSEK/VDX with timing pro-
tection: OSEK-time and HiS OSEK. Both extensions used deadline monitoring,
which allows recovery when a failure is detected. However, deadline monitoring
is insufficient to correctly identify what caused a deadline fault. As explained in
the AUTOSAR OS specification, a deadline can be violated due to a deadline
fault introduced by an unrelated task or by the interference of an interrupt. The
fault in this case lies with the unrelated task or interrupt and will propagate
through the system until a task misses its deadline. A task that misses a dead-
line is therefore not necessarily the task that has failed at runtime; it is simply
the earliest point at which a timing fault is detected.

The AUTOSAR OS timing protection mechanism protects tasks and interrupt
service routines of category 2. It suggests three ways of preventing timing faults:

1. bound the execution time of each task and ISR2;
2. bound the locking time (e.g., the time that resources are held by tasks);

3. guarantee inter-arrival time (e.g., the time for successive activation of tasks
and ISR2s).

In practice, these bounds are set statically. At runtime, the bounds are used by
the kernel to control the execution of tasks and ISRs. To give a concrete example,
in Arctic Core [3], the leading open-source implementation of AUTOSAR OS,
each task and ISR2 control block have a reference to a OsTimingProtectionType
structure where the bounds are defined:

typedef struct OsTimingProtection {
// ROM, worst case execution budget in ns
uint64 executionBudget ;
// ROM, the frame in ns that timelimit may
// execute in.
uint64 timeFrame;
// ROM, time in ns that the task/isr may
// with a timeframe.
uint64 timeLimit ;
// ROM, resource/interrupt locktimes
OsLockingtimeType *lockingTime;

} OsTimingProtectionType;

Note the reference to “ROM” in the comments, meaning that these values should
be set initially by the programmer and never changed during execution.

On Our Goals and Assumptions.

In this paper, we focus on the timing protection mechanism introduced in AU-
TOSAR OS. The specification gives the three suggestions above, but it does
not mention how to set the time constraints. The goal is to define an abstract
formal model to represent AUTOSAR OS periodic tasks and to help designers
of AUTOSAR OS programs to analyze and predict deadline faults in their pro-
grams. Based on the model, we present how to calculate time constraints on
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the allowed time that interrupts can take for a given task in a given period.
We introduce a model heavily inspired by an implementation provided by the
company iSoft (iSoft Infrastructure Software CO.), so we make the assumptions
described below.

Assumption 1: In AUTOSAR OS, the tasks that have deadlines are usually
periodic tasks (periodicity is achieved by a mechanism called Schedule Tables).
As a result, all the tasks we discuss in this paper are periodic tasks with a
given period. We also assume each task’s deadline equals its own period and
that all the tasks are ready at the very beginning. Moreover, we assume that the
priority and the worst case execution time (WCET) of all tasks are known. The
calculation of WCETsS is out of the scope of this paper (for details on methods
and tools to calculate WCETS, we refer the reader to [4]).

Assumption 2: We assume that any task activated by ISR2 will execute and
terminate before ISR2 concludes. When ISR2 terminates, the preempted task is
resumed. We consider the total time taken by ISR2 as time spent by interrupts,
even if it was running a sporadic task.

Assumption 3: We do not consider AUTOSAR OS resources in this paper, so
we assume that the priority of tasks will not change during execution. In other
words, we do not discuss the locking time introduced in the timing protection
specification.

We now give an example that illustrates the sort of system we will discuss
and the sort of problem we want to solve in this paper.

Example 1. Suppose that there are three tasks in the system: A, B, and C; the
characteristics of each task, like their priority and deadline (which is the same
as their period), are configured statically as shown in Table [I1

Table 1. Properties of the tasks shown in Example 1

Task  Priority Execution time Deadline (same as Period)

A 3 1 5
B 2 3 10
C 1 5 15

Figure[I] presents the execution of the three tasks when no interrupts happen.
Assuming a fixed priority preemptive scheduling policy and assuming higher
priority tasks run before lower priority tasks, task A runs at the very beginning,
then B runs, and C starts at the fifth time unit. Because the period of A is
5, task C' is preempted and control passes to task A at the sixth time unit. C
resumes after the execution of A. In this example, all the tasks meet their own
deadlines.

