
Chapter 5
Multiple UAV Formation Control

Haibin Duan

Abstract Formation flight has long been performed by many species of birds for its
social and aerodynamic benefits. As a challenging interdisciplinary research topic,
autonomous formation flight for multiple unmanned aerial vehicles (UAVs) is about
flying in formations with precisely defined geometries, with the benefits of fuel
saving and improved efficiency in air traffic control and cooperative task allocation.
This chapter mainly focuses on three important aspects associated with formation,
which are respectively formation control, close formation (tight formation), and
formation configuration. A chaotic particle swarm optimization (PSO)-based non-
linear dual-mode receding horizon control (RHC) method is proposed to cope with
the complexity and nonlinearity of vehicle dynamics. Then a novel type of control
strategy of using hybrid RHC and differential evolution (DE) algorithm is proposed
based on the nonlinear model of multiple UAV close formation. Moreover, based on
the Markov chain model, the convergence of DE is proved. Finally, the formation
configuration, which is about diving multiple UAVs to form a new flying formation
state, is explained in detail using the RHC-based DE. The global control problem
of multiple UAV formation reconfiguration is transformed into several online local
optimization problems at a series of receding horizons, while the DE algorithm is
adopted to optimize control sequences at each receding horizon.

5.1 Introduction

Unmanned aerial vehicle (UAV), which develops in the direction of unmanned
attendance and intelligence, is small in size, is light in weight, is low cost, and
is able to operate autonomously. With these qualities, UAV has become one of the
inevitable trends of the modern military and civilian applications. Recently there has
been a considerable amount of interests in cooperative control of a group of UAVs
flying in a formation. When multiple UAVs fly in formation, the formation’s initial
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Fig. 5.1 Leader–Wingman
formation (Reprinted from
Zhang et al. (2010), with kind
permission from Springer
ScienceCBusiness Media)

geometry, including the longitudinal, lateral, and vertical separation, should be pre-
served during maneuvers with heading change, speed change, and altitude change.

5.1.1 Formation Control

In recent years, formation control of multiple UAVs has become a challenging
interdisciplinary research topic, while autonomous formation flight is an important
research area in the aerospace field (Duan et al. 2013a). The main motivation is
the wide range of military and civilian applications where UAVs formations could
provide a low-cost and efficient alternative to existing technology. Multiple UAV
teams flying in formations with precisely defined geometries have many advantages,
such as energy saving when the vortex forces are taken into account. Formation
flight can also be used for airborne refueling and quick deployment of troops
and vehicles. Formation flight can be regarded as a complicated control problem
which computes the inputs driving the UAVs along challenging maneuvers while
maintaining relative positions as well as safe distances between each UAV pair
(Duan et al. 2013b). The challenge here lies in designing a formation controller
that is computationally simple yet robust.

5.1.2 Close Formation

A close formation, also called “tight formation,” is one in which “the lateral
separation between UAV is less than a wingspan” (Pachter et al. 2001). In this case,
aerodynamic coupling is introduced into the formation’s dynamics. Multiple UAVs
flying in a close formation can achieve a significant reduction in power demand,
thereby improving cruise performances, such as range and speed, or to increase
the payload (Binetti et al. 2003). The “Leader–Wingman” formation pattern can be
shown with Fig. 5.1. If the Wingman flies in close formation with the leading UAV,
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Fig. 5.2 Formation
reconfiguration of five UAVs
(Reprinted from Zhang and
Duan (2012), with kind
permission from SAGE
Publications)

the Leader’s vortices will produce aerodynamic coupling effects, and a reduction
in the formation’s drag can be achieved. According to the effects of aerodynamic
interference, multiple UAV close formation flight control is a complex problem with
strongly nonlinear and coupling character.

5.1.3 Formation Configuration

The formation reconfiguration problem for multiple UAVs can be described as
follows: given a group of UAVs with an initial configuration, a final configuration,
and a set of inter- and intra-UAV constraints, the goal is to determine a nominal
control input for each vehicle such that the multiple UAV group can start from
the initial configuration and reach its final configuration while satisfying the set of
constraints, as is shown in Fig. 5.2. The formation reconfiguration problem can be
recognized as an optimal control problem with dynamic constraints (Zelinski et al.
2003; Ueno and Kwon 2007; Duan et al. 2008). Several theoretical techniques such
as graph theory (Hendrickx et al. 2008), reconfiguration maps, Dijkstra algorithm
(Giulietti et al. 2000), or functional optimization have been developed to define the
new/optimal positions to be occupied by the UAVs in the formation.

As a large-scale centralized control problem, formation reconfiguration aims to
obtain the control input signals (such as steering angle, throttle/thrust) for each UAV
through complex calculation to drive each UAV in a complicated flight maneuver.
In this process, multiple UAVs must satisfy several constraints; for example, the
distance between two UAVs must be greater than the safety collision distance, and
also should not be too greater than the communication distance.
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5.2 Dual-Mode RHC for Multiple UAV Formation Flight
Based on Chaotic PSO

5.2.1 Leader-Following Formation Model

The point mass model is considered for formation flight. Each UAV is assumed
to fly at a constant altitude, parallel to the 2-dimensional region to be surveyed.
A commonly used nonlinear kinematics model that represents a UAV with zero or
negligible velocity in the direction perpendicular to the UAV’s heading is applied to
our model.

Px D v cos 
Py D v sin 
Pv D u
P D !

(5.1)

where x and y are the Cartesian coordinates of the UAV, v is the velocity, and  
is the heading angle in the (x,y) plan (Stipanović et al. 2004). The acceleration in
the longitudinal direction u and angular turn rate ! are assumed to be the control
inputs to the UAV. Figure 5.3 shows the UAV position and orientation in the plane
coordinate system.

In a typical multiple UAV formation flight, the Wingman follows the trajectory of
the Leader UAV, taking other aircrafts as reference to keep its own position inside
the formation. In a large formation, intra-aircraft distances must be kept constant
(Giulietti et al. 2000). The formation model in this paper adopts Leader mode
strategy (as shown in Fig. 5.4), which means each Wingman UAV takes its trajectory
references from the Leader UAV, while the altitude is the same for all. The Leader
UAV takes charge of formation trajectory.

