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Preface

Bio-inspired computation, short for biologically inspired computation, is the use
of computers to model the living phenomena, and simultaneously the study of
life to improve the usage of computers, which has attracted a lot of researchers’
attention. A variety of bio-inspired computation models have been proposed and
applied to solve many real-world problems successfully, such as ant colony opti-
mization (ACO), particle swarm optimization (PSO), artificial bee colony (ABC)
and differential evolution (DE). Although rigorous theoretical analysis for most
of the bio-inspired computation methods has not been conducted systematically,
and the current study in this field is still in the experimental and preliminary
application stage, the bio-inspired computation methods have already found their
applications in many typical fields. Some of the phenomena are also known as
swarm intelligence, inspired by the social behaviour of gregarious insects and other
animals. The emergent behaviour of multiple unsophisticated agents interacting
among themselves and with their environment leads to a functional strategy that
is useful to achieve complicated goals in an efficient manner. There exist a
number of desirable properties in this kind of model, which include feedback,
self-organization, adaptation to changing environments, and multiple decentralized
interactions among agents to work collaboratively as a group in completing
complex tasks.

Unmanned aerial vehicle (UAV), colloquially known as a drone, is an aircraft
without a human pilot on board. Its flight is controlled either autonomously by
computers in the vehicle or under the remote control of a pilot on the ground or
in another vehicle. UAV offers advantages for many applications compared with
their manned counterparts. They preserve human pilots of flying in dangerous
conditions that can be encountered not only in military applications but also
in other scenarios involving operation in bad weather conditions, or near to
buildings, trees, civil infrastructures and other obstacles. While recent technological
advances have enabled the development of unmanned vehicular systems and recent
implementations have proven the UAV’s benefits in both military and civilian
applications, the full benefit of unmanned systems will be utilized when they
can operate autonomously. Typical application domains of UAVs include recon-
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naissance and surveillance missions in an urban environment, target tracking and
evasive manoeuvres, search and rescue operations, homeland security, etc. In recent
years a significant shift of focus has occurred in the field of autonomous UAVs
as researchers have begun to investigate problems involving multiple rather than
single UAV. Systems consisting of multiple UAVs performing complex missions
present new challenges to the control community. UAVs must possess attributes of
autonomy in order to function effectively in a ‘system of systems’ configuration.
Coordinated and collaborative control of UAV swarms demands new and novel
technologies that integrate modelling, control, communications and computing
concerns into a single architecture.

From the computational point of view, bio-inspired computation models are
largely stochastic search algorithms. They are useful for undertaking distributed
and multimodal optimization problems. The search process is robust and efficient
in maintaining diversity. A mechanism to impose a form of forgetting is also
adopted in some swarm intelligence algorithms such that the solution space can
be explored in a comprehensive manner. Thus, the algorithms are able to avoid
convergence to a locally optimal solution and, at the same time, arrive at a global
optimized solution with a high probability. We can learn more than the optimization
algorithms from the bio-inspired algorithms. The interaction among the agents and
feedback mechanism are the basic elements that result in the emergence of dynamic
patterns at the colony level. The most interesting properties of these self-organized
patterns are robustness (the ability for a system to perform without failure under
a wide range of conditions) and flexibility (the ability for a system to readily
adapt to new, different or changing requirements). Adaptation must happen fast
enough for UAVs to provide benefits in case of environmental change, and the
autonomy should be constructed so that these lessons can be shared with other
autonomous systems that have not yet encountered that situation. Yet, even in a
hostile, dynamic, unstructured and uncertain environment, this learning must not
adversely affect safety, reliability or the ability to collaborate with the operator or
other autonomous systems. Although such capabilities are not currently available,
the emergence mechanism of robustness and flexibility in biological colony may
provide us many entirely new threads.

This monograph, divided into eight chapters, mainly includes our recent work
relevant to UAV control issues in which we have taken advantage of bio-inspired
computation, such as path planning and replanning for single UAV and multi-
ple UAVs, formation flight control and formation configuration, heterogeneous
cooperative control for multiple UAVs/unmanned ground vehicles (UGVs) and
vision-based surveillance and navigation problems. Chapter 1 discusses the devel-
opment of UAV and emphasizes the role bio-inspired intelligence plays in achieving
higher autonomous capability. Chapter 2 introduces four representative bio-inspired
algorithms, which are ACO, PSO, ABC and DE. We explain the biological
inspiration, principle and implementation procedures of the algorithms in detail.
Then in Chapter 3 we deal with the modelling problem of UAVs and give a brief
introduction of the controller design method. Chapter 4 deals with the path planning
problem using bio-inspired algorithms, both for single UAV and multiple UAVs,
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both in the two-dimensional scenario and three-dimensional scenarios. This chapter
mainly contains three sections. First, a chaotic ABC approach is proposed for two-
dimensional path planning. Then path planning is extended to a three-dimensional
scenario through an improved ACO added a path smoothing strategy. Section 4.5
deals with coordinated path re-planning for multiple UAVs using the method of
Max-Min adaptive ACO. In Chap. 5, we mainly deal with three significant aspects
of formation control: formation control, close formation and formation configu-
ration. Chapter 6 discusses multiple UAVs/UGVs heterogeneous cooperation and
cooperative search of multiple UAVs based on differential evolution. Chapter 7
describes bio-inspired computation algorithms involving vision-based surveillance
and navigation. Chapter 8 discusses the opportunities for the development of UAVs
and points out the potential challenges for achieving higher autonomous capability.
By incorporating the bio-inspired intelligence into UAVs, it is possible to enhance
their ability to understand and adapt to the environment and the ability to cooperate
with other autonomous systems.

Special thanks are due to several members of our research team-ANT Research
Group: Guanjun MA, Senqi LIU, Hao LI, Yaxiang YU, Xiangyin ZHANG,
Chunfang XU, Changhao SUN, Yunpeng ZHANG, Fang LIU, Yimin DENG, Qinan
LUO, Yingcai BI, Shuangtian LI, Qifu ZHANG, Olukunle Kolawole SOYINKA,
Jiaqian YU, Xiaohua WANG, Junnan LI, Weiren ZHU, Lu GAN, Zenghu ZHANG,
Yan XU, Huaxin QIU, Cong ZHANG, Fei YE, Cong LI and Ziwei ZHOU for their
diligent work and contributions in the related fields. The authors would also like to
extend their thanks and appreciations to Ms. Li SHEN, the physical sciences and
engineering editor of Springer, and the editorial assistant, Ms. Jessie GUO, for their
kind help and assistance and to Springer’s copy editors for their reading of this entire
manuscript and their instructive comments.

We have had the benefit of the collaboration of coworkers and discussions
with international partners, from whom we have learned a great deal. Among
them are Prof. Zongji CHEN, Prof. Bo Hu LI, and Prof. Shiyin QIN of Beihang
University(BUAA); Prof. Ben M. CHEN and Prof. Kay Chen TAN of National
University of Singapore; Prof. Qinping ZHAO of State Key Laboratory of Virtual
Reality Technology and Systems of China; Prof. Xingui HE of Peking University;
Prof. Ming LI and Prof. Yanming FAN of Shenyang Aircraft Design Research
Institute; Prof. Derong LIU of Institute of Automation of CAS; Prof. Marco
DORIGO of Universite’ Libre de Bruxelles; Prof. Yuhui SHI of Xi’an Jiaotong-
Liverpool University; Prof. Yaochu JIN and Prof. Yang GAO of University of
Surrey; Prof. Ling WANG of Tsinghua University; Prof. Licheng JIAO and Prof.
Maoguo GONG of Xidian University; Prof. Bin XIAN of Tianjin University;
Prof. Sung-Kwun OH of The University of Suwon; Prof. Daobo WANG and Prof.
Huajun GONG of Nanjing University of Aeronautics and Astronautics; Prof. Wen-
Hua CHEN of Loughborough University; Prof. Youmin ZHANG of Concordia
University; Prof. Wei REN of University of California, Riverside; and Prof. Delin
LUO of Xiamen University. We are indebted to them for their kind help and valuable
comments.
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The main objectives pursued have been on addressing the question of how
to achieve higher autonomous capability by taking advantages of bio-inspired
computation. This monograph is intended for researchers, college students and
industrial practitioners who may wish to get an insight into the complex nature of
and practical solutions to bio-inspired computation in UAV issues. We hope that it
helps to promote further research and practice in this promising field. Finally, we
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Chapter 1
Introduction

Haibin Duan and Pei Li

Abstract Unmanned Aerial Vehicles (UAVs) offer great advantages for both mili-
tary and civilian applications due to their potential to execute missions in hazardous
scenarios involving operation in bad weather conditions or near to buildings, trees,
civil infrastructures, and other obstacles. Inspired from the biological insights
about the incredible abilities of social insects to solve the complicated problems,
many bio-inspired computation algorithms have been developed by simulating the
collective behavior of decentralized, self-organized system in nature. The main
objectives pursued have been on addressing the question of how to achieve higher
autonomous capability by taking advantage of bio-inspired computation. This
chapter mainly focuses on the fundamental concepts of UAVs and bio-inspired
computation algorithms as well as bio-inspired intelligence in UAVs. After a brief
introduction to the history of UAVs, autonomous capability of UAVs is discussed
from the perspective of functional description, metrics of autonomy. Then the
general features of bio-inspired computation and four representative bio-inspired
algorithms are presented, which are, respectively, ant colony optimization (ACO),
particle swarm optimization (PSO), artificial bee colony (ABC), and differential
evolution (DE). Finally, a comprehensive review of bio-inspired intelligence in
UAVs and the structure of this monograph are provided.

1.1 Unmanned Aerial Vehicle (UAV)

An unmanned aerial vehicle (UAV), commonly known as a drone, is an aircraft
without a human pilot on board, whose flight is controlled either autonomously by
computers in the vehicle, or under the remote control of a pilot on the ground or in
another vehicle.

A UAV is defined as a “powered, aerial vehicle that does not carry a human
operator, uses aerodynamic forces to provide vehicle lift, can fly autonomously

The original version of this chapter was revised. A correction to this chapter is available at
https://doi.org/10.1007/978-3-642-41196-0__9
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or be piloted remotely, can be expendable or recoverable, and can carry a lethal
or nonlethal payload” to distinguish it from missile. There are a wide variety
of vehicle shapes, sizes, configurations, and characteristics. Initially, UAVs were
simple remotely piloted aircraft, but autonomous control is increasingly being
employed. They are deployed predominantly for military applications but also
used in a small but growing number of civil applications, such as remote sensing;
commercial aerial surveillance; oil, gas, and mineral exploration and production;
transport; search and rescue; and forest fire detection, to name just a few (Duan
and Liu 2010b; Xu et al. 2010; Zhang and Duan 2012). UAVs are often preferred
for missions that are too “dull, dirty, or dangerous” for manned aircraft. Due to
the ability to perform dangerous and repetitive tasks in remote and hazardous
environments, UAV is very promising for the technological leadership of one nation
and essential for improving the security of the society. While recent technological
advances have enabled the development of unmanned vehicular systems and recent
implementations have proven the UAV’s great advantage in both military and
civilian applications, the full benefit of unmanned systems will be utilized when
they are fully autonomous.

1.1.1 History of UAVs

The earliest attempt at a powered UAV was A. M. Low’s “Aerial Target” of
1916. Nikola Tesla described a fleet of unmanned aerial combat vehicles in 1915.
A number of remote-controlled airplane advances followed, including the Hewitt-
Sperry Automatic Airplane, during and after World War I, including the first scale
RPV (Remote Piloted Vehicle), developed by the film star and model airplane
enthusiast Reginald Denny in 1935 (Newcome 2004). More were made in the
technology rush during World War II; these were used both to train antiaircraft
gunners and to fly attack missions. Nazi Germany also produced and used various
UAV aircraft during the course of World War II. Jet engines were applied after World
War II, in such types as the Teledyne Ryan Firebee I of 1951, while companies like
Beechcraft also got in the game with their Model 1001 for the United States Navy
in 1955. Nevertheless, they were little more than remote-controlled airplanes until
the Vietnam Era.

During the 1973 Yom Kippur War, Soviet-supplied surface to air missile batteries
in Egypt and Syria caused heavy damage to Israeli fighter jets. As a result, Israel
developed the first modern UAV. Israel pioneered the use of UAVs for real-time
surveillance, electronic warfare, and decoys. Images and radar decoying provided by
these UAVs helped Israel to completely neutralize the Syrian air defenses at the start
of the 1982 Lebanon War, resulting in no pilots downed. The first time drones were
used as proof-of-concept of super-agility post-stall controlled flight in combat flight
simulations was with tailless, stealth-technology-based three-dimensional thrust
vectoring flight control jet steering in Israel in 1987.

The birth of US UAVs (called RPVs at that time) began in 1959 when United
States Air Force officers, concerned about losing pilots over hostile territory, began
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Fig. 1.1 Aerial demonstrators at the 2005 Naval Unmanned Aerial Vehicle Air Demo

planning for the use of unmanned flights. With the maturing and miniaturization
of applicable technologies as seen in the 1980s and 1990s, interest in UAVs grew
within the higher echelons of the US military (Fig. 1.1). In the 1990s, the US Depart-
ment of Defense (DoD) gave a contract to US corporation AAI Corporation of
Maryland along with Israeli company Mazlat. The US Navy bought the AAI Pioneer
UAV that was jointly developed by American AAI Corporation and Israeli Mazlat;
this type of drone is still in use. Many of these Pioneer and newly developed US
UAVs were used in the 1991 Gulf War (Wikipedia website, 2013). UAVs were seen
to offer the possibility of cheaper, more capable fighting machines that could be used
without risk to aircrews. Initial generations were primarily surveillance aircraft, but
some were armed, known as an unmanned combat aerial vehicle (UCAV).

The first UAV created by United States was the Pioneer (see top left in Fig. 1.2),
initially place aboard Iowa-class battleships to provide gunnery spotting. Since
its performance was so exemplary, its mission evolved into reconnaissance and
surveillance, primarily for amphibious forces, with new models constantly being
introduced. As of 2008, the United States Air Force employed 5,331 drones, which
is twice the number of manned planes. Out of these, the Predators are the most
commendable (see top right in Fig. 1.2), which is described as a “Tiger II” MALE
UAS (medium-altitude, long-endurance unmanned aircraft system) by the USAF.
Unlike other UAVs, the Predator was armed with Hellfire missiles so that it can
terminate the target that it locates, serving as a primary UAV used for offensive
operations. This was done after Predators sighted Osama Bin Laden multiple times
but could not do anything about it other than send back images. In addition, the
Predator is capable of orchestrating attacks by pointing lasers at the targets, which
is important as it puts a robot in a position to set off an attack. The overall success
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Fig. 1.2 UAVs developed by the United States

of Predator is witnessed by their extensive practical experience. From June 2005
to June 2006 alone, Predators carried out 2,073 missions and participated in 242
separate raids.

In contrast to the Predator, which is remotely piloted via satellites by pilots
located 7,500 miles away, the Global Hawk operates virtually autonomously
(see bottom left in Fig. 1.2). It is used as a high-altitude platform for surveillance and
security, which could provide a broad overview and systematic surveillance using
high-resolution synthetic aperture radar and long-range electro-optical/infrared
sensors with long loiter times over target areas. Surprisingly, Global Hawks have the
capability to fly from San Francisco and map out the entire state of Maine, before
having to return. In addition, some UAVs have become so small that they can be
launched from one’s hand and maneuvered through the street. These UAVs, known
as Ravens, are especially useful in urban areas such as Iraq, in order to discover
insurgents and potential ambushes the next block up. The RQ-11B Raven UAV
(see bottom right in Fig. 1.2) is launched by hand, thrown into the air like a free
flight model airplane. The Raven lands itself by autopiloting to a predefined landing
point and then performing a 45 degree slope controlled “Autoland” descent, which
can provide day or night aerial intelligence, surveillance, target acquisition, and
reconnaissance.

Although intelligence, surveillance, and reconnaissance remain UAVs’ predom-
inant mission, their roles have expanded to electronic attack, strike missions,
suppression and/or destruction of enemy air defense, network node or communi-
cation relay, combat search and rescue, and other areas. As the capabilities of UAVs
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Table 1.1 UAV classification on the basis of weight, operational altitude, and mission endurance

Class Gross weight (lb) Altitude AGL (ft) Endurance (h) Examples

Large 21,500 >10,000 >6 Global Hawk, Predator, K-Max
Mini 55–1,500 5,000–20,000 >5 Shadow, Pioneer, Fire Scout
Small <55 <1,000 <1.5 T-Hawk, Raven, Desert Hawk
Micro <2 <500 <1 WASP, BatCam
Nano <0.4 <250 <0.5 Samarai, Black Hornet, Nano

Hummingbird

grow, they are able to perform a multitude of missions. They range in cost from a
few thousand dollars to tens of millions of dollars and range in weight from less
than one pound to over 40,000 lb. In February 2013, it was reported that the UAVs
were used by at least 50 countries, several of which made their own, for example,
Iran, Israel, and China.

On the basis of gross weight, operational altitude above ground level (AGL),
and mission endurance, UAVs may be classified broadly into large, mini, small,
micro-, and nano-classes, as shown in Table 1.1. UAVs typically fall into one of six
functional categories despite that multi-role airframe platforms are becoming more
prevalent:

1. Target and decoy: Providing ground and aerial gunnery a target that simulates an
enemy aircraft or missile

2. Reconnaissance: Providing battlefield intelligence
3. Combat: Providing attack capability for high-risk missions
4. Logistics: UAVs specifically designed for cargo and logistics operation
5. Research and development: Used to further develop UAV technologies to be

integrated into field deployed UAV aircraft
6. Civil and commercial UAVs: UAVs specifically designed for civil and commer-

cial applications

1.1.2 Unmanned Aircraft System

The term unmanned aircraft system (UAS) emphasizes the integration of aircraft
with other necessary elements to form a system that is able to perform a specific
mission, which is far beyond an aircraft itself. This term was first officially used
by the Federal Aviation Administration (FAA) of the United States in early 2005
and subsequently adopted by DoD of the United States that same year in their
unmanned aircraft system roadmap 2005–2030. It is also used by the International
Civil Aviation Organization (ICAO) and other government aviation regulatory
organizations.

What makes up a UAS? A typical civilian UAS consists of an unmanned or
remotely piloted aircraft, the human element, payload, control elements, and data
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link communication architecture. A military UAS may also include other elements
such as a weapons system platform and the supported soldiers. Obviously, the most
fundamental component in UAS is unmanned aircraft, which is vehicle of fixed-
wing or rotor-wing vehicles that fly without a human on board. Another element
in UAS is the ground control station (GCS), which is a land- or sea-based control
center that provides the facilities for human control of unmanned vehicles in the air
or in space. GCS varies in physical size and can be as small as a handheld transmitter
or as large as a self-contained facility with multiple workstations. Large military
UAS usually requires a GCS with multiple personnel to operate separate aircraft
systems. Ultimate goal for future UAS operation will be the capability for one
crew to operate multiple aircraft from a GCS. How the UAS command and control
information is sent and received both to and from the GCS and autopilot, namely,
data link, is also an important issue, which follows into two categories in UAS: radio
frequency line-of-sight and beyond line-of-sight. In most cases, UASs executing
a specific mission require an onboard payload related to surveillance, weapons
delivery, communications, aerial sensing, or cargo. UASs are often designed around
the intended payload they will employ, and the size and weight of payloads is one of
the largest considerations when designing a UAS. Take the missions of surveillance
and aerial sensing, for example; sensor payloads come in many different forms
for different missions. Conventional sensors for such mission include electro-
optical cameras, infrared cameras, synthetic aperture radars (SAR), or laser range
finder/designators. The launch and recovery element of the UAS is often considered
as one of the most labor-intensive aspects of the UAS operation. Some UASs
have very elaborate launch and recovery procedures, whereas others have virtually
none. Larger systems have complicated procedures and dedicated personnel that
prepare, launch, and recover the UAV. Other support equipment such as ground tugs,
fuel trucks, and ground power units are necessary for many kinds of large UASs.
Small vertical takeoff and landing (VTOL) UASs tend to have the least complex
procedures and equipment when it comes to launch and recovery, most of which
consists of only a suitable takeoff and landing area. The last but not the least element
of the UAS is the human factor. Human element is essential for the contemporary
UAS, which often consists of a pilot, a sensor, and supporting ground crew. With
the development of technology, this kind of factor can be replaced with complex
systems with higher autonomy, which means that the human element will likely get
smaller as technological capability increases in the future.

1.1.3 Autonomy: A Key Enabler

The concept of autonomy is the ability for an unmanned system to execute its
mission following a set of preprogrammed instructions without operator interven-
tion. A fully autonomous UAV is able to fly without operator intervention from
takeoff to landing. The degree of autonomy in a UAV varies widely from none to



1.1 Unmanned Aerial Vehicle (UAV) 7

full autonomy. On one end of the spectrum, the vehicle is operated completely
by remote control with constant operator involvement. Although the vehicle’s
flight characteristics are stabilized by its own autopilot system, the vehicle would
eventually crash without constant involvement of the pilot. On the other end of
the spectrum, the vehicle’s onboard autopilot controls everything from takeoff to
landing, requiring no pilot intervention. The operator can intervene in case of
emergencies, overriding the autopilot if necessary to change the flight path or to
avoid a hazard. Some of these positions of the operator can be combined into one
depending on the complexity of the UAV system. The human factor will likely get
smaller as technological capability increases, and eventually automation will require
less human interaction.

Autonomy is actually a collection of functions that can be performed without
direct intervention by the pilot/crew, which has been present in some form in the
early UAVs even before the definition of the information age. The autonomy is
included in the system to reduce the burden of pilot/crew. The Sperry autopilot,
introduced in 1914, is a well-known example of an early technology advance that
added significant autonomous functionality. Today’s UAVs often combine remote
control and computerized automation. For example, autonomous capability may be
introduced into the control and guidance systems to perform low-level human pilot
duties, such as speed and flight path stabilization, and simple scripted navigation
functions, such as waypoint following. With the advance of time and technology,
more complex and capable manifestations of autonomy have continued to emerge
over a near-century-long evolution.

In the context of intelligent vehicles, autonomy is usually defined as the ability
to make decisions without human intervention. To this end, the goal of autonomy is
to make vehicles as smart as possible and capable of acting like humans. Someone
holds the opinion that the development in the field of artificial intelligence in the
1980s and 1990s such as expert systems, neural networks, machine learning, natural
language processing, and vision can bring opportunities and benefits for enhancing
the autonomous capabilities of UAVs. However, since the mode of technological
development in the field of autonomy has mostly followed a bottom-up approach,
such as hierarchical control systems, and recent advances have been largely driven
by the practitioners in the field of control science, not computer science. So there
is reason to believe that autonomy has been and probably will continue to be
considered an extension of the controls field.

The field of UAV autonomy is a recently emerging field, benefiting from the
more and more broad prospect both in military application and civil application,
especially the military application. Compared to the manufacturing of UAV flight
hardware, the market for autonomy technology is far from mature and developed.
So autonomy has been and may continue to be the bottleneck for future UAV
developments. The future development of UAV market could be largely driven
by advances to be made in the field of autonomy. Autonomy technology that is
important to UAV development falls under the following categories:



8 1 Introduction

• Sensor fusion: Combining information from different sensors for use on board
the vehicle

• Communications: Handling communication and coordination between multiple
agents in the presence of incomplete and imperfect information

• Path planning: Determining an optimal path for vehicle to go while meeting
certain objectives and mission constraints, such as obstacles or fuel requirements

• Trajectory generation (sometimes called motion planning): Determining an
optimal control maneuver to take to follow a given path or to go from one location
to another

• Trajectory regulation: The specific control strategies required to constrain a
vehicle within some tolerance to a trajectory

• Task allocation and scheduling: Determining the optimal distribution of tasks
among a group of agents, with time and equipment constraints

• Cooperative tactics: Formulating an optimal sequence and spatial distribution of
activities between agents in order to maximize chance of success in any given
mission scenario

1.1.3.1 Functional Description

To distinguish the automatic system from autonomous system in terms of systems-
design paradigms, it is appropriate to clarify these two terms from the perspective
of the definition. Automatic systems are fully preprogrammed and act repeatedly
and independently of external influence or control. An automatic system can be
described as self-steering or self-regulating and is able to follow an externally
given path while compensating for small deviations caused by external disturbances.
However, the automatic system is not able to define the path according to some given
goal or to choose the goal dictating its path. By contrast, autonomous systems are
self-directed toward a goal in that they do not require external control, but rather
are governed by laws and strategies that direct their behavior. In the early stage,
the control algorithms are created and tested by teams of human operators and
software developers. Then autonomous systems can develop modified strategies
for themselves by which they select their behavior if machine learning or other
intelligent method is utilized. In other words, an autonomous system is self-
directed by choosing the behavior it follows to reach a human-directed goal. In
addition, autonomous systems may even be able to optimize the behavior in a goal-
directed manner in uncertain and complicated situations. The special feature of an
autonomous system is its ability to be goal directed in unpredictable situations. This
ability is a significant improvement in capability compared to the capabilities of
automatic systems. An autonomous system is able to make a decision based on
a set of given rules and/or limitations. It is able to determine what information
is important in making a decision. It is capable of a higher level of performance
compared to the performance of a system operating in a predetermined manner.
To sum up, autonomy implies self-governance and self-direction, while autonomic
implies self-management.
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For instance, the goals of a system may be to find a particular phenomenon using
its onboard sensors. The system may have autonomy to decide between certain
parameters. However, ultimately the task may fail if the system cannot cope with
uncertain dynamic changes in the environment. So, autonomous system should
ensure that it is fault tolerant and be able to operate under fault conditions. From
this perspective, the autonomic and self-management initiatives may be considered
specialized forms of autonomy, that is, the autonomy is specifically to heal, protect,
configure, and optimize the system.

1.1.3.2 Metrics of Autonomy

According to (Francis 2012), autonomy in aerospace arena can be categorized in
a few of ways. It is a common perspective to segregate different functions on the
basis of the nature of the missions, such as those that are unique to the vehicle
as compared to those that are applicable to the mission-level activities and are
therefore vehicle agnostic. Functions such as vehicle stabilization, flight control,
maneuvering flight, and basic autoland are related to the features of a vehicle, so
they belong to the vehicle-level autonomy. Functions such as auto navigation, route
planning, mission objective determination, and flight plan contingencies are not
dependent on the characteristic of the vehicles, whereas they are only dependent
on the mission type and thus belong to mission-level autonomy. According to
this view, dynamic trajectory generation and collision avoidance also fall into this
category. Another dimension of autonomous functionality relates to the number
of participating vehicle entities. In that regard, one can consider single vehicle
operation, multivehicle operations, and, in an extreme, many-vehicle operations
(so-called swarms).

It is also a metric to categorize autonomy on the basis of decision logic employed
by a system. At one end of this scale are highly deterministic and very objective
decisions such as those consistent with rule-based systems. Note that physics and
other hard science-driven decisions such as digital computer-based stabilization and
control, auto takeoff, and autoland are, for the most part, rule based. This kind
of functions can be very reliable and precise, often exceeding the capabilities of
even the best human pilots. Autonomous control systems must perform well under
significant uncertainties with uncertain and dynamic environment, and they must
be able to compensate for system failures without external intervention. So it is
necessary to introduce some stochastic features and other forms of predictable
uncertainty to handle the uncertainty. The other end of the scale is defined by highly
subjective conditions or far less deterministic circumstances, such as those which
may be encountered in an ill-defined, adversarial environment. Besides, the nature
of the decision logic is also important in that it drives the strategy and approach
taken in all the other elements of the decision cycle.

Another way to characterize autonomy is one that couples its functionality
and degree of situational difficulty. Two major variables which facilitate this
decomposition are complexity and uncertainty. Autonomous functions which derive
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Table 1.2 Autonomous levels

Level Name Description

1 Human operated A human operator makes all decisions. The system has no
autonomous control of its environment although it may have
information-only responses to sensed data

2 Human delegated The vehicle can perform many functions independently of human
control when delegated to do so. This level encompasses
automatic controls, engine controls, and other low-level
automation that must be activated or deactivated by human
input and must act in mutual exclusion of human operation

3 Human supervised The system can perform a wide variety of activities when given
top-level permissions or direction by a human. Both the human
and the system can initiate behaviors based on sensed data, but
the system can do so only if within the scope of its currently
directed tasks

4 Fully autonomous The system receives goals from humans and translates them into
tasks to be performed without human interaction. A human
could still enter the loop in an emergency or change the goals,
although in practice there may be significant time delays before
human intervention occurs

from objective criteria, such as that found in physical laws, may be inherently
complex, but are not often subject to high levels of uncertainty. Alternatively,
autonomous decision-making which involves more subjective circumstances or is
associated with highly uncertain conditions is far more difficult to model or quantify.
These situations often exceed today’s state of the art for artificial intelligence
methods. They are best dealt with by knowledgeable and trained human crews.
Contingency management problems, especially those that entail elements of the
mission-level environment, often fall into this latter category.

Table 1.2 and Fig. 1.3 graphically depict these various decompositions, which
was developed by the US Air Force Research Laboratory and adopted by the
DoD (Weatherington and Deputy 2005). Actually, as a framework for defining
Autonomous Control Levels (ACL) for air vehicles, it is far from adequate to
describe the many dimensions of autonomous functionality.

Autonomous capabilities have been enabled by advances in computer science,
artificial intelligence, cognitive and behavioral sciences, machine training and
learning, and communication technologies. Rule-based autonomy has made great
progress, such as basic waypoint navigation, auto takeoff, and autoland. Even
autonomous damage-tolerant flight control, such as loss of portions of wings,
stabilizers, or other vehicle control elements, has been demonstrated in a real-world
flight environment. The limiting factor in these rule-based cases is usually not the
machine-based logic employed in decision-making, but rather the inadequacy of
sensors or other sources of information needed to establish situation awareness
and/or the context for the needed decision. Far less progress has been made in those
domains involving more subjective decision criteria, extreme complexity, or higher
levels of uncertainty in the key decision variables.
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Fig. 1.3 UAV Roadmap 2005

1.2 Bio-inspired Computation

1.2.1 Definition of Swarm

Swarming is not about numbers, but about the interactions between individuals in
a group, which is a particular emergent behavior of simple autonomous individuals
(Clough 2002). In a Rand report written about swarming, swarming is looked at
in two ways: the group interaction among individuals and swarming tactics that
could be done by military groups. The second statement describes a process like
this: originally dispersed, the groups come together to accomplish an objective, then
disperse again, somewhat akin to guerilla war tactics. The report then goes on to
describe a system that uses decentralized control to command a swarm of low-cost
precision munitions. Webster’s Dictionary gives the formal definition for “swarms,”
which is illustrated in Table 1.3. Bruce Clough provides a more formal definition
from technical perspective: a collection of autonomous individuals relying on local
sensing and reactive behaviors interacting such that a global behavior emerges from
the interactions (Clough 2002).

The term swarm is often used for an aggregation of animals such as fish schools,
birds flocks, and insect colonies such as ant, termite, and bee colonies performing
collective behavior, which shows great robustness and cost-effectiveness. In this
process, only local rules are utilized through interactions between self-organized
agents. It is possible for us to take advantage of these ideas to develop autonomous
UAV control systems. To this end, we should make it clear what the core advantage
of this collective behavior is and when it is appropriate to use swarming. So let’s go
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Table 1.3 Formal definition of “swarm” in Webster’s Dictionary

No Definition

l a: (1) a great number of honeybees emigrating together from a hive in company with a
queen to start a new colony elsewhere. (2) a colony of honeybees settled in a hive

b: an aggregation of free-floating or free-swimming unicellular organisms, usually used
of zoospores

2 a: a large number of animate or inanimate things massed together and usually in motion
b: a number of similar geological features or phenomena close together in space or time

3 to form and depart from a hive in a swarm
4 a: to move or assemble in a crowd

b: to hover about in the manner of a bee in a swarm

Table 1.4 Comparison
of swarms and teams Attribute Swarm Team

Temporal Reactive Predictive
Composition Homogenous Heterogeneous
Interrelationships Simple Complex
Predictability Probabilistic Deterministic
Individual Expendable Critical
Efficiency Low High

back to examine the attributes of it by comparison of swarms and teams found in
nature, which is shown as follows (Table 1.4):

• Temporal: Swarms are composed of individuals that can only react, not predict,
while teams own the capability of predicting, which requires onboard models and
plans.

• Composition: Swarms are composed of homogeneous or very limited heteroge-
neous individual types or roles, while teams are very heterogeneous with distinct
roles assigned to distinct individuals.

• Interrelationships: Swarms interact with other agents using simple rules, with
little knowledge of the global pattern, while teams exhibit much more com-
plicated social behaviors. Besides, messages are not targeted to any particular
individual, but are broadcasted. Teams communicate with higher-level semantic
messages, usually directed at a particular individual.

• Predictability: Swarms are probabilistic; their performance can be described by
distributions. They are not deterministic. Teams, on the other hand, are deter-
ministic, with a known objective at a known time achieved via a deterministic
plan.

• Individual worth: Swarms get their robustness from the similarity of individuals.
This ensures that, if one of the interactions fails or if one of the insects misses
its task, their failure is quickly compensated by the other insects. So individual
worth is low. Teams on the other hand are composed of specialized individuals;
loss of one can cripple critical team functions, and so individual worth is high.
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• Efficiency: Swarms in nature are inefficient compared to ways humans might
decide to do the same things. One of the benefits of teaming is that it maximizes
efficiency by synergistic use of heterogeneous resources.

We should note that the inefficiency of swarms is not necessarily a drawback for
the agents, since what they lack in efficiency they make up for in robustness. Their
redundancy can survive attrition, where even a loss of a single team member could
spell failure. Inefficiency leaves room for improvement in times of need, allows
attrition when things go wrong, but it requires more resources. Agents interact with
each other, and they have no big picture of the whole colony. However, trial and error
over millions of years has developed the simple behaviors such that they interact to
the good of the collective.

To obtain swarming ability, all one needs is an appropriate set of individual
reactive behaviors supported by local sensing that will interact to develop the group
behavior of interest and a simple architecture to manage those behaviors in the
individual, which can be summarized as the following four aspects:

• Emergent behavior of the interacting individuals in the swarm
• Simple reactive behaviors in the individuals
• Behavior architecture in the individuals allowing switches between reactive

behaviors
• Local sensing with individual variability

1.2.2 General Features of Bio-inspired Computation

Swarm intelligence, as a scientific discipline including research fields such as swarm
optimization or distributed control in collective robotics, was born from biological
insights about the incredible abilities of social insects to solve the complicated
problems. Their colonies range in size from a few animals to millions of individuals,
which shows fascinating behaviors that combine efficiency with both flexibility and
robustness. Examples of complex and sophisticated behaviors are numerous and
diverse among social insects, such as traffic management in the foraging process,
dynamic task allocation between individuals, and the building of nest, to name just
a few.

As we have explained, the colony often exhibits amazing and complex collective
behavior. However, the individual always executes simple actions and follows
simple rules. Of course, as a masterpiece of God, insects are highly elaborated
machines to some extent, with the ability to modulate their behavior on the
basis of the processing of many sensory inputs. Nevertheless, as pointed out by
Seeley (2002), the complexity of an individual insect in terms of cognitive or
communicational abilities may be high in an absolute sense, while remaining not
sufficient to effectively supervise a large system and to explain the complexity of all
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the behaviors at the colony scale. It is often the case that a single insect can’t find
an efficient solution to a complex problem, while the whole colony is able to find an
optimal solution very easily by taking advantage of wisdom of the population.

We have known that individual insects don’t need any representation, any map,
or explicit knowledge of the global structure they produce. A single insect can’t
assess a global situation, to centralize information about the state of its entire
colony and then to control the tasks to be done by the other workers, which means
there is no supervisor in the colony. Actually, a social insect colony is rather like
a decentralized system consisting of autonomous agents that are distributed in
the environment and that follow simple probabilistic stimulus-response rules. The
rules that govern interactions among insects are executed only according to the
local information. These interactions ensure the propagation of information through
the colony, and they also organize the activity of each individual. Due to these
sophisticated interaction networks, social insects can solve many kinds of problems
and respond to external challenges in a very flexible and robust way. Behind this
“organization without an organizer” are several hidden mechanisms which enable
insect societies, whose members only deal with partial and noisy information about
their environment, to cope with uncertain situations and to find solutions to complex
problems, which is called self-organization by the researchers. We should note
that other biological systems share similar collective properties such as colonies of
bacteria or amoeba, fish schools, bird flocks, sheep herds, or even crowds of human
beings.

The collective decisions in ants rely on self-organization that appears to be a
major component of a wide range of collective behaviors in social insects, from the
thermoregulation of bee swarms to the construction of nests in ants and termites.
Self-organization is a set of dynamic mechanisms whereby structures appear at
the global level of a system from interactions among its lower-level components,
without being explicitly coded at the individual level. It relies on four basic
ingredients (reprinted from Garnier et al. (2007), with permissions from Springer
Nature):

Positive feedback (amplification): It often constitutes the basis of morphogenesis
in social insects, resulting the execution of simple behavioral “rules of thumb”
that promote the creation of structures. Examples of positive feedback include
recruitment and reinforcement. For instance, trail recruitment to a food source is
a kind of positive feedback which creates the conditions for the emergence of a trail
network at the global level.

Negative feedback (for counterbalance and stabilization): It counterbalances
positive feedback and helps to stabilize the collective pattern. Take the ant foraging,
for example; it may exhibit some forms of negative feedback. It may result from
the limited number of available foragers, the food source exhaustion, and the
evaporation of pheromone or a competition between paths to attract foragers.

Amplification of fluctuations (randomness, errors, random walks): Collective
behaviors emerge although social insects are known to perform stochastic actions.
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What’s more, randomness is often crucial because it enables discovery of new
solutions, and fluctuations can act as seeds from which structures nucleate and grow.
For instance, lost foragers have the chance to find new, unexploited food sources and
then recruit nest mates to these food sources. In this way, better food sources can be
found by utilizing the potential of randomness.

Multiple interactions: Self-organization often requires minimal density of mutu-
ally tolerant individuals. Moreover, individuals should be able to makes use of
results of their own activities as well as others’ activities. In other words, it requires
multiple direct or stigmergic interactions among individuals to produce apparently
deterministic outcomes and the appearance of large and enduring structures.

In addition to the previously detailed ingredients, self-organization is also
characterized by a few key properties:

Dynamic: As stated before, the production of structures as well as their persistence
requires permanent interactions between the members of the colony and with their
environment. These interactions promote the positive feedbacks that create the
collective structures and act for their subsistence against negative feedbacks that
tend to eliminate them.

Emergent properties: They display properties that are more complex than the
simple contribution of each agent. These properties arise from the nonlinear
combination of the interactions between the members of the colony.

Bifurcations: A bifurcation is the appearance of new stable solutions when some
of the system’s parameters change. This corresponds to a qualitative change in the
collective behavior.

Multi-stable: Multi-stability means that, for a given set of parameters, the system
can reach different stable states depending on the initial conditions and on the
random fluctuations.

As categorized by Garnier et al. (2007), the organization of collective behaviors
in social insects can be understood as the combination of the four coordination,
cooperation, deliberation, and collaboration functions. Each of these functions
emerges at the collective level from the unceasing interactions between the insects.
They support the information processing abilities of the colony in two ways: (1)
coordination and collaboration shape the spatial, temporal, and social structures that
result from the colony’s work. The coordination function regulates the spatiotempo-
ral density of individuals, while the collaboration function regulates the allocation of
their activities. (2) Cooperation and deliberation provide tools for the colony to face
the environmental challenges. The deliberation function represents the mechanisms
that support the decisions of the colony, while the cooperation function represents
the mechanisms that overstep the limitations of the individuals. Together, these four
functions contribute together to the accomplishment of the various collective tasks
of the colony.
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1.2.3 Bio-inspired Computation Algorithms

Bio-inspired computation, short for biologically inspired computation, is the use of
computers to model the living phenomena and simultaneously the study of life to
improve the usage of computers, which is a major subset of natural computation.
By simulating the collective behavior of decentralized, self-organized system from
nature, many optimization algorithms have been developed, which could be called as
either swarm intelligence or bio-inspired computation from different perspectives.
Colonies of social insects have fascinated researchers for many years, and the mech-
anisms that govern their behavior remained unknown for a long time. Even though
the single members of these colonies are non-sophisticated individuals, they are able
to achieve complex tasks in cooperation. Coordinated colony behavior emerges from
relatively simple actions or interactions between the colonies’ individual members.
Many aspects of the collective activities of social insects are self-organized and work
without a central control. For example, leafcutter ants cut pieces from leaves, bring
them back to their nest, and grow fungi used as food for their larvae. Weaver ant
workers build chains with their bodies in order to cross gaps between two leaves.
The edges of the two leaves are then pulled together and successively connected by
silk that is emitted by a mature larva held by a worker. Another example is about the
recruitment of other colony members for prey retrieval. Other examples include the
capabilities of termites and wasps to build sophisticated nests or the ability of bees
and ants to orient themselves in complicated and changing environment.

Optimization techniques inspired by collective behavior have become increas-
ingly popular during the last decade. They are characterized by a decentralized way
of working that mimics the behavior of swarms of social insects, flocks of birds,
or schools of fish. The advantage of these approaches over traditional techniques
is their robustness and flexibility. These properties make swarm intelligence a
successful design paradigm for algorithms that deal with increasingly complex
problems. In this monograph we focus on four of the most successful examples
of optimization techniques inspired by swarm intelligence: ant colony optimization
(ACO), particle swarm optimization (PSO), artificial bee colony (ABC), and
differential evolution (DE).

1.2.3.1 Ant Colony Optimization

In many ant species, individual ants may deposit a pheromone (a chemical that ants
can smell) on the ground while walking. By depositing pheromone, ants create a
trail that is used, for example, to mark the path from the nest to food sources
and back. Foragers can sense the pheromone trails and follow the path to food
discovered by other ants (Duan 2005). Several ant species are capable of exploiting
pheromone trails to determine the shortest among the available paths leading to the
food (Fig. 1.4).

Deneubourg et al. (1990) and colleagues used a double bridge connecting a nest
of ants and a food source to study pheromone trail laying and following behavior
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Fig. 1.4 Ant colony optimization

in controlled experimental conditions. They ran a number of experiments in which
they varied the ratio between the length of the two branches of the bridge. The most
interesting, for our purposes, of these experiments is the one in which one branch
was longer than the other. In this experiment, at the start the ants were left free to
move between the nest and the food source, and the percentage of ants that chose
one or the other of the two branches was observed over time. The outcome was that,
although in the initial phase random oscillations could occur, in most experiments
all the ants ended up using the shorter branch.

This result can be explained as follows. When a trial starts there is no pheromone
on the two branches. Hence, the ants do not have a preference, and they select with
the same probability either of the two branches. It can be expected that, on average,
half of the ants choose the short branch and the other half the long branch, although
stochastic oscillations may occasionally favor one branch over the other. However,
because one branch is shorter than the other, the ants choosing the short branch
are the first to reach the food and to start their travel back to the nest. But then,
when they must make a decision between the short and the long branch, the higher
level of pheromone on the short branch biases their decision in its favor. Therefore,
pheromone starts to accumulate faster on the short branch, which will eventually be
used by the great majority of the ants.

Marco Dorigo and his colleagues introduced the first ACO algorithm in the
early 1990s (Dorigo 1992; Dorigo et al. 1996). It should be clear by now how
real ants have inspired ant system (AS) and later algorithms: the double bridge was
substituted by a graph and pheromone trails by artificial pheromone trails. Also,
because we wanted artificial ants to solve problems more complicated than those
solved by real ants, we gave artificial ants some extra capacities, like a memory
(used to implement constraints and to allow the ants to retrace their solutions without
errors) and the capacity for depositing a quantity of pheromone proportional to the
quality of the solution produced (a similar behavior is observed also in some real
ant species in which the quantity of pheromone deposited while returning to the nest
from a food source is proportional to the quality of the food source).
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Fig. 1.5 Particle swarm optimization

1.2.3.2 Particle Swarm Optimization

The initial ideas on particle swarms of Kennedy (a social psychologist) and Eberhart
(an electrical engineer) were essentially aimed at producing computational intelli-
gence by exploiting simple analogues of social interaction (Kennedy and Eberhart
1995), rather than purely individual cognitive abilities. The first simulations were
influenced by Heppner and Grenander’s work and involved analogues of bird flocks
searching for corn. These soon developed into a powerful optimization method—
PSO.

The first particle swarm program was written by modifying a bird-flocking
simulation. Two disparate groups of researchers in the 1980s had derived very
similar models of the dynamics of bird flocks. Reynolds (1987), working from a
computer-graphics perspective (e.g., he wanted to be able to portray realistic bird
flock animations on a computer screen), concluded that bird flocking could be
simulated using three rules:

Rule 1: Separation—steer to avoid colliding with local flockmates
Rule 2: Alignment—try to move in the same average direction as local flockmates
Rule 3: Cohesion—steer to move toward the perceived center of the local flock

(Fig. 1.5)

Heppner, a biologist, made three-dimensional movies of bird flocks and carefully
studied the dynamics of their choreography (Heppner and Grenander 1990). His
model, though it was developed independently of Reynolds’, contained essentially
the same three rules, plus a fourth: attraction to a roost. His flocks eventually settled
down.

The author had been experimenting with these flocking models and added
one more feature, with surprising results. Inspired by Heppner’s “attraction to a
roost,” “cornfield vector” was added, which in the first program was simply a two-
dimensional point on the plane of the computer monitor. This point was considered
to simulate some food on the ground; birds flying past might see the food or some
sign of the presence of food, and most importantly, birds flying past could see that
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other birds seemed to be zeroing in on some target. Thus, members of the flock were
attracted toward positions that other members of the flock had found to be relatively
near to food.

The first experiments were shocking. The flock immediately converged on the
point on the screen, as if sucked in by a vacuum cleaner. That first algorithm worked
as follows:

1. Each bird evaluated its distance from the cornfield.
2. Each bird identified some “neighbors” who were nearby on the display plane.
3. Each bird identified which of its neighbors had come closest to the target point

and where that had happened (note that the location of the point was not known,
but only the distance from it).

4. If its position was to the right of (above) its own previous best point, then it
moved some random amount to the left (down); else it moved a random amount
to the right (upward).

5. If its position was to the right of (above) the best neighbor’s best point, it moved
a random amount to the left (down), otherwise right (upward).

The success of the food-searching program prompted the second set of experi-
ments. The evaluation of distance from an arbitrary point on the screen was replaced
by an XOR feedforward neural network. A network was defined with two input
nodes, three hidden nodes, and one output, requiring nine connection weights and
four biases. Thus optimizing the weights (including biases) meant searching through
a thirteen-dimensional space. Weights were initialized with random values, and the
program ran iteratively. For testing purposes, two of the weights were graphed on
the screen, meaning that the entire flock could be watched as a display of swarming
particles. Again, the flock had no difficulty finding an optimal matrix of weights.
The plotted points zoomed immediately, it seemed, with no hesitation, toward a
configuration that resulted in squared error in the network very near zero.

The PSO developed by Kennedy and Eberhart (1995) comprises a very simple
concept, and paradigms can be implemented in a few lines of computer code (Duan
et al. 2013b). It requires only primitive mathematical operators and is computation-
ally inexpensive in terms of both memory requirements and speed. Early testing has
found the implementation to be effective with several kinds of problems.

1.2.3.3 Artificial Bee Colony

A very interesting swarm in nature is honeybee swarm that allocates the tasks
dynamically and adapts itself in response to changes in the environment in a col-
lective intelligent manner. The honeybees have photographic memories; space-age
sensory and navigation systems, possibly even insight skills; and group decision-
making process during selection of their new nest sites, and they perform tasks such
as queen and brood tending, storing, retrieving and distributing honey and pollen,
communicating, and foraging. These characteristics are incentive for researchers to
model the intelligent behaviors of bees.
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Foraging is the most important task in the hive. Many studies have investigated
the foraging behavior of each individual bee and what types of external information
(such as odor, location information in the waggle dance, the presence of other
bees at the source, or between the hive and the source) and internal information
(such as remembered source location or source odor) affect this foraging behavior.
Foraging process starts with leaving the hive of a forager in order to search food
source to gather nectar. After finding a flower for herself, the bee stores the nectar
in her honey stomach. Based on the conditions such as richness of the flower
and the distance of the flower to the hive, the bee fills her stomach in about 30–
120 min, and honey-making process begins with the secretion of an enzyme on the
nectar in her stomach. After coming back to the hive, the bee unloads the nectar to
empty honeycomb cells, and some extra substances are added in order to avoid the
fermentation and the bacterial attacks. Filled cells with the honey and enzymes are
covered by wax.

After unloading the nectar, the forager bee which has found a rich source
performs special movements called “dance” on the area of the comb in order to
share her information about the food source such as how plentiful it is and its
direction and distance and recruits the other bees for exploiting that rich source.
While dancing, other bees touch her with their antenna and learn the scent and the
taste of the source she is exploiting. She dances on different areas of the comb in
order to recruit more bees and goes on to collect nectar from her source. There are
different dances performed by bees depending on the distance information of the
source: round dance, waggle dance, and tremble dance. If the distance of the source
to the hive is less than 100 m, round dance is performed, while if the source is far
away, waggle dance is performed. Round dance does not give direction information.
In case of waggle dance, direction of the source according to the sun is transferred to
other bees. Longer distances cause quicker dances. The tremble dance is performed
when the foraging bee perceives a long delay in unloading its nectar (Karaboga and
Akay 2009).

A honeybee colony needs to divide its workforce so that individuals of appropri-
ate number are allocated for each of the many tasks (Beekman et al. 2007). Bees
are specialized in order to carry out every task in the hive. However, there is a
controversy about which factors have roles on the specialization of bees, such as
their age, hormones (internal factors), and individual predisposition coming from
their genetic determination (Dornhaus et al. 1998), and also the allocation of tasks
can dynamically change. For example, when food is drought, younger nurse bees
will also join to foraging process.

Some approaches have been proposed to model the specific intelligent behaviors
of honeybee swarms, and they have been applied for solving various problems.
Virtual bee algorithm was developed by Yang (2005) to solve the numerical function
optimizations. In the model, a swarm of virtual bees are generated, and they are
allowed to move randomly in the phase space, and these bees interact when they find
some target nectar. Nectar sources correspond to the encoded values of the function.
The solution for the optimization problem can be obtained from the intensity of bee
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Fig. 1.6 Artificial bee colony optimization

interactions. The bees algorithm was described by Pham et al. (2006) and mimics
the foraging behavior of honeybees. In its basic version, the algorithm performs a
kind of neighborhood search combined with random search and can be used for both
combinatorial optimization and functional optimization. BeeHive algorithm, which
has been inspired by the communication in the hive of honeybees, was proposed by
Wedde et al. (2004) and applied to the routing in networks. In BeeHive algorithm,
bee agents travel through network regions called foraging zones. On their way their
information on the network state is delivered for updating the local routing tables.
Bee colony optimization was described by Teodorović and Dell’Orco (2005) for
the ride-matching problem and for the routing and wavelength assignment in all-
optical networks. ABC algorithm simulating foraging behavior of honeybees was
invented by Karaboga (2005) (Fig. 1.6). Among the algorithms mentioned above,
ABC is the one which has been most widely studied and applied to solve the real-
world problems, so far. In this monograph, we will take ABC as the representative
algorithm simulating bee swarm intelligence.

1.2.3.4 Differential Evolution

The most common of which is the phenomenon that every species had to adapt
their physical structures to fit to the environments they were in and to strengthen
their survival ability. By simulating the underlying relation between optimization
and biological evolution, an important branch of computational intelligence, the
evolutionary computing techniques have been developed to handle the complex
optimization problems. Evolutionary computation uses iterative progress, such as
growth or development in a population. This population is then selected in a
guided random search using parallel processing to achieve the desired end. The
paradigm of evolutionary computing techniques dates back to early 1950s, when
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the idea to use Darwinian principles for automated problem solving originated.
Evolutionary computation techniques mostly involve metaheuristic optimization
algorithms. Broadly speaking, the field includes evolutionary programming (EP),
evolution strategies (ESs), genetic algorithm (GA), and genetic programming (GP).

The DE algorithm emerged as a very competitive form of evolutionary computing
more than a decade ago. The first written article on DE appeared as a technical report
by Storn and Price (1995). One year later, the success of DE was demonstrated at the
First International Contest on Evolutionary Optimization in May 1996, which was
held in conjunction with the 1996 IEEE International Conference on Evolutionary
Computation (CEC).

