
Chapter 2
Bio-inspired Computation Algorithms

Pei Li and Haibin Duan

Abstract Bio-inspired computation is the use of computers to model the living
phenomena and simultaneously the study of life to improve the usage of computers.
Swarm behaviors in animal groups such as bird flocks, bees, ants, fish schools, and
sheep herds, as well as insects like mosquitoes, ants, and bees, often exhibit incred-
ible abilities to solve complex problems that seem far beyond their capabilities.
This chapter mainly focuses on the biological inspiration, principle, and implemen-
tation procedures of four popular bio-inspired computation algorithms including
ant colony optimization (ACO), particle swarm optimization (PSO), artificial bee
colony (ABC), and differential evolution (DE). Special emphasis has been laid on
how the biological behavior can be transferred into a technical algorithm. Moreover,
description of algorithms in more general terms and the most successful variants
of these algorithms are provided. Finally, a brief introduction to other bio-inspired
computation algorithms such as glowworm swarm optimization (GSM), bacteria
foraging optimization (BFO), bat-inspired algorithm (BA) is presented.

2.1 Introduction

Bio-inspired computation, short for biologically inspired computation, is a way of
developing computer systems by taking ideas from the biological world. It is a field
of study that loosely knits together subfields related to the topics of connectionism,
social behavior, and emergence. Briefly put, it is the use of computers to model
the living phenomena and simultaneously the study of life to improve the usage
of computers. Bio-inspired computation in an interdiscipline composed of many
different fields, such as biology, computer science, physics, mathematics, and
genetics. As we have known, biological systems have many advantages over
computer systems, as they are able to solve much more complex problems beyond

The original version of this chapter was revised. A correction to this chapter is available at
https://doi.org/10.1007/978-3-642-41196-0__9

H. Duan and P. Li, Bio-inspired Computation in Unmanned Aerial Vehicles,
DOI 10.1007/978-3-642-41196-0__2, © Springer-Verlag Berlin Heidelberg 2014

35

http://crossmark.crossref.org/dialog/?doi=10.1007/_2&domain=pdf
https://doi.org/10.1007/978-3-642-41196-0__9

36 2 Bio-inspired Computation Algorithms

the capability of the contemporary computer with far less energy and much higher
robustness. Many of the ideas taken from natural processes have been applied to
machine learning, leading to new developments in artificial intelligence.

Bio-inspired computation is a major subset of natural computation, which is
different from traditional artificial intelligence (AI) in that it often takes a more
evolutionary approach to learning. In traditional AI, as the creator, programmers
give their program some degree of intelligence in the process of programming.
However, bio-inspired techniques often involve the method of specifying a set of
simple rules, a set of simple organisms which adhere to those rules, and a method
of iteratively applying those rules. In other words, bio-inspired computation takes
a more bottom-up, decentralized approach. It is a new approach to enable the
intelligence, as the constructed simple system is able to involve into a more complex
one. Complexity gets built upon complexity until the end result is something
markedly complex and quite often completely counterintuitive from what the
original rules would be expected to produce.

By simulating the collective behavior of decentralized, self-organized system
from nature, many optimization algorithms have been developed, which could
be called as either swarm intelligence or bio-inspired computation from different
perspectives. The term swarm intelligence refers to a kind of problem-solving
ability that emerges in the interactions among the individuals that follow a simple
rule. The concept of a swarm means multiplicity, stochasticity, randomness, and
messiness, and the concept of intelligence suggests that the problem-solving method
is somehow successful. Swarm behavior can be seen in bird flocks, fish schools, as
well as in insects like mosquitoes and midges. Many animal groups such as fish
schools and bird flocks clearly display structural order, with the behavior of the
organisms so integrated that even though they may change shape and direction, they
appear to move as a single coherent entity. Each individual in the group attempts
to maintain a minimum distance with other members at all times. This rule has
the highest priority and corresponds to a frequently observed behavior of animals
in nature. If individuals are not performing an avoidance maneuver, they tend to
avoid being isolated from others and to align themselves with their neighbors. A
swarm can be viewed as a group of agents cooperating to achieve some purposeful
behavior and achieve some goal. This collective intelligence seems to emerge from
large groups composed of relatively simple agents. The agents use simple local rules
to govern their actions and via the interactions of the entire group, then the swarm
achieves its objectives eventually.

There is no supervisor in the colony, which means that there is no central control
in the swarm and each individual has a stochastic behavior by taking advantage of
her perception in the environment and her neighborhood. The agents use simple
local rules to govern their actions, and via the interactions of the entire group, the
swarm achieves its objectives. Note that the local rules have no relation to the global
pattern. Interactions among the members through the network lead to the emergence
behavior, which make the colony be able to cope with complicated situations
and to find solutions to complex problems, which is called self-organization by
researchers. Self-organization is a crucial feature of a swarm system which results to

2.1 Introduction 37

global-level (macroscopic level) response by means of low-level (microscopic level)
interactions. Bonabeau et al. (1999) interpreted the self-organization in swarms
through four characteristics, which are respectively positive feedback, negative
feedback, fluctuations, and multiple interactions. Positive feedback is a simple
behavioral “rules of thumb” that promotes the creation of convenient structures.
Recruitment and reinforcement such as trail laying and following in some ant
species or dances in bees can be shown as examples of positive feedback. Then
we have a negative feedback that counterbalances positive feedback and helps to
stabilize the collective pattern. In order to avoid the saturation which might occur
in terms of available foragers, food source exhaustion, crowding, or competition
at the food sources, a negative feedback mechanism is needed. Fluctuations such as
random walks, errors, and random task switching among swarm individuals are vital
for creativity and innovation. Randomness is often crucial for emergent structures
since it enables the discovery of new solutions. Multiple interactions occur since
agents in the swarm use the information coming from the other agents so that the
information and data spread to all network.

Millonas (1994) also defined five principles to be satisfied by a swarm to have an
intelligent behavior:

1. The proximity principle: The swarm should be able to do simple space and time
computations.

2. The quality principle: The swarm should be able to respond to quality factors in
the environment such as the quality of foodstuffs or safety of location.

3. The principle of diverse response: The swarm should not allocate all of its
resources along excessively narrow channels, and it should distribute resources
into many nodes.

4. The principle of stability: The swarm should not change its mode of behavior
upon every fluctuation of the environment.

5. The principle of adaptability: The swarm must be able to change behavior mode
when the investment in energy is worth the computational price.

Ethologists have modeled the behavior of a swarm with the features described
above in both low level and global level (Crina and Ajith 2006). Recently
researchers have been inspired by those models, and they have provided novel
problem-solving techniques based on swarm intelligence for solving difficult real-
world problems such as network routing, clustering, data mining, job scheduling,
and bioinformatics, to name just a few. In the last two decades, especially two
approaches based on ant colony described by Colorni et al. (1991) and on fish
schooling and bird flocking introduced by Kennedy and Eberhart (1995) have
attracted the interest of researchers all over the world. Both approaches have been
studied by many researchers, and their variants have been introduced and applied
for solving several problems in different areas. In this chapter, we focus on four
popular bio-inspired optimization algorithms, which are, respectively, ant colony
optimization (ACO), particle swarm optimization (PSO), artificial bee colony
(ABC), and differential evolution (DE).

38 2 Bio-inspired Computation Algorithms

2.2 Ant Colony Optimization

ACO is a metaheuristic for solving hard combinatorial optimization problems (Duan
2005, 2010; Duan et al. 2011). The inspiring source of ACO is the pheromone
trail laying and following behavior of real ants, which use pheromones as a
communication medium (Fig. 2.1). In analogy to the biological example, ACO is
based on indirect communication within a colony of simple agents, called (artificial)
ants, mediated by (artificial) pheromone trails. The pheromone trails in ACO serve
as a distributed, numerical information, which the ants use to probabilistically
construct solutions to the problem being solved and which the ants adapt during
the algorithm’s execution to reflect their search experience.

The first example of such an algorithm is ant system (AS), which was proposed
using as example application the well-known traveling salesman problem (TSP).
Despite encouraging initial results, AS could not compete with state-of-the-art
algorithms for the TSP. Nevertheless, it had the important role of stimulating further
research both on algorithmic variants, which obtain much better computational
performance, and on applications to a large variety of different problems. In
fact, there exist now a considerable number of applications of such algorithms
where world-class performance is obtained. Examples are applications of ACO
algorithms to problems such as sequential ordering, scheduling, assembly line
balancing, probabilistic TSP, 2D-HP protein folding, DNA sequencing, protein–
ligand docking, and packet-switched routing in Internet-like networks. The ACO
metaheuristic provides a common framework for the existing applications and
algorithmic variants. Algorithms which follow the ACO metaheuristic are called
ACO algorithms.

Fig. 2.1 Schematic diagram of ACO shows that ant colony has succeeded in finding the shortest
route

2.2 Ant Colony Optimization 39

The (artificial) ants in ACO implement a randomized construction heuristic
which makes probabilistic decisions as a function of artificial pheromone trails and
possibly available heuristic information based on the input data of the problem to be
solved. As such, ACO can be interpreted as an extension of traditional construction
heuristics, which are readily available for many combinatorial optimization prob-
lems. Yet, an important difference with construction heuristics is the adaptation of
the pheromone trails during algorithm execution to take into account the cumulated
search experience.