Now we consider an example where interrupts occur during the execution of
tasks. We assume the existence of an interrupt called Isr that costs one time
unit and that can happen at any time. To help with the presentation, in this
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Fig. 2. The execution of tasks with interrupts

example, we assume that Isr happens during the execution of both A and B.
Figure [2] shows that task C' cannot execute until the eighth time unit because
the higher priority tasks A and B finish later due to the time taken by Isr. As
the figure shows, the late start of C' leads to a timing fault, as C' does not meet
its deadline. This example shows that although A and B are interrupted, both
of them still meet their deadlines. However, C' misses its deadline even though
it was never interrupted.

In order to avoid the deadline errors mentioned above, the AUTOSAR OS
specification advices to bound the execution time of each task, which is actually
the sum of the time taken by task own execution and interrupts execution.
Assuming that the worst case execution time of tasks are given (assumption 1),
we only need to bound the maximum allowed time taken by interrupts for each
task in its given period. For example, to guarantee that the tasks shown meet
all their deadlines, task A cannot be interrupted for more than 1 time units, and
tasks B and C cannot be interrupted at the same time.

3 Tasks Model

In this section, we present an abstract language to specify AUTOSAR OS
periodic tasks that can be interrupted. Later, we also define two healthiness
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conditions that allow to determine when programs can safely execute without
any task missing its deadline. Altogether, we can see our formalization as a model
that allows the analysis of the AUTOSAR OS timing protection mechanism in
the presence of interrupts.

In our model, a system is composed by three components: a set of periodic
tasks, a set of ISRs, and a list of functions providing static information. We use
the notation Sys ::= {Prog, ISR, Funs} to describe a system, where Prog and ISR
denote a set of periodic tasks and a set of ISRs respectively, and Funs represents
information about tasks and ISRs. A system with m tasks and n ISRs can be
represented as:

Prog ::= {T1,T%, ..., T }

ISR ::= {11712, ~-~7In}

Each task has its own priority and period which are configured statically and
do not change during execution. Recall that the tasks we consider are periodic
and their deadlines are equal to their periods (assumption 1). Each ISR also has
a priority, which we assume to be always higher than all the tasks’ priorities,
so that ISRs can interrupt any running task. In our model, we allow a higher
priority ISR to interrupt a lower priority ISR. Moreover, we also assume that
the worst case execution time of both tasks and ISRs are given.

To facilitate the expression of properties in our model, we make use of the
following functions Funs (we assume that T is an element of Prog and I is an
element of ISR):

— Priority Function.
Pr:TUI — Nis used to get the priority of a given task or ISR. Different
tasks can have the same priority, but no task can have a higher priority than
that of an ISR.

— Deadline Function.
De : T — N is used to get the deadline (or period) of a given task.
Furthermore, we assume that task 7} in its k" period is ready at time
(k — 1)xDe(T;), where k € NT, and it must finish before kx De(T5).

— Worst Case Execution Time Function.
ET : TUI — N is used to get the worst case execution time of a given task
or ISR. We assume the worst case execution time analysis has been already
done, so it is not considered in this paper.

— Maximum Interrupt Time Function.
IT : T — Nis used to get the maximum allowed time taken by interrupts for
a given task. It is the total time that the system allows ISRs to take during
one period of a given task.

All systems should define the four functions above. But as we mentioned in
the previous section, it is difficult to set a reasonable value for the maximum
interrupt time. One of our goals in this paper is to help the designers set this
value, so we allow the designers to omit this value, and we can calculate that
based on the other three values. Of course, if the designers have given all of
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them, we can also determine whether the maximum interrupt time is suitable to
make all tasks meet their deadlines.