Fig. 5.3 UAV position and
orientation (© [2002] IEEE.
Reprinted, with permission,
from Duan and Liu (2010))
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Fig. 5.4 Multiple UAV formation (© [2002] IEEE. Reprinted, with permission, from Duan and
Liu (2010))

The Virtual Leader is employed in our model to replace the real UAV Leader
so that UAVs adjust speed and heading angle based on the relative states of Virtual
Leader (as shown in Fig. 5.5). Then a multiple UAV formation, defined with respect
to all the real UAVs as well as to the Virtual Leader, should be maintained at the
same time as the Virtual Leader tracks its reference trajectory. The key advantage of
the Virtual Leader UAV is that a physical UAV Leader is subject to destruction,
while the Virtual Leader can never be damaged. The Virtual Leader provides a
stabile, robust reference for formation control.

5.2.2 Principle of RHC

Nonlinear RHC is that the finite time optimal control law is computed by solving an
online optimization problem. And linear RHC theory is quite mature so far (Kwon
and Han 2005). Generally, many systems are inherently nonlinear, and they are often
required to operate over a wide range of operating conditions. Linear models are
often inadequate to describe the process dynamics, and nonlinear models have to
be used. This motivates the use of nonlinear RHC. The optimization problems over
the finite horizon, on which the RHC is based, can be applied to a broad class of
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Fig. 5.5 Multiple UAV
formation with the Virtual
Leader (© [2002] IEEE.
Reprinted, with permission,
from Duan and Liu (2010))

systems, including nonlinear systems and time-delayed systems. Thus, the RHC has
the same broad applications even for nonlinear systems:

min
u
J D f

�
x; uI tc ; Tp

�

J D

Z tcCTp

tc

F .x; u/ dt Cˆ
�
xtcCTp

�

subject to Px D f .x; u/

L �

�
x

u

�
� U (5.2)

where x and u are respectively state vector and control sequence; tc and Tp represent
the control and the prediction horizon with tc � Tp; L and U are lower and upper
bounds; and ı is the predicted time step.

Receding optimization is the most important idea of RHC, which is also the
typical difference between RHC and optimum control, as shown in Fig. 5.6 (Duan
and Liu 2010; Zhang et al. 2011; Duan et al. 2011). The whole control process
can be divided into a series of optimizing intervals called rolling window or
receding horizon. RHC method forms the closed-loop rolling mechanism, including
observation, planning, implementation, and reobservation. RHC is a p -step-ahead
online optimization strategy. At each time interval, RHC optimizes the specific
problem for the following p intervals based on current available information.
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Fig. 5.6 Receding optimization (Reprinted from Zhang et al. (2010), with kind permission from
Springer ScienceCBusiness Media)

5.2.3 Chaotic PSO-Based Dual-Mode RHC Formation
Controller Design

5.2.3.1 A Dual-Mode Formation Controller Design

In this subsection, we will introduce the framework of the multiple UAV formation
flight controller (Duan and Liu 2010). In our proposed formation flight control
strategy, each UAV follows the Virtual UAV Leader.

The ith UAV state vector and control input sequence in (5.1) are

xi D .vi ; ‰i ; xi ; yi / ;ui D .ui ; !i / (5.3)

The Virtual Leader state is xVL and control inputs are uVL. According to the UAV
Leader, the ith UAV relative state is xri D xi � xVL. We define formation state and
input sequence:

X D .xVL;x1; : : : ;xN /;Xr D .xr1; : : : ;xrN /; U D .uVL;u1; : : : ;uN / (5.4)

In nonlinear RHC, the input applied to the system is usually given by the solution
of the following finite horizon optimal control problem according to (5.2), which is
solved at every sampling instant:
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The deviation from the desired values is weighted by the positive-definite
matrices Q, R, and P; the time step is ı. V is the terminal penalty.

� D
˚
X

ˇ̌
XTPX � ˛

�
(5.8)

The terminal region ˝ is chosen such that it is invariant for the nonlinear
system control by using a linear state feedback. As control systems become more
complex and performance requirements more demanding, the invariant sets are
widely employed to design stabilizing controllers and, in particular, for applying
RHC strategies. In order to enlarge the solution range and make search process of
PSO easier, the dual-mode control strategy is chosen in this paper, for this strategy
provides an efficient way to guarantee the stability of RHC with input constraints.
The basic idea is to use a finite horizon of allowable control inputs to steer the state
into an invariant set. The terminal region ˝ and terminal penalty matrix P can be
determined off-line.

A local linear control law which stabilizes the nonlinear system in ˝ is obtained
as follows:

PX D
@f

@x
.0; 0/X C

@f

@u
.0; 0/ u (5.9)

Substitute the linear state feedback u D KX into (5.9), we can get

PX D f X (5.10)

f D
@f

@x
.0; 0/C

@f

@u
.0; 0/K (5.11)

Define the following Lyapunov equation:

f P C Pf T CQ� D 0 (5.12)
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where Q* D Q C KTRK and the solution P is a positive-definite symmetric matrix.
For any vector X 2 Rn, kXk denotes Euclidean norm. There exists a constant
˛ 2 (0,1) to fix the terminal region ˝ at the origin as (5.8). The constant ˛ satisfies
KX 2 U for all x 2 ˝ and the following condition, according to (5.8) and u D KX:
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It follows the input constraints that

˛KTPK � u2max kuk � umax (5.14)

As multiple UAV formation state X enter the terminal region ˝ , X will be kept
in this region all the while and tend to the origin gradually.

5.2.3.2 Collision Avoidance

In multiple UAV formation flight system, each UAV moves in an environment in
which there are obstacles and other UAVs. Thus the multiple UAVs, at the same
time, have to consider the problem of formation control and collisions avoidance.
Collision avoidance is assumed to be the most important task: only when UAV is at
safe distance from the other UAVs and the obstacles can it take care of maintaining
the formation.

To achieve collision avoidance with other UAVs, a priority indexing scheme is
used (Wang et al. 2007): all UAVs are tagged, and the UAV with a lower index
creates an imaginary obstacle around the UAV with a higher index (as seen in
Fig. 5.7) and tries to avoid it. Thus, collision avoidance is achieved.

The UAVs with a lower index must react rapidly when neighboring UAVs with
a higher index approach within unsafe range or when obstacles are detected as they
appear within the sensor range, to avoid any collision. Consequently, a multiple
UAV formation control strategy that ensures avoidance of collisions is achieved by
adding a constraint to (5.5).

J1 D J C Penaltyc �

ConumX

jD1

Disconstraint
�
dij

�
(5.15)

Disconstraint
�
dij

�
D

(
1 dij � dsafe

0 dij > dsafe
(5.16)

where Penaltyc is the collision penalty coefficient, Conum is the total account of
collisions that UAVi has to avoid, and dij is the distance between UAVi and the jth
collision center. (The obstacle shape is specified as a circle.) As long as UAVi spatial
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Fig. 5.7 Collision avoidance (© [2002] IEEE. Reprinted, with permission, from Duan and Liu
(2010))

horizon overlaps the jth obstacle, Disconstra int(dij) D 1 and the value of (5.15) will be
very large. Therefore, this constraint is adopted for effectively avoiding collisions.

