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Abstract. A new color quantization algorithm, CQ, is presented, which
includes two phases. The first phase reduces the number of colors by reducing
the spatial resolution of the input image. The second phase furthermore reduces
the number of colors by performing color clustering guided by distance
information. Then, color mapping completes the process. The algorithm has
been tested on a large number of color images with different size and color
distribution, and the performance has been compared to the performance of
other algorithms in the literature.
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1 Introduction

Regions of a color image characterized by color homogeneity can be interpreted as
constituting objects (or parts of objects) in the image. Generally, the number of
perfectly homogeneous regions in the image overcomes the number of objects (or
parts of objects) that a human observer is likely to perceive by looking at the image.
In fact, human observers often need just a few colors for image understanding and,
accordingly, group colors with similar tonality even if the obtained regions are not
perfectly homogeneous. In analogy with the behavior of the human visual system, an
automatic process is of interest, which is aimed at reducing the number of colors of a
digital image, while causing in the resulting image the smallest possible visual
distortion. This process is known as color quantization and is profitably employed in a
number of applications such as image display, color based indexing and retrieval from
image database, and storage and transmission of multimedia data files.

The literature includes a large number of color quantization methods that can be
roughly classified as image independent and image dependent methods, as suggested
in[1, 2].

Image independent methods, e.g., [3, 4], have generally lower performance with
respect to image dependent methods as concerns the quality of the results, since they
do not take into account the distribution of colors in the input image, but are rather
convenient from the computational point of view.

In turn, image dependent methods, e.g., [2, 5-16] generally provide higher quality
results, at the expenses of a larger computational effort. Image dependent methods are
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based, for example, on histogram analysis, fuzzy logic, neural network, multi-resolution
analysis, and clustering. Actually, most image dependent methods are based on
clustering in the color space. In fact, since the colors of pixels of an RGB image are a
mixture of red, green and blue, color quantization can be seen as a clustering problem in
the 3D space, where the three coordinate axes are the three color components. Each
point in the 3D space represents one of the colors in the image. Since the values for the
three color components are in the range [0, 255], the 3D space is limited to a cube with
edges having length 256. Once a given clustering technique has been taken into account,
each obtained cluster is associated a unique representative color, which can be
computed, for example, as the average of the points in the cluster. Then, the
representative colors replace the colors of the input image.

Image dependent methods can also be divided in pre-clustering methods (e.g., [5-8,
16]) that define a unique color palette by using features derived from the image at
hand, and post-clustering methods (e.g., [2, 9-15]) that define an initial palette and
improve it by means of an iterative process, which is repeated until the desired
reduced number of colors is obtained.

In this paper, we present a new image dependent technique for color quantization
that combines pre-clustering and post-clustering approaches. First, a reduced set of
colors is determined by a pre-clustering method; then, a post-clustering scheme is
adopted only if necessary to furthermore reduce the number of colors. The proposed
method CQ is the follow up to a pre-clustering method that we have recently
introduced [16]. CQ mainly consists of two phases. During the first phase, an
improved version of the pre-clustering method [16] is accomplished to significantly
reduce the number of colors. This goal is reached by suitably reducing the spatial
resolution of the input image. In fact, the number of colors present in an image cannot
be larger than the number of pixels forming the image itself. Then, if the resulting
lower resolution image still includes a number of colors larger than that desired by the
user, the second phase is activated. During the second phase, distance based clustering
is accomplished in the RGB color space. The second phase of the process can be
framed among post-clustering methods since the palette built during the first phase is
iteratively processed as far as the number of colors overcomes the maximum number
of colors fixed by the user. Once the final palette is available, the so identified colors
of the 3D cube are taken as sources to compute the Voronoi Diagram. Finally, color
mapping is taken into account to produce the output color image.

2 Basic Notions and Definitions

We work with RGB color images. Let I be any such an image. Colors are interpreted
as three-dimensional vectors. Each vector element has an 8-bit dynamic range. As
already pointed out in Introduction, the RGB color space can be represented by a 3D
cube whose edges have length 256. The sides of the cube are aligned along the
Cartesian axes. The origin of the Cartesian coordinate system is the black color
(0,0,0). Since whichever color is considered its three colors components are integer
numbers, the cube can be interpreted as a discrete cube and its points can be referred
to as voxels.
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The neighbors of a voxel p are the 26 voxels sharing with p a face, an edge, or a
vertex. These neighbors are respectively denoted as face-, edge- and vertex-neighbors.