2.2.1 Biological Inspiration

Marco Dorigo and colleagues introduced the first ACO algorithm in the early
1990s (Dorigo 1992; Dorigo et al. 1996). The development of these algorithms
was inspired by the observation of ant colonies. Ants are social insects. They live
in colonies, and their behavior is governed by the goal of colony survival rather
than being focused on the survival of individuals. The behavior that provided the
inspiration for ACO is the ants’ foraging behavior and, in particular, how ants can
find shortest paths between food sources and their nest. When searching for food,
ants initially explore the area surrounding their nest in a random manner. While
moving, ants leave a chemical pheromone trail on the ground. Ants can smell
pheromone. When choosing their way, they tend to choose, in probability, paths
marked by strong pheromone concentrations. As soon as an ant finds a food source,
it evaluates the quantity and the quality of the food and carries some of it back to
the nest. During the return trip, the quantity of pheromone that an ant leaves on the
ground may depend on the quantity and quality of the food. The pheromone trails
will guide other ants to the food source. It has been shown by Deneubourg et al.
(1990) that the indirect communication between the ants via pheromone trails—
known as stigmergy—enables them to find shortest paths between their nest and
food sources. This is explained in an idealized setting in Fig. 2.2.

As a first step towards an algorithm for discrete optimization, we present in
the following a discretized and simplified model of the phenomenon explained in
Fig. 2.2. After presenting the model, we will outline the differences between the
model and the behavior of real ants. Our model consists of a graph GD (V,E),
where V consists of two nodes, namely, vs (representing the nest of the ants) and
vd (representing the food source). Furthermore, E consists of two links, namely, e1

and e2, between vs and vd. To e1 we assign a length of l1 and to e2 a length of l2 such
that l2 > l1. In other words, e1 represents the short path between vs and vd, and e2

represents the long path. Real ants deposit pheromone on the paths on which they
move. Thus, the chemical pheromone trails are modeled as follows. We introduce
an artificial pheromone value � i for each of the two links ei, iD 1, 2. Such a value
indicates the strength of the pheromone trail on the corresponding path. Finally, we
introduce na artificial ants. Each ant behaves as follows: starting from vs (i.e., the
nest), an ant chooses with probability between piD � i/(�1C �2) path e1 and path e2

40 2 Bio-inspired Computation Algorithms

a b

c d

Fig. 2.2 An experimental setting that demonstrates the shortest pathfinding capability of ant
colonies

for reaching the food source vd. Obviously, if �1 > �2, the probability of choosing
e1 is higher and vice versa. For returning from vd to vs, an ant uses the same path
as it chose to reach vd, and it changes the artificial pheromone value associated to
the used edge. More in detail, having chosen edge ei, an ant changes the artificial
pheromone value � i as follows:

�i �i C
Q

li
(2.1)

where the positive constant Q is a parameter of the model. In other words, the
amount of artificial pheromone that is added depends on the length of the chosen
path: the shorter the path, the higher the amount of added pheromone. The foraging
of an ant colony is in this model iteratively simulated as follows: at each step (or
iteration), all the ants are initially placed in node vs. Then, each ant moves from
vs to vd as outlined above. As mentioned in the caption of Fig. 2.2d, in nature

2.2 Ant Colony Optimization 41

the deposited pheromone is subject to an evaporation over time. We simulate this
pheromone evaporation in the artificial model as follows:

�i .1 � �/ �i ; i D 1; 2 (2.2)

The parameter �2 (0, 1] is a parameter that regulates the pheromone evaporation.
Finally, all ants conduct their return trip and reinforce their chosen path as outlined
above.

In the beginning, all ants are in the nest. There is no pheromone on both paths.
Then the foraging starts. In probability, 50 % of ants take the short path, and the
other 50 % take the long path to the food source. The ants that have taken the
shorter path would arrive earlier at the food source. Therefore, when returning,
the probability to take again the short path is higher. The pheromone trail on the
short path receives a stronger reinforcement to take this path grows. Finally, due
to the evaporation of the pheromone on the long path, the whole colony will, in
probability, use the short path in probability.

2.2.2 Principle of Ant Colony Optimization

2.2.2.1 The First ACO Algorithm: Ant System

In AS each ant is initially put on a randomly chosen city and has a memory which
stores the partial solution it has constructed so far (initially the memory contains
only the start city) (Dorigo and Stützle 2003). Starting from its start city, an ant
iteratively moves from city to city. When being at a city i, an ant k chooses to go to
a city j with a probability given by

pk
ij .t/ D

8
ˆ̂
<̂

ˆ̂
:̂

�
�ij .t/

�˛�
�ij

�ˇ

X

k2al lowedk

Œ�ik.t/�˛Œ�ik�ˇ
if j 2 allowedk

0 otherwise

(2.3)

where allowedkDfN � tabukg, ˛ and ˇ are parameters that control the relative
importance of trail versus visibility, �ij is the heuristic desirability, and �ijD 1/dij

where dij is the distance between city i and city j and � ij is the amount of pheromone
trail on edge (i,j). If ˛D 0, the selection probabilities are proportional to [�]ˇ , and
the closest cities will more likely be selected: in this case AS corresponds to a
classical stochastic greedy algorithm (with multiple starting points since ants are
initially randomly distributed on the cities). If ˇD 0, only pheromone amplification
is at work: this will lead to the rapid emergence of a stagnation situation with the
corresponding generation of tours which, in general, are strongly suboptimal.

42 2 Bio-inspired Computation Algorithms

The solution construction ends after each ant has completed a tour. Next, the
pheromone trails are updated. In AS this is done by first lowering the pheromone
trails by a constant factor (this is pheromone evaporation) and then allowing each
ant to deposit pheromone on the arcs that belong to its tour:

�ij .t C n/ D .1 � �/ � �ij .t/C��ij (2.4)

��ij D

mX

kD1

��k
ij (2.5)

where 1� �f�� (0,1)g represents the evaporation of trail between time t and tC n.
The parameter � is used to avoid unlimited accumulation of the pheromone trails
and enables the algorithm to “forget” previously done bad decisions. Where �� ij

k

is the quantity of per unit length of pheromone trail laid on edge (i,j) by the kth ant
between time t and tC n. In the popular ant-cycle model, it is given by

��k
ij D

(
Q

Lk
if k � th ant uses .i; j / in its tour

0 otherwise
(2.6)

where Q is a constant and Lk is the tour length of the kth ant.

2.2.2.2 Framework of the ACO Metaheuristic

After initialization, the metaheuristic iterates over three phases: construct ant
solutions, apply local search, and update pheromones, which are described in detail
as follows:

Construct ant solutions: A set of m artificial ants constructs solutions from
elements of a finite set of available solution components CDfcijg, iD 1, : : : , n,
and jD 1, : : : , jDij. A solution construction starts from an empty partial solution
spD∅. At each construction step, the partial solution sp is extended by adding a
feasible solution component from the set N .sp/ � C, which is defined as the set
of components that can be added to the current partial solution sp without violating
any of the constraints in �. The process of constructing solutions can be regarded
as a walk on the construction graph GCD (V,E).

The choice of a solution component from N(sp) is guided by a stochastic
mechanism, which is biased by the pheromone associated with each of the elements
of N(sp). The rule for the stochastic choice of solution components varies across
different ACO algorithms, but, in all of them, it is inspired by the model of the
behavior of real ants given in (2.1).

Apply local search: Once solutions have been constructed and before updating the
pheromone, it is common to improve the solutions obtained by the ants through a

2.2 Ant Colony Optimization 43

local search. This phase, which is highly problem specific, is optional although it is
usually included in state-of-the-art ACO algorithms.

Update pheromones: The aim of the pheromone update is to increase the
pheromone values associated with good or promising solutions and to decrease
those that are associated with bad ones. Usually, this is achieved by decreasing
all the pheromone values through pheromone evaporation and by increasing the
pheromone levels associated with a chosen set of good solutions.

2.2.3 Ant System and Its Extensions

Even though the original AS algorithm achieved encouraging results for the TSP
problem, it was found to be inferior to state-of-the-art algorithms for the TSP as
well as for other combinatorial optimization problems. Therefore, several extensions
and improvements of the original AS algorithm were introduced over the years,
which show better performance than AS when applied to many optimization
problems, such as Elitist AS (EAS) (Dorigo 1992), rank-based Ant System (ASrank)
(Bullnheimer et al. 1999), MAX–MIN Ant System (MMAS) (Stutzle and Hoos
1997), and Ant Colony System (ACS) (Dorigo and Gambardella 1997).

A first improvement over AS was obtained by introducing the elitist strategy,
which is called EAS. In this variant, the pheromone values are updated using all
the solutions that were generated in the respective iteration and the best-so-far
solution. It consists in giving the best tour since the start of the algorithm (called
Tgb, where gb stays for global best) a strong additional weight. In practice, each
time the pheromone trails are updated, those belonging to the edges of the global-
best tour get an additional amount of pheromone. For these edges (2.6) becomes

��
gb
ij D

(
e

Lgb.t/
if arc .i; j / 2 T gb

0 otherwise
(2.7)

The arcs of Tgb are therefore reinforced with a quantity of e � 1/Lgb, where Lgb is
the length of Tgb and e is a positive integer.

Another improvement over AS is the ASrank proposed by Bullnheimer et al.
(1999), which is an extension of the elitist strategy to some extent. In this approach,
the best-so-far solution has the highest influence on the pheromone update at each
iteration, while a selection of the best solutions constructed at that current iteration
influences the update in accordance with their rankings. It sorts the ants according
to the lengths of the tours they generated, and, after each tour construction phase,
only the (! � 1) best ants and the global-best ant are allowed to deposit pheromone.
The rth best ant of the colony contributes to the pheromone update with a weight
given by maxf0, ! � rg, while the global-best tour reinforces the pheromone trails
with weight !. Then (2.4) and (2.5) becomes therefore

44 2 Bio-inspired Computation Algorithms

�ij .t C n/ D .1 � �/ � �ij .t/C

!X

rD1

.! � r/ � 4�r
ij .t/C ! � 4�

gb
ij .t/ (2.8)

where ��r
ij (t)D 1/Lr(t) and ��

gb
ij (t)D 1/Lgb.