DE finished third at the First International Contest on Evolutionary Optimization
(1st ICEO), which was held in Nagoya, Japan. DE turned out to be the best
evolutionary algorithm for solving the real-valued test function suite of the 1st
ICEO (the first two places are not universally applicable but solved the test
problems faster than DE). Price presented DE at the Second International Contest
on Evolutionary Optimization in 1997, and it turned out as one of the best among
the competing algorithms. Two journal articles describing the algorithm in sufficient
details followed immediately in quick succession. In 2005 CEC competition on real
parameter optimization, on 10-D problems classical DE secured 2nd rank and a
self-adaptive DE variant called SaDE secured third rank although they performed
poorly over 30-D problems. It is also interesting to note that the variants of DE
continued to secure front ranks in the subsequent CEC competitions like CEC
2006 competition on constrained real parameter optimization (first rank), CEC 2007
competition on multi-objective optimization (second rank), CEC 2008 competition
on large-scale global optimization (third rank), CEC 2009 competition on multi-
objective optimization (first rank was taken by a DE-based algorithm MOEA/D for
unconstrained problems), and CEC 2009 competition on evolutionary computation
in dynamic and uncertain environments (first rank). We can also observe that no
other single search paradigm such as PSO was able to secure competitive rankings
in all CEC competitions.

Generally speaking, DE is considered as a kind of evolutionary computation
technique. Like other popular EAs, it is a population-based optimization tool. How-
ever, different from other EAs, DE generates offspring by perturbing the solutions
with a scaled difference of two randomly selected population vectors, instead of
recombining the solutions under conditions imposed by a probabilistic scheme.
What’s more, DE employs a one-to-one spawning logic which allows replacement
of an individual only if the offspring outperforms its corresponding parent. DE has
been seen as an attractive optimization tool for continuous optimization for the
advantages of simple implementation procedure, good performance for continuous
optimization problems, less control parameters compared with other method, and
the low space complexity.
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1.3 Bio-inspired Intelligence in UAVs

1.3.1 Achieve Higher Autonomous Capability

One of the inevitable trends for the future information technology is intelligence,
and the effective way to achieve intelligence is to simulate the various intelligent
behaviors in nature (Duan et al. 2011b). Many of the adaptive optimization
phenomena in nature inspire us that many highly complex optimization problems
can be perfectly solved with the self-evolution in organisms and ecological systems.
In recent years, some bio-inspired intelligent methods have emerged, which are
definitely different from the classical mathematical programming principle. The
typical bio-inspired methods include genetic algorithms (GA), ACO, PSO, arti-
ficial immune system (AIS), ABC, cultural evolution (CE), emotion computing
(EC), and DNA computing. All the bio-inspired intelligent methods are trying
to simulate the natural ecosystem mechanisms, which have greatly enriched the
modern optimization techniques and provided practical solutions for those com-
plicated combinatorial optimization problems. With the stealthy rise of bio-inspired
intelligence era, which is characterized by the simulation of natural and biological
mechanisms, a number of bio-inspired intelligence technologies have demonstrated
strong vitality and potential for further development in solving the classic NP-C
problems and practical applications.

Bio-inspired intelligence has the advantages of strong robustness, good dis-
tributed computing mechanism, and easy to combine with other methods. Although
the rigorous theoretical analysis for most of the bio-inspired intelligent methods has
not been conducted, and the current study in this field is still in the experimental
and preliminary application stage, the bio-inspired intelligent methods have already
found their applications in many typical fields. These methods can not only
solve the one-dimensional static optimization problems but also solve multidi-
mensional dynamic optimization problems. There are also many breakthroughs in
the hardware implementation of bio-inspired intelligent methods. All these make
the bio-inspired intelligence show strong vitality and broad prospects for further
development.

While recent technological advances have enabled the development of unmanned
vehicle systems and recent implementations have proven the UAV’s benefits in
both military and civilian applications, the full benefit of unmanned systems will
be utilized when they can operate autonomously. Today, UAVs can not only be
used in communications, meteorology, disaster monitoring, agriculture, geology,
transportation, and many other civilian fields but also have a wide application
in intelligent monitoring and surveillance, artificial interference, bait, military
communications, air defense suppression, fighter or cruise missile defense, air-to-air
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combat, and border patrols. Each component in UAVs is a high-technologically
complicated subsystem, and there is a strong dependence and coordination between
the various components. Therefore, two prominent features of a typical UAV are
intensive high-technology and “system of systems.” UAV not only plays an active
role in the civilian fields but also can adapt to a long, large-depth combat and even
can act as the air combat weapon platform to support five-dimensional integration
(land, sea, air, space, and electric) in future high-technological warfare. All these
are due to that UAV has the light weight, low cost, zero casualty, high mobility, and
good adaptability.

It has been explained that the ultimate goal in the development of autonomy
technology for UAVs is to replace the human pilot, which means build it into
a fully autonomous system. The special feature of an autonomous system is its
ability to be goal directed in unpredictable situations. This ability is a significant
improvement in capability compared to the capabilities of automatic systems. An
autonomous system is able to make a decision based on a set of rules and/or
limitations. It is able to determine what information is important in making a
decision. It is capable of a higher level of performance compared to the performance
of a system operating in a predetermined manner. Autonomous capabilities have
been enabled by advances in computer science (digital and analog), artificial
intelligence, cognitive and behavioral sciences, machine training and learning, and
communication technologies. In order to achieve these autonomous capabilities
in the highly dynamic unmanned system environment, improvement is essential
in advanced algorithms that provide robust decision-making capabilities (such as
machine reasoning and intelligence), automated integration of highly disparate
information, and the computational construct to handle data sets with imprecision,
incompleteness, contradiction, and uncertainty. The dynamic, self-organization,
coordination, strong robustness, and other characteristics emerged in the process
of bio-inspired intelligence can meet the requirements of UAVs under complicated
battlefield environments. So, bio-inspired intelligence may provide a promising
way to handle the complicated situation for UAVs, thus enhancing the autonomous
capability of UAVs.

1.3.2 Enhance Robustness and Flexibility

We have seen that complex colony-level structures and many aspects of the so-
called swarm intelligence of social insects can be understood in terms of interaction
networks and feedback loops among individuals. These are the basic elements
that allow the emergence of dynamic patterns at the colony level. These patterns
can be material or social and lead the colony to structure its environment and
solve problems. The most interesting properties of these self-organized patterns
are robustness (the ability for a system to perform without failure under a wide
range of conditions) and flexibility (the ability for a system to readily adapt to new,
different, or changing requirements). Robustness results from the multiplicity of
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interactions between individuals that belong to the colony. This ensures that, if one
of the interactions fails or if one of the insects misses its task, their failure is quickly
compensated by the other insects. This also promotes stability of produced patterns,
whereas individual behaviors are mostly probabilistic.

Flexibility of self-organized systems is well illustrated by the ability of social
insects to adapt their collective behaviors to changing environments and to various
colony sizes. These adaptations can occur without any change of the behavioral
rules at the individual level. For instance, in the case of the selection of the shortest
path in ants, a geometrical constraint applied on one of the two alternative paths
increases the time needed by the ants to come back to their nest through this path
and thus biases the choice toward the other path without any modification of the
insects’ behaviors.

But flexibility can also rely on the modulation of the individual behavioral rules
by some factors produced by the environment or by the activity of the colony. For
instance, the presence of an air flow modifies the probability for an ant to pick up
and drop corpses of dead ants. This subtle modification of behavioral probabilities
deeply modifies the shape of the piles resulting from the ants’ aggregating activity.
Last, the presence of environmental heterogeneities can modulate the behavior of an
insect and thus bias the behavior of the colony toward a particular solution.

All these behavioral modulations provide the opportunity for a colony to develop
a wide range of collective behaviors and can also be a powerful lever for evolution
to shape and optimize these behaviors in a highly adaptive way. Thanks to the
sensitivity of individuals to variations (either environmental or triggered by the
colony itself), the colony as a whole is able to perceive these changes and can thus
react appropriately in almost every situation.

To operate in complex and uncertain environments, the UAV must be able to
sense and understand the environment. This capability implies that the UAV must
be able to create a model of its surrounding world by conducting multisensor data
fusion (MDF) and converting these data into meaningful information that supports
a variety of decision-making processes. The perception system must be able to
perceive and infer the state of the environment from limited information and be able
to assess the intent of other agents in the environment (Sun and Duan 2012). This
understanding is needed to provide future UAVs with the flexibility and adaptability
for planning and executing missions in a complex, dynamic world.

While robustness in adaptability to environmental change is necessary, the
future need is to be able to adapt and learn from the operational environment
because every possible contingency cannot be programmed a priori. This adaptation
must happen fast enough to provide benefits within the adversary’s decision loop,
and the autonomy should be constructed so that these lessons can be shared
with other autonomous systems that have not yet encountered that situation. Yet
even in a hostile, dynamic, unstructured, and uncertain environment, this learning
must not adversely affect safety, reliability, or the ability to collaborate with the
operator or other autonomous systems. Although such capabilities are not currently
available, recent advancements in computational intelligence (especially neuro-
fuzzy systems), neuroscience, and cognition science may lead to the implementation
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of some of the most critical functionalities of heterogeneous, sensor net-based MDF
systems. Especially, we can learn something from the flexibility and robustness of
self-organized patterns in swarm intelligence.

1.3.3 Cooperative Control of Multiple UAVs

In recent years a significant shift of focus has occurred in the field of autonomous
UAVs as researchers have begun to investigate problems involving multiple rather
than single UAV. As a result of this focus on multiple UAV system, multiple
UAV coordination has received significant attention. Research involving multi-
ple UAV coordination is being undertaken from coordinated path planning for
multiple UAVs (Duan et al. 2009, 2013a) to the controller design of formation flight
and formation reconfiguration (Duan et al. 2008; Duan and Liu 2010a; Zhang et al.
2010) or to opening new application domains. This field is still in its infancy, and
many exciting new approaches are being explored for different applications.

Modern military systems are becoming increasingly sophisticated, with a mixture
of manned and unmanned vehicles being used in complex battlefield environments.
Traditional solutions involve a centralized resource allocation, followed by decen-
tralized execution. More modern battlespace management systems are considering
the use of cooperative operation of large collections of distributed vehicles, with
location computation, global communication connections, and decentralized control
actions. It is easy to understand that a group of UAVs is more capable than a single
UAV, since the workload can be divided among the group. The individual UAVs
can be equipped for different functions in the mission whether it be surveillance
and reconnaissance, strike, or battle damage assessment. Surveillance missions can
be completed quickly by covering more search area when the group is spread out.
They also offer redundancy to ensure that the mission is completed. If one UAV is
destroyed by the enemy or drops out because of mechanical failure, the rest of the
group can fill in and carry out the mission. By having more than one UAV assigned
to a mission, the probability of success dramatically increases.

One of the simplest cooperative control problems is that of formation flight: a set
of vehicle fly in a formation, specified by the relative locations of nearby vehicle.
This area has received considerable attention in the literature, both as a centralized
and as a decentralized problem. One way to approach the formation control problem
is to formulate it as an optimization, and another approach to solving this problem
is to consider the mechanical nature of the systems and to shape the dynamics of the
formation using potential fields. An important issue that arises in formation control
is that of string stability, in which disturbances grow as they propagate through a
system of vehicles.

As a result of this focus on multiple UAV system, multiple UAV coordination
has received significant attention. In particular multiple UAV resource allocation has
recently risen to prominence. In order to achieve the desired objective while meeting
various tactical/technical constraints, it has to be decided which UAV should
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execute which task, searching, classifying, attacking, or performing battle damage
assessment on potential targets. This is necessary even for relatively simple multiple
UAV teams, and the importance of resource allocation grows with the complexity,
size, and capacities of the team. The objective of resource allocation in multiple
UAVs can be divided into three classes, which are, respectively, maximizing target
value damage (TVD), minimizing UAV attrition, and minimizing white target (such
as church, school) damage, also called collateral damage. The selection of the proper
objective depends on the tactical mission, UAV target information, and the combat
situation. There are two types of resource allocation problems: static and dynamic.
Static resource allocation means that the assignment may be made at a specific time
such that all of the UAVs are committed, while in the dynamic case, resource may
be reallocated when the future variation in the battlefield is taken account of.

Take an example to explain the superiority of executing mission using multiple
cooperative UAVs. One of the applications that motivates the use of multiple
cooperative UAVs and poses several challenges to system engineers (Xargay et al.
2012), both from a theoretical and practical standpoint, is automatic road search
for improvised explosive device detection. The mission is initiated by a minimally
trained user who scribbles a path on a digital map, generating a precise continuous
ground track for the airborne sensors to follow. This ground track is then transmitted
over the network to a fleet of small tactical UAVs equipped with complementary
visual sensors. An optimization algorithm autonomously generates feasible flight
trajectories that maximizes road coverage and accounts for sensor capabilities, field
of view, resolution, and gimbal constraints, as well as intervehicle and ground-to-
air communication limitations. The fleet of UAVs then starts the cooperative road
search. During this phase, the information obtained from the sensors mounted on
board the UAVs is shared over the network and retrieved by remote users in near
real time. The explosive device detection can thus be done remotely on the ground,
based on in situ imagery data delivered over the network.

In this particular mission scenario, a robust cooperative control algorithm for
the fleet of UAVs can improve mission performance and provide reliable target
discrimination by effectively combining the capabilities of the onboard sensors
(Xargay et al. 2012). Flying in a coordinated fashion is what allows for the
overlap of the fields of view (FOVs) of multiple sensors to be maximized and
for full advantage to be taken of complementary sensor suites. This mission can
be completed in three basic steps. Initially, each vehicle is assigned a feasible
path with a desired speed profile. Together, the trajectories generated for all
vehicles satisfy the mission requirements and the vehicle dynamic constraints, while
ensuring collision-free maneuvers. Then, a path-following algorithm ensures that
every vehicle follows its own path independently of the temporal assignments of
the mission. Finally, the vehicles coordinate their positions along the paths with the
remaining vehicles engaged in the mission by exchanging coordination information
over the communication network. These three steps are accomplished by judiciously
decoupling space and time in the formulation of the trajectory-generation, path-
following, and time-coordination problems and by relying on the existing inner-loop
controllers for nominal control of the autonomous systems.
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As we have explained, swarm strengths are in executing reactive tasks, executing
simple tasks, using multiple similar agents, and robustness to attrition. In addition,
emergent behavior stability relies on imperfect sensing, which feeds into the
strengths of inexpensive sensors. As history shows, simple autonomous systems
have successfully used emergent behavior over millions of years to ensure their
survival and proliferation. It is easy to draw the conclusion that if one was designing
a distributed system of simple autonomous entities, one should look to emergent
behavior as the autonomous control method of choice.

Emergent behaviors have very attractive attributes for inclusion into autonomous
UAVs:

1. Inherently decentralized: It eliminates the need for any centralized command,
an attribute that is desired for some of our distributed UAV control system
development.

2. Inherently implicit: It eliminates any requirement to explicitly control the
individuals.

3. Inherently resilient: Natural history shows that it has ensured the survival of
millions of species over millions of years. It is tolerant to imperfection and
variance among individuals.

4. Inherently scalable: Emergent systems are very robust to the addition and
subtraction of members, so such systems could work well in high-risk situations.

Of course, emergent behavior has its drawbacks:

1. Results are probabilistic. One cannot say exactly when an outcome will happen,
just that there is a probability distribution that it will occur within some interval
which depends on the number of individuals, their micro behaviors, and the
environment.

2. Execution is nondeterministic. One cannot know exactly how each individual
will do something or how the particular individual’s contribution will contribute
to the whole, just that the collective will emerge the behavior “somehow.”

3. Chaotic behaviors are possible. Depending on the micro behaviors, results could
be chaotic (small changes in input result in huge differences in output).

4. Design is problematic. Nonlinear (possibly chaotic) and nondeterministic inter-
acting behaviors relying on environmental aspects cannot be predicted, only
observed. Design of such systems is by trial and error (evolution).

1.3.4 Cooperative Control of Heterogeneous Vehicle Groups

UAVs can be used to cover large areas searching for targets. However, sensors
on UAVs are typically limited in their accuracy of localization of targets on the
ground. On the other hand, unmanned ground vehicles (UGVs) can be deployed
to accurately locate ground targets, but they have the disadvantage of not being
able to move rapidly or see through such obstacles as buildings or fences. Typical
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applications include air- and ground-based mapping of predetermined areas for tasks
such as surveillance, target detection, tracking, and search and rescue operations.
The use of multiple collaborative vehicles is ideally suited for such tasks. And
heterogeneous cooperative techniques can widen the application fields of unmanned
aerial or ground vehicles and enhance the effectiveness of implementing detection,
search, and rescue tasks (Duan and Liu 2010b; Duan et al. 2011a).

Consider the task of reliably detecting and localizing an unknown number of
features within a prescribed search area. In this setting, it is highly desired to fuse
information from all available sources. It is also beneficial to proactively focus
the attention of resources, minimizing the uncertainty in detection and localization.
Deploying teams of vehicles working toward this common objective offers several
advantages. A key aspect of this task is the synergistic integration of aerial and
ground vehicles that exhibit complementary capabilities and characteristics. Fixed-
wing aircraft offer broad field of view and rapid coverage of search areas. However,
minimum limits on operating airspeed and altitude, combined with attitude uncer-
tainty, place a lower limit on their ability to resolve and localize ground features.
Ground vehicles, on the other hand, offer high-resolution sensing over relatively
short ranges, with the disadvantage of obscured views and slow coverage. The use
of aerial- and ground-based sensor platforms is closely related to other efforts to
exploit the truly complementary capabilities of air and ground vehicles.

Automatic target recognition is one of the key tasks for the reconnaissance
UAVs or UGVs. There are some key problems to tackle with, such as the number
of reconnaissance UAVs or UGVs used in a number of interactions, the network
delay for central positioning, and the perceiving ability of attack systems for
positioning centers. Dasgupta (2008) mainly focused on the coordination aspects
between UAVs to efficiently decide how they are to act by using a swarming
mechanism and described algorithms for the different operations performed by the
UAVs in the system and for different swarming strategies, which are embedded
within software agents located on the UAVs. Grocholsky et al. (2006) described
the implementation of a decentralized architecture for autonomous teams of UAVs
and UGVs engaged in active perception and also proposed a theoretical framework
based on an established approach to the underlying sensor fusion problem. This
provided transparent integration of information from heterogeneous sources, and
the approach was applied to missions involving searching for and tracking multiple
ground targets.

As safety and security has become a critical problem worldwide, aerial video
surveillance (AVS) systems based on UAV or UGV have now been playing
more and more important roles in not only civil but also military applications.
Active vision is a kind of intelligent visual information acquisition mechanism.
It is based on actively changing the sensor orientation and location to acquire
visual information. Fregene et al. (2005) developed a system- and control-oriented
intelligent agent framework called the hybrid intelligent control agent (HICA),
as well as its composition into specific kinds of multi-agent systems. HICA is
essentially developed around a hybrid control system core so that knowledge-based
planning and coordination can be integrated with verified hybrid control primitives
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to achieve the coordinated control of multiple multimode dynamic systems. The
scheme was successfully applied to the control of teams of UAVs and UGVs
engaged in a pursuit-evasion war game. Ariyur and Fregene (2008) proposed a
generally applicable method for the tracking of UGVs by UAVs. The beauty of
this approach is that the only information provided to the UAV guidance system
was waypoints required to establish and maintain track of the target. Therefore, no
modification of any sort was required on the UAV’s guidance and control systems.
As long as the vehicle could follow simple waypoint commands in a closed loop, it
would work with the proposed method. Another advantage is that it works very well
for UAVs that have sensors of fixed attitude and geometry.

1.4 Outline of the Monograph

This monograph is dedicated to the bio-inspired computation in UAVs, which is
divided into 8 chapters (Fig. 1.7). Chapter 1 discusses the development of UAVs and
emphasizes the role bio-inspired intelligence plays in achieving higher autonomous
capability. Chapter 2 introduces four representative bio-inspired algorithms, which
are ACO, PSO, ABC, and DE, respectively. The biological inspiration, principle,
and implementation procedures of the algorithms are explained in detail. Then in
Chap. 3 the parameter identification of flight control system is discussed on the
basis of modeling for the UAV. Then a specific kind of controller design problem
involving the pendulum-like oscillation in the hover and stare state for a micro aerial
vehicle (MAV) is handled.

Chapter 4 deals with path-planning problem using bio-inspired algorithms, for
both single UAV and multiple UAVs, both in the 2-dimensional scenario and
3-dimensional scenario. This chapter mainly contains three sections. First, a chaotic
ABC approach is proposed for two-dimensional path planning. Then path planning
is extended to three-dimensional scenario through an improved ACO added a path
smoothing strategy in Sect. 4.4. In Sect. 4.5 coordinated path replanning for multiple
UAVs is dealt with by taking advantage of Max–Min adaptive ACO.

Chapter 5 deals with three significant problems in the formation flight problem,
which are, respectively, formation control, close formation (tight formation), and
formation configuration. First, a chaotic PSO-based nonlinear dual-mode receding
horizon control (RHC) method is proposed for solving the constrained nonlinear
systems. Then a novel type of control strategy of using hybrid RHC and DE
algorithm is proposed based on the nonlinear model of multiple UAVs close
formation. Moreover, based on the Markov chain model, the convergence of DE
is proved. The formation configuration, which is about diving multiple UAVs to
form a new flying formation state, is explained in detail using the RHC-based DE
in Sect. 5.4. This global control problem is transformed into several online local
optimization problems at a series of receding horizons, while the DE algorithm is
adopted to optimize control sequences at each receding horizon.
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Fig. 1.7 Outline of the monograph

Chapter 6 discusses multiple UAV/UGV heterogeneous cooperation and cooper-
ative search of multiple UAVs based on DE. In multiple UAV/UGV heterogeneous
control, two key issues are considered in multiple UGV subgroups, which are
Reynolds rule and Virtual Leader (VL). PSO based RHC is proposed for multiple

http://dx.doi.org/10.1007/978-3-642-41196-0_6


32 1 Introduction

UGV flocking, and velocity vector control approach is adopted for multiple UAV
flocking. Then, multiple UAV and UGV heterogeneous tracking can be achieved by
these two approaches. Besides, cooperative search with multiple UAVs is dealt with
using receding horizon control based on DE.

Chapter 7 describes bio-inspired algorithms involving vision-based surveillance
and navigation. Chapter 8 discusses the opportunities for the development of UAVs
and points out the potential challenges for achieving higher autonomous capability.
By incorporating the bio-inspired intelligence into the UAS, it is possible to enhance
the ability to understand and adapt to the environment and the ability to cooperate
with other autonomous systems.
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Chapter 2
Bio-inspired Computation Algorithms

Pei Li and Haibin Duan

Abstract Bio-inspired computation is the use of computers to model the living
phenomena and simultaneously the study of life to improve the usage of computers.
Swarm behaviors in animal groups such as bird flocks, bees, ants, fish schools, and
sheep herds, as well as insects like mosquitoes, ants, and bees, often exhibit incred-
ible abilities to solve complex problems that seem far beyond their capabilities.
This chapter mainly focuses on the biological inspiration, principle, and implemen-
tation procedures of four popular bio-inspired computation algorithms including
ant colony optimization (ACO), particle swarm optimization (PSO), artificial bee
colony (ABC), and differential evolution (DE). Special emphasis has been laid on
how the biological behavior can be transferred into a technical algorithm. Moreover,
description of algorithms in more general terms and the most successful variants
of these algorithms are provided. Finally, a brief introduction to other bio-inspired
computation algorithms such as glowworm swarm optimization (GSM), bacteria
foraging optimization (BFO), bat-inspired algorithm (BA) is presented.

2.1 Introduction

Bio-inspired computation, short for biologically inspired computation, is a way of
developing computer systems by taking ideas from the biological world. It is a field
of study that loosely knits together subfields related to the topics of connectionism,
social behavior, and emergence. Briefly put, it is the use of computers to model
the living phenomena and simultaneously the study of life to improve the usage
of computers. Bio-inspired computation in an interdiscipline composed of many
different fields, such as biology, computer science, physics, mathematics, and
genetics. As we have known, biological systems have many advantages over
computer systems, as they are able to solve much more complex problems beyond
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the capability of the contemporary computer with far less energy and much higher
robustness. Many of the ideas taken from natural processes have been applied to
machine learning, leading to new developments in artificial intelligence.

Bio-inspired computation is a major subset of natural computation, which is
different from traditional artificial intelligence (AI) in that it often takes a more
evolutionary approach to learning. In traditional AI, as the creator, programmers
give their program some degree of intelligence in the process of programming.
However, bio-inspired techniques often involve the method of specifying a set of
simple rules, a set of simple organisms which adhere to those rules, and a method
of iteratively applying those rules. In other words, bio-inspired computation takes
a more bottom-up, decentralized approach. It is a new approach to enable the
intelligence, as the constructed simple system is able to involve into a more complex
one. Complexity gets built upon complexity until the end result is something
markedly complex and quite often completely counterintuitive from what the
original rules would be expected to produce.

By simulating the collective behavior of decentralized, self-organized system
from nature, many optimization algorithms have been developed, which could
be called as either swarm intelligence or bio-inspired computation from different
perspectives. The term swarm intelligence refers to a kind of problem-solving
ability that emerges in the interactions among the individuals that follow a simple
rule. The concept of a swarm means multiplicity, stochasticity, randomness, and
messiness, and the concept of intelligence suggests that the problem-solving method
is somehow successful. Swarm behavior can be seen in bird flocks, fish schools, as
well as in insects like mosquitoes and midges. Many animal groups such as fish
schools and bird flocks clearly display structural order, with the behavior of the
organisms so integrated that even though they may change shape and direction, they
appear to move as a single coherent entity. Each individual in the group attempts
to maintain a minimum distance with other members at all times. This rule has
the highest priority and corresponds to a frequently observed behavior of animals
in nature. If individuals are not performing an avoidance maneuver, they tend to
avoid being isolated from others and to align themselves with their neighbors. A
swarm can be viewed as a group of agents cooperating to achieve some purposeful
behavior and achieve some goal. This collective intelligence seems to emerge from
large groups composed of relatively simple agents. The agents use simple local rules
to govern their actions and via the interactions of the entire group, then the swarm
achieves its objectives eventually.

There is no supervisor in the colony, which means that there is no central control
in the swarm and each individual has a stochastic behavior by taking advantage of
her perception in the environment and her neighborhood. The agents use simple
local rules to govern their actions, and via the interactions of the entire group, the
swarm achieves its objectives. Note that the local rules have no relation to the global
pattern. Interactions among the members through the network lead to the emergence
behavior, which make the colony be able to cope with complicated situations
and to find solutions to complex problems, which is called self-organization by
researchers. Self-organization is a crucial feature of a swarm system which results to
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global-level (macroscopic level) response by means of low-level (microscopic level)
interactions. Bonabeau et al. (1999) interpreted the self-organization in swarms
through four characteristics, which are respectively positive feedback, negative
feedback, fluctuations, and multiple interactions. Positive feedback is a simple
behavioral “rules of thumb” that promotes the creation of convenient structures.
Recruitment and reinforcement such as trail laying and following in some ant
species or dances in bees can be shown as examples of positive feedback. Then
we have a negative feedback that counterbalances positive feedback and helps to
stabilize the collective pattern. In order to avoid the saturation which might occur
in terms of available foragers, food source exhaustion, crowding, or competition
at the food sources, a negative feedback mechanism is needed. Fluctuations such as
random walks, errors, and random task switching among swarm individuals are vital
for creativity and innovation. Randomness is often crucial for emergent structures
since it enables the discovery of new solutions. Multiple interactions occur since
agents in the swarm use the information coming from the other agents so that the
information and data spread to all network.

Millonas (1994) also defined five principles to be satisfied by a swarm to have an
intelligent behavior:

1. The proximity principle: The swarm should be able to do simple space and time
computations.

2. The quality principle: The swarm should be able to respond to quality factors in
the environment such as the quality of foodstuffs or safety of location.

3. The principle of diverse response: The swarm should not allocate all of its
resources along excessively narrow channels, and it should distribute resources
into many nodes.

4. The principle of stability: The swarm should not change its mode of behavior
upon every fluctuation of the environment.

5. The principle of adaptability: The swarm must be able to change behavior mode
when the investment in energy is worth the computational price.

Ethologists have modeled the behavior of a swarm with the features described
above in both low level and global level (Crina and Ajith 2006). Recently
researchers have been inspired by those models, and they have provided novel
problem-solving techniques based on swarm intelligence for solving difficult real-
world problems such as network routing, clustering, data mining, job scheduling,
and bioinformatics, to name just a few. In the last two decades, especially two
approaches based on ant colony described by Colorni et al. (1991) and on fish
schooling and bird flocking introduced by Kennedy and Eberhart (1995) have
attracted the interest of researchers all over the world. Both approaches have been
studied by many researchers, and their variants have been introduced and applied
for solving several problems in different areas. In this chapter, we focus on four
popular bio-inspired optimization algorithms, which are, respectively, ant colony
optimization (ACO), particle swarm optimization (PSO), artificial bee colony
(ABC), and differential evolution (DE).
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2.2 Ant Colony Optimization

ACO is a metaheuristic for solving hard combinatorial optimization problems (Duan
2005, 2010; Duan et al. 2011). The inspiring source of ACO is the pheromone
trail laying and following behavior of real ants, which use pheromones as a
communication medium (Fig. 2.1). In analogy to the biological example, ACO is
based on indirect communication within a colony of simple agents, called (artificial)
ants, mediated by (artificial) pheromone trails. The pheromone trails in ACO serve
as a distributed, numerical information, which the ants use to probabilistically
construct solutions to the problem being solved and which the ants adapt during
the algorithm’s execution to reflect their search experience.

The first example of such an algorithm is ant system (AS), which was proposed
using as example application the well-known traveling salesman problem (TSP).
Despite encouraging initial results, AS could not compete with state-of-the-art
algorithms for the TSP. Nevertheless, it had the important role of stimulating further
research both on algorithmic variants, which obtain much better computational
performance, and on applications to a large variety of different problems. In
fact, there exist now a considerable number of applications of such algorithms
where world-class performance is obtained. Examples are applications of ACO
algorithms to problems such as sequential ordering, scheduling, assembly line
balancing, probabilistic TSP, 2D-HP protein folding, DNA sequencing, protein–
ligand docking, and packet-switched routing in Internet-like networks. The ACO
metaheuristic provides a common framework for the existing applications and
algorithmic variants. Algorithms which follow the ACO metaheuristic are called
ACO algorithms.

Fig. 2.1 Schematic diagram of ACO shows that ant colony has succeeded in finding the shortest
route
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The (artificial) ants in ACO implement a randomized construction heuristic
which makes probabilistic decisions as a function of artificial pheromone trails and
possibly available heuristic information based on the input data of the problem to be
solved. As such, ACO can be interpreted as an extension of traditional construction
heuristics, which are readily available for many combinatorial optimization prob-
lems. Yet, an important difference with construction heuristics is the adaptation of
the pheromone trails during algorithm execution to take into account the cumulated
search experience.

2.2.1 Biological Inspiration

Marco Dorigo and colleagues introduced the first ACO algorithm in the early
1990s (Dorigo 1992; Dorigo et al. 1996). The development of these algorithms
was inspired by the observation of ant colonies. Ants are social insects. They live
in colonies, and their behavior is governed by the goal of colony survival rather
than being focused on the survival of individuals. The behavior that provided the
inspiration for ACO is the ants’ foraging behavior and, in particular, how ants can
find shortest paths between food sources and their nest. When searching for food,
ants initially explore the area surrounding their nest in a random manner. While
moving, ants leave a chemical pheromone trail on the ground. Ants can smell
pheromone. When choosing their way, they tend to choose, in probability, paths
marked by strong pheromone concentrations. As soon as an ant finds a food source,
it evaluates the quantity and the quality of the food and carries some of it back to
the nest. During the return trip, the quantity of pheromone that an ant leaves on the
ground may depend on the quantity and quality of the food. The pheromone trails
will guide other ants to the food source. It has been shown by Deneubourg et al.
(1990) that the indirect communication between the ants via pheromone trails—
known as stigmergy—enables them to find shortest paths between their nest and
food sources. This is explained in an idealized setting in Fig. 2.2.

As a first step towards an algorithm for discrete optimization, we present in
the following a discretized and simplified model of the phenomenon explained in
Fig. 2.2. After presenting the model, we will outline the differences between the
model and the behavior of real ants. Our model consists of a graph GD (V,E),
where V consists of two nodes, namely, vs (representing the nest of the ants) and
vd (representing the food source). Furthermore, E consists of two links, namely, e1

and e2, between vs and vd. To e1 we assign a length of l1 and to e2 a length of l2 such
that l2> l1. In other words, e1 represents the short path between vs and vd, and e2

represents the long path. Real ants deposit pheromone on the paths on which they
move. Thus, the chemical pheromone trails are modeled as follows. We introduce
an artificial pheromone value � i for each of the two links ei, iD 1, 2. Such a value
indicates the strength of the pheromone trail on the corresponding path. Finally, we
introduce na artificial ants. Each ant behaves as follows: starting from vs (i.e., the
nest), an ant chooses with probability between piD � i/(�1C �2) path e1 and path e2
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a b

c d

Fig. 2.2 An experimental setting that demonstrates the shortest pathfinding capability of ant
colonies

for reaching the food source vd. Obviously, if �1>�2, the probability of choosing
e1 is higher and vice versa. For returning from vd to vs, an ant uses the same path
as it chose to reach vd, and it changes the artificial pheromone value associated to
the used edge. More in detail, having chosen edge ei, an ant changes the artificial
pheromone value � i as follows:

�i  �i C
Q

li
(2.1)

where the positive constant Q is a parameter of the model. In other words, the
amount of artificial pheromone that is added depends on the length of the chosen
path: the shorter the path, the higher the amount of added pheromone. The foraging
of an ant colony is in this model iteratively simulated as follows: at each step (or
iteration), all the ants are initially placed in node vs. Then, each ant moves from
vs to vd as outlined above. As mentioned in the caption of Fig. 2.2d, in nature
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the deposited pheromone is subject to an evaporation over time. We simulate this
pheromone evaporation in the artificial model as follows:

�i  .1 � �/ �i ; i D 1; 2 (2.2)

The parameter �2 (0, 1] is a parameter that regulates the pheromone evaporation.
Finally, all ants conduct their return trip and reinforce their chosen path as outlined
above.

In the beginning, all ants are in the nest. There is no pheromone on both paths.
Then the foraging starts. In probability, 50 % of ants take the short path, and the
other 50 % take the long path to the food source. The ants that have taken the
shorter path would arrive earlier at the food source. Therefore, when returning,
the probability to take again the short path is higher. The pheromone trail on the
short path receives a stronger reinforcement to take this path grows. Finally, due
to the evaporation of the pheromone on the long path, the whole colony will, in
probability, use the short path in probability.

2.2.2 Principle of Ant Colony Optimization

2.2.2.1 The First ACO Algorithm: Ant System

In AS each ant is initially put on a randomly chosen city and has a memory which
stores the partial solution it has constructed so far (initially the memory contains
only the start city) (Dorigo and Stützle 2003). Starting from its start city, an ant
iteratively moves from city to city. When being at a city i, an ant k chooses to go to
a city j with a probability given by

pkij .t/ D

8
ˆ̂
<̂

ˆ̂
:̂

�
�ij .t/

�˛�
�ij
�ˇ

X

k2al lowedk

Œ�ik.t/�
˛Œ�ik�

ˇ
if j 2 allowedk

0 otherwise

(2.3)

where allowedkDfN � tabukg, ˛ and ˇ are parameters that control the relative
importance of trail versus visibility, �ij is the heuristic desirability, and �ijD 1/dij

where dij is the distance between city i and city j and � ij is the amount of pheromone
trail on edge (i,j). If ˛D 0, the selection probabilities are proportional to [�]ˇ , and
the closest cities will more likely be selected: in this case AS corresponds to a
classical stochastic greedy algorithm (with multiple starting points since ants are
initially randomly distributed on the cities). If ˇD 0, only pheromone amplification
is at work: this will lead to the rapid emergence of a stagnation situation with the
corresponding generation of tours which, in general, are strongly suboptimal.
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The solution construction ends after each ant has completed a tour. Next, the
pheromone trails are updated. In AS this is done by first lowering the pheromone
trails by a constant factor (this is pheromone evaporation) and then allowing each
ant to deposit pheromone on the arcs that belong to its tour:

�ij .t C n/ D .1 � �/ � �ij .t/C��ij (2.4)

��ij D

mX

kD1

��kij (2.5)

where 1� �f�� (0,1)g represents the evaporation of trail between time t and tC n.
The parameter � is used to avoid unlimited accumulation of the pheromone trails
and enables the algorithm to “forget” previously done bad decisions. Where �� ij

k

is the quantity of per unit length of pheromone trail laid on edge (i,j) by the kth ant
between time t and tC n. In the popular ant-cycle model, it is given by

��kij D

(
Q

Lk
if k � th ant uses .i; j / in its tour

0 otherwise
(2.6)

where Q is a constant and Lk is the tour length of the kth ant.

2.2.2.2 Framework of the ACO Metaheuristic

After initialization, the metaheuristic iterates over three phases: construct ant
solutions, apply local search, and update pheromones, which are described in detail
as follows:

Construct ant solutions: A set of m artificial ants constructs solutions from
elements of a finite set of available solution components CDfcijg, iD 1, : : : , n,
and jD 1, : : : , jDij. A solution construction starts from an empty partial solution
spD∅. At each construction step, the partial solution sp is extended by adding a
feasible solution component from the set N .sp/ � C, which is defined as the set
of components that can be added to the current partial solution sp without violating
any of the constraints in �. The process of constructing solutions can be regarded
as a walk on the construction graph GCD (V,E).

The choice of a solution component from N(sp) is guided by a stochastic
mechanism, which is biased by the pheromone associated with each of the elements
of N(sp). The rule for the stochastic choice of solution components varies across
different ACO algorithms, but, in all of them, it is inspired by the model of the
behavior of real ants given in (2.1).

Apply local search: Once solutions have been constructed and before updating the
pheromone, it is common to improve the solutions obtained by the ants through a
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local search. This phase, which is highly problem specific, is optional although it is
usually included in state-of-the-art ACO algorithms.

Update pheromones: The aim of the pheromone update is to increase the
pheromone values associated with good or promising solutions and to decrease
those that are associated with bad ones. Usually, this is achieved by decreasing
all the pheromone values through pheromone evaporation and by increasing the
pheromone levels associated with a chosen set of good solutions.

2.2.3 Ant System and Its Extensions

Even though the original AS algorithm achieved encouraging results for the TSP
problem, it was found to be inferior to state-of-the-art algorithms for the TSP as
well as for other combinatorial optimization problems. Therefore, several extensions
and improvements of the original AS algorithm were introduced over the years,
which show better performance than AS when applied to many optimization
problems, such as Elitist AS (EAS) (Dorigo 1992), rank-based Ant System (ASrank)
(Bullnheimer et al. 1999), MAX–MIN Ant System (MMAS) (Stutzle and Hoos
1997), and Ant Colony System (ACS) (Dorigo and Gambardella 1997).

A first improvement over AS was obtained by introducing the elitist strategy,
which is called EAS. In this variant, the pheromone values are updated using all
the solutions that were generated in the respective iteration and the best-so-far
solution. It consists in giving the best tour since the start of the algorithm (called
Tgb, where gb stays for global best) a strong additional weight. In practice, each
time the pheromone trails are updated, those belonging to the edges of the global-
best tour get an additional amount of pheromone. For these edges (2.6) becomes

��
gb
ij D

(
e

Lgb.t/
if arc .i; j / 2 T gb

0 otherwise
(2.7)

The arcs of Tgb are therefore reinforced with a quantity of e � 1/Lgb, where Lgb is
the length of Tgb and e is a positive integer.

Another improvement over AS is the ASrank proposed by Bullnheimer et al.
(1999), which is an extension of the elitist strategy to some extent. In this approach,
the best-so-far solution has the highest influence on the pheromone update at each
iteration, while a selection of the best solutions constructed at that current iteration
influences the update in accordance with their rankings. It sorts the ants according
to the lengths of the tours they generated, and, after each tour construction phase,
only the (! � 1) best ants and the global-best ant are allowed to deposit pheromone.
The rth best ant of the colony contributes to the pheromone update with a weight
given by maxf0,! � rg, while the global-best tour reinforces the pheromone trails
with weight !. Then (2.4) and (2.5) becomes therefore
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�ij .t C n/ D .1 � �/ � �ij .t/C

!X

rD1

.! � r/ � 4�rij .t/C ! � 4�
gb
ij .t/ (2.8)

where ��
r
ij (t)D 1/Lr(t) and ��

gb
ij (t)D 1/Lgb.

As one of the most successful ACO variants, MMAS introduces upper and lower
bounds to the values of the pheromone trails, as well as a different initialization of
their values. In MMAS, the allowed range of the pheromone trail strength is limited
to the interval [�min,�max], that is, �min� � ij� �max, 8 � ij, and the pheromone trails
are initialized to the upper trail limit, which allows a higher exploration at the start
of the algorithm. The value of this bound is updated each time a new best-so-far
solution is found by the algorithm. Depending on some convergence measure, at
each iteration, either the iteration-best update or the global-best update rule is used
for updating the pheromone values. At the start of the algorithm, the iteration-best
update rule is used more often, while during the run of the algorithm, the frequency
with which the global-best update rule is used increases.

ACS, which was introduced by Dorigo and Gambardella (1997), differs from
the original AS algorithm in more aspects than just in the pheromone update. In
this approach, the importance of exploitation of information collected by previous
ants with respect to exploration of the search space is increased, which is achieved
via two mechanisms. ACS improves over AS by increasing the importance of
exploitation of information collected by previous ants with respect to exploration of
the search space. This is achieved via two mechanisms. First, a strong elitist strategy
is used to update pheromone trails, which means only the ant that has produced the
best solution is allowed to update pheromone trails, according to a pheromone trail
update rule similar to that used in AS:

�ij .t C n/ D .1 � �/ � �ij .t/C � � �
best
ij .t/ (2.9)

The best ant can be the iteration-best ant, that is, the best in the current iteration,
or the global-best ant, that is, the ant that made the best tour from the start of the
trial.

Second, ants choose the next city to move to using a so-called pseudorandom
proportional rule: with probability q0, they move to the city j for which the
product between pheromone trail and heuristic information is maximum, that is,

j D arg maxj2Nk
i

n
�ij .t/ � �

ˇ
ij

o
, while with probability 1� q0, they operate a biased

exploration in which the probability pij
k(t) is the same as in AS. When the parameter

q0 is set to a value close to 1, as it is the case in most ACS applications, exploitation
is favored over exploration. It is obvious that, when q0D 0, the probabilistic decision
rule becomes the same as in AS.

Besides, ACS differs from previous ACO algorithms also because ants update
the pheromone trails while building solutions as that in ant quantity and in ant
density. In practice ACS ants “eat” some of the pheromone trail on the edges
they visit. This operation favors exploitation, counterbalancing this way the other
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two abovementioned modifications that strongly favor exploitation of the collected
knowledge about the problem. In this way, the probability that a same path is used
by all the ants is decreased. In other words, it helps to avoid to be trapped into
local optimum. ACS has been made more performing over other variants also by
the addition of local search routines that take the solution generated by ants to their
local optimum just before the pheromone update.

Although retaining some of the original biological inspiration, they are less and
less biologically inspired and more and more motivated by the need of making
ACO algorithms competitive with state-of-the-art algorithms or improve their
performance. Nevertheless, many aspects of the original AS remain, such as the
need for a colony, the role of autocatalysis, the cooperative behavior mediated
by artificial pheromone trails, the probabilistic construction of solutions biased by
artificial pheromone trails and local heuristic information, the pheromone updating
guided by solution quality, and the evaporation of pheromone trail, which is the
same in all ACO algorithms. For more information about the variants of ACO
such as hypercube framework (HCF), reader can refer to Dorigo and Blum (2005).
Ant algorithms are receiving increasing attention in the scientific community as a
promising novel approach to distributed control and optimization.

2.3 Particle Swarm Optimization

The initial ideas on particle swarms of Kennedy (a social psychologist) and
Eberhart (an electrical engineer) were essentially aimed at producing computational
intelligence by exploiting simple analogues of social interaction (Kennedy and
Eberhart 1995) rather than purely individual cognitive abilities. The first simulations
were influenced by Heppner and Grenander’s work (Heppner and Grenander 1990)
and involved analogues of bird flocks searching for corn. These soon developed into
a powerful optimization method-PSO.

2.3.1 Biological Inspiration

A number of scientists have created computer simulations of various interpre-
tations of the movement of organisms in a bird flock or fish school. Notably,
Reynolds (1987) and Heppner and Grenander (1990) presented simulations of bird
flocking. Reynolds was intrigued by the aesthetics of bird-flocking choreography,
and Heppner, a zoologist, was interested in discovering the underlying rules that
enabled large numbers of birds to flock synchronously, often changing direction
suddenly, scattering and regrouping, etc. Both of these scientists had the insight
that local processes, such as those modeled by cellular automata, might underlie the
unpredictable group dynamics of bird social behavior. Both models relied heavily on
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a b c

Fig. 2.3 Boid model. (a) Separation. Each agent tries to move away from its neighbors if they
are too close. (b) Alignment. Each agent steers towards the average heading of its neighbors. (c)
Cohesion. Each agent tries to go towards the average position of its neighbors

manipulation of interindividual distances; that is, the synchrony of flocking behavior
was thought to be a function of birds’ efforts to maintain an optimum distance
between themselves and their neighbors (Fig. 2.3).

It has been believed that social sharing of information among conspeciates offers
an evolutionary advantage: this hypothesis was fundamental to the development
of PSO. One motive for developing the simulation was to model human social
behavior, which is of course not identical to fish schooling or bird flocking. The
important difference is its abstractness. Birds and fish adjust their physical move-
ment to avoid predators, seek food and mates, optimize environmental parameters
such as temperature, etc. Humans adjust not only physical movement but cognitive
or experiential variables as well. We do not usually walk in step and tum in unison
(though some fascinating research in human conformity shows that we are capable
of it); rather, we tend to adjust our beliefs and attitudes to conform with those of our
social peers.

This is a major distinction in terms of contriving a computer simulation, for at
least one obvious reason: collision. Two individuals can hold identical attitudes
and beliefs without banging together, but two birds cannot occupy the same
position in space without colliding. It seems reasonable, in discussing human social
behavior, to map the concept of change into the bird/fish analogue of movement.
This is consistent with the classic Aristotelian view of qualitative and quantitative
change as types of movement. Thus, besides moving through three-dimensional
physical space and avoiding collisions, humans change in abstract multidimensional
space, collision-free. Physical space of course affects informational inputs, but it is
arguably a trivial component of psychological experience. Humans learn to avoid
physical collision by an early age, but navigation of n-dimensional psychosocial
space requires decades of practice, and many of us never seem to acquire quite all
the skills we need.
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Fig. 2.4 Schematic diagram of PSO © [2002] IEEE (Reprinted, with permission, from Duan and
Liu (2010))

2.3.2 Principle of Particle Swarm Optimization

2.3.2.1 The Framework of PSO

In PSO, a number of simple entities, the particles, are placed in the search space of
some problem or function, and each evaluates the objective function at its current
location. Each particle then determines its movement through the search space by
combining some aspect of the history of its own current and best (best fitness)
locations with those of one or more members of the swarm, with some random
perturbations (Duan and Xing 2009; Duan and Liu 2010; Duan et al. 2011). The
next iteration takes place after all particles have been moved. Eventually the swarm
as a whole, like a flock of birds collectively foraging for food, is likely to move
close to an optimum of the fitness function. Each individual in the particle swarm
is composed of three D-dimensional vectors, where D is the dimensionality of the
search space. These are the current position xi, the previous best position pi, and the
velocity vi. Shi and Eberhart (1998) firstly introduced the inertia weights w into the
basic PSO model, by adjusting w to improve the performances of the PSO algorithm.
Figure 2.4 describes the schematic diagram of PSO.

2.3.2.2 Original Version

The current position xi can be considered as a set of coordinates describing a point
in space. At each iteration of the algorithm, the current position is evaluated as a
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problem solution. If that position is better than any that has been found so far, then
the coordinates are stored in the second vector, pi. The value of the best function
result so far is stored in a variable that can be called pbesti (for “previous best”),
for comparison on later iterations. The objective, of course, is to keep finding better
positions and updating pi and pbesti. New points are chosen by adding vi coordinates
to xi, and the algorithm operates by adjusting vi, which can effectively be seen as a
step size (Poli et al. 2007).

The particle swarm is more than just a collection of particles. A particle by
itself has almost no power to solve any problem; progress occurs only when the
particles interact. Problem solving is a population-wide phenomenon, emerging
from the individual behaviors of the particles through their interactions. In any case,
populations are organized according to some sort of communication structure or
topology, often thought of as a social network. The topology typically consists of
bidirectional edges connecting pairs of particles, so that if j is in i’s neighborhood, i
is also in j’s. Each particle communicates with some other particles and is affected
by the best point found by any member of its topological neighborhood. This is
just the vector pi for that best neighbor, which we will denote with pg. The potential
kinds of population “social networks” are hugely varied, but in practice certain types
have been used more frequently:

vi .t C 1/ D vi .t /C c1 � rand1 .xi . t /�pi . t //C c2 � rand2 .xi . t
�
�pg

�
t //

xi .t C 1/ D xi .t /C vi .t C 1/ (2.10)

where each individual particle i has the following properties: a position vector in
search space xi(t) at time t, a velocity vector vi(t) at time t, and a personal best
position in search space pi(t). The personal best position pi(t) corresponds to the
position in search space where particle i had the minimum fitness value pbesti
determined by the objective function (in a minimization problem). The global-best
position denoted by pg(t) represents the position yielding the lowest error among
all the pi(t), which has the best fitness value gbest among all the particles. Two
pseudorandom sequences, rand1�(0, 1) and rand2�(0, 1) are used to effect the
stochastic algorithm nature.

The PSO algorithm consists of repeated application of (2.10). In theory, particles
of a swarm may benefit from the prior discoveries and experiences of all the
members of a swarm when foraging. The key point of PSO is that particles in the
swarm share information with each other, which offers some sort of evolutionary
advantage. Therefore, due to the simple concept, easy implementation, and quick
convergence, PSO has gained much attention and wide applications in solving
continuous nonlinear optimization problems. The process for implementing the
original PSO is described as follows:

Step 1 Initialize a population array of particles with random positions and velocities
on D dimensions in the search space.

Step 2 For each particle, evaluate the desired optimization fitness function in D
variables.
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Step 3 Compare particle’s fitness evaluation with its pbesti. If current value is better
than pbesti, then set pbesti equal to the current value and pi(t) equal to the current
location xi(t) in the D-dimensional space.

Step 4 Identify the particle in the neighborhood with the best success so far, and
assign its index to the variable g.

Step 5 Change the velocity and position of the particle according to the (2.10).
Step 6 If a criterion is met (usually a sufficiently good fitness or a maximum number

of iterations), stop. Otherwise, go to Step 2.

2.3.2.3 Other Variants of PSO

Motivated by the desire to better control the scope of the search, reduce the
importance of Vmax, and perhaps eliminate it altogether, the following modification
of the PSO’s update equations was proposed (Shi and Eberhart 1998):

vi .t C 1/ D w � vi .t /C c1 � rand1 .xi . t /�pi . t //C c2 � rand2 .xi . t
�
�pg

�
t //

xi .t C 1/ D xi .t /C vi .t C 1/ (2.11)

where w was termed the “inertia weight.” If we interpret c1 and c2 as the external
force, fi, acting on a particle, then the change in a particle’s velocity (i.e., the
particle’s acceleration) can be written as �viD fiC (1�w)vi. That is, the constant
1�w acts effectively as a friction coefficient, and so w can be interpreted as the
fluidity of the medium in which a particle moves. This perhaps explains why
researchers have found that the best performance could be obtained by initially
setting w to some relatively high value (e.g., 0.9), which corresponds to a system
where particles move in a low viscosity medium and perform extensive exploration,
and gradually reducing w to a much lower value (e.g., 0.4), where the system would
be more dissipative and exploitative and would be better at homing into local optima.
It is even possible to start from values of w> 1, which would make the swarm
unstable, provided that the value is reduced sufficiently to bring the swarm in a
stable region.

With (2.11) and an appropriate choice of w and of the acceleration coefficients,
c1 and c2, the PSO can be made much more stable so much so that one can either do
without Vmax or set Vmax to a much higher value, such as the value of the dynamic
range of each variable. In this case, Vmax may improve performance, though with
use of inertia or constriction techniques, it is no longer necessary for damping the
swarm’s dynamics.

