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UAV Modeling and Controller Design st

Haibin Duan

Abstract As a complicated multi-input, multi-output, and time-varying nonlinear
system, flight control system of unmanned aerial vehicle (UAV), which determines
the whole system’s performance directly, is crucial for the simulation training
system design. This chapter mainly focuses on parameter identification of flight
control system based on the modeling of UAVs and a specific controller design
for the pendulum-like oscillation in micro aerial vehicle (MAV). A predator—
prey particle swarm optimization (PSO) algorithm for identifying parameters of
UAV flight control system is presented, with the aim of reducing the workload of
the designers during the process of designing complicated UAV control system.
Besides, a software environment for UAV controller design was developed based on
the UAV model and the proposed method. Then a specific kind of controller design
involving the pendulum-like oscillation in the hover and stare state for a MAV in
the presence of external disturbances is discussed in detail, since the pendulum-
like oscillation caused by uncertainty and external disturbances badly jeopardize
the performance of hover and stare, resulting in blurred images or even MAV’s
overturning. A novel type of PSO-based linear-quadratic regulator (LQR) controller
for stabilizing the pendulum-like oscillation is developed, which can enhance the
MAV’s performance efficiently.

3.1 Introduction

Flight control system, which is a complicated multi-input, multi-output, and time-
varying nonlinear system, is the core of the simulation training system design
of unmanned aerial vehicle (UAV), which also determines the whole system’s
performance directly (McLean 1990). For the existence of strong coupling among
the inputs and the nonexistence of mapping relationship between the performance
index and the controller parameter, the selection of the controller parameters is a
very tough problem in the design of the flight control system. Presently, cut and
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try method is commonly used to identify all the control loop parameters of flight
control system. But this design method is low efficient and, to a great extent, much
depends on the experience of the designer, while the flight control system will be
more complex with the improvement of the aircraft performances, and these are
becoming the bottleneck of the flight control system design (Zhang and An 2008). In
the first part of this chapter, we proposed a parameter identification method for UAV
control system based on predator—prey particle swarm optimization (PSO). While
using PSO to optimize flight control systems, there are two problems to be solved.
Firstly, the UAV model selected is very important. Secondly, it is very crucial for
PSO algorithm to choose the fitness function, because there is no obvious mapping
relationship between the property index and the UAV controller. Therefore, how to
evaluate each particle’s quality turns out to be a key issue which must be resolved.

Micro aerial vehicles (MAVs), essentially small-scale flying robots, became an
area of interest in the aerospace community with the initiation of the micro UAV
(MUAV) program by Defense Advanced Research Projects Agency (DARPA). The
technological feasibility of MAVs as one possible solution to new challenging
reconnaissance mission scenarios in urban warfare (local, close-up range, hidden
reconnaissance, operation between obstacles and maybe even inside buildings) is
depending on a bunch of questions, which are only partly answered so far (Johnson
and Turbe 2006; Bloss 2009). One of the challenging problems for MAVs is to
design a robust flight control system for such a miniaturized “bird,” which is
generally one order of magnitude smaller than any today’s operational UAV. Hover
and stare is a key issue to the performance of MAVs and similar kinds of unmanned
vehicles, which are designed to perform surveillance and reconnaissance missions.
However, pendulum-like oscillation triggered by external disturbances and other
uncertain factors will badly impair its performance, thus resulting in blurred images
or even overturn of the vehicle (Pflimlin et al. 2010). As a result, control techniques
of such a vehicle are becoming more and more important for their wide applications
in civil and military fields. The second part of this chapter designed a novel type of
pendulum-like oscillation controller for MAV hover and stare state in the presence
of external disturbances, which is based on linear-quadratic regulator (LQR) and
PSO (Duan and Sun 2013). A linear mathematical model of pendulum phenomenon
based upon actual wind tunnel test data representing the hover mode is established,
and a hybrid LQR and PSO approach is proposed to stabilize oscillation. PSO is
applied for parameter optimization of the designed LQR controller.

3.2 Parameter Identification for UAVs Based
on Predator-Prey PSO

3.2.1 Mathematical Model of UAVs

The 6-DOF nonlinear model of UAVs is illustrated in this section, which is the
prerequisite for simplifying and linearizing the mathematical model (Zhang 2004).
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3.2.1.1 Nonlinear Equations of 6-DOF Modeling

UAV nonlinear equations of 6-DOF can be deduced by the aerodynamic and
kinematical equations as follows:
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where m is the mass of the UAV; « is attack angle; § is sideslip angle; ¢ is pitch
angle; y is roll angle; P is engine thrust; X, Y, Z are the projections of aerodynamic
force in body axis; and w,, w,, @, denote the coordinate components of palstance.
These three equations already contain three forces in the body axis which are
generated by the thrust vector:
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where I, I, I, and M, M,, M, denote the coordinate components of inertia moment
and resultant moment, respectively.
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In the body axis, we have