As one of the most successful ACO variants, MMAS introduces upper and lower
bounds to the values of the pheromone trails, as well as a different initialization of
their values. In MMAS, the allowed range of the pheromone trail strength is limited
to the interval [�min,�max], that is, �min� � ij� �max, 8 � ij, and the pheromone trails
are initialized to the upper trail limit, which allows a higher exploration at the start
of the algorithm. The value of this bound is updated each time a new best-so-far
solution is found by the algorithm. Depending on some convergence measure, at
each iteration, either the iteration-best update or the global-best update rule is used
for updating the pheromone values. At the start of the algorithm, the iteration-best
update rule is used more often, while during the run of the algorithm, the frequency
with which the global-best update rule is used increases.

ACS, which was introduced by Dorigo and Gambardella (1997), differs from
the original AS algorithm in more aspects than just in the pheromone update. In
this approach, the importance of exploitation of information collected by previous
ants with respect to exploration of the search space is increased, which is achieved
via two mechanisms. ACS improves over AS by increasing the importance of
exploitation of information collected by previous ants with respect to exploration of
the search space. This is achieved via two mechanisms. First, a strong elitist strategy
is used to update pheromone trails, which means only the ant that has produced the
best solution is allowed to update pheromone trails, according to a pheromone trail
update rule similar to that used in AS:

�ij .t C n/ D .1 � �/ � �ij .t/C � � �best
ij .t/ (2.9)

The best ant can be the iteration-best ant, that is, the best in the current iteration,
or the global-best ant, that is, the ant that made the best tour from the start of the
trial.

Second, ants choose the next city to move to using a so-called pseudorandom
proportional rule: with probability q0, they move to the city j for which the
product between pheromone trail and heuristic information is maximum, that is,

j D arg maxj 2N k
i

n
�ij .t/ � �

ˇ
ij

o
, while with probability 1� q0, they operate a biased

exploration in which the probability pij
k(t) is the same as in AS. When the parameter

q0 is set to a value close to 1, as it is the case in most ACS applications, exploitation
is favored over exploration. It is obvious that, when q0D 0, the probabilistic decision
rule becomes the same as in AS.

Besides, ACS differs from previous ACO algorithms also because ants update
the pheromone trails while building solutions as that in ant quantity and in ant
density. In practice ACS ants “eat” some of the pheromone trail on the edges
they visit. This operation favors exploitation, counterbalancing this way the other

2.3 Particle Swarm Optimization 45

two abovementioned modifications that strongly favor exploitation of the collected
knowledge about the problem. In this way, the probability that a same path is used
by all the ants is decreased. In other words, it helps to avoid to be trapped into
local optimum. ACS has been made more performing over other variants also by
the addition of local search routines that take the solution generated by ants to their
local optimum just before the pheromone update.

Although retaining some of the original biological inspiration, they are less and
less biologically inspired and more and more motivated by the need of making
ACO algorithms competitive with state-of-the-art algorithms or improve their
performance. Nevertheless, many aspects of the original AS remain, such as the
need for a colony, the role of autocatalysis, the cooperative behavior mediated
by artificial pheromone trails, the probabilistic construction of solutions biased by
artificial pheromone trails and local heuristic information, the pheromone updating
guided by solution quality, and the evaporation of pheromone trail, which is the
same in all ACO algorithms. For more information about the variants of ACO
such as hypercube framework (HCF), reader can refer to Dorigo and Blum (2005).
Ant algorithms are receiving increasing attention in the scientific community as a
promising novel approach to distributed control and optimization.

2.3 Particle Swarm Optimization

The initial ideas on particle swarms of Kennedy (a social psychologist) and
Eberhart (an electrical engineer) were essentially aimed at producing computational
intelligence by exploiting simple analogues of social interaction (Kennedy and
Eberhart 1995) rather than purely individual cognitive abilities. The first simulations
were influenced by Heppner and Grenander’s work (Heppner and Grenander 1990)
and involved analogues of bird flocks searching for corn. These soon developed into
a powerful optimization method-PSO.

2.3.1 Biological Inspiration

A number of scientists have created computer simulations of various interpre-
tations of the movement of organisms in a bird flock or fish school. Notably,
Reynolds (1987) and Heppner and Grenander (1990) presented simulations of bird
flocking. Reynolds was intrigued by the aesthetics of bird-flocking choreography,
and Heppner, a zoologist, was interested in discovering the underlying rules that
enabled large numbers of birds to flock synchronously, often changing direction
suddenly, scattering and regrouping, etc. Both of these scientists had the insight
that local processes, such as those modeled by cellular automata, might underlie the
unpredictable group dynamics of bird social behavior. Both models relied heavily on

46 2 Bio-inspired Computation Algorithms

a b c

Fig. 2.3 Boid model. (a) Separation. Each agent tries to move away from its neighbors if they
are too close. (b) Alignment. Each agent steers towards the average heading of its neighbors. (c)
Cohesion. Each agent tries to go towards the average position of its neighbors

manipulation of interindividual distances; that is, the synchrony of flocking behavior
was thought to be a function of birds’ efforts to maintain an optimum distance
between themselves and their neighbors (Fig. 2.3).

It has been believed that social sharing of information among conspeciates offers
an evolutionary advantage: this hypothesis was fundamental to the development
of PSO. One motive for developing the simulation was to model human social
behavior, which is of course not identical to fish schooling or bird flocking. The
important difference is its abstractness. Birds and fish adjust their physical move-
ment to avoid predators, seek food and mates, optimize environmental parameters
such as temperature, etc. Humans adjust not only physical movement but cognitive
or experiential variables as well. We do not usually walk in step and tum in unison
(though some fascinating research in human conformity shows that we are capable
of it); rather, we tend to adjust our beliefs and attitudes to conform with those of our
social peers.

This is a major distinction in terms of contriving a computer simulation, for at
least one obvious reason: collision. Two individuals can hold identical attitudes
and beliefs without banging together, but two birds cannot occupy the same
position in space without colliding. It seems reasonable, in discussing human social
behavior, to map the concept of change into the bird/fish analogue of movement.
This is consistent with the classic Aristotelian view of qualitative and quantitative
change as types of movement. Thus, besides moving through three-dimensional
physical space and avoiding collisions, humans change in abstract multidimensional
space, collision-free. Physical space of course affects informational inputs, but it is
arguably a trivial component of psychological experience. Humans learn to avoid
physical collision by an early age, but navigation of n-dimensional psychosocial
space requires decades of practice, and many of us never seem to acquire quite all
the skills we need.

2.3 Particle Swarm Optimization 47

Fig. 2.4 Schematic diagram of PSO © [2002] IEEE (Reprinted, with permission, from Duan and
Liu (2010))

2.3.2 Principle of Particle Swarm Optimization

2.3.2.1 The Framework of PSO

In PSO, a number of simple entities, the particles, are placed in the search space of
some problem or function, and each evaluates the objective function at its current
location. Each particle then determines its movement through the search space by
combining some aspect of the history of its own current and best (best fitness)
locations with those of one or more members of the swarm, with some random
perturbations (Duan and Xing 2009; Duan and Liu 2010; Duan et al. 2011). The
next iteration takes place after all particles have been moved. Eventually the swarm
as a whole, like a flock of birds collectively foraging for food, is likely to move
close to an optimum of the fitness function. Each individual in the particle swarm
is composed of three D-dimensional vectors, where D is the dimensionality of the
search space. These are the current position xi, the previous best position pi, and the
velocity vi. Shi and Eberhart (1998) firstly introduced the inertia weights w into the
basic PSO model, by adjusting w to improve the performances of the PSO algorithm.
Figure 2.4 describes the schematic diagram of PSO.

2.3.2.2 Original Version

The current position xi can be considered as a set of coordinates describing a point
in space. At each iteration of the algorithm, the current position is evaluated as a

48 2 Bio-inspired Computation Algorithms

problem solution. If that position is better than any that has been found so far, then
the coordinates are stored in the second vector, pi. The value of the best function
result so far is stored in a variable that can be called pbesti (for “previous best”),
for comparison on later iterations. The objective, of course, is to keep finding better
positions and updating pi and pbesti. New points are chosen by adding vi coordinates
to xi, and the algorithm operates by adjusting vi, which can effectively be seen as a
step size (Poli et al. 2007).

The particle swarm is more than just a collection of particles. A particle by
itself has almost no power to solve any problem; progress occurs only when the
particles interact. Problem solving is a population-wide phenomenon, emerging
from the individual behaviors of the particles through their interactions. In any case,
populations are organized according to some sort of communication structure or
topology, often thought of as a social network. The topology typically consists of
bidirectional edges connecting pairs of particles, so that if j is in i’s neighborhood, i
is also in j’s. Each particle communicates with some other particles and is affected
by the best point found by any member of its topological neighborhood. This is
just the vector pi for that best neighbor, which we will denote with pg. The potential
kinds of population “social networks” are hugely varied, but in practice certain types
have been used more frequently:

vi .t C 1/ D vi .t /C c1 � rand1 .xi . t /�pi . t //C c2 � rand2 .xi . t
�
�pg

�
t //

xi .t C 1/ D xi .t /C vi .t C 1/ (2.10)

where each individual particle i has the following properties: a position vector in
search space xi(t) at time t, a velocity vector vi(t) at time t, and a personal best
position in search space pi(t). The personal best position pi(t) corresponds to the
position in search space where particle i had the minimum fitness value pbesti
determined by the objective function (in a minimization problem). The global-best
position denoted by pg(t) represents the position yielding the lowest error among
all the pi(t), which has the best fitness value gbest among all the particles. Two
pseudorandom sequences, rand1�(0, 1) and rand2�(0, 1) are used to effect the
stochastic algorithm nature.