Example 2. We use our language to describe the system mentioned in Example
1. There are three tasks: A, B and C, so we set Prog as Prog ::= {4, B,C}.
There is only one ISR, so we set ISR as ISR ::= {Isr}. The whole system is
represented as Sys ::= {Prog, ISR, Funs}.

Now we define the priority function so that Pr(A) =3, Pr(B) =2, Pr(C) =
1, and Pr(Isr) = 4; the deadline function is defined as De(A) = 5, De(B) =
10, De(C) = 15; finally, the worst case execution time function is defined as
ET(A)=1, ET(B) =3, ET(C)=5 and ET(Isr) = 1.

In this example, the maximum allowed time taken by interrupts for each task,
IT(T;), is not given. Later, in Section 5, we show how the function IT can be
defined.

4 Timing Protection without Interrupts

In this section, under the assumption that interrupts are disabled, we show
conditions under which a collection of tasks can safely execute without missing
deadlines.

Given that tasks are periodic, we are interested in evaluating the behaviors
of tasks in their shortest repeating cycl, which is given by the least common
multiple of the periods of all tasks. Given a program Prog, we denote the shortest
repeating cycle of its tasks as lem(Prog). In Example 2, we have lem(Prog)=30,
because the periods of A, B, and C' are, respectively, 5, 10, and 15. In other
words, the executing pattern shown in Figure [[lrepeats itself after 30 time units.

To ensure that a system can run safely without any task missing its deadline,
the requirement that we need to guarantee is:

Requirement. Fach task T; is expected to have a complete execution in each
period from (k—1)xDe(T;) to kx De(T;), for all k € NT.

For instance, in Example 1, we want to guarantee that task C' starts running
and terminates within the periods from (k—1)x15 to kx15, for all £k € N*.
However, in the scenario shown in Figure 2] this property is violated because C'
is not able to terminate within its first period (from 0 to 15).

To formalize the requirement above we start by analyzing the time available
for a given task to execute during a given period. Given that our model as-
sumes a fixed priority preemptive schedulingd, to calculate the time available
for task 7; during its k*" period (denoted by AT(T;)), we subtract from T}’s
deadline the amount of time units taken by all the tasks that have a higher
priority than T;. There is a special case that needs to be considered: if a task T;
has several higher priority tasks with the same period, we combine these tasks

! The shortest repeating cycle is the smallest amount of time after which the executing
pattern repeats itself (when interrupts are disabled).

2 A fixed priority preemptive scheduler always chooses the highest priority task that
is ready to execute.
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into one task when calculating the time available for T;. For example, suppose
that tasks T}, ,..., T, have the same period, i.e., De(T},)=...=De(T}, ). When
calculating the time available for task T; whose priority is lower than all of
those tasks T}, ,..., T}, , we define a new task T; with period De(T;)=De(T},),
priority Pr(T})=min(Pr(T},),..., Pr(T},)) and the worst case execution tlme
ET(T;)= ET( T, )+.. JrET( ,.). Assuming that TT(T},[) represents the total
time taken by task T} up to the time unit [, we define AT (T;) as follows:

AT(Ti) =g De(T;) — ) (TT(Ij kxDe(T;))~TT(I;, (k—1)xDe(Ty)))

Pr(T;)<Pr(Tj)
A J#i

Clearly, the value of TT(T}, kx De(T;))—TT(T;, (k—1) xDe(T;)) corresponds
to the time taken by task T); between the time unlt (k—1)xDe(T;) and the time
unit kx De(T;); in other Words it corresponds to the time taken by task 7; during
the k' period of T;. To define TT(Tj, 1) we first observe that the number of times
that T; executes up to time unit [ is at least LDe(lT )J As a result, the total time

that T} takes up to time unit [ is at least | ,, (T y] x ET(T}). To determine the
exact amount of time, we need to analyze the value of I mod De(T}): if it is

long enough for T} to execute, then T; executes once; otherwise, T W111 run for
I mod De(T}) time units. Put more formally, we have:

L pe(r,) X ET(T3) + ET(T}) it | mod De(T;) > ET(T;)

T(T},1) =4
LDe(T)JxET( T;) + 1l mod De(Tj) if | mod De(T;) < ET(Tj;)

Example 3. Based on Example 2, we show how to calculate each task’s available
time in each period in the shortest repeating cycle. The shortest repeating cycle
is 30 time units, task A will execute 6 times, task B will execute 3 times, and
task C' will execute 2 times.