The 3D color histogram of I is built by assigning to the voxel in position (x, y, z) of
the 3D cube a value equal to the number of pixels of I whose three color components
have values x, y, and z, respectively.

In principle, pixels of an RGB image I can have any color out of a bit more than 16
millions of colors. In turn, / generally includes a number of pixels remarkably smaller
than 16 millions. For example, a 512x512 image includes 262144 pixels, which
naturally may assume at most 262144 different colors. Thus, most of the voxels of the
3D histogram of I generally have zero value, and the voxels with value different from
zero constitute a sparse set of voxels.

The centroid of a discrete object consisting of a given number of voxels is the
arithmetic mean position of all the voxels in the object. Thus, given n colors of the
image I, i.e., n voxels in the 3D cube representing the RGB color space for I, their
centroid is the color, whose color components are obtained by computing the
arithmetic means of the color components of the selected n colors. By considering the
histogram H of I, the occurrences of the n colors can be used to weight them. In this
case, the centroid, computed as the arithmetic mean of all voxels weighted by their
occurrences, can be interpreted as the physical center of mass of the object.

The distance transform of an image including two sets, the object and the
background, is a replica of the image where the elements of the object are assigned
the value of their distance from the background. The background can be seen as the
source from which distance information propagates onto the object. In particular, the
histogram H is a 3D image including the set of voxels corresponding to colors non
existing in / (that we interpret as the object) and the set of voxels corresponding to
colors existing in / (that we interpret as the background). We call DT the distance
transform of H. Any distance function, including the Euclidean distance, can be used
to compute DT. However, since H is a voxel image, it is particularly convenient to use
a path-based distance, where the distance between two voxels is defined as the length
of a shortest path between them. Each move along the path can be suitably weighted
to take into account that the moves towards face-, edge- and vertex-neighbors have
different Euclidean length. We use the <3,4,5> weighted distance, where the weights
3, 4 and 5 are respectively used for face-, edge- and vertex-neighbors [17]. Such a
distance has been shown to provide a good approximation of the Euclidean distance.

To evaluate the performance of our color quantization method CQ, we use the Peak
Signal to Noise Ratio PSNR.

For gray-level images, PSNR is computed as:

PSNR =20x1logy (ﬂJ
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and v;; and w;; respectively belong to the input image and to the output image of size
HxK.

For RGB images, the definition of PSNR is still the same, but MSE is the sum over
all squared value differences divided by image size and by three.

To build from / an image with lower spatial resolution, but still preserving
reasonably well shape and color information, we use a classical interpolation method,
where to each resized pixel is assigned the average value of the pixels in the
corresponding cell of the decimation grid used for image reduction [18]. The
reduction factor f is the ratio between the number of rows ry (columns c¢;) that will
characterize the lower resolution image and the number of rows r; (columns ¢;) in the
input image. Thus, once the desired size of the lower resolution image has been fixed,
say to a total of ny pixels, the reduction factor f=r/r; can be computed by taking into
account that ryXc=n; and r/c= rjc;.

3 The Color Quantization Method CQ

Let I be an RGB color image with r; rows and ¢; columns, H its 3D histogram, and »;
and n. the number of colors of I and the maximum number of colors desired for the
quantized image, respectively. A running example is shown in Fig. 1 left, where 7 is a
320480 image including 43650 colors.

Our color quantization method CQ mainly consists of two phases. During the first
phase, the number of initial colors n; is drastically reduced to at most n; by reducing
the spatial resolution of the input image [ in such a way that the reduced size image I’
consists of at most n; pixels.

During the second phase, distance based color clustering is iteratively
accomplished as far as the number of colors overcomes the maximum number of
colors n,. fixed by the user for the quantized image.

Once the final color palette is available, color mapping is accomplished to produce
the output color image.

43650 colors 53 colors 16 colors

Fig. 1. Input image, left, image resulting after the first phase of CQ, middle, and after the
second phase of CQ, right

3.1 First Phase

The lower resolution image is built from / by means of the nearest neighbor scaling
down process with reduction factor f=r/r;. In principle, any reduction factor can be
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used so as to generate an image with any lower resolution size. Thus, one might
directly compute the reduction factor necessary to generate a reduced size image with
at most n. pixels. However, this is not advisable if / is a large size image and n. is
rather small, unless the number of initial colors n; is comparable with n.. In general,
we suggest to take 64 as the smallest possible value for ny. In fact, with less than 64
pixels, the lower resolution image I’ would not be adequate to represent reasonably
well the input image 1.