Y =wy —tan? (w, cosy —w, siny)
¥ = w, siny + o, cosy (3.3)
¥ = -5 (0, cosy —w, siny)

where ¥ is drift angle. Aerodynamic equations can be described as
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where d,, d,, . are the coordinate components of deflection angles of the controlling
surface. Aerodynamic moments can be given by

M, = meqSl» me = mxﬁ,B +my (@, 8y) + m, (0578y) + mxwxwa

2V
e,
2V
M, = Zmyqsl, Zmy = myﬁﬂ +my (o, 8y) +m, (a,Sy) + my‘”xwx%
oy [
+ m,, a)yﬁ

vz ba .. ba

M, = ZmqubA’ Zmz =m; (a.8;) +m; szv + mzaav.

When the height and mach are fixed, aerodynamic coefficients Cy(c,8;), C(ct,8;),
Cz(a78x)7 Cz(a ’8)/)’ mx(a,sx)’ mx(a 78}’)5 m}'(a’SX)’ my(a78y)a mz(a 782) are the funCtiOnS
of the height, mach, attack angle, and control surface. Aerodynamic derivatives
m;*%, m;%, mP, me®*, m®”, myﬁ, my,®, m,®Y are specified values.

3.2.1.2 Nonlinear Equations of 5-DOF Modeling

Suppose that UAV equations can be simplified into nonlinear equations of 5-DOF
if the thrust and the resistance of the aircraft are the same. Without consideration
of the thrust vector, we have V = 0,P = Q,P, = P < G, P, = P, =0.
On this condition, the equations of the UAV speed level off (Zhang 2004). At the
same time, it is assumed that I,, < I.I, — I,, state variable x = (&, 8,0,,0,,0.)".
The UAV nonlinear equations of 5-DOF are represented as follows:
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3.2.1.3 Linearization Modeling

In most cases, the UAV maintains steady straight level flight, and (3.4) can be
modeled as linear time invariant state-space perturbation models, with the nominal
trajectory being steady-level trimmed flight. The UAV’s linear equations are as
follows:

Ad = Aw, — (Y*Aa + ASz)

Ad, = M* Ao + M,* Aw, + M5 AS,

AB = Aw, + Z5 A8, + Z% A8,

Ady = MPAB + M Aw, + M Awy + M5 A8, + M5 AS,
Aoy = MyPAB + M,“ Awy + My® Awy + M5 A8, + M,% AS,

(3.5)
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Fig. 3.1 UAV system model
(Reprinted from Duan et al.
(2013a), with kind permission
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3.2.2 Predator-Prey PSO for Parameter Identification

3.2.2.1 UAV Flight Control System Design in Matlab Environment

Based on control augmentation system of UAVs, the aircraft linear equations are
generally obtained by a series of equilibrium points. The flight envelope of this
UAV must satisfy 0 < H < 18km and 0.6 <M < 2.2 (Zhang 2004). Figure 3.1 shows
the schematic diagram of UAV system.

As is obvious in Fig. 3.1, the UAV system is comprised of four subsystems:
control law, actuator, mathematical model, and simulation result display.

Matrix K for the function of control law can be obtained from Matlab main
program. Actuator module is responsible for control adjusting, which can also limit
the amplitudes of control surface deflection angle. The actuator module can be
shown with Fig. 3.2.

The actuator module requires that deflection angle of the elevator must be less
than that of aileron and rudder. In order to prevent the deflection angles of the control
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Fig. 3.2 Actuator module of UAVs in Matlab environment (Reprinted from Duan et al. (2013a),
with kind permission from Springer Science+Business Media)
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Fig. 3.3 UAV model module in Matlab environment (Reprinted from Duan et al. (2013a), with
kind permission from Springer Science+Business Media)

surface from deflecting too fast, the angle authority of the elevator is set at — 18° to
12°, aileron and rudder at — 25° to 25°, and the angle rate authority of elevator and
aileron at 50°/s, and rudder is at 80°/s. UAV model module is displayed in Fig. 3.3.
where matrix A and B are both obtained from the workspace of Matlab. Figure 3.4
shows the simulation result display module.