The PSO algorithm consists of repeated application of (2.10). In theory, particles
of a swarm may benefit from the prior discoveries and experiences of all the
members of a swarm when foraging. The key point of PSO is that particles in the
swarm share information with each other, which offers some sort of evolutionary
advantage. Therefore, due to the simple concept, easy implementation, and quick
convergence, PSO has gained much attention and wide applications in solving
continuous nonlinear optimization problems. The process for implementing the
original PSO is described as follows:

Step 1 Initialize a population array of particles with random positions and velocities
on D dimensions in the search space.

Step 2 For each particle, evaluate the desired optimization fitness function in D
variables.

2.3 Particle Swarm Optimization 49

Step 3 Compare particle’s fitness evaluation with its pbesti. If current value is better
than pbesti, then set pbesti equal to the current value and pi(t) equal to the current
location xi(t) in the D-dimensional space.

Step 4 Identify the particle in the neighborhood with the best success so far, and
assign its index to the variable g.

Step 5 Change the velocity and position of the particle according to the (2.10).
Step 6 If a criterion is met (usually a sufficiently good fitness or a maximum number

of iterations), stop. Otherwise, go to Step 2.

2.3.2.3 Other Variants of PSO

Motivated by the desire to better control the scope of the search, reduce the
importance of Vmax, and perhaps eliminate it altogether, the following modification
of the PSO’s update equations was proposed (Shi and Eberhart 1998):

vi .t C 1/ D w � vi .t /C c1 � rand1 .xi . t /�pi . t //C c2 � rand2 .xi . t
�
�pg

�
t //

xi .t C 1/ D xi .t /C vi .t C 1/ (2.11)

where w was termed the “inertia weight.” If we interpret c1 and c2 as the external
force, fi, acting on a particle, then the change in a particle’s velocity (i.e., the
particle’s acceleration) can be written as �viD fiC (1�w)vi. That is, the constant
1�w acts effectively as a friction coefficient, and so w can be interpreted as the
fluidity of the medium in which a particle moves. This perhaps explains why
researchers have found that the best performance could be obtained by initially
setting w to some relatively high value (e.g., 0.9), which corresponds to a system
where particles move in a low viscosity medium and perform extensive exploration,
and gradually reducing w to a much lower value (e.g., 0.4), where the system would
be more dissipative and exploitative and would be better at homing into local optima.
It is even possible to start from values of w > 1, which would make the swarm
unstable, provided that the value is reduced sufficiently to bring the swarm in a
stable region.

With (2.11) and an appropriate choice of w and of the acceleration coefficients,
c1 and c2, the PSO can be made much more stable so much so that one can either do
without Vmax or set Vmax to a much higher value, such as the value of the dynamic
range of each variable. In this case, Vmax may improve performance, though with
use of inertia or constriction techniques, it is no longer necessary for damping the
swarm’s dynamics.

Though the earliest researchers recognized that some form of damping of the
dynamics of a particles (e.g., Vmax) was necessary, the reason for this was not
understood. But when the particle swarm algorithm is run without restraining
velocities in some way, these rapidly increase to unacceptable levels within a
few iterations. Kennedy (1998) noted that the trajectories of nonstochastic one-
dimensional particles contained interesting regularities when c1C c2 was between

50 2 Bio-inspired Computation Algorithms

0.0 and 4.0. Clerc’s analysis of the iterative system led him to propose a strategy
for the placement of “constriction coefficients” on the terms of the formulas;
these coefficients controlled the convergence of the particle and allowed an elegant
and well-explained method for preventing explosion, ensuring convergence, and
eliminating the arbitrary Vmax parameter. The analysis also takes the guesswork out
of setting the values of c1 and c2. Clerc and Kennedy (2002) noted that there can be
many ways to implement the constriction coefficient. One of the simplest methods
of incorporating it is the following:

vi .t C 1/ D � .vi . t /Cc1 � rand1. xi .t / � pi .t / /Cc2 � rand2. xi .t / � pg.t/ //

xi .t C 1/ D xi .t /C vi .t C 1/ (2.12)

� D
2

	 � 2C
p

	2 � 4	
(2.13)

When Clerc’s constriction method is used, 	 is commonly set to 4.1, and the
constant multiplier � is approximately 0.7298. The results in the previous velocity
being multiplied by 0.7298 and each of the two (p� x) terms being multiplied by
a random number limited by 0.7298� 2.05	 1.49618. The constricted particles
will converge without using any Vmax at all. However, subsequent experiments and
applications concluded that a better approach to use as a prudent rule of thumb is
to limit Vmax to Xmax, the dynamic range of each variable on each dimension, in
conjunction with (2.12) and (2.13). The result is a PSO algorithm with no problem-
specific parameters. And this is the canonical particle swarm algorithm of today.
Note that a PSO with constriction is algebraically equivalent to a PSO with inertia.

Indeed, (2.11) and (2.12) can be transformed into one another via the mapping
w$� and ci$�ci. So, the optimal settings suggested by Clerc correspond to
wD 0.7298 and c1D c2D 1.49618 for a PSO with inertia.

2.3.3 Parameters and Population Topology

The role of inertia weight w in (2.11) is considered critical for the convergence
behavior of PSO. The inertia weight is employed to control the impact of the
previous history of velocities on the current one. Accordingly, the parameter w regu-
lates the trade-off between the global (wide-ranging) and local (nearby) exploration
abilities of the swarm. A large inertia weight facilitates global exploration (searching
new areas), while a small one tends to facilitate local exploration, i.e., fine-tuning
the current search area. A suitable value for the inertia weight w usually provides
balance between global and local exploration abilities and consequently results in
a reduction of the number of iterations required to locate the optimum solution.
Initially, the inertia weight is set as a constant. However, some experiment results
indicate that it is better to initially set the inertia to a large value, in order to promote
global exploration of the search space, and gradually decrease it to get more refined

2.3 Particle Swarm Optimization 51

solutions. Thus, an initial value around 1.2 and gradually reducing towards 0 can
be considered as a good choice for w. A better method is to use some adaptive
approaches (e.g., fuzzy controller), in which the parameters can be adaptively fine-
tuned according to the problems under consideration (Grosan and Abraham 2011).

The parameters c1 and c2 in (2.11) are not critical for the convergence of PSO.
However, proper fine-tuning may result in faster convergence and alleviation of
local minima. As default values, usually, c1D c2D 2 are used, but some experiment
results indicate that c1D c2D 1.49 might provide even better results. Recent work
reports that it might be even better to choose a larger cognitive parameter, c1, than a
social parameter, c2, but with c1C c2� 4.

The first particle swarms evolved out of bird-flocking simulations of a type
described by Reynolds (1987) and Heppner and Grenander (1990). In these models,
the trajectory of each bird’s flight is modified by application of several rules,
including some that take into account the birds that are nearby in physical space.
So, early PSO topologies were based on proximity in the search space. Kennedy
and Mendes studied the various population topologies on the PSO performance.
Different concepts for neighborhoods could be envisaged. It can be observed as a
spatial neighborhood when it is determined by the Euclidean distance between the
positions of two particles or as a sociometric neighborhood (e.g., the index position
in the storing array).

The next topology to be introduced, the gbest topology (for “global best”), was
one where the best neighbor in the entire population influenced the target particle.
While this may be conceptualized as a fully connected graph, in practice it only
meant that the program needed to keep track of the best function result that had
been found and the index of the particle that found it.

The gbest is an example of static topology, i.e., one where neighbors and
neighborhoods do not change during a run. The lbest topology (for “local best”)
is another static topology, which was introduced in Eberhart and Kennedy (1995).
It is a simple ring lattice where each individual was connected to KD 2 adjacent
members in the population array, with toroidal wrapping (naturally, this can be
generalized to K > 2). This topology had the advantage of allowing parallel search,
as subpopulations could converge in diverse regions of the search space. Where
equally good optima were found, it was possible for the population to stabilize with
particles in the good regions, but if one region was better than another, it was likely
to attract particles to itself. Thus this parallel search resulted in a more thorough
search strategy; though it converged more slowly than the gbest topology, lbest was
less vulnerable to the attraction of local optima.

Several classical communications structures from social psychology (Bavelas
1950), including some with small-world modifications, were experimented with in
Kennedy (1999). Circles, wheels, stars, and randomly assigned edges were tested
on a standard suite of functions. The most important finding was that there were
important differences in performance depending on the topology implemented;
these differences depended on the function tested, with nothing conclusively
suggesting that any one was generally better than any other.

52 2 Bio-inspired Computation Algorithms

a b

c d

Fig. 2.5 Some neighborhood topologies of PSO. (a) Local-best topology. (b) Global-best topol-
ogy. (c) Star topology. (d) Von Neumann topology

Numerous aspects of the social-network topology were tested in Kennedy and
Mendes (2002) (Fig. 2.5). For instance, the effect of including the target particle in
its neighborhood (as opposed to allowing only “external” influences) was evaluated,
finding, surprisingly, that whether or not the particle belonged to its neighborhood
had little impact on behavior. 1343 random graphs were generated and then
modified to meet certain criteria, including mean degree, clustering, and the standard
deviations of those two measures to introduce homogeneous and heterogeneous
structures. Several regular topologies were included, as well; these were the gbest
and lbest versions mentioned above, as well as a von Neumann topology which
defined neighborhoods on a grid, a “pyramid” topology, and a handmade graph with
clusters of nodes linked sparsely.

One finding that emerged was the relative superiority of the von Neumann
structure. This topology possesses some of the parallelism of lbest, yet nodes have
degree KD 4; thus the graph is more densely connected than lbest but less densely
than gbest.

2.4 Artificial Bee Colony 53

2.4 Artificial Bee Colony

ABC algorithm was originally presented by Karaboga and Basturk (2007), under the
inspiration of collective behavior on honeybees, and it has been proved to possess
a better performance in function optimization problem, compared with genetic
algorithm, DE and PSO. As we know, usual optimization algorithms conduct only
one search operation in one iteration, for example, the PSO algorithm carries out
global search at the beginning and local search in the later stage. Compared with
the usual algorithms, the major advantage of ABC algorithm lies in that it conducts
both global search and local search in each iteration, and as a result the probability
of finding the optimal parameters is significantly increased, which efficiently avoid
local optimum to a large extent.