5.2.3.3 Chaotic Particle Swarm Optimization

In RHC, the cost function (5.15) plays a role of an evaluation function in PSO.
The future control input sequence U is obtained by minimizing (5.15) via a particle
swarm optimization.

In PSO design, the optimization concepts based on chaotic sequences can be a
good alternative to provide diversity in PSO populations. The application of chaotic
sequences instead of random sequences in PSO is a powerful strategy to diversify
the population of particles and improve the PSO’s performance in preventing
premature convergence to local minimum. Chaos optimization is realized through
chaos variables which can be obtained by many ways. One of the simplest maps
which is brought to the attention of scientists by May (1976), which appears in
nonlinear dynamics of biological population evidencing chaotic behavior, is logistic
map:

ZnC1 D �Zn .1 �Zn/ (5.17)

where Zn is the nth chaotic number where n denotes the iteration number.
Obviously, Zn 2 (0,1) under the conditions that the initial Z0 2 (0,1), and
Zn 62 f0.0,0.25,0.5,0.75,1.0g. �D 4 has been used in our algorithm.

The population diversity measured the average particle distance, which describes
population diversity with dispersion degree between particles. Assume L is the
maximum length of search space, ps is the population of particles, ln is the
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dimensions of solution space, pid is the dth coordinate of particle pi, Pd is the average
of the dth coordinate, and the average particles distance D(iterk) at the kth iteration
is defined as follows:

D .iterk/ D
1

ps � L

psX

i

vuut
lnX

dD1

.pid � Pd/
2 (5.18)

In our chaotic PSO approach, the PSO algorithm is first run to find the global-
best position as a candidate solution, and once particles collide, D(iterk)<", where
" is a positive constant. Then, the better solution generated from chaotic systems
substitute random numbers for the PSO particles, where it is necessary to make a
random-based choice. In this way, the global convergence can be improved, and
falling into local-best solution can be prevented.

As we have mentioned, PSO can also be improved by a modification of the inertia
weight w in (2.11) (Shi and Eberhart 1998). The inertia weight can be used to
balance the local and global search during the optimization process. If the inertia
weight is big, it is possible to enhance global search. Otherwise, smaller inertia
weight will enhance the local search. While the value of w is made to decrease
gradually with the increase in the number of iterations by the following equation at
the kth iteration iterk:

w D wmax � iterk
wmax � wmin

itermax
(5.19)

where itermax is maximum iteration and wmax and wmin are separately maximum and
minimum of w.

In order to guarantee the stability and enhance the efficiency of the control
algorithm, the initial value of each particle chooses the last control input sequence
after the achievement of primary sequence, such as the lth particle at a time t is
initialed by U(t � ı).

The process of our proposed nonlinear dual-mode RHC method based on chaotic
PSO for solving multiple UAV formation flight problem can be described as follows:

Step 1. Initialize UAVs states X0 and the nonlinear dual-mode RHC parameters used
in formation system.

Step 2. Evaluate the terminal region ˝ and terminal penalty matrix P by (5.9),
(5.10), (5.11), (5.12), (5.13), and (5.14).

Step 3. Detect if formation state X(t) enters the terminal region ˝ or not by (5.8).
If it is true, then go to Step 8; else go to Step 4.

Step 4. Initialize particle swarm adopted with the last predictive control sequence
U(t � ı) optimized by PSO, while particle swarm is initialed randomly at the first
time.

Step 5. Evaluate the value of each particle by computing the cost function (5.15),
and update the particle swarm and the global-best particle gbest according to
(2.11).

http://dx.doi.org/10.1007/978-3-642-41196-0_2
http://dx.doi.org/10.1007/978-3-642-41196-0_2
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Step 6. Detect if PSO precociously converge to local minima with (5.18). If it is
true, then go to the next step; else go to Step 8.

Step 7. Use chaotic systems to generate a better solution to substitute random
numbers for the PSO particles in next iteration and then go to Step 4.

Step 8. Detect the PSO terminate conditions (reaching the maximal generation or
finding the idea optimum). If the terminate conditions are met, end the PSO
algorithm and return the global-best particle gbest as the control sequence U(t),
or continue the computation.

Step 9. Apply the first part of the optimal control sequence to update formation state
X(t), and then go to Step 1.

Step 10. Use a linear state feedback u D KX to control the nonlinear formation
system to guarantee the stability of multiple UAV formation.

Step 11. Detect the formation stability conditions. If certain conditions are achieved,
end the formation control method, or go to Step 2.

Figure 5.8 displays the flowchart of the chaotic PSO-based nonlinear dual-mode
RHC formation control scheme for multiple UAV formation flight

5.2.4 Experiments

In this section, series experiments have been performed to investigate the perfor-
mance of the proposed chaotic PSO-based nonlinear dual-mode RHC formation
control scheme for multiple UAV formation flight. We use (5.1) to represent states
of UAV model respectively. The multiple UAV group consists of 5 agents, with input
constraints [�5, 5]m/s2 for the acceleration u and [- /18,  /18] rad/s for the angular
turn rate !. To improve performance and avoid collisions, a safe distance between
UAVs is defined, dsafe D 3. Collisions between UAVs are solved with the priority
index strategy. Each UAV is tagged with a serial number.

The initial conditions of the nonlinear dual-mode formation controller are
prediction horizon Tp D 8s, time step ıD 1s (the simulation time), weighting
matrices Q D diag(1,1,1,1), R D diag(1,1), P D(0.0596 0 �0.0063 0;0 0.0596 0
�0.0063;�0.0063 0 0.0129 0;0 �0.0063 0 0.0129). The improved PSO param-
eter setting is the size of the particle swarm ps D 20, inertia weight wmax D 1.2,
wmin D 0.1, particle maximum velocity vpmax D 4, c1 D 0.5, c2 D 0.5, and the maxi-
mum iteration itermax D 200.