Once scaling down has been applied to I, at most n; colors will be present in the
reduced size image I’. Thus, the histogram H’ of I’ will include at most n; colors,
which can be grouped into a smaller number n.. of connected components. In fact,
some colors of I’ may be so similar to each other that their corresponding voxels in H’
belong to the same connected component. Only one color should be selected to
replace in H’ each connected component of colors. To this purpose, connected
component labeling is accomplished, so as to assign an identity label to each
connected component of colors. Then, the center of mass is computed for each
component and replaces in H’ the corresponding connected component.

We point out that some of the colors obtained in H” may not correspond to true
colors of I, i.e., to colors existing also in H. This is due both to the scaling down
process used to build /I’ and to the replacement of connected components of colors in
H’ by their corresponding centers of mass. In fact, in both cases a number of true
colors of 7 in H is replaced in H’ by a single color, which is definitely the best one to
replace those true colors but is not necessarily itself a true color of 1. Then, to improve
the similarity between the input image and the quantized image, we replace colors
that exist in H’ but do not exist in H, with their closest colors in H. Actually, we
search for the closest colors in a small neighborhood centered in the position of H
corresponding to the color at hand. This is done both to limit the computational cost
of the above color updating process and to avoid to replace a color with a too different
color. In this paper, the neighborhood has size 11x11x11.

If the number n,. of colors present in H’ does not overcome the maximum number
n. requested by the user, the quantization process terminates and the final step, aimed
at building the output color image, is directly accomplished. Otherwise, the second
phase of the process is activated.

With reference to the running example, let us set n,=64, which implies to use the
reduction factor f=0.02. Then, the spatially reduced image I” has actually size 6x9 and
includes 54 colors. These colors are grouped into n.=53 connected components. After
center of mass detection and color updating, 45 colors of H’ are replaced by their
closest colors in H. The image resulting at the end of the first phase is shown in Fig. 1
middle. There, color mapping of I has been performed by using the method that will
be described in Section 3.3.

3.2  Second Phase

To reduce the n.. colors resulting after the first phase to at most n. colors, we perform
color clustering guided by distance information. To this purpose we compute the
distance transform DT of H’. Colors present in H’ are taken as the source from which
distance information propagates onto the object, i.e., onto the set of voxels of H’
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corresponding to colors that are not present there. Thus, the resulting DT will be a
replica of H’ where non existing colors are assigned the value of their <3,4,5>
distance to the closest color existing in H’.

A binarization of DT is accomplished by setting to zero all voxels with an assigned
distance value larger than an a priori fixed threshold 6. All other voxels are set to one.
Colors of H’ that were closer to each other than 26 will result to be included in the
binarized DT in the same connected component of voxels with value one. Each
obtained connected component is a cluster grouping similar colors. Connected
component labeling is performed to count the obtained number of clusters. If the
resulting number does not overcome n,, the process terminates. Otherwise, the value
of 0 is incremented and DT is binarized again, by using the updated value of the
threshold. Binarization of DT and connected component labeling are iterated as far as
the number of obtained clusters is larger than n..

The value of the binarization threshold is initially set to the smallest possible value
when working with the <3,4,5> distance transform, i.e., 6=3. This roughly means that
two voxels of H” will be merged in the same cluster if they are separated by at most
other two voxels. Each time that binarization is iterated, the threshold is incremented
by 3. This is done to reduce the risk to create excessive merging. Since the number of
colors provided by the first phase is generally not much larger than n,, a small number
of iterations is generally sufficient to obtain the desired result.

Of course, clustering implies the replacement of colors in the same cluster by their
corresponding center of mass, which may originate non true colors. Thus, once the
number of clusters is at most equal to n,, color updating is accomplished to replace
non true colors as done in the first phase of CQ.

For the running example, let us suppose that the user desires at most 16 different
colors. To reach this goal, starting from the first binarization of DT obtained with
0=3, 10 iterations are necessary until, with =30, the number of finally obtained
clusters ng, is at most equal to n.. Actually, it results n;,=16. After center of mass
detection, 15 colors in H’ are replaced by their closest colors in H. The resulting
quantized image with n;,=16 colors is shown in Fig. 1 right. Color mapping has been
done as described in the next section.

3.3  Color Mapping

Once the final palette H’ including ng, colors is available, color mapping is
accomplished to complete color quantization. To this aim, the Voronoi Diagram of H’
is computed. In this way, the 3D cube is divided into a number of cells equal to the
number of colors detected by the quantization process.