The control law u = — Kx is used. K denotes the state-feedback gain, and it can
be illustrated with the following matrix:

ki k2 0 0 O
K = 0 0 ks ky ks
0 0 ke k7 kg
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Fig. 3.4 Simulation result display module in Matlab environment (Reprinted from Duan et al.
(2013a), with kind permission from Springer Science-+Business Media)

3.2.2.2 Predator—Prey PSO for Identifying Controller Parameters

In the Gbest model of PSO, each particle has its current position and velocity in a
space of solution. The best solution found so far are Pbest and Gbest. Each particle
aims to get a global optimal solution by current velocity, Pbest, and Gbest. Gbest
model can be expressed as (Shi and Eberhart 1998a)

vij (k + 1) = wvij (k) 4 cir [ pi(k) — xi; (k)] 4 car [gi (k) — x5 (k)] (3.7)

Xij (k + 1) = Xij (k) + Vij (k + 1) (38)

where v;(k) and x;(k) respectively denote the velocity and position of the i th particle
at step k, j is the dimension of particle i, ¢; and ¢, are weight coefficients, ; and r,
are random numbers between 0 and 1, p; is the best position of the i th particle, and
gi is the best position which particles have ever found.

Generally, the basic PSO algorithm mentioned above is easily falling to local
optimal solutions. In this case, the concept of predator—prey behavior is proposed
to improve the basic PSO. Predator—prey PSO is a method which takes a cue
from the behavior of schools of sardines and pods of killer whales (Higashitani
et al. 2006; Wang and Duan 2013). In this model, particles are divided into two
categories, predator and prey. Predators show the behavior of chasing the center of
preys’ swarm; they look like chasing preys (Duan et al. 2011), and preys escape
from predators in multidimensional solution space. After taking a trade-off between
predation risk and their energy, escaping particles would take different escaping
behaviors. This helps the particles avoid the local optimal solutions and find the
global optimal solution.
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The velocities of the predator and the prey in the improved PSO can be defined
by (Higashitani et al. 2006)

vaij (k + 1) = wqvaij (k) + c1r1 [ paij (k) =xai; (k)] + cara [ga; (k) —xaij (k)]
+ eary[gj (k) — xaij (k)] (3.9)

veij (k + 1) = @pvyij (k) + carg [ prij (k)= (k)]
+ esrs [ grj (k) — xpij (k)] + core [g7 (k) =0 (K )]

— Pasign [xa1; (k) — xpij (k)] exp [=b| xqij (k) — xyi; (k) |]
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where d and r denote predator and prey, respectively, pg is the best position of
predators, g, is the best position which predators have ever found, p,; is the best
position of preys, g, is the best position which preys have ever found, g is the best
position which all the particles have ever found, and w, and w, can be defined as

iteration
wg =02exp|—-10—— ] +0.4 3.11)
iterationmay
®max — Omin . .
Wy = Omax — —= W jreration (3.12)
iterationm,y

PSO can be also improved by a modification of the inertia weight w, in (3.12).
The inertia weight, whose value is between 0 and 1[Adaptive Particle Swarm
Optimization], can be used to balance the local and global search during the
optimization process. If the inertia weight is big, it is possible to enhance global
search. Otherwise, smaller inertia weight will enhance the local search. In (3.12)
iterationmax 1S maximum iteration, Wmax and wm;, are, respectively, maximum and
minimum of w,. In our experiment, wmax and @i, are 0.9 and 0.2, respectively. And
the definition of / is given by

I = {k‘ﬂ}{inﬂxdk — xri|)} (3.13)

Then I denotes the number of the ith prey’s nearest predator. In (3.10), P is used
to decide if the prey escapes or not (P = 0 or P = 1), and a, b are the parameters
which decide the difficulty of the preys escaping from the predators. The closer
the prey and the predator, the harder the prey escapes from the predator. a, b are
denoted by

100

a = Xspan, b=

(3.14)

Xspan

where x4, is the span of the variable.
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The parameter identification of the conventional flight controller can be treated
as the typical continual spatial optimization problem. PSO is a novel way for solving
the problem. PSO, which is a bio-inspired computation algorithm, can be applied to
flight system control to reduce the workload of conventional designer. The bounds
of the control gain parameters are set, and PSO searches for the corresponding space
automatically to find the optimal parameters. The process in conventional design is
conducted manually; now it can be done automatically. Bio-inspired computation
can be applied to promote the automation of conventional controller design.

Using the proposed predator—prey PSO algorithm to obtain the optimal parameter
combination for the UAV flight control system here, the fitness function is given by

J= %/ (x’Qx n u’Ru)dt (3.15)
where x and u are, respectively, the state vector and the control vector. Q and
R are diagonal positive matrix. Here the weighting matrices are chosen as Q
=diag(50,10,20,30,30) and R =diag(100,100,100). The smaller J, the better the
particle.

The position vector of the predator and the prey is defined by

Xqg = (kl k2 k3 k4 k5 k6 k7 kg)
Xp = (kl k2 k3 k4 k5 k6 k7 kg)

where x; and x, have the constraint of =+ 10, which is set according to exact
experience.

The process of proposed predator—prey PSO algorithm for solving UAV con-
troller parameter identification can be described with Fig. 3.5 (Duan and Sun 2013).