Though the earliest researchers recognized that some form of damping of the
dynamics of a particles (e.g., Vmax) was necessary, the reason for this was not
understood. But when the particle swarm algorithm is run without restraining
velocities in some way, these rapidly increase to unacceptable levels within a
few iterations. Kennedy (1998) noted that the trajectories of nonstochastic one-
dimensional particles contained interesting regularities when c1C c2 was between
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0.0 and 4.0. Clerc’s analysis of the iterative system led him to propose a strategy
for the placement of “constriction coefficients” on the terms of the formulas;
these coefficients controlled the convergence of the particle and allowed an elegant
and well-explained method for preventing explosion, ensuring convergence, and
eliminating the arbitrary Vmax parameter. The analysis also takes the guesswork out
of setting the values of c1 and c2. Clerc and Kennedy (2002) noted that there can be
many ways to implement the constriction coefficient. One of the simplest methods
of incorporating it is the following:

vi .t C 1/ D � .vi . t /Cc1 � rand1.xi .t / � pi .t / /Cc2 � rand2.xi .t / � pg.t/ //

xi .t C 1/ D xi .t /C vi .t C 1/ (2.12)

� D
2

	 � 2C
p
	2 � 4	

(2.13)

When Clerc’s constriction method is used, 	 is commonly set to 4.1, and the
constant multiplier � is approximately 0.7298. The results in the previous velocity
being multiplied by 0.7298 and each of the two (p� x) terms being multiplied by
a random number limited by 0.7298� 2.05	 1.49618. The constricted particles
will converge without using any Vmax at all. However, subsequent experiments and
applications concluded that a better approach to use as a prudent rule of thumb is
to limit Vmax to Xmax, the dynamic range of each variable on each dimension, in
conjunction with (2.12) and (2.13). The result is a PSO algorithm with no problem-
specific parameters. And this is the canonical particle swarm algorithm of today.
Note that a PSO with constriction is algebraically equivalent to a PSO with inertia.

Indeed, (2.11) and (2.12) can be transformed into one another via the mapping
w$� and ci$�ci. So, the optimal settings suggested by Clerc correspond to
wD 0.7298 and c1D c2D 1.49618 for a PSO with inertia.

2.3.3 Parameters and Population Topology

The role of inertia weight w in (2.11) is considered critical for the convergence
behavior of PSO. The inertia weight is employed to control the impact of the
previous history of velocities on the current one. Accordingly, the parameter w regu-
lates the trade-off between the global (wide-ranging) and local (nearby) exploration
abilities of the swarm. A large inertia weight facilitates global exploration (searching
new areas), while a small one tends to facilitate local exploration, i.e., fine-tuning
the current search area. A suitable value for the inertia weight w usually provides
balance between global and local exploration abilities and consequently results in
a reduction of the number of iterations required to locate the optimum solution.
Initially, the inertia weight is set as a constant. However, some experiment results
indicate that it is better to initially set the inertia to a large value, in order to promote
global exploration of the search space, and gradually decrease it to get more refined
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solutions. Thus, an initial value around 1.2 and gradually reducing towards 0 can
be considered as a good choice for w. A better method is to use some adaptive
approaches (e.g., fuzzy controller), in which the parameters can be adaptively fine-
tuned according to the problems under consideration (Grosan and Abraham 2011).

The parameters c1 and c2 in (2.11) are not critical for the convergence of PSO.
However, proper fine-tuning may result in faster convergence and alleviation of
local minima. As default values, usually, c1D c2D 2 are used, but some experiment
results indicate that c1D c2D 1.49 might provide even better results. Recent work
reports that it might be even better to choose a larger cognitive parameter, c1, than a
social parameter, c2, but with c1C c2� 4.

The first particle swarms evolved out of bird-flocking simulations of a type
described by Reynolds (1987) and Heppner and Grenander (1990). In these models,
the trajectory of each bird’s flight is modified by application of several rules,
including some that take into account the birds that are nearby in physical space.
So, early PSO topologies were based on proximity in the search space. Kennedy
and Mendes studied the various population topologies on the PSO performance.
Different concepts for neighborhoods could be envisaged. It can be observed as a
spatial neighborhood when it is determined by the Euclidean distance between the
positions of two particles or as a sociometric neighborhood (e.g., the index position
in the storing array).

The next topology to be introduced, the gbest topology (for “global best”), was
one where the best neighbor in the entire population influenced the target particle.
While this may be conceptualized as a fully connected graph, in practice it only
meant that the program needed to keep track of the best function result that had
been found and the index of the particle that found it.

The gbest is an example of static topology, i.e., one where neighbors and
neighborhoods do not change during a run. The lbest topology (for “local best”)
is another static topology, which was introduced in Eberhart and Kennedy (1995).
It is a simple ring lattice where each individual was connected to KD 2 adjacent
members in the population array, with toroidal wrapping (naturally, this can be
generalized to K> 2). This topology had the advantage of allowing parallel search,
as subpopulations could converge in diverse regions of the search space. Where
equally good optima were found, it was possible for the population to stabilize with
particles in the good regions, but if one region was better than another, it was likely
to attract particles to itself. Thus this parallel search resulted in a more thorough
search strategy; though it converged more slowly than the gbest topology, lbest was
less vulnerable to the attraction of local optima.

Several classical communications structures from social psychology (Bavelas
1950), including some with small-world modifications, were experimented with in
Kennedy (1999). Circles, wheels, stars, and randomly assigned edges were tested
on a standard suite of functions. The most important finding was that there were
important differences in performance depending on the topology implemented;
these differences depended on the function tested, with nothing conclusively
suggesting that any one was generally better than any other.



52 2 Bio-inspired Computation Algorithms

a b

c d

Fig. 2.5 Some neighborhood topologies of PSO. (a) Local-best topology. (b) Global-best topol-
ogy. (c) Star topology. (d) Von Neumann topology

Numerous aspects of the social-network topology were tested in Kennedy and
Mendes (2002) (Fig. 2.5). For instance, the effect of including the target particle in
its neighborhood (as opposed to allowing only “external” influences) was evaluated,
finding, surprisingly, that whether or not the particle belonged to its neighborhood
had little impact on behavior. 1343 random graphs were generated and then
modified to meet certain criteria, including mean degree, clustering, and the standard
deviations of those two measures to introduce homogeneous and heterogeneous
structures. Several regular topologies were included, as well; these were the gbest
and lbest versions mentioned above, as well as a von Neumann topology which
defined neighborhoods on a grid, a “pyramid” topology, and a handmade graph with
clusters of nodes linked sparsely.

One finding that emerged was the relative superiority of the von Neumann
structure. This topology possesses some of the parallelism of lbest, yet nodes have
degree KD 4; thus the graph is more densely connected than lbest but less densely
than gbest.
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2.4 Artificial Bee Colony

ABC algorithm was originally presented by Karaboga and Basturk (2007), under the
inspiration of collective behavior on honeybees, and it has been proved to possess
a better performance in function optimization problem, compared with genetic
algorithm, DE and PSO. As we know, usual optimization algorithms conduct only
one search operation in one iteration, for example, the PSO algorithm carries out
global search at the beginning and local search in the later stage. Compared with
the usual algorithms, the major advantage of ABC algorithm lies in that it conducts
both global search and local search in each iteration, and as a result the probability
of finding the optimal parameters is significantly increased, which efficiently avoid
local optimum to a large extent.

2.4.1 Biological Inspiration

A very interesting swarm in nature is honeybee swarm that allocates the tasks
dynamically and adapts itself in response to changes in the environment in a col-
lective intelligent manner. The honeybees have photographic memories; space-age
sensory and navigation systems, possibly even insight skills; and group decision-
making process during selection of their new nest sites, and they perform tasks such
as queen and brood tending, storing, retrieving and distributing honey and pollen,
communicating, and foraging. These characteristics are incentive for researchers to
model the intelligent behaviors of bees. Before presenting the algorithms described
to use intelligent behaviors and their applications, behavior of the colony is
explained.

Bees are social insects living as colonies. There are three kinds of bees in a
colony: drones, queen, and workers. Foraging is the most important task in the
hive. Many studies (Seeley 1985) have investigated the foraging behavior of each
individual bee and what types of external information (such as odor, location
information in the waggle dance, the presence of other bees at the source or between
the hive and the source) and internal information (such as remembered source
location or source odor) affect this foraging behavior. Foraging process starts with
leaving the hive of a forager in order to search food source to gather nectar. After
finding a flower for herself, the bee stores the nectar in her honey stomach. Based
on the conditions such as richness of the flower and the distance of the flower
to the hive, the bee fills her stomach in about 30–120 min, and honey-making
process begins with the secretion of an enzyme on the nectar in her stomach.
After coming back to the hive, the bee unloads the nectar to empty honeycomb
cells, and some extra substances are added in order to avoid the fermentation
and the bacterial attacks. Filled cells with the honey and enzymes are covered by
wax.
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After unloading the nectar, the forager bee which has found a rich source
performs special movements called “dance” on the area of the comb in order to
share her information about the food source such as how plentiful it is and its
direction and distance and recruits the other bees for exploiting that rich source.
While dancing, other bees touch her with their antenna and learn the scent and the
taste of the source she is exploiting. She dances on different areas of the comb in
order to recruit more bees and goes on to collect nectar from her source. There are
different dances performed by bees depending on the distance information of the
source: round dance, waggle dance, and tremble dance. If the distance of the source
to the hive is less than 100 m, round dance is performed, while if the source is far
away, waggle dance is performed. Round dance does not give direction information.
In case of waggle dance, direction of the source according to the sun is transferred to
other bees. Longer distances cause quicker dances. The tremble dance is performed
when the foraging bee perceives a long delay in unloading its nectar.

Forager bees use a maplike organization of spatial memory for homing and
food source search flights. This organization is based on the computations of two
experienced vectors or on viewpoints and landmarks. There are two perspectives of
which one certainly true is not known. First one is that bees use stimuli obtained
during their flights. The second one is that they encode the spatial information in
their dances into their maplike spatial memory (Menzel et al. 2006).

A honeybee colony needs to divide its workforce so that the appropriate number
of individuals is allocated for each of the many tasks. Bees are specialized in order
to carry out every task in the hive. However, there is a controversy about which
factors have roles on the specialization of bees, such as their age, hormones, and
individual predisposition coming from their genetic determination (Dornhaus et al.
1998), and also the allocation of tasks can dynamically change. For example, when
food is drought, younger nurse bees will also join to foraging process. Depending
on the swarm intelligent behaviors of a bee swarm noted above, several approaches
have been introduced and applied to solve problems.

Karlvon Frisch, a famous Nobel Prize winner, found that in nature, although
each bee only performs one single task, yet through a variety of information
communication ways between bees such as waggle dance and special odor, the
entire colony can always easily find food resources that produce relative high
amount of nectar, hence realize its self-organizing behavior.

2.4.2 Principle of Artificial Bee Colony

In order to introduce the self-organization model of forage selection that leads to the
emergence of collective intelligence of honeybee swarms, first, we need to define
three essential components: food sources, unemployed foragers, and employed
foragers (Duan et al. 2010, 2011; Xu et al. 2010; Yu and Duan 2012):
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Fig. 2.6 The behavior of honeybee foraging for nectar (Reprinted from Xu and Duan (2010), with
kind permission from Elsevier)

1. Food Sources

For the sake of simplicity, the “profitability” of a food source (A and B in Fig. 2.6)
can be represented with a single quantity. The position of a food source represents a
possible parameter solution to the optimization problem, and the nectar amount of
a food source corresponds to the similarity value of the associated solution.

2. Unemployed Foragers

If it is assumed that a bee has no knowledge about the food sources in the search
field, the bee initializes its search as an unemployed forager. Unemployed foragers
are continually at look out for a food source to exploit. There are two types of
unemployed foragers: scouts and onlookers.
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Scouts (S in Fig. 2.6): If the bee starts searching spontaneously for new food
sources without any knowledge, it will be a scout bee.

Onlookers (R in Fig. 2.6): The onlookers wait in the nest and search the food
source through sharing information of the employed foragers, and there is a greater
probability of onlookers choosing more profitable sources.

3. Employed Foragers

They are associated with a particular food source which they are currently exploit-
ing. They carry with them information about this particular source and the prof-
itability of the source and share this information with a certain probability. After the
employed foraging bee loads a portion of nectar from the food source, it returns to
the hive and unloads the nectar to the food area in the hive. There are three possible
options related to residual amount of nectar for the foraging bee.

If the nectar amount decreases to a low level or is exhausted, the foraging bee
abandons the food source and becomes an unemployed bee (UF in Fig. 2.6).

If there are still sufficient amount of nectar in the food source, it can continue
to forage without sharing the food source information with the nest mates (EF2 in
Fig. 2.6).

Or it can go to the dance area to perform waggle dance for informing the nest
mates about the food source (EF1 in Fig. 2.6).

In this way, the bees finally can construct a relative good solution of the
multimodal optimization problems.

At the initial moment, all the bees without any prior knowledge play the role
of detecting bees. After a random search for bee sources, the detecting bees can
convert into any kind of bees above in accordance with the profit of the searched
food sources. The changing rules are described as follows:

When the profit of the food source the bee searched is higher than the threshold,
it becomes a leading bee, goes on exploring nectar, and also recruits more bees
(EF1) to explore together. When the profit of related food source is relative low, it
gives up the food source and again becomes a detecting bee to search for new food
source (UF). When the profit is less than certain threshold, it follows leading bees
to explore nectar. When searching times around hive exceed a certain limit but still
the bees could not find a good resource, it abandons the source and finds a new one.

In ABC algorithm, the position of a food source represents a possible solution
to the optimization problem, and the nectar amount of a food source corresponds
to the quality (fitness) of the associated solution. The number of the employed bees
or the onlooker bees is equal to the number of solutions in the population. At the
first step, the ABC generates a randomly distributed initial population, which is
corresponding to the food source positions. After initialization, the population of the
positions (solutions) is subject to repeated cycles, TD 1, 2, : : : , Tmax, of the search
processes of the employed bees, the onlooker bees, and the scout bees. An employed
bee produces a modification on the position (solution) in her memory depending on
the local information (visual information) and tests the nectar amount (fitness value)
of the new source (new solution). If the nectar amount of the new one is higher than
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that of the previous one, the bee memorizes the new position and forgets the old
one. Otherwise she keeps the position of the previous one in her memory. After all
employed bees complete the search process, they share the nectar information of the
food sources and their position information with the onlooker bees. An onlooker bee
evaluates the nectar information taken from all employed bees and chooses a food
source with a probability related to its nectar amount. As in the case of the employed
bee, she produces a modification on the position in her memory and checks the
nectar amount of the candidate source. If the nectar is higher than that of the previous
one, the bee memorizes the new position and forgets the old one.

2.4.3 Algorithmic Structure of Artificial Bee Colony

In ABC algorithm, each cycle of the search consists of three steps: sending the
employed bees onto their food sources and evaluating their nectar amounts; after
sharing the nectar information of food sources, the selection of food source regions
by the onlookers and evaluating the nectar amount of the food sources; and
determining the scout bees and then sending them randomly onto possible new food
sources. At the initialization stage, a set of food sources is randomly selected by
the bees, and their nectar amounts are determined. At the first step of the cycle,
these bees come into the hive and share the nectar information of the sources with
the bees waiting on the dance area. A bee waiting on the dance area for making
decision to choose a food source is called onlooker, and the bee going to the food
source visited by herself just before is named as employed bee. After sharing their
information with onlookers, every employed bee goes to the food source area visited
by herself at the previous cycle since that food source exists in her memory and then
chooses a new food source by means of visual information in the neighborhood
of the one in her memory and evaluates its nectar amount. At the second step, an
onlooker prefers a food source area depending on the nectar information distributed
by the employed bees on the dance area. As the nectar amount of a food source
increases, the probability of that food source chosen also increases. After arriving
at the selected area, she chooses a new food source in the neighborhood of the one
in the memory depending on visual information as in the case of employed bees.
The determination of the new food source is carried out by the bees based on the
comparison process of food source positions visually. At the third step of the cycle,
when the nectar of a food source is abandoned by the bees, a new food source is
randomly determined by a scout bee and replaced with the abandoned one. At each
cycle at most, one scout goes outside for searching a new food source, and the
number of employed and onlooker bees is selected to be equal to each other. These
three steps are repeated through a predetermined number of cycles called maximum
cycle number Tmax or until a termination criterion is satisfied.

Define Ns as the total number of bees, Ne as the colony size of the employed bees,
and Nu as the size of unemployed bees, which satisfy the equation NsDNeCNu.
We usually set Ne equal to Nu. D is the dimension of individual solution vector,
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S D R
D represents individual search space, and SNedenotes the colony space of

employed bees. An employed bee colony can be expressed by Ne dimension vector
�!
X D .X1; : : : ; XNe /, where Xi 2 S and i�Ne.

�!
X.0/ means the initial employed

bee colony, while
�!
X.n/ represents employed bee colony in the nth iteration. Denote

f : S!RC as the fitness function, and the standard ABC algorithm can be expressed
as follows:

Step 1 Randomly initialize a set of feasible solutions .X1; : : : ; XNs /, and the specific
solution Xi can be generated by

X
j
i D X

j
min C rand .0; 1/

�
Xj

max �X
j
min

�
(2.14)

where j2 f1,2, : : : ,Dg is the jth dimension of the solution vector. Calculate the
fitness value of each solution vector respectively, and set the top Ne best solutions

as the initial population of the employed bees
�!
X.0/.

Step 2 For an employed bee in the nth iteration Xi(n), search new solutions in the
neighborhood of the current position vector according to the following equation:
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i D X
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i C '
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i

�
X
j
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j

k

�
(2.15)

where V 2 S, j2 f1,2, : : : ,Dg, k2 f1,2, : : : ,Neg,k¤ i, k, and j are randomly
generated. ®i

j is a random number between -1 and 1. It controls the production
of neighbor food sources around Xi

j and represents the comparison of two food
positions visually by a bee. As can be seen from the above equation, as the
difference between the parameters of Xi

j and Xk
j decreases, the perturbation on

the position Xi
j gets decreased, too. Thus, as the search approaches the optimum

solution in the search space, the step length is adaptively reduced.
Generally, this searching process is actually a random mapping from individual
space to individual space, and this process can be denoted with Tm : S! S, and
its probability distribution is clearly only related to current position vector Xi(n),
and has no relation with past location vectors as well as the iteration number n.

Step 3 Apply the greedy selection operator Ts : S2! S to choose the better solution
between searched new vector Vi and the original vector Xi into the next
generation. Its probability distribution can be described as follows:

P fTs .Xi ; Vi / D Vig D

�
1; f .Vi / 
 f .Xi /

0; f .Vi / < f .Xi /
(2.16)

The greedy selection operator ensures that the population is able to retain the
elite individual, and accordingly the evolution will not retreat. Obviously, the
distribution of Ts has no relation with the iteration n.
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Step 4 Each unemployed bee selects an employed bee from the colony according
to their fitness values. The probability distribution of the selection operator Ts1 W
SNe ! S can described as follows:

P
n
Ts1

��!
X
�
D Xi

o
D

f .Xi /

NeX

mD1

f .Xm/

(2.17)

Step 5 The unemployed bee searches in the neighborhood of the selected employed
bee’s position to find new solutions (see (2.15)). The updated best fitness value
can be denoted with f _ best, and the best solution parameters can be expressed
with (x1,x2, : : : ,xD).

Step 6 If a position cannot be improved further through a predetermined number
of cycles, then that food source is assumed to be abandoned. The value of
predetermined number of cycles is an important control parameter of the ABC
algorithm, which is called “limit” for abandonment. If the searching times
surrounding an employed bee Bas exceed a certain threshold Limit, but still could
not find better solutions, then the location vector can be reinitialized randomly
according to the following equation:

Xi .nC 1/ D

�
Xmin C rand .0; 1/ .Xmax �Xmin/ ;

Xi .n/;

Basi 
 Limit
Basi < Limit

(2.18)

Step 7 If not, go to Step (2). If the iteration value is larger than the maximum
number of the iteration (i.e., T >Tmax), output the optimal fitness value f _ best
and correlative parameters (x1,x2, : : : ,xD). If not, go to Step (2).

Step (6) is a most prominent aspect making ABC algorithm different from other
algorithms, which is designed to enhance the diversity of the population to prevent
the population from trapping into the local optimum. Obviously, this step can
improve the probability of finding the best solution efficiently and make the ABC
algorithm perform much better.

Totally, ABC algorithm employs four different selection processes (Karaboga
and Akay 2009):

1. A global probabilistic selection process, in which the probability value is
calculated by (2.17) used by the onlooker bees for discovering promising regions.

2. A local probabilistic selection process carried out in a region by the employed
bees and the onlookers depending on the visual information such as the color,
shape, and fragrance of the flowers (sources) (bees will not be able to identify
the type of nectar source until they arrive at the right location and discriminate
among sources growing there based on their scent) for determining a food source
around the source in the memory in a way described by (2.15).
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3. A local selection called greedy selection process carried out by onlooker and
employed bees in that if the nectar amount of the candidate source is better
than that of the present one, the bee forgets the present one and memorizes the
candidate source produced by (2.15). Otherwise, the bee keeps the present one in
the memory.

4. A random selection process carried out by scouts as defined in (2.18).

2.5 Differential Evolution

2.5.1 Biological Inspiration

Researchers have been looking into nature for years for inspiration with the purpose
of tackling complex computational problems. Optimization is ubiquitous in natural
processes. For example, every species had to adapt their physical structures to
fit to the environments they were in and to strengthen their survival ability all
the time. The underlying relation between optimization and biological evolution
led to the development of an important paradigm of computational intelligence,
the evolutionary computing techniques for performing very complex search and
optimization.

Evolutionary computation uses iterative progress, such as growth or development
in a population. This population is then selected in a guided random search using
parallel processing to achieve the desired end. The paradigm of evolutionary
computing techniques dates back to early 1950s, when the idea to use Darwinian
principles for automated problem solving originated. It was not until the 1960s
that three distinct interpretations of this idea started to be developed in three
different places. Evolutionary programming (EP) was introduced by Lawrence J.
Fogel in the United States, while almost simultaneously, I. Rechenberg and H.-
P. Schwefel introduced evolution strategies (ESs) in Germany. Almost a decade
later, John Henry Holland from the University of Michigan at Ann Arbor devised
an independent method of simulating the Darwinian evolution to solve practical
optimization problems and called it the genetic algorithm (GA). These areas
developed separately for about 15 years. From the early 1990s on, they are unified
as different representatives of one technology, called evolutionary computing. Also
since the early 1990s, a fourth stream following the same general ideas started
to emerge, which is genetic programming (GP). Nowadays, the field of nature-
inspired metaheuristics is mostly constituted by the evolutionary algorithms (EA)
as well as the swarm intelligence algorithms. Also the field extends in a broader
sense to include self-organizing systems, artificial life (digital organism), memetic
and cultural algorithms, harmony search, artificial immune systems, and learnable
evolution model.

The DE algorithm emerged as a very competitive form of evolutionary computing
more than a decade ago. The first written article on DE appeared as a technical report
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by Storn and Price (1995). One year later, the success of DE was demonstrated
at the First International Contest on Evolutionary Optimization in May 1996,
which was held in conjunction with the 1996 IEEE International Conference
on Evolutionary Computation (CEC). DE finished third at the First International
Contest on Evolutionary Optimization (1st ICEO), which was held in Nagoya,
Japan. DE turned out to be the best evolutionary algorithm for solving the real-
valued test function suite of the 1st ICEO (the first two places were given to
non-evolutionary algorithms, which are not universally applicable but solved the test
problems faster than DE). Price presented DE at the Second International Contest
on Evolutionary Optimization in 1997, and it turned out as one of the best among
the competing algorithms. Two journal articles describing the algorithm in sufficient
details followed immediately in quick succession. In 2005 CEC competition on real
parameter optimization, on 10-D problems classical DE secured 2nd rank and a self-
adaptive DE variant called SaDE secured third rank although they performed poorly
over 30-D problems.

DE, like most popular EAs, is a population-based tool. DE, unlike other EAs,
generates offspring by perturbing the solutions with a scaled difference of two
randomly selected population vectors, instead of recombining the solutions under
conditions imposed by a probabilistic scheme. In addition, DE employs a one-
to-one spawning logic which allows replacement of an individual only if the
offspring outperforms its corresponding parent (Duan et al., 2011). DE has been
seen as an attractive optimization tool for continuous optimization for the following
four reasons: (1) Compared to most other EAs, DE is much more simple and
straightforward to implement. (2) As indicated by the recent studies on DE despite
its simplicity, DE exhibits much better performance in comparison with several
algorithms in solving a wide variety of problems including unimodal, multimodal,
separable, non-separable, and so on. (3) The number of control parameters in DE is
very few (Cr, F, and NP in classical DE). (4) The space complexity of DE is low as
compared to some of the most competitive real parameter optimizers.

2.5.2 Principle of Differential Evolution

2.5.2.1 Initialization of the Parameter Vectors

DE algorithm mainly has three evolutionary operations, namely, mutation, recom-
bination, and selection. The positions of individuals are represented as real-coded
vectors which are randomly initialized inside the limits of the given search space
in the beginning of an optimization process. The individuals are evolved during the
optimization process by applying mutation, recombination, and selection to each
individual in every generation. A stopping criterion determines after the building of
every new generation if the optimization process should be terminated.

Like other evolutionary algorithms, DE also deals with a population of solutions.
Suppose that the initial solution population has NP individuals and the search
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space is D dimensional, the solution vector in continuous space can be represented
by xiD [xi1,xi2, � � � ,xiD], (iD 1, � � � , NP). Let there be some criteria of optimization,
usually named fitness or cost function. Then the optimization goal of DE algorithm
is to find the values of the variables that minimize the fitness, that is, to find

x� W f
�
x�
�
D min

x
f .x/

2.5.2.2 Mutation with Difference Vectors

Biologically, “mutation” means a sudden change in the gene characteristics of a
chromosome. In the context of the evolutionary computing paradigm, mutation is
also seen as a change or perturbation with a random element. In DE literature, a
parent vector from the current generation is called target vector, a mutant vector
obtained through the differential mutation operation is known as donor vector, and
finally an offspring formed by recombining the donor with the target vector is called
trial vector. In one of the simplest forms of DE mutation, to create the donor vector
for each ith target vector from the current population, three other distinct parameter
vectors, say xr1, xr2, and xr3, are sampled randomly from the current population.
The indices r1, r2, and r3 are mutually exclusive integers randomly chosen from the
range [1, NP], which are also different from the base vector index i. These indices
are randomly generated once for each mutant vector. Now the difference of any two
of these three vectors is scaled by a scalar number F (that typically lies in the interval
[0.4, 1]), and the scaled difference is added to the third one whence we obtain the
donor vector vi. We can express the process as

vi D xr1 C F � .xr2 � xr3 / (2.19)

The process is illustrated on a 2-D parameter space in Fig. 2.7.

2.5.2.3 Crossover

To enhance the potential diversity of the population, a crossover operation comes
into play after generating the donor vector through mutation. In this way, the
individuals of the population are updated by means of the recombination operation.
By coping components from the mutation vector vi and the target vector xi in
dependence, the trial vector ui was generated. This process can be written as the
following equation:

uj i D

�
vj i ; if randb � CR or j D randr; j D 1; � � � ;D
xji ; if randb > CR or j ¤ randr; j D 1; � � � ;D

(2.20)
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Fig. 2.7 Mutation process of DE

Fig. 2.8 Recombination
process of DE

where the random number randb2 [0,1], the recombination control parameter CR is
a constant in the interval [0,1]. randr is an integer randomly chosen from [1,D]. The
recombination process is described in Fig. 2.8.

2.5.2.4 Selection

To keep the population size constant over subsequent generations, the next step of
the algorithm calls for selection to determine whether the target or the trial vector
survives to the next generation. Then, selection operation, as a deterministic process
in DE algorithm, is implemented to choose the better individuals with lower fitness
function value between the target vector and the trial vector, which is inherited by
the next generation, expressed as

xi .t C 1/ D

�
ui ;
xi ;

if f .ui / � f .xi /
else

(2.21)
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This selection scheme allows only improvement but not deterioration of the
fitness function value; it is called greedy. Selection operator ensures that the best
fitness function value cannot get lost when moving from one generation to the
next, which usually results in the fast convergence behavior. Therefore, if the new
trial vector yields an equal or lower value of the objective function, it replaces the
corresponding target vector in the next generation; otherwise the target is retained
in the population. Hence, the population either gets better (with respect to the
minimization of the objective function) or remains the same in fitness status but
never deteriorates.

2.5.3 Control Parameters of Differential Evolution

There are three main control parameters of the DE algorithm: the mutation scale
factor F, the crossover constant CR, and the population size NP.

The population size is related to the amount of possible moving vectors. Over
all the possible moves given by a population, some moves are beneficial in the
search for the optimum, while some others are ineffective and result in a waste
of computational effort. Therefore, too small a population size can contain too
limited an amount of moves, while too large a population size may contain a high
number of ineffective moves which can likely mislead the search. To some extent
the population sizing of a DE is analogous to the other EAs, if too small it could
cause premature convergence, and if too large it could cause stagnation. A good
value can be found by considering the dimensionality of the problem similar to
what is commonly performed for the other EAs. A guideline is given in Price and
Storn (1997) where a setting of Spop equal to ten times the dimensionality of the
problem is proposed. However, this indication is not confirmed by a recent study in
Neri and Tirronen (2008) where it is shown that a population size lower than the
dimensionality of the problem can be optimal in many cases.

Regarding the scale factor F and the crossover rate CR, these settings may be
a difficult task. The setting of these two parameters is neither an intuitive nor a
straightforward task but is unfortunately crucial for guaranteeing the algorithmic
functioning. Several studies have thus been proposed in literature. The study
reported in Lampinen and Zelinka (2000) arrives at the conclusion, after an
empirical analysis, that usage of FD 1 is not recommended, since according to a
conjecture of the authors, it leads to a significant decrease in explorative power.
Analogously, the setting CRD 1 is also discouraged since it would dramatically
decrease the amount of possible offspring solutions. In Price and Storn (1997),
the settings F 2 [0.5,1] and CR2 [0.8,1] are recommended. The empirical analysis
reported in Zielinski et al. (2006) shows that in many cases the setting of F
 0.6
and CR
 0.6 leads to results having better performance.

Several studies highlight that an efficient parameter setting is very dependent
on problems (e.g., FD 0.2 could be a very efficient setting for a certain fitness
landscape and completely inadequate for another problem). This result can be seen



2.6 Other Algorithms 65

as a confirmation of the validity of the No Free Lunch Theorem (Wolpert and
Macready 1997) with reference to the DE schemes.

The problem of the parameter setting is emphasized when DE is employed for
handling difficulties of real-world applications such as high dimensionality and
noisy optimization problems. Clearly, the risk of the DE stagnation is higher for
larger decision spaces and worsens as the number of dimensions of the problem
increases. A large decision space (in terms of dimensions) requires a wide range
of possible moves to enhance its capability of detecting new promising solutions.
Since, as mentioned before, an enlargement in population size causes an increase
in the set of potential ineffective moves, a proper choice of F and CR becomes a
crucial aspect in the success of DE.

2.6 Other Algorithms

2.6.1 Glowworm Swarm Optimization

Glowworm swarm optimization (GSO) is a novel algorithm designed by Krish-
nanand and Ghose (2009) for the simultaneous computation of multiple optima of
multimodal functions. The algorithm shares a few features with some better known
swarm intelligence-based optimization algorithms, such as ACO and PSO, but with
several significant differences. The agents in GSO are thought of as glowworms that
carry a luminescence quantity called luciferin along with them. The glowworms
encode the fitness of their current locations, evaluated using the objective function,
into a luciferin value that they broadcast to their neighbors. The glowworm identifies
its neighbors and computes its movements by exploiting an adaptive neighborhood,
which is bounded above by its sensor range. Each glowworm selects, using a
probabilistic mechanism, a neighbor that has a luciferin value higher than its own
and moves towards it. These movements—based only on local information and
selective neighbor interactions—enable the swarm of glowworms to partition into
disjoint subgroups that converge on multiple optima of a given multimodal function.

2.6.2 Bacteria Foraging Optimization

Natural selection tends to eliminate animals with poor “foraging strategies” (meth-
ods for locating, handling, and ingesting food) and favor the propagation of
genes of those animals that have successful foraging strategies since they are
more likely to enjoy reproductive success (they obtain enough food to enable
them to reproduce). After many generations, poor foraging strategies are either
eliminated or shaped into good ones. Such evolutionary principles have led scientists
to hypothesize that it is appropriate to model the activity of foraging as an
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optimization process. Passino (2002) proposed a bacteria foraging optimization
by simulating the chemotactic (foraging) behavior of E. coli bacteria. There are
algorithmic analogies between the genetic algorithm and the above optimization
model for foraging. There are analogies between the fitness function and the
nutrient concentration function (both a type of “landscape”), selection and bacterial
reproduction (bacteria in the most favorable environments gain a selective advantage
for reproduction), crossover and bacterial splitting (the children are at the same
concentration, whereas with crossover they generally end up in a region around
their parents on the fitness landscape), and mutation and elimination and dispersal.
However, the algorithms are not equivalent, and neither is a special case of the
other. Each has its own distinguishing features. The fitness function and nutrient
concentration functions are not the same (one represents likelihood of survival for
given phenotypic characteristics, whereas the other represents nutrient/noxious sub-
stance concentrations or for other foragers predator/prey characteristics). Crossover
represents mating and resulting differences in offspring, something we ignore in
the bacterial foraging algorithm (we could, however, have made less than perfect
copies of the bacteria to represent their splitting). Moreover, mutation represents
gene mutation and the resulting phenotypical changes, not physical dispersal in an
environment.

2.6.3 Bat-Inspired Algorithm

Most microbats are insectivores. Microbats use a type of sonar, called echolocation,
to detect prey, avoid obstacles, and locate their roosting crevices in the dark.
These bats emit a very loud sound pulse and listen for the echo that bounces
back from the surrounding objects. Their pulses vary in properties and can be
correlated with their hunting strategies, depending on the species. Most bats
use short, frequency-modulated signals to sweep through about an octave, while
others more often use constant-frequency signals for echolocation. Their signal
bandwidth varies and depends on the species and often increased by using more
harmonics. Yang (2010) formulated a new Bat Algorithm for continuous constrained
optimization problems. Though the implementation is more complicated than many
other metaheuristic algorithms, however, it does show that it utilizes a balanced
combination of the advantages of existing successful algorithms with innovative
feature based on the echolocation behavior of bats. New solutions are generated
by adjusting frequencies, loudness, and pulse emission rates, while the proposed
solution is accepted or does not depend on the quality of the solutions controlled or
characterized by loudness and pulse rate which are in turn related to the closeness
or the fitness of the locations/solution to the global optimal solution. Moreover,
the author argues that PSO and harmony search are the special cases of the Bat
Algorithm under appropriate simplifications.
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2.7 Conclusions

In this chapter, we focus on four popular bio-inspired computation algorithms,
which are, respectively, ACO, PSO, ABC, and DE. PSO and ACO are currently
the most popular algorithms in the swarm intelligence domain. Dorigo and his
colleagues introduced the first ACO algorithms in the early 1990s, which is a
metaheuristic suitable for solving hard combinatorial optimization problems. The
inspiring source of ACO is the pheromone trail laying and following behavior of real
ants, which use pheromones as a communication medium. Ants are social insects,
being interested mainly in the colony survival rather than individual survival. Of
interests is ants’ ability to find the shortest path from their nest to food. This idea
was the source of the algorithms inspired from ants’ behavior. The initial ideas
on particle swarms of Kennedy and Eberhart were essentially aimed at producing
computational intelligence by exploiting simple analogues of social interaction,
which soon developed into a powerful optimization method-PSO. Unlike in the
other evolutionary computation techniques, each particle in PSO is also associated
with a velocity. Particles fly through the search space with velocities, which
are dynamically adjusted according to their historical behaviors. Therefore, the
particles have the tendency to fly towards the better and better search area over
the course of search process. ABC was originally presented by Karaboga and
Basturk, under the inspiration of collective behavior on honeybees, and it has
been proved to possess a better performance in function optimization problem.
Compared with the usual algorithms, the major advantage of ABC algorithm lies
in that it conducts both global search and local search in each iteration, and as a
result the probability of finding the optimal parameters is significantly increased,
which efficiently avoid local optimum to a large extent. The DE algorithm emerged
as a very competitive form of evolutionary computing more than a decade ago.
DE has been seen as an attractive optimization tool for continuous optimization
for the following reasons: (1) simple and straightforward for implementation, (2)
better performance (compared with several other algorithms in solving a variety of
problems including unimodal, multimodal, separable, non-separable, and so on), (3)
few control parameters, and (4) less space complexity. Besides, we have also given a
brief introduction of other bio-inspired computation algorithms such as GSM, BFO,
and BA.
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Chapter 3
UAV Modeling and Controller Design

Haibin Duan

Abstract As a complicated multi-input, multi-output, and time-varying nonlinear
system, flight control system of unmanned aerial vehicle (UAV), which determines
the whole system’s performance directly, is crucial for the simulation training
system design. This chapter mainly focuses on parameter identification of flight
control system based on the modeling of UAVs and a specific controller design
for the pendulum-like oscillation in micro aerial vehicle (MAV). A predator–
prey particle swarm optimization (PSO) algorithm for identifying parameters of
UAV flight control system is presented, with the aim of reducing the workload of
the designers during the process of designing complicated UAV control system.
Besides, a software environment for UAV controller design was developed based on
the UAV model and the proposed method. Then a specific kind of controller design
involving the pendulum-like oscillation in the hover and stare state for a MAV in
the presence of external disturbances is discussed in detail, since the pendulum-
like oscillation caused by uncertainty and external disturbances badly jeopardize
the performance of hover and stare, resulting in blurred images or even MAV’s
overturning. A novel type of PSO-based linear-quadratic regulator (LQR) controller
for stabilizing the pendulum-like oscillation is developed, which can enhance the
MAV’s performance efficiently.

3.1 Introduction

Flight control system, which is a complicated multi-input, multi-output, and time-
varying nonlinear system, is the core of the simulation training system design
of unmanned aerial vehicle (UAV), which also determines the whole system’s
performance directly (McLean 1990). For the existence of strong coupling among
the inputs and the nonexistence of mapping relationship between the performance
index and the controller parameter, the selection of the controller parameters is a
very tough problem in the design of the flight control system. Presently, cut and

The original version of this chapter was revised. A correction to this chapter is available at
https://doi.org/10.1007/978-3-642-41196-0__9

H. Duan and P. Li, Bio-inspired Computation in Unmanned Aerial Vehicles,
DOI 10.1007/978-3-642-41196-0__3, © Springer-Verlag Berlin Heidelberg 2014

71

http://crossmark.crossref.org/dialog/?doi=10.1007/_3&domain=pdf
https://doi.org/10.1007/978-3-642-41196-0__9


72 3 UAV Modeling and Controller Design

try method is commonly used to identify all the control loop parameters of flight
control system. But this design method is low efficient and, to a great extent, much
depends on the experience of the designer, while the flight control system will be
more complex with the improvement of the aircraft performances, and these are
becoming the bottleneck of the flight control system design (Zhang and An 2008). In
the first part of this chapter, we proposed a parameter identification method for UAV
control system based on predator–prey particle swarm optimization (PSO). While
using PSO to optimize flight control systems, there are two problems to be solved.
Firstly, the UAV model selected is very important. Secondly, it is very crucial for
PSO algorithm to choose the fitness function, because there is no obvious mapping
relationship between the property index and the UAV controller. Therefore, how to
evaluate each particle’s quality turns out to be a key issue which must be resolved.

Micro aerial vehicles (MAVs), essentially small-scale flying robots, became an
area of interest in the aerospace community with the initiation of the micro UAV
(MUAV) program by Defense Advanced Research Projects Agency (DARPA). The
technological feasibility of MAVs as one possible solution to new challenging
reconnaissance mission scenarios in urban warfare (local, close-up range, hidden
reconnaissance, operation between obstacles and maybe even inside buildings) is
depending on a bunch of questions, which are only partly answered so far (Johnson
and Turbe 2006; Bloss 2009). One of the challenging problems for MAVs is to
design a robust flight control system for such a miniaturized “bird,” which is
generally one order of magnitude smaller than any today’s operational UAV. Hover
and stare is a key issue to the performance of MAVs and similar kinds of unmanned
vehicles, which are designed to perform surveillance and reconnaissance missions.
However, pendulum-like oscillation triggered by external disturbances and other
uncertain factors will badly impair its performance, thus resulting in blurred images
or even overturn of the vehicle (Pflimlin et al. 2010). As a result, control techniques
of such a vehicle are becoming more and more important for their wide applications
in civil and military fields. The second part of this chapter designed a novel type of
pendulum-like oscillation controller for MAV hover and stare state in the presence
of external disturbances, which is based on linear-quadratic regulator (LQR) and
PSO (Duan and Sun 2013). A linear mathematical model of pendulum phenomenon
based upon actual wind tunnel test data representing the hover mode is established,
and a hybrid LQR and PSO approach is proposed to stabilize oscillation. PSO is
applied for parameter optimization of the designed LQR controller.

3.2 Parameter Identification for UAVs Based
on Predator–Prey PSO

3.2.1 Mathematical Model of UAVs

The 6-DOF nonlinear model of UAVs is illustrated in this section, which is the
prerequisite for simplifying and linearizing the mathematical model (Zhang 2004).
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3.2.1.1 Nonlinear Equations of 6-DOF Modeling

UAV nonlinear equations of 6-DOF can be deduced by the aerodynamic and
kinematical equations as follows:
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C
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 cos #/ (3.1)

where m is the mass of the UAV; ˛ is attack angle; ˇ is sideslip angle; ª is pitch
angle; 
 is roll angle; P is engine thrust; X, Y, Z are the projections of aerodynamic
force in body axis; and !x, !y, !z denote the coordinate components of palstance.
These three equations already contain three forces in the body axis which are
generated by the thrust vector:
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(3.2)

b11 D
Iy
2 � IyIz � Ixy

2

IxIy � Ixy2
; b22 D

IxIz � Ix
2 � Ixy

2

IxIy � Ixy2
;

b12 D
Ixy

�
Iz � Iy � Ix

�

IxIy � Ixy2
; b21 D

Ixy
�
Iy � Iz � Ix

�

IxIy � Ixy2
:

where Ix, Iy, Iz and Mx, My, Mz denote the coordinate components of inertia moment
and resultant moment, respectively.
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In the body axis, we have

8
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 D !x � tan#
�
!y cos 
 � !z sin 
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P# D !y sin 
 C !z cos 

P D 1

cos#

�
!y cos 
 � !z sin 


�
(3.3)

where  is drift angle. Aerodynamic equations can be described as

Y D CyqS; Cy D Cy .˛; ız/ ; Z D
X

CzqS;
X

Cz D Cz .˛; ıx/C Cz
�
˛; ıy

�

Q D CxqS; Cx D Cx .˛; ız/

where ıx, ıy, ız are the coordinate components of deflection angles of the controlling
surface. Aerodynamic moments can be given by

Mx D
X

mxqsl;
X

mx D mx
ˇˇ Cmx .˛; ıx/Cmx

�
˛; ıy

�
Cmx

!x!x
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Cmx
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l
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My D
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my D my
ˇˇ Cmy .˛; ıx/Cmy

�
˛; ıy

�
Cmy
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l
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Cmy
!y!y

l
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Mz D
X

mzqsbA;
X

mz D mz .˛; ız/Cmz
!z!z

bA

V
Cmz

P̨ P̨
bA

V
:

When the height and mach are fixed, aerodynamic coefficients Cy(˛,ız), Cx(˛,ız),
Cz(˛,ıx), Cz(˛,ıy), mx(˛,ıx), mx(˛,ıy), my(˛,ıx), my(˛,ıy), mz(˛,ız) are the functions
of the height, mach, attack angle, and control surface. Aerodynamic derivatives
mz

!z, mz
P̨ , mx

ˇ , mx
!x, mx

!y, my
ˇ , my

!x, my
!y are specified values.

3.2.1.2 Nonlinear Equations of 5-DOF Modeling

Suppose that UAV equations can be simplified into nonlinear equations of 5-DOF
if the thrust and the resistance of the aircraft are the same. Without consideration
of the thrust vector, we have PV D 0; P D Q;Px D P � G;Py D Pz D 0.
On this condition, the equations of the UAV speed level off (Zhang 2004). At the
same time, it is assumed that Ixy� IxIy� Ixy

2, state variable xD (˛,ˇ,!x,!y,!z)T .
The UAV nonlinear equations of 5-DOF are represented as follows:



3.2 Parameter Identification for UAVs Based on Predator–Prey PSO 75

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

P̨ D �
1

mV cos ˇ
.P sin ˛ C Y /C !z � tan ˇ

�
!x cos ˛ � !y sin ˛

�

C
g

V cos ˇ
.sin ˛ sin # C cos ˛ cos # cos 
/

P̌ D
1

mV
.�P cos ˛ sin ˇ CZ/C !x sin ˛

C !y cos ˛ C
g

V
.cos ˛ sin ˇ sin # � sin ˛ sin ˇ cos # cos 


C cos ˇ sin 
 cos #/

P!x D
Iy
2 � IyIz � Ixy

2

IxIy � Ixy2
!y!z C

Ixy
�
Iz � Iy � Ix

�

IxIy � Ixy2
!x!z C

Iy
X

Mx

IxIy � Ixy2

b11!y!z C b12!x!z C
IyMx

IxIy � Ixy2

P!y D
Ixy

�
Iy � Iz � Ix

�

IxIy � Ixy2
!y!z C

IxIz � Ix
2 � Ixy

2

IxIy � Ixy2
!x!z C

Ix
X

My

IxIy � Ixy2

b21!y!z C b22!x!z C
IxMy

IxIy � Ixy2

P!z D
Ix � Iy

Iz
!x!y C

Ixy

Iz

�
!x

2 � !y
2
�
C

X
Mz

Iz

Ix � Iy

Iz
!x!y

C
Ixy

Iz

�
!x

2 � !y
2
�
C
Mz

Iz

(3.4)

3.2.1.3 Linearization Modeling

In most cases, the UAV maintains steady straight level flight, and (3.4) can be
modeled as linear time invariant state-space perturbation models, with the nominal
trajectory being steady-level trimmed flight. The UAV’s linear equations are as
follows:
8
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Actuator

Control Law

UAV Model Result Display

Fig. 3.1 UAV system model
(Reprinted from Duan et al.
(2013a), with kind permission
from Springer
ScienceCBusiness Media)

We have the state equations.

Px D Ax C Bu
y D Cx (3.6)

where the state variable xD (˛,!z,ˇ,!x,!y)T and the control surface uD (ız,ıx,ıy)T

and A, B, C can be denoted by
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3.2.2 Predator–Prey PSO for Parameter Identification

3.2.2.1 UAV Flight Control System Design in Matlab Environment

Based on control augmentation system of UAVs, the aircraft linear equations are
generally obtained by a series of equilibrium points. The flight envelope of this
UAV must satisfy 0�H� 18km and 0.6�M� 2.2 (Zhang 2004). Figure 3.1 shows
the schematic diagram of UAV system.

As is obvious in Fig. 3.1, the UAV system is comprised of four subsystems:
control law, actuator, mathematical model, and simulation result display.

Matrix K for the function of control law can be obtained from Matlab main
program. Actuator module is responsible for control adjusting, which can also limit
the amplitudes of control surface deflection angle. The actuator module can be
shown with Fig. 3.2.

The actuator module requires that deflection angle of the elevator must be less
than that of aileron and rudder. In order to prevent the deflection angles of the control
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Fig. 3.2 Actuator module of UAVs in Matlab environment (Reprinted from Duan et al. (2013a),
with kind permission from Springer ScienceCBusiness Media)

Fig. 3.3 UAV model module in Matlab environment (Reprinted from Duan et al. (2013a), with
kind permission from Springer ScienceCBusiness Media)

surface from deflecting too fast, the angle authority of the elevator is set at � 18ı to
12ı, aileron and rudder at � 25ı to 25ı, and the angle rate authority of elevator and
aileron at 50ı/s, and rudder is at 80ı/s. UAV model module is displayed in Fig. 3.3.
where matrix A and B are both obtained from the workspace of Matlab. Figure 3.4
shows the simulation result display module.

The control law uD�Kx is used. K denotes the state-feedback gain, and it can
be illustrated with the following matrix:

K D

2

4
k1 k2 0 0 0

0 0 k3 k4 k5
0 0 k6 k7 k8

3

5



78 3 UAV Modeling and Controller Design

Fig. 3.4 Simulation result display module in Matlab environment (Reprinted from Duan et al.
(2013a), with kind permission from Springer ScienceCBusiness Media)

3.2.2.2 Predator–Prey PSO for Identifying Controller Parameters

In the Gbest model of PSO, each particle has its current position and velocity in a
space of solution. The best solution found so far are Pbest and Gbest. Each particle
aims to get a global optimal solution by current velocity, Pbest, and Gbest. Gbest
model can be expressed as (Shi and Eberhart 1998a)

vij .k C 1/ D !vij .k/C c1r1
�
pi .k/ � xij .k/

�
C c2r2

�
gi .k/ � xij .k/

�
(3.7)

xij .k C 1/ D xij .k/C vij .k C 1/ (3.8)

where vi(k) and xi(k) respectively denote the velocity and position of the i th particle
at step k, j is the dimension of particle i, c1 and c2 are weight coefficients, r1 and r2

are random numbers between 0 and 1, pi is the best position of the i th particle, and
gi is the best position which particles have ever found.

Generally, the basic PSO algorithm mentioned above is easily falling to local
optimal solutions. In this case, the concept of predator–prey behavior is proposed
to improve the basic PSO. Predator–prey PSO is a method which takes a cue
from the behavior of schools of sardines and pods of killer whales (Higashitani
et al. 2006; Wang and Duan 2013). In this model, particles are divided into two
categories, predator and prey. Predators show the behavior of chasing the center of
preys’ swarm; they look like chasing preys (Duan et al. 2011), and preys escape
from predators in multidimensional solution space. After taking a trade-off between
predation risk and their energy, escaping particles would take different escaping
behaviors. This helps the particles avoid the local optimal solutions and find the
global optimal solution.
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The velocities of the predator and the prey in the improved PSO can be defined
by (Higashitani et al. 2006)

vdij .k C 1/ D !d vdij .k/C c1r1
�
pdij

�
k
�
�xdij

�
k /�C c2r2

�
gdj

�
k
�
�xdij

�
k /�

C c3r3
�
gj .k/ � xdij

�
k /� (3.9)

vrij .k C 1/ D !rvrij .k/C c4r4
�
prij

�
k
�
�xrij

�
k /�

C c5r5
�
grj .k/ � xrij

�
k /�C c6r6

�
gj
�
k
�
�xrij

�
k /�

� Pasign
�
xdIj .k/ � xrij

�
k /� exp Œ�bj xdij .k/ � xrij .k/ j�

(3.10)

where d and r denote predator and prey, respectively, pdi is the best position of
predators, gd is the best position which predators have ever found, pri is the best
position of preys, gr is the best position which preys have ever found, g is the best
position which all the particles have ever found, and !d and !r can be defined as

!d D 0:2 exp

	

�10
iteration

iterationmax




C 0:4 (3.11)

!r D !max �
!max � !min

iterationmax
iteration (3.12)

PSO can be also improved by a modification of the inertia weight !r in (3.12).
The inertia weight, whose value is between 0 and 1[Adaptive Particle Swarm
Optimization], can be used to balance the local and global search during the
optimization process. If the inertia weight is big, it is possible to enhance global
search. Otherwise, smaller inertia weight will enhance the local search. In (3.12)
iterationmax is maximum iteration, !max and !min are, respectively, maximum and
minimum of !r. In our experiment, !max and !min are 0.9 and 0.2, respectively. And
the definition of I is given by

I D

�

k
ˇ
ˇ
ˇmin
k
.jxdk � xri j/

�

(3.13)

Then I denotes the number of the ith prey’s nearest predator. In (3.10), P is used
to decide if the prey escapes or not (P D 0 or P D 1), and a, b are the parameters
which decide the difficulty of the preys escaping from the predators. The closer
the prey and the predator, the harder the prey escapes from the predator. a, b are
denoted by

a D xspan; b D
100

xspan
(3.14)

where xspan is the span of the variable.
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The parameter identification of the conventional flight controller can be treated
as the typical continual spatial optimization problem. PSO is a novel way for solving
the problem. PSO, which is a bio-inspired computation algorithm, can be applied to
flight system control to reduce the workload of conventional designer. The bounds
of the control gain parameters are set, and PSO searches for the corresponding space
automatically to find the optimal parameters. The process in conventional design is
conducted manually; now it can be done automatically. Bio-inspired computation
can be applied to promote the automation of conventional controller design.

Using the proposed predator–prey PSO algorithm to obtain the optimal parameter
combination for the UAV flight control system here, the fitness function is given by

J D
1

2

Z �
x’Qx C u’Ru

�
dt (3.15)

where x and u are, respectively, the state vector and the control vector. Q and
R are diagonal positive matrix. Here the weighting matrices are chosen as Q
Ddiag(50,10,20,30,30) and R Ddiag(100,100,100). The smaller J, the better the
particle.

The position vector of the predator and the prey is defined by

xd D
�
k1 k2 k3 k4 k5 k6 k7 k8

�

xr D
�
k1 k2 k3 k4 k5 k6 k7 k8

�

where xd and xr have the constraint of ˙ 10, which is set according to exact
experience.

The process of proposed predator–prey PSO algorithm for solving UAV con-
troller parameter identification can be described with Fig. 3.5 (Duan and Sun 2013).

The above mentioned flow chart of the predator–prey PSO algorithm process can
also be illustrated with Fig. 3.6.

The complexity of predator–prey PSO algorithm can be computed, and Table 3.1
shows a comparison of the complexity analysis between basic PSO and predator–
prey PSO.