The ng, colors in H’ are used as the sources from which to compute the distance
transform onto the remaining voxels of H’. Since the ng, colors have been assigned an
identity label, when distance information is propagated from the sources onto the
remaining voxels of H’, also identity label is propagated. Thus, at the end of the
process H’ will result to be divided into a number of Voronoi cells, each of which
including the voxels closer to the color included in that cell than to any other color.
Voxels in the same Voronoi cell have the same identity label. The relation between
each of the ny, colors and the corresponding identity label is recorded.
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Color mapping is done by changing the color of each pixel p of I, whose color
components have values x, y, and z respectively, with the color associated to the
Voronoi cell including the voxel in position (x, y, z).

4 Experimental Results

We have tested the color quantization method CQ on several color images with
different size and color distribution, taken from available repositories, e.g., [19-21].
For illustration purpose, a small set of sixteen test images is shown in Figure 2. The
number of colors and the size of the test images are given in Table 1.

Fig. 2. Sixteen test images and their respective size and number of colors

To achieve a reasonably small number of colors during the first phase, while still
preserving shape and color information, we suggest to use n=64 as default value.
Thus, during the second phase n.=32 or n.=16 colors can be efficiently obtained.

A qualitative evaluation of the performance of CQ can be appreciated with
reference to Fig. 3, where the quantized images obtained by setting n=64 and n, =32
are shown for six test images. Under each image, the number of final colors ng, is
indicated.

We have also quantitatively compared the performance of CQ with that of other
well-known methods in the literature, namely with the Median Cut MC [5], the Octree
OT [6], and the method XW by X.Wu [7]. To this purpose, we resorted to Peak Signal
to Noise Ratio PSNR. Actually, since the number of final colors ng, may be slightly
different for the four methods, rather than PSNR we computed the ratio PSNR/n,.
The comparison is summarized for n=64 and n.=32 in Table 1 for the sixteen test
images and the four methods CQ, MC, OT and XW. The best values (i.e., the
maximal values for PSNR/ng;,) are in bold. It can be noted that CQ has in general a
better performance with respect to MC, OT and XW. The same holds also for the
entire dataset of images we have been working with.
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b) 25 colors e) 30 colors

g) 30 colors i) 21 colors j) 30 colors

Fig. 3. A few resulting images for n=64 and n=32

Table 1. Results for the sixteen test images, case n=64 and n.=32

image n; size CcQ MC oT XwW
a) 71045 512x512 0.88 0.78 0.76 0.82
b) 8764 321x481 1.31 1.05 1.05 1.06
c) 43650 320%x480 0.99 0.91 0.89 0.94
d) 111344 512x512 0.92 0.83 0.85 0.89
e) 1843 261x388 1.30 1.02 0.96 1.15
f) 50990 481x321 0.97 0.94 0.89 0.95
2) 34991 481x321 1.02 0.95 0.90 0.99
h) 9384 321x481 2.29 1.15 1.28 1.20
i) 32294 321x481 1.44 0.99 0.95 1.01
) 23955 321x481 1.07 0.95 0.91 1.02
k) 6073 321481 1.27 1.11 1.12 1.18
1) 17474 321x481 1.08 1.01 1.06 1.07
m) 21443 321x481 1.06 1.04 1.04 1.09
n) 178778 512x512 0.95 0.82 0.83 0.90
0) 154605 512x512 0.91 0.83 0.86 0.89
p) 77426 320%x480 0.89 0.86 0.85 0.90
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5 Conclusion

A new color quantization algorithm has been presented, which includes two phases.
The first phase reduces the number of colors via spatial resolution reduction. The
second phase furthermore reduces the number of colors by performing color
clustering in the RGB space, based on the distance among colors. Color mapping
completes the process.

The combined use of pre-clustering and post-clustering schemes is computationally
convenient. In fact, post-clustering schemes, if applied directly to an input image
characterized by a large number of colors, would require a large number of iterations
to originate a quantized image with a small number of final colors. If pre-clustering is
taken into account before using a post-clustering scheme, the necessary number of
iterations will be considerably reduced, so limiting the computational burden. On the
other hand, if only pre-clustering based on spatial reduction of the input image is
taken into account, a very small number of final colors would be difficult to achieve.
In fact, scaling down should originate an image with a smaller number of colors but
still having a reasonable size, able to represent shape and colors of the input image.
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