In order to fully illustrate the efficiency of the proposed algorithm, we compare
its performance with the standard GA under the same conditions. In both CPSO
and GA, the population size is 20. The GA is real valued with random initialization
and updates the population and search for the optimum with random techniques.
Crossover and mutation probabilities are set as 0.8 and 1/n, respectively, where n is
the dimension of the problem.
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Fig. 5.8 Chaotic PSO-based RHC formation control scheme for multiple UAV formation flight
(© [2002] IEEE. Reprinted, with permission, from Duan and Liu (2010))
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5.2.4.1 Formation Control

Multiple UAV states are initialed as xVL D(15,0,30,60), x1 D(15,0,5,65),
x2D(15,0,5,75), x3 D(15,0,5,85), x4 D(15,0,5,45), x5 D(15,0,5,55), and the
relative distances are xr1 D(0,0,0,0), xr2 D(0,0,�15,15), xr3 D(0,0,�30,30), xr4

D(0,0,�15,�15), xr5 D(0,0,�30,�30). The Virtual Leader is marked with “ı,”
while UAV is “�”. The five UAVs reconfigure from a “j”initial shape to forming a
“V” formation. Assume that the Virtual Leader speed is 15 m/s in the x-direction
and its heading angle is 0 rad during the simulations. Figures 5.9 and 5.10 show
the detailed results generated by the control sequence optimized by GA and CPSO,
respectively.

The UAV group has to follow the Virtual Leader as seen in Fig. 5.9a, which
shows the (x,y) positions of UAVs generated by using GA to optimize the control
sequence. Note that the UAV group is traveling from left to right in the figure.
The results are shown in Fig. 5.9, which illustrates that both the path tracking and
formation maintenance tasks are not achieved. Figure 5.9b–e shows the multiple
UAV convergence time. It is obvious that the 5th UAV cannot move to the initial
relative position to follow the Virtual Leader, while other UAVs can converge to
designated position. The same experiment is tested 5 times with similar results that
the satisfactory tasks are not achieved.

In Fig. 5.10, UAVs follow the Virtual Leader with a constant velocity in x -
direction and the desired separation between UAVs is 15 m in both the x - and
y -directions. Under the control inputs optimized by CPSO, the multiple UAVs
converge to the desired formation from the same initial configuration. Formation
results are presented in Fig. 5.10a. The formations converge in 50s as seen in
Fig. 5.10b. Compared with the results generated by the control sequence optimized
by GA, CPSO performs better for its comprehensive ability to search and high
precision, which demonstrates that CPSO is suitable for the dual-mode RHC
controller.

5.2.4.2 Formation Control with an Obstacle

The second experiment illustrates the effectiveness of the proposed method in Sect.
4.2.3 for five UAVs performing obstacle avoidance. The parameters in the dual-
mode RHC controller are chosen to be exactly the same as in the first experiment.
The second experiment is initialed: xVL D(15,0.7854,20,40), x1 D(5,0,�20,20),
x2 D(5,0,20,20), x3 D(5,0,�40,20), x4 D(5,0,0,20), x5 D(5,0,�60,20), and the
relative distances are xr1 D(0,0,0,0), xr2 D(0,0,�15,15), xr3 D(0,0,�30,30), xr4

D(0,0,�15,�15), xr5 D(0,0,�30,�30). And we change the Virtual Leader’s heading
angle from 0 to 0.7854 ( /4) and add a circular obstacle in the simulation
environment. The obstacle center is located at (20, 40) and the radius is 12 m.
Figure 5.11 shows the results generated by the control sequence optimized by GA,
while Fig. 5.12 shows the results generated by the proposed algorithm.

http://dx.doi.org/10.1007/978-3-642-41196-0_4
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Fig. 5.9 The detailed results generated by the control sequence optimized by GA. (a) Five UAVs
merge to a V-formation while following a Virtual Leader. (b) Relative velocities of 5 UAVs.
(c) Relative heading angles. (d) Relative distances in the x-direction. (e) Relative distances in
the y-direction (© [2002] IEEE. Reprinted, with permission, from Duan and Liu (2010))

The optimal obstacle avoidance trajectory with the dual-mode controller is
generated assuming that UAVs can sense the circle obstacle. The trajectory of
five UAVs after 20 time steps is presented in Figs. 5.11a and 5.12a. The results
generated by control sequence optimized by GA as seen in Fig. 5.11b–e are far
from satisfactory. Figure 5.12a shows the formation trajectory after 20 time steps.
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Fig. 5.10 The detailed results generated by the control sequence optimized by CPSO. (a) Forma-
tion trajectory under the same initial conditions. (b) Formation trajectory during the first sixty time
steps. (c) Relative velocities of UAVs. (d) Relative heading angles. (e) Relative distances in the x
-direction. (f) Relative distances in the y -direction (© [2002] IEEE. Reprinted, with permission,
from Duan and Liu (2010))

The results are shown in Fig. 5.12c–d, which demonstrates that both the path
tracking and formation maintenance tasks are successfully achieved. Figure 5.12c–e
represents the multiple UAV convergence time. It is obvious that converge in 20s. It
clearly shows the superiority of the proposed algorithm over GA.
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Fig. 5.11 The detailed results of GA for the second experiment. (a) Formation trajectory in a
complicated environment with obstacle. (b) Relative velocities of UAVs. (c) Relative heading
angles. (d) Relative distances in the x -direction. (e) Relative distances in the y -direction (© [2002]
IEEE. Reprinted, with permission, from Duan and Liu (2010))

The simulation results obtained by applying the proposed dual-mode RHC
algorithm show the UAVs are capable of flying in the desired formation. Simulations
with different conditions are conducted to verify the feasibility and effectiveness of
the proposed controller.
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Fig. 5.12 The detailed results of CPSO for the second experiment. (a) Formation trajectory in
a complicated environment with obstacle. (b) Relative velocities of UAVs. (c) Relative heading
angles. (d) Relative distances in the x -direction. (e) Relative distances in the y -direction (© [2002]
IEEE. Reprinted, with permission, from Duan and Liu (2010))
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5.3 DE-Based RHC Controller for Multiple UAV Close
Formation

5.3.1 Model of Multiple UAVs for Close Formation

In this section, a typical multiple UAV close formation model established by Proud
et al. (1999) and Pachter et al. (2001) are adopted.

Px D �
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(5.20)

The optimal separation between the Wingman and Leader UAV can be described
with x D 2b; y D 	b=4; z D 0, where b is the wingspan of the Leader. The close
formation model is established based on the aerodynamic forces on the Wing UAV
near the optimal relative position, with a rotating reference frame affixed to the
Wingman’s instantaneous position and aligned with the Wingman’s velocity vector
used.

In the close formation model shown in (5.20), (x,y, W ,VW ,z,�) are the state
vectors, where x, y, and z denote the longitudinal, lateral, and vertical separation
between the Leader and Wingman, respectively.  W and VW denote the heading
angle and velocity of the Wingman, respectively. . WC ; VWC ; hWC / are the control
inputs to Wingman’s heading hold, mach hold, and altitude hold autopilot channels,
respectively. The Leader’s maneuvers are regarded as a disturbance, which can be
expressed with . L; VL; hLC /.