In Table 3.1, mDmdCmr, and n is the dimension of particle’s position. The total
complexity of basic PSO and predator–prey PSO can be expressed as

T .n/basicPSO D O .14Nmax mn/ (3.16)

T .n/improved PSO D O
�
Nmax mr n

2
�

(3.17)

3.2.3 Experiments

In order to investigate the feasibility and effectiveness of the proposed predator–
prey PSO approach for identification of UAV controller parameters, a series of
experiments are conducted under some constrained conditions.
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Fig. 3.5 The pseudocode of predator–prey PSO algorithm for UAV flight controller (Reprinted
from Duan et al. (2013a), with kind permission from Springer ScienceCBusiness Media)

The predator–prey PSO algorithm is implemented in a Matlab 2008a pro-
gramming environment with an Intel Core 2 PC running Windows XP SP2. No
commercial PSO tools are used in these experiments.

Case 1: In this case, the parameter values of predator–prey PSO are set
to ˛D 10ı,ˇD 10ı, NmaxD 100, tD 20s, machD0.8, HD 8000m, mdD 10,
mrD 20 where t is the simulating time of the controller. Comparison of the
experiment results between the improved PSO and the LQR method which could
directly compute the state-feedback gain K is illustrated from Fig. 3.7 (a–e).
Figure 3.7f shows the evolution curve of the proposed PSO.
The final optimal result is K D [�0.1471,�0.4012, 1.2393, �0.4847, 0.1373,
1.1180, �0.3967, 4.9621], the minimum fitness value Jmin D 223.0907, and the
best iteration bestN D 100. As indicated in Fig. 3.7, as expected, the proposed
algorithm can guarantee that the achieved states are almost the same as the
ones obtained by LQR. And the realization of the proposed method is simpler
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Fig. 3.6 Flow chart of the
predator–prey PSO
(Reprinted from Duan et al.
(2013a), with kind permission
from Springer
ScienceCBusiness Media)

Table 3.1 Comparison of complexity analysis between basic PSO and predator–prey PSO

Complexity

Step Operation Basic PSO Predator–prey PSO

1 Initialize O(2mn) O[2(md C mr)n]
2 Calculate the fitness value of all the particles O(7m) O(7(md C mr))
3 Update all the positions and the velocities O(14mn) O(14mdn C (31 C n)mrn)
4 Stop and output result O(1) O(1)

than LQR. Figure 3.7f also demonstrates that the algorithm can converge to the
optimal solution quickly.

Case 2: In this case, the parameter values are ˛D 10ı,ˇD 10ı, NmaxD 100,
tD 20s, machD 1.2, HD 15000m, mdD 10, mrD 20 where t is the simulating
time of the controller. Comparisons of the experiment results between the
improved PSO and the LQR method are illustrated from Fig. 3.8a–e. Figure 3.8f
shows the evolution curve of the proposed PSO.
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Fig. 3.7 Results of identifying controller parameters for UAVs based on predator–prey PSO
in Case 1 (a) Comparison of attack angle responses. (b) Comparison of pitch rate responses.
(c) Comparison of sideslip angle responses. (d) Comparison of roll rate responses. (e) Comparison
of yaw rate responses. (f) Evolution curve of predator–prey PSO (Reprinted from Duan et al.
(2013a), with kind permission from Springer ScienceCBusiness Media)

The final optimal results are K D [0.0416, 0.8298, �2.7208, 1.4825, �1.0683,
1.9002, �0.2273, 2.6742], the minimum fitness value Jmin D 68.3361, and the
best iteration bestN D 99. Although the initial conditions are much different from
those of experiment 1, the improved algorithm can find the optimal solution.
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Fig. 3.8 Results of identifying controller parameters for UAVs based on predator–prey PSO
in Case 2 (a) Comparison of attack angle responses. (b) Comparison of pitch rate responses.
(c) Comparison of sideslip angle responses. (d) Comparison of roll rate responses. (e) Comparison
of yaw rate responses. (f) Evolution curve of predator–prey PSO (Reprinted from Duan et al.
(2013a), with kind permission from Springer ScienceCBusiness Media)

From these two experimental results, it is obvious that the proposed predator–
prey PSO approach could make the UAV controlling system obtain better per-
formance than the conventional LQR method. The state-feedback gain obtained
according to the predator–prey PSO can guarantee fast response, precise control,
and strong robustness.
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Based on the UAV model and the proposed predator–prey PSO algorithm,
we developed a software platform of UAV controller design. The graphical user
interfaces (GUI) of this platform are shown in Fig. 3.9.

3.3 PSO Optimized Controller for Unmanned Rotorcraft
Pendulum

MAV offer several advantages as autonomous UAVs (Pflimlin et al. 2010; Sun and
Duan 2013; Duan and Sun 2013). They can be very small with a compact layout.
Many are capable of high-speed flight in addition to the normal hover and vertical
take-off and landing capabilities. These features make them well suited for a variety
of missions, especially in urban environments. A recent announcement by the US
Government of plans to greatly increase the number of unmanned aircraft on station
in Iraq and Afghanistan helps drive the surge in interest for unmanned vehicles. US
Defense Secretary Robert Gates (Bloss 2009) commented that unmanned aircraft is
essential to provide real-time video of insurgent activity and argued that the need
is growing at 300 % per year. Nowadays, many companies are functioning towards
research and development of MAVs, and the representative achievements are Cypher
series by Sikorsky and MAVs by Honeywell etc.

Hover and stare is of the paramount importance to the performance of MAVs, as
they are designed to perform surveillance and reconnaissance missions. However,
pendulum-like oscillation (see Fig. 3.10) triggered by external disturbances and
other uncertain factors will badly impair its performance, resulting in blurred images
or even MAVs’ overturning. As a result, control techniques of MAVs are becoming
more and more important for their wide applications in civil and military fields, with
special regard to the hover and stare state for better performances of surveillance
and reconnaissance missions. This section focuses on a particular kind of MAV,
which is driven by a rotor and a ducted fan, and proposes a combination control law
design approach to stabilize the hover and stare pendulum-like oscillation based on
LQR, in which an improved PSO algorithm is utilized for parameter optimization
of matrix Q and R in the linear-quadratic regulator. In this way, the MAV’s dynamic
properties can be ameliorated efficiently while executing surveillance missions that
requires perfect stability and rapid responses.

3.3.1 Mathematical Model of Pendulum Oscillation for MAVs

The MAV in this section adopts the axial symmetrical layout. Owing to the fact that
the suspension center moves freely with rotor wings in the plane, pendulum-like
oscillation is nonlinear, strongly coupled, and of high order (Pflimlin et al. 2010).
In this section, a mathematical model representing the pendulum-like oscillation
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Fig. 3.9 UAV controller design software platform based on predator–prey PSO. (a) Yaw rate
response interface. (b) Predator–prey PSO convergence process interface (Reprinted from Duan
et al. (2013a), with kind permission from Springer ScienceCBusiness Media)
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Fig. 3.10 Pendulum-like oscillation in actual flight (x-axis) (Reprinted from Duan and Sun (2013),
with kind permission from Springer ScienceCBusiness Media)

a b

Fig. 3.11 Coordinates of the pendulum model and decomposition of oscillation angle. (a) Coor-
dinates of the pendulum model. (b) Decomposition of oscillation angle (Reprinted from Duan and
Sun (2013), with kind permission from Springer ScienceCBusiness Media)

in the hover and stare state is obtained by using the Lagrangian method, and the
corresponding linearized model is obtained in the neighborhood of the hover and
stare equilibrium.

3.3.1.1 Nonlinear Mathematical Model of MAV Pendulum-Like
Oscillation

The pendulum can be abstracted as a system consisting of the suspension point Oh,
the pendulum rod OhOt, and the pendulum mass Ot (see Fig. 3.11).
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In Fig. 3.11, OXYZ is the ground-fixed coordinate system, Ohx1y1z1 represents
a mobile ground coordinate system, with the point Oh as the origin and parallel to
OXYZ, while Ohx2y2z2 is defined as the pendulum-body coordinate frame, which
originates from Oh, and axis z2 points downward along the pendulum rod OhOt.
Decompose the two-dimensional pendulum-like oscillation to one in the direction
of axis X and Y, and the transition matrix R from Ohx2y2z2 to Ohx1y1z1 is obtained
as follows:

R D

2

4
cos �y sin �x sin �y cos �x sin �y
0 cos �x � sin �x

� sin �y sin �x cos �y cos �x cos �y

3

5 (3.18)

Suppose the position vector of the suspension point Oh in the coordinate frame of
OXYZ and the pendulum mass Oh in the coordinate frame of Ohx2y2z2 are presented
with rhD [x,y,z]T , r0

tD [0,0,l]T , respectively. Then, the coordinate of point Ot in
Ohx1y1z1 can be calculated according to the following equation:

rht D R � r
0
t D

�
l cos �x sin �y;�l sin �x; l cos �x cos �y

�T
(3.19)

where l denotes the distance from Oh to Ot, i.e., the length of the pendulum.
Finally, we have the coordinate of Ot in coordinate frame OXYZ presented as in

(3.20):

rt D rh CR � r
0 (3.20)

The Lagrange function of the pendulum system:

L D T0 � V D Tm C T
0
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M � V

D
1

2
m PrTh Prh C

1

2
mtV

T
t V C

1

2
Jx2!

2
x2 C
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D
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�
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C
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�
l P�2xC

�
1C3cos2�x

�
l P�2y

i

Cmtl
�
Px P�y cos �x cos �y � Px P�x sin �x sin �y � Py P�x cos �x � Pz P�x sin �x cos �y

� Pz P�y cos �x sin �y
�
Cmtgl cos �x cos �y � .mCmt/

�
z � z0

�
g (3.21)

where Tm, T 0
M , T00

M represent, respectively, kinetic energy of the suspension center
Oh, translation kinetic energy of the pendulum mass Ot, and rotational kinetic
energy of the pendulum rod around the centroid of Ot and V is potential energy
of the system, choosing the initial state of the pendulum-like oscillation as the zero-
potential energy surface.
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Table 3.2 Main parameters
of the MAV system structure

Symbol Value Physical meaning

m 10 kg Suspension center quality
mt 20 kg Pendulum quality
l 0.86 m Pendulum length
g 9.8 m/s2 Gravity acceleration
� x, � y – Pendulum angle around axis x, y
	x, 	y – Pitch and roll angle
ax, ay – Suspension center acceleration
ux, uy – Control force on Oh

Therefore, from the Lagrange equation it can be deduced:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

d

dt

	
@L

@ P�x




�
@L

@�x
D 0

d

dt

 
@L

@ P�y

!

�
@L

@�y
D 0

(3.22)

Considering all the above equations (3.18, 3.19, 3.20, 3.21, and3.22), the
nonlinear mathematical model of the MAV pendulum-like oscillation is finally
obtained as follows:
8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

R�x D
�
3 Rx sin �x sin �y C 3 Ry cos �x C 3Rz sin �x cos �y C 2l P�x P�y cos �x sin �y

� 3l P�2y sin �x cos �x � 3g sin �x cos �x
�
=
�
cos2�y C 3

�
l

R�y D
�
� 3 Rx cos �x cos �y C 3Rz cos �x sin �y C 6l P�x P�y sin �x cos �x

� l P�2x sin �y cos �y � 3g cos �x sin �y
�
=
�
cos2�x C 3

�
l

(3.23)

Table 3.2 gives the main parameters of the MAV system structure in this section.

3.3.1.2 Linearization of Mathematical Model

Step 1: Change the pendulum angle around axis x, y (� x,� y) to the pitch and roll
angle (	x, 	y) according to 	xD � y, 	yD� � x, and then (3.23) can be described as

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

R	y D
�
3 Rx sin	x sin	y � 3 Ry cos	y C 3Rz sin	y cos	x C 2l P	x P	y cos	y sin	x

� 3l P	2x sin	y cos	y � 3g sin	y cos	y
�. �

cos2	x C 3
�
l

R	x D
�
� 3 Rx cos	y cos	x C 3Rz cos	y sin	x C 6l P	x P	y sin	y cos	y

� l P	2y sin	x cos	x � 3g cos	y sin	x
�. �

cos2	y C 3
�
l

(3.24)
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Step 2: Choose the state variables Xe D
�
x; 	x; Px; P	x; y; 	y; Py; P	y; z; Pz; Rx; Ry; Rz

�T
,

the input of the system u D Œ Rx; Ry�T . Expand (3.24) into Taylor series in the vicinity
of the equilibrium point, and the linear model of the pendulum-like oscillation is
finally obtained as follows:

�
PXx
PXy



D

�
Ax 0

0 Ay

 �
Xx
Xy



C

�
Bx 0

0 By

 �
ux
uy



(3.25)

where the state vector Xx D
�
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�T
, Xy D

�
y; 	y; Py; P	y

�T
, and

Ax D

2

6
6
6
6
4

0 0 1 0

0 0 0 1

0 0 0 0

0 �
3g

4l
0 0

3

7
7
7
7
5

,Ay D

2

6
6
6
6
4

0 0 1 0

0 0 0 1

0 0 0 0

0 �
3g

4l
0 0

3

7
7
7
7
5

,Bx D

2

6
6
6
6
4

0

0

1

�
3

4l

3

7
7
7
7
5

,By D

2

6
6
6
6
4

0

0

1

�
3

4l

3

7
7
7
7
5

.

3.3.2 Oscillation Controller Design Based on LQR and PSO

3.3.2.1 Characteristics of Pendulum-Like Oscillation

From the linear model, the MAV pendulum-like oscillation in the direction of X and
Y is no longer coupled with each other. The pendulum system can be reduced to
two four-order subsystems, which are independent of one another. Due to similarity
between matrix Ax and Ay, we choose either of the two subsystems to analyze
characteristics of the MAV pendulum-like oscillation.

Considering pendulum motion only in the direction of axis X, the state-space
equation of the linearized X subsystem is presented as follows:

�
PX D AX C BU

Y D CX
(3.26)

where XDŒx1; x2; x3; x4�
TD

�
x; 	x; Px; P	x

�T
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3

7
7
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In the actual flight, external disturbances such as crosswinds jeopardize stability
of hover and stare state and lead to a considerate degradation of the surveillance
performance and result in even false intelligence information. Assume there is a
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Fig. 3.12 Responses of the MAV pendulum-like oscillation system (Reprinted from Duan and Sun
(2013), with kind permission from Springer ScienceCBusiness Media)

sudden gust, the pendulum system gets an initial state 	x(0)D 0.05rad. The inherent
characteristics of the MAV pendulum-like oscillation system and the responses are
given in Fig. 3.12.

As shown in Fig. 3.12, due to external disturbances of crosswinds, which result
in an initial state 	x(0) D 0.05rad, the pendulum-like oscillation occurs in MAV
that is required to be stable enough to carry out hover and stare missions. However,
the actual fact shown by the analysis results states clearly that the position of the
suspension, denoted by x in the Fig. 3.12, does not remain in the original place
but moves to another site in 20 s, which may bring about deviation from the ideal
monitoring precision. Furthermore, the MAV’s body swings back and forth just
in the way as a pendulum does and eventually converges to the equilibrium point
after 25 s.

3.3.2.2 Control Law Design Based on LQR

As mentioned above, the hover and stare state is inherently unstable, and external
disturbances would give rise to pendulum-like oscillation depicted as in Fig. 3.12.
A novel type of optimal control law based on LQR and PSO is designed in this
section, which is used to eliminate pendulum-like oscillation with the shortest
duration. In this controller, the position of the suspension point x and the pendulum
angle 	x are the two main state variables to be controlled to the desired value. In
order to ensure the robustness and optimality of the close loop, the LQR design
technique is applied due to the fact that it has a very nice robustness property
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and has been widely used in many applications. The key issue of LQR controller
design is how to select an appropriate control vector u(t) so that the given quadratic
performance index (see (3.27)) obtains the minimum value. It is proved that the
performance index (10) can reach its minimum by the designed linear control law
in (3.28).

J D

Z 1

0

�
XTQX C uT Ru

�
dt (3.27)

u.t/ D �KX.t/ D R�1BT PX.t/ (3.28)

and the optimal matrix P can be calculated from the following Algebraic Riccati
Equation:

ATP C PA � PBR�1BT P CQ D 0 (3.29)

Taking all factors into account, including the performance of the control system
and restrictions on the total energy consumed, matrix Q and R can be defined in the
form of QD diag(q11,q22,0,0), RD 1, in which parameters q11 and q22 are crucial for
a splendid dynamic response. As a result, the proposed algorithm takes advantage
of PSO’s high operating efficiency, fast convergence speed, and model simplicity,
which is used to search the appropriate parameter setting of the LQR control law
design approach.

Let the input u be the control force acting on the suspension center, and the
corresponding pendulum-holding back control law from the LQR is described as
follows:

u D �KX D � .k1x1 C k2x2 C k3x3 C k4x4/ (3.30)

where K denotes the feedback parameters obtained for the LQR and X denotes
the states of the system, i.e., the position of the suspension center, the angle of
the pendulum, the speed of the suspension center, and the angular velocity of the
pendulum, respectively.

The PSO-based LQR controller for prohibiting MAV pendulum-like oscillation
of the hover and stare state in presence of external disturbances can be illustrated
with Fig. 3.13.

3.3.2.3 Key Settings for PSO

1. Fitness Function f
The fitness function f chosen in LQR controller can be described as follows:
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Fig. 3.13 Structure of pendulum-like oscillation control system (Reprinted from Duan and Sun
(2013), with kind permission from Springer ScienceCBusiness Media)

f D
1

Z 1

0

�
XTQX C uT Ru

�
dt

(3.31)

where uD� (k1x1C k2x2C k3x3C k4x4), KD [k1,k2,k3,k4] D lqr(A,B,Q,R),
QD diag(q11,q22,0,0).

2. Inertia Weight !
The inertia weight ! controls the exploration properties of the algorithm, with
larger values facilitating a more global behavior and smaller values facilitating a
more local behavior; thus results of the algorithm depend largely on ! selection
(Duan and Liu 2010; Liu et al. 2012; Duan and Sun 2013). Generally, there are
two ways to choose the inertia weight, namely, constant ! and time-variant !.Shi
suggested using 0.8<! < 1.4, which starts with bigger ! values (a more global
search behavior) that is dynamically reduced (a more local search behavior)
during the optimization. In this section, ! can be declined linearly from 1.4 to
0.8 in the former 75 % phylogenetic scale and keep constant in the rest time.

3. Population Size m
According to the scale of the exact optimization problem, m is set between 40
and 150. Here we choose mD100.

4. Acceleration Constants c1 and c2

Shi and Eberhart (1998b) suggests c1D c2D 2. Related work showed that having
each particle put slightly more trust in the swarm (larger c2 value) and slightly
less trust in itself (smaller c1 value), which seems to act better for the structural
design problems. According to experiences, we choose c1 D 1.8 and c2 D 1.3.
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Table 3.3 Control
parameters of the PSO-based
LQR approach

Parameter Optimized value

Matrix Q Diag(245.6,250.3 0,0)
Feedback vector K [15.6709, �17.1806, 8.6616, 2.2921]
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Fig. 3.14 The average evolution curves of the PSO (Reprinted from Duan and Sun (2013), with
kind permission from Springer ScienceCBusiness Media)

3.3.3 Experiments

Assume the designed MAV executes a surveillance mission using the hover and stare
mode in the actual flight. Considering external disturbances, we take crosswinds,
for example, the system gets an initial state x D [0, 0.05, 0, 0], which gives rise to
pendulum oscillation without an appropriate control.

Using the proposed controller described in Fig. 3.1 and experimental settings
given above, the control parameters which include the optimal weight matrix Q and
the resulting feedback vector K are obtained, which are shown in Table 3.3.

Fig. 3.14 shows the evolution curve of the PSO algorithm for optimizing the
weight parameters of the designed LQR controller.

The zero-input responses of the MAV pendulum-like oscillation with an initial
pendulum angle of 0.05rad, which is brought about by crosswinds in the actual flight
environment (See Fig. 3.15).

Compared with the responses without control in Fig. 3.13, the dynamic behaviors
of x and 	x state obviously that the closed loop eliminates the pendulum-like oscil-
lation and the state converges to the equilibrium point with an average time of 6 s.

Furthermore, considering a constant interference force acting upon the pendulum
system besides the initial state, the resulting responses are given in Fig. 3.16.
The interference value is taken as 0.2m/s2, and the control framework and relative
parameters remain the same as mentioned above in Fig. 3.13 and Table 3.3.
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Fig. 3.15 The zero-input response of the MAV pendulum-like oscillation system (Reprinted from
Duan and Sun (2013), with kind permission from Springer ScienceCBusiness Media)
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Fig. 3.16 Responses of the MAV pendulum system with a constant disturbance (Reprinted from
Duan and Sun (2013), with kind permission from Springer ScienceCBusiness Media)
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As presented in Fig. 3.16, the PSO-based LQR controller can eliminate the
interference of the constant disturbance and the initial state in 6 s. The MAV is
stabilized to a state of x D [0.0128, 0, 0, 0], which means that the LQR control
design technique based on PSO is robust for external disturbances.

3.4 Conclusions

As a key component of UAV system, controller acts as the brain of UAVs. So the
selection of controller parameters is crucial in the design of the flight control system.
However, for the existence of strong coupling among the inputs and the nonexistence
of mapping relationship between the performance index and the controller parame-
ter, it is a tough work. The 6-DOF nonlinear model of UAVs is illustrated, which is
the prerequisite for simplifying and linearizing the mathematical model. Then UAV
equations can be simplified into nonlinear equations of 5-DOF with the assumption
that the thrust and the resistance of the aircraft maintains the same. And it can be
modeled as linear time invariant state-space perturbation models, with the nominal
trajectory being steady-level trimmed flight. To reduce the workload of the designers
during the process of designing complicated UAV control system, a predator–prey
PSO algorithm for identifying parameters of UAV flight control system is presented.

The performance of hover and stare is the key issue to MAVs when carrying
out new challenging reconnaissance missions in urban warfare (local, close-up
range, hidden reconnaissance, operation between obstacles, and maybe even inside
buildings). However, pendulum-like oscillation caused by uncertainty will badly
impair the performance of hover and stare, resulting in blurred images or even
overturn. However, pendulum-like oscillation caused by uncertainty and external
disturbances badly jeopardize the performance of hover and stare, resulting in
blurred images or even MAV’s overturning. So the second part of this chapter
mainly deals with control issue of pendulum-like oscillation in an MAV’s hover
and stare state in the presence of external disturbances; a novel type of PSO-based
LQR controller for stabilizing the pendulum-like oscillation is developed, which can
enhance the MAV’s performance efficiently. Simulation results verify the feasibility,
effectiveness, and robustness of our proposed approach, which provides a more
effective way for control law design.
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Chapter 4
UAV Path Planning

Haibin Duan and Pei Li

Abstract Path planning of unmanned aerial vehicle (UAV) is a rather complicated
global optimum problem which is about seeking a superior flight route considering
the different kinds of constrains under complex dynamic field environment. Several
significant considerations for an ideal path planner includes optimality, complete-
ness, and computational complexity, last one of which is the most important
requirement since path planning has to be executed quickly due to fast vehicle
dynamics. This chapter mainly focuses on path-planning problem for UAVs, from
2-D path planning to 3-D path planning, from path planning for a single UAV to
coordinated path replanning for multiple UAVs. Under the assumption that the UAV
maintains constant flight altitude and speed when on a mission, a chaotic artificial
bee colony (ABC) approach to 2-D path planning is proposed. Besides, a new hybrid
meta-heuristic ant colony optimization (ACO) and differential evolution (DE)
algorithm is proposed to solve the UAV path-planning problem in three-dimensional
scenario. Then path-smoothing strategies are adopted to make the generated path
feasible and flyable. Finally, based on the construction of the basic model of
multiple UAV coordinated path replanning, which includes problem description,
threat modeling, constraint conditions, coordinated function, and coordination
mechanism, a novel Max–Min adaptive ACO approach to multiple UAV coordinated
path replanning is presented.

4.1 Introduction

Unmanned aerial vehicle (UAV) is one of the inevitable trends of the modern aerial
weapon equipments owing to its potential to perform dangerous, repetitive tasks
in remote and hazardous environments (Beard et al. 2002). Research on UAV can

The original version of this chapter was revised. A correction to this chapter is available at
https://doi.org/10.1007/978-3-642-41196-0__9

H. Duan and P. Li, Bio-inspired Computation in Unmanned Aerial Vehicles,
DOI 10.1007/978-3-642-41196-0__4, © Springer-Verlag Berlin Heidelberg 2014
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directly affect battle effectiveness of the air force, therefore is crucial to safeness
of a nation. Path planning is an imperative task required in the design of UAVs,
which is to search out an optimal or near-optimal flight path between an initial
location and the desired destination under specific constraint conditions. There are
several considerations for an ideal path planner including optimality, completeness,
and computational complexity, last one of which is the most important requirement
since path planning has to occur quickly due to fast vehicle dynamics (Yang and
Kapila 2002). The flight path planning in a large mission area is a typical large-
scale optimization problem; a series of algorithms have been proposed to solve
this complicated multi-constrained optimization problem, such as the A* algorithm,
evolutionary computation, genetic algorithm, and ant colony algorithm. However,
those methods can hardly solve the contradiction between the global optimization
and excessive information.

4.1.1 Characteristic of Path Planning for UAVs

Compared with the path-planning problem in other applications, path planning for
UAVs has the following attributes (Zheng et al. 2005):

• Stealth: The air vehicles are usually required to carry out missions in threatened
environments. In such a circumstance, stealth means safety. It is very important
to minimize the probability of detection by hostile radar. There are two ways
to achieve this. One is absorbing incoming radar radiation as much as possible
and/or reflecting it in a direction different than the ambient direction, so that little
is reflected back to the original radar site. The other is flying along a path which
keeps away from perceived threats and/or has a lower altitude to avoid radar
detection utilizing the masking of terrain.

• Physical feasibility: The physical feasibility of a path refers to the physical
limitations from the use of UAVs. They include the following constraints:

– Maximum path distance: It determines the elapsing time between the start and
goal points and finally it depends on the fuel supply of aircraft.

– Minimum path leg length: Due to inertia of motion, aircraft will fly straightly
along a path for a certain distance before initiating a turn. We call it path
length. In order to decrease navigational error, we must make the path leg
length larger than a minimum threshold.

• Performance of mission: Each flight has its special mission. This depends on the
application. In order to complete the mission, some requirements must be met
when we design a path. These requirements include:

– Maximum turning angle: This constrains the path allowing only to turn an
angle less than or equal to a prespecified threshold. Aircraft usually does not
wish to make severe turns in some flight scenarios. For example, aircraft in
tight formation cannot make severe turns without a greater risk of collision.

– Maximum climbing/diving angle: This has the same definition as maximum
turning angle but in altitude direction. It can be either positive or negative,
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which depends on its moving direction (it is positive if it is climbing). In order
to decrease the risk of collision, a sharp climb or dive should be avoided.

– Minimum flying height: As mentioned before, in order to reduce the proba-
bility of being detected by the hostile radar, the aircraft should fly along a
low penetration path so as to enhance terrain masking effect. But on the other
hand, this definitely increases the probability of crashing into the ground. For
this reason, we must maintain a minimum flying height for the entire path.

– Specific approaching angle to goal point: In some applications such as
attacking operation, an optimal direction is fixed a priori. Thus the aircraft
should go along a specific direction to approach the goal point.

• Cooperation: The path-planning algorithm must be compatible with the cooper-
ative nature envisioned for the use of UAVs. In the future operation of UAVs, a
flight mission might involve multiple UAVs. In such an application, the ability to
coordinate the arriving time of each UAV will be vital in many missions.

• Real-time implementation: The flight environments of the UAVs are usually
constantly changing. Therefore, our path-planning algorithm must be compu-
tationally efficient. The replanning ability of path is critical for adapting to
unforeseen threats.

4.1.2 Main Features of Path Replanning for Multiple UAVs

The current combating environments are not static; they are constantly changing
with many uncertain factors. In the air battlefield, there are not only a number
of static threats which have been known a priori, but also other “pop up” or
some threats become known only when one UAV maneuvers into their proximity.
Furthermore, even those static threats whose locations have been detected ahead
of time, their threat grade or threat scope may be changing frequently, which
also makes them uncertain. Considering these uncertain factors, the preplanned
trajectories often are not adapted to the practice changing complicated air battlefield.
In order to increase the survival chance of multiple UAVs, the path replanning
is essential while encountering the pop-up threats (Zucker et al. 2007; Duan et
al. 2009). Suppose maximizing the probability that the mission in dynamic and
uncertain environments will succeed, it is desirable to assign multiple UAVs to
conduct all the missions together (Beard and McLain 2003), and thus the problem of
multiple UAV coordinated path replanning in dynamic and uncertain environments
is put forward. The coordination of multiple UAVs is considered mainly from two
aspects (Duan et al. 2009):

• Simultaneous arrival, which requires determining an estimated time of arrival
(ETA) at the specific destinations. Each UAV selects candidate path and adjusts
the flight velocity corresponding to the ETA. Of course, the multiple UAV
trajectories and velocities will change coordinately when some pop-up threats
occur.
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• Collision avoidance, which requires that the trajectories of multiple UAVs should
have no overlaps or crosses between each other.

4.2 Modeling for Path Planning

4.2.1 Environment Representation

Modeling of the threat sources is the key task in single UAV optimal path planning.
The typical UAV combating field model in three-dimensional scenario can be
depicted with Fig. 4.1 (Duan and Huang 2013).

In order to simplify the single UAV path-planning problem, the UAV task region
can be divided into two-dimensional mesh, thus forming a two-dimensional network
diagram connecting the starting point and goal point, which can be shown in
Fig. 4.2. In this way, the problem of single UAV path planning is the general path
optimization problem in essence.

In Fig. 4.3, suppose the flight task for the single UAV is from node B to node
A. There are some threatening areas in the task region. Let OA be the x -axis
and OB be the y -axis; a coordinate system is then established. We divide OA
into m subsections and divide OB and OC into n subsections equally. There are
(m� 1) vertical lines between node B and node A, which can be labeled with L1,
L2, : : : , Lm � 1. The (m� 1) vertical lines and the (2nC 1) horizontal lines cross-
constitute (m� 1)(2nC 1) nodes. We named these nodes as L1(x1,y1), L2(x2,y1),
: : : , Lm � 1(xm � 1,y1), : : : , L1(x1,y2n C 1), : : : , Lm � 1(xm � 1,y2n C 1). Where Li(xi,yi) is
the ith node in the vertical line Li. In this way, the path from the starting node (A) to
the target node (B) can be described as follows (Xu et al. 2010; Li and Duan 2012):

Fig. 4.1 Typical UAV combating field model in three-dimensional scenario
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Path D
˚
o;L1 .x1; yk1/ ; L2 .x2; yk2/ ; � � � ; Lm�1

�
xm�1; yk.m�1/

�
; A
�

(4.1)

where kiD 1, 2, � � � , 2nC 1.
To accelerate the search speed of the algorithm, we can let line ST be the x -axis

and take the coordinate transformation on each discrete point (x(k), y(k)) according
to (4.2), where � is the angle that the original x -axis contrarotates to parallel seg-
ment ST, while (xs,ys) represents the coordinates in the original coordinate system:

�
x0.k/

y0.k/



D

�
cos � sin �
� sin � cos �

 �
x.k/ � xs
y.k/ � ys



(4.2)

Thus, the x coordinate of each point can be obtained by a simple equation
x’.k/ D jST j

DC1
� k; therefore the points collection C can be simplified into

C’Df0, L1(y’(1)), L2(y’(2)), : : : , Lk(y’(k)), : : : , LD(y’(D)), 0g, which can greatly
reduce the computational cost.

4.2.2 Evaluation Function

The performance indicators of the UAV route mainly include the threat cost Jt and
the fuel cost Jf , the calculating equation of which are presented as follows:

Jt D

Z L

0

wt d l (4.3)

Jf D

Z L

0

wf d l (4.4)

Fig. 4.2 Typical UAV
mission area (Reprinted from
Duan et al. (2009), with kind
permission from Elsevier)
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Fig. 4.3 Typical UAV battle field model (Reprinted from Xu et al. (2010), with kind permission
from Elsevier)

where wt and wf are variables closely related with the current path point and
changing along with “l,” which respectively present the threat cost and fuel cost
of each line segment on the route, while L is the total length of the generated path.

In order to simplify the calculations, a computationally more efficient and
acceptably accurate approximation to the exact solution is adopted (Duan et al.
2011). The threat cost of each edge connecting two discrete points was calculated at
five points along it, as is shown in Fig. 4.4.

If the ith edge is within the effect range, the threat cost can be computed by the
following expression:

wt;Li D
Li

5
�

NtX

kD1

tk �

 
1

d40:1;i;k
C

1

d40:3;i;k
C

1

d40:5;i;k
C

1

d40:7;i;k
C

1

d40:9;i;k

!

(4.5)

where Nt is the number of threatening areas, Li is the ith sub-path length, d0.1,i,k is
the distance from the 1/10 point on the ith edge to the kth threat, and tk is the threat
level of kth threat.

Assuming that the speed of the UAV is a constant, then the fuel cost of the path
Jf can be considered equal to L, the total length of path.

The total cost for traveling along the path comes from a weighted sum of the
threat and fuel costs, which can defined as follows:
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Fig. 4.4 Computation of threat cost (Reprinted from Xu et al. (2010), with kind permission from
Elsevier)

J D kJt C .1 � k/ Jf (4.6)

where k is a variable between 0 and 1 (0.5 in our algorithm), which gives the
designer certain flexibility to dispose relations between the threat exposition degree
and the fuel consumption. When k is more approaching 1, a shorter path is needed to
be planned, and less attention is paid to the radar’s exposed threat. Otherwise, when
k is more approaching 0, it requires avoiding the threat as far as possible on the cost
of sacrifice the path length. The optimized path is founded only when function J
reaches its minimal value.

4.3 Chaotic ABC Approach to UAV Path Planning

4.3.1 Brief Introduction to Chaos Theory

Chaos is the highly unstable motion of deterministic systems in finite phase space
which often exists in nonlinear systems. Chaos theory is epitomized by the so-called
butterfly effect detailed by Lorenz (1963). Attempting to simulate numerically a
global weather system, Lorenz discovered that minute changes in initial conditions
steered subsequent simulations toward radically different final stales, rendering
long-term prediction impossible in general. Until now, chaotic behavior has already
been observed in the laboratory in a variety of systems including electrical circuits,
lasers, oscillating chemical reactions, fluid dynamics, as well as computer models
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of chaotic processes. Chaos theory has been applied to a number of fields, among
which, one of the most applications was in ecology, where dynamic systems have
been used to show how population growth under density dependence can lead to
chaotic dynamics.

Sensitive dependence on initial conditions is observed not only in complex
systems but even in the simplest logistic equation (Duan et al. 2010a; Xu et al.
2010; Liu et al. 2012). In the following well-known logistic equation:

xnC1 D 4xn .1 � xn/ (4.7)

where 0< xn< 1, a very small difference in the initial value of x would give rise to
large difference in its long-time behavior, which is the basic characteristic of chaos.
The track of chaotic variable can travel ergodically over the whole space of interest.
The variation of the chaotic variable has a delicate inherent rule in spite of the fact
that its variation looks like in disorder. Therefore, after each search round, we can
conduct the chaotic search in the neighborhood of the current optimal parameters
by listing a certain number of new generated parameters through chaotic process. In
this way, we can make use of the ergodicity and irregularity of the chaotic variable
to help the algorithm to jump out of the local optimum as well as finding the optimal
parameters.

4.3.2 Procedures of Path Planning Using Chaotic
ABC Approach

Due to the flexibility, versatility, and robustness in solving optimization problems,
ABC algorithm has already aroused intense interest (Karaboga and Basturk 2007;
Duan et al. 2010b; Yu and Duan 2013). However, there still exist some flaws on
this algorithm, such as the large number of iterations to reach the global optimal
solution and the tendency to converge prematurely. In order to overcome these flaws
of ABC and upon the merits of chaotic variable, chaotic ABC algorithm, which
integrates ABC with chaotic variable, was proposed. After the search process of
each bee, conduct the chaotic search in the neighborhood of current best solution in
order to choose one better solution into next generation. In this way, our proposed
algorithm takes the advantage of the characteristics of the chaotic variable to make
the individuals of subgenerations distributed ergodically in the defined space and
thus to avoid from the premature of the individuals, as well as to increase the speed
of reaching the optimal solution.

The implementation procedure of our proposed chaotic ABC approach to UAV
path planning can be described as follows:

Step 1: According to the environmental modeling method, initialize the detailed
information about the path-planning task, as well as the threaten information
including the coordinates of threat centers, threat radiuses, and threat levels.
In order to simplify the calculation, conduct the coordinate transformation on
discrete points related with the task according to (4.2).
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Step 2: Initialize the parameters of artificial bee colony optimization algorithm,
such as the population of the bee colony Ns, the number of employed bees Ne,
and the number of the unemployed bees Nu, which satisfy the condition shown
as follows:

Ns D Ne CNu (4.8)

Obviously, a larger Ns will contribute to a larger possibility of finding the
best solution of the problem; however, it also means an increased computing
complexity of the algorithm. In general, we define NeDNu, and according to our
special problem, we set NsD 60. Denote the largest searching times with Limit
(30 in our experiments), current iterations with T, and the largest iterations with
Tmax. Initialize within the bound of the battlefield the employed bee population
of D -dimensional parameters C’Dfy’(1), y’(2), : : : , y’(k), : : : , y’(D)g, which
represent the y coordinates of each discrete point as we have discussed, while the
corresponding x coordinates could be easily obtained by the equation x’.k/ D
jST j
DC1
� k. Each group of parameters can engender a path that is leading the UAV

from the starting point S to the target point T, and the goal is to find the optimal
combination of parameters that can provide relative satisfactory performance.
Initialize the search time of each bee BasD 0 and the starting iteration TD 1.

Step 3: According to the parameters of the employed bees, calculate the cost of
each path formed by relative parameters based on (4.3), (4.4), (4.5), and (4.6).
The smaller the cost value is, the better performance the path maintains.

Step 4: The employed bees search around their current positions (parameters) to
find new solutions and update their positions if the new cost value is lower than
the original value. The search strategy can be described as follows: for the ith
employed bee, first engender a random integer j between 1 and D and a random
integer k between 1 and Ne, and then the jth parameter of the ith employed bee
could be updated by

y00
i .j / D y

0
i .j /C

�
y0
i .j / � y

0
k.j /

�
� .rand � 0:5/ � 2 (4.9)

where rand represents a random value between 0 and 1. Calculate the new cost
value of the updated parameters and choose the one that possesses a lower cost
as the new employed bee.

Step 5: The unemployed bees apply the roulette selection method to choose the bee
individual that maintains a relatively low cost value as the leading bee according
to the calculated cost results of employed bees. Each recruited unemployed bee
continues to search new solutions just around the leading bee’s solution space
similar with Step 4 and calculate their cost values. If the capability of the new
solution is better than the original one, the unemployed bee converts into an
employed bee, which means that update the positions of the employed bees and
continue exploring with Bas re-initialized as 0, or else keep searching around,
and its Bas value plus one.
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Step 6: If the search times Bas is larger than certain threshold Limit, the employed
bee gives up the solution and re-search the new food resources, which is realized
by re-initializing the parameters and calculating the cost value.

Step 7: Store the best solution parameters and the best cost value.
Step 8: Conduct the chaotic search around the best solution parameters based on

(4.7) after transforming the parameters ranges into (0–1). Among the engendered
series of solutions, select the best one and use it to replace a random employed
bee.

Step 9: If T <Tmax, go to Step 4. Otherwise, output the optimal parameters and
optimal cost value.

The detailed procedure can also be shown with Fig. 4.5.

4.3.3 Experiments

In order to investigate the feasibility and effectiveness of the proposed method,
series of experiments are conducted, and further comparative experimental results
with the standard ABC algorithm were also given.

Set the coordinates of the starting point as (11, 11) and the target point as (75,
75), while the initial parameters of ABC algorithm were set as NsD 60, NeD 30,
NuD 30, TmaxD 100, LimitD 30.

Respectively assume D as 10, 20, and 30 to carry our experiments, the results
of which are shown in Figs. 4.6, 4.7, 4.8, 4.9, 4.10. Figure 4.11 depicts the path-
planning result of chaotic ABC algorithm when D is set as 10, and the achieved path
shown in the figure obviously maintains a favorable performance, hence proves the
feasibility of our algorithm without any doubt.

When DD 10, the experimental results of standard ABC and chaotic ABC have
slightly differences due to the calculating complexity. However, when the value of
D is increased to 20, even to 30, we can clearly see the superiority of our proposed
method over the standard ABC algorithm in the comparative experimental results
shown in Figs. 4.7, 4.8, 4.9, 4.10, and 4.11.

To further prove the performance of our proposed method against standard ABC
algorithm, we run the program for 100 times to obtain the average cost of our
generated best path. It turns out that the average cost of our algorithm is 50.9346,
while the average cost of standard ABC algorithm is 53.9071, apparently showing
that our method can find the feasible and optimal path for UAVs more stable than
basic ABC algorithm and can effectively solve the path-planning problem of UAVs
in complex combat field environment.

When the threats move, we can recalculate the path according to current threat
positions. The simulation results can be shown in Fig. 4.11, which show the
feasibility of chaotic ABC algorithm under moving threatens.

From the above experimental results, we can clearly see that using standard
ABC algorithm could possibly lead to a path that does not satisfy the requirements,
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Fig. 4.5 The procedure of our proposed method (Reprinted from Xu et al. (2010), with kind
permission from Elsevier)

especially when the optimized dimension increases. Therefore, we make use of the
ergodicity of chaotic variable to help the basic ABC algorithm to jump out of the
local best and obtain a favorable path.
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Fig. 4.6 The path-planning result using chaotic ABC algorithm, DD10 (Reprinted from Xu et al.
(2010), with kind permission from Elsevier)
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Fig. 4.7 The comparative path-planning results, DD20: (a) chaotic ABC algorithm (b) standard
ABC algorithm (Reprinted from Xu et al. (2010), with kind permission from Elsevier)

4.4 Hybrid ACO-DE Approach to Three-Dimensional Path
Planning for UAVs

4.4.1 Hybrid Meta-heuristic ACO-DE Algorithm

The ACO pheromone plays a very important role in the path exploration and
exploitation. A reasonable distribution of the pheromone trial can directly affect ants
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Fig. 4.8 The evolution curves of two algorithms, DD20 (Reprinted from Xu et al. (2010), with
kind permission from Elsevier)
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Fig. 4.9 The comparative path-planning results, DD30 (Reprinted from Xu et al. (2010), with
kind permission from Elsevier)

to explore their optimal paths. In view of this, we propose a hybrid meta-heuristic
ACO and DE model. DE (Price and Storn 1997) is used to make some random
deviation disturbance in the ACO pheromone trail. Through this kind of random
disturbance, we intend to realize that the pheromone trail between two neighboring
nodes left by ant colony can reach a more reasonable distribution, which can lead
ants to find out the optimal path.

In our proposed hybrid meta-heuristic ACO and DE algorithm model, we set the
pheromone on the path left by ants in ACO as the object of the mutation, crossover,
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Fig. 4.10 The evolution curves of two algorithms, DD30 (Reprinted from Xu et al. (2010), with
kind permission from Elsevier)
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Fig. 4.11 Experimental results on moving threatens: (a) initial optimized path, (b) recalculated
path after the threaten moves (Reprinted from Xu et al. (2010), with kind permission from Elsevier)

and selection in DE (Duan et al. 2010c). In solving the UAV three-dimensional
path-planning problem, the objective function of the pheromone on all sub-paths
between two neighboring nodes is the length of the best tour found by ants, which
can be obtained according to the pheromone trail.

Some slightly adjustments are added to the basic ACO model (Dorigo et al. 1996;
Dorigo and Di Caro 1999): we divide the entire ant colony into several independent
ant teams, and the team number is denoted with Team, which is a restriction of
the total ant number m. For each ant team, the pheromone amount left on the
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links between each two neighboring nodes are named as �Df� ig, iD 1, : : : , Team.
Obviously, � i is a n� n matrix. As to the current pheromone of each ant team, DE
mutation operation takes effect, and the new trial pheromone trail distribution is
generated by the following equation:

�1i D �r1 C F � .�r2 � �r3/ ; i D 1; 2; � � � ; Team (4.10)

where r1, r2, and r3 are integers, which can be chosen randomly from the interval
[1, Team]; �r1 , �r2 , and �r3 are three pheromone trail individuals, which are selected
randomly among all ant-team units and r1¤ r2¤ r3¤ i. F is a real and constant
factor between [0, 2], which is named Constant of Mutation, and this constant factor
can control the amplification of the differential variation .�r2 � �r3/. Obviously,
the smaller the differential variation between two individuals, the weaker the
disturbance which it brings about. It signifies that when the pheromone of each
ant team converges to the vicinity of a kind of reasonable pheromone distribution,
the disturbance generated through mutation will become weaker automatically.

In our proposed hybrid meta-heuristic ACO and DE algorithm, in order to
improve the diversification of pheromone trail between nodes, we can take advan-
tage of the DE crossover operation to make the new trial pheromone trail �1i , which
is generated through mutation, combined with the current target pheromone � i. The
proposed hybrid meta-heuristic ACO and DE algorithm generates a new pheromone

matrix �2i D

2

6
6
4

�
1;1
2i
� � �1;n2i

� � � �

� � � �

�
n;1
2i
� � �n;n2i

3

7
7
5, iD 1, : : : , Team, which can be expressed as

follows:

�2i
j;k D

(
�i
j;k ; if randb � CR or randk D k ;

�1i
j;k ; if randb > CR or randk ¤ k;

(4.11)

where � i
j,k denotes the amount of pheromone between city j and k of ith ant team,

�1i
j,k denotes the trial pheromone trail between city j and k of the ith ant team

after the mutation operation, and �2i
j,k denotes the ith ant-team pheromone trail

between city j and k, after the crossover operation toward � i
j,k and �1i

j,k. randb is
a random positive number between [0, 1]. CR is a constant between [0, 1], which
is known as Constant of Crossover ; the larger it is, the greater possibility the
crossover operation happens; CRD 0 represents that no DE crossover occurs. randk

is an integer number selected randomly between [1, n]. It is obvious that the new
generated pheromone matrix �2i will surely get at least one element from that
mutation trial pheromone �1i . Otherwise, it is possible that the pheromone trail will
not change at all, which can weaken the pheromone exchange between different ant
teams.

In the UAV three-dimensional path planning, ants in each team construct their
paths by the transition probability pj,k, which can be calculated by their pheromone
matrix � i. L _ besti denotes the length of the shortest path among all paths obtained
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by ants, which is the objective function of the pheromone trail � i at the same
time. Toward the newly generated pheromone trails and the path explorations of
ant colony based on them, should we accept them or not? We need to compare the
objective function value of both the original target pheromone � i and the new �2i .
After that, we select one solution by the so-called Greedy selection model. If and
only if the new pheromone trail individual �2i has a better objective function value
than the original one, it can be accepted and reserved into the pheromone trail matrix
of the next generation; otherwise, the original target pheromone � i will remain in the
pheromone trail between nodes of each ant team. Thus, we can express the crossover
operation to pheromone trail as follows:

� 0
i;t D

(
�2i;t ; if L_best2i < L_best0i
�i;t ; if L_best2i 
 L_best0i

(4.12)

where � i,t denotes the original pheromone trail left by the ith ant team, when the
number of iteration is t; �2i,t denotes, at the tth iteration, the new pheromone trail
of the ith ant team after DE mutation and crossover operation; and � ,

i,t is equal
to the pheromone matrix which has high objective function value between � i,t and
�2i,t. L_best0i represents the length of the optimal route gained by � i,t, which is the
objective value of the original pheromone � i,t ant team, while L_best2i represents
the length of the optimal route gained by �2i,t, which is also the objective value of
the new pheromone �2i,t of the ith ant team.

After the selection operation, the ith ant teams, which have generated their tours
by the pheromone trail � ,

i,t or �2i,t, release their own pheromone regarding the length
of tours they each covered and update the selected pheromone trail � ,

i,t to gain the
new pheromone trail � i,t C 1. Then pass the new pheromone of each ant team on to
next iteration to continue path exploration and exploitation or stop.

4.4.2 Procedures of Three-Dimensional Path Planning Using
Hybrid ACO-DE

The process of our proposed hybrid meta-heuristic ACO and DE algorithm for
solving UAV three-dimensional path planning can be described as follows:

Step 1: Initialization of parameters – set the current number of iteration NcD 1. Set
the maximum number of iteration as Ncmax; set the number of ants as m and
the number of ant team as Team; set the initial amount of pheromone trail on
each link between two path nodes � j,kD const, where const is a positive constant
number.

Step 2: Initialization of the ant colony – divide the whole ant colony into different
ant teams; the numbers of ant in each ant team are recorded in the matrix T _ m,
(1� Team); for the ith ant team, the number of ant individuals is T _ m(i); then
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put ants in each ant teams on the starting node. Set other parameters of ACO and
DE: ˛, ˇ, �, Q, F, e, CR.

Step 3: Set NcD 1, iD 1, the T _ m(i) ants in the ith ant team select the path nodes k
and go forward as the transition probability pj,k, until the whole ant colony arrives
at the target point; then update the pheromone trail left on the paths to generate
� i,2; set iD iC 1, and return to Step 3 until i>Team.

Step 4: NcDNcC 1, take mutation and crossover operation to the original
pheromone trail � i of each ant team passed from the former iteration and generate
the new pheromone trail �2i ; set iD iC 1, and return to Step 4 until i>Team.

Step 5: Set iD 1.
Step 6: Each individual ant of the ith ant team finally arrives at the target point

to construct their tours according to the pheromone trail � i by the following
equation:

pj;k D

8
ˆ̂
<

ˆ̂
:

Œ�i j;k�
˛
Œ�j;k�

ˇ

X

s2al lowedt�m.i/

�
�i
j;k
�˛�
�j;k

�ˇ if k 2 al lowedT�m.i/

0 otherwise

(4.13)

Then calculate length of tours gained by each ant, choose the shortest one, and
record it as L_best0i .

Step 7: Each individual ant of the ith ant team visits the whole nodes in the three-
dimensional paths to gain their tours by the pheromone trail �2i as follows:

pj;k D

8
ˆ̂
<

ˆ̂
:

Œ�2i j;k�
˛
Œ�j;k�

ˇ

X

s2al lowedt�m.i/

�
�2i

j;k
�˛�
�j;k

�ˇ if k 2 al lowedT�m.i/

0 otherwise

(4.14)

Then calculate the tour length gained by each ant, choose the shortest one, and
denote it with L _ best2i

Step 8: Compare L _ best0i and L _ best2i, take the DE selection operation by (4.12),
and set the � i

0 as � i or �2i.
Step 9: Update the current pheromone � i

0 to gain � i of next iteration as follows:

��
j;k

T_m.i/ D

(
Q

WkfT�m.i/g
; if T _m.i/ � th ant passed .j; k/

0; otherwise
(4.15)

��i D

T_m.i/X

sD1

��j;ks (4.16)

�i D .1 � �/ � �
;
i C � ���i (4.17)
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If you select � i as � i
0 in Step 8, use the tours gained by ants in Step 6 to update

the pheromone; if � i
0 D �2i after selection operation, choose the tours gained in

Step 7 to update the pheromone.
Step 10: Set iD iC 1; return to Step 6, until i> Team.
Step 11: Return to Step 4 until Nc
Ncmax.
Step 12: The proposed hybrid meta-heuristic ACO and DE algorithm terminates

and outputs the best path in three-dimensional space.

The abovementioned flowchart of the hybrid meta-heuristic ACO and DE
algorithm process can also be described in the Fig. 4.12.

4.4.3 Path-Smoothing Strategies

The generated UAV optimal path using the proposed hybrid meta-heuristic method
is usually hard for exact flying. Because there are some turning points on the
optimized path (Kito et al. 2003), we adopt a class of dynamically feasible path
smooth strategy called � -trajectories (Anderson et al. 2005). Consider the waypoint
path defined by the three waypoints wi � 1, wi, and wi C 1, and let

qi D .wi � wi�1/ = jjwi � wi�1 jj (4.18)

qiC1 D .wiC1 � wi / = jjwiC1 � wi jj (4.19)

Denote the unit vectors along the corresponding path segments as shown in
Fig. 4.13.