2.4.1 Biological Inspiration

A very interesting swarm in nature is honeybee swarm that allocates the tasks
dynamically and adapts itself in response to changes in the environment in a col-
lective intelligent manner. The honeybees have photographic memories; space-age
sensory and navigation systems, possibly even insight skills; and group decision-
making process during selection of their new nest sites, and they perform tasks such
as queen and brood tending, storing, retrieving and distributing honey and pollen,
communicating, and foraging. These characteristics are incentive for researchers to
model the intelligent behaviors of bees. Before presenting the algorithms described
to use intelligent behaviors and their applications, behavior of the colony is
explained.

Bees are social insects living as colonies. There are three kinds of bees in a
colony: drones, queen, and workers. Foraging is the most important task in the
hive. Many studies (Seeley 1985) have investigated the foraging behavior of each
individual bee and what types of external information (such as odor, location
information in the waggle dance, the presence of other bees at the source or between
the hive and the source) and internal information (such as remembered source
location or source odor) affect this foraging behavior. Foraging process starts with
leaving the hive of a forager in order to search food source to gather nectar. After
finding a flower for herself, the bee stores the nectar in her honey stomach. Based
on the conditions such as richness of the flower and the distance of the flower
to the hive, the bee fills her stomach in about 30–120 min, and honey-making
process begins with the secretion of an enzyme on the nectar in her stomach.
After coming back to the hive, the bee unloads the nectar to empty honeycomb
cells, and some extra substances are added in order to avoid the fermentation
and the bacterial attacks. Filled cells with the honey and enzymes are covered by
wax.

54 2 Bio-inspired Computation Algorithms

After unloading the nectar, the forager bee which has found a rich source
performs special movements called “dance” on the area of the comb in order to
share her information about the food source such as how plentiful it is and its
direction and distance and recruits the other bees for exploiting that rich source.
While dancing, other bees touch her with their antenna and learn the scent and the
taste of the source she is exploiting. She dances on different areas of the comb in
order to recruit more bees and goes on to collect nectar from her source. There are
different dances performed by bees depending on the distance information of the
source: round dance, waggle dance, and tremble dance. If the distance of the source
to the hive is less than 100 m, round dance is performed, while if the source is far
away, waggle dance is performed. Round dance does not give direction information.
In case of waggle dance, direction of the source according to the sun is transferred to
other bees. Longer distances cause quicker dances. The tremble dance is performed
when the foraging bee perceives a long delay in unloading its nectar.

Forager bees use a maplike organization of spatial memory for homing and
food source search flights. This organization is based on the computations of two
experienced vectors or on viewpoints and landmarks. There are two perspectives of
which one certainly true is not known. First one is that bees use stimuli obtained
during their flights. The second one is that they encode the spatial information in
their dances into their maplike spatial memory (Menzel et al. 2006).

A honeybee colony needs to divide its workforce so that the appropriate number
of individuals is allocated for each of the many tasks. Bees are specialized in order
to carry out every task in the hive. However, there is a controversy about which
factors have roles on the specialization of bees, such as their age, hormones, and
individual predisposition coming from their genetic determination (Dornhaus et al.
1998), and also the allocation of tasks can dynamically change. For example, when
food is drought, younger nurse bees will also join to foraging process. Depending
on the swarm intelligent behaviors of a bee swarm noted above, several approaches
have been introduced and applied to solve problems.

Karlvon Frisch, a famous Nobel Prize winner, found that in nature, although
each bee only performs one single task, yet through a variety of information
communication ways between bees such as waggle dance and special odor, the
entire colony can always easily find food resources that produce relative high
amount of nectar, hence realize its self-organizing behavior.

2.4.2 Principle of Artificial Bee Colony

In order to introduce the self-organization model of forage selection that leads to the
emergence of collective intelligence of honeybee swarms, first, we need to define
three essential components: food sources, unemployed foragers, and employed
foragers (Duan et al. 2010, 2011; Xu et al. 2010; Yu and Duan 2012):

2.4 Artificial Bee Colony 55

Fig. 2.6 The behavior of honeybee foraging for nectar (Reprinted from Xu and Duan (2010), with
kind permission from Elsevier)

1. Food Sources

For the sake of simplicity, the “profitability” of a food source (A and B in Fig. 2.6)
can be represented with a single quantity. The position of a food source represents a
possible parameter solution to the optimization problem, and the nectar amount of
a food source corresponds to the similarity value of the associated solution.

2. Unemployed Foragers

If it is assumed that a bee has no knowledge about the food sources in the search
field, the bee initializes its search as an unemployed forager. Unemployed foragers
are continually at look out for a food source to exploit. There are two types of
unemployed foragers: scouts and onlookers.

56 2 Bio-inspired Computation Algorithms

Scouts (S in Fig. 2.6): If the bee starts searching spontaneously for new food
sources without any knowledge, it will be a scout bee.

Onlookers (R in Fig. 2.6): The onlookers wait in the nest and search the food
source through sharing information of the employed foragers, and there is a greater
probability of onlookers choosing more profitable sources.

3. Employed Foragers

They are associated with a particular food source which they are currently exploit-
ing. They carry with them information about this particular source and the prof-
itability of the source and share this information with a certain probability. After the
employed foraging bee loads a portion of nectar from the food source, it returns to
the hive and unloads the nectar to the food area in the hive. There are three possible
options related to residual amount of nectar for the foraging bee.

If the nectar amount decreases to a low level or is exhausted, the foraging bee
abandons the food source and becomes an unemployed bee (UF in Fig. 2.6).

If there are still sufficient amount of nectar in the food source, it can continue
to forage without sharing the food source information with the nest mates (EF2 in
Fig. 2.6).

Or it can go to the dance area to perform waggle dance for informing the nest
mates about the food source (EF1 in Fig. 2.6).

In this way, the bees finally can construct a relative good solution of the
multimodal optimization problems.

At the initial moment, all the bees without any prior knowledge play the role
of detecting bees. After a random search for bee sources, the detecting bees can
convert into any kind of bees above in accordance with the profit of the searched
food sources. The changing rules are described as follows:

When the profit of the food source the bee searched is higher than the threshold,
it becomes a leading bee, goes on exploring nectar, and also recruits more bees
(EF1) to explore together. When the profit of related food source is relative low, it
gives up the food source and again becomes a detecting bee to search for new food
source (UF). When the profit is less than certain threshold, it follows leading bees
to explore nectar. When searching times around hive exceed a certain limit but still
the bees could not find a good resource, it abandons the source and finds a new one.

In ABC algorithm, the position of a food source represents a possible solution
to the optimization problem, and the nectar amount of a food source corresponds
to the quality (fitness) of the associated solution. The number of the employed bees
or the onlooker bees is equal to the number of solutions in the population. At the
first step, the ABC generates a randomly distributed initial population, which is
corresponding to the food source positions. After initialization, the population of the
positions (solutions) is subject to repeated cycles, TD 1, 2, : : : , Tmax, of the search
processes of the employed bees, the onlooker bees, and the scout bees. An employed
bee produces a modification on the position (solution) in her memory depending on
the local information (visual information) and tests the nectar amount (fitness value)
of the new source (new solution). If the nectar amount of the new one is higher than

2.4 Artificial Bee Colony 57

that of the previous one, the bee memorizes the new position and forgets the old
one. Otherwise she keeps the position of the previous one in her memory. After all
employed bees complete the search process, they share the nectar information of the
food sources and their position information with the onlooker bees. An onlooker bee
evaluates the nectar information taken from all employed bees and chooses a food
source with a probability related to its nectar amount. As in the case of the employed
bee, she produces a modification on the position in her memory and checks the
nectar amount of the candidate source. If the nectar is higher than that of the previous
one, the bee memorizes the new position and forgets the old one.

2.4.3 Algorithmic Structure of Artificial Bee Colony

In ABC algorithm, each cycle of the search consists of three steps: sending the
employed bees onto their food sources and evaluating their nectar amounts; after
sharing the nectar information of food sources, the selection of food source regions
by the onlookers and evaluating the nectar amount of the food sources; and
determining the scout bees and then sending them randomly onto possible new food
sources. At the initialization stage, a set of food sources is randomly selected by
the bees, and their nectar amounts are determined. At the first step of the cycle,
these bees come into the hive and share the nectar information of the sources with
the bees waiting on the dance area. A bee waiting on the dance area for making
decision to choose a food source is called onlooker, and the bee going to the food
source visited by herself just before is named as employed bee. After sharing their
information with onlookers, every employed bee goes to the food source area visited
by herself at the previous cycle since that food source exists in her memory and then
chooses a new food source by means of visual information in the neighborhood
of the one in her memory and evaluates its nectar amount. At the second step, an
onlooker prefers a food source area depending on the nectar information distributed
by the employed bees on the dance area. As the nectar amount of a food source
increases, the probability of that food source chosen also increases. After arriving
at the selected area, she chooses a new food source in the neighborhood of the one
in the memory depending on visual information as in the case of employed bees.
The determination of the new food source is carried out by the bees based on the
comparison process of food source positions visually. At the third step of the cycle,
when the nectar of a food source is abandoned by the bees, a new food source is
randomly determined by a scout bee and replaced with the abandoned one. At each
cycle at most, one scout goes outside for searching a new food source, and the
number of employed and onlooker bees is selected to be equal to each other. These
three steps are repeated through a predetermined number of cycles called maximum
cycle number Tmax or until a termination criterion is satisfied.