The above mentioned flow chart of the predator—prey PSO algorithm process can
also be illustrated with Fig. 3.6.

The complexity of predator—prey PSO algorithm can be computed, and Table 3.1
shows a comparison of the complexity analysis between basic PSO and predator—
prey PSO.

In Table 3.1, m = my + m,, and n is the dimension of particle’s position. The total
complexity of basic PSO and predator—prey PSO can be expressed as

T(n)basicPSO =0 (14Nmax mn) (316)

T(n)improved pso = O (Nmax my n2) (3.17)

3.2.3 Experiments

In order to investigate the feasibility and effectiveness of the proposed predator—
prey PSO approach for identification of UAV controller parameters, a series of
experiments are conducted under some constrained conditions.
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PROCEDURE Optimization of UAV controller parameter based on the preda-
tor-prey PSO
BEGIN
Step 1: Initialization
Set the maximum iteration number N,

x> the number of the predators
m, and the number of the preys m, . Initialize randomly the positions and ve-
locities of the predators x,and v, respectively, both of which have the same
dimensions m, by 8. So are x, and v, . And run simulation module of Simulink
to compute fitness of each particle. After that, find out the minimum fitness
value of the predators as pbest,(0) , that of the preys as pbest.(0), and that of
all the particles as gbest(0) .
Step 2: (1) Let N=1;

(2) Calculate the fitness value of all the particles in iteration & through
running simulation module, and then find out the minimum fitness value of the
predators as pbest,(N) , that of the preys as pbest, (), and that of all the par-
ticles as ghest(N) .

Step 3: (1) Let N «— N +1;

(2)Update all the positions and the velocities according to (3.8)-(3.10).

Then repeat (2) in Step 2.
Step4: N=N,_ 7?7

(1)Yes: stop and output results;
(2)No: go to Step 3.
End

Fig. 3.5 The pseudocode of predator—prey PSO algorithm for UAV flight controller (Reprinted
from Duan et al. (2013a), with kind permission from Springer Science-+Business Media)

The predator—prey PSO algorithm is implemented in a Matlab 2008a pro-
gramming environment with an Intel Core 2 PC running Windows XP SP2. No
commercial PSO tools are used in these experiments.

Case I: In this case, the parameter values of predator—prey PSO are set
to o =10°8=10° Npax =100, t=20s, mach=0.8, H=_8000m, m,; = 10,
m, =20 where ¢ is the simulating time of the controller. Comparison of the
experiment results between the improved PSO and the LQR method which could
directly compute the state-feedback gain K is illustrated from Fig. 3.7 (a—e).
Figure 3.7f shows the evolution curve of the proposed PSO.

The final optimal result is K = [—-0.1471,-0.4012, 1.2393, —0.4847, 0.1373,
1.1180, —0.3967, 4.9621], the minimum fitness value J,;, = 223.0907, and the
best iteration bestN = 100. As indicated in Fig. 3.7, as expected, the proposed
algorithm can guarantee that the achieved states are almost the same as the
ones obtained by LQR. And the realization of the proposed method is simpler
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Fig. 3.6 Flow chart of the
predator—prey PSO
(Reprinted from Duan et al.
(2013a), with kind permission
from Springer
Science+Business Media)
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Initialize

v

Calculate fitness of each particle

v

N=1

v

Update position and velocity of each particle

Calculate fitness of each particle

End

Table 3.1 Comparison of complexity analysis between basic PSO and predator—prey PSO

Step  Operation

Complexity
Basic PSO  Predator—prey PSO

1 Initialize

2 Calculate the fitness value of all the particles
3 Update all the positions and the velocities

4 Stop and output result

0(2mn) O[2(my + m,)n]

O(Tm) O(1(my + m,))

O(14mn) O(14mgn + (31 4+ n)m,n)
o) o)

than LQR. Figure 3.7f also demonstrates that the algorithm can converge to the

optimal solution quickly.

Case 2: In this case, the parameter values are o = 10°, 8 =10°, N = 100,
t =20s, mach =1.2, H=15000m, my = 10, m, = 20 where ¢ is the simulating
time of the controller. Comparisons of the experiment results between the
improved PSO and the LQR method are illustrated from Fig. 3.8a—e. Figure 3.8f
shows the evolution curve of the proposed PSO.
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Fig. 3.7 Results of identifying controller parameters for UAVs based on predator—prey PSO
in Case 1 (a) Comparison of attack angle responses. (b) Comparison of pitch rate responses.
(¢) Comparison of sideslip angle responses. (d) Comparison of roll rate responses. (¢) Comparison
of yaw rate responses. (f) Evolution curve of predator—prey PSO (Reprinted from Duan et al.
(2013a), with kind permission from Springer Science+Business Media)