Let ˇ represent the angle between qi and qi C 1 so we can get ˇD arccos(�qi C 1 � qi).
As shown in Fig. 4.13, let C be a circle of radius

R D 0:5min fjjwi � wi�1 jj ; jjwiC1 � wi jjg tan
ˇ

2
(4.20)

where center Ci lies on the bisector of the angle formed by the three waypoints, such
that the circle intersects both the lines wi�1wi and wiwiC1 at exactly one point each.
The bisector of ˇ will intersect C at two locations. So the center Ci is given by

Ci D wi C

	

R= sin
ˇ

2




.qiC1 � qi / = jj qiC1 � qi jj (4.21)

After this process, the original path wi�1wi ! wiwiC1 could be replaced by

wi�1A !
_

A
_

C
_

B ! BwiC1. In this way, the optimized path can be smoothed for
feasible flying. This path-smoothing algorithm has a small computational load and
can be run in real time.
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Fig. 4.12 Flowchart of the proposed hybrid meta-heuristic ACO and DE algorithm (Reprinted
from Duan et al. (2010c), with kind permission from Elsevier)
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Fig. 4.13 Feasible sub-path
(Reprinted from Duan et al.
(2010c), with kind permission
from Elsevier)

4.4.4 Experiments

In order to investigate the feasibility and effectiveness of the proposed hybrid meta-
heuristic ACO and DE approach to UAV three-dimensional path planning, a series
of experiments have been conducted under complex combat field environment.

The hybrid meta-heuristic ACO and DE algorithm was implemented in a Matlab
7.2 programming environment on an Intel Core 2 PC running Windows XP SP2.
No commercial ACO tools or DE tools were used. In all experiments, the same
set of ACO algorithm parameter values were ˛D 2, ˇD 3, �D 0.7, QD 100,
Nc maxD 15.

Figure 4.14 shows the UAV path-planning results comparison between basic
ACO and the proposed hybrid meta-heuristic ACO and DE algorithm in three-
dimensional space with mD 10 and TeamD 5, and the curve path comparison
by the smooth algorithm, and also the evolution curves comparison. Figure 4.15
shows the UAV path-planning results comparison and the evolution curves com-
parison between basic ACO and improved ACO with mD 20 and TeamD 5. The
symbol “�” denotes the starting point, the sphere denotes the threaten area,
while the symbol “♦” denotes the target point. And the thin line is the path
generated by the basic ACO, while the thick one is generated by the improved
ACO.

The values of each optimal solution searched by the different algorithm could be
given by the value of the “shortest length,” which can be shown in Table 4.1.

From the experimental results presented in Figs. 4.14, 4.15 and Table 4.1, it
is obvious that the proposed hybrid meta-heuristic ACO and DE method can find
feasible and optimal three-dimensional path for the UAV very quickly and can
effectively solve the three-dimensional path planning of UAVs in complicated
combating environments. The results also show that the more different ant
teams dividing the whole ant colony, the better the solution is. This method
provides a new way for three-dimensional path planning of UAVs in exact
application.
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Fig. 4.14 Parameter values were mD10, TeamD5. (a) Path-planning original results comparison
between basic ACO and improved ACO. (b) Route comparison after using the smoothing strategy.
(c) Evolution curves comparison between the basic ACO and the improved ACO (Reprinted from
Duan et al. (2010c), with kind permission from Elsevier)
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Fig. 4.14 (continued)

4.5 Coordinated Path Replanning for Multiple UAVs Using
Max–Min Adaptive ACO

4.5.1 Model of Multiple UAV Coordinated Path Replanning

4.5.1.1 Description of Multiple UAV Coordinated Path Replanning

Multiple UAV coordinated path planning is to generate a safe and short path for
each UAV (Beard and McLain 2003; Zheng et al. 2002). In addition, the path should
satisfy the requirements concerning multiple UAVs’ coordinateness. Therefore, in
the issue of multiple UAV coordination, the planned trajectories may be not optimal
for any individual vehicle, but they are required to be optimal or near optimal for
the whole team.

Suppose that a formation of multiple UAVs is required to fly through the enemy
territory and to attack same or different known target locations. There are a number
of threats in the flight environment; some of them are known a priori, whereas
others pop up or become known only when a UAV maneuvers into its proximity.
We assume that each UAV is equipped with sensing capability so that they can
detect the pop-up threats in their surroundings. We also assume that the multiple
UAVs are equipped with a communication network, so they can inform other UAVs
of the pop-up threats’ information that they just detected. As is shown in Fig. 4.16,
the UAVs’ formation is commanded to attack an enemy objective. UAVs fly along
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Fig. 4.15 Parameter values were mD20, TeamD5. (a) Path-planning results comparison between
basic ACO and improved ACO. (b) Evolution curves comparison between the basic ACO and the
improved ACO (Reprinted from Duan et al. (2010c), with kind permission from Elsevier)

their preplanned trajectories with respective flight velocity, and they are required to
arrive at the same time given via planning. When one pop-up threat appears just
on one UAV’s flight route and pose a threat to it, the current path is not feasible but
even dangerous. At this moment, the UAV has to find other new path. Meanwhile, in
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Table 4.1 Shortest length
comparison between the basic
ACO and the improved ACO

Basic ACO Improved ACO

Optimal length (mD10) 27.1421 21.2426
Optimal length (mD20) 26.5563 21.6569

Fig. 4.16 Description of multiple UAV coordinated path replanning (Reprinted from Duan et al.
(2009), with kind permission from Elsevier)

order to ensure that the multiple UAV formation launches an attack simultaneously
and avoids collision, it’s also necessary for other UAVs in the formation to adjust
their respective trajectories, and thus, the coordinated path replanning for the whole
formation is inevitable. Moreover, along with the change of multiple UAVs’ path,
the arrival time ETA is also confirmed again accordingly, as well as the flight
velocity of each UAV (Duan et al. 2009).

4.5.1.2 Constraint Conditions of Multiple UAV Coordinated Path
Replanning

Comparing with the path planning of a single UAV, the difference of multiple
UAV coordination path planning also lies in the constraint conditions that ought
to be taken into account. Besides the physical properties and mission demands of
single individual vehicle, the coordination and cooperation among various UAVs
brings several extra co-constraints, including timing constraint that UAVs should
reach objectives simultaneously and collision avoidance. Constraints involved in
the process of coordinated path replanning are mainly the following three aspects:

Minimum flight turning radius constraint: Considering the maneuverability of
UAV, the turning radius in the generated path must be larger than minimum turning
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Fig. 4.17 Constraint on the node selection (Reprinted from Duan et al. (2009), with kind
permission from Elsevier)

Fig. 4.18 Feasible region of arrival time (Reprinted from Duan et al. (2009), with kind permission
from Elsevier)

radius of each UAV, which means the planned path should avoid larger turning. We
set the constraint on the choice of waypoint (node) as shown in Fig. 4.17.

In Fig. 4.17, the center node in the square is the current site of the UAV, and ➁ is
the last waypoint just before current one. Considering that UAV cannot take too big
turning, next waypoint can only be selected from those points labeled with ➀.

Timing coordination constraint: Under this kind of coordination constraint, the
goal is to decide the coordinated arrival time for multiple UAVs. The path generated
for multiple UAVs should ensure the multiple UAVs arrive at their respective targets
simultaneously (as shown with Fig. 4.18). The multiple UAVs must minimize their
exposure to threats under the constraint of simultaneous arrival. Therefore, we
should comprehensively consider both the length of path and UAVs’ flight velocity
to assign the team-optimal ETA for the multiple UAV formation.

Suppose that there are N UAVs participating in the flying mission. Each vehicle
flies along its route with the velocity constraints v2 [Vmin,Vmax]. For the jth path
planned for the ith UAV, of which the length is labeled as Li,j, we determine the
range of its ETA as follows:

Ti;j 2

�
Li;j

Vmax
;
Li;j

Vmin



(4.22)
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We assume the ith UAV has generated num candidate trajectories, and thus, its
estimated time for arrival is a union Si determined as the following equation:

Si D

�
Li;1

Vmax
;
Li;1

Vmin



[

�
Li;2

Vmax
;
Li;2

Vmin



[ � � � [

�
Li;num

Vmax
;
Li;num

Vmin



(4.23)

As for the UAVs formation with N vehicles, the arrival time must be contained
in the time intersection S as follows:

S D S1 \ S2 \ � � � \ SN (4.24)

If S is not a void, assume such a time Ta 2 S, and every UAV must have at least
one path satisfying the arrival time Ta, and thus Ta can just be regarded as the ETA.
Through this method, it is available for multiple UAVs to satisfy the requirement of
simultaneous arrival.

Air collision avoidance constraint: Another coordination requirement concerned
in multiple UAV coordinated path replanning is to decrease the risk of collision,
which is the so-called air–space coordination. Since the planning space is two-
dimensional with the assumption that individual UAVs all fly at the same altitude, a
proper approach to ensure that no collision will occur is to eliminate any overlap
between two UAVs’ trajectories. It is clear that if the proportion of overlaps in
the entire path is bigger, then the probability of collision will be greater as well.
Therefore, multiple UAVs’ coordinated path should make it non-overlap as far as
possible to implement air–space coordination.

4.5.1.3 Coordination Function

As for the multiple UAV coordinated path replanning problem, the essential idea is
that if every vehicle knows the coordination variable and responds appropriately, the
coordinated behavior will be achieved. For the aforementioned timing coordinated
constraint of simultaneous arrival, the key coordination variable is the arrival time.
That is to say, the key work of the multiple UAV coordination is to select a proper
factor from the time intersection S as the value of the coordination variable. To
make it, it’s necessary to construct the coordination function Jco to determine the
coordination variable:

Jco;i;j
�
Ti;j

�
D f1 � Ji;j C f2 � Ti;j (4.25)

where f1 and f2 are two constants, and these two factors of various UAVs may be
the same or different. The variable Ji,j denotes the cost of the jth path planned by
the ith UAV, which is determined by the equation Ji,jD f � Ji,j,threatC (1� f ) � Ji,j,fuel.
As for a specific path, it’s definite. Thus, the arrival time Ti,j is the only independent
variable determining Jco,i,j. The entire cost of the multiple UAVs is
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Fig. 4.19 Determination of the coordination variable (Reprinted from Duan et al. (2009), with
kind permission from Elsevier)

Jco D

NX

iD1

NumX

jD1

Jco;i;j
�
Ti;j

�
(4.26)

Figure 4.19 shows the relation between Jco,i,j and Ti,j for each path. As shown
in Fig. 4.19, in order to minimize the entire coordination function, the coordinated
arrival time Ta often selects the minimum of the feasible region, that is, TaDmin S.

4.5.2 Coordination Mechanism of Multiple UAV Path
Replanning

The framework of the path planning for a single UAV consists of three main
layers: the coordination decider, the path planner, and the path smoother. The
path planner quickly calculates a series of safe-enough straight-line trajectories.
Communication between the path planner and the coordination decider can help
to generate candidate trajectories avoiding overlaps between those of other UAVs’.
These candidate trajectories are used by the coordination decider to determine
coordination information such as the coordinated time. Because the straight-line
trajectories produced by the path planner are not dynamically feasible for the
UAV to fly, the path smoother is employed to generate flyable trajectories and
send commands to the UAV autopilot. The function of the dynamic path smoother
is to smooth junctions in the path with a sequence of radial arcs that can be
flown by the UAV. It is essential for timing-critical missions that the length of
the original straight-line path must be preserved in the smoothing process. The
following Fig. 4.20 displays this mechanism.

The following Fig. 4.21 describes the coordinated mechanism of multiple UAV
coordinated path replanning. The framework is distributed, enabling each UAV to
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Fig. 4.20 Path-planning mechanism for a single UAV (Reprinted from Duan et al. (2009), with
kind permission from Elsevier)

Fig. 4.21 Mechanism of multiple UAV coordination (Reprinted from Duan et al. (2009), with kind
permission from Elsevier)
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perform its own path-planning subsystems. The algorithm implemented on each
UAV in the coordination decider is identical. Multiple UAVs communicate the
coordination information in the forms of coordination function and coordination
variable in the coordination decider layer. Using the coordination information,
multiple UAVs calculate the coordinated arrival time for the UAVs formation, which
is just the ETA. After that, the coordination decider calculates the flying velocity for
each UAV according to the generated path and the ETA. Although shown for only
three UAVs in Fig. 4.21, the distributed structure of the framework applies to larger
numbers of multiple UAVs obviously.

Furthermore, in the modern complicated air battle, UAVs are equipped with
the ability to detect their surroundings, so that they can sense the pop-up threats
occurring in the mission region. The cause of path replanning lies in the following
aspects: (1) The pop-up threat is detected just on the flight route ahead, and the
vehicle has to change its route out of security; (2) the UAV is not threatened by
the pop-up threat, but in view of coordination, it also receives the command of
replanning; (3) the mission changes. For the sake of simplicity, the third cause is not
involved. When the replanning is inevitable, information about the pop-up threats
including the locations and threat grades will soon be shared by the multiple UAVs.
Then, every UAV slows down or speed up and flies to a neighboring safe node,
which will be served as the starting point of the following replanning. During the
span, the new replanned path is generated for multiple UAVs, and so does the new
ETA. In the replanning procedure, on the basis of original edge cost of the 2-D mesh,
the first step is to update the original threat cost of those edges threatened by pop-
up threats and recalculate their cost function value. After that, multiple UAVs start
to implement the coordinated path replanning from the new starting points to their
arranged targets. This procedure is shown in Fig. 4.22. In this procedure, a set of new
trajectories ought to be reproduced, and UAVs also should recalculate the ETA and
readjust respective flight velocity. The procedure of path replanning will perhaps
be carried on more than once, due to the complicated combating environment that
changes uncertainly.

4.5.3 Procedures of Multiple UAV Coordinated Path
Replanning

4.5.3.1 Principle Model of ACO with Improved Strategies

The basic mathematical model of ACO has firstly been applied to the TSP. The
aim of the TSP is to find the shortest path that traverses all cities in the problem
exactly once, returning to the starting city. While the UAV path planning is to find
the optimal or suboptimal safe flight path, along which UAV is able to accomplish
the prearranged task and avoid the hostile threats. There are some common points
between TSP and UAV path planning, and ACO is a feasible way in solving UAV
path-planning problem under complicated combat field environment.
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Fig. 4.22 Procedure of multiple UAV coordination path replanning (Reprinted from Duan et al.
(2009), with kind permission from Elsevier)

For the ith vehicle in the formation of N UAVs, let m ants be in its starting point;
the ants will choose the next nodes in the grid network diagram according to the
transition rule. An ant-left pheromone which can be felt by the next ant as a signal
to affect its action, and the pheromone which the following one left will enhance
the original pheromone. Thus, the more ants a mesh edge is passed by, the bigger
possibility that the edge can be selected by the other ants. This process can guarantee
nearly all ants walk along the shortest UAV path in the end.

The key factors in ACO affecting the ants’ behaviors are the pheromone � and
the heuristic desirability �. In our work, we described the heuristic desirability from
node s to node u as follows:

�su D
1

Jsu � du;t arg et
(4.27)
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where, Jsu is the total cost of the edge (s,u) and du,t arg et represents the distance from
node u to the target, which is used to lead ants located at node s to tend to choose
those nodes that are nearer to the target.

The amount of pheromone trail � that leads ants to choose the next node consists
of two parts in our work: one is the traditional edge pheromone � e, and the other
is the point pheromone �p defined for the collision avoidance consideration. Ant
colonies do not only leave their pheromone on the edges they passed but also deposit
the pheromone on those nodes in their paths. Ants serving for the ith UAV will tend
to choose those edges richer in its own edge pheromone � i

e and avoid the nodes
with bigger point pheromone of other UAVs. Thus, total pheromone considered by
the ith UAV ants from node s to u is determined by the following equation:

�i;su D �
e
i;su �

N � 1
X

j¤i

�
p
j;u

(4.28)

We define the transition probability from node s to u for the kth ant as follows:

pi;su.t/ D

8
ˆ̂
<̂

ˆ̂
:̂

�
�i;su.t/

�˛�
�su

�ˇ

X

2al lowedk

Œ�i;s.t/�
˛Œ�s�

ˇ
if u 2 al lowedk

0 otherwise

(4.29)

where allowedk denotes the feasible domain of the kth ant. ˛ and ˇ are parameters
that control the relative importance of trail versus visibility.

After the ants in the algorithm construct their paths, the edge pheromone trail
values of every edge (s,u) and the point pheromone of every point u are updated
according to the following equations:

�ei;su .t C 1/ D .1 � �/ � �
e
i;su.t/C��

e
i;su (4.30)

�
p
i;u .t C 1/ D .1 � �/ � �

p
i;u.t/C��

p
i;u (4.31)

where � is the local pheromone decay parameter and �� (0,1). � represents the
evaporation rate of trail between time t and tC 1:

��ei;su D

nX

kD1

��ei;su;k (4.32)

��
p
i;u D

nX

kD1

��
p

i;u;k (4.33)
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where � �ei;su;k and ��pi;su;k are the quantity of pheromone trail laid on edge (s,u)
and the node u by the kth ant of the ith UAV between time t and tC 1. In the popular
ant-cycle model, they can be given by

��ei;su;k D

(
Q

Ji;k
; if k � th ant use .s; u/

0; otherwise
(4.34)

��
p

i;u;k D

(
Q

Ji;k
; if k � th ant use node u

0; otherwise
(4.35)

where Q is a constant, and Ji,k denotes the path cost of the kth ant.

4.5.3.2 Max–Min Adaptive ACO

In order to enhance performance of ant system, alleviate the problems concerning
early stagnation, and expedite the rapidity of convergence, the following strategies
are introduced into the ACO algorithm:

Firstly, for the m ants serving for the ith UAV, there are total m paths constructed

in every iteration. The average cost of these paths is Ji;ave.t/ D
1
m

mX

kD1

Ji;k.t/; when

and only when the path cost of kth ant in the tth iteration satisfies Ji,k(t)� Ji,min(t)
can the kth ant update both its edge and point pheromone.

Secondly, independent of the choice between the iteration-best and the global-
best ant for the pheromone trail update, search stagnation may occur. Such a
stagnation situation should be avoided. One way for achieving this is to influence
the probabilities for choosing the next solution component, which depends directly
on the pheromone trails and the heuristic information. The heuristic information is
typically problem dependent and static throughout the application of the algorithm.
But by limiting the influence of the pheromone trails, one can easily avoid the
relative differences between the pheromone trails during the employment of the
algorithm. To achieve this goal, ACO imposes and explicitly limits �max and �min

on the minimum and maximum pheromone trails for all pheromone trails. After
updating pheromone in the end of iteration, the following operation will be applied
to the pheromone on both edges and points:

�new.t/ D

8
<

:

�min; �old .t/ < �min

�old .t/; �min � �
old .t/ � �max

�max; �old .t/ > �max

(4.36)
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Fig. 4.23 Flowchart of ACO applied to one UAV of multiple UAVs (Reprinted from Duan et al.
(2009), with kind permission from Elsevier)

4.5.3.3 Procedures of Coordinated Path Replanning Based on Max–Min
Adaptive ACO

The flowchart in Fig. 4.23 describes the detailed procedure of applying the proposed
Max–Min adaptive ACO to one single UAV in the practical issue of multiple UAV
coordinated path replanning. Ants of the ith UAV have constructed their paths and
finished updating both the edge and point pheromone trails. Then, the new updated
pheromone is then passed to the next iteration. Meanwhile, the point pheromone
is transmitted to other UAVs. The multiple UAVs’ air–space coordination which is
mainly to deal with the collision avoidance just depends on the point pheromone.
Therefore, through the communication of each UAVs’ point pheromone, the air–
space coordination can be settled in the path-planner layer.
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Fig. 4.24 Flowchart of multiple UAV coordination using ACO (Reprinted from Duan et al. (2009),
with kind permission from Elsevier)

A series of feasible candidate routes have been determined for each UAV by the
coordinated ACO; it remains to select which path each UAV will fly. We selected
four optimal candidate trajectories for every UAV from each subpopulation, then
determined the optimal coordination ETA by means of finding the coordination
variable Ta that minimizes the total coordination cost. After gaining the team’s
coordinated ETA, the trajectories that multiple UAVs will fly are available, so do
the flight velocities of the UAVs. The complete procedure of applying ACO to the
multiple UAV coordination issue is shown in Fig. 4.24.

The programming steps of the Max–Min adaptive ACO algorithm in solving path
replanning can be described as follows:

Step 1: Construct the 2-D mesh covering the mission region and calculate the cost
of the edges.

Step 2: Initialize the parameters of the algorithm, including ˛, ˇ, �, Q, �max, and
�min, as well as the number of ants m and the number of iteration Nc max.
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Step 3: Initialize the edge and point pheromones for every subpopulation and place
ants at the respective starting point.

Step 4: For every UAV, ants choose the node until they reach the target, and then
some feasible trajectories are constructed at last.

Step 5: Calculate the cost function value Ji,k of the kth ant belonging to the ith UAV
and update the point and edge pheromones.

Step 6: Pass the pheromone on to the next iteration calculation and communicate
the point pheromone with other UAVs; then return to Step 4 until it satisfies the
ending condition Nc>Nc max.

Step 7: Select several feasible candidate routes for each UAV, and determine the
optimal coordinated ETA for the team.

Step 8: According to the team ETA, select the path and the flight velocity for each
UAV.

When the pop-up threats are detected and the original path is in danger, emer-
gency response action of multiple UAVs will be taken according to the following
steps:

Step 1: Determine the information of the pop-up threats, including the location,
threatened range, and threat grade.

Step 2: Calculate the threat cost of the edges which the pop-up threats pose to, and
then update the cost function value of each edge in the 2- D mesh.

Step 3: Every UAV diverts to a neighboring and safe-enough node, which will be
taken as the new starting point of path replanning.

Step 4: During the time that multiple UAVs are moving as Step 3, the newly
replanned path is calculated according to the procedure shown in Figs. 4.23
and 4.24.

4.5.4 Experiments

In order to investigate the feasibility and effectiveness of the proposed Max–Min
adaptive ACO approach to multiple UAV coordinated path replanning, a series of
simulation experiments have been conducted in dynamic and uncertain environ-
ments. These simulation experiments were all implemented in Matlab (Version 7.0)
programming environment on an Intel Core 2 PC running Windows Vista; no ACO
or multiple UAV tools were used in the following experiments.

In these simulation experiments, the mission region is 60 km long and 70 km
wide with 5 known enemy threats. Information about these hazardous threats was
set as the following (Table 4.2):

Firstly, two UAVs are assigned to reach the same target from neighboring nodes.
In this scenario, only air–space coordination was considered in order to verify the
collision avoidance performance of our proposed Max–Min adaptive ACO model.
Trajectories optimized in these experiments are presented in Fig. 4.25, and it is
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Table 4.2 Information about
known threats

No. Location (km)
Threat
radius (km) Threat grade

1 (52,32) 10 2
2 (36,26) 6 1.2
3 (22,48) 8 1.6
4 (26,56) 12 1.4
5 (30,30) 9 2
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Fig. 4.25 Trajectories of 2 UAVs (Reprinted from Duan et al. (2009), with kind permission from
Elsevier)

clear that there is no overlap appearing between the two neighboring trajectories.
UAVs that fly along these trajectories will not hit each other, and thus the collision
avoidance is achieved. Figure 4.26 shows the evolution curves of the two UAV
trajectories’ costs, which converge after a few iterations. The simulation results of
two UAVs’ air–space coordination demonstrate that the ACO, considering the point
pheromone as air–space coordination factor, is feasible to produce the trajectories
satisfying collision avoidance.

Assume such a mission scenario, an air combat formation, which is composed
of three UAVs located on the different sites, is assigned to attack different targets
simultaneously. Table 4.3 shows the mission starting points and attacking targets of
multiple UAVs.

In this assumptive scenario, each UAV flies along its path with velocity between
VmaxD 300m/s and VminD 200m/s.

Set the initialization parameters as follows: ˛D 3, ˇD 2, �D 0.7, QD 10,
Nc maxD 20, mD 20, �maxD 10, and �minD 0.1.
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Fig. 4.26 Evolution curves of 2 UAVs using the Max–Min adaptive ACO

Table 4.3 Mission starting
points and attacking targets

UAV-1 UAV-2 UAV-3

Starting point (km) (6,20) (24,20) (40,20)
Target (km) (10,68) (40,60) (50,68)

After iteration calculation in the process of the coordination path preplanning,
each UAV obtained four candidate trajectories. The determined arrival time ETA
is shown in Fig. 4.27, in which TaD 173s. According to this ETA, each UAV can
select its optimized path and proper flight velocity. The selected path length and
flight velocity are listed in Table 4.4.

The original trajectories planed for 3 UAVs are shown in Fig. 4.28, while the
evolution curves are shown in Fig. 4.29.

As is shown in Fig. 4.30, two pop-up threats appear suddenly, which are detected
by marching multiple UAVs. Information about these pop-up threats in the following
table is shared immediately (Table 4.5).

Then, each UAV diverts to a neighboring secure node and treats it as the new
starting point. Meanwhile, computers equipped in UAVs run the replanning program
and generate new trajectories for multiple UAVs.

Comparison between the original trajectories and the new replanned trajectories
is shown in Figs. 4.31, and 4.32 shows the practical trajectories flown by multiple
UAVs in the air battlefield.

Figures 4.33, 4.34, and 4.35 demonstrate the other experimental results of mul-
tiple UAV coordinated path replanning under various complicated environments.
Different from the mission assumed in the preceding, the target of multiple UAVs
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Fig. 4.27 Decision of ETA (Reprinted from Duan et al. (2009), with kind permission from
Elsevier)

Table 4.4 Arrival time, path
length, and flight velocity
planned for multiple UAVs

UAV-1 UAV-2 UAV-3

ETA 174s
Path length (km) 51.31 47.80 52.14
Flight velocity (km/s) 295 275 300

is the same destination. Because the original preplanned trajectories are hardly
menaced by the pop-up threats, the replanned trajectories change little compared
with the original ones.

The above experimental results illustrated that the proposed Max–Min adaptive
ACO algorithm can solve the multiple UAV coordinated path-replanning problems
in dynamic and uncertain environments effectively, and the convergence time is also
rather short.

4.6 Conclusions

This chapter presented the main properties of path planning for UAVs, involving 2-
D and 3-D path planning and coordinated path replanning in dynamic and uncertain
environments. Path planning is an imperative task required in the design of UAVs,
which is to search out an optimal or near-optimal flight path between an initial
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Fig. 4.28 Preplanned trajectories of 3 UAVs (Reprinted from Duan et al. (2009), with kind
permission from Elsevier)
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Fig. 4.30 Pop-up threats are detected by marching 3 UAVs (Reprinted from Duan et al. (2009),
with kind permission from Elsevier)

Table 4.5 Information about
pop-up threats

No. Location (km) Threat radius (km) Threat grade

1 (12,40) 6 2.5
2 (40,40) 6 2

location and the desired destination under specific constraint conditions. There
are several considerations for an ideal path planner, which includes optimality,
completeness, and computational complexity, the last one of which is the most
important requirement since path planning has to occur quickly due to fast vehicle
dynamics.

In Sect. 4.3, 2-D path-planning problem is dealt with using a chaotic ABC
approach under the assumption that the UAV maintains constant flight altitude
and speed when on a mission and that the enemy’s defensive areas are flat. A
new hybrid meta-heuristic ACO and DE algorithm is proposed to solve the UAV
three-dimensional path-planning problem in Sect. 4.4. DE is applied to optimize
the pheromone trail of the improved ACO model during the process of ant
pheromone updating. Then, the UAV can find the safe path by connecting the chosen
nodes of the three-dimensional mesh while avoiding the threats area and costing
minimum fuel. This new approach can accelerate the global convergence speed
while preserving the strong robustness of the basic ACO. Based on the construction
of the basic model of multiple UAV coordinated path replanning, which includes
problem description, threat modeling, constraint conditions, coordinated function,
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Fig. 4.31 Comparison between the original trajectories and the new replanned trajectories
(Reprinted from Duan et al. (2009), with kind permission from Elsevier)
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Fig. 4.32 Practical trajectories of 3 UAVs in dynamic and uncertain environments (Reprinted from
Duan et al. (2009), with kind permission from Elsevier)

and coordination mechanism, a novel Max–Min adaptive ACO approach to multiple
UAV coordinated path replanning is presented in detail in Sect. 4.5. In view of
the characteristics of multiple UAV coordinated path replanning in dynamic and
uncertain environments, the minimum and maximum pheromone trails in ACO are
set to enhance the searching capability, and the point pheromone is adopted to
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Elsevier)
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Fig. 4.35 Practical trajectories of multiple UAVs in dynamic and uncertain environments
(Reprinted from Duan et al. (2009), with kind permission from Elsevier)

achieve the collision avoidance between various UAVs at the path-planner layer.
Considering the simultaneous arrival and the air–space collision avoidance, an
ETA is decided firstly, and then the path and flight velocity of each UAV are
determined.
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Chapter 5
Multiple UAV Formation Control

Haibin Duan

Abstract Formation flight has long been performed by many species of birds for its
social and aerodynamic benefits. As a challenging interdisciplinary research topic,
autonomous formation flight for multiple unmanned aerial vehicles (UAVs) is about
flying in formations with precisely defined geometries, with the benefits of fuel
saving and improved efficiency in air traffic control and cooperative task allocation.
This chapter mainly focuses on three important aspects associated with formation,
which are respectively formation control, close formation (tight formation), and
formation configuration. A chaotic particle swarm optimization (PSO)-based non-
linear dual-mode receding horizon control (RHC) method is proposed to cope with
the complexity and nonlinearity of vehicle dynamics. Then a novel type of control
strategy of using hybrid RHC and differential evolution (DE) algorithm is proposed
based on the nonlinear model of multiple UAV close formation. Moreover, based on
the Markov chain model, the convergence of DE is proved. Finally, the formation
configuration, which is about diving multiple UAVs to form a new flying formation
state, is explained in detail using the RHC-based DE. The global control problem
of multiple UAV formation reconfiguration is transformed into several online local
optimization problems at a series of receding horizons, while the DE algorithm is
adopted to optimize control sequences at each receding horizon.

5.1 Introduction

Unmanned aerial vehicle (UAV), which develops in the direction of unmanned
attendance and intelligence, is small in size, is light in weight, is low cost, and
is able to operate autonomously. With these qualities, UAV has become one of the
inevitable trends of the modern military and civilian applications. Recently there has
been a considerable amount of interests in cooperative control of a group of UAVs
flying in a formation. When multiple UAVs fly in formation, the formation’s initial

The original version of this chapter was revised. A correction to this chapter is available at
https://doi.org/10.1007/978-3-642-41196-0__9
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geometry, including the longitudinal, lateral, and vertical separation, should be pre-
served during maneuvers with heading change, speed change, and altitude change.

5.1.1 Formation Control

In recent years, formation control of multiple UAVs has become a challenging
interdisciplinary research topic, while autonomous formation flight is an important
research area in the aerospace field (Duan et al. 2013a). The main motivation is
the wide range of military and civilian applications where UAVs formations could
provide a low-cost and efficient alternative to existing technology. Multiple UAV
teams flying in formations with precisely defined geometries have many advantages,
such as energy saving when the vortex forces are taken into account. Formation
flight can also be used for airborne refueling and quick deployment of troops
and vehicles. Formation flight can be regarded as a complicated control problem
which computes the inputs driving the UAVs along challenging maneuvers while
maintaining relative positions as well as safe distances between each UAV pair
(Duan et al. 2013b). The challenge here lies in designing a formation controller
that is computationally simple yet robust.

5.1.2 Close Formation

A close formation, also called “tight formation,” is one in which “the lateral
separation between UAV is less than a wingspan” (Pachter et al. 2001). In this case,
aerodynamic coupling is introduced into the formation’s dynamics. Multiple UAVs
flying in a close formation can achieve a significant reduction in power demand,
thereby improving cruise performances, such as range and speed, or to increase
the payload (Binetti et al. 2003). The “Leader–Wingman” formation pattern can be
shown with Fig. 5.1. If the Wingman flies in close formation with the leading UAV,
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Fig. 5.2 Formation
reconfiguration of five UAVs
(Reprinted from Zhang and
Duan (2012), with kind
permission from SAGE
Publications)

the Leader’s vortices will produce aerodynamic coupling effects, and a reduction
in the formation’s drag can be achieved. According to the effects of aerodynamic
interference, multiple UAV close formation flight control is a complex problem with
strongly nonlinear and coupling character.

5.1.3 Formation Configuration

The formation reconfiguration problem for multiple UAVs can be described as
follows: given a group of UAVs with an initial configuration, a final configuration,
and a set of inter- and intra-UAV constraints, the goal is to determine a nominal
control input for each vehicle such that the multiple UAV group can start from
the initial configuration and reach its final configuration while satisfying the set of
constraints, as is shown in Fig. 5.2. The formation reconfiguration problem can be
recognized as an optimal control problem with dynamic constraints (Zelinski et al.
2003; Ueno and Kwon 2007; Duan et al. 2008). Several theoretical techniques such
as graph theory (Hendrickx et al. 2008), reconfiguration maps, Dijkstra algorithm
(Giulietti et al. 2000), or functional optimization have been developed to define the
new/optimal positions to be occupied by the UAVs in the formation.

As a large-scale centralized control problem, formation reconfiguration aims to
obtain the control input signals (such as steering angle, throttle/thrust) for each UAV
through complex calculation to drive each UAV in a complicated flight maneuver.
In this process, multiple UAVs must satisfy several constraints; for example, the
distance between two UAVs must be greater than the safety collision distance, and
also should not be too greater than the communication distance.
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5.2 Dual-Mode RHC for Multiple UAV Formation Flight
Based on Chaotic PSO

5.2.1 Leader-Following Formation Model

The point mass model is considered for formation flight. Each UAV is assumed
to fly at a constant altitude, parallel to the 2-dimensional region to be surveyed.
A commonly used nonlinear kinematics model that represents a UAV with zero or
negligible velocity in the direction perpendicular to the UAV’s heading is applied to
our model.

Px D v cos 
Py D v sin 
Pv D u
P D !

(5.1)

where x and y are the Cartesian coordinates of the UAV, v is the velocity, and  
is the heading angle in the (x,y) plan (Stipanović et al. 2004). The acceleration in
the longitudinal direction u and angular turn rate ! are assumed to be the control
inputs to the UAV. Figure 5.3 shows the UAV position and orientation in the plane
coordinate system.

In a typical multiple UAV formation flight, the Wingman follows the trajectory of
the Leader UAV, taking other aircrafts as reference to keep its own position inside
the formation. In a large formation, intra-aircraft distances must be kept constant
(Giulietti et al. 2000). The formation model in this paper adopts Leader mode
strategy (as shown in Fig. 5.4), which means each Wingman UAV takes its trajectory
references from the Leader UAV, while the altitude is the same for all. The Leader
UAV takes charge of formation trajectory.

Fig. 5.3 UAV position and
orientation (© [2002] IEEE.
Reprinted, with permission,
from Duan and Liu (2010))
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Fig. 5.4 Multiple UAV formation (© [2002] IEEE. Reprinted, with permission, from Duan and
Liu (2010))

The Virtual Leader is employed in our model to replace the real UAV Leader
so that UAVs adjust speed and heading angle based on the relative states of Virtual
Leader (as shown in Fig. 5.5). Then a multiple UAV formation, defined with respect
to all the real UAVs as well as to the Virtual Leader, should be maintained at the
same time as the Virtual Leader tracks its reference trajectory. The key advantage of
the Virtual Leader UAV is that a physical UAV Leader is subject to destruction,
while the Virtual Leader can never be damaged. The Virtual Leader provides a
stabile, robust reference for formation control.

5.2.2 Principle of RHC

Nonlinear RHC is that the finite time optimal control law is computed by solving an
online optimization problem. And linear RHC theory is quite mature so far (Kwon
and Han 2005). Generally, many systems are inherently nonlinear, and they are often
required to operate over a wide range of operating conditions. Linear models are
often inadequate to describe the process dynamics, and nonlinear models have to
be used. This motivates the use of nonlinear RHC. The optimization problems over
the finite horizon, on which the RHC is based, can be applied to a broad class of
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Fig. 5.5 Multiple UAV
formation with the Virtual
Leader (© [2002] IEEE.
Reprinted, with permission,
from Duan and Liu (2010))

systems, including nonlinear systems and time-delayed systems. Thus, the RHC has
the same broad applications even for nonlinear systems:

min
u
J D f

�
x; uI tc ; Tp

�

J D

Z tcCTp

tc

F .x; u/ dt Cˆ
�
xtcCTp

�

subject to Px D f .x; u/

L �

�
x

u



� U (5.2)

where x and u are respectively state vector and control sequence; tc and Tp represent
the control and the prediction horizon with tc�Tp; L and U are lower and upper
bounds; and ı is the predicted time step.

Receding optimization is the most important idea of RHC, which is also the
typical difference between RHC and optimum control, as shown in Fig. 5.6 (Duan
and Liu 2010; Zhang et al. 2011; Duan et al. 2011). The whole control process
can be divided into a series of optimizing intervals called rolling window or
receding horizon. RHC method forms the closed-loop rolling mechanism, including
observation, planning, implementation, and reobservation. RHC is a p -step-ahead
online optimization strategy. At each time interval, RHC optimizes the specific
problem for the following p intervals based on current available information.
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Fig. 5.6 Receding optimization (Reprinted from Zhang et al. (2010), with kind permission from
Springer ScienceCBusiness Media)

5.2.3 Chaotic PSO-Based Dual-Mode RHC Formation
Controller Design

5.2.3.1 A Dual-Mode Formation Controller Design

In this subsection, we will introduce the framework of the multiple UAV formation
flight controller (Duan and Liu 2010). In our proposed formation flight control
strategy, each UAV follows the Virtual UAV Leader.

The ith UAV state vector and control input sequence in (5.1) are

xi D .vi ; ‰i ; xi ; yi / ;ui D .ui ; !i / (5.3)

The Virtual Leader state is xVL and control inputs are uVL. According to the UAV
Leader, the ith UAV relative state is xriD xi � xVL. We define formation state and
input sequence:

X D .xVL;x1; : : : ;xN /;Xr D .xr1; : : : ;xrN /; U D .uVL;u1; : : : ;uN / (5.4)

In nonlinear RHC, the input applied to the system is usually given by the solution
of the following finite horizon optimal control problem according to (5.2), which is
solved at every sampling instant:
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F .Xr ; U / D Xr
TQXr C U

TRU (5.6)
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T PX

�
t C Tp

�
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(5.7)

The deviation from the desired values is weighted by the positive-definite
matrices Q, R, and P; the time step is ı. V is the terminal penalty.

� D
˚
X
ˇ
ˇXTPX � ˛

�
(5.8)

The terminal region ˝ is chosen such that it is invariant for the nonlinear
system control by using a linear state feedback. As control systems become more
complex and performance requirements more demanding, the invariant sets are
widely employed to design stabilizing controllers and, in particular, for applying
RHC strategies. In order to enlarge the solution range and make search process of
PSO easier, the dual-mode control strategy is chosen in this paper, for this strategy
provides an efficient way to guarantee the stability of RHC with input constraints.
The basic idea is to use a finite horizon of allowable control inputs to steer the state
into an invariant set. The terminal region ˝ and terminal penalty matrix P can be
determined off-line.

A local linear control law which stabilizes the nonlinear system in ˝ is obtained
as follows:

PX D
@f

@x
.0; 0/X C

@f

@u
.0; 0/ u (5.9)

Substitute the linear state feedback uDKX into (5.9), we can get

PX D f X (5.10)

f D
@f

@x
.0; 0/C

@f

@u
.0; 0/K (5.11)

Define the following Lyapunov equation:

f P C Pf T CQ� D 0 (5.12)
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where Q*DQCKTRK and the solution P is a positive-definite symmetric matrix.
For any vector X 2Rn, kXk denotes Euclidean norm. There exists a constant
˛ 2 (0,1) to fix the terminal region ˝ at the origin as (5.8). The constant ˛ satisfies
KX 2U for all x2˝ and the following condition, according to (5.8) and uDKX:

kKXk D
�
�
�K

�
˛
1
2 P� 1

2

� �
˛� 1

2 P
1
2 X
� �
�
� �
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�
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2 P� 1
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� �
�
� �
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�˛� 1

2 P
1
2 X
�
�
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�
�
�
�K˛

1
2 P� 1

2

�
�
� D ˛KTPK (5.13)

It follows the input constraints that

˛KTPK � u2max kuk � umax (5.14)

As multiple UAV formation state X enter the terminal region ˝ , X will be kept
in this region all the while and tend to the origin gradually.

5.2.3.2 Collision Avoidance

In multiple UAV formation flight system, each UAV moves in an environment in
which there are obstacles and other UAVs. Thus the multiple UAVs, at the same
time, have to consider the problem of formation control and collisions avoidance.
Collision avoidance is assumed to be the most important task: only when UAV is at
safe distance from the other UAVs and the obstacles can it take care of maintaining
the formation.

To achieve collision avoidance with other UAVs, a priority indexing scheme is
used (Wang et al. 2007): all UAVs are tagged, and the UAV with a lower index
creates an imaginary obstacle around the UAV with a higher index (as seen in
Fig. 5.7) and tries to avoid it. Thus, collision avoidance is achieved.

The UAVs with a lower index must react rapidly when neighboring UAVs with
a higher index approach within unsafe range or when obstacles are detected as they
appear within the sensor range, to avoid any collision. Consequently, a multiple
UAV formation control strategy that ensures avoidance of collisions is achieved by
adding a constraint to (5.5).

J1 D J C Penaltyc �
ConumX

jD1

Disconstraint
�
dij
�

(5.15)

Disconstraint
�
dij
�
D

(
1 dij � dsafe

0 dij > dsafe
(5.16)

where Penaltyc is the collision penalty coefficient, Conum is the total account of
collisions that UAVi has to avoid, and dij is the distance between UAVi and the jth
collision center. (The obstacle shape is specified as a circle.) As long as UAVi spatial



152 5 Multiple UAV Formation Control

Fig. 5.7 Collision avoidance (© [2002] IEEE. Reprinted, with permission, from Duan and Liu
(2010))

horizon overlaps the jth obstacle, Disconstra int(dij)D 1 and the value of (5.15) will be
very large. Therefore, this constraint is adopted for effectively avoiding collisions.

5.2.3.3 Chaotic Particle Swarm Optimization

In RHC, the cost function (5.15) plays a role of an evaluation function in PSO.
The future control input sequence U is obtained by minimizing (5.15) via a particle
swarm optimization.

In PSO design, the optimization concepts based on chaotic sequences can be a
good alternative to provide diversity in PSO populations. The application of chaotic
sequences instead of random sequences in PSO is a powerful strategy to diversify
the population of particles and improve the PSO’s performance in preventing
premature convergence to local minimum. Chaos optimization is realized through
chaos variables which can be obtained by many ways. One of the simplest maps
which is brought to the attention of scientists by May (1976), which appears in
nonlinear dynamics of biological population evidencing chaotic behavior, is logistic
map:

ZnC1 D �Zn .1 �Zn/ (5.17)

where Zn is the nth chaotic number where n denotes the iteration number.
Obviously, Zn 2 (0,1) under the conditions that the initial Z0 2 (0,1), and
Zn 62 f0.0,0.25,0.5,0.75,1.0g. �D 4 has been used in our algorithm.

The population diversity measured the average particle distance, which describes
population diversity with dispersion degree between particles. Assume L is the
maximum length of search space, ps is the population of particles, ln is the
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dimensions of solution space, pid is the dth coordinate of particle pi, Pd is the average
of the dth coordinate, and the average particles distance D(iterk) at the kth iteration
is defined as follows:

D .iterk/ D
1

ps � L

psX

i

v
u
u
t

lnX

dD1

.pid � Pd/
2 (5.18)

In our chaotic PSO approach, the PSO algorithm is first run to find the global-
best position as a candidate solution, and once particles collide, D(iterk)<", where
" is a positive constant. Then, the better solution generated from chaotic systems
substitute random numbers for the PSO particles, where it is necessary to make a
random-based choice. In this way, the global convergence can be improved, and
falling into local-best solution can be prevented.

As we have mentioned, PSO can also be improved by a modification of the inertia
weight w in (2.11) (Shi and Eberhart 1998). The inertia weight can be used to
balance the local and global search during the optimization process. If the inertia
weight is big, it is possible to enhance global search. Otherwise, smaller inertia
weight will enhance the local search. While the value of w is made to decrease
gradually with the increase in the number of iterations by the following equation at
the kth iteration iterk:

w D wmax � iterk
wmax � wmin

itermax
(5.19)

where itermax is maximum iteration and wmax and wmin are separately maximum and
minimum of w.

In order to guarantee the stability and enhance the efficiency of the control
algorithm, the initial value of each particle chooses the last control input sequence
after the achievement of primary sequence, such as the lth particle at a time t is
initialed by U(t� ı).

The process of our proposed nonlinear dual-mode RHC method based on chaotic
PSO for solving multiple UAV formation flight problem can be described as follows:

Step 1. Initialize UAVs states X0 and the nonlinear dual-mode RHC parameters used
in formation system.

Step 2. Evaluate the terminal region ˝ and terminal penalty matrix P by (5.9),
(5.10), (5.11), (5.12), (5.13), and (5.14).

Step 3. Detect if formation state X(t) enters the terminal region ˝ or not by (5.8).
If it is true, then go to Step 8; else go to Step 4.

Step 4. Initialize particle swarm adopted with the last predictive control sequence
U(t� ı) optimized by PSO, while particle swarm is initialed randomly at the first
time.

Step 5. Evaluate the value of each particle by computing the cost function (5.15),
and update the particle swarm and the global-best particle gbest according to
(2.11).

http://dx.doi.org/10.1007/978-3-642-41196-0_2
http://dx.doi.org/10.1007/978-3-642-41196-0_2
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Step 6. Detect if PSO precociously converge to local minima with (5.18). If it is
true, then go to the next step; else go to Step 8.

Step 7. Use chaotic systems to generate a better solution to substitute random
numbers for the PSO particles in next iteration and then go to Step 4.

Step 8. Detect the PSO terminate conditions (reaching the maximal generation or
finding the idea optimum). If the terminate conditions are met, end the PSO
algorithm and return the global-best particle gbest as the control sequence U(t),
or continue the computation.

Step 9. Apply the first part of the optimal control sequence to update formation state
X(t), and then go to Step 1.

Step 10. Use a linear state feedback uDKX to control the nonlinear formation
system to guarantee the stability of multiple UAV formation.

Step 11. Detect the formation stability conditions. If certain conditions are achieved,
end the formation control method, or go to Step 2.

Figure 5.8 displays the flowchart of the chaotic PSO-based nonlinear dual-mode
RHC formation control scheme for multiple UAV formation flight

5.2.4 Experiments

In this section, series experiments have been performed to investigate the perfor-
mance of the proposed chaotic PSO-based nonlinear dual-mode RHC formation
control scheme for multiple UAV formation flight. We use (5.1) to represent states
of UAV model respectively. The multiple UAV group consists of 5 agents, with input
constraints [�5, 5]m/s2 for the acceleration u and [- /18,  /18] rad/s for the angular
turn rate !. To improve performance and avoid collisions, a safe distance between
UAVs is defined, dsafeD 3. Collisions between UAVs are solved with the priority
index strategy. Each UAV is tagged with a serial number.

The initial conditions of the nonlinear dual-mode formation controller are
prediction horizon TpD 8s, time step ıD 1s (the simulation time), weighting
matrices QD diag(1,1,1,1), RD diag(1,1), P D(0.0596 0 �0.0063 0;0 0.0596 0
�0.0063;�0.0063 0 0.0129 0;0 �0.0063 0 0.0129). The improved PSO param-
eter setting is the size of the particle swarm psD 20, inertia weight wmaxD 1.2,
wminD 0.1, particle maximum velocity vpmaxD 4, c1D 0.5, c2D 0.5, and the maxi-
mum iteration itermaxD 200.

In order to fully illustrate the efficiency of the proposed algorithm, we compare
its performance with the standard GA under the same conditions. In both CPSO
and GA, the population size is 20. The GA is real valued with random initialization
and updates the population and search for the optimum with random techniques.
Crossover and mutation probabilities are set as 0.8 and 1/n, respectively, where n is
the dimension of the problem.
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Fig. 5.8 Chaotic PSO-based RHC formation control scheme for multiple UAV formation flight
(© [2002] IEEE. Reprinted, with permission, from Duan and Liu (2010))
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5.2.4.1 Formation Control

Multiple UAV states are initialed as xVL D(15,0,30,60), x1 D(15,0,5,65),
x2D(15,0,5,75), x3 D(15,0,5,85), x4 D(15,0,5,45), x5 D(15,0,5,55), and the
relative distances are xr1 D(0,0,0,0), xr2 D(0,0,�15,15), xr3 D(0,0,�30,30), xr4

D(0,0,�15,�15), xr5 D(0,0,�30,�30). The Virtual Leader is marked with “ı,”
while UAV is “�”. The five UAVs reconfigure from a “j”initial shape to forming a
“V” formation. Assume that the Virtual Leader speed is 15 m/s in the x-direction
and its heading angle is 0 rad during the simulations. Figures 5.9 and 5.10 show
the detailed results generated by the control sequence optimized by GA and CPSO,
respectively.

The UAV group has to follow the Virtual Leader as seen in Fig. 5.9a, which
shows the (x,y) positions of UAVs generated by using GA to optimize the control
sequence. Note that the UAV group is traveling from left to right in the figure.
The results are shown in Fig. 5.9, which illustrates that both the path tracking and
formation maintenance tasks are not achieved. Figure 5.9b–e shows the multiple
UAV convergence time. It is obvious that the 5th UAV cannot move to the initial
relative position to follow the Virtual Leader, while other UAVs can converge to
designated position. The same experiment is tested 5 times with similar results that
the satisfactory tasks are not achieved.

In Fig. 5.10, UAVs follow the Virtual Leader with a constant velocity in x -
direction and the desired separation between UAVs is 15 m in both the x - and
y -directions. Under the control inputs optimized by CPSO, the multiple UAVs
converge to the desired formation from the same initial configuration. Formation
results are presented in Fig. 5.10a. The formations converge in 50s as seen in
Fig. 5.10b. Compared with the results generated by the control sequence optimized
by GA, CPSO performs better for its comprehensive ability to search and high
precision, which demonstrates that CPSO is suitable for the dual-mode RHC
controller.

5.2.4.2 Formation Control with an Obstacle

The second experiment illustrates the effectiveness of the proposed method in Sect.
4.2.3 for five UAVs performing obstacle avoidance. The parameters in the dual-
mode RHC controller are chosen to be exactly the same as in the first experiment.
The second experiment is initialed: xVL D(15,0.7854,20,40), x1 D(5,0,�20,20),
x2 D(5,0,20,20), x3 D(5,0,�40,20), x4 D(5,0,0,20), x5 D(5,0,�60,20), and the
relative distances are xr1 D(0,0,0,0), xr2 D(0,0,�15,15), xr3 D(0,0,�30,30), xr4

D(0,0,�15,�15), xr5 D(0,0,�30,�30). And we change the Virtual Leader’s heading
angle from 0 to 0.7854 ( /4) and add a circular obstacle in the simulation
environment. The obstacle center is located at (20, 40) and the radius is 12 m.
Figure 5.11 shows the results generated by the control sequence optimized by GA,
while Fig. 5.12 shows the results generated by the proposed algorithm.

http://dx.doi.org/10.1007/978-3-642-41196-0_4
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Fig. 5.9 The detailed results generated by the control sequence optimized by GA. (a) Five UAVs
merge to a V-formation while following a Virtual Leader. (b) Relative velocities of 5 UAVs.
(c) Relative heading angles. (d) Relative distances in the x-direction. (e) Relative distances in
the y-direction (© [2002] IEEE. Reprinted, with permission, from Duan and Liu (2010))

The optimal obstacle avoidance trajectory with the dual-mode controller is
generated assuming that UAVs can sense the circle obstacle. The trajectory of
five UAVs after 20 time steps is presented in Figs. 5.11a and 5.12a. The results
generated by control sequence optimized by GA as seen in Fig. 5.11b–e are far
from satisfactory. Figure 5.12a shows the formation trajectory after 20 time steps.
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Fig. 5.10 The detailed results generated by the control sequence optimized by CPSO. (a) Forma-
tion trajectory under the same initial conditions. (b) Formation trajectory during the first sixty time
steps. (c) Relative velocities of UAVs. (d) Relative heading angles. (e) Relative distances in the x
-direction. (f) Relative distances in the y -direction (© [2002] IEEE. Reprinted, with permission,
from Duan and Liu (2010))

The results are shown in Fig. 5.12c–d, which demonstrates that both the path
tracking and formation maintenance tasks are successfully achieved. Figure 5.12c–e
represents the multiple UAV convergence time. It is obvious that converge in 20s. It
clearly shows the superiority of the proposed algorithm over GA.
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Fig. 5.11 The detailed results of GA for the second experiment. (a) Formation trajectory in a
complicated environment with obstacle. (b) Relative velocities of UAVs. (c) Relative heading
angles. (d) Relative distances in the x -direction. (e) Relative distances in the y -direction (© [2002]
IEEE. Reprinted, with permission, from Duan and Liu (2010))

The simulation results obtained by applying the proposed dual-mode RHC
algorithm show the UAVs are capable of flying in the desired formation. Simulations
with different conditions are conducted to verify the feasibility and effectiveness of
the proposed controller.
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Fig. 5.12 The detailed results of CPSO for the second experiment. (a) Formation trajectory in
a complicated environment with obstacle. (b) Relative velocities of UAVs. (c) Relative heading
angles. (d) Relative distances in the x -direction. (e) Relative distances in the y -direction (© [2002]
IEEE. Reprinted, with permission, from Duan and Liu (2010))
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5.3 DE-Based RHC Controller for Multiple UAV Close
Formation

5.3.1 Model of Multiple UAVs for Close Formation

In this section, a typical multiple UAV close formation model established by Proud
et al. (1999) and Pachter et al. (2001) are adopted.
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(5.20)

The optimal separation between the Wingman and Leader UAV can be described
with x D 2b; y D �b=4; z D 0, where b is the wingspan of the Leader. The close
formation model is established based on the aerodynamic forces on the Wing UAV
near the optimal relative position, with a rotating reference frame affixed to the
Wingman’s instantaneous position and aligned with the Wingman’s velocity vector
used.