Define Ns as the total number of bees, Ne as the colony size of the employed bees,
and Nu as the size of unemployed bees, which satisfy the equation NsDNeCNu.
We usually set Ne equal to Nu. D is the dimension of individual solution vector,

58 2 Bio-inspired Computation Algorithms

S D R
D represents individual search space, and SNe denotes the colony space of

employed bees. An employed bee colony can be expressed by Ne dimension vector
�!
X D .X1; : : : ; XNe /, where Xi 2 S and i�Ne.

�!
X .0/ means the initial employed

bee colony, while
�!
X .n/ represents employed bee colony in the nth iteration. Denote

f : S!RC as the fitness function, and the standard ABC algorithm can be expressed
as follows:

Step 1 Randomly initialize a set of feasible solutions .X1; : : : ; XNs /, and the specific
solution Xi can be generated by

X
j
i D X

j
min C rand .0; 1/

�
Xj

max �X
j
min

�
(2.14)

where j2 f1,2, : : : ,Dg is the jth dimension of the solution vector. Calculate the
fitness value of each solution vector respectively, and set the top Ne best solutions

as the initial population of the employed bees
�!
X .0/.

Step 2 For an employed bee in the nth iteration Xi(n), search new solutions in the
neighborhood of the current position vector according to the following equation:

V
j

i D X
j
i C '

j
i

�
X

j
i �X

j

k

�
(2.15)

where V 2 S, j2 f1,2, : : : ,Dg, k2 f1,2, : : : ,Neg,k¤ i, k, and j are randomly
generated. ®i

j is a random number between -1 and 1. It controls the production
of neighbor food sources around Xi

j and represents the comparison of two food
positions visually by a bee. As can be seen from the above equation, as the
difference between the parameters of Xi

j and Xk
j decreases, the perturbation on

the position Xi
j gets decreased, too. Thus, as the search approaches the optimum

solution in the search space, the step length is adaptively reduced.
Generally, this searching process is actually a random mapping from individual
space to individual space, and this process can be denoted with Tm : S! S, and
its probability distribution is clearly only related to current position vector Xi(n),
and has no relation with past location vectors as well as the iteration number n.

Step 3 Apply the greedy selection operator Ts : S2! S to choose the better solution
between searched new vector Vi and the original vector Xi into the next
generation. Its probability distribution can be described as follows:

P fTs .Xi ; Vi / D Vig D

�
1; f .Vi /
 f .Xi /

0; f .Vi / < f .Xi /
(2.16)

The greedy selection operator ensures that the population is able to retain the
elite individual, and accordingly the evolution will not retreat. Obviously, the
distribution of Ts has no relation with the iteration n.

2.4 Artificial Bee Colony 59

Step 4 Each unemployed bee selects an employed bee from the colony according
to their fitness values. The probability distribution of the selection operator Ts1 W

SNe ! S can described as follows:

P
n
Ts1

��!
X

�
D Xi

o
D

f .Xi /

NeX

mD1

f .Xm/

(2.17)

Step 5 The unemployed bee searches in the neighborhood of the selected employed
bee’s position to find new solutions (see (2.15)). The updated best fitness value
can be denoted with f _ best, and the best solution parameters can be expressed
with (x1,x2, : : : ,xD).

Step 6 If a position cannot be improved further through a predetermined number
of cycles, then that food source is assumed to be abandoned. The value of
predetermined number of cycles is an important control parameter of the ABC
algorithm, which is called “limit” for abandonment. If the searching times
surrounding an employed bee Bas exceed a certain threshold Limit, but still could
not find better solutions, then the location vector can be reinitialized randomly
according to the following equation:

Xi .nC 1/ D

�
Xmin C rand .0; 1/ .Xmax �Xmin/ ;

Xi .n/;

Basi
 Limit
Basi < Limit

(2.18)

Step 7 If not, go to Step (2). If the iteration value is larger than the maximum
number of the iteration (i.e., T > Tmax), output the optimal fitness value f _ best
and correlative parameters (x1,x2, : : : ,xD). If not, go to Step (2).

Step (6) is a most prominent aspect making ABC algorithm different from other
algorithms, which is designed to enhance the diversity of the population to prevent
the population from trapping into the local optimum. Obviously, this step can
improve the probability of finding the best solution efficiently and make the ABC
algorithm perform much better.

Totally, ABC algorithm employs four different selection processes (Karaboga
and Akay 2009):

1. A global probabilistic selection process, in which the probability value is
calculated by (2.17) used by the onlooker bees for discovering promising regions.

2. A local probabilistic selection process carried out in a region by the employed
bees and the onlookers depending on the visual information such as the color,
shape, and fragrance of the flowers (sources) (bees will not be able to identify
the type of nectar source until they arrive at the right location and discriminate
among sources growing there based on their scent) for determining a food source
around the source in the memory in a way described by (2.15).

60 2 Bio-inspired Computation Algorithms

3. A local selection called greedy selection process carried out by onlooker and
employed bees in that if the nectar amount of the candidate source is better
than that of the present one, the bee forgets the present one and memorizes the
candidate source produced by (2.15). Otherwise, the bee keeps the present one in
the memory.

4. A random selection process carried out by scouts as defined in (2.18).

2.5 Differential Evolution

2.5.1 Biological Inspiration

Researchers have been looking into nature for years for inspiration with the purpose
of tackling complex computational problems. Optimization is ubiquitous in natural
processes. For example, every species had to adapt their physical structures to
fit to the environments they were in and to strengthen their survival ability all
the time. The underlying relation between optimization and biological evolution
led to the development of an important paradigm of computational intelligence,
the evolutionary computing techniques for performing very complex search and
optimization.

Evolutionary computation uses iterative progress, such as growth or development
in a population. This population is then selected in a guided random search using
parallel processing to achieve the desired end. The paradigm of evolutionary
computing techniques dates back to early 1950s, when the idea to use Darwinian
principles for automated problem solving originated. It was not until the 1960s
that three distinct interpretations of this idea started to be developed in three
different places. Evolutionary programming (EP) was introduced by Lawrence J.
Fogel in the United States, while almost simultaneously, I. Rechenberg and H.-
P. Schwefel introduced evolution strategies (ESs) in Germany. Almost a decade
later, John Henry Holland from the University of Michigan at Ann Arbor devised
an independent method of simulating the Darwinian evolution to solve practical
optimization problems and called it the genetic algorithm (GA). These areas
developed separately for about 15 years. From the early 1990s on, they are unified
as different representatives of one technology, called evolutionary computing. Also
since the early 1990s, a fourth stream following the same general ideas started
to emerge, which is genetic programming (GP). Nowadays, the field of nature-
inspired metaheuristics is mostly constituted by the evolutionary algorithms (EA)
as well as the swarm intelligence algorithms. Also the field extends in a broader
sense to include self-organizing systems, artificial life (digital organism), memetic
and cultural algorithms, harmony search, artificial immune systems, and learnable
evolution model.

The DE algorithm emerged as a very competitive form of evolutionary computing
more than a decade ago. The first written article on DE appeared as a technical report

2.5 Differential Evolution 61

by Storn and Price (1995). One year later, the success of DE was demonstrated
at the First International Contest on Evolutionary Optimization in May 1996,
which was held in conjunction with the 1996 IEEE International Conference
on Evolutionary Computation (CEC). DE finished third at the First International
Contest on Evolutionary Optimization (1st ICEO), which was held in Nagoya,
Japan. DE turned out to be the best evolutionary algorithm for solving the real-
valued test function suite of the 1st ICEO (the first two places were given to
non-evolutionary algorithms, which are not universally applicable but solved the test
problems faster than DE). Price presented DE at the Second International Contest
on Evolutionary Optimization in 1997, and it turned out as one of the best among
the competing algorithms. Two journal articles describing the algorithm in sufficient
details followed immediately in quick succession. In 2005 CEC competition on real
parameter optimization, on 10-D problems classical DE secured 2nd rank and a self-
adaptive DE variant called SaDE secured third rank although they performed poorly
over 30-D problems.

DE, like most popular EAs, is a population-based tool. DE, unlike other EAs,
generates offspring by perturbing the solutions with a scaled difference of two
randomly selected population vectors, instead of recombining the solutions under
conditions imposed by a probabilistic scheme. In addition, DE employs a one-
to-one spawning logic which allows replacement of an individual only if the
offspring outperforms its corresponding parent (Duan et al., 2011). DE has been
seen as an attractive optimization tool for continuous optimization for the following
four reasons: (1) Compared to most other EAs, DE is much more simple and
straightforward to implement. (2) As indicated by the recent studies on DE despite
its simplicity, DE exhibits much better performance in comparison with several
algorithms in solving a wide variety of problems including unimodal, multimodal,
separable, non-separable, and so on. (3) The number of control parameters in DE is
very few (Cr, F, and NP in classical DE). (4) The space complexity of DE is low as
compared to some of the most competitive real parameter optimizers.

2.5.2 Principle of Differential Evolution

2.5.2.1 Initialization of the Parameter Vectors

DE algorithm mainly has three evolutionary operations, namely, mutation, recom-
bination, and selection. The positions of individuals are represented as real-coded
vectors which are randomly initialized inside the limits of the given search space
in the beginning of an optimization process. The individuals are evolved during the
optimization process by applying mutation, recombination, and selection to each
individual in every generation. A stopping criterion determines after the building of
every new generation if the optimization process should be terminated.