The final optimal results are K = [0.0416, 0.8298, —2.7208, 1.4825, —1.0683,
1.9002, —0.2273, 2.6742], the minimum fitness value J,;, = 68.3361, and the
best iteration bestN = 99. Although the initial conditions are much different from
those of experiment 1, the improved algorithm can find the optimal solution.
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Fig. 3.8 Results of identifying controller parameters for UAVs based on predator—prey PSO
in Case 2 (a) Comparison of attack angle responses. (b) Comparison of pitch rate responses.
(c) Comparison of sideslip angle responses. (d) Comparison of roll rate responses. (e) Comparison
of yaw rate responses. (f) Evolution curve of predator—prey PSO (Reprinted from Duan et al.
(2013a), with kind permission from Springer Science+Business Media)

From these two experimental results, it is obvious that the proposed predator—
prey PSO approach could make the UAV controlling system obtain better per-
formance than the conventional LQR method. The state-feedback gain obtained
according to the predator—prey PSO can guarantee fast response, precise control,
and strong robustness.
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Based on the UAV model and the proposed predator—prey PSO algorithm,
we developed a software platform of UAV controller design. The graphical user
interfaces (GUI) of this platform are shown in Fig. 3.9.

3.3 PSO Optimized Controller for Unmanned Rotorcraft
Pendulum

MAV offer several advantages as autonomous UAVs (Pflimlin et al. 2010; Sun and
Duan 2013; Duan and Sun 2013). They can be very small with a compact layout.
Many are capable of high-speed flight in addition to the normal hover and vertical
take-off and landing capabilities. These features make them well suited for a variety
of missions, especially in urban environments. A recent announcement by the US
Government of plans to greatly increase the number of unmanned aircraft on station
in Iraq and Afghanistan helps drive the surge in interest for unmanned vehicles. US
Defense Secretary Robert Gates (Bloss 2009) commented that unmanned aircraft is
essential to provide real-time video of insurgent activity and argued that the need
is growing at 300 % per year. Nowadays, many companies are functioning towards
research and development of MAVs, and the representative achievements are Cypher
series by Sikorsky and MAVs by Honeywell etc.

Hover and stare is of the paramount importance to the performance of MAVs, as
they are designed to perform surveillance and reconnaissance missions. However,
pendulum-like oscillation (see Fig. 3.10) triggered by external disturbances and
other uncertain factors will badly impair its performance, resulting in blurred images
or even MAVs’ overturning. As a result, control techniques of MAVs are becoming
more and more important for their wide applications in civil and military fields, with
special regard to the hover and stare state for better performances of surveillance
and reconnaissance missions. This section focuses on a particular kind of MAYV,
which is driven by a rotor and a ducted fan, and proposes a combination control law
design approach to stabilize the hover and stare pendulum-like oscillation based on
LQR, in which an improved PSO algorithm is utilized for parameter optimization
of matrix Q and R in the linear-quadratic regulator. In this way, the MAV’s dynamic
properties can be ameliorated efficiently while executing surveillance missions that
requires perfect stability and rapid responses.

3.3.1 Mathematical Model of Pendulum Oscillation for MAVs

The MAV in this section adopts the axial symmetrical layout. Owing to the fact that
the suspension center moves freely with rotor wings in the plane, pendulum-like
oscillation is nonlinear, strongly coupled, and of high order (Pflimlin et al. 2010).
In this section, a mathematical model representing the pendulum-like oscillation
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Fig. 3.10 Pendulum-like oscillation in actual flight (x-axis) (Reprinted from Duan and Sun (2013),
with kind permission from Springer Science+Business Media)
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Fig. 3.11 Coordinates of the pendulum model and decomposition of oscillation angle. (a) Coor-
dinates of the pendulum model. (b) Decomposition of oscillation angle (Reprinted from Duan and
Sun (2013), with kind permission from Springer Science+Business Media)

in the hover and stare state is obtained by using the Lagrangian method, and the
corresponding linearized model is obtained in the neighborhood of the hover and
stare equilibrium.

3.3.1.1 Nonlinear Mathematical Model of MAV Pendulum-Like
Oscillation

The pendulum can be abstracted as a system consisting of the suspension point Oy,
the pendulum rod O;,0;, and the pendulum mass O; (see Fig. 3.11).
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In Fig. 3.11, OXYZ is the ground-fixed coordinate system, Oyx;y;z; represents
a mobile ground coordinate system, with the point O;, as the origin and parallel to
OXYZ, while Oyx,y,z; is defined as the pendulum-body coordinate frame, which
originates from Op, and axis z, points downward along the pendulum rod O,0;.
Decompose the two-dimensional pendulum-like oscillation to one in the direction
of axis X and Y, and the transition matrix R from O;x,y,2, to Opx1y1z; is obtained
as follows:

cosf, sinfysinf, cosB,sinb,
R = 0 cos 0, — sin 6, (3.18)
—sin 6, sin 6, cos 6, cos 0, cos 0,