ATy (A)=5—-0=5  whereic {1,2,3,4,5,6}

ATy(B) =10 — Lw;ljxl_w 2=28

AT (B) =10 — (| "9 |x1— |1 |x1) = 10— (4 —2) =8

ATs(B) =10 — ([ '%?x1 — L10X2J><1 )=10—(8—6)=8

ATy (C) =15 — (155X1J><1+L15X1J><3+3)—157(3+6)—6

ATy (C) = 15 — ([ 7237 [x1 = | 5T 1) 4 (11552 <3 — (11551 | x3 + 3)))
=15-((6-3)+(9-6))=15-(3+3)=9

Example 4. We use this example to explain the special issue we mentioned
before. A system has three tasks, two of them have a same period. We set
Prog ::= {T4,T%, T5}. The priority function is defined as Pr(Ty) = 3, Pr(Tz) = 2,
and Pr(T3) = 1. The deadline function is defined as De(Ty) = De(Tz) = 8
and De(T3) = 10. The worst case execution time is defined as ET(Ty) = 2,
ET(Ty) =2, and ET(T3) = 4. When calculating AT (T3), we combine T} and T5
into T1o which De(T12) = 8, Pr(T12) = 2, and ET(T12) = 4. Hence, i.e., the time
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is available for task T in its first period: ATy (T3) = 10— ([ "% | x4410 mod 8) =
10— (4+2)=4.

Now that we have a formal definition for AT (T;), we can use it to formalize
conditions under which a collection of tasks can safely execute without any
deadline being missed. We first show how to formalize the situation where no

interrupts can occur; we then extend it to the situation where interrupts are
enabled.

Definition 1 (Healthiness H;). We say that a system is in H; if in the ab-
sence of interrupts, all the tasks meet their respective deadlines in their shortest
repeating cycle. Formally, given a system Sys, containing m tasks 71, ..., T,,, we
define the healthiness predicate Hi:

lcm(Prog)

Ha(Sys) =g Vie{l, .., m}, kefl, .., De(T;)

} e AT (T;) > ET(T;)

Using the values calculated in Example 3, we can conclude that the system
described in Example 1 is an H; system.

5 Timing Protection with Interrupts

In the previous section, we have defined H; systems, which are systems where
no deadlines are missed, as long as there are no interrupts. In this section, we
study the case when interrupts can occur.

To consider interrupts, we redefine the functions shown in the previous section
to include the time taken by interrupts. First, we define ATI(T;), which repre-
sents the time available for a given task T; during its k** period when interrupts
are allowed to occufd.

ATI1,(T;) =4 De(T;) — Z (TTY(T;, kxDe(T;))—TTI(T};, (k—1)xDe(T;)))
Pr(T)<Pr(T;)
A G

where TTI(T}, 1) represents the total time taken by task T} and by interrupts
up to time unit [. Following the discussion in the previous section, we observe
that the value of TTI(T}, kxDe(T;)) — TTI(T}, (k—1)xDe(T;)) corresponds to
the time taken by task T, and by interrupts during the k" period of T;. The
function TTI is defined below.

Functions ATT and T'TT are similar to functions AT and TT. The difference
is that the former two consider the execution time ET(T) and the maximum al-
lowed time for interrupts IT(T"), while the latter two only consider the execution
time ET(T). Note that the sum of the worst case execution time of a task and
the maximum allowed time for interrupts for that task is the actual bounding
execution time mentioned in AUTOSAR OS timing protection mechanism.