Like other evolutionary algorithms, DE also deals with a population of solutions.
Suppose that the initial solution population has NP individuals and the search

62 2 Bio-inspired Computation Algorithms

space is D dimensional, the solution vector in continuous space can be represented
by xiD [xi1,xi2, � � � ,xiD], (iD 1, � � � , NP). Let there be some criteria of optimization,
usually named fitness or cost function. Then the optimization goal of DE algorithm
is to find the values of the variables that minimize the fitness, that is, to find

x� W f
�
x�

�
D min

x
f .x/

2.5.2.2 Mutation with Difference Vectors

Biologically, “mutation” means a sudden change in the gene characteristics of a
chromosome. In the context of the evolutionary computing paradigm, mutation is
also seen as a change or perturbation with a random element. In DE literature, a
parent vector from the current generation is called target vector, a mutant vector
obtained through the differential mutation operation is known as donor vector, and
finally an offspring formed by recombining the donor with the target vector is called
trial vector. In one of the simplest forms of DE mutation, to create the donor vector
for each ith target vector from the current population, three other distinct parameter
vectors, say xr1, xr2, and xr3, are sampled randomly from the current population.
The indices r1, r2, and r3 are mutually exclusive integers randomly chosen from the
range [1, NP], which are also different from the base vector index i. These indices
are randomly generated once for each mutant vector. Now the difference of any two
of these three vectors is scaled by a scalar number F (that typically lies in the interval
[0.4, 1]), and the scaled difference is added to the third one whence we obtain the
donor vector vi. We can express the process as

vi D xr1 C F � .xr2 � xr3 / (2.19)

The process is illustrated on a 2-D parameter space in Fig. 2.7.

2.5.2.3 Crossover

To enhance the potential diversity of the population, a crossover operation comes
into play after generating the donor vector through mutation. In this way, the
individuals of the population are updated by means of the recombination operation.
By coping components from the mutation vector vi and the target vector xi in
dependence, the trial vector ui was generated. This process can be written as the
following equation:

uj i D

�
vj i ; if randb � CR or j D randr; j D 1; � � � ; D

xji ; if randb > CR or j ¤ randr; j D 1; � � � ; D
(2.20)

2.5 Differential Evolution 63

Fig. 2.7 Mutation process of DE

Fig. 2.8 Recombination
process of DE

where the random number randb2 [0,1], the recombination control parameter CR is
a constant in the interval [0,1]. randr is an integer randomly chosen from [1,D]. The
recombination process is described in Fig. 2.8.

2.5.2.4 Selection

To keep the population size constant over subsequent generations, the next step of
the algorithm calls for selection to determine whether the target or the trial vector
survives to the next generation. Then, selection operation, as a deterministic process
in DE algorithm, is implemented to choose the better individuals with lower fitness
function value between the target vector and the trial vector, which is inherited by
the next generation, expressed as

xi .t C 1/ D

�
ui ;

xi ;

if f .ui / � f .xi /

else
(2.21)

64 2 Bio-inspired Computation Algorithms

This selection scheme allows only improvement but not deterioration of the
fitness function value; it is called greedy. Selection operator ensures that the best
fitness function value cannot get lost when moving from one generation to the
next, which usually results in the fast convergence behavior. Therefore, if the new
trial vector yields an equal or lower value of the objective function, it replaces the
corresponding target vector in the next generation; otherwise the target is retained
in the population. Hence, the population either gets better (with respect to the
minimization of the objective function) or remains the same in fitness status but
never deteriorates.

2.5.3 Control Parameters of Differential Evolution

There are three main control parameters of the DE algorithm: the mutation scale
factor F, the crossover constant CR, and the population size NP.

The population size is related to the amount of possible moving vectors. Over
all the possible moves given by a population, some moves are beneficial in the
search for the optimum, while some others are ineffective and result in a waste
of computational effort. Therefore, too small a population size can contain too
limited an amount of moves, while too large a population size may contain a high
number of ineffective moves which can likely mislead the search. To some extent
the population sizing of a DE is analogous to the other EAs, if too small it could
cause premature convergence, and if too large it could cause stagnation. A good
value can be found by considering the dimensionality of the problem similar to
what is commonly performed for the other EAs. A guideline is given in Price and
Storn (1997) where a setting of Spop equal to ten times the dimensionality of the
problem is proposed. However, this indication is not confirmed by a recent study in
Neri and Tirronen (2008) where it is shown that a population size lower than the
dimensionality of the problem can be optimal in many cases.

Regarding the scale factor F and the crossover rate CR, these settings may be
a difficult task. The setting of these two parameters is neither an intuitive nor a
straightforward task but is unfortunately crucial for guaranteeing the algorithmic
functioning. Several studies have thus been proposed in literature. The study
reported in Lampinen and Zelinka (2000) arrives at the conclusion, after an
empirical analysis, that usage of FD 1 is not recommended, since according to a
conjecture of the authors, it leads to a significant decrease in explorative power.
Analogously, the setting CRD 1 is also discouraged since it would dramatically
decrease the amount of possible offspring solutions. In Price and Storn (1997),
the settings F 2 [0.5,1] and CR2 [0.8,1] are recommended. The empirical analysis
reported in Zielinski et al. (2006) shows that in many cases the setting of F
 0.6
and CR
 0.6 leads to results having better performance.

Several studies highlight that an efficient parameter setting is very dependent
on problems (e.g., FD 0.2 could be a very efficient setting for a certain fitness
landscape and completely inadequate for another problem). This result can be seen

2.6 Other Algorithms 65

as a confirmation of the validity of the No Free Lunch Theorem (Wolpert and
Macready 1997) with reference to the DE schemes.

The problem of the parameter setting is emphasized when DE is employed for
handling difficulties of real-world applications such as high dimensionality and
noisy optimization problems. Clearly, the risk of the DE stagnation is higher for
larger decision spaces and worsens as the number of dimensions of the problem
increases. A large decision space (in terms of dimensions) requires a wide range
of possible moves to enhance its capability of detecting new promising solutions.
Since, as mentioned before, an enlargement in population size causes an increase
in the set of potential ineffective moves, a proper choice of F and CR becomes a
crucial aspect in the success of DE.

2.6 Other Algorithms

2.6.1 Glowworm Swarm Optimization

Glowworm swarm optimization (GSO) is a novel algorithm designed by Krish-
nanand and Ghose (2009) for the simultaneous computation of multiple optima of
multimodal functions. The algorithm shares a few features with some better known
swarm intelligence-based optimization algorithms, such as ACO and PSO, but with
several significant differences. The agents in GSO are thought of as glowworms that
carry a luminescence quantity called luciferin along with them. The glowworms
encode the fitness of their current locations, evaluated using the objective function,
into a luciferin value that they broadcast to their neighbors. The glowworm identifies
its neighbors and computes its movements by exploiting an adaptive neighborhood,
which is bounded above by its sensor range. Each glowworm selects, using a
probabilistic mechanism, a neighbor that has a luciferin value higher than its own
and moves towards it. These movements—based only on local information and
selective neighbor interactions—enable the swarm of glowworms to partition into
disjoint subgroups that converge on multiple optima of a given multimodal function.

2.6.2 Bacteria Foraging Optimization

Natural selection tends to eliminate animals with poor “foraging strategies” (meth-
ods for locating, handling, and ingesting food) and favor the propagation of
genes of those animals that have successful foraging strategies since they are
more likely to enjoy reproductive success (they obtain enough food to enable
them to reproduce). After many generations, poor foraging strategies are either
eliminated or shaped into good ones. Such evolutionary principles have led scientists
to hypothesize that it is appropriate to model the activity of foraging as an

66 2 Bio-inspired Computation Algorithms

optimization process. Passino (2002) proposed a bacteria foraging optimization
by simulating the chemotactic (foraging) behavior of E. coli bacteria. There are
algorithmic analogies between the genetic algorithm and the above optimization
model for foraging. There are analogies between the fitness function and the
nutrient concentration function (both a type of “landscape”), selection and bacterial
reproduction (bacteria in the most favorable environments gain a selective advantage
for reproduction), crossover and bacterial splitting (the children are at the same
concentration, whereas with crossover they generally end up in a region around
their parents on the fitness landscape), and mutation and elimination and dispersal.
However, the algorithms are not equivalent, and neither is a special case of the
other. Each has its own distinguishing features. The fitness function and nutrient
concentration functions are not the same (one represents likelihood of survival for
given phenotypic characteristics, whereas the other represents nutrient/noxious sub-
stance concentrations or for other foragers predator/prey characteristics). Crossover
represents mating and resulting differences in offspring, something we ignore in
the bacterial foraging algorithm (we could, however, have made less than perfect
copies of the bacteria to represent their splitting). Moreover, mutation represents
gene mutation and the resulting phenotypical changes, not physical dispersal in an
environment.

2.6.3 Bat-Inspired Algorithm

Most microbats are insectivores. Microbats use a type of sonar, called echolocation,
to detect prey, avoid obstacles, and locate their roosting crevices in the dark.
These bats emit a very loud sound pulse and listen for the echo that bounces
back from the surrounding objects. Their pulses vary in properties and can be
correlated with their hunting strategies, depending on the species. Most bats
use short, frequency-modulated signals to sweep through about an octave, while
others more often use constant-frequency signals for echolocation. Their signal
bandwidth varies and depends on the species and often increased by using more
harmonics. Yang (2010) formulated a new Bat Algorithm for continuous constrained
optimization problems. Though the implementation is more complicated than many
other metaheuristic algorithms, however, it does show that it utilizes a balanced
combination of the advantages of existing successful algorithms with innovative
feature based on the echolocation behavior of bats. New solutions are generated
by adjusting frequencies, loudness, and pulse emission rates, while the proposed
solution is accepted or does not depend on the quality of the solutions controlled or
characterized by loudness and pulse rate which are in turn related to the closeness
or the fitness of the locations/solution to the global optimal solution. Moreover,
the author argues that PSO and harmony search are the special cases of the Bat
Algorithm under appropriate simplifications.