In the close formation model shown in (5.20), (x,y, W ,VW ,z,�) are the state
vectors, where x, y, and z denote the longitudinal, lateral, and vertical separation
between the Leader and Wingman, respectively.  W and VW denote the heading
angle and velocity of the Wingman, respectively. . WC ; VWC ; hWC / are the control
inputs to Wingman’s heading hold, mach hold, and altitude hold autopilot channels,
respectively. The Leader’s maneuvers are regarded as a disturbance, which can be
expressed with . L; VL; hLC /.
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5.3.2 Description of RHC-Based Multiple UAV Close
Formation

When multiple UAVs fly in a close formation, the Wingman must maintain itself
at the optimal separation which is measured with respect to the Leader’s position.
Thus, the cost function (or objective function) of multiple UAV close formation
flight can be described with a quadratic form (Zhang and Duan 2012):

minJ D
Z T

0

��
X ref � x.t/

�T
�Q �

�
X ref � x.t/

�
dt

s:t: x.t/ D

Z t

0

f .x.0/;u .�/ ;d .�//d�

U min � u.t/ � U max (5.21)

where x(t)D [x,y,z,VW , W ]T denotes the formation state, and the control
inputs of Wingman’s autopilot is represented by u.t/ D ŒVWC ;  WC ; hWC �

T .
Xref D [xC,yC,zC,VL, L]T represents the reference state of the close formation
system, and xC, yC, zC determines the formation geometry. In the close formation
model adopted in our work, Leader’s flight states’ change can break the formation’s
stability. In this way, Leader’s maneuver can be regarded as the disturbance to
the flight formation, described as d(t). QD diagfq1, � � � ,q5g is a positive-definite
matrix.

RHC divides the global control problem into some local optimization problems
at receding time horizons. These local optimization problems have the same
optimization objectives with the global control problem. In the kth sampling instant,
the dynamic of the close formation can be written as:

x .k C 1/ D x.k/C

Z .kC1/T

kT

f .x.k/;u.k//dt D f d .x. k /;u. k /;d. k //

x.0/ D x0 (5.22)

The control inputs of the Wingman are subject to the following constraints:

U D fu.k/ jjU min � u.k/ � U maxg (5.23)

where x(k)2R5 represents the formation state at the kth sampling time, and the
control action, keeping constant until next predictive horizon, is represented by
u(k)2R3. d(k)2R3 describes the Leader’s state. T denotes the span of one time
horizon, or sampling interval.

Assumption 1 The multiple UAV close formation system given in (5.20) is control-
lable and stabilizable.

Taking into account various practical constraints, such as the UAV’s physical
performance and the flight mission requirements, Wingman’s control action u is
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always available with the Leader’s state d, which can stably maintain the formation
state as the reference Xref, i.e., 8 d, 9u2U, subject to XrefD fd(Xref,u,d).

At time k, RHC controller computes predictive control sequences of current and
future p predictive time horizons according to the formation’s current state, which
can be represented as u(kjk), u(kC 1jk), � � � , u(kC p� 1jk). Suppose that Leader’s
state will not change in the following p time horizons, namely, d(kC i)D d(k).
Then the states of the formation in these time horizons x(kC 1jk), x(kC 2jk), � � � ,
x(kC pjk) can be obtained. The next p time horizons are named as predictive time
horizon.

Denote the quadratic cost by the following fitness function at the kth time:

minJ.k/ D
pX

iD1

��
X ref � x

�
k C i

ˇ
ˇ
ˇk
��T
�Q �

�
X ref � x

�
k C i

ˇ
ˇ
ˇk
�


s:t: x
�
k C 1

ˇ
ˇ
ˇk
�
D f d .x. k jk/ ;u .kj k /;d. k //

x
�
k C j C 1

ˇ
ˇ
ˇk
�
D f d .x. k C j jk/ ;u .k C j j k /;d. k //

U min � u
�
k C j

ˇ
ˇ
ˇk
�
� U max (5.24)

Minimize fitness function (5.24); the optimal solution to the local optimization
problem at time k can be obtained, which is represented by u * (kC j� 1jk),
jD 1, � � � , p. Apply the preceding m control actions u * (kjk), u * (kC 1jk), � � � ,
u * (kCm� 1jk)), (0�m� p) to the formation-hold control system residing on
Wingman successively in current and following m� 1 time horizons. Subsequently,
at time kCm, repeat sampling, predicting, optimization, and implementing. By
using this receding optimization technique, multiple UAV close formation state can
approximate to the reference value finally. Dunbar and Murray (2006) theoretically
demonstrated the stability of distributed MPC with a sufficiently fast update period.
This process can be described as Fig. 5.13.

RHC treats the global control problem as a series of online local optimization
problems. However, multiple UAV formation reconfiguration problem is actually
constrained nonlinear optimization problems and is very difficult to be solved by
using the traditional approaches. However, numerous population-based optimization
approaches can provide good solutions to these complicated problems. DE algo-
rithm is utilized to optimize the fitness function, and the predictive control law can
be optimized directly.

5.3.3 DE-Based RHC Controller Design for Close Formation

5.3.3.1 Controller Design

The formation flight controller is equipped on the Wing UAV. It is an outer-
loop controller that receives measurements of separation between the Leader and
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Fig. 5.13 Basic ideas of RHC (Reprinted from Zhang et al. (2010), with kind permission from
Springer ScienceCBusiness Media)

Fig. 5.14 Frame of multiple UAV close formation controller-based RHC (Reprinted from Zhang
et al. (2010), with kind permission from Springer ScienceCBusiness Media)

Wingman and drives the control signals of the Wingman’s three channels: mach
hold, heading hold, and altitude hold autopilot. The block diagram of DE-based
RHC controller for multiple UAV close formation is shown in Fig. 5.14 (Zhang and
Duan 2012):

Models of each single UAV are low-order models: the heading hold and the mach
hold autopilot are first order, and the altitude hold autopilot is second order.
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In the online optimization process, set (5.24) as the fitness function of DE (Price
and Storn 1997), and set predictive control sequence u(kC i� 1jk), iD 1, � � � , p as
the individual vector, which is just the objective of DE optimization operations.
Here, the length of the predictive horizon is p, and thus DE’s search region
is a DD 3p -dimensional space. At time k, the jth individual of DE algorithm
is represented by xj D[VWc

j(kjk),  Wc
j(kjk), hWc

j(kjk), : : : , VWc
j(kC p� 1jk),

 Wc
j(kC p� 1jk), hWc

j(kC p� 1jk)]. Apply DE’s evolutionary operators to xj until
the terminal criterion is satisfied, and then choose the individual with the smallest
fitness function value as the optimal control sequence. After that, implement the
preceding 3 �m control actions to the Wing UAV’s autopilot at each time horizon
respectively.

With the purpose of improving the online searching efficiency and making
full use of all aspects of information, for the solution xj

� D[VWc
j(kC �jk),

 Wc
j(kC �jk), hWc

j(kC �jk)], �D 0, � � � , p� 1 at time kC � with respect to the
individual xj of DE population, one feasible method used is to assign their
initial value in the following three steps: (i) Set them as Leader’s current state
[VL(kC �), L(kC �), hL(kC �)]. (ii) Set them as former one time horizon’s control
action [VWc

j(kC � � 1jk),  Wc
j(kC � � 1jk), hWc

j(kC � � 1jk)]. (iii) Assign their
values randomly.

In order to reduce the computing complexity, we adopted the one step predictive
control, i.e., mD pD 1.

When multiple UAVs fly in a close formation, at the kth time horizon, the DE-
based RHC controller implements the process online in the following steps:

Step 1: Input the formation’s current state x(k)D [x,y,z,VW , W ]T as well as
Leader’s state [VL(k), L(k), hL(k)], compare them with the reference state
Xref (k), and then optimize the predictive control law.

Step 2: Initialize the DE population (each individual of the DE’s population is a
reference solution to u(kjk)), and set their initial values as follows:

xj D

8
<

:

�
VL.k/;  L.k/; hL.k/

�
;

�
VWc.k � 1/;  Wc.k � 1/; hWc.k � 1/

�
;

rand � .U max � U min/C U min;

j D 1

j D 2

else

where jD 1, � � � D.
Step 3: Compute the fitness function value f (xj).
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Step 4: Apply DE’s mutation and recombination operators to xj, and generate the
trial vector uj, and then compute its fitness function value f (uj).

Step 5: Compare f (uj) and f (xj), implement DE’s selection operator, and then move
the individual with the lowest fitness value to the next generation. Go to Step 3
until stopping criterion is satisfied.

Step 5: The best individual of DE population is just the optimal control input
u * (kjk); output and apply it to each autopilot.

Step 7: Go to Step 1 and move forward into the (kC 1)th time horizon.

5.3.3.2 Stability Analysis

Let u * (kjk) be the optimal predictive control sequence at time k. If this control
sequence continues to work until time kC 2, the multiple UAV close formation
system state at time kC 2 can be obtained by

x .k C 2/ D

Z .kC2/T

kT

f
�
x .�/ ;u �

�
k
ˇ
ˇ
ˇk
�
;d.k/

�
d� (5.26)

According to the further analysis, the fitness function J(k) of u(kjk) depends on
the state x(kC 1) at time kC 1. Using u * (kjk) yielded by the DE optimization, the
multiple UAV formation state at time kC1 will be the optimal:

x � .k C 1/ D

Z .kC1/T

kT

f
�
x .�/ ;u �

�
k
ˇ
ˇ
ˇk
�
;d.k/

�
d� (5.27)

Continue using u * (kjk) at the next time horizon, i.e., let u(kC1jkC1)Du * (kjk).
However, this cannot guarantee that the fitness function value J(kC 1) is the
optimal. Therefore, the system state at time kC 2:

x .k C 2/ D

Z .kC2/T

.kC1/T

f
�
x .�/ ;u �

�
k
ˇ
ˇ
ˇk
�
;d.k/

�
d� (5.28)

is not optimal.
At time kC 1, optimize u(kC 1jkC 1) by using DE algorithm. Since the initial

population has contained last time’s control input u * (kjk), together with Lemma 2,
the system state at time kC 2

x� .k C 2/ D

Z .kC2/T

.kC1/T

f
�
x .�/ ;u�

�
k C 1

ˇ
ˇ
ˇk C 1

�
;d .k C 1/

�
d� (5.29)

is superior to x(kC 2) determined by (5.28) and J*(kC 1)� J(kC 1).
In which, the control sequence u * (kjk), u * (kC 1jkC 1), : : : , u * (kCNjkCN)

driving the system’s fitness function value is always superior to that at the last
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time horizon. Given an appropriate control step, the system’s fitness function will
converge to the stable value. Thus, the multiple UAV close formation system can be
stabilized at the reference state.

5.3.4 Experiments

In order to investigate the feasibility and effectiveness of our proposed DE-
based RHC approach to multiple UAV close formation control, two experiments
were conducted. The proposed approach was coded in MATLAB language and
implemented on PC-compatible with 2 GB of RAM under the Microsoft Windows
Vista.

In all experiments, the initial separations between Leader and Wingman were
set with xCD 60ft, yCD 23.6ft, zCD 0ft. The model parameters in (5.20) were from
Proud et al. (1999). Given Leader’s heading angle and velocity were  LD 0o and
VLD 200ft/s at the beginning of the experiments, while at time tD 5s, the Leader’s
flight states turned to  LD 20o and VLD 250ft/s. The experiments were performed
with 30 s, and the following results show the response curves of the longitudinal
and lateral separation, Wing UAV’s heading and velocity, as well as the final fitness
value at each prediction horizon.

The parameters of DE-based RHC controller are set as follows: FD 1.4,
CRD 0.5, NPD 10, NCD 20, mD pD 1, QD diag[100,100,1,1].

1. Consider the aerodynamic interference introduced by Leader, and set the sam-
pling interval at TsD 0.1s. The time response is shown as Fig. 5.15.

2. Change the sampling time interval as TsD0.01s.The simulation results are shown
in Fig. 5.16.

The comparative results in Figs. 5.15 and 5.16 show that the shorter the sampling
period, the more stable the time response for the multiple UAV close formation
system. It is obvious that better performance can be obtained by shortening the
prediction horizon.

5.4 DE-Based RHC Controller for Multiple UAV Formation
Reconfiguration

5.4.1 Model of Multiple UAVs for Formation Configuration

We consider a group of N UAVs are flying at the same altitude without sideslip, and
they turn through the coordinated turn. For each UAV in the flight formation, its
state variable is set as xiD (vi, i,xi,yi)T , iD 1, � � � , N, and the dynamic of the single
UAV can be written as
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Fig. 5.15 Time response of multiple UAV close formation system (Ts D 0.1s). (a) Longitudinal
separation x. (b) Lateral separation y. (c) Wingman’s velocity VW . (d) Wingman’s heading  W .
(e) Optimal fitness value J� (k) (Reprinted from Zhang et al. (2010), with kind permission from
Springer ScienceCBusiness Media)

Pv D .T �D/=W
P D g � sin'=v
Px D v � cos 
Py D v � sin (5.30)

where v is the horizontal flying velocity of each UAV in the flight formation,  
denotes the heading angle, and the UAV’s horizontal location is represented by
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Fig. 5.16 Time response of multiple UAV close formation system (Ts D 0.01s). (a) Longitudinal
separation x. (b) Lateral separation y. (c) Wingman’s velocity VW . (d) Wingman’s heading  W .
(e) Optimal fitness value J� (k) (Reprinted from Zhang et al. (2010), with kind permission from
Springer ScienceCBusiness Media)

(x,y) in the earth-surface inertial reference frame. The control inputs of each UAV’s
autopilot are represented by uD (T,')T , which contain the thrust T and the roll angle
'. D represents the aerodynamic drag, which is simply regarded as a constant. The
weight of each UAV is W, and gravity acceleration gD 9.8m/s2. Thus, dynamics of
the ith UAV can be described as

Pxi .t/ D f .xi .t/; ui .t // ; i D 1; � � � ; N (5.31)
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Set one UAV in the formation as the Leader, which is treated as the reference
point, and its state vector is represented by xL. Relative to the Leader UAV,
(xi � xL) denotes the relative state of the ith UAV. Assume the initial time of the
reconfiguration process is t0D 0, and the terminal time is tDT. The process of the
formation reconfiguration is regarded as a control optimization problem, and so,
the goal is to find the continuous control action UD (u1, � � � ,uN) that minimize a
cost function that enables the terminal positions of every UAV to reach their desired
value. Set the cost function as the quadratic form, which is described in the following
equation:

minJ.U / D
NX

iD1

�
xref ;i �

�
xi

�
T
ˇ
ˇ
ˇui
�
� xL

�
T
ˇ
ˇ
ˇuL
���T

Q
�
xref ;i �

�
xi

�
T
ˇ
ˇ
ˇui
�
� xL

�
T
ˇ
ˇ
ˇuL
���

s:t: xi

�
t
ˇ
ˇ
ˇui
�
D xi .0/C

Z t

0

f .xi .�/ ;ui .�// d�

U min � U �U max (5.32)

where Xref D [xref,1, � � � ,xref,N] represents the terminal reference state of the multiple
UAV system, which defines the terminal shape of the multiple UAV formation.
xi(Tjui) denotes the ith UAV’s terminal state driving by the control input ui. For
each UAV, given the initial state xi(0), its state xi(t) at any time t can be uniquely
determined by ui. The control inputs are constrained by the performance of UAVs.
QD diagfq1,q2,q3,q4g is a positive-definite matrix.

Denote the distance between any two UAV as di,j(t), i, jD 1, � � � , N, which is
computed as

di;j .t/ D

q
�
xi .t/ � xj .t/

�2
�
�
yi .t/ � yj .t/

�2

In order to avoid collision between two UAVs, di,j(t) must be greater than the safe
anti-collision distance Dsafe, that is,

di;j .t/ 
 Dsafe;8t 2 Œ0; T � ;8i¤j i; j 2 f1; � � � ; N g (5.33)

In order to ensure the real-time communication to achieve the information
sharing, di,j(t) must be less than the communication distance Dcom, that is,

di;j .t/ � Dcom;8t 2 Œ0; T � ;8i¤j i; j 2 f1; � � � ; N g (5.34)
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Comprehensively consider the distance-restrictive conditions as shown in (5.33)
and (5.34); the extended cost function can be rewritten as

minJextend .U / D J .U /C ! �

Z T

0

X

i¤j

�
max

�
0;Dsafe � di;j .t/

�

Cmax
�
0; di;j .t/ �Dcom

��
dt (5.35)

where ! denotes the distance punishment constant coefficient, and it should be great
enough so that the distance restricts of multiple UAV formation can be satisfied and
!D 1010.

5.4.2 Description of RHC-Based Multiple UAV Formation
Reconfiguration

RHC divides the global control problem into some local optimization problems
at receding time horizons. These local optimization problems have the same
optimization objectives as the global control problem. In the kth sampling instant,
the dynamic of the ith UAV of multiple UAV formation can be written as

xi .k C 1/ D xi .k/C

Z .kC1/T

kT

f .xi .k/;ui .k//dt (5.36)

The control inputs subject to the following constraints:

U D fui .k/ jjumin � ui .k/ � umaxg (5.37)

where xi(k)D [vi(k), i(k), xi(k), yi(k)]2R4 represents the ith UAV’s state at the kth
sampling time, and the control input of the ith UAV, keeping constant until the next
predictive horizon, is represented by ui(k)D [Ti(k),' i(k)]2R3. T denotes the span
of one time horizon or sampling interval.

At time k, RHC controller computes predicted control sequences of the current
and future p predicted time horizons for each UAV according to multiple UAVs’
current state and the constraint, and these control inputs can be represented by
ui(kjk), ui(kC 1jk), � � � , ui(kC p� 1jk). Then, the predictive states of each UAV
in the next p time horizons can be obtained, which are represented by xi(kC 1jk),
xi(kC 2jk), � � � , xi(kC pjk). The next p time horizons are called predictive time
horizon.
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Denote the quadratic cost by the following fitness function at the kth time:
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Minimize fitness function (5.38); the optimal control solution to the local
optimization problem at time k can be obtained, which is represented by
ui * (kC j� 1jk), jD 1, � � � , p. Apply the preceding m control actions u * (kjk),
u * (kC 1jk), � � � , u * (kCm� 1jk)), (0�m� p) to each UAV’s autopilot
successively in current and following m� 1 time horizons. Subsequently, at time
kCm, repeat sampling, predicting, optimization, and implementing. By using
this receding technique, multiple UAV formation’s state can approximate to the
reference value finally.

RHC treats the global control problem as a series of online local optimization
problems. However, multiple UAV formation reconfiguration problem is actually
constrained nonlinear problems and is difficult to be solved by using the traditional
approaches. The method to compute the control law is a key technique to RHC.
Numerous population-based optimization approaches provide good solutions to
these complicated problems. DE algorithm is utilized to optimize the fitness
function, and the RHC control law can be worked out directly.

5.4.3 DE-Based RHC Controller Design for Formation
Reconfiguration

DE algorithm is utilized to solve the predictive control law directly. The block
diagram of DE-based RHC controller for multiple UAV formation reconfiguration
process is shown in Fig. 5.17 (Zhang et al. 2010).

In the online reconfiguration process, set (5.37) as the fitness function of
DE, and set predicted control sequence u(kC i� 1jk), iD 1, � � � , p as the indi-
vidual vector, which is just the objective of DE operators. For the flight for-
mation of N UAVs, the length of the predicted horizon is p and the control
input has two actions: thrust and roll angle, so the DE’s search region is a
DD 2 �N � p -dimensional space. At time k, the ath individual of DE is rep-
resented by xa D[T1(kjk),'1(kjk), : : : , Ti(kjk),' i(kjk), : : : , TN(kjk),'N(kjk), : : : ,
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Fig. 5.17 Block diagram of formation reconfiguration (Reprinted from Zhang and Duan (2012),
with kind permission from SAGE Publications)

Ti(kC j� 1jk),' i(kC j� 1jk), : : : ], where aD 1, � � � NP, iD 1, � � � N, jD 1, � � � p.
Apply DE’s evolutionary operators to xa until the terminal criterion is satisfied,
and then choose the individual with the lowest fitness function value as the optimal
control sequence. After that, implement the preceding 2 �N �m control actions to
corresponding UAV at each time horizon respectively.

In order to reduce the computing complexity, we adopt the one step predicted
control, i.e., mD pD 1.

When multiple UAV is flying in a formation, at the kth time horizon, the flight
formation receives the command that a new formation is inevitable, and thus, the
DE-based RHC controller implements the process online in the following steps:

Step 1: Set the parameters of RHC and DE.
Step 2: Input each UAV’s current state X(k)D [x1, � � � ,xN] as well as the desired

formation shape and then carry on the optimization process.
Step 3: Initialize the DE population (each individual of the population is a candidate

solution to U(kjk)). In order to improve the online searching efficiency and make
full use of all aspects of information, half individuals of the population are chosen
randomly, and others are set as the control actions U(k� 1) at the former one time
horizon.

Step 4: Compute the fitness function value f (xa).
Step 5: Apply DE’s mutation and recombination operators to xa and generate trial

vector ua, and then compute its fitness function value f (ua).
Step 6: Compare f (ua) and f (xa), implement DE’s selection operator, and then

preserve the individual with the lower fitness value in the next generation. Go
to Step 4 until the stopping criterion is satisfied.

Step 7: The best individual of DE population is just the optimal control sequence
U * (kjk); output and apply them to each UAV respectively.

Step 8: Go to Step 2 and move forward into next (kC 1)th time horizon.
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Fig. 5.18 Reconfiguration trajectory of multiple UAVs; “o” is the initial position, and “•” is the
terminal position (Reprinted from Zhang and Duan (2012), with kind permission from SAGE
Publications)

5.4.4 Experiments

In order to investigate the feasibility and effectiveness of our proposed DE-based
RHC approach to the problem of the multiple UAV formation reconfiguration
control, a series of experiments were conducted under the complicated combating
environment. The proposed approach was coded in MATLAB language and imple-
mented on PC-compatible with 2 GB of RAM under the Microsoft Windows Vista.

In all experiments, parameters of DE and RHC are set as follows: FD 0.9,
CRD 0.5, NPD 100, the number of iteration NcD 100, mD pD 1,
QD diagf1,1,1,1g, TD 1s. In all experiments, for each UAV, aerodynamic drag
DD 2000, the thrust T 2 [0,6000], the roll angle ' 2

�
��
3
; �
3

�
, and UAV’s weight

WD 10000; DsafeD 5, DcomD 50.
Given the flight formation has 5 UAVs, they fly as an initial formation shape “j”,

and the terminal formation is a V-shape formation. Initial states of each UAV are
[2,0,0,20], [2,0,0,10], [2,0,0,0], [2, 0, 0,� 10] and [2, 0, 0,� 20]. Desired formation
can be described as Xref D [0, 0,� 20, 20; 0, 0,� 10, 10; 0, 0, 0, 0; 0, 0,� 10,� 10; 0,
0,� 20,� 20]; choose the UAV-3 as the Leader of the flight formation. In the
experiment, after four time horizons, multiple UAVs maneuver to the desired
V-shape successfully, and Fig. 5.18 shows the reconfiguration trajectory of multiple
UAVs by DE-based RHC controller. Figure 5.19a–d shows the evolution curve of
DE algorithm within each time horizon. Figure 5.20 describes the optimal fitness
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Fig. 5.21 Roll angle at every time horizon (Reprinted from Zhang and Duan (2012), with kind
permission from SAGE Publications)

value at each time horizon. Figures 5.21 and 5.22 show the optimal control actions
implemented to each UAV, including the thrust and the roll angle. Figure 5.23 shows
the distance between two UAVs, which is less than the communication distance and
greater than safe anti-collision distance.

Another simulation is as follows. Initial states of each UAV are set as [2,� ,0,20],
[2,� ,0,10], [2,� ,0,0], [2,� , 0,� 10], and [2,� , 0,� 20]. Still choose the UAV-3 as
the Leader, and the desired formation is Xref D [0, 0,� 20, 20; 0, 0,� 10, 10; 0, 0, 0, 0;
0, 0,� 10,� 10; 0, 0,� 20,� 20], which is also a V-shape formation. Figures 5.24,
5.25, 5.26, 5.27, and 5.28 show the reconfiguration results after five time horizons.

From these experiment results, it is obvious that our proposed DE-based RHC
controller can solve the multiple UAV formation reconfiguration problem efficiently.

5.5 Conclusions

This chapter deals with three significant problems in the multiple UAV formation
flight problem, which are respectively formation control, close formation (tight
formation), and formation configuration.

In Sect. 5.2, a chaotic PSO-based nonlinear dual-mode RHC method is proposed
for solving the constrained nonlinear systems. The presented chaotic PSO derives
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Fig. 5.22 Thrust at every time horizon (Reprinted from Zhang and Duan (2012), with kind
permission from SAGE Publications)
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Fig. 5.24 Reconfiguration trajectory of multiple UAVs; “o” is the initial position, and “•” is the
terminal position (Reprinted from Zhang and Duan (2012), with kind permission from SAGE
Publications)
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Fig. 5.26 Roll angle at every time horizon (Reprinted from Zhang and Duan (2012), with kind
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both formation model and its parameter values, and the control sequence is predicted
in this way, which can also guarantee the global convergence speed. A dual-model
control strategy is used to improve the stability and feasibility for multiple UAV
formation flight controller, and the state-feedback control is also adopted, which
model is based on the invariant set theory. Then a novel type of control strategy
of using hybrid RHC and DE algorithm is proposed based on the nonlinear model
of multiple UAV close formation in Sect. 5.3. The issue of multiple UAV close
formation is transformed into several online optimization problems at a series of
receding horizons, while the DE algorithm is adopted to optimize control sequences
at each receding horizon. Moreover, based on the Markov chain model, the
convergence of DE is proved. The working process of RHC controller is presented in
detail, and the stability of close formation controller is also analyzed. The formation
configuration, which is about diving multiple UAVs to form a new flying formation
state, is explained in detail using the DE-based RHC in Sect. 5.4. The global control
problem of multiple UAV formation reconfiguration is transformed into several
online local optimization problems at a series of receding horizons, while the DE
algorithm is adopted to optimize control sequences at each receding horizon. Both
the feasibility and effectiveness of these three proposed methods are verified by
series of experiments.
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Chapter 6
Multiple UAV/UGV Heterogeneous
Control

Haibin Duan

Abstract Multiple unmanned aerial vehicles (UAVs) can be used to cover large
areas searching for targets. However, sensors on UAVs are typically limited in
operating airspeed and altitude, combined with attitude uncertainty, placing a lower
limit on their ability to resolve and localize ground features. Unmanned ground
vehicles (UGVs) can be deployed to accurately locate ground targets, but they
have the disadvantage of not being able to move rapidly or see through such
obstacles as buildings or fences. This chapter mainly focuses on heterogeneous
coordinated control for multiple UAVs/UGVs and cooperative search problem for
multiple UAVs. On the basis of introduction of UAV/UGV mathematical model,
the characteristics of heterogeneous flocking is analyzed in detail. Two key issues
are considered in multiple UGV subgroups, which are Reynolds rule and Virtual
Leader (VL). Receding horizon control (RHC) with particle swarm optimization
(PSO) is proposed for multiple UGV flocking, and velocity vector control approach
is adopted for multiple UAV flocking. Thus, multiple UAV and UGV heterogeneous
tracking can be achieved by these two approaches. Then a time-delay compensation
approach of heterogeneous network control for multiple UAVs and UGVs is
described to handle the time delay in network control system. What’s more, a
differential evolution (DE)-based RHC design for cooperative area search using
multiple UAVs is presented. In this approach, an extended search map is used to
represent the environment information on the search region.

6.1 Introduction

Unmanned aerial vehicle (UAV) has the advantages of zero casualties, high-
speed overload, good stealth performance, short operational preparation time, and
relatively low life-cycle cost. These advantages increase the capability of high-risk
targets penetration, suppressing enemy air defense, deep target attacking, and dom-
inating the battlespace (Duan et al. 2013). Unmanned ground vehicle (UGV) is gen-
erally capable of operating outdoors and over a wide variety of terrain, functioning

H. Duan and P. Li, Bio-inspired Computation in Unmanned Aerial Vehicles,
DOI 10.1007/978-3-642-41196-0__6, © Springer-Verlag Berlin Heidelberg 2014
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Fig. 6.1 Multiple UAV
and UGV heterogeneous
cooperation scenario
(Reprinted from Duan
et al. (2011), with kind
permission from Springer
Science C Business Media)

in place of humans. Multiple UAVs can be used to cover large areas searching for
targets. However, sensors on UAVs are typically limited in operating airspeed and
altitude, combined with attitude uncertainty, placing a lower limit on their ability to
resolve and localize ground features. UGVs on the other hand can be deployed to
accurately locate ground targets, but they have the disadvantage of not being able
to move rapidly or see through such obstacles as buildings or fences. Therefore,
multiple UAV/UGV heterogeneous cooperation provides a new breakthrough for
the effective application of UAVs and UGVs (Tanner and Christodoulakis 2006;
Hsieh et al. 2007; Duan and Liu 2010; Duan et al. 2010a, b). Multiple UAV and
UGV heterogeneous cooperation scenario can be shown with Fig. 6.1.

For multiple UAV/UGV heterogeneous system, dynamic tracking is a typical
problem. The ground moving target should be positioned dynamically and automat-
ically, which make the target within the perception of the airborne camera (Ariyur
and Fregene 2008). Trentini and Beckman (2010) summarize the two advanced
research projects of about UAV rotorcraft and UGV cooperating in the battlespace
currently approved for funding by Defence R&D Canada. Phan and Liu (2008)
proposed a cooperative control framework for a hierarchical UAV/UGV platform
for wildfire detection and fighting.

In order to realize the multiple UAV and UGV heterogeneous coordinated
movement, the following control objectives should be satisfied:

1. The UGV subgroups should be in flocking motion.
2. The control center receives information from the UGV subgroups and sends the

central position information to the UAV subgroups at the same time.
3. The subgroups of multiple UAVs should follow and hover over the subgroups of

multiple UGVs stably.

The constraints of the heterogeneous movements are as follows:

1. The subgroups of multiple UGVs could satisfy the Reynolds rule: cohesion, sep-
aration, and alignment (Duan et al. 2010a). In this way, the flocking movement
can be realized.
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2. The subgroups of multiple UAVs could receive the changing position center
information of the UGV subgroups and follow the movements of multiple UGVs.

3. The subgroups of multiple UAVs should avoid collisions during flight.

6.2 Multiple UAV/UGV Heterogeneous Coordinated Control

6.2.1 Mathematical Model for UAVs and UGVs

In multiple UAV/UGV heterogeneous coordinated motion, UAVs and UGVs are all
considered as particles. UGVs are moving on a plane, and the status variable of
UGVi is xugvi D .xi ; yi ; Pxi ; Py/

T , iD 1, 2, : : : , Numugv. The emotion equation can
be expressed according to the following dynamics (Duan et al. 2011):

�
Pri D vi
Pvi D ui

(6.1)

For iD 1, 2, : : : , Numugv, riD (xi,vi) is the position vector of the ith UGV, vi D
. Pxi ; Pyi / is the velocity vector, and ugiD (uxi,uyi) is the control input. Thus, the state
vector of the ith UGV can be defined as xugvi D .xi ; yi ; Pxi ; Pyi /.

In the multiple UAV flocking motion without a leader, all the UGVs have the
same status; thus, the velocity of the whole group is random when a stable and
coordinated motion is achieved (Jadbabaie et al. 2003; Palejiya and Tanner 2006).
In this section, a virtual UGV acting as a Virtual Leader (VL) is adopted to lead the
whole UGV group to move in the right direction. The VL is a simulation of the
instructions sent by the control center, and then received by each UGV. Since
the VL will not be broken down, the instructions of the control center can be
ensured to be executed by the UGV group. The motion equations of the VL are
the same as those of the other UGVs, as shown in (6.1), and its state vector is
xvl D .xvl ; yvl ; Pxvl ; Pyvl /

T , where rvlD (xvl,yvl) and vvl D . Pxvl ; Pyvl /.
In the heterogeneous coordinated motion, the UAV group will follow the

UGV group. The state vector of the jth UAV is xuavjD (vj,
 j,�j,xj,yj,zj) for
jD 1, 2, : : : , Numuav, and its control inputs are thrust Tj, load factor nj, and bank
angle �j. The following equations are adopted as the dynamic model of a UAV:

Pv D g
h
.T �D/=W � sin 


i

P
 D .g=v/ .n cos� � cos 
/
P� D .gn sin�/ = .v cos 
/
Px D v cos 
 cos�
Py D v cos 
 sin�
Pz D �v sin 
 (6.2)
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where v is the airspeed of the UAV; 
 is the flight path angle; � is the flight path
heading; x, y, and z denote the position; g denotes the acceleration of gravity; D
denotes the drag; and W denotes the weight.

6.2.2 Multiple UGV Coordinated Control Based on RHC

The initial speed and direction of each UGV in the group are different from
each other, the designed controller should make the UGVs gradually meet
Reynolds rule in the motion of following the VL, and the effect of multiple UGV
cooperative movement must be achieved. For the ith UGV, the control input is
ugiD (uxi,uyi), iD 1, 2, : : : , Numugv. The control input of the whole UGV group can
be defined as UugvD (ug1, ug2, : : : , ugNumugv)DfUugv(t)j 8 t2 [0,T]g, and the state
of the whole UGV group is Xugv D

�
xugv1; xugv2; : : : ; xugvNumugv

�
2 R4�Numugv.

Thus, the multiple UGV motion equations can be described as

PXugv.t/ D f
�
t; Xugv.t/; Uugv.t/

�
(6.3)

Let Xugv(0)DXougv represent the initial state of the UGV group, then the state at
any time t2 (0, T] can be determined by the following equation:

Xugv.t/ D Xugv.0/C

Z t

0

f
�
�;Xugv .�/ ; Uugv .�/

�
d� (6.4)

If the initial states are definite, Xugv(t) can only be obtained by Uugv, which can be
also expressed by Xugv(tjUugv).

In the research on flocking conducted by Tanner and Olfati-Saber (Tanner et al.
2003; Olfati-Saber 2006), the cohesion and separation rules of Reynolds are satisfied
by designing a proper artificial potential field. Each UGV matches its velocity to its
neighbors, and the alignment rule can be fully satisfied. For the flocking motion
following a VL, the control input of each UGV (ui, iD 1, 2, : : : , Numugv) will
include an additional part to coordinate its position and velocity with the VL.

There are complexities and diversities of control objectives in the movement
of multiple UGV heterogeneous movement, which orient the optimal control
strategy from the unconstrained quadratic optimization problem to multi-objective
optimization problem. RHC has been proved to be more successfully optimized
online in a dynamic environment, which is based on the simple idea of repetitive
solution of an optimal control problem and state updating after the first input of
the optimal command sequence (Zhang et al. 2010; Zhang and Duan 2012). The
main idea of RHC is the online receding/moving optimization. It breaks the global
control problem into several local optimization problems of smaller sizes, which
can significantly decrease the computing complexity and computational expense.
Particle swarm optimization (PSO) is a population-based stochastic optimization
technique, which is inspired by the social behavior of bird flocking or fish schooling.
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It is demonstrated that PSO can find better results in a faster, cheaper way compared
with other methods. Hybrid RHC and PSO approach is developed for multiple UGV
movement in this section.

Consider searching space with n dimensions, the particle population is m, and
the position of the ith particle can be expressed with XiD (xi1, xi2, � � � , xin), and the
velocity is ViD (vi1,vi2, � � � ,vin). The current best solution is PiD (pi1, pi2, � � � , pin),
and the global-best solution is PgD (pg1, pg2, � � � , pgn). For the tth generation, the
position and velocity updating rule can be expressed as follows:

Vi .t C 1/ D �� .Vi . t / C c1� r1� . Pi .t/ �Xi.t/ /Cc2� r2� . Pg.t/ �Xi.t/ //

Xi .t C 1/ D Xi.t/C Vi .t C 1/ (6.5)

where r1 and r2 are two independent random numbers between (0,1), c1 and c2 are
two learning factors, and � is a constant number between (0,1). The object function
for RHC can be expressed as follows:

min
u
J D f

�
Xugv; UugvI tc ; Tp

�

J D

Z tcCTp

tc

F
�
Xugv; Uugv

�
dt

subject to PXugv D f
�
t; Xugv; Uugv

�

LLugv �

�
Xugv

Uugv



� ULugv (6.6)

where tc is control horizon, Tp is predictive horizon, tc�Tp, and LLugv and ULugv

denote the upper and lower bound, respectively.
The topology of the wireless network connecting the UGVs is an adjacency graph

GDfV,Eg. The set of vertices VDfn1,n2, : : : ,nNumugvg represent the UGVs, and the
set of edges EDf(ni,nj)2V �Vjni� njg represent the adjacency relation between
the UGVs. Let AD (aij) denote the adjacency matrix of G, then aij¤ 0 ()
(i,j)2E, and A is symmetric, AT DA. Let Ni denote the set of the UGVs that are
adjacent to the ith UGV:

Ni D
˚
j 2 V W aij ¤ 0

�
D fj 2 V W .i; j / 2 Eg (6.7)

Let Rugv represent the maximum detecting range of a UGV, and Rugv> 0; thus Ni

can be described as

Ni D
˚
j 2 V W kri � rj k � Rugv

�
(6.8)

where jj � jj is the Euclidean norm. Then, for Rugv> 0, the set of edges E can be
described as

E D
˚
.i; j / 2 V � V W kri � rj k < Rugv; i ¤ j

�
(6.9)
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Fig. 6.2 The curve of the potential function Vij (Reprinted from Duan et al. (2011), with kind
permission from Springer Science C Business Media)

(1) Potential Cost
A potential field is established between UGVs in order that the cohesion and
separation rules can be satisfied. The potential function between UGV i and UGV j
is Vij (see Fig. 6.2). Vij is a nonnegative, differentiable, and unbounded function of
the distance tkci . Vij obtains its unique minimum when the distance kri� rjk is the
desired distance dugv.

Vij D
1

2

X

i

X

j¤i

 
�
kri � rj k

�
(6.10)

In this section, we adopt the potential function introduced by Reza and define the
¢-norm as follows:

kxk� D
1

�

�q

1C �kxk2 � 1



(6.11)

where the constant � > 0. The gradient of ¢-norm can be expressed by

��.x/ D
x

q

1C �kxk2
D

x

1C �kxk�
(6.12)

According to the definition of ¢-norm, Vij can also be rewritten as V� ij:

V�ij D
1

2

X

i

X

j¤i

 ˛
�
kri � rj k�

�
(6.13)
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When kri� rjk
Rugv, the following function of 'a(kri� rjk) is introduced:

'˛
�
kri � rj k

�
D �h

�
kri � rj k=kRugvk�

�
'
�
kri � rj k � kdugvk

�

'.x/ D
1

2

�
.aC b/�1.x C c/C .a � b/

�
(6.14)

where �1.x/ D x=
p
1C x2. a, b, c satisfy b
 a> 0, c D ja � bj =

p
4ab, and

'(0)D 0.

�h.x/ D

8

<̂

:̂

1 x 2 Œ0; h/
1
2

h
1C cos

�
�
.x�h/
.1�h/

�i
x 2 Œh; 1�

0 otherwise

(6.15)

where h2 (0,1).
 a(kri� rjk) and 'a(kri� rjk) satisfy the following equation:

 ˛
�
kri � rj k

�
D

Z kri�rj k

kdugvk

'˛.s/ds (6.16)

Then, the collective potential cost of the whole UGV group can be described as

Fpotential D

NumugvX

iD1

X

j2Ni

'˛
�
kri � rj k�

�
nij (6.17)

where nijD �� (rj� ri).
The UGVs will maneuver to lower the collective potential, until the group

converges to a stable and coordinated flocking motion, which has the lowest
collective potential.

(2) Consensus Cost
Each UGV will match its velocity with its neighboring flockmate to satisfy the
alignment rule. The consensus cost is defined as

Fconsensus D

NumugvX

iD1

X

j2Ni

ˇ
ˇaij .r/

�
vj � vi

�ˇ
ˇ (6.18)

where aij(r) in the adjacent matrix A can be obtained by

aij .r/ D �h
�
krj � rik�=kRugvk�

�
2 Œ0; 1� j ¤ i (6.19)

When the multiple UGVs match their velocities with neighbors, the consensus
cost of the whole group will be lowered. When a stable flocking motion is achieved,
the consensus cost Fconsensus is close to zero.
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(3) Following Cost
All the UGVs should regulate their motions to follow the VL; thus, the following

cost is defined as

Ffollow D

NumugvX

iD1

jc1 .ri � rvl /j C jc2 .vi � vvl /j c1; c2 > 0 (6.20)

In the multiple UGV flocking motion, each UGV follows a VL, and the UGVs
will regulate their velocity according to the position and velocity of the VL to lower
the following cost.

Finally, the cost function of RHC can be described as

F
�
Xugv; Uugv

�
D Fpotential C Fconsensus C Ffol low (6.21)

This cost function will be used as the total objective function, which can be
optimized by PSO algorithm. The solution is the optimal control input of each
UGV, which will lower the cost value of the whole group gradually and lead to
a coordinated flocking motion.

6.2.3 Multiple UAV Coordinated Control Based on Velocity
Vector Control

According to the heterogeneous mission requirements, the multiple UAV subgroups
need stability in the movement to follow and hover over the multiple UGVs, and
each UAV should avoid collision during flight. In this way, the multiple UAV and
UGV heterogeneous coordinated movement is formed.

According to the control input uaiD (Ti,ni,�i), where iD 1, 2, : : : , Numuav, Ti

denotes the thrust of UAVi, ni denotes the overload, and �i denotes the banking
angle. The input control vector can be expressed with UuavD (ua1, ua2, : : : ,
uaNumuav)DfUuav(t)j 8 t2 [0,T]g, and the state vector can be defined as XuavD (xuav1,
xuav2, : : : xuavNumvua)2R6 � Numuav. Then, the dynamics for UAVs can be written as
follows:

PXuav.t/ D f .t; Xuav.t/; Uuav.t// (6.22)

The control policy of changing the control input of Uuav into velocity vector
Uuav can ensure that all agents eventually align with each other and have a common
heading direction while at the same time avoid collisions and group into a tight
formation (Gowtham and Kumar 2005), and vc D .vc1; vc2; : : : ; vcNumuav/. The
velocity vector vci of UAVi includes velocity vci, banking angle 
 ci, and yaw angle
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�ci, i.e., vci D .vci ; 
ci ; �ci /. Suppose the velocity vector satisfies the following
equations:

Pvci D !v .vci � vi /
P
ci D !r .
ci � 
i /

P�ci D !� .�ci � �i / (6.23)

where !v, !
 , and !� are gain constants corresponding to velocity, banking angle,
and yaw angle, respectively.

According to (6.2) and (6.23), the thrust Tci can be obtained as the following:

Tci D Di C !vWi .vci � vi / =g CWi sin 
i (6.24)

The overload nci can be expressed with

nci D

q
�
!
vi .
ci � 
i /C cos 
i

�2
C
�
!�vi .�ci � �i / cos 
i=g

�2
(6.25)

The pitch angle �ci can be expressed with

�ci D arctan

	
!�vi .�ci � �i / cos 
i=g

!
vi .
ci � 
i /C cos 
i




(6.26)

The resistance Di can be obtained according to the following equation:

Di D 0:5vi
2SCD0 C 2kn

2Wi
2=
�
�vi

2S
�

(6.27)

where S denotes the reference square of the UAV, CD0 denotes zero lift drag
coefficient, k denotes induced drag coefficient, and � denotes the density of
atmosphere.

The corresponding velocity vector can be expressed as the following:

vci D caai C ctctci (6.28)

where ai and tci denote collision avoidance vector and hovering velocity vector,
respectively, iD 1, 2 : : : , Numuav, ca and ctc are the corresponding weight coeffi-
cients, and 0< ca< 1, 0< ctc< 1, caC ctcD 1.

(1) Collision Avoidance Velocity Vector
Multiple UAVs hover over multiple UGVs, and collision should be avoided to

ensure safe flight of UAVs. The collision avoidance strategy of priority mechanism
is adopted in this section. The priority number level is assigned to each UAV in the
multiple UAV groups, and the small number with high priority and the UAVi with
low priority can avoid the UAVj(j< i) with high priority. The collision avoidance
velocity vector ai of the UAVi with low priority can be calculated by the average
velocity of UAVi and UAVj, and the direction of ai is pointing to UAVi along the
UAVj (see Fig. 6.3).
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Fig. 6.3 The collision
avoidance velocity vector ai
of UAVi (Reprinted from
Duan et al. (2011), with kind
permission from Springer
Science C Business Media)

The weight coefficient ca of collision avoidance is decided by the distance
daij between two UAVs and the security collision distance davoid, which can be
expressed by

ca D exp
�ˇ
ˇdaij � davoid

ˇ
ˇ =�a

�
(6.29)

where �a> 0 and 0< ca< 1.

(2) Track Hovering Velocity Vector
Multiple UAV subgroup can receive messages from the control center and

position the center of UGV subgroups. Suppose the minimum hovering velocity of
the UAV is vmin, the hovering velocity is !circle, and the minimum hovering radius
can be expressed by rcircleD vmin/!circle. The track hovering velocity vector depends
on the distance dtci between UAVi and the center C in the horizontal direction.

Case 1: When dtci> 3rcircle, UAVi is far away from multiple UGV subgroups, the
vector tci may maintain the current velocity value or increase a little. The
direction points to the center C of multiple UGV subgroups (see Fig. 6.4, marked
with �).

Case 2: When dtci� 3rcircle, UAVi hovers in the vicinity of multiple UAVs with
tci . When the direction and speed of UAVi are the same with the multiple UGV
subgroups, we can determine whether UAVi follows the center C. If yes, then
UAVi continues to hover in the vicinity of multiple UAVs. Otherwise, UAVi will
follow the center C. In the following process, UAVi maintains the same value or
increases a little, while the direction keeps unanimous with the multiple UGVs
(see Fig. 6.4). With ai and tci , the velocity vector vci of UAVi can be obtained
by (6.28), and the vector command group c of multiple UAV subgroup can also
be obtained.

Multiple UAV and UGV heterogeneous cooperation process can be illustrated by
Fig. 6.5.
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Fig. 6.4 Multiple UAV
subgroups hovering over the
center C of multiple UGV
subgroups (Reprinted from
Duan et al. (2011), with kind
permission from Springer
Science C Business Media)

6.2.4 Multiple UAV/UGV Heterogeneous Cooperation

The feasibility and effectiveness of our proposed method are verified by series of
comparative experiments with artificial potential field method. In the experiments,
there are 6 UAVs, 10 UGVs, and 1 control center. The initialized parameters
of multiple UGV subgroup are set as follows: dugvD 15, RugvD 1.2dugv, �D 0,
aD 5, bD 5, hD 0.9, c1D 1, c2D 1, TpD 3s, ıD 1s, tcD 1s, psD 20, wmax D 1.2,
wminD 0.1, vpmaxD 4, pc1D 0.5, pc2D 0.5, NcmaxD 80.

The initialized parameters of multiple UAV subgroup are set as follows:
�D 1.25kg/m3, W D 14,400 kg, the reference squareD 30 m2, Tmax D 15,000 kg,
nmax D 7, k D 0.1, CD0 D 0.02, !v D 1, !
 D 0.2, !� D 1, g D 9.8 m/s2. vmin

D 100 m/s, vmax D 200 m/s, !circle D( /12)rad/s, !�max D( /9)rad/s, !
 max

D( /9)rad/s. davoid D 30 m, �a D 10.
The initialized position of VL in multiple UGV subgroup is (1,020,1,020)m, and

the initialized velocity is 25 m/s. The initialized status of multiple UGV subgroup
and VL are shown with Fig. 6.6 (“�” denotes VL).

The initialized status of multiple UAV subgroup is listed by Table 6.1, and the
initialized status of multiple UAV subgroup is shown with Fig. 6.7 (“•” denotes
UAV).

Figure 6.8 gives the multiple UAV and UGV heterogeneous cooperation results
by using artificial potential field method.

Figure 6.9 gives the multiple UAV and UGV heterogeneous cooperation results
by the hybrid method proposed in this paper.

The results in Figs. 6.8 and 6.9 demonstrate that the proposed approach in this
paper can guarantee stable convergence, robust tracking, and high efficiency. It
clearly shows the superiority of the proposed algorithm over the traditional artificial
potential field method. Simulations with different conditions are also conducted to
verify the feasibility and effectiveness of the proposed controller.
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Fig. 6.5 Flowchart of multiple UAV and UGV heterogeneous cooperation (Reprinted from Duan
et al. (2011), with kind permission from Springer Science C Business Media)

Besides, experiments about heterogeneous coordinated control for multiple
UAVs/UGVs have been conducted by applying a low-cost quadrotor and three
ground vehicles. The red vehicle acts as the target. The quadrotor and the other two
vehicles aim at pursuing the red vehicle by complementing each other’s advantages.
As we have explained, UAV can be used to cover large areas searching for target
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Fig. 6.6 The initialized status of multiple UGV subgroup and VL (Reprinted from Duan et al.
(2011), with kind permission from Springer Science C Business Media)

Table 6.1 The initialized
status of multiple UAV
subgroup

UAV no. v (m/s) ” (rad) ¦ (rad) x, y, z (m)

1 120  /18 0 550, 0, 500
2 120  /18 0 500, 0, 500
3 120 0 0 0, 500, 500
4 120 0 0 0, 0, 500
5 120 0 0 0, 550, 500
6 120 0 0 0, 50, 500

while sensors on UAV are typically limited in operating airspeed and altitude. UGV
can be deployed to accurately locate ground targets. Screenshots of the experiment
video are illustrated in Fig. 6.10.

6.2.5 Time-Delay Compensation of Heterogeneous
Network Control

In recent years, network-based control has emerged as a topic of significant interest
in the control community. It is well known that in many practical systems, the
physical plant, controller, sensor, and actuator are difficult to be located at the same
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Fig. 6.7 The initialized status of multiple UAV subgroup (Reprinted from Duan et al. (2011), with
kind permission from Springer Science C Business Media)

place, and thus signals are required to be transmitted from one place to another.
The network- induced time delay in network control system (NCS) occurs when
sensors, actuators, and controllers exchange data across the networks. This delay
can degrade the performance of control systems designed without considering it
and even destabilize the system.

The use of multiple UAVs in concert with UGVs affords a number of synergies.
First, UAVs with cameras and other sensors can obtain views of the environment
that are complementary to views that can be obtained by cameras on UGVs. Second,
UAVs carry over obstacles while keeping UGVs in their field of view, providing a
global perspective, and monitoring the positions of UGVs while keeping track of the
goal target. This is especially advantageous in three dimensions where UAVs can
obtain global maps and the coordination of UAVs and UGVs can enable efficient
solutions to the mapping problem. Third, if UAVs can see the UGVs and the UGVs
can see UAVs, the resulting three-dimensional sensor network can be used to solve
the simultaneous localization and mapping problem, while being robust to failures
in sensors like GPS and to errors in dead reckoning. We describe our work in
time-delay compensation of heterogeneous network control for multiple UAVs and
UGVs.