3 The special case discussed in the previous section should be also considered here.
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L pe(ryy )X (ET(T3) + IT(Ty)) + (ET(T;) + IT(T}))
if 1 mod De(Ty)>(ET(T}) + IT(T}))
TTUT,. 1) =y
el IX(ET(T) + IT(T})) + 1 mod De(Ty)
if I mod De(T;)<(ET(Tj)+ IT(T}))

The time available for a given task may be different in its different periods;
we use the notation minATI(T;) to denote the minimum time available for task
T; in the repeating cycle of the system:

lcm(Prog)

minATI(T;) = min(ATI(T}),. .., ATI(T;)), where k= De(T))

We now use minATTI to extend Definition 1 for the case where interrupts can
oceur.

Definition 2 (Healthiness H3). We say that a system is in Hs if (1) a system
is in H; and (2) when in the presence of interrupts, the system guarantees that
all tasks can meet their deadlines. Formally, given a system as described in
Definition 1, we define the healthiness predicate Hs:

Ha(Sys) =ar (H1(Sys) AVi € {1,....m} e minATI(T) > ET(T}) + IT(T;) )

Ho systems guarantee that all tasks will meet their deadlines even if interrupts
occur. According to the definition above, healthiness condition H; is subsumed
by Hs, meaning that an Hs system must be an H; system. In other words, when
a system wants to guarantee all tasks meet their deadlines in the presence of in-
terrupts, the system must guarantee all tasks meet their deadlines in the absence
of interrupts at first. However, we should note that in practice, it is difficult to
set a reasonable maximum allowed time for each task to be interrupted, because
we always have to consider the whole system. We can overcome this difficulty
by observing that Definition 2 gives us a system of inequations that can be used
to calculate the values for function IT":

Vie {1,..,m}e IT(T;) < minATI(T}) — ET(T}) (1)

We will use this system of inequations in the next section.

As a concluding remark, we observe that the function IT can be defined
according to different requirements. For example, three cases are suggested as
below:

— Case 1. The system allows only one task to be interrupted at runtime. For
example, task T; is the only task that can be interrupted; the value of IT
for other tasks is set to 0: Vj, j#i ¢ IT(T;) = 0.

— Case 2. The system allows every task to be interrupted the same amount
of time, so we define Vi ® IT(T;) = t, for some ¢. One implementation of
AUTOSAR OS developed by iSoft adopts this kind of timing protection
mechanism.
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— Case 3. The system allows every task to be interrupted, but distributes them
into different groups according to the amount of time allowed for interrupts.
Every two tasks in the same group have the same allowed time for interrupts,
i.e., if task T; and task T} are in the same group, then IT(T;) = IT(Tj).

To illustrate how IT can be used, we give an example based on Example 3.

Example 5. Based on Example 3, we assume task C' is the only task that can
be interrupted (like case 1 above), so we set IT(A) = IT(B) = 0. In this case,
Vk o ATI,(C) = ATy(C) and minATI(C) = min(6,9) = 6. So IT(C) <
(6 —5) = 1. In fact, looking at Figure[ll we see that if C' is interrupted for more
than one time unit, task C will miss its deadline.

6 A Case Study

In this section, we use a more complex example to illustrate the utility of our
method. The tricky part of the example is that the deadline of a lower priority
task is less than that of a higher priority task. Moreover, the higher priority task
may not finish in one period of lower priority task, but in two, which makes it
difficult to predict the healthiness of the system.

Implementation.