162 5 Multiple UAV Formation Control

5.3.2 Description of RHC-Based Multiple UAV Close
Formation

When multiple UAVs fly in a close formation, the Wingman must maintain itself
at the optimal separation which is measured with respect to the Leader’s position.
Thus, the cost function (or objective function) of multiple UAV close formation
flight can be described with a quadratic form (Zhang and Duan 2012):

minJ D

Z T

0


�
X ref � x.t/

�T
� Q �

�
X ref � x.t/

�
dt

s:t: x.t/ D

Z t

0

f .x.0/;u .�/ ;d .�//d�

U min � u.t/ � U max (5.21)

where x(t) D [x,y,z,VW , W ]T denotes the formation state, and the control
inputs of Wingman’s autopilot is represented by u.t/ D ŒVWC ;  WC ; hWC �

T .
Xref D [xC,yC,zC,VL, L]T represents the reference state of the close formation
system, and xC, yC, zC determines the formation geometry. In the close formation
model adopted in our work, Leader’s flight states’ change can break the formation’s
stability. In this way, Leader’s maneuver can be regarded as the disturbance to
the flight formation, described as d(t). Q D diagfq1, � � � ,q5g is a positive-definite
matrix.

RHC divides the global control problem into some local optimization problems
at receding time horizons. These local optimization problems have the same
optimization objectives with the global control problem. In the kth sampling instant,
the dynamic of the close formation can be written as:

x .k C 1/ D x.k/C

Z .kC1/T

kT

f .x.k/;u.k//dt D f d .x. k /;u. k /;d. k //

x.0/ D x0 (5.22)

The control inputs of the Wingman are subject to the following constraints:

U D fu.k/ jj U min � u.k/ � U maxg (5.23)

where x(k) 2 R5 represents the formation state at the kth sampling time, and the
control action, keeping constant until next predictive horizon, is represented by
u(k) 2 R3. d(k) 2 R3 describes the Leader’s state. T denotes the span of one time
horizon, or sampling interval.

Assumption 1 The multiple UAV close formation system given in (5.20) is control-
lable and stabilizable.

Taking into account various practical constraints, such as the UAV’s physical
performance and the flight mission requirements, Wingman’s control action u is
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always available with the Leader’s state d, which can stably maintain the formation
state as the reference Xref, i.e., 8 d, 9 u 2 U, subject to Xref D fd(Xref,u,d).

At time k, RHC controller computes predictive control sequences of current and
future p predictive time horizons according to the formation’s current state, which
can be represented as u(kjk), u(k C 1jk), � � � , u(k C p � 1jk). Suppose that Leader’s
state will not change in the following p time horizons, namely, d(k C i) D d(k).
Then the states of the formation in these time horizons x(k C 1jk), x(k C 2jk), � � � ,
x(k C pjk) can be obtained. The next p time horizons are named as predictive time
horizon.

Denote the quadratic cost by the following fitness function at the kth time:

minJ.k/ D
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ˇ̌
ˇk

�
� U max (5.24)

Minimize fitness function (5.24); the optimal solution to the local optimization
problem at time k can be obtained, which is represented by u * (k C j � 1jk),
j D 1, � � � , p. Apply the preceding m control actions u * (kjk), u * (k C 1jk), � � � ,
u * (k C m � 1jk)), (0 � m � p) to the formation-hold control system residing on
Wingman successively in current and following m � 1 time horizons. Subsequently,
at time k C m, repeat sampling, predicting, optimization, and implementing. By
using this receding optimization technique, multiple UAV close formation state can
approximate to the reference value finally. Dunbar and Murray (2006) theoretically
demonstrated the stability of distributed MPC with a sufficiently fast update period.
This process can be described as Fig. 5.13.

RHC treats the global control problem as a series of online local optimization
problems. However, multiple UAV formation reconfiguration problem is actually
constrained nonlinear optimization problems and is very difficult to be solved by
using the traditional approaches. However, numerous population-based optimization
approaches can provide good solutions to these complicated problems. DE algo-
rithm is utilized to optimize the fitness function, and the predictive control law can
be optimized directly.

5.3.3 DE-Based RHC Controller Design for Close Formation

5.3.3.1 Controller Design

The formation flight controller is equipped on the Wing UAV. It is an outer-
loop controller that receives measurements of separation between the Leader and
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Fig. 5.13 Basic ideas of RHC (Reprinted from Zhang et al. (2010), with kind permission from
Springer ScienceCBusiness Media)

Fig. 5.14 Frame of multiple UAV close formation controller-based RHC (Reprinted from Zhang
et al. (2010), with kind permission from Springer ScienceCBusiness Media)

Wingman and drives the control signals of the Wingman’s three channels: mach
hold, heading hold, and altitude hold autopilot. The block diagram of DE-based
RHC controller for multiple UAV close formation is shown in Fig. 5.14 (Zhang and
Duan 2012):

Models of each single UAV are low-order models: the heading hold and the mach
hold autopilot are first order, and the altitude hold autopilot is second order.
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In the online optimization process, set (5.24) as the fitness function of DE (Price
and Storn 1997), and set predictive control sequence u(k C i � 1jk), i D 1, � � � , p as
the individual vector, which is just the objective of DE optimization operations.
Here, the length of the predictive horizon is p, and thus DE’s search region
is a D D 3p -dimensional space. At time k, the jth individual of DE algorithm
is represented by xj D[VWc

j(kjk),  Wc
j(kjk), hWc

j(kjk), : : : , VWc
j(k C p � 1jk),

 Wc
j(k C p � 1jk), hWc

j(k C p � 1jk)]. Apply DE’s evolutionary operators to xj until
the terminal criterion is satisfied, and then choose the individual with the smallest
fitness function value as the optimal control sequence. After that, implement the
preceding 3 � m control actions to the Wing UAV’s autopilot at each time horizon
respectively.

With the purpose of improving the online searching efficiency and making
full use of all aspects of information, for the solution xj


 D[VWc
j(k C 
jk),

 Wc
j(k C 
jk), hWc

j(k C 
jk)], 
D 0, � � � , p � 1 at time k C 
 with respect to the
individual xj of DE population, one feasible method used is to assign their
initial value in the following three steps: (i) Set them as Leader’s current state
[VL(k C 
), L(k C 
), hL(k C 
)]. (ii) Set them as former one time horizon’s control
action [VWc

j(k C 
 � 1jk),  Wc
j(k C 
 � 1jk), hWc

j(k C 
 � 1jk)]. (iii) Assign their
values randomly.