Suppose the sampling period for the multiple UAVs and UGVs is T, and the
maximum time delay is n�T, where n� is an integer and n� > 1. The control
sequences for UGVi can be denoted with

Ug
tk
i D

�
ugtki ; ug

tkC1

i ; : : : ; ug
tkCTp�1

i

�
(6.30)
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Fig. 6.8 Multiple UAV and UGV heterogeneous cooperation results by using artificial potential
field method. (a) Traces of multiple UAVs and UGVs heterogeneous cooperation. (b) Traces of
multiple UGV subgroup before 150 s. (c) Traces of multiple UAV subgroup before 150 s (Reprinted
from Duan et al. (2011), with kind permission from Springer Science C Business Media)

where ugtki ; ug
tkC1

i ; : : : ; ug
tkCTp�1

i is the input sequence of UGVi. The predictive
control sequences for all the UGVs at time tk is

U tk
ugv D

�
Ug

tk
1 ; Ug

tk
2 ; : : : ; Ug

tk
Numugv

�
(6.31)

Due to the time delay, we can obtain the motion equation for UGV:

PXugv.t/ D f
�
t; Xugv.t/; U

tk�n
ugv .t/

�
(6.32)

where 0� n� n� and n 2 R.
In the absence of the presence of network delay, UGVi only uses ugtki , and�

ug
tkC1

i ; : : : ; ug
tkCTp�1

i

�
is abandoned. The new control input is obtained in the

next iteration. While in the case of random long-period time delay, UGVi may not
receive the control input at the moment tcur, and multiple UGVs can hardly meet the
requirements of cooperative motion. In this case, the predictive control sequences
can be all sent to the UGVs and are stored in various UGVs.
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Fig. 6.9 Multiple UAV and UGV heterogeneous cooperation results by the hybrid method
proposed in this paper. (a) Traces of multiple UAVs and UGVs heterogeneous cooperation. (b)
Traces of multiple UGV subgroup following VL before 150 s. (c) Traces of multiple UAV
subgroup before 150 s (Reprinted from Duan et al. (2011), with kind permission from Springer
Science C Business Media)

Receding horizon control (RHC) and PSO are adopted in this approach. The
objective function can be defined as

min
u
J D f

�
X
tk�n1
ugv ; UugvI tc ; Tp

�

J D

Z tcCTp

tc

F
�
X
tk�n1
ugv ; Uugv

�
dt

subject to PX
tk�n1
ugv D f

�
t; X

tk�n1
ugv ; Uugv

�

LLugv �

"
X
tk�n1
ugv

Uugv

#

� ULugv (6.33)

where 0� n1� n� and n1 2 R. For multiple UAV subgroup, whose speed is much
larger than UGV, there is a tracking delay between multiple UAV subgroups of
multiple tracking UGV subgroups. However, UAV can be quickly followed up by
tracking the spiral vector. Therefore, UGVi can obtain the tracking hovering velocity
vector tk�n2

tci
according to the latest multiple UGV center location information,
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Fig. 6.10 Screenshots of the experiment about heterogeneous coordinated control for multiple
UAVs/UGVs

where 0� n2� n� , and n2 2 R. The vector group of multiple UAV subgroups can
be defined as

�tkc D
�
�
tk�n1

c1 ; �
tk�n2

c2 ; : : : ; �
tk�nNumuav
cN umuav

�
(6.34)

The time delay of multiple UGV subgroup sending the status information to the
control center can be defined with �gc, and the time–event-driven approach is
adopted in the control center. The time delay of the control center sending the status
information to each UGV can be defined with �gc, and the time delay of the center
of multiple UGV subgroup sending the status information to UAV can be defined
with � ca.

6.2.5.1 Status Buffer of Control Center

UGVi(iD 1, 2, : : : Numugv) sends the status information to the control center
respectively, and the time-driven approach is adopted in this process. Due to the
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Fig. 6.11 The updating process for status buffer of control center

existence of time delay �gci, the arrival time is random. So time–event-driven mode
is adopted in the control center. When �gci> T, the control center automatically
starts the control algorithm by using the status information of UGVi.

In the status buffer of the control center, the older state information will be
automatically deleted with the advance of the new status information. The updating
process for status buffer of control center can be shown with Fig. 6.11. In which,
tD tkC

�
t, tkD kT,

�
t�T, the simulation time is denoted with Time _ length, and

the output of control center is Uugv, iD 1, 2, : : : , Numugv.
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Fig. 6.12 The updating process for UGVi control input buffer at moment tk

6.2.5.2 UGV Control Input Buffer

Because there is a time delay � cgi between control center and UGVi, it is necessary
to set UGVi control input buffer. In this way, the control sequences can be saved.
Based on the maximum network delay n�T, the buffer length is set to n� . The update
of UGVi control input buffer can be divided into two parts: the time-driven update
and the event-driven update. The updating process for UGVi control input buffer at
moment tk can be shown with Fig. 6.12.
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6.2.5.3 UAV Center Location Information Buffer

The control center sends the center location information C tk
i of multiple UGVs to

a multiple UAV subgroup by using the time-driven approach. Due to the existence
of time delay � cai, the time of UAVi(iD 1, 2, : : : , Numuav) receiving C tk

i is random.
However, the time-driven approach is adopted in UAVi. When � cai>T, UAVi uses
the velocity vector instruction vci with the center of the historical status information.
The center of the updating buffer can also be divided into two parts: the time-driven
update and the event-driven update. In time tk, the older state information will be
automatically deleted with the advance of the new center location information C tk

i .
The updating process for UAVi center location information buffer at moment tk can
be shown with Fig. 6.13.

The transfer timing for multiple UAV subgroup center location information can
be shown with Fig. 6.14.

6.3 DE-Based RHC for Multiple UAV Cooperative Search

The search problem has been extensively studied in the literature, starting off with
a single-agent problem and further extended to multi-agent search. In military
applications, multiple UAV coordinated search is an important means of getting
battlefield information in the future war. Compared to the problem of a single
searcher, the problem becomes more complex when we consider a team of agents
that are cooperatively searching the targets in an area.

For the flight path-planning problem in UAV targets searching, the traditional
method is based on search theory, designing search routes covering task areas from
the perspective of maximizing the probability of target detection. Such routes are
usually fixed pattern, such as scanning-line mode to achieve a complete coverage
of the target area. This method is of simple route calculation, fast, and able to
guarantee a certain probability of target detection, but the flight route is fixed and
the search efficiency is low. Another important method is a dynamic search method
based on the search map. The method is based on two-dimensional discrete map
to store targets and environmental information. Based on search map information,
different strategies for online calculation of the next time search path can be used,
such as the random strategy, the local optimal strategy, and the global maximum
strategies. These methods can be used in target searching effectively based on real-
time detection of information. The difficulty lies in how to quickly calculate the safe
search route to the next point. In this study, search map is used for the cooperative
area searching of multiple UAVs.

The main concern of this study for multiple UAV search is about how to
control multiple UAVs for cooperative search for ground targets. In other words,
the problem of cooperation between multiple UAVs is the key for the multiple
UAV search problem. Multiple UAV search problem is a complex optimization and
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Fig. 6.13 The updating process for UAVi center location information buffer at moment tk

Fig. 6.14 The transfer timing for multiple UAV subgroup center location information
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control problem with a large amount of information in process of solution and a
high dimension. Recent years, biological swarm intelligence provides a good idea
for solving multi-objective UAV distributed coordinate search problem. In view of
the flexibility of the intelligent optimization methods based on biological evolution
and its advantages in solving high-dimensional problems, in this study, an intelligent
optimization method of DE is used for the solution of the multiple UAV cooperative
search problem.

Another important issue for multiple UAV cooperative search problem is the
requirement of real time and security. Some researchers apply the thought of RHC
into the cooperative search problem. Using the online task optimization method
based on rolling window, the optimization search strategy can respond quickly for
environment changes by optimizing and rolling online. In this study, RHC is used
to realize the real time and security during searching process of multiple UAVs.

6.3.1 Model Description for Cooperative Search

6.3.1.1 Some Hypotheses Involving UAV Platform

UAV platform is a direct implementation of the search task and also the controlled
object engaged in our study. As the study focuses on the search method in UAV area
searching, but not the low-level control of UAV platform, some hypotheses are set
in the study:

• The UAV platform is small tactical UAV.
• There is an automatic flight control system for each UAV platform.
• The UAV high-level mission control and the low-level flight control can be

considered decoupling.

Besides, in order to reflect the physical characteristics of the UAV, a set of
parameters related to the flight performance is constrained:

• Maximum cruise velocity vmax: It’s a basic performance parameter for the UAV
platform, which decides the movement pattern of the UAV in the task area.

• Maximum flight height hmax: To image sensor, the flight height decides the
detection range of airborne sensors directly. It affects the effects of UAVs to the
target search, detection and identification.

• Maximum duration time tmax: Decided by the amount of fuel on UAV, it limits
the longest time that UAV can perform the task in search area.

• Minimum turning radius Rmin: The minimum turning radius describes the UAV’s
mobility. Together with the velocity parameter of UAV platform, it decides the
flight path in a certain input.

In control of UAV flight track point, a particle model of three degrees of freedom
is considered. To facilitate follow-up studies, a discrete form of expression is
established to describe the flight control model. When the total number of UAVs is
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Nv, for the platform of UAVi, (kD 1, 2, : : : , Nv), at time k, the dynamic characteristic
can be described by the motion model as follows:

8
<

:

xi .k C 1/ D xi .k/C vi .k/ cos .�i . k // cos'i .. k // � ts
yi .k C 1/ D yi .k/C vi .k/ cos .�i . k // sin'i .. k // � ts
zi .k C 1/ D zi .k/C vi .k/ sin .�i . k //

(6.35)

where ts is the decision interval, (xi(k), yi(k), zi(k))2R3 is the position of UAVi at
time k in the three-dimensional search space, i(k)2R is the velocity of UAVi at
time k, ' i(k)2 [0, 360) is the yaw angle of UAVi at time k, and �i .k/ 2 Œ0; �maxi / is
the climb angle of UAVi at time k.

6.3.1.2 Search Targets Modeling

Search target is the specific object for task of multiple UAVs. Depending on the
motion state, search target can be divided into static target and dynamic target. To
the static target, there are fixed radar, artillery positions, buildings, roads, bridges,
and so on. To the dynamic target, it can be all kinds of vehicles, aircrafts, specific
people, etc.

Besides, according to whether it can attack or not, the target can be divided into
antagonistic target and no antagonistic target. To the antagonistic target, it includes
artillery positions, missiles, and other offensive aircrafts and ships. For this kind
of targets, the UAV should avoid entering into their scope of attacks. To the no
antagonistic target, there are fixed radar, aircrafts for scout, plants, and so on.

Suppose the targets will not take the initiative to escape the search of UAVs,
target elements mainly considered in this study are as follows:

• Target position state xt: It describes the specific location of different targets.
• Target velocity vt: It describes the target speed of movement in space.
• Target movement pattern: It describes the variation law of target position and

velocity in space, including stationary state, random movement, and determinis-
tic motion (or in a particular trajectory).

Based on the description of target elements above, in the two-dimensional plane,
in case the target position is xtD (x,y)2R2, then for the static target, there is
xt(k) xt(0). Otherwise, for the dynamic target in the two-dimensional space, the
direction of motion is denoted as � t; in case of discrete time, a simple model of
target motion is usually considered:

xt .k C 1/ D xt .k/C�x (6.36)

where �x is the displacement increment of target; in case of deterministic motion,
there is �xD vt � ts; otherwise, if the target moves in a random way, the displace-
ment increment of �x is accordingly random. A typical random motion model is
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Random Tours. In this case, the target starts form the initial position, xt(0), along
with a random direction, � t, which obeys the uniform distribution on the interval of
[0, 2�), and moves for a random time, dt, which obeys the exponential distribution
with parameter d. Then the position of target xt(k) is completely random.

6.3.1.3 Environment Information Modeling

Environment information involved in search issues always includes information of
targets, other UAV’s mission state information, and information of threats. The
target information is a key to the multiple UAV cooperative search problem. Here,
the study focuses on the description and modeling of target in search environment.
Because the environment is dynamic, the uncertainty of targets decides the search
problem is essentially a random question. In this situation, the search map model
based on probability is a natural choice.

(1) Basic Search Map (BSM) Model
The basic idea of search map is to represent the environment as a grid of cells.

Suppose the area is divided into Lx �Ly cells, and each cell in the map associates
with a certainty information strut, Pij(k), which describes the general information of
environment and target in current cell. The information strut is defined as follows:

Pij .k/ D
�
pij .k/; �i j .k/

�
; i 2 f1; : : : ; Lxg ; j 2

˚
1; : : : ; Ly

�
(6.37)

where pij 2 [0,1] is called target occupancy probability (TOP) in grid (i,j) and
�ij(k)2 [0,1] is environment certainty (EC). We suppose each cell contains at most
one target, then pij(k)D 0 represents that the UAV knows nothing about the target
in grid (i,j) at time step k, and pij(k)D 1 represents high probability that a target is
present in grid (i,j). The �ij(k) describes the UAV’s determination extent for grid
(i,j) at time step k, �ij(k)D 0 represents UAV knows nothing about information of
grid (i,j),and �ij(k)D 1 represents completely knows the information of this grid.

A schematic diagram of grid partition for search map is shown in Fig. 6.15, where
five gray star points represent the target position.

Generally, search map describes the UAV’s belief state for existence of target in
the mission area and is the direct information that UAV can understand and apply.
In cooperative area searching of multiple UAVs, each UAV obtains information of
external environment through not only its own sensors but also the communication
equipments. The environment information, by the way of the information be
obtained, can be divided into three parts: the prior information, initial intelligence
from other means of reconnaissance; the probe information which got through
the sensors carried by UAV; and communication information from other UAVs.
All information can be expressed on the search map. During the search mission,
different UAVs share the information on one search map.
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Fig. 6.15 Regional division based on quadrilateral grid

(2) Extended Search Map (ESM) Model
Based on information of BSM, single UAV can make its own path decisions.

However, the BSM describes only the uncertain information of targets and envi-
ronment, but not the state information of other UAVs. For cooperative area search
of multiple UAVs, cooperation between different agents is a key issue. UAVs must
have ability to coordinate their actions and to maximum team search efficiency. To
achieve effective multiple UAV cooperation search, the BSM is extended into the
extended search map (ESM) based on the Digital Hormone Model (DHM).

The ESM is on basic of BSM and it introduces the hormone information to build
a mixed information strut. Then, the information strut defined in (6.37) is extended
to (6.38):

Pij 0.k/ D
�
pij .k/; �i j .k/;Hi j .k/

�
; i 2 f1; : : : ; Lxg ; j 2

˚
1; : : : ; Ly

�
(6.38)

where Hij(k) is the digital hormone information on grid (i,j) at time k step. The
concentration of hormone information is a function of UAV position and time. When
UAV moves to grid (i,j) at time k, it generates hormone signal on the related position
of search map, and meanwhile, the digital hormone signal is sent to UAVs nearby to
impact other UAV’s decision on the next time step.

Real hormone has the ability of diffusion and dissemination. The hormone
information includes two types of hormones, the activator hormone HA and inhibitor
hormone HI . The diffusion equation of HA and HI are given below:

�HA .i; j; k/ D
aA
2��2

e
�
.x�a/2C.y�b/2

2�2

�HI .i; j; k/ D �
aI
2��2

e
�
.x�a/2C.y�b/2

2�2 (6.39)
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where grid (a,b) is adjacent to grid (i,j), aA, aI are constants, � and � are the rates of
diffusion, respectively, and � <� to satisfy the Turing stability condition. With the
diffusion of hormone in search map through communication, we get the hormone
update function at time k by summing up all hormone information from neighboring
UAV, where the constant �H 2 [0,1] is the rate for dissipation.

Hij .t C 1/ D �H �Hij .t/C
X

Nk

.�HA .i; j; k/C�HI .i; j; k// (6.40)

The initial hormone information on the map for each grid is zero.

6.3.2 DE-Based RHC for Cooperative Area Search

The result of UAV search problem is directly reflected on the UAV’s search path. In
UAV search problem, the goal of search path planning is to generate the effective
trajectory along with an objective function is maximized. In this study, we consider a
reward function as the objective function, and the key issue to solve the cooperative
area searching of multiple UAVs with DE algorithm is to determine the reward
function.

For the cooperative search problem based on RHC, the reward function is related
to each UAV’s current position X(k) and the following position of track points
[X(kC 1jk), X(kC 2jk), : : : , X(kC pjk)], in which p is the size of control window.
[X(kC 1jk), X(kC 2jk), : : : , X(kC pjk)] is the input of the optimization problem.

The reward function for UAV search decision can be described by a composed
efficacy J. As discussed above, the composed efficacy J can be represented as

J
h
X.k/;X

�
k C 1

ˇ
ˇ
ˇk
�
; X

�
k C 2

ˇ
ˇ
ˇk
�
; : : : ; X

�
k C p

ˇ
ˇ
ˇk
�i

(6.41)

During the search process, each UAV needs to determine the following p
track points according to current state and search map information. The goal of
search path planning for multiple UAV search is to find the most targets, gain
the information on whole search area, and reduce the uncertainty of mission area.
Accordingly, the optimization decisions need to reach the following aspects of
subgoals:

1. To maximum the probability of finding the target
2. Tend to detect those areas with more uncertainties
3. To realize effective cooperation of multiple UAVs
4. To minimum the cost during the search process

Based on the subgoals introduced above, the composed efficacy at time k step,
J(k), can be defined as

J.k/ D !1 � JT .k/C !2 � JF .k/C !3 � JC .k/ � !4 � C.k/ (6.42)
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where !1,!2,!3, and !4 are corresponding weight; JT (k), JF(k), and JC(k) are, at
time k step, three different rewards related to the subgoals introduced above; and
C(k) is the search cost at time k step. Based on the ESM information, the definitions
of three rewards and the cost are given below:

(1) Target Finding Reward JT (k)
The target finding reward describes the possibility of finding targets along the

way. During optimization of the UAV path with DE, a number of alternative
following track points will be considered at first. However, the algorithm tends to
choose the path that reaches the biggest target finding reward as the real path that
UAV will fly by.

Suppose for UAVi(iD 1, 2, : : : , Nv), the whole range of sensor detection during
time [k, kC p� 1] is Ri, the target finding reward JT (k) at time k can be defined as

JT .k/ D

NVX

iD1

X

.m;n/2Ri

pmn
i .k/ (6.43)

where pmn
i(k) is the probability of target existence in UAVi’s detection scope Ri,

related only to the position of UAVi on search map.

(2) Reward of Expected to Detect JF(k)
The search decision tends to make UAV detect the area with small Environment

Certainty. The path with smaller EC and bigger probability of target existence gains
a bigger reward. The reward of JF(k) can be calculated by the following equation:

JF .k/ D

NVX

iD1

X

.m;n/2Ri

�
1 � �mn

i .k/
�
pmn

i
�
k
�

(6.44)

where �mn
i(k) is the EC of UAVi in its detection scope Ri on search map.

(3) Cooperation Reward JC(k)
The cooperative of multiple UAVs can avoid excessive repetition detection on a

certain area; on the other hand, it can also reduce the risk of collision and ensure
the safety of multiple UAV missions. Accordingly, the cooperative reward can be
defined as

JC1.k/ D

NVX

iD1

p�1X

nD0

ŒH .xi .k C n// �H .xi .k C nC 1//� (6.45)

where H(xi(kC n)) represents the hormone information on position of UAVi at track
point xi(kC n).
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The other definition is about the overlap degree of tracks between two different
UAVs:

JC2.k/ D

NVX

iD1

NVX

jD1

p�1X

nD0

fo
�
�ij

p; dij
p
�

(6.46)

where � ij
p is the heading angle difference between UAVi and UAVj on their pth track

points and dij
p is accordingly the distance between the two UAV’s pth track points.

Usually, function fo can be defined as

fo
�
�ij

p; dij
p
�
D expr0�dij

p �cos.�ij p=2/ (6.47)

where r0 2RC is adjustable parameter.
The composed cooperation reward can be represented as follows:

JC .k/ D JC1.k/C ˛C � JC2.k/ (6.48)

where ˛C 2RC is adjustable parameter.

(4) Search Cost C(k)
Search cost is the comprehensive cost during process of multiple UAV search

mission. It generally performs to be the time-consuming or the fuel consuming in
search process. The following equation gives a certain estimate method for search
cost:

C.k/ D

NVX

iD1

p�1X

nD0

kxv
i .k C n/ � xv

i .k C nC 1/ k=vi .k C n/ (6.49)

where xv
i(kC n) and xv

i(kC nC 1) are adjacent two track points on track path of
UAVi and vi(kC n) is the velocity between the two track points.

6.3.3 Experiments

A simulation study is included to illustrate the feasibility of our proposed method for
cooperative search for multiple UAVs. The simulation scenario consists of a team
of four UAVs searching a 100� 100 (50� 50 km) cellular environment with five
targets and different kinds of threats. The threats are mainly composed of dangerous
terrains and enemy threats, which can be shown by the search map in Fig. 6.16. In
the search map, M1 represents the mountain, Bw1 denotes the bad weather area, and
Fd1 is the forbidden fly area, which are prior information for the UAVs. It is assumed
that there is some minor a priori topographical information but no other sources of
information on target distribution. The initial distribution of five targets is shown in
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Fig. 6.16 Initial information of search region

Table 6.2 Information of search targets

Target ID Initial position Type of target

T1 (8,45) Static target with unknown initial position
T2 (10,42) Static target with known initial position
T3 (35,12) Moving target with prior information of initial position and speed
T4 (27,35) Moving target with prior information of initial position and velocity
T5 (37,40) Moving target with prior information of initial position and speed

Fig. 6.16. The target information is shown in Table 6.2. The objective of UAVs is
to search the environment so that they can incrementally obtain knowledge of the
environment and locate targets with capability of threat avoidance. Four UAVs are
initially located at four corners of the search region. For each UAV, the maximum
cruise velocity is 0.1 km/s, minimum turning radius is 2 km, and the diameter of
detection region for the sensor is 2 km. The search result of our experiment can be
shown in Figs. 6.17 and 6.18.

6.4 Conclusions

Multiple UAV/UGV heterogeneous cooperation provides a new breakthrough for
the effective application of UAVs and UGVs. On the basis of introduction of
UAV/UGV mathematical model, the characteristics of heterogeneous flocking is
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Fig. 6.17 Search result using our proposed method (2 dimensional)

Fig. 6.18 Search result using our proposed method (3 dimensional)

analyzed in detail. Two key issues are considered in multiple UGV subgroups,
which are Reynolds rule and VL. RHC with PSO is proposed for multiple UGV
flocking, and velocity vector control approach is adopted for multiple UAV flocking.
Then, multiple UAV and UGV heterogeneous tracking can be achieved by these two
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approaches. The feasibility and effectiveness of our proposed method are verified by
comparative experiments with artificial potential field method. Besides, we describe
a time-delay compensation approach of heterogeneous network control for multiple
UAVs and UGVs. The detailed updating process for status buffer of control center,
UGV control input buffer, and UAV center location information buffer are also
presented.

In Sect. 6.3, a DE-based RHC controller for cooperative area searching of
multiple UAVs is presented. The thought of RHC in adopted to satisfy the real-
time requirements. Then, the cooperative search problem can be formulated into
a function, which is about designing search routes covering task areas from the
perspective of maximizing the probability of target detection. Furthermore, an
extended search map is used to describe the environment information on the search
region. Simulation results demonstrated that the approach we proposed for area
searching problem of multiple UAVs is feasible and also effective.
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Chapter 7
Biological Vision-Based Surveillance
and Navigation

Haibin Duan

Abstract From the simplest vision architectures in insects to the extremely
complex cortical hierarchy in primates, it is fascinating to observe how biology
found efficient solutions to solve vision problems, which may stimulate the
emergence of new ideas for the researchers in computer vision. Biological computer
vision is an excellent resolution that serves as a low-cost and information-rich
source complementing the sensor suite for unmanned aerial vehicle (UAV). For
fully autonomous UAV, the capability of autonomous target recognition and visual
navigation is of vital importance for a completing a mission in case of GPS signal
lost. This chapter mainly focuses on target recognition, image matching, and
autonomous visual tracking and landing by taking advantage of the bio-inspired
computation, with the aim of dealing with vision-based surveillance and navigation.
An artificial bee colony (ABC) optimized edge potential function (EPF) approach
is presented to accomplish the target recognition task for low-altitude aircraft.
Then a chaotic quantum-behaved particle swarm optimization (PSO) based on
lateral inhibition is proposed for image matching. Moreover, implementation of
autonomous visual tracking and landing for a type of low-cost UAV (quadrotor) is
conducted.

7.1 Introduction

Computer vision is a hot field that includes methods for acquiring, processing,
analyzing, and understanding images and high-dimensional data from the real
world, which can produce numerical or symbolic information for fully autonomous
unmanned aerial vehicle (UAV). Biological vision is a new emerging and chal-
lenging area of computer vision. The various physiological components involved

H. Duan and P. Li, Bio-inspired Computation in Unmanned Aerial Vehicles,
DOI 10.1007/978-3-642-41196-0__7, © Springer-Verlag Berlin Heidelberg 2014

215



216 7 Biological Vision-Based Surveillance and Navigation

in biological vision are referred to collectively as the visual system and are
the focus of much research in psychology, cognitive science, neuroscience, and
molecular biology. One of the main challenges of UAV design is the automatic
target recognition system for surveillance and navigation. In order to obtain accurate
identification results and hence to meet the practical requirements of aircrafts
reconnaissance system, the proposed target recognition method must be efficient,
stable, and convenient for promotion (Veredas et al. 2009). In many countries,
target recognition technology for aircrafts at low altitude is highly confidential, and
it is accordingly difficult to see its specific technical details (Duan et al. 2013).
Inaccurate detection information will usually directly affect the awareness of the
UAV about the battlefield state and target selection. Moreover, uncertain detection
information usually influences the recognition system with side effects. In recent
years, many methods for air vehicle systems have been proposed to improve the
performance of target recognition. Visual detection with ground targets search and
assignment were also providing a progress and alternative for UAVs (Bertuccelli
and Cummings 2012; Lin et al. 2012).

Edge detection is the fundamental step in edge extraction and object delineation
in biological image processing. The goal of edge detection is to mark the points
which contain the major information in a digital image (Duan et al. 2011). An
effective edge detector can reduce a large amount of data and still keep most
of the important feature of the image or object. Many edge detection algorithms
have developed based on computation of the intensity gradient vector at which
the intensity changes sharply. Among all the methods, shape representation and
matching is a very important aspect and has been extensively used for solving object
recognition problem (Belongie et al. 2002; Duan et al. 2010a; Liu et al. 2012).
Generally, shape matching schemes involve two general steps: feature extraction
and similarity measuring (Veltkamp 2001). Edge potential function (EPF) is a newly
developed similarity evaluating measure, which was firstly proposed by Minh-Son
Dao (Dao et al. 2007). This conception is derived from the potential generated by
charged particles and has been proved its feasibility and reliability over Hausdorff
distance and Chamfer distance measures.

Target recognition is a key issue to achieve autonomous reconnaissance and
attack for aircraft with low altitude (Deng and Duan 2013). In many countries,
target recognition technology for UAVs is highly confidential, and it is accordingly
difficult to see its specific technical details. In order to obtain accurate identification
results and hence to meet the practical requirements of aircrafts reconnaissance
system, the proposed target recognition method must be efficient, stable, and
convenient for promotion (Veredas et al. 2009). Among all the methods, shape
representation and matching is a very important aspect and have been extensively
used for solving object recognition problem (Belongie et al. 2002).
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7.2 ABC Optimized Edge Potential Function Approach
to Target Identification

7.2.1 The Principle of Edge Potential Function

Edge potential function (EPF) was firstly put forward by Minh-Son Dao (Dao et
al. 2007). This conception was derived from the potential generated by charged
particles and was especially adopted to model the attraction generated by edge
structures contained in an image over similar curves.

A set of point charges Qi in a homogeneous background can generate a potential,
the intensity of which depends on the distance from the charges and the electrical
permittivity of the medium ", namely,

v
�
�!r
�
D

1

4��

X

i

Qi
ˇ
ˇ
ˇ
�!r � �!ri

ˇ
ˇ
ˇ

(7.1)

where �!r and �!r i are the observation point and charge locations, respectively. And
the exact potential for a position in electric field amounts to the sum of potentials
generated by each charged point.

In complete analogy with the above behavior, in our model, (x,y) represents
the coordinates of any point of an image, and the ith edge point in the image at
coordinates (xi,yi) can be assumed to be equivalent to a point charged Qeq(xi,yi),
contributing to the potential of any image pixel (x,y):

EPF .x; y/ D
Q

4��eq

X

.xi ;yi /2W

1
q

.x � xi /
2 C .y � yi /

2
(7.2)

Minh-Son Dao also outlined several EPF models (Dao et al. 2007), among which
we adopt the Windowed EPF (WEPF) model in order to simplify the calculations,
as well as improving the robustness of shape matching in cluttered environments.
WEPF defines a window W beyond which edge points are ignored, which can be
expressed as follows:

EPF .x; y/ D
Q

4��eq

X

.xi ;yi /2W

1
q

.x � xi /
2 C .y � yi /

2
(7.3)

where "eq is a constant related with the image background situation and Q is equal
to the charge of each edge point Qeq(xi,yi). Then the edge potential of any pixel of
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an image can be obtained from an edge map, which is extracted from the image. The
edge potential represents a type of attraction field in analogy with the field generated
by a charged element.

To complete the model, the searched target template to be matched can be
considered as a test object, which is expected to be attracted by a set of equivalent
charged points. In this way, the higher the similarity between the searched object and
visual objects in the image, the higher the total attraction engendered by the edge
field. As a result, EPF can be particularly used as the similarity measure for shape
matching problem, for it implicitly includes some important features such as edge
position, strength, and continuity, in a unique powerful representation of the edge.

7.2.2 ABC Optimized EPF Approach to Target Identification

The implementation procedure of our proposed ABC optimized EPF approach to
target recognition for aircraft with low altitude can be described as follows (Xu and
Duan 2010):

Step 1: Image preprocessing:

(1) Obtain the image and convert it into grayscale format.
For other different format images, first convert them into grayscale format in
order for further edge detection operation.

(2) Filter the target image to remove the noise.
Conduct filtering operation to the obtained grayscale image in order to
mitigate the effect of noise. To this purpose, we applied the median filtering
method, which was certified to have an especially good inhibiting effect
towards pepper noise and Gaussian noise.

(3) Adopt canny edge extractor to detect the edges of the given image for the
sake of obtaining proper binary distribution of the original image.

Step 2: According to the binary edge distribution of the target image and the practical
edge potential field function model shown in (7.3), calculate the EPF distribution
of the target image.

Step 3: Initialize the parameters of ABC optimization algorithm, such as the
population of the bee colony Ns, the number of employed bees Ne, and the
number of the unemployed bees Nu, which satisfy the condition shown as
follows:

Ns D Ne CNu (7.4)

Obviously, a larger Ns will contribute to a larger possibility of finding the best solu-
tion of the problem; however, it also means an increased computing complexity
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of the algorithm. In general, we define NeDNu, and according to our special
problem, we set NsD 200. Denote the largest searching times with Limit (50 in
our experiments), current iterations with T, and the largest iterations with Tmax.
Initialize the population of geometric transformation parameters, which include
the horizontal translation parameter tx, the vertical translation parameter ty, the
rotation angle parameter angle, and the scaling parameter scale. By considering
these operators cD ( tx, ty, angle, scale ), the original sketch is iteratively roto-
translated and scaled obtaining different instances of it, which are fitted within
the potential field to compute a matching index. The goal is to find the optimal
combination of parameters, which can provide the best fitness, and to evaluate
if the relevant matching index is high enough to determine with a certain degree
of confidence the presence of the model in the target image. Initialize the search
time of each bee BasD 0, and the starting iteration TD 1.

Step 4: According to the geometric parameters of the employed bees, calculate their
similarity values respectively based on the defined similarity function as

f .ck/ D
1

N .ck/

N .ck/X

n.ck/D1

˚
EPF

�
xckn ; y

ck
n

��
(7.5)

where ckD (tx,ty,angle,scale) is the geometric operator on the kth iteration,
N.ck/ represents the number of edge points of the target image contained in the
mask image contour under the geometric operator ck, while (xckn ; y

ck
n ) are their

corresponding vertical and horizontal coordinates, and n.ck/ denotes the nth edge
point. f (ck) shows the average potential value calculated along the contour of
the mask image, and accordingly, when the fitness function f (ck) achieves its
maximum value, we find the best solution to match the target image.

Step 5: The employed bees search around their current positions to find new
solutions, and update their positions if the new fitness value is higher than the
original value.

Step 6: The unemployed bees apply the roulette selection method to choose the
bee individual that possesses a relatively good fitness value as the leading bee,
according to the calculated fitness results of employed bees. Each recruited
unemployed bee continues to search new solutions just around the leading bee’s
solution space, and calculate their fitness values. If the value of the new solution
is better than the original value, the unemployed bee converts into an employed
bee, which means that update the positions of the employed bees, and continue
exploring with Bas re-initialized as 0, or else, keep searching around, and its Bas
value plus one.

Step 7: If the search times Bas is larger than certain threshold Limit, the employed
bee gives up the solution, and re-search the new food resources, which is realized
by re-initializing the geometric parameters and calculating the fitness value.
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Fig. 7.1 The procedure of our proposed method (Reprinted from Xu and Duan (2010), with kind
permission from Elsevier)

Step 8: Store the best solution parameters and the best fitness value.
Step 9: If T <Tmax, go to Step 5. Otherwise, output the optimal parameters and

optimal fitness value.

The detailed procedure can also be shown with Fig. 7.1.
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7.2.3 Experiments

In order to investigate the feasibility and effectiveness of the proposed method in this
work, a series of experiments are conducted and further comparative experimental
results with the GA method are also given.

The initial parameters of ABC algorithm were set as NsD 50, NeD 25, NuD 25,
TmaxD 200, LimitD 50.

The 1st experiment (Case 1) is to find an isosceles triangle among a variety of
shapes in the original image. After a 330ı rotation, 1.2 times scaling, and a [78, 68]
translation, the target can be successfully recognized in the image, which means that
the best geometric parameters are [78, 68, 330, 1.2]. The experimental results are
shown in Fig. 7.2.

The task of the Case 2 is to find a target plane in the airport, and the results are
shown in Fig. 7.3.

The results of Case 3 and Case 4 are shown as follows:
Figures 7.2, 7.3, 7.4 and 7.5 are the target recognition results by using our

proposed ABC optimized EPF approach. Obviously, the results of the experiments
show that our proposed method can recognize the exact positions of targets in the
image through the operations of rotation, scaling, and translation.

To compare our identification effect with other approaches, more experiments
are conducted by using genetic algorithm (GA). The results by using GA are shown
in Fig. 7.6.

From Fig. 7.6, the evolution curve of GA is trapped into stagnancy (local best)
from the 20th iteration, while our proposed ABC optimized EPF approach can avoid
the local best easily. Furthermore, Table 7.1 shows the performance comparison of
our proposed approach and the traditional GA with 14 times experiments.

From the above experimental results, it is clear that our proposed ABC optimized
EPF approach is superior to the traditional GA in solving the target recognition
problem for aircraft with low altitude.

Figure 7.7 shows the series recognition results of Case 2, Case 3, and Case 4 by
using GA, which all contribute to our conclusion that our proposed ABC optimized
EPF approach performs better than GA.

7.3 A Chaotic Quantum-Behaved PSO Based on Lateral
Inhibition for Image Matching

In this section, we introduce chaos theory and lateral inhibition into the quantum-
behaved particle swarm optimization (QPSO). We name our hybrid model as
chaotic quantum-behaved particle swarm optimization based on lateral inhibition
(LI-CQPSO). It assumes that combining the features of above methods is com-
plementary to PSO. Quantum-behaved PSO, another expression of PSO, is an
intelligent algorithm coming from the branch of quantum computing. The chaos
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Fig. 7.2 Experimental results of Case 1 by using our proposed method. (a) Original image. (b) The
extracted contour of the target image. (c) The edge potential distribution of the original image. (d)
The target recognition result with ABC optimized EPF. (e) The evolution curve of ABC algorithm
(Reprinted from Xu and Duan (2010), with kind permission from Elsevier)
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Fig. 7.3 The results of Case 2 by using our proposed method. (a) Original image. (b) The extracted
edge of the identify target. (c) The edge potential distribution of the original image. (d) The
target recognition results with ABC optimized EPF. (e) The evolution curve of the ABC algorithm
(Reprinted from Xu and Duan (2010), with kind permission from Elsevier)
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theory was formulated by Edward Lorentz in 1960, from the study of weather
(Chandramouli and Izquierdo 2006). It studies the behavior of dynamic systems that
are highly sensitive to initial conditions. The chaotic modeling of particle swarm
optimization has been proposed and used successfully in image matching (Duan et
al. 2010a). Lateral inhibition (Amari 1977) has been used in the field of image edge
extraction, image enhancement, etc. In this section, LI-CQPSO which combines the
advantages from the chaos theory, lateral inhibition has been proposed to overcome
the problem of the convergent speed and low searching precision of PSO.

7.3.1 The Quantum-Behaved PSO Algorithm

As a variant of PSO, QPSO was proposed in 2004, inspired by quantum mechanics
and fundamental theory of particle swarm (Feng et al. 2009). QPSO is characterized

Fig. 7.4 Experimental results of Case 3 by using our proposed ABC optimized EPF method. (a)
Original image. (b) The target sketch. (c) The edge potential distribution of the original image. (d)
The results of target recognition. (e) The evolution curve of the ABC algorithm (Reprinted from
Xu and Duan (2010), with kind permission from Elsevier)
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Fig. 7.4 (continued)

by good search ability and fast convergence. According to the uncertainty principle
of quantum mechanics, the velocity and position of a particle in quantum world
cannot be determined simultaneously (Duan et al. 2010b). Thus, QPSO is different
from standard PSO mainly in that the exact values of position and velocity are
uncertain. In the QPSO algorithm with M particles in D-dimensional space, the
position of the ith particle at the (tC 1)th iteration is updated by the following
equations (Coelho 2008):



226 7 Biological Vision-Based Surveillance and Navigation

Fig. 7.5 Experimental results of Case 4 by using our proposed method. (a) Original image. (b)
The target sketch. (c) The edge potential distribution of the original image. (d) The results of target
recognition. (e) The evolution curve of the ABC optimization algorithm (Reprinted from Xu and
Duan (2010), with kind permission from Elsevier)

mbest D
1

M

MX

iD1

pi (7.6)

pi D 	pp C .1 � 	/ pg (7.7)

If rand( )> 0.5, we can get

xid .t C 1/ D pid � ˇ jmbest � x.t/j In
1

u
(7.8)
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Fig. 7.5 (continued)
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Fig. 7.6 The target recognition results by using GA. (a) Experimental result by using GA. (b)
Evolution curve of GA (Reprinted from Xu and Duan (2010), with kind permission from Elsevier)
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Table 7.1 The comparative results using our proposed approach
and GA

Our proposed approach GA

Best fitness Best parameters Best fitness Best parameters
11.262 [78 68 331 1.2] 11:262 [78 68 331 1.2]
11.262 [78 68 331 1.2] 11:829 [79 69 328 1.2]
11.262 [78 68 331 1.2] 11:262 [78 68 331 1.2]
11.908 [79 69 330 1.2] 10:268 [81 65 189 0.8]
11.272 [79 65 329 1.3] 10:792 [79 68 332 1.2]
10.5326 [79 66 331 1.2] 9:679 [87 67 329 0.8]
11.262 [78 68 331 1.2] 11:262 [78 68 331 1.2]
10.8506 [80 67 333 1.3] 9:282 [77 88 116 0.9]
11.262 [78 68 331 1.2] 10:5153 [77 73 187 0.9]
11.262 [78 68 331 1.2] 11:262 [78 68 331 1.2]
11.262 [78 68 331 1.2] 10:832 [78 67 331 1.2]
10.792 [79 66 332 1.2] 8:679 [87 67 329 0.8]
10.6231 [80 97 115 0.8] 10:597 [79 67 193 0.8]
11.262 [78 68 331 1.2] 10:099 [79 68 329 1.2]

Otherwise, we have

xid .t C 1/ D pid C ˇ jmbest � x.t/j In
1

u
(7.9)

where mbest denotes mean best position and is the mean value of the pbest positions
of all particles. ˇ is a contraction–expansion coefficient in the range of [0,1]. 	 and
u are two uniform random numbers in the interval [0,1]. Pp and Pg have the same
meanings as those in the standard PSO.

The QPSO algorithm is superior to the standard PSO mainly in three aspects
as follows: Firstly, quantum theory is an uncertain system. More different states
of the particles and a wider searching space of the algorithm can be generated in
this system. So better offspring are produced. Secondly, the introduction of mbest
into QPSO is another improvement. In the standard PSO, PSO converges fast, but
sometimes the fast convergence happens in the first few iterations and relapses
into a local optimal situation easily. While QPSO with mbest is introduced, the
convergence to average error is lower, because each particle cannot converge fast
without considering its colleagues, which makes the frequency of falling into local
much lower than PSO. Falling into local means that an algorithm gets converged
into local and fails to get a best solution. Lastly, QPSO has fewer parameters than
standard PSO, and it is much easier to program and run it. Hence, the performance
of the algorithm is significantly improved by QPSO.
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Fig. 7.7 Series target recognition results by using GA. (a) The target recognition result by using
GA for Case 2. (b) The target recognition result by using GA for Case 3. (c) The target recognition
result by using GA for Case 4 (Reprinted from Xu and Duan (2010), with kind permission from
Elsevier)

7.3.2 Lateral Inhibition Mechanism

The lateral inhibition mechanism is discovered and verified by Hartline and his
research team when they carried out an electrophysiology experiment on the
limulus’ vision.. They found that every microphthalmia of limulus’ ommateum is
a receptor which it is inhibited by its adjacent receptors and the inhibited effect
is mutual and spatially summed. It means that while it is inhibited by its adjacent
receptors, it inhibits its adjacent receptors at the same time. And the nearer the
adjacent receptors are from each other, the more strongly they inhibit mutually.
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In retinal image, the intensively excited receptors in illuminatingly light area
inhibit the receptors in illuminatingly dark area more strongly than the latter to
the former. Therefore, the contrast and the distortion of sensory information are
enhanced. In this way, the important characters of vision scene and the intensity
gradient in retinal image, namely, the image’s edge, are both strengthened. In this
essay, this mechanism is applied to preprocessing the original and the template
images to stress the spatial resolution, which can increase the accuracy of the image
matching.

After series of electrophysiological experiments, Hartline and his colleagues
advanced the following classical lateral inhibition model:

rp D ep C

nX

jD1

kp;j
�
rj � rp;j

�
; p D 1; 2; : : : ; n (7.10)

According to different classification criteria, lateral inhibition has many different
modified models.

In order to introduce this mechanism to image processing, (7.10) is modified in
two-dimensional and gray form, gray value of the pixel (m, n) in image given in
(7.11):

R .m; n/ D I0 .m; n/C

MX

iD�M

NX

jD�N

˛i;j I0 .mC i; nC j / (7.11)

where ˛i,j is the lateral inhibition coefficient of the pixel (i, j) to the central pixel,
I0(m,n) is the original gray value of pixel (m,n), R(m,n) is the gray value of pixel
(m,n) processed by lateral inhibition, and M�N is the receptive field.

The size of receptive field chosen in this essay is 5� 5. Then the competing
coefficient of the lateral inhibition network is

R .m; n/ D ˛0 � I0 .m; n/

� ˛1

"
1X

iD�1

1X

iD�1

I0 .mC i; nC j / � I0 .m; n/

#

� ˛2

2

4
2X

iD�2

2X

iD�2

I0 .mC i; nC j / �

1X

iD�1

1X

jD�1

I0 .mC i; nC j /

3

5 (7.12)

And the lateral inhibition modulus satisfies

˛0 � 8˛1 � 16˛2 D 0 (7.13)
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In this section, we choose the following matrix as the modulus:

U D

2

6
6
6
6
6
4

0:025 0:025 0:025 0:025 0:025

0:025 0:075 0:075 0:075 0:025

0:025 0:075 1 0:075 0:025

0:025 0:075 0:075 0:075 0:025

0:025 0:025 0:025 0:025 0:025

3

7
7
7
7
7
5

(7.14)

After combining the modulus template U with (7.14), new gray scales of the
image can be obtained. Then finally, the image’s edge is extracted by the following
equation:

I .m; n/ D

�
0 R .m; n/ � T

255 R .m; n/ > T
(7.15)

where T is a user-defined threshold value according to practical situations.

7.3.3 Chaotic Quantum-Behaved PSO Based on Lateral
Inhibition

The fitness function is often defined to calculate the fitness of every particle
according to different situations and real practices. If the image is comparatively
huge, the exhaustive operation of this function is extremely time-consuming. To
overcome this shortage, we define the following fitness function, suitable for the
lateral inhibition processed images:

f .m; n/ D
1

KW

K�1X

iD0

W�1X

jD0

I .mC i; nC j / (7.16)

where K �W is the size of the template, (m,n) is the coordinate of the pixel in
the original image, and I(mC i, nC j) is the processed gray value of the pixel
(mC i, nC j) by (7.15). If the size of the original image is M�N (corresponding
to an image’s M row and N line), the range of the coordinate in the original image
for matching is 0�m�M�KC 1, 0� n�N �WC 1. The maximum value f (m,n)
stands for the best solution of the matching.

LI-CQPSO combines the characteristics of random of chaos, efficiency of QPSO,
with the accuracy of the lateral inhibition and performs well. Our proposed LI-
CQPSO model has the following advantages. Firstly, it has better properties with
high accuracy and efficiency than the standard PSO and CQPSO. Secondly, with
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fewer parameters, this algorithm is much easier to program than the others. These
parameters are adjusted to balance between searching accuracy and searching time
according to practical problems. At last, the fitness function described in (7.16)
decreases the computerized complexity.

The procedure of LI-CQPSO is described as follows:

Step 1: Image preprocessing. Obtain the original image and the template image,
and convert them into grayscale format. And filter images to remove the noise.
Then set a threshold for the fitness function according to different situations.
Preprocess them by the lateral inhibition mechanism. Then save the new matrices
of images.

Step 2: Initialization of particles and parameters. Initialize particles’ positions and
velocities by chaos theory and initialize the parameters of this algorithm, such as
maximum iteration and the population of particles.

Step 3: Calculate each particle’ fitness value.
Step 4: Compute the mean best position mbest of the particles.
Step 5: Select Pp and Pg among particles and update them.
Step 6: Regenerating the next generation. Generate a random number in the range

of [0,1], then compute positions of the next generation of particles.
Step 7: Check whether the iteration reaches the maximum iteration. If so, stop the

algorithm and output the result, otherwise return to step 3.

The algorithm flow of the above improved PSO is shown below (Fig. 7.8):

7.3.4 Experiments

In order to verify the feasibility and effectiveness of our proposed algorithm in this
work, series of comparative experiments with other three PSO-based algorithms are
also given. These algorithms are the standard PSO, QPSO, and PSO based on lateral
inhibition (LI-PSO), which is introduced lateral inhibition into the standard PSO to
extract the edge of the image.

The initial parameters of all these PSO-based methods were set as iterD 80,
nD 150; the parameters of the basic PSO were set as C1D 2.05, C2D 2.05,
wmaxD 1, wminD 0.3. The threshold for image edge extracting was set as TD 110.
The aim of these experiments is to make the template image successfully matched
to the original image. The success of matching was determined by the coordinate of
the template image fixed in the original image. The experimental results are shown
in Fig. 7.9.

In order to compare our proposed method with other approaches, more experi-
ments were conducted by using PSO, QPSO, LI-PSO, and our proposed LI-CQPSO.
The comparative results are shown in Fig. 7.10.

From Fig. 7.10, the evolution curves of PSO, QPSO, LI-PSO, and LI-CQPSO
are all presented. Among them, the rate of convergence of LI-CQPSO is the fastest
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Fig. 7.8 The flowchart of
LI-CQPSO (Reprinted from
Liu et al. (2012), with kind
permission from Elsevier)

apparently, which finds the best solution at the 9th iteration on average, while the
other three algorithms need much more iterations. Table 7.2 displays in detail the
performance comparison of our proposed approach and the other three algorithms
with 50 times experiments. To further prove the performance of our proposed
method against standard PSO, QPSO, and LI-PSO, the statistical performances of
50 independent runs are listed in Table 7.2.

From Table 7.2, it turns out that the average cost of our algorithm is 6.5032 s,
while the average cost of standard PSO algorithm is 3.9995 and QPSO algorithm is
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Fig. 7.9 (a) Original image (540 � 359). (b) Template image (96 � 91). (c) Original image
processed by the lateral inhibition. (d) Template image processed by the lateral inhibition. (e)
The final template matching result (Reprinted from Liu et al. (2012), with kind permission from
Elsevier)
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Fig. 7.10 (a) Evolution curves of experimental results by using PSO (10 times). (b) Evolution
curves of experimental results by using QPSO (10 times). (c) Evolution curves of experimental
results by using LI-PSO (10 times). (d) Evolution curves of experimental results by using LI-
CQPSO (10 times). (e) Iterative curves in comparison with PSO, QPSO, LI-PSO, and LI-CQPSO
(Reprinted from Liu et al. (2012), with kind permission from Elsevier)
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Table 7.2 Compared results
by 4 different algorithms

Test conditions: test 50 times, maximum iteration iter D 80

Population of particles n D 150

Algorithm Converged iteration Total time Correct rate
PSO 68 3.9535 s 78 %
QPSO 10 5.9995 s 92 %
LI-PSO 58 4.0212 s 86 %
LI-CQPSO 8 6.5032 s 94 %

5.9995 s, apparently showing that our method spends more time on image matching.
PSO and LI-PSO need less exhaustive matching time but also are converged much
slower than QPSO and LI-CQPSO. In fact, the convergent speed of our method is
much quicker than the others that means if only considering successful runs, the
real time for finding the best matching is much less than 6.5032 s, just equal to
6.5032*8/80D 0.65032 s which is less time than the other methods to make the best
matching. It is also concluded that chaos theory and lateral inhibition are able to
improve the convergent speed of PSO and QPSO. Furthermore, the successful rate
of our algorithm shows that our method can find the feasible and optimal matching
more stable than the other three algorithms and can effectively solve the image
matching problems.

7.4 Implementation of Autonomous Visual Tracking
and Landing for Low-Cost Quadrotor

7.4.1 The Quadrotor and Carrier Test Bed

The hybrid test-bed system includes the quadrotor and ground carrier realized by
a pushcart. A ground control station is developed to perform image processing and
position controlling. It is also used for monitoring and parameter variation in the
experiments (Bi and Duan 2013).

AR.Drone is a WiFi-controlled quadrotor with cameras attached to it (one facing
forward, the other vertically downward). AR.Drone is developed by Parrot Inc. It is
an affordable (usually under $300) commercial quadrotor platform offering an open
application programming interface (API) and freely downloadable software devel-
opment kit (SDK) for developers (Krajník et al. 2011). Many useful pieces of devel-
opment information can be found on the developers’ websites or the official forum.

AR.Drone uses an ARM9 468 MHz embedded microcontroller with 128 M of
RAM running the Linux operating system. The onboard downward complementary
metal oxide semiconductor (CMOS) color camera provides red, green, and blue
(RGB) images in size of 320*240. An inertial system uses a 3-axis accelerometer, 2-
axis gyro, and a single-axis yaw precision gyro. An ultrasonic altimeter with a range
of 6 m provides vertical stabilization. With a weight of 380 g or 420 g (with “indoor
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Fig. 7.11 Quadrotor AR.Drone picture from different views (Reprinted from Bi and Duan (2013),
with kind permission from Elsevier)

Fig. 7.12 Pushcart carrier
with the green helipad and
two color rectangles
(Reprinted from Bi and Duan
(2013), with kind permission
from Elsevier)

hull”), it can maintain flight for about 12 min with a speed of 5 m/s. Figure 7.11a
shows the top view of the quadrotor, and Fig. 7.11b shows the side view of the flying
quadrotor.

The carrier in our system is a common pushcart (See Fig. 7.12). The pushcart is
powered by man and can move according to a specific path, which is like a moving
automobile. The helipad is with a green shape “H,” which is a concise copy of
standard helipad for helicopter.

The color pattern is printed on a standard A4 paper and fixed on the carrier. We
also designed two rectangles in red and blue for the helipad pattern. The helipad
is used to determine the position error between the quadrotor and carrier. The two
rectangles can help to determine the bearing of the quadrotor by calculating the
relative position of the two rectangles.
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7.4.2 Computer Vision Algorithm

In this section, a simple and fast RGB filter (available online at http://www.
roborealm.com/help/RGB%20Filter.php) is adopted to implement filtering of the
noisy signals. The RGB filter uses three values (red, green, and blue) to focus the
attention towards the specific colors. RGB filter can diminish all pixels that are not
the selected colors. This filter is different from direct RGB channel comparison. The
white pixels are also diminished even though they may contain the color selected.
Our helipad is pure green, so the RGB filter is accomplished eliminating the red and
blue channels by using the following equation:

8
<

:

G D .G � B/C .G �R/

B D 0

R D 0

(7.17)

where G is the green value, B is the blue value, and R is the red value. Based on
(7.17), it is obvious that the value of the white pixels results in zero, and the pure
green color (RD 0, GD 255, BD 0) doubles its value. G will be normalized to 0–
255 after (7.17). This filter performs better than direct RGB channel comparison in
filtering for a particular color as white pixels are removed. It is much robust under
different lighting conditions.

The threshold algorithm can produce a binary image after using the RGB filter.
A robust implementation is to set the image threshold at a fixed percentage between
the minimum and the maximum green values. The percentage is 80 % for default
value in our implementation. The threshold can also be manually adjusted according
to the different experimental conditions.