We have implemented all the functions and healthiness conditions in Mathe-
matica [§] and evaluated our method. The user can define a system using the
prototype; when the priority, deadline and worst case execution time of all the
tasks of a program are given, the prototype can determine whether a system is
in H;. If the maximum allowed time taken by interrupts for all the tasks is given
as additional input (i.e., function IT'), our prototype can determine whether a
system is in Ho. Otherwise, it can calculate a set of time constraints to help the

= H
Jp el LY
L & T NG LT &
bl Tk b PG i
2 1 3 2 T : 3
| I The third | | | [
' period of T ' '
0 5 10 15 20 25 30 35
. r ! The third '
4 H period of T,
e | i e I i
2 I i 2 T T, 2 &, 2 T
- 2 ey =gt =2 NS
i i1 S 1 T, N T o I
i1 11 H 3 2 1
T
35 40 45 50 55 60 65 70
The fifth ¢ 1% 100 time units
period of T,

Fig. 3. The scheduling of tasks in case study
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designers configure the maximum allowed time for interrupts (according to the
system of inequations (Il) shown in Section 5).

Example.

The example we use is shown in Table 2l We present the scheduling of tasks
without interrupts in Figure [3l In the example, the priority of task T is lower
than that of T7, but the deadline of T5 is less than that of T3. In the third period
of task To and in the fifth period of task T3, 17 starts at the last time unit,
and does not finish in one period of the lower priority tasks. In the third period
of task T3, T3 finishes its execution in one period of T5. But when interrupts
are enabled, T may finish in next period of T5. Moreover, we can see that the
time available for the same task in different periods is different. That is why we
should consider the shortest repeating cycle.

Table 2. Properties of the tasks shown in the case study

Task  Priority Execution time Deadline (same as Period)

T 3 200 700
T> 2 100 500
T3 1 300 1000

AT;(T1) > 700 — 0 = 700

AT;(Th) > ET(T1) where i € {1, ey 10}

AT (T2) = 500 — 200 = 300

ATl(TQ) > ET(TQ)

AT5(T5) = 500 — (| 59952 | 200 + 200 — 200) = 500 — (400 — 200) = 300

ATQ(TQ) > ET(TZ)

AT5(T3) = 500 — ((| 5993 | % 200 + 500 % 3 mod 700 — (| 32952 | % 200 + 200))
=500 — ((400 + 100) — 400) = 400

AT;;(TQ) > ET(TZ)

ATy (T2) = 500 — (| 39954 | % 200 + 200 — (| 32953 | % 200 + 500 + 3 mod 700))
= 500 — (600 — 500) = 400

AT4(T2) > ET(TZ)

AT (T3) = 1000 — (| 1999%1 | % 200 + 200 + [ 19991 | % 100) = 1000 — (400 + 200) = 400
ATy (T3) > ET(T3)

AT5(Tz) = 1000 — (| *%5® | * 200 + 200 — (| X555 ] 200
+1000 * 5 mod 700)) + (| 19456 | * 100 — [ 1099+ | % 100))
= 1000 — ((1800 — 1500) + (1200 — 1000)) = 1000 — (300 + 200) = 500
ATG(Tg) > ET(Tg)
ATy(T3) = 1000—(([ *57567 ] * 200—([ *5775" | * 200 + 200))+(| M550 | * 100— | *5555€ | + 100))
= 1000 — ((2000 — 1800) + (1400 — 1200)) = 1000 — (200 + 200) = 600
AT7(T3) > ET(Tg)

Fig. 4. The calculation details for the case study

Healthiness H;. To evaluate whether this example is an H; system, we have
to make sure all the tasks can meet their deadlines when there are no interrupts
(according to Definition 1). Using our implementation in Mathematica, we con-
clude that this system is in H;. We also list some details in Figure @ to help the
reader understand our method.
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The shortest repeating cycle of this example is 7000 time units. So we should
consider 10 periods of task T3 (because the period is 700), 14 periods of task T
(because the period is 500), and 7 periods of T3 (because the period is 1000).
Here, we only list a few.

Healthiness H,. We calculate the maximum allowed time taken by interrupts
for each task by following the constraints given in the previous section. More
specifically, the values of IT(T1), IT(T») and IT(T5) should satisfy the inequal-
ity 2IT(Th) + 21T (T>) + IT(T5) < 100 (calculated by the implementation in
Mathematica). We can use this inequality to set the interrupt time IT(T;) for
task T;. For example, if we want to make the maximum allowed time that in-
terrupts can take the same for all tasks (as described in Case 2 above), we can
set IT(T1)=IT(T2)=IT(T3)=20 at most. Moreover, if the system has already
set the function IT, we can use this inequality to evaluate whether this system
is in Hao.