In order to reduce the computing complexity, we adopted the one step predictive
control, i.e., m D p D 1.

When multiple UAVs fly in a close formation, at the kth time horizon, the DE-
based RHC controller implements the process online in the following steps:

Step 1: Input the formation’s current state x(k) D [x,y,z,VW , W ]T as well as
Leader’s state [VL(k), L(k), hL(k)], compare them with the reference state
Xref (k), and then optimize the predictive control law.

Step 2: Initialize the DE population (each individual of the DE’s population is a
reference solution to u(kjk)), and set their initial values as follows:

xj D

8
<

:

�
VL.k/;  L.k/; hL.k/

�
;�

VWc.k � 1/;  Wc.k � 1/; hWc.k � 1/
�
;

rand � .U max � U min/C U min;

j D 1

j D 2

else

where j D 1, � � � D.
Step 3: Compute the fitness function value f (xj).
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Step 4: Apply DE’s mutation and recombination operators to xj, and generate the
trial vector uj, and then compute its fitness function value f (uj).

Step 5: Compare f (uj) and f (xj), implement DE’s selection operator, and then move
the individual with the lowest fitness value to the next generation. Go to Step 3
until stopping criterion is satisfied.

Step 5: The best individual of DE population is just the optimal control input
u * (kjk); output and apply it to each autopilot.

Step 7: Go to Step 1 and move forward into the (k C 1)th time horizon.

5.3.3.2 Stability Analysis

Let u * (kjk) be the optimal predictive control sequence at time k. If this control
sequence continues to work until time k C 2, the multiple UAV close formation
system state at time k C 2 can be obtained by

x .k C 2/ D

Z .kC2/T

kT

f


x .�/ ;u �



k

ˇ̌
ˇk

�
;d.k/

�
d� (5.26)

According to the further analysis, the fitness function J(k) of u(kjk) depends on
the state x(k C 1) at time k C 1. Using u * (kjk) yielded by the DE optimization, the
multiple UAV formation state at time kC1 will be the optimal:

x � .k C 1/ D

Z .kC1/T

kT

f


x .�/ ;u �



k

ˇ̌
ˇk

�
;d.k/

�
d� (5.27)

Continue using u * (kjk) at the next time horizon, i.e., let u(kC1jkC1)Du * (kjk).
However, this cannot guarantee that the fitness function value J(k C 1) is the
optimal. Therefore, the system state at time k C 2:
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.kC1/T

f


x .�/ ;u �



k

ˇ
ˇ̌
k

�
;d.k/

�
d� (5.28)

is not optimal.
At time k C 1, optimize u(k C 1jk C 1) by using DE algorithm. Since the initial

population has contained last time’s control input u * (kjk), together with Lemma 2,
the system state at time k C 2

x� .k C 2/ D

Z .kC2/T

.kC1/T

f


x .�/ ;u�



k C 1

ˇ̌
ˇk C 1

�
;d .k C 1/

�
d� (5.29)

is superior to x(k C 2) determined by (5.28) and J*(k C 1) � J(k C 1).
In which, the control sequence u * (kjk), u * (k C 1jk C 1), : : : , u * (k C Njk C N)

driving the system’s fitness function value is always superior to that at the last
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time horizon. Given an appropriate control step, the system’s fitness function will
converge to the stable value. Thus, the multiple UAV close formation system can be
stabilized at the reference state.

5.3.4 Experiments

In order to investigate the feasibility and effectiveness of our proposed DE-
based RHC approach to multiple UAV close formation control, two experiments
were conducted. The proposed approach was coded in MATLAB language and
implemented on PC-compatible with 2 GB of RAM under the Microsoft Windows
Vista.

In all experiments, the initial separations between Leader and Wingman were
set with xC D 60ft, yC D 23.6ft, zC D 0ft. The model parameters in (5.20) were from
Proud et al. (1999). Given Leader’s heading angle and velocity were  L D 0o and
VL D 200ft/s at the beginning of the experiments, while at time t D 5s, the Leader’s
flight states turned to  L D 20o and VL D 250ft/s. The experiments were performed
with 30 s, and the following results show the response curves of the longitudinal
and lateral separation, Wing UAV’s heading and velocity, as well as the final fitness
value at each prediction horizon.

The parameters of DE-based RHC controller are set as follows: F D 1.4,
CR D 0.5, NP D 10, NC D 20, m D p D 1, Q D diag[100,100,1,1].

1. Consider the aerodynamic interference introduced by Leader, and set the sam-
pling interval at Ts D 0.1s. The time response is shown as Fig. 5.15.

2. Change the sampling time interval as Ts D0.01s.The simulation results are shown
in Fig. 5.16.

The comparative results in Figs. 5.15 and 5.16 show that the shorter the sampling
period, the more stable the time response for the multiple UAV close formation
system. It is obvious that better performance can be obtained by shortening the
prediction horizon.

5.4 DE-Based RHC Controller for Multiple UAV Formation
Reconfiguration

5.4.1 Model of Multiple UAVs for Formation Configuration

We consider a group of N UAVs are flying at the same altitude without sideslip, and
they turn through the coordinated turn. For each UAV in the flight formation, its
state variable is set as xi D (vi, i,xi,yi)T , i D 1, � � � , N, and the dynamic of the single
UAV can be written as
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Fig. 5.15 Time response of multiple UAV close formation system (Ts D 0.1s). (a) Longitudinal
separation x. (b) Lateral separation y. (c) Wingman’s velocity VW . (d) Wingman’s heading  W .
(e) Optimal fitness value J� (k) (Reprinted from Zhang et al. (2010), with kind permission from
Springer ScienceCBusiness Media)

Pv D .T �D/=W
P D g � sin'=v
Px D v � cos 
Py D v � sin (5.30)

where v is the horizontal flying velocity of each UAV in the flight formation,  
denotes the heading angle, and the UAV’s horizontal location is represented by
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Fig. 5.16 Time response of multiple UAV close formation system (Ts D 0.01s). (a) Longitudinal
separation x. (b) Lateral separation y. (c) Wingman’s velocity VW . (d) Wingman’s heading  W .
(e) Optimal fitness value J� (k) (Reprinted from Zhang et al. (2010), with kind permission from
Springer ScienceCBusiness Media)