Suppose the position vector of the suspension point Oy, in the coordinate frame of
OXYZ and the pendulum mass Oy, in the coordinate frame of Oyx;y,z;, are presented

with 7, = [x,y,z]7, ¥, =[0,0,]]", respectively. Then, the coordinate of point O, in
Opx1y121 can be calculated according to the following equation:

re = R-r'y = [l cos O sin 0, — sin 6, cos Oy cos Gy]T (3.19)
where [ denotes the distance from Oy, to Oy, i.e., the length of the pendulum.
Finally, we have the coordinate of O, in coordinate frame OXYZ presented as in
(3.20):
r=r+R-r (3.20)

The Lagrange function of the pendulum system:

L=Ty—V =Ty+T y+T" -V
LT, 1 1
= Emr[rh + Emtl/tTV + 5 Xza))%z + 5./;20)52

— (—m,gl cos 0, cos 0, + (m + mt)(z —20)8)

I 1 : :
5 (m o m) (4 37+ 2) oyl [ (3+cos?6,) 162+ (143c05%0,) 167

+ myl (x0y cos 0, cos 0, — %0, sin 0 sin 0, — y@Y cos B, — 26, sin 6y cos oy
_ 29'}, cos 0, sin 0, )—i—mlgl cos 0, cos 0, — (m + ml)(z — z0>g (3.21)

where T,,, T'y, Ty represent, respectively, kinetic energy of the suspension center
Oy, translation kinetic energy of the pendulum mass O;, and rotational kinetic
energy of the pendulum rod around the centroid of O, and V is potential energy
of the system, choosing the initial state of the pendulum-like oscillation as the zero-
potential energy surface.
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Table 3.2 Main parameters

of the MAV system structure Symbol  Value Physical meaning
m 10 kg Suspension center quality
my 20 kg Pendulum quality
! 0.86 m Pendulum length
g 9.8 m/s>  Gravity acceleration
Oy, 0, - Pendulum angle around axis x, y
Ox, Py - Pitch and roll angle
ay, ay - Suspension center acceleration
Uy, Uy - Control force on Oy

Therefore, from the Lagrange equation it can be deduced:
d (dL L 0
dt \9g,) 096,
(3.22)
d [ JoL aL 0
dt aéy a0,

Considering all the above equations (3.18, 3.19, 3.20, 3.21, and3.22), the
nonlinear mathematical model of the MAV pendulum-like oscillation is finally
obtained as follows:

éx = (35& sin 0, sin 8, + 3y cos 0, + 3Zsin 6, cos 6, + 2/ éx Q'y cos 0, sin 0,
- 319:% sin @, cos 6, — 3g sin 6 cos OX)/ (cos?6, +3)1

éy = ( —3X cos B, cos B, + 3Zcos b, sinb, + 6/ éx éy sin 0, cos 0, (3.23)
— 1625in 6, cos H, — 3g cos B, sin Qy)/ (cos?6, +3)1

Table 3.2 gives the main parameters of the MAV system structure in this section.

3.3.1.2 Linearization of Mathematical Model

Step 1: Change the pendulum angle around axis x, y (6,0,) to the pitch and roll
angle (¢, ¢,) according to ¢, = 6,, ¢, = — 6, and then (3.23) can be described as

¢y = (35(' sin ¢, sin ¢y, — 3§ cos ¢, + 3Zsin ¢y, cos ¢, + 21(;'qu'§y cos ¢, sin ¢y
—31¢?sin ¢, cos ¢, — 3g sinp, cos ¢y>/ (cos’y + 3) 1

b = ( — 3% cos ¢y cos ¢y + 3Zcos ¢y singy + 6l P, sing, cosd,  (3.24)

— l¢§ sin ¢ cos ¢, — 3g cos ¢, sin¢x)/ (cos’g, + 3)1
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Step 2: Choose the state variables X, = [x,z/)x,)'c,tﬁx,y,gby,)'/,cfﬁy,z, Z,)'é,j/',%]T,
the input of the system u = [¥, y]T Expand (3.24) into Taylor series in the vicinity
of the equilibrium point, and the linear model of the pendulum-like oscillation is
finally obtained as follows:

X, A, 0T X, By 0 [ uy
. = 3.25
|:Xy_ |:0 Ay]|:Xy]+|:O By]|:“yi| ( )
where the state vector X, = [x,¢x,x,<]5x]T, X, = [y,¢y,y,(;3y]T, and
0 0 10 0 0 10 0 0
0O 0 01 0 0 01 0 0
Ac=10 0o o0 |4 =|0 0 oo0|:Bs=| 1 [[B=]| 1
3g 3g 3 3
0-200 0-200 —= -
4] _ 4] 4] 4]

3.3.2 Oscillation Controller Design Based on LOR and PSO

3.3.2.1 Characteristics of Pendulum-Like Oscillation

From the linear model, the MAV pendulum-like oscillation in the direction of X and
Y is no longer coupled with each other. The pendulum system can be reduced to
two four-order subsystems, which are independent of one another. Due to similarity
between matrix A, and A,, we choose either of the two subsystems to analyze
characteristics of the MAV pendulum-like oscillation.