7 Related Work and Conclusion

Related Work.

Many researchers have done much work on fixed priority scheduling of peri-
odic tasks. The problem of scheduling periodic tasks with hard deadlines on a
uniprocessor was first studied by Liu and Layland in 1973 [I1]. Later, Lehoczky
developed an exact schedulability criterion for the fixed priority scheduling of
periodic tasks with arbitrary deadlines [12]. Harbour et al. presented a gen-
eralized model of fixed priority scheduling of periodic tasks where each task’s
execution priority may vary [13]. Katcher et al. developed scheduling models for
four generic scheduler implementations that represent the spectrum of imple-
mentations found in real-time kernels [14]. In many respects, there is an overlap
of concerns between these works and this paper. However, the focus and novelty
of our work is on estimating the available time for interrupts that can occur in
periodic AUTOSAR OS programs.

A related line of research is presented in [IBJT6JT7IE], where timed automata
are used to analyze different problems about scheduling. We plan to reuse parts
of these works to extend our model with support for AUTOSAR resources (see
discussion on future work below).

There has also been a considerable amount of work on interrupt-based pro-
grams. For example, the works [BI20l21] deal with the analysis and verification
of memory safety properties. More related to this paper is the work presented
in [19], where a tool for deadline analysis of interrupt-driven Z86-based software
is presented. Other works give advice and introduce models to guarantee that
interrupts do not cause timing faults: in [6], the number of the interruptions dur-
ing certain time intervals is limited; in [7], tasks and interrupts are integrated
to provide predictable execution times in real-time systems.

The work presented in this paper can be seen as a continuation of our previ-
ous work. In [22], we have developed a formal model of interrupt-based programs
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from a probabilistic perspective: we designed a probabilistic operational seman-
tics able to capture the potential properties, and specified the time constraint
of interrupt programs. In [23], we have analyzed and verified ORIENTAIS, an
operating system based on OSEK/VDX and developed by iSoft.

Conclusion.

This paper proposes a simple and abstract formal model to represent AUTOSAR
OS programs that need to ensure certain timing properties. The model can
be used to predict if a given periodic task will miss its deadline. We present
two healthiness conditions: condition H; is used to check if tasks meet their
deadlines when interrupts are disabled; condition Hs, is used to check if tasks
meet their deadlines when interrupts are enabled. To have a definitive answer to
the question “is a given system an Hsy system?”, we need to know what is the
time taken by interrupts, so we use Mathematica to compute time constraints
for interrupts. Rather than assuming specific times for interrupts, we are able to
give answers of the type “the given system is an Hy system, provided that task
T} is not interrupted for more than 5 time units and task Tb is not interrupted
for more than 3 time units”. It is worth saying that, although our focus is on
interrupt-based programs, the timing constraints developed are general enough
to be used for other purposes. For example, the theory applies if instead of
interrupts we consider delays; saying that a given task can be interrupted for at
most 5 time units is the same as saying that the task can be delayed by at most
5 time units.

We believe that the work presented in this paper can help designers and im-
plementors of AUTOSAR OS programs check that their programs satisfy crucial
timing properties.

As for future work, we plan to extend the model to consider the locking time
of resources mentioned in the AUTOSAR OS timing protection specification.
The difficulty of adding resources in the model is related with the priority ceil-
ing protocol, which causes the priority of tasks to change during execution. The
extended model should be able to cope with dynamic changes of priority (i.e.,
functions like AT and ATT will need to be redefined). We also plan to generalize
the model so that periods and deadlines do not coincide. Finally, we will con-
struct software tools that automatically construct models from the source code
of AUTOSAR OS programs. We envisage these tools to be integrated into tool
chains specifically designed for AUTOSAR OS developers.
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