(x,y) in the earth-surface inertial reference frame. The control inputs of each UAV’s
autopilot are represented by u D (T,')T , which contain the thrust T and the roll angle
'. D represents the aerodynamic drag, which is simply regarded as a constant. The
weight of each UAV is W, and gravity acceleration g D 9.8m/s2. Thus, dynamics of
the ith UAV can be described as

Pxi .t/ D f .xi .t/; ui .t // ; i D 1; � � � ; N (5.31)
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Set one UAV in the formation as the Leader, which is treated as the reference
point, and its state vector is represented by xL. Relative to the Leader UAV,
(xi � xL) denotes the relative state of the ith UAV. Assume the initial time of the
reconfiguration process is t0 D 0, and the terminal time is t D T. The process of the
formation reconfiguration is regarded as a control optimization problem, and so,
the goal is to find the continuous control action U D (u1, � � � ,uN) that minimize a
cost function that enables the terminal positions of every UAV to reach their desired
value. Set the cost function as the quadratic form, which is described in the following
equation:

minJ.U / D
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U min � U �U max (5.32)

where Xref D [xref,1, � � � ,xref,N] represents the terminal reference state of the multiple
UAV system, which defines the terminal shape of the multiple UAV formation.
xi(Tjui) denotes the ith UAV’s terminal state driving by the control input ui. For
each UAV, given the initial state xi(0), its state xi(t) at any time t can be uniquely
determined by ui. The control inputs are constrained by the performance of UAVs.
Q D diagfq1,q2,q3,q4g is a positive-definite matrix.

Denote the distance between any two UAV as di,j(t), i, j D 1, � � � , N, which is
computed as

di;j .t/ D

q�
xi .t/ � xj .t/

�2
�

�
yi .t/ � yj .t/

�2

In order to avoid collision between two UAVs, di,j(t) must be greater than the safe
anti-collision distance Dsafe, that is,

di;j .t/ � Dsafe;8t 2 Œ0; T � ;8i¤j i; j 2 f1; � � � ; N g (5.33)

In order to ensure the real-time communication to achieve the information
sharing, di,j(t) must be less than the communication distance Dcom, that is,

di;j .t/ � Dcom;8t 2 Œ0; T � ;8i¤j i; j 2 f1; � � � ; N g (5.34)
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Comprehensively consider the distance-restrictive conditions as shown in (5.33)
and (5.34); the extended cost function can be rewritten as

minJextend .U / D J .U /C ! �

Z T

0

X

i¤j

�
max

�
0;Dsafe � di;j .t/

�

C max
�
0; di;j .t/ �Dcom

��
dt (5.35)

where ! denotes the distance punishment constant coefficient, and it should be great
enough so that the distance restricts of multiple UAV formation can be satisfied and
!D 1010.

5.4.2 Description of RHC-Based Multiple UAV Formation
Reconfiguration

RHC divides the global control problem into some local optimization problems
at receding time horizons. These local optimization problems have the same
optimization objectives as the global control problem. In the kth sampling instant,
the dynamic of the ith UAV of multiple UAV formation can be written as

xi .k C 1/ D xi .k/C

Z .kC1/T

kT

f .xi .k/;ui .k//dt (5.36)

The control inputs subject to the following constraints:

U D fui .k/ jj umin � ui .k/ � umaxg (5.37)

where xi(k) D [vi(k), i(k), xi(k), yi(k)] 2 R4 represents the ith UAV’s state at the kth
sampling time, and the control input of the ith UAV, keeping constant until the next
predictive horizon, is represented by ui(k) D [Ti(k),' i(k)] 2 R3. T denotes the span
of one time horizon or sampling interval.

At time k, RHC controller computes predicted control sequences of the current
and future p predicted time horizons for each UAV according to multiple UAVs’
current state and the constraint, and these control inputs can be represented by
ui(kjk), ui(k C 1jk), � � � , ui(k C p � 1jk). Then, the predictive states of each UAV
in the next p time horizons can be obtained, which are represented by xi(k C 1jk),
xi(k C 2jk), � � � , xi(k C pjk). The next p time horizons are called predictive time
horizon.
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Denote the quadratic cost by the following fitness function at the kth time:

minJ.k/ D
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Minimize fitness function (5.38); the optimal control solution to the local
optimization problem at time k can be obtained, which is represented by
ui * (k C j � 1jk), j D 1, � � � , p. Apply the preceding m control actions u * (kjk),
u * (k C 1jk), � � � , u * (k C m � 1jk)), (0 � m � p) to each UAV’s autopilot
successively in current and following m � 1 time horizons. Subsequently, at time
k C m, repeat sampling, predicting, optimization, and implementing. By using
this receding technique, multiple UAV formation’s state can approximate to the
reference value finally.

RHC treats the global control problem as a series of online local optimization
problems. However, multiple UAV formation reconfiguration problem is actually
constrained nonlinear problems and is difficult to be solved by using the traditional
approaches. The method to compute the control law is a key technique to RHC.
Numerous population-based optimization approaches provide good solutions to
these complicated problems. DE algorithm is utilized to optimize the fitness
function, and the RHC control law can be worked out directly.

5.4.3 DE-Based RHC Controller Design for Formation
Reconfiguration

DE algorithm is utilized to solve the predictive control law directly. The block
diagram of DE-based RHC controller for multiple UAV formation reconfiguration
process is shown in Fig. 5.17 (Zhang et al. 2010).

In the online reconfiguration process, set (5.37) as the fitness function of
DE, and set predicted control sequence u(k C i � 1jk), i D 1, � � � , p as the indi-
vidual vector, which is just the objective of DE operators. For the flight for-
mation of N UAVs, the length of the predicted horizon is p and the control
input has two actions: thrust and roll angle, so the DE’s search region is a
D D 2 � N � p -dimensional space. At time k, the ath individual of DE is rep-
resented by xa D[T1(kjk),'1(kjk), : : : , Ti(kjk),' i(kjk), : : : , TN(kjk),'N(kjk), : : : ,
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Fig. 5.17 Block diagram of formation reconfiguration (Reprinted from Zhang and Duan (2012),
with kind permission from SAGE Publications)

Ti(k C j � 1jk),' i(k C j � 1jk), : : : ], where a D 1, � � � NP, i D 1, � � � N, j D 1, � � � p.
Apply DE’s evolutionary operators to xa until the terminal criterion is satisfied,
and then choose the individual with the lowest fitness function value as the optimal
control sequence. After that, implement the preceding 2 � N � m control actions to
corresponding UAV at each time horizon respectively.

In order to reduce the computing complexity, we adopt the one step predicted
control, i.e., m D p D 1.