References 67

2.7 Conclusions

In this chapter, we focus on four popular bio-inspired computation algorithms,
which are, respectively, ACO, PSO, ABC, and DE. PSO and ACO are currently
the most popular algorithms in the swarm intelligence domain. Dorigo and his
colleagues introduced the first ACO algorithms in the early 1990s, which is a
metaheuristic suitable for solving hard combinatorial optimization problems. The
inspiring source of ACO is the pheromone trail laying and following behavior of real
ants, which use pheromones as a communication medium. Ants are social insects,
being interested mainly in the colony survival rather than individual survival. Of
interests is ants’ ability to find the shortest path from their nest to food. This idea
was the source of the algorithms inspired from ants’ behavior. The initial ideas
on particle swarms of Kennedy and Eberhart were essentially aimed at producing
computational intelligence by exploiting simple analogues of social interaction,
which soon developed into a powerful optimization method-PSO. Unlike in the
other evolutionary computation techniques, each particle in PSO is also associated
with a velocity. Particles fly through the search space with velocities, which
are dynamically adjusted according to their historical behaviors. Therefore, the
particles have the tendency to fly towards the better and better search area over
the course of search process. ABC was originally presented by Karaboga and
Basturk, under the inspiration of collective behavior on honeybees, and it has
been proved to possess a better performance in function optimization problem.
Compared with the usual algorithms, the major advantage of ABC algorithm lies
in that it conducts both global search and local search in each iteration, and as a
result the probability of finding the optimal parameters is significantly increased,
which efficiently avoid local optimum to a large extent. The DE algorithm emerged
as a very competitive form of evolutionary computing more than a decade ago.
DE has been seen as an attractive optimization tool for continuous optimization
for the following reasons: (1) simple and straightforward for implementation, (2)
better performance (compared with several other algorithms in solving a variety of
problems including unimodal, multimodal, separable, non-separable, and so on), (3)
few control parameters, and (4) less space complexity. Besides, we have also given a
brief introduction of other bio-inspired computation algorithms such as GSM, BFO,
and BA.

References

Bavelas A (1950) Communication patterns in task-oriented groups. J Acoust Soc Am 22(6):725–
730

Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems.
Oxford University Press, New York

Bullnheimer B, Hartl RF, Strauss C (1999) A new rank based version of the Ant System: a
computational study. Central European J Operations Res Econom 7(1):25–38

68 2 Bio-inspired Computation Algorithms

Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a
multidimensional complex space. IEEE Trans Evolut Comput 6(1):58–73

Colorni A, Dorigo M, Maniezzo V (1991) Positive feedback as a search strategy. Techn Rep,
politecnico di milano

Crina G, Ajith A (2006) Stigmergic optimization: inspiration, technologies and perspectives. In:
Stigmergic optimization. Springer Berlin Heidelberg, pp 1–24

Deneubourg J-L, Aron S, Goss S, Pasteels JM (1990) The self-organizing exploratory pattern of
the argentine ant. J Insect Behav 3(2):159–168

Dorigo M (1992) Optimization, learning and natural algorithms. PhD Thesis, Politecnico di
Milano, Italy

Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci
344(2):243–278

Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the
traveling salesman problem. IEEE Trans Evolut Comput 1(1):53–66

Dorigo M, Stützle T (2003) The ant colony optimization metaheuristic: algorithms, applications,
and advances. In: Glover F, Kochenberger GA (eds) Handbook of Metaheuristics. Springer,
Boston, MA, pp 250–285

Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating
agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29–41

Dornhaus A, Klügl F, Puppe F, Tautz J (1998) Task selection in honeybees-experiments using
multi-agent simulation. In: Proceedings of The Third German Workshop on Artificial Life,
Bochum. Verlag Harry Deutsch, pp 171–183

Duan H (2005) Ant colony algorithms: theory and applications. Science Press, Beijing, China
Duan H (2010) Ant colony optimization: principle, convergence and application. In: Bijaya Ketan

Panigrahi, Yuhui Shi, Lim M-H (eds) Handbook of Swarm Intelligence. Springer Berlin
Heidelberg, pp 373–388

Duan H, Liu S (2010) Non-linear dual-mode receding horizon control for multiple unmanned air
vehicles formation flight based on chaotic particle swarm optimisation. IET Control Theory
Appl 4(11):2565–2578

Duan H, Xing Z (2009) Improved quantum evolutionary computation based on particle swarm
optimization and two-crossovers. Chin Phys Lett 26(12):120304

Duan H, Xu C, Xing Z (2010) A hybrid artificial bee colony optimization and quantum
evolutionary algorithm for continuous optimization problems. Int J Neural Syst 20(01):39–50

Duan H, Zhang X, Xu C (2011) Bio-inspired computing. Science Press, Beijing, China
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of

the Sixth International Symposium on Micro Machine and Human Science, Nagoya. IEEE, pp
39–43

Grosan C, Abraham A (2011) Swarm intelligence. In: Intelligent systems: a modern approach.
Springer, Berlin, Heidelberg, pp 409–422

Heppner F, Grenander U (1990) A stochastic nonlinear model for coordinated bird flocks. In:
Krasner S (ed) The ubiquity of chaos. AAAS Publications, Washington, DC, pp 233–238

Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math
Comput 214(1):108–132

Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

Kennedy J (1998) The behavior of particles. Evolutionary programming VII. In: David Hutchison,
Takeo Kanade, Josef Kittler (eds) Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp 579–589

Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle
swarm performance. In: Proceedings of the 1999 Congress on Evolutionary Computation,
Washington, DC. IEEE, pp 1931–1938

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE International
Conference on Neural Networks, Piscataway, NJ. IEEE, pp 1942–1948

References 69

Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceed-
ings of the 2002 Congress on Evolutionary Computation (CEC’02), Honolulu, HI. IEEE, pp
1671–1676

Krishnanand K, Ghose D (2009) Glowworm swarm optimization for simultaneous capture of
multiple local optima of multimodal functions. Swarm Intell 3(2):87–124

Lampinen J, Zelinka I (2000) On stagnation of the differential evolution algorithm. In: Proceedings
of 6th International Mendel Conference Soft Computing, Brno, Czech Republic. pp 76–83

Menzel R, De Marco RJ, Greggers U (2006) Spatial memory, navigation and dance behaviour in
Apis mellifera. J Comp Physiol A 192(9):889–903

Millonas MM (1994) Swarms, phase transitions, and collective intelligence. In: Artificial life III.
Reading, MA. Addison-Wesley, pp 417–445

Neri F, Tirronen V (2008) On memetic differential evolution frameworks: a study of advantages and
limitations in hybridization. In: Proceedings of IEEE Congress on Evolutionary Computation,
2008 (IEEE World Congress on Computational Intelligence), Hong Kong. IEEE, pp 2135–2142

Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Contr Syst 22(3):52–67

Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell
1(1):33–57

Price K, Storn R (1997) Differential evolution–a simple evolution strategy for fast optimization.
Dr Dobb’s J 22(4):18–24

Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. Comput Graphics
21(4):25–34

Seeley TD (1985) Honeybee ecology: a study of adaptation in social life. Princeton University
Press, Princeton

Shi Y, Eberhart R. (1998) A modified particle swarm optimizer. In: Proceedings of The 1998
IEEE International Conference on Evolutionary Computation (IEEE World Congress on
Computational Intelligence), Anchorage, AK. IEEE, pp 69–73

Storn R, Price K (1995) Differential Evolution-a simple and efficient adaptive scheme for global
optimization over continuous spaces. Techn Rep International Computer Science Institute,
Berkeley, CA

Stutzle T, Hoos H (1997) MAX-MIN ant system and local search for the traveling salesman
problem. In: Proceeding of IEEE Conference on Evolutionary Computation, Indianapolis, IN.
IEEE, pp 309–314

Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut
Comput 1(1):67–82

Xu C, Duan H, Liu F (2010) Chaotic artificial bee colony approach to Uninhabited Combat Air
Vehicle (UCAV) path planning. Aerosp Sci Technol 14(8):535–541

Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Gonzalez JR et al. (eds) Nature
inspired cooperative strategies for optimization (NISCO 2010). Studies in computational
intelligence, vol 284. Springer, Berlin, pp 65–74

Yu J, Duan H (2012) Artificial Bee Colony approach to information granulation-based fuzzy radial
basis function neural networks for image fusion. Optik 124(17):3103–3111

Zielinski K, Weitkemper P, Laur R, Kammeyer K-D (2006) Parameter study for differential
evolution using a power allocation problem including interference cancellation. In: Proceedings
of IEEE Congress on Evolutionary Computation, Vancouver, BC. IEEE, pp 1857–1864

	2 Bio-inspired Computation Algorithms
	2.1 Introduction
	2.2 Ant Colony Optimization
	2.2.1 Biological Inspiration
	2.2.2 Principle of Ant Colony Optimization
	2.2.2.1 The First ACO Algorithm: Ant System
	2.2.2.2 Framework of the ACO Metaheuristic

	2.2.3 Ant System and Its Extensions

	2.3 Particle Swarm Optimization
	2.3.1 Biological Inspiration
	2.3.2 Principle of Particle Swarm Optimization
	2.3.2.1 The Framework of PSO
	2.3.2.2 Original Version
	2.3.2.3 Other Variants of PSO

	2.3.3 Parameters and Population Topology

	2.4 Artificial Bee Colony
	2.4.1 Biological Inspiration
	2.4.2 Principle of Artificial Bee Colony
	2.4.3 Algorithmic Structure of Artificial Bee Colony

	2.5 Differential Evolution
	2.5.1 Biological Inspiration
	2.5.2 Principle of Differential Evolution
	2.5.2.1 Initialization of the Parameter Vectors
	2.5.2.2 Mutation with Difference Vectors
	2.5.2.3 Crossover
	2.5.2.4 Selection

	2.5.3 Control Parameters of Differential Evolution

	2.6 Other Algorithms
	2.6.1 Glowworm Swarm Optimization
	2.6.2 Bacteria Foraging Optimization
	2.6.3 Bat-Inspired Algorithm

	2.7 Conclusions
	References