The 2-D (pC q)th order moment (Hu et al. 1962) of a density distribution
function f (x,y) can be described as

mpq D

Z C1

�1

Z C1

�1

xpyqf .x; y/dxdy; p; q D 0; 1 (7.18)

An image can be represented as a discrete function f (x,y). For the (pC q)th order
moment of an image, (7.18) can be rewritten as

mpq D
X

i

X

j

ipj qf .i; j / (7.19)

where i and j correspond to the coordinates in axes x and y, respectively. The center
of gravity of an object can be specified as

x D
m10

m00

(7.20)

y D
m01

m00

(7.21)

http://www.roborealm.com/help/RGB%20Filter.php
http://www.roborealm.com/help/RGB%20Filter.php
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Fig. 7.13 Defined image
coordinates (Reprinted from
Bi and Duan (2013), with
kind permission from
Elsevier)

The obtained continuous images are processed on the ground control station for
quadrotor. Figure 7.13 shows the defined image coordinate system.

In Fig. 7.13, the origin point is the center of helipad, and the relative position
error is represented in pixels. The x -axis means pitch channel, and y -axis means
roll channel. The calculated relative position errors in this coordinates are used to
generate the control command, and the command is sent to the controller of the
quadrotor. The onboard camera and off-board vision algorithms allow the quadrotor
to track and land fully automatically without communication between the quadrotor
and the carrier.

7.4.3 Control Architecture for Tracking and Landing

The quadrotor position controller is designed as hierarchical control architecture.
The low-level attitude control has already been realized in the quadrotor inner-
loop controller by the developer. The high-level position control is implemented
in our developed ground control station. A finite state machine controls the high-
level behavior of the quadrotor. The desired behavior consists of four phases: taking
off, hovering, tracking, and landing. The control architecture of quadrotor is shown
in Fig. 7.14.

The quadrotor takes off from the helipad on the carrier and holds a fixed height
of 0.5 m in our experiments. Commands from the ground control station start
the autonomous visual tracking and landing of the quadrotor. While the carrier is
stationary, the quadrotor will hover overhead the helipad. The quadrotor must hover
right over the center of the helipad in our task. When the carrier is moving, the
quadrotor must track overhead the center of the helipad.

The precise autonomous position control is achieved by two independent
proportional-integral-derivative (PID) controllers (Ludington et al. 2006). One PID
controller is for the pitch channel and the other for the roll channel. The input of the
controller is the position errors, which can be obtained by our proposed computer
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Fig. 7.14 Control architecture of our quadrotor (Reprinted from Bi and Duan (2013), with kind
permission from Elsevier)
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Fig. 7.15 Position PID controller with visual feedback (Reprinted from Bi and Duan (2013), with
kind permission from Elsevier)

vision algorithms. The output of the controller is the attitude angle commands. The
position error for the corresponding roll and pitch channel can be denoted with er(t)
and ep(t). Figure 7.15 shows the PID controllers for our quadrotor’s position control
with real-time visual feedback.

The roll angle r(t) and pitch angle p(t) can be obtained by
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r.t/ D Kper.t/CKi

Z t

0

er .�/d� CKd

d

dt
er .t/ (7.22)

p.t/ D Kpep.t/CKi

Z t

0

ep .�/d� CKd

d

dt
ep.t/ (7.23)

When the quadrotor is in the landing phase, it will maintain a constant descending
velocity while keeping track of the helipad. As the position errors in pixels is
adopted as the inputs of controllers, height compensation must be considered during
landing process. In actual experiments, the landing phase can be separated into
three circumstances, which can compensate for the controller outputs. When the
quadrotor’s height is between 0.3 and 0.5 m, the controller outputs calculated by
(7.22) and (7.23) can be used directly. When the quadrotor’s height is between 0.05
and 0.3 m, the controller outputs can be reduced according to the two following
equations:

r.t/ D r.t/=1:5I (7.24)

p.t/ D p.t/=1:5I (7.25)

If the quadrotor’s height is under 0.05 m, the helipad region in the image is too
large to use for navigation. The quadrotor will directly shut off motors and land on
the helipad quickly. This proposed strategy can avoid the influence of the ground
effect, and better performance can be guaranteed effectively.

7.4.4 Experiments

In order to verify the feasibility and effectiveness of our proposed approaches, a
custom ground control station for the quadrotor is also developed. Figure 7.16 shows
the main interface of our developed ground control station.

The ground control station can receive/send signals and process images trans-
ferred from the quadrotor’s downward camera at 30 Hz. The station can send control
commands at 33 Hz according to the recommendation in the development guide.
The ground station is developed in C#, which is referring to the open source.

Different operation modes can be chosen on our ground control station, including
“Takeoff,” “Land,” “Tracking,” and “Landing”. “Land” means ordinary landing of
the quadrotor while “Landing” means the touching down on the specific helipad.
“Tracking” starts the process of the quadrotor automatically following the carrier.
All the states for monitoring the system are displayed on the ground control station.
The PID parameters for the two channels and the threshold for detecting the helipad
can also be set on our developed ground control station.

Our computer vision algorithms are implemented on the ground control station.
Figure 7.17 shows effect of the proposed vision algorithms. Figure 7.17a is the
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Fig. 7.16 Custom ground control station for our quadrotor (Reprinted from Bi and Duan (2013),
with kind permission from Elsevier)

Fig. 7.17 Effect of the vision algorithm (Reprinted from Bi and Duan (2013), with kind
permission from Elsevier)

original image of helipad captured from the onboard camera, and Fig. 7.17b shows
the resulting image after filtering and thresholding.

The resulting image is displayed in green for user-friendliness. The helipad is
extracted effectively from the sample image, which demonstrates that the computer
vision algorithms meet requirements of the quadrotor system.

The threshold for helipad detection can be tuned manually if the default value
cannot perform effective helipad extraction, which varies according to different
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Fig. 7.18 Process of our quadrotor tracking and landing on helipad (Reprinted from Bi and Duan
(2013), with kind permission from Elsevier)

lighting conditions. A specific threshold was set, and over 90 % of the helipad region
is detected. After setting a threshold, the ground control station starts the tracking
and landing procedure. The PID parameters for the pitch and roll channel are the
same because of the symmetry of quadrotor’s dynamics. In our experiments, the
PID parameters can be set as fKpD 0.7, KiD 0, KdD 15g. The proportional term
produces an output value that reduces the current position error. The derivative
term helps to slow the velocity of the quadrotor and reduces the magnitude of the
overshoot by considering both acceleration and velocity.

Following a large number of flights, the system has proven a good tracking and
landing ability. The experimental video’s screenshots are shown in Fig. 7.18.

Figure 7.18a shows the taking-off process of our quadrotor from the moving
carrier. Figure 7.18b shows the tracking process of our quadrotor after successful
detection of the helipad. Figure 7.18c shows the descending of height while keeping
tracking the helipad during the landing process. Figure 7.18d shows the precise
landing of our quadrotor. The experimental results show the quadrotor using our
proposed approaches can complete the tracking and landing on the helipad precisely
while the carrier moving at the speed below 0.5 m/s.
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Fig. 7.19 Process of the quadrotor following a toy car (Reprinted from Bi and Duan (2013), with
kind permission from Elsevier)

Furthermore, we also apply the quadrotor to follow a remote-controlled toy car
by using our computer vision algorithms and position controller. Figure 7.19 shows
the successful heterogeneous following process.

7.5 Conclusions

This chapter presented the main applications of biological vision with swarm
intelligence for UAVs. The ability of autonomous target recognition and visual
navigation is of vital importance for a complete mission in case of GPS signal loss.

In Sect. 7.2, we deal with biological edge detection and target recognition based
on ABC for UAVs. The hybrid biological model of saliency-based visual attention
and ABC algorithm is established for edge detection of UAVs. The visual attention
model can help find the target region fast and accurately, which can reduce the
amount of information and make the following processes easier and simpler. The
improved ABC algorithm can detect the target edge effectively and avoid the effects
of environment and noise. A novel ABC optimized EPF approach to target identify
for aircraft with low-altitude flight is proposed in this section. This hybrid method
takes advantages of the accuracy and stability for EPF in target shape recognition,
and ABC algorithm is adopted to optimize the matching parameters.

For biological image matching, a novel chaotic quantum-behaved particle swarm
optimization based on lateral inhibition is presented in Sect. 7.3. Utilizing the
periodicity and irregularity of the chaotic variable to initialize the particles and the
parameter ˇ of QPSO helps it jump out of the local optimum as well as speeding
up the process of finding the optimal parameters. This hybrid method also takes
advantages of the accuracy and stability of lateral inhibition for edge extraction in
the image preprocessing. Comparative experimental results of the proposed method,
standard PSO algorithm, QPSO, and LI-PSO are also given to verify the feasibility
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and effectiveness of our proposed LI-CQPSO approach, which provide a more
effective way for image matching in applications.

What’s more, in Sect. 7.4, the exact implementation of a hybrid system consisting
of quadrotor and pushcart carrier is presented. The adopted computer vision
algorithm is rather simple, fast, and effective under different lighting conditions.
The rich vision information can guarantee excellent performance in our designed
tracking and controlling system. We have implemented an autonomous visual
tracking and landing system with one type of economic UAV(quadrotor). The
designed hybrid system demonstrates the usability and fast deployment ability of
the miniature quadrotors.
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Chapter 8
Conclusions and Outlook

Haibin Duan and Pei Li

Abstract The main focus and emphasis of this monograph has been on the bio-
inspired computation in unmanned aerial vehicle (UAV), such as path planning for
single UAV and multiple UAVs, formation flight control and formation configura-
tion, heterogeneous cooperative control for multiple UAVs/UGVs, and vision-based
surveillance and navigation problems. Despite the fact that we have witnessed
significant advances in the UAV in the last few years, new and novel concepts and
technologies are required to transcend to higher levels of autonomy. To this end, new
development trends, such as small air vehicle, air-breathing hyposonic vehicles, and
system integration, are discussed. We attempt to provide insightful sources for the
researchers and scholars who have interests in bio-inspired computation for UAVs
from three aspects: achieving higher autonomous capability, enhancing the ability
to understand and adapt to the environment, and cooperative control of multiple
autonomous vehicles.

8.1 Conclusions

Although much of the technology and equipment associated with the unmanned
aerial vehicles (UAVs) are relatively new, the concept is old. UAVs have made
significant contributions to the warfighting capability of operational forces and
also to civil and commercial applications. They greatly improve the timeliness
of battlefield information. While reducing the risk of capture or loss of manned
assets, they offer advantages for many applications when comparing with their
manned counter parts (Duan et al. 2010b; Duan and Liu 2010a; Francis 2012). They
preserve human pilots of flying in dangerous conditions that can be encountered
not only in military applications but also in other scenarios involving operation
in bad weather conditions or near to buildings, trees, civil infrastructures, and
other obstacles. Federated systems consisting of multiple unmanned aerial vehicles
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performing complex missions present new challenges to the control community.
UAVs must possess attributes of autonomy in order to function effectively in a
“system-of-systems” configuration. Coordinated and collaborative control of UAV
swarms demands new and novel technologies that integrate modeling, control, com-
munications, and computing concerns into a single architecture. Typical application
domains include reconnaissance and surveillance missions in an urban environment,
target tracking and evasive maneuvers, search and rescue operations, and homeland
security. Major technological challenges remain to be addressed for such UAV
swarms or similar federated system-of-systems configurations to perform efficiently
and reliably. Excessive operator load, autonomy issues, and reliability concerns have
limited thus far their widespread utility. The systems and controls community is
called upon to play a major role in the introduction of breakthrough technologies in
this exciting area.

The autonomy has been and may continue to be the bottleneck of obtaining
ability to make decisions without human intervention (Clough 2005; Francis 2012).
To some extent, the ultimate goal in the development of autonomy technology is to
teach machines to be “smart” and act more like humans. During the last few years,
we have witnessed significant advances in the unmanned aircraft and unmanned
systems state of the art. Yet, new and novel concepts and technologies are required
for a more widespread use of such critical assets, not only for military but also for
commercial and other applications such as homeland security, rescue operations,
forest fire detection, and delivery of goods, to name just a few applications. It
is generally believed that the popularity of artificial intelligence in the 1980s and
1990s, such as expert systems, neural networks, machine learning, natural language
processing, and vision, gives new hope to obtain fully autonomous capability.
However, it remained to be seen whether future development of autonomy will
benefit from artificial intelligence and how it will drive the autonomy forward.

By introducing the collaboration of bio-inspired computation and control prob-
lems in UAVs, such as path planning for single UAV and multiple UAVs, formation
flight control and formation configuration, heterogeneous cooperative control for
multiple UAVs\UGVs, and vision-based surveillance and navigation problems, this
monograph tries to highlight the way toward full autonomy. The main focus and
emphasis of this monograph has been on the bio-inspired computation in UAVs. The
main objectives pursued have been on addressing the question of how to achieve
higher autonomous capability by taking advantage of bio-inspired computation.
The main goals of this monograph are to develop innovative and novel concepts,
techniques, and solutions to meet the more and more difficult requirement in
executing challenging applications.

8.2 New Trends in UAV Development

8.2.1 Small Air Vehicles

An increase in the number and use of small air vehicle system (SUAS) platforms
has been evident for a number of years (Ammoo and Dahalan 2006). The SUAS
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community even hosts its own focused conferences focused on its own unique
issues and opportunities. Small vehicles offer a number of significant advantages
over their larger brethren, not the least of which is their (typically) lower acquisition
cost. For ISR applications, this applies to the platform and payload sensor(s) alike.
Smaller platforms with a similarly reduced infrastructure mean a smaller logistics
footprint, a factor which lowers operations and maintenance (O&M) costs, as well.
Recent advances in vehicle control and novel propulsion schemes have resulted in
system performance that rivals that of the larger platforms, e.g., daylong endurance.
Moreover, the platforms are inherently as survivable as the larger kin due to their
fundamentally small size and resultant relative low observability. Newer “quiet
propulsion” options, including fuel cell and fuel cell-electric hybrid solutions make
them even harder to detect. Current systems such as the ScanEagle, Raven, and
Fury have developed user constituencies that value their operational attributes and
capabilities.

More advanced designs should make them almost ideal for “stand-in” oper-
ations, where their lower sensor resolution is compensated for by proximity to
target. The added advantages of their more flexible operational footprint, including
reduced crew size, will make them even more attractive in a downsizing defense
environment. Potential civil and commercial applications of these small platforms
(e.g., traffic surveillance and management, law enforcement, power line monitoring)
abound, as well.

The smallest in this class are termed micro- and nano-air vehicles, with some
designs small enough to fit in the palm of a hand. Although they are the least mature
from an operational perspective, the development community has been quite active
over the last decade. Benefitting from recent research in low Reynolds number
aerodynamics, these ultratiny systems are pioneering new methods of physical
integration and component synergy. AeroVironment’s Hummingbird was named
one of the 50 top inventions of 2010 by Time Magazine.

Perhaps the most fascinating of these is the emerging nano-unmanned aircraft
system (UAS) class. It consists of tiny autonomous or remotely controlled air
vehicles able to operate indoors and outdoors and to transition between these envi-
ronments. The US Defense Advanced Research Projects Agency (DARPA) recently
concluded a multiyear technology development program on nano-air vehicles that
culminated in a successful flight demonstration. The size/weight constraints on
nano-class vehicles result in designs that use relatively thin airfoils. The outcome
is that many nano-UAVs operate in the less understood ultralow Reynolds number
aerodynamics flow regime, which makes high-fidelity modeling and simulation
a significant challenge. Limited sensing and communication capabilities mean
that onboard vehicle state estimation, a vital ingredient for a successful control
strategy, continues to be problematic. In recent years, the use of motion capture
systems such as Vicon Bonita has enabled off-board state sensing/estimation for
laboratory flight experiments (an excellent example is MIT’s RAVEN indoor flight
environment). While the use of these systems enables researchers to focus on
vehicle dynamics, trajectory generation, and control, off- board sensing is less
useful in real-world UAV missions. Another nano-UAV challenge associated with
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constraints on airfoil size/shape and the size, weight, and power (SWAP) limitations
is that control authority is quite limited. This makes stable and robust flight
problematic. Furthermore, the development of effective flight control algorithms
that are computationally inexpensive, while fully accommodating limitations on
control surface type, size, and actuation modality, remains a tough problem. On
the whole, the nano-UAV challenge is to develop robust and low computational
footprint tools that enable the effective operation of this class of vehicles in spite of
their physical and computational limitations.

8.2.2 Air-Breathing Hypersonic Vehicles

The necessity for a reliable and cost-effective access to space for both civilian and
military applications has spurred a renewed interest in hypersonic vehicle (Duan
and Li 2012; Sun et al. 2013), as witnessed by the success of NASA’s (National
Aeronautics and Space Administration) scramjet-powered X-43A, a substantial
experimental vehicle that flew in 2004 and 2005. On May 3, 2013, it was extensively
reported that the Boeing X-51 Waverider had launched successfully from 50,000 ft
and had accelerated using a rocket to Mach 4.8 at which point it separated from the
rocket and ignited its scramjet. It then accelerated further to Mach 5.1 and climbed to
60,000 ft before shutting down its engine and intentionally crashing into the Pacific.
It’s reported the engine ran for in excess of 240 s and the aircraft covered over
260 miles. The integration of the airframe and the scramjet engine results in strong
coupling between propulsive and aerodynamic forces. The slender geometries and
light structures cause significant flexible effects. Large-scale variations of altitude
and velocity lead to uncertainties in the aerodynamic parameters. Consequently,
controller design is a key issue in making air-breathing hypersonic flight feasible
and efficient. The dynamics of hypersonic vehicles is highly nonlinear, coupled,
and partly unpredictable due to the facts such as strong nonlinearity and high flight
altitude, which makes the system modeling and flight control extremely challenging.

Owing to the dynamics’ enormous complexity, the longitudinal dynamics equa-
tions developed by Bolender and Doman are employed to the modeling, control
design, and simulations for hypersonic vehicle by most researchers. Compared
with traditional flight vehicles, the longitudinal model of hypersonic vehicle is
known to be unstable, non-minimum phase with respect to the regulated output
and affected by significant model uncertainty. Therefore hypersonic vehicles are
extremely sensitive to changes in atmospheric conditions as well as physical and
aerodynamic parameters. It is essential to guarantee stability for the system and
provide a satisfied control performance to improve the safety and reliability.

Conventionally, the research on flight control design for this class of vehicles
focused primarily on mitigating the effect of the structural flexibility on the vehicle
stability and control performance by means of linear robust design methods applied
on linearized models. A linearized model is established around a trim point for a
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nonlinear, dynamically coupled simulation model of the hypersonic vehicle, thus
linear controller can be designed in a neighborhood of the operating point. In
this way, the linear control theories, such as decentralized control, linear quadratic
regulator (LQR) approach, and gain scheduling method, have been researched to
accomplish the difficulties in the control design. In recent years, contributions have
begun to address the design of nonlinear controllers on nonlinear vehicle models
as well. Owing to the nonlinearity and the coupling, many researchers take the
dynamics information into consideration for controller design to provide the good
control performance.

Although the approaches aforementioned provide robust performance under
significant changes in flight conditions and fuel level in experimental simulation,
it is far from satisfactory. There are three main concerns we should take into consid-
eration in reaching our goal to provide satisfactory design of guidance and control
systems for hypersonic vehicle: stability, performance, and robustness. However,
few presented schemes meet the requirements or some of them just meet it with
a simplified model. So there are some fundamental and essential issues in control
designs that are worth probing further despite of the great progresses we have made
in the last several years. The typical challenges of controller design for hypersonic
vehicles can be generalized as eight aspects: input/output coupling, unstable/non-
minimum phase, parameter variation, flexible modes, control constraints, tightly
integrated airframe engine configuration, less known aerothermodynamic effects
of hypersonic speeds, and lack of adequate flight and ground test data. The
first issue that needs to be addressed is robustness, which is a key issue for a
reliable controller for hypersonic vehicle, including the stability robustness and
the performance robustness. To meet range-safety requirements in the event of
failures, reconfigurable control allocation is necessary to take the problem of fault-
tolerant control designs for flight critical components into consideration. And the
complex interactions between elements of a hypersonic vehicle will require a tightly
integrated design process to achieve the optimal performance necessary to meet
space access mission objectives.

8.2.3 Design from the Perspective of System Integration

The UCAS, in particular, has been in various development stages for over a
decade in its erratic odyssey to operational acceptance. Initiated and technologically
evolved during a series of related DARPA programs from 1994 to 2006, the UCAS
concept is based on a system-of-systems architecture that evolved into flexible
and affordable approach to satisfying demanding multimission needs (Francis
2012). The concept has also raised significant concerns regarding its operational
employment, especially its use in lethal scenarios. Although neither intended nor
implemented, the idea that this armed robot would make lethal decisions has been a
perception that the program has had to overcome almost since its inception.
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In 2003, a joint program which combined multiple and somewhat disparate
service interests was created. This joint unmanned combat air systems (JUCAS)
program also programmatically joined two major airframe contractors and their
respective air vehicle designs in what was to be a significant system integration
challenge. Both the Boeing X-45C and Northrop Grumman X-47B designs repre-
sented state-of-the-art platforms in many respects, but the system-of-systems aspect
of the development was in its infancy and especially daunting.

JUCAS was conceived to conduct extremely hazardous missions in otherwise
denied airspace. The air vehicle designs were challenged to exhibit exceptional
range, endurance, and persistence for fighter class configurations. Both aircraft
designs were tailless and focused on achieving exceptionally low observability.
Global operation was a given requirement, so the system was architected to provide
flexible operation at very long distances between the platforms and their remote
human crews. As such the systems design featured interoperable platforms, as well
as collaborative CONOPS and tactics, including “group autonomy.”

Another important consideration in UCAS design involved integration with other
systems and capabilities. The extreme global reach (range/radius) and persistence of
these platforms dictated a need for in-flight infrastructure support that was extensive.
Airborne support assets included refueling tankers, potential communications relay
platforms, and collaborative sensing aircraft. Of even more significance was the
need for supporting spaceborne assets. Communications and navigation support
(e.g., GPS) needs were obvious, providing connectivity to control stations, a host of
terrestrially based platforms, as well as supporting airborne elements. In addition,
complementary sensing systems, especially those providing broad area coverage
capabilities, came to be viewed as highly beneficial in many mission scenarios. The
global reach of space systems could help assure the same for UCAS or, for that
matter, any other UCAS with similar aspirations. The relative sanctuary of space
would provide a higher level of survivability for the system as a whole. The suite of
space-based capabilities came to be viewed as an important infrastructure element
of the JUCAS. As such, UCAS and similar concepts can serve as catalysts for true
air and space integration.

The Common Operating System (COS) is the centerpiece of the system architec-
ture introduced by Francis (2012), which aims at creating an interoperable capability
and optimize the impact of available and emerging technologies. Analogous to the
concept of the contemporary computer system, COS treats other system elements as
functions and the hardware as “peripherals.” The COS was conceived to manage all
critical nonplatform-based system functions, including control and management of
system resources, interplatform information exchange, communications bandwidth
allocation and overall quality of service, an integrated perspective of battle space
awareness, autonomous multivehicle operations, and other interplatform function-
ality. It is important that this approach provides the architectural underpinning that
allowed one to think of the air vehicles and other major system elements as “nodes
in the network.”

It is important to note that the concept’s implementation did segregate the
major software and hardware developments in a manner that permitted maturation
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of each of the key system elements at its own developmental pace. Platform-
unique or endemic functions (e.g., FCS inner loops, engine throttle controls) were
architecturally excluded from the COS, also segregating developmental efforts in a
logical manner, with consideration for other system attributes such as survivability
and security. The concept allows for a more independent evolution of hardware and
software, of vehicles and other platforms, and it promotes more rapid maturation of
the system as a whole, as a result. The COS architecture was conceived to promote
rapid, arbitrary reconfiguration of the system elements, as well as permitting
creation of platform packages uniquely tailored to the mission(s) at hand. As such,
the concept has applicability to a wide variety of potential multiplatform aerospace
applications, including airspace management, disaster preparedness, and homeland
security network operations.

8.3 Further Extensions of Bio-inspired Intelligence in UAVs

8.3.1 Achieve Higher Autonomous Capability

8.3.1.1 Classical Decision Cycle Known as the “OODA Loop”

An integrated suite of information technologies is required to achieve autonomous
capability as we know it today. To understand how they are integrated, it is
instructive to employ a construct known as the “OODA loop” (see Fig. 8.1): a

Fig. 8.1 “OODA” process
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simple model for the classical decision cycle that was introduced by USAF Col.
John Boyd in the late 1960s and intended to support discussions of concepts related
to classical air combat. The four elements of this description of the decision cycle,
namely, Observe, Orient, Decide and Act, are the same actions as those that any
human would perform in achieving even the most common objectives in daily life,
and in that order. Typically, this cycle is repeated over and over, sometimes even
subconsciously, in the quest to achieve the desired outcome of a task. In these cases,
sensory input data is continually refined as the OODA process is repeated. For an
autonomous system, machine-based elements must perform the same functions to
achieve a desired result. In that case, the “Observe” function is carried out by one or
more sensors in much the same manner as human sensors, while the “Act” function
is executed by one or more effectors that interface with the rest of the system. The
“Orient” and “Decide” functions are the purview of the system’s computational
capability, and their successful execution is dependent on the relevance, adequacy,
and accuracy of the software algorithms which underpin their functionality. These
functions can be very complex depending on the tasks being undertaken and involve
a plethora of subfunctions which are necessary to their successful execution.

The “Orient” function is arguably the more complex of the two, since it can
involve the aggregation and fusing of asynchronous data, the synthesis of disparate
information sources, the contextual assessment of the situation and environment,
and the development of relevant hypotheses necessary for the decision-making step.
It may also have to account for historical influences and learned behavior in the
process. In more advanced, future applications, it may even involve the need to apply
some form of intuition, as we understand it. The term most commonly associated
with this step in modern robotics is “perception.” Although often associated with
visual imagery, the term can be applied more broadly to other forms and classes of
information. Perception algorithms that exploit fused multiphenomenological data
are at the edge of the state of the art in today’s systems.

The ability of a machine system to execute the “Decide” step can also prove
daunting. It may involve the ability to establish relevant decision criteria, correctly
weigh a variety of factors in creating the best decision-making algorithm, accurately
determine the timing of actions, and anticipate the consequences of actions in
anticipation of the next decision cycle. In one respect, these latter two steps reflect
the frontier of machine-based autonomy as we know it. The logic employed in the
decision step is critical, since it dictates the character of the other elements of the
cycle. For example, if the logic is based on physics, the physical variables used in
the equations dictate the types of sensor information required and how it is to be
integrated and interpreted.

8.3.1.2 Beyond the Optimization

Bio-inspired computation, short for biologically inspired computation, is the use
of computers to model the living phenomena and simultaneously the study of
life to improve the usage of computers, which has attracted a lot of researchers’
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attention (Bonabeau et al. 1999). A variety of bio-inspired models have been
proposed to successfully solve many real-world problems (Kennedy and Eberhart
1995; Dorigo et al. 1996; Storn and Price 1997; Karaboga and Basturk 2007).
Some of the phenomena are also known as swarm intelligence, inspired by the
social behavior of gregarious insects and other animals. The emergent behavior
of multiple unsophisticated agents interacting among themselves and with their
environment leads to a functional strategy that is useful to achieve complicated
goals in an efficient manner. Just as we have explained, ants, which know little
about the environment, are capable of finding the shortest path from their nest to
food sources (Duan et al. 2011a). Bees perform waggle dances to convey useful
information on nectar sources to their hive mates. A number of desirable properties
also exist in swarm intelligence models, which include feedback, self-organization
and adaptation to changing environments, and multiple decentralized interactions
among agents to work collaboratively as a group in completing complex tasks.

From the computational point of view, bio-inspired computation models are
largely stochastic search algorithms. Although the rigorous theoretical analysis for
most of the bio-inspired computation methods has not been conducted and the
current study in this field is still in the experimental and preliminary application
stage, the bio-inspired computation methods have already found their applications
in many typical fields. They are useful for undertaking distributed and multimodal
optimization problems. The search process is robust and efficient in maintaining
diversity. A mechanism to impose a form of forgetting is also adopted in some
swarm intelligence algorithms such that the solution space can be explored in a
comprehensive manner. Thus, the algorithms are able to avoid convergence to a
locally optimal solution, and, at the same time, to arrive at a global optimized
solution with a high probability.

We can learn more than the optimization algorithms from the so-called swarm
intelligence. The interaction among the agents and feedback mechanism are the
basic elements that result in the emergence of dynamic patterns at the colony
level. These patterns can be material or social and lead the colony to structure
its environment and solve problems. The most interesting properties of these self-
organized patterns are robustness (the ability for a system to perform without
failure under a wide range of conditions) and flexibility (the ability for a system
to readily adapt to new, different, or changing requirements). Robustness results
from the multiplicity of interactions between individuals that belong to the colony.
This ensures that, if one of the interactions fails or if one of the insects misses its
task, their failure is quickly compensated by the other insects. This also promotes
stability of produced patterns, whereas individual behaviors are mostly probabilistic.
Flexibility of self-organized systems is well illustrated by the ability of social insects
to adapt their collective behaviors to changing environments and to various colony
sizes. These adaptations can occur without any change of the behavioral rules at the
individual level. For instance, in the case of the selection of the shortest path in ants,
a geometrical constraint applied on one of the two alternative paths increases the
time needed by the ants to come back to their nest through this path and thus biases
the choice toward the other path without any modification of the insects’ behaviors.
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Robustness in adaptability to environmental change for UAVs is necessary; the
future need is to be able to adapt and learn from the operational environment because
every possible contingency cannot be programmed a priori. This adaptation must
happen fast enough to provide benefits within the adversary’s decision loop, and
the autonomy should be constructed so that these lessons can be shared with other
autonomous systems that have not yet encountered that situation. Yet even in a
hostile, dynamic, unstructured, and uncertain environment, this learning must not
adversely affect safety, reliability, or the ability to collaborate with the operator or
other autonomous systems. Although such capabilities are not currently available,
the emergence mechanism of robustness and flexibility in biological colony may
provide us many entirely new ideas.

8.3.1.3 Bio-inspired Hardware

Bio-inspired hardware (BHW) is also named “evolvable hardware (EHW),” which
refers to hardware that can change its architecture and behavior dynamically and
autonomously by interacting with its environment, and bio-inspired hardware has
been proposed as a new method for designing systems for complex real-world
applications (Duan et al. 2012). At present, almost all bio-inspired hardware
uses an evolutionary algorithm (EA) as the main adaptive mechanism. In early
1960s, Neumann, the father of the computer, firstly proposed the great concept of
developing a general-purpose machine, which has the capacity of self-reproduction
and self-repairing. However, it was Garis who made the first move to investigate the
design of evolving circuits. In his paper, Garis suggested the establishment of a new
field of research called evolvable hardware (bio-inspired hardware).

In view of this emerging field, it is expected to have a great impact on space
exploration and defense applications; the NASA and Department of Defense (DoD)
of the United States have shown great interest in this field. The first NASA/DoD
workshop on evolvable hardware was held in California on July 19–21, 1999, and
the same workshops are held each year now. The aim of NASA/DoD is to develop
a series of bio-inspired hardware for space shuttles, spacecrafts, space probes,
satellites, strategic aircrafts, and nuclear submarines.

Each candidate circuit for UAVs can be either simulated or physically
implemented in a reconfigurable device. Typical reconfigurable devices are field-
programmable gate arrays (FPGA) (for digital designs) or field-programmable
analogue arrays (for analogue designs). In its most fundamental form, a bio-inspired
algorithm manipulates a population of individuals where each individual describes
how to construct a candidate circuit. Each circuit is assigned a fitness, which
indicates how well a candidate circuit satisfies the design specification. The bio-
inspired algorithm uses stochastic operators to evolve new circuit configurations
from existing ones. Over time the evolutionary algorithm will evolve a circuit
configuration that exhibits desirable behavior. This definition can also be illustrated
with the following simple equation.

BHW D Bio-inspired AlgorithmsC FPGA
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Fig. 8.2 The bio-inspired hardware-based high-level autonomous control architecture

The bio-inspired hardware-based high-level autonomous control architecture for
UAV is illustrated in Fig. 8.2.

Generally, the bio-inspired hardware for UAVs consists of three main modules:
population, generator, and evaluation. The population module manages all commu-
nication between the queue and the generator module. At the end of the current
iteration, the population module receives the best solution from the evaluation
module, which is then inserted into the queue. The evaluation results of the solutions
(from the solution module) are collected in a comparison block, which chooses the
best solution of the current iteration. The advantages of this bio-inspired hardware
include fast processing speed, self-repairing, self-organization and self-adaptation.

Although adaptive BHW has made great progresses in the last several years,
there are some fundamental and interesting issues that are worth probing further
in this field (Yao and Higuchi 1999; Haddow and Tyrrell 2011). One of the goals
of the early pioneers of the field was to evolve complex circuits. That is, to push
the complexity limits of traditional design and, as such, find ways to exploit the
vast computational resources available on today’s computation mediums. However,
the scalability challenge for BHW continues to be out of reach. Scalability is a
challenge that many researchers acknowledge, but it is also a term widely and
wrongly used in the rush to be the one to have solved it. Another important challenge
is the measurements for the BHW. In traditional electronics, for example, terms
such as functional correctness as well as area and power costs are general metrics
applied. Other metrics applied may relate to the issue being resolved, e.g., reliability.
However, the application of area metrics, especially gate counts, is often applied
but may be questioned. Further challenge with metrics, highlighted in the above
description, is the ability to compare solutions between traditional and evolved
designs. Another area of interest for BHW is device production challenges. Defects
arising during production lead to low yield, i.e., fewer “correct devices” and thus
more faulty devices, devices that pass the testing process but where undetected
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defects lead to faults during the device’s lifetime. There are many ways that
evolution may be applied in an attempt to correct or tolerate such defects. However,
the challenge remains: a need for real defect data or realistic models. Fault models
are difficult to define due to the strong dependence between the design itself and the
actual production house due to the complex physical effects that lead to defects.

8.3.1.4 Artificial Brain-Based High-Level Autonomous Control for UAVs

The concept of artificial brain in the field of autonomous control mainly refers to
the hardware development of artificial brain similar to a human brain, which has the
ability of cognition (Duan et al. 2010b). The idea of evolution is adopted in artificial
brain, which has a pre-memory capacity by continuing learning. The artificial brain
is “cognitive,” “thinking,” and “decisive” and can actively response to external
environments accordingly. The information processing process of an artificial brain
can be illustrated by Fig. 8.3.

Combined with artificial intelligence and control theory, an artificial brain
can reproduce the decision-making process of the real brain by using computer.
Artificial brain-based controller can enable UAV to have higher intelligence. There
are two implementation ways for the artificial brain: lifelike modeling and social
modeling. Artificial brain-based controller has two major functions: control and
learning. The former means the artificial brain-based controller can control a variety
of UAV movements; the latter refers to learn the relevant specific knowledge
from the outside environments. Of course, the artificial brain-based controller must
acquire some knowledge during the control of UAVs.

An artificial brain-based UAV adopts the theoretical aspects of artificial life and
artificial tools in the controller implementation. The artificial tools mainly include
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Fig. 8.4 Artificial brain-based UAV

“artificial brain,” “artificial senses,” “artificial organs,” “artificial workers,” and
“artificial animals.” The basic controller scheme of the artificial brain-based UAV
can be illustrated by Fig. 8.4.

(1) Artificial brain-based intelligent controller: Computer software, hardware, or
light mechanical/electrical materials are adopted to develop a variety of simu-
lated “natural brains” of the brain model, which can act as the key controller of
future UAV. As the artificial brain with high-level intelligent thinking, the UAV
equipped with artificial brain-based intelligent controller has strong autonomy

(2) Artificial sense-based feedback measuring device: Artificial senses are a novel
type of sensors simulating human or animal sensing organs. Artificial sense-
based feedback measuring device is formed by a variety of intelligent sensors,
which can make UAV with the visual, auditory, and multisensory information
integration and multimode data-mining capabilities.

(3) Artificial organ-based intelligent actuator: Artificial organ is a piece of equip-
ment which can simulate the effects of human or animal organs, such as artificial
arms, artificial legs, and artificial hearts. The UAV equipped with the artificial
organs can simulate control mechanism and regulation functions of the human
body, hands, and feet. In this way, the two-way regulation and coordinate
control can be implemented.

8.3.2 Enhance the Ability to Understand and Adapt
to the Environment

8.3.2.1 Intelligent Multisensor Data Fusion

To operate in complex and uncertain environments, the autonomous system must
be able to sense and understand the environment. This capability implies that the
autonomous system must be able to create a model of its surrounding world by con-
ducting multisensor data fusion (MDF) and converting these data into meaningful
information that supports a variety of decision-making processes. The perception
system must be able to perceive and infer the state of the environment from limited
information and be able to assess the intent of other agents in the environment. This
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understanding is needed to provide future autonomous systems with the flexibility
and adaptability for planning and executing missions in a complex, dynamic world.
Although such capabilities are not currently available, recent advancements in
computational intelligence (especially neuro-fuzzy systems), neuroscience, and
cognition science may lead to the implementation of some of the most critical
functionalities of heterogeneous, sensor net-based MDF systems. The following
developments will help advance these types of processing capabilities:

1. Reconfigurability of sensor weighting: When a heterogeneous sensor net is used
for an MDF system, each sensor has a different weight for different applications.
As an example, regardless of whether a dissimilar MDF methodology is used
to identify an object, an image sensor has much higher weight than radar. On
the other hand, when an MDF methodology is used to measure a distance from
the sensor to an object, a rangefinder or radar has a much higher weight than an
image sensor.

2. Adaptability of malfunctioning sensors and/or misleading data: Even if an MDF
methodology is used to identify an object, an image sensor cannot perform if it
is faced to the sun. Data from the image sensors either will be saturated or need
to be calibrated. Additionally, the image sensor data needs to be continuously
calibrated if the weather is cloudy and changing because the measured data will
be different based on shadows and shading. Therefore, the environment of a
heterogeneous sensor net is a key parameter to be considered for design and
implementation of an MDF system.

3. Intelligent and adaptive heterogeneous data association: Heterogeneous, sensor
net-based MDF systems must process different data simultaneously, such as
one-dimensional radar signals and two-dimensional imaging sensor data. As the
combination of heterogeneous sensors change, the data combination is changed.
Therefore, adaptive data association must be performed before conducting MDF
and data input to the decision-making module.

4. Scalability and resource optimization of self-reconfigurable fusion clusters: The
limiting factor of an MDF system is the scalability of self-reconfiguring the
fusion cluster to adapt to a changing battlefield and/or the malfunction of one
or more sensors. As the number of sensors used for a sensor net increases,
the combinatorial number of reconfigurations exponentially increases. To man-
age such complexity, the MDF system will require a highly intelligent, fully
autonomous, and extremely versatile reconfigurable algorithm, including sensor
resource management and optimization. Great progress has been made in sensor
management algorithms and cross-cued sensor systems, but true optimization is
an elusive goal that is currently unavailable. Such capability can be obtained only
from intelligent computing technology, which is currently in its infancy.

8.3.2.2 Battlespace Awareness with Greater Autonomy

Battlespace awareness is a capability area in which unmanned systems in all
domains have the ability to significantly contribute well into the future to conduct
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intelligence, surveillance, and reconnaissance (ISR) and environment collection-
related tasks. To achieve this, unmanned systems development and fielding must
include the tasking, production, exploitation, and dissemination (TPED) processes
required to translate vast quantities of sensor data into a shared understanding of the
environment. Because unmanned systems will progress further with respect to full
autonomy, onboard sensors that provide the systems with their own organic percep-
tion will contribute to battlespace awareness regardless of their intended primary
mission. This capability area is one that lends itself to tasks and missions being con-
ducted collaboratively across domains, as well as teaming within a single domain.

Due to the uncertainties of input data and knowledge for complicated combat sit-
uation assessment, it is necessary to make reasoning from the incomplete, uncertain,
and imprecise data. Therefore, how to represent and reason becomes one of the key
issues in situation assessment under complicated combating environments.

Bayesian network is a knowledge representation tool that encodes probabilistic
relationships among variables of interest. This representation has two components:
(a) a graphical structure, or more precisely a directed acyclic graph, and (b) a set of
parameters, which together specify a joint probability distribution over the random
variables. Over the last decade, the Bayesian network has become an increasingly
important area for research and application in the entire field of artificial intelli-
gence. Bayesian network has now become a popular representation for encoding
uncertain expert knowledge in expert systems. More recently, researchers have
developed methods for learning Bayesian networks from data. The techniques that
have been developed are new and still evolving, but they have been shown to be
remarkably effective for some data-analysis problems.

Bayesian network is an NP-hard problem, and swarm intelligence is a type of
efficient methods for solving NP-hard problems. Therefore, Bayesian network can
be integrated with swarm intelligence for solving the UAV situation assessment
problem under complicated combating environments.

The abovementioned procedure makes effective use of the heuristic information
in the problem domain and is very suitable to solve large-scale Bayesian network
learning problems. This procedure can provide an effective approach for UAV
situation assessment under complicated combating environments.

8.3.3 Cooperative Control of Multiple Autonomous Vehicles

8.3.3.1 Cooperative Control for Multiple UAVs

Modern military systems are becoming increasingly sophisticated, with a mixture
of manned and unmanned vehicles being used in complex battlefield environments
(Duan et al. 2009; Zhang et al. 2010; Duan et al. 2013b). Traditional solutions
involve a centralized resource allocation, followed by decentralized execution. More
modern battlespace management systems are considering the use of cooperative
operation of large collections of distributed vehicles, with location computation,
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global communication connections, and decentralized control actions. Compared to
autonomous vehicles that perform solo missions, greater efficiency and operational
capability can be realized from teams of autonomous vehicles operating in a
coordinated fashion. It is easy to understand that a group of UAVs is more capable
than a single UAV, since the workload can be divided among the group. Research
involving multiple UAV coordination is being undertaken from coordinated path
planning for multiple UAVs, to the controller design of formation flight and
formation reconfiguration, or to opening new application domains. This field is still
in its infancy and many exciting new approaches are being explored for different
applications.

The cooperative control problem is characterized by three attributes: complexity,
information structure, and uncertainty. A hierarchical decomposition can be used
to address the attribution of cooperative control problem. One control level and
decision levels can be introduced in this hierarchical decomposition. At decision
level 1 is the vehicle agent that does path planning, trajectory generation, and
maintains models of terrain, threats, and targets. At decision level 2 is the sub-
team agent which coordinates the activities of any tasks that require more than
one vehicle to accomplish. If the sub-team has more than one task, then the
agent apportions the vehicles to the tasks. The team agent, at decision level 3, is
responsible for meeting the mission objective, determining sub-objectives for the
sub-teams, and apportioning resources and tasks. Take an example to explain this
hierarchical control system, which is about coordinating multiple vehicles to jointly
reach a target area while minimizing combined exposure to radar. The hierarchical
decomposition approach is pursued with simultaneous attack coordination at the
sub-team agent level 2. The optimal trajectory generation for a single vehicle is
addressed at the UAV planning agent level 1 to minimize exposure, while a timing
constraint is imposed at level 2. Each vehicle independently plans their path. This
hierarchical control system is by construction distributed and redundant, since
there is no leader or line of succession, and hence is fault tolerant. The agent
hierarchy is the same on each vehicle. All vehicles arrive at the same decisions;
therefore, conflict situations are avoided such as having two vehicles attack the same
target when only one is needed. The hierarchical decomposition for multiple UAV
cooperative control is shown in Fig. 8.5.

To enable the applications for multivehicle systems, various cooperative control
capabilities need to be developed, including formation control, rendezvous, attitude
alignment, flocking, foraging, task and role assignment, payload transport, air traffic
control, and cooperative search (Fig. 8.6). Execution of these capabilities requires
that individual vehicles share a consistent view of the objectives. So we briefly
describe a few applications of consensus algorithms for multivehicle coordination
problem. The first one is rendezvous problem, which requires that a group of
vehicles in a network rendezvous at a time or a location is determined through
team negotiation. Consensus algorithms can be used to perform the negotiation
in a way that is robust to environmental disturbances such as nonuniform wind
for a team of UAVs. So consensus algorithms are needed to guarantee that
all vehicles reach consensus on a rendezvous objective such as a rendezvous
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Fig. 8.5 Hierarchical decomposition for multiple UAV cooperative control
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Fig. 8.6 Schematic diagram of cooperative control for multiple UAVs

time or rendezvous location. The second one is formation stabilization problem,
which requires that vehicles collectively maintain a prescribed geometric shape.
This problem is relatively straightforward in the centralized case, where all team
members know the desired shape and location of the formation. On the other hand,
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in the decentralized formation stabilization problem, each vehicle knows the desired
formation shape, but the location of the formation needs to be negotiated among
team members. The information state for this problem includes the center of the
formation. Each vehicle initializes its information state by proposing a formation
center that does not require it to maneuver into formation. The consensus algorithm
is then employed by the team of vehicles to negotiate a formation center known
to all members of the team. Consensus algorithms can also be applied to execute
decentralized formation maneuvers. Issues such as disturbance rejection, time delay,
communication or sensor noise, and model uncertainties need to be addressed before
consensus algorithms find widespread use in cooperative control applications.

Swarm intelligence is derived from observation of a group of insects by some
scientists. The IQ of the bees, ants, and other insects is not high, and no one is
commanded by others, but they are able to work together efficiently. They can
build up a strong and beautiful nest, find food, and rear children. It is far beyond
the individual’s intelligence to rely on the capacity of a whole community. One
major branch of swarm intelligence is evolutionary computation such as GAs,
ACO, PSO, and ABC. If we apply the swarm intelligence to the future UAV
systems, the combating efficiency can be improved significantly, even the UAVs
are equipped with low-performance sensors. However, this is unreachable for the
general aircrafts.

The main characteristics and advantages of swarm intelligence are as follows:
(1) The cooperative individuals in each groups are distributed, and this makes the
individuals adapt much easier to the current working state; (2) the robustness of
the system can be guaranteed by the noncentral control scheme, and the solution
may not be affected by the failure of one individual or a certain number of
individuals; (3) the cooperation can be achieved by the indirect communication
between individuals, which can guarantee the system with better scalability; and (4)
as the communication overhead is still very small with the increase of individual
number and the capacity of each individual is very simple, the exact execution
time for each individual is relatively short. The abovementioned advantages have
made swarm intelligence one of the most important research directions in the field
of intelligent information processing. Swarm intelligence can be applied to com-
binatorial optimization problems, knowledge discovery, communication networks,
and robotics. Multiple UAV coordination involving cooperative path planning and
replanning, cooperative formation control and reconfiguration, cooperative task
assignment, or other opening new application domains may be a potential research
area by taking advantage of swarm intelligence.

8.3.3.2 Heterogeneous Control for Multiple UAVs/UGVs

UAVs can be used to cover large areas searching for targets. However, sensors
on UAVs are typically limited in their accuracy of localization of targets on the
ground. On the other hand, unmanned ground vehicles (UGVs) can be deployed to
accurately locate ground targets, but they have the disadvantage of not being able
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Fig. 8.7 Artistic concept of real-life autonomous convoy operation with the heterogeneous UAVs
and UGVs

to move rapidly or see through such obstacles as buildings or fences (Duan and Liu
2010b; Duan et al. 2010a; Duan et al. 2011b). The use of multiple collaborative
vehicles is ideally suited for many complicated tasks in dynamic and uncertain
environment. And heterogeneous cooperative techniques can widen the application
fields of unmanned aerial or ground vehicles and enhance the effectiveness of
implementing detection, search, and rescue tasks. The use of multiple UAVs in
concert with UGVs affords a number of synergies. First, UAVs with cameras and
other sensors can obtain views of the environment that are complementary to views
that can be obtained by cameras on UGVs. Second, UAVs can avoid obstacles while
keeping UGVs in their field of view, providing a global perspective and monitoring
the positions of UGVs while keeping track of the goal target. This is especially
advantageous in two and a half dimensions where UAVs can obtain global maps, and
the coordination of UAVs and UGVs can enable efficient solutions to the mapping
problem. Third, if UAVs can see the UGVs and the UGVs can see UAVs, the
resulting three-dimensional sensor network can be used to solve the simultaneous
localization and mapping problem, while being robust against failures in sensors
like GPS or errors in dead reckoning. In addition to this, the use of UAVs and
UGVs working in cooperation has received a lot of attention for defense applications
because of the obvious tactical advantages in such military operations as scouting
and reconnaissance. The artistic concept of autonomous convoy operation with het-
erogeneous UAVs and UGVs is illustrated in Fig. 8.7 (McCook and Esposito 2007).

Although multiple UAV and UGV heterogeneous cooperation has made great
progresses in the past years, there are still some fundamental and interesting issues
in this specific field that are worth probing further. (1) The current progresses
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in this field are rather superficial; the dynamic and time-varying topology of the
multiple UAV and UGV flocking system is a promising direction. Furthermore,
how to construct a more complex environment with multifunctional vehicle systems
is also an interesting research direction. (2) For the flocking movement and
formation control of multiple UAVs and UGVs, there are various methods, and
the stability and robustness of these approaches need further analysis. A more
in-depth theoretical foundation of heterogeneous cooperative control should be
established before rushing into large-scale multiple UAV and UGV heterogeneous
system implementation. (3) In heterogeneous UAV and UGV systems, it is rather
difficult to design the communication structure which meets the requirements of
real-time communication among UAVs and UGVs. There are strong connections
with cooperative control, but usually it is less concerned with the data rate through
a communication channel than with the patterns of information flow among the
networked agents. Implementation issues in both hardware and software are at the
center of successful deployment of networked control systems. Data integrity and
security are also very important and may lead to special considerations in control
system design even at an early stage. (4) Future framework to analyze and design
algorithms for the pursuit evasion games with sensor networks should include a
more extensive comparison in order to evaluate possible trade-offs between the two.
Also, the algorithms can be extended more rigorously when there are more pursuers
than evaders, and coordinated maneuvering of pursuers allows the capture of “fast
and smart” evaders similarly as observed in mobs of lions hunting an agile pray.

In addition to understanding the environment, unmanned systems must also pos-
sess the ability to collaborate through the sharing of information and deconfliction
of tasking. Collaborative autonomy is an extension of autonomy that enables a team
of unmanned systems to coordinate their activities to achieve common goals without
human oversight (Duan et al. 2013a). This trend in autonomy will continue to reduce
the human role in the system. Autonomously coordinated unmanned systems may
be capable of faster, more synchronized fire and maneuver than would be possible
with remotely controlled assets. This trend will lead to a shift toward strategic
decision-making for a team of vehicles and away from direct control of any single
vehicle. The ability to collaborate is one of the keys to reducing force structure
requirements. The collaborative autonomy that is developed must be scalable to both
larger numbers of heterogeneous systems and increased mission and environment
complexity. Collaborative autonomy must be able to adapt to the air, ground, and
maritime traffic environment and to changes in team members, operators, and the
operational environment.
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path e2”

In Page 40, the last line “from vs to ve” has been replaced by “from vs to vd”

In Page 41 – Line 19, the sentence “(initially the memory contains only the start
city)” has been replaced by “(initially the memory contains only the start city)
(Dorigo and Stützle, 2003)”

In Page 48 – Line 7, the sentence “(which can effectively be seen as a step size.” has
been replaced by “which can effectively be seen as a step size. (Poli R et al., 2007)”

In Page 51, Line 4, the sentence “according to the problems under consideration.”
has been replaced by “according to the problems under consideration. (Grosan and
Abraham, 2011)”

In Page 62, line 5, the equation has been updated as x� W f .x�/ D min
x
f .x/

In Page 62, the equation 2.20 has been replaced as

uj i D

(
vj i ; if randb � CR or j D randr ; j D 1; : : : ;D
xji ; if randb > CR or j ¤ randr ; j D 1; : : : ;D

In Page 68, Behind Line 16, an entry was missing in the reference list. The missing
reference has been added now as given below:

Dorigo M, Stützle T (2003) The ant colony optimization metaheuristic: algorithms,
applications, and advances. In: Glover F, Kochenberger GA (eds) Handbook of
Metaheuristics. Springer, Boston, MA, pp 250–285

In Page 68, Behind Line 34, an entry was missing in the reference list. The missing
reference has been added now as given below:

Grosan C, Abraham A (2011) Swarm intelligence. In: Intelligent systems: a modern
approach. Springer, Berlin, Heidelberg, pp 409–422

In Page 69, Behind Line 11, an entry was missing in the reference list. The missing
reference has been added now as given below:

Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview.
Swarm Intell 1(1): 33–57.

In Page 80, Line 12, the sentence “Q and R R are diagonal positive matrix” has been
replaced by “Q and R are diagonal positive matrix”

https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
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In Page 102, fig. 4.1 has been updated with the dotted line guided the UAV position
which has been placed on the triangle.

In Page 114 – The sentence “Nc_max” in step 1 and step 11 has been replaced with
“Ncmax” for consistency.

In Page 116 – The sentence “Nc_max” in step 1 and step 11 has been replaced with
“Ncmax” for consistency.

In Page 155, for fig. 5.8 – The equation “4.x” has been updated as “5.x”

In Page 250, Line 9 – the sentence “Air-Breathing Hyposonic Vehicles” has been
updated as “Air-Breathing Hypersonic Vehicles”

In Page 263, for fig. 8.6 – the word “AD hoc” has been updated as “Ad-hoc”
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