When multiple UAV is flying in a formation, at the kth time horizon, the flight
formation receives the command that a new formation is inevitable, and thus, the
DE-based RHC controller implements the process online in the following steps:

Step 1: Set the parameters of RHC and DE.
Step 2: Input each UAV’s current state X(k) D [x1, � � � ,xN] as well as the desired

formation shape and then carry on the optimization process.
Step 3: Initialize the DE population (each individual of the population is a candidate

solution to U(kjk)). In order to improve the online searching efficiency and make
full use of all aspects of information, half individuals of the population are chosen
randomly, and others are set as the control actions U(k � 1) at the former one time
horizon.

Step 4: Compute the fitness function value f (xa).
Step 5: Apply DE’s mutation and recombination operators to xa and generate trial

vector ua, and then compute its fitness function value f (ua).
Step 6: Compare f (ua) and f (xa), implement DE’s selection operator, and then

preserve the individual with the lower fitness value in the next generation. Go
to Step 4 until the stopping criterion is satisfied.

Step 7: The best individual of DE population is just the optimal control sequence
U * (kjk); output and apply them to each UAV respectively.

Step 8: Go to Step 2 and move forward into next (k C 1)th time horizon.
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Fig. 5.18 Reconfiguration trajectory of multiple UAVs; “o” is the initial position, and “•” is the
terminal position (Reprinted from Zhang and Duan (2012), with kind permission from SAGE
Publications)

5.4.4 Experiments

In order to investigate the feasibility and effectiveness of our proposed DE-based
RHC approach to the problem of the multiple UAV formation reconfiguration
control, a series of experiments were conducted under the complicated combating
environment. The proposed approach was coded in MATLAB language and imple-
mented on PC-compatible with 2 GB of RAM under the Microsoft Windows Vista.

In all experiments, parameters of DE and RHC are set as follows: F D 0.9,
CR D 0.5, NP D 100, the number of iteration Nc D 100, m D p D 1,
Q D diagf1,1,1,1g, T D 1s. In all experiments, for each UAV, aerodynamic drag
D D 2000, the thrust T 2 [0,6000], the roll angle ' 2

�
�	
3
; 	
3

�
, and UAV’s weight

W D 10000; Dsafe D 5, Dcom D 50.
Given the flight formation has 5 UAVs, they fly as an initial formation shape “j”,

and the terminal formation is a V-shape formation. Initial states of each UAV are
[2,0,0,20], [2,0,0,10], [2,0,0,0], [2, 0, 0, � 10] and [2, 0, 0, � 20]. Desired formation
can be described as Xref D [0, 0, � 20, 20; 0, 0, � 10, 10; 0, 0, 0, 0; 0, 0, � 10, � 10; 0,
0, � 20, � 20]; choose the UAV-3 as the Leader of the flight formation. In the
experiment, after four time horizons, multiple UAVs maneuver to the desired
V-shape successfully, and Fig. 5.18 shows the reconfiguration trajectory of multiple
UAVs by DE-based RHC controller. Figure 5.19a–d shows the evolution curve of
DE algorithm within each time horizon. Figure 5.20 describes the optimal fitness
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Fig. 5.19 (a) Evolution curve at the first time horizon. (b) Evolution curve at the second time
horizon. (c) Evolution curve at the third time horizon. (d) Evolution curve at the fourth time horizon
(Reprinted from Zhang and Duan (2012), with kind permission from SAGE Publications)
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Fig. 5.21 Roll angle at every time horizon (Reprinted from Zhang and Duan (2012), with kind
permission from SAGE Publications)

value at each time horizon. Figures 5.21 and 5.22 show the optimal control actions
implemented to each UAV, including the thrust and the roll angle. Figure 5.23 shows
the distance between two UAVs, which is less than the communication distance and
greater than safe anti-collision distance.

Another simulation is as follows. Initial states of each UAV are set as [2,	 ,0,20],
[2,	 ,0,10], [2,	 ,0,0], [2,	 , 0, � 10], and [2,	 , 0, � 20]. Still choose the UAV-3 as
the Leader, and the desired formation is Xref D [0, 0, � 20, 20; 0, 0, � 10, 10; 0, 0, 0, 0;
0, 0, � 10, � 10; 0, 0, � 20, � 20], which is also a V-shape formation. Figures 5.24,
5.25, 5.26, 5.27, and 5.28 show the reconfiguration results after five time horizons.

From these experiment results, it is obvious that our proposed DE-based RHC
controller can solve the multiple UAV formation reconfiguration problem efficiently.

5.5 Conclusions

This chapter deals with three significant problems in the multiple UAV formation
flight problem, which are respectively formation control, close formation (tight
formation), and formation configuration.

In Sect. 5.2, a chaotic PSO-based nonlinear dual-mode RHC method is proposed
for solving the constrained nonlinear systems. The presented chaotic PSO derives
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Fig. 5.22 Thrust at every time horizon (Reprinted from Zhang and Duan (2012), with kind
permission from SAGE Publications)
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Fig. 5.24 Reconfiguration trajectory of multiple UAVs; “o” is the initial position, and “•” is the
terminal position (Reprinted from Zhang and Duan (2012), with kind permission from SAGE
Publications)
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Fig. 5.26 Roll angle at every time horizon (Reprinted from Zhang and Duan (2012), with kind
permission from SAGE Publications)
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Fig. 5.28 Distance between UAVs (Reprinted from Zhang and Duan (2012), with kind permission
from SAGE Publications)

both formation model and its parameter values, and the control sequence is predicted
in this way, which can also guarantee the global convergence speed. A dual-model
control strategy is used to improve the stability and feasibility for multiple UAV
formation flight controller, and the state-feedback control is also adopted, which
model is based on the invariant set theory. Then a novel type of control strategy
of using hybrid RHC and DE algorithm is proposed based on the nonlinear model
of multiple UAV close formation in Sect. 5.3. The issue of multiple UAV close
formation is transformed into several online optimization problems at a series of
receding horizons, while the DE algorithm is adopted to optimize control sequences
at each receding horizon. Moreover, based on the Markov chain model, the
convergence of DE is proved. The working process of RHC controller is presented in
detail, and the stability of close formation controller is also analyzed. The formation
configuration, which is about diving multiple UAVs to form a new flying formation
state, is explained in detail using the DE-based RHC in Sect. 5.4. The global control
problem of multiple UAV formation reconfiguration is transformed into several
online local optimization problems at a series of receding horizons, while the DE
algorithm is adopted to optimize control sequences at each receding horizon. Both
the feasibility and effectiveness of these three proposed methods are verified by
series of experiments.
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