Considering pendulum motion only in the direction of axis X, the state-space
equation of the linearized X subsystem is presented as follows:

X = AX + BU
3.26
Y =CX (3.26)
0 0 1 0
o7 0 0 0 1
h X= T= X " x| » A= 5
where X =[x1. x5.x3, 2] =[x, g, 4. 6] 0 0 —0.6500 0.6500
0 —8.547 0.5669 —0.3924
0 1000
0 0100
B - N C =
1 0010
~0.872 0001

In the actual flight, external disturbances such as crosswinds jeopardize stability
of hover and stare state and lead to a considerate degradation of the surveillance
performance and result in even false intelligence information. Assume there is a
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Fig. 3.12 Responses of the MAV pendulum-like oscillation system (Reprinted from Duan and Sun
(2013), with kind permission from Springer Science+Business Media)

sudden gust, the pendulum system gets an initial state ¢,(0) = 0.05rad. The inherent
characteristics of the MAV pendulum-like oscillation system and the responses are
given in Fig. 3.12.

As shown in Fig. 3.12, due to external disturbances of crosswinds, which result
in an initial state ¢,(0) = 0.05rad, the pendulum-like oscillation occurs in MAV
that is required to be stable enough to carry out hover and stare missions. However,
the actual fact shown by the analysis results states clearly that the position of the
suspension, denoted by x in the Fig. 3.12, does not remain in the original place
but moves to another site in 20 s, which may bring about deviation from the ideal
monitoring precision. Furthermore, the MAV’s body swings back and forth just
in the way as a pendulum does and eventually converges to the equilibrium point
after 25 s.

3.3.2.2 Control Law Design Based on LQR

As mentioned above, the hover and stare state is inherently unstable, and external
disturbances would give rise to pendulum-like oscillation depicted as in Fig. 3.12.
A novel type of optimal control law based on LQR and PSO is designed in this
section, which is used to eliminate pendulum-like oscillation with the shortest
duration. In this controller, the position of the suspension point x and the pendulum
angle ¢, are the two main state variables to be controlled to the desired value. In
order to ensure the robustness and optimality of the close loop, the LQR design
technique is applied due to the fact that it has a very nice robustness property
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and has been widely used in many applications. The key issue of LQR controller
design is how to select an appropriate control vector u(f) so that the given quadratic
performance index (see (3.27)) obtains the minimum value. It is proved that the
performance index (10) can reach its minimum by the designed linear control law
in (3.28).

J = / (X" QX + u" Ru) dt (3.27)
0

u(t) =—-KX(@) =R 'BTPX(t) (3.28)

and the optimal matrix P can be calculated from the following Algebraic Riccati
Equation:

ATP + PA—PBR'BTP+ 0 =0 (3.29)

Taking all factors into account, including the performance of the control system
and restrictions on the total energy consumed, matrix Q and R can be defined in the
form of Q = diag(q;1,922,0,0), R = 1, in which parameters ¢;; and gy, are crucial for
a splendid dynamic response. As a result, the proposed algorithm takes advantage
of PSO’s high operating efficiency, fast convergence speed, and model simplicity,
which is used to search the appropriate parameter setting of the LQR control law
design approach.

Let the input u be the control force acting on the suspension center, and the
corresponding pendulum-holding back control law from the LQR is described as
follows:

u=—KX =—(kix; + kaxs + k3xs + kyxs) (3.30)

where K denotes the feedback parameters obtained for the LQR and X denotes
the states of the system, i.e., the position of the suspension center, the angle of
the pendulum, the speed of the suspension center, and the angular velocity of the
pendulum, respectively.

The PSO-based LQR controller for prohibiting MAV pendulum-like oscillation
of the hover and stare state in presence of external disturbances can be illustrated
with Fig. 3.13.

3.3.2.3 Key Settings for PSO

1. Fitness Function f
The fitness function f chosen in LQR controller can be described as follows:
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Fig. 3.13 Structure of pendulum-like oscillation control system (Reprinted from Duan and Sun
(2013), with kind permission from Springer Science+Business Media)

1

/ (X" OX +u" Ru) dt
0

f=

(3.31)

where u=— (k1x1 + kg)Cz + k3)€3 + k4)C4), K= [kl,kz,k3,k4] = lqr(A,B,Q,R),
0 = diag(q11,922,0,0).

2. Inertia Weight w
The inertia weight @ controls the exploration properties of the algorithm, with
larger values facilitating a more global behavior and smaller values facilitating a
more local behavior; thus results of the algorithm depend largely on w selection
(Duan and Liu 2010; Liu et al. 2012; Duan and Sun 2013). Generally, there are
two ways to choose the inertia weight, namely, constant @ and time-variant @.Shi
suggested using 0.8 < w < 1.4, which starts with bigger w values (a more global
search behavior) that is dynamically reduced (a more local search behavior)
during the optimization. In this section, @ can be declined linearly from 1.4 to
0.8 in the former 75 % phylogenetic scale and keep constant in the rest time.

3. Population Size m
According to the scale of the exact optimization problem, m is set between 40
and 150. Here we choose m =100.

4. Acceleration Constants c| and c,
Shi and Eberhart (1998b) suggests ¢; = ¢, = 2. Related work showed that having
each particle put slightly more trust in the swarm (larger ¢, value) and slightly
less trust in itself (smaller ¢; value), which seems to act better for the structural
design problems. According to experiences, we choose ¢; = 1.8 and ¢, = 1.3.
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Table 3.3 Control
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Fig. 3.14 The average evolution curves of the PSO (Reprinted from Duan and Sun (2013), with
kind permission from Springer Science+Business Media)

3.3.3 Experiments

Assume the designed MAV executes a surveillance mission using the hover and stare
mode in the actual flight. Considering external disturbances, we take crosswinds,
for example, the system gets an initial state x = [0, 0.05, 0, 0], which gives rise to
pendulum oscillation without an appropriate control.

Using the proposed controller described in Fig. 3.1 and experimental settings
given above, the control parameters which include the optimal weight matrix Q and
the resulting feedback vector K are obtained, which are shown in Table 3.3.

Fig. 3.14 shows the evolution curve of the PSO algorithm for optimizing the
weight parameters of the designed LQR controller.

The zero-input responses of the MAV pendulum-like oscillation with an initial
pendulum angle of 0.05rad, which is brought about by crosswinds in the actual flight
environment (See Fig. 3.15).

Compared with the responses without control in Fig. 3.13, the dynamic behaviors
of x and ¢, state obviously that the closed loop eliminates the pendulum-like oscil-
lation and the state converges to the equilibrium point with an average time of 6 s.

Furthermore, considering a constant interference force acting upon the pendulum
system besides the initial state, the resulting responses are given in Fig. 3.16.
The interference value is taken as 0.2m/s2, and the control framework and relative
parameters remain the same as mentioned above in Fig. 3.13 and Table 3.3.
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Fig. 3.15 The zero-input response of the MAV pendulum-like oscillation system (Reprinted from
Duan and Sun (2013), with kind permission from Springer Science-+Business Media)
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As presented in Fig. 3.16, the PSO-based LQR controller can eliminate the
interference of the constant disturbance and the initial state in 6 s. The MAV is
stabilized to a state of x = [0.0128, 0, 0, 0], which means that the LQR control
design technique based on PSO is robust for external disturbances.

3.4 Conclusions

As a key component of UAV system, controller acts as the brain of UAVs. So the
selection of controller parameters is crucial in the design of the flight control system.
However, for the existence of strong coupling among the inputs and the nonexistence
of mapping relationship between the performance index and the controller parame-
ter, it is a tough work. The 6-DOF nonlinear model of UAVs is illustrated, which is
the prerequisite for simplifying and linearizing the mathematical model. Then UAV
equations can be simplified into nonlinear equations of 5-DOF with the assumption
that the thrust and the resistance of the aircraft maintains the same. And it can be
modeled as linear time invariant state-space perturbation models, with the nominal
trajectory being steady-level trimmed flight. To reduce the workload of the designers
during the process of designing complicated UAV control system, a predator—prey
PSO algorithm for identifying parameters of UAV flight control system is presented.

The performance of hover and stare is the key issue to MAVs when carrying
out new challenging reconnaissance missions in urban warfare (local, close-up
range, hidden reconnaissance, operation between obstacles, and maybe even inside
buildings). However, pendulum-like oscillation caused by uncertainty will badly
impair the performance of hover and stare, resulting in blurred images or even
overturn. However, pendulum-like oscillation caused by uncertainty and external
disturbances badly jeopardize the performance of hover and stare, resulting in
blurred images or even MAV’s overturning. So the second part of this chapter
mainly deals with control issue of pendulum-like oscillation in an MAV’s hover
and stare state in the presence of external disturbances; a novel type of PSO-based
LQR controller for stabilizing the pendulum-like oscillation is developed, which can
enhance the MAV’s performance efficiently. Simulation results verify the feasibility,
effectiveness, and robustness of our proposed approach, which provides a more
effective way for control law design.
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