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Abstract. Computer vision researchers have developed several learning
methods based on the bag-of-words model for image related tasks, such
as image retrieval or image categorization. For such an approach, images
are represented as histograms of visual words from a codebook that is
usually obtained with a simple clustering method. Next, kernel methods
are used to compare such histograms. Popular choices, besides the linear
SVM, are the intersection, Hellinger’s, x* and Jensen-Shannon kernels.

This paper aims at introducing a kernel for histograms of visual words,
namely the PQ kernel. This kernel is inspired from a class of similarity
measures for ordinal variables, more precisely Goodman and Kruskals
gamma and Kendalls tau. A proof that PQ is actually a kernel is also
given in this work. The proof is based on building its feature map.

Object recognition experiments are conducted to compare the PQ
kernel with other state of the art kernels on two benchmark datasets. The
PQ kernel has the best mean average precision (AP) on both datasets.
In one of the experiments, PQ and Jensen-Shannon kernels are combined
to improve the mean AP score even further. In conclusion, the PQ kernel
can be used with success, alone or in combination with other kernels, for
image retrieval, image classification or other related tasks.

Keywords: kernel method, rank correlation measure, ordinal measure,
ordinal data, visual words histograms, bag-of-words, BoW model.

1 Introduction

The classical problem in computer vision is that of determining whether or not
the image data contains some specific object, feature, or activity. Particular
formulations of this problem are image classification, object class recognition,
object detection. Computer vision researchers have recently developed sophisti-
cated methods for such image related tasks. Among the state of the art models
are discriminative classifiers using bag-of-words (BoW) representation [13]19]
and spatial pyramid matching [8], generative models [5] or part-based models [7].
The BoW models, which represent an image as a histogram of local features, have
demonstrated impressive levels of performance for image categorization [19], im-
age retrieval [I1], or related tasks.

This paper focuses on learning methods based on the BoW model. A vocab-
ulary (or codebook) of visual words is obtained by clustering local image de-
scriptors extracted from images. An image is then represented as a histogram of
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visual words (or bag-of-visual-words). Next, kernel methods are used to compare
such histograms. Popular choices, besides the linear SVM, are the intersection,
Hellinger’s, x? and Jensen-Shannon (JS) kernels. There is no reason to limit the
choice of kernels to these options, when other kernels are available. The final
goal, that is to improve the results for image related tasks, can be achieved by
trying different kernels that could possibly work better.

In this work, a kernel for histograms of visual words, namely the PQ kernel,
is introduced. The PQ kernel is inspired from a class of similarity measures for
ordinal variables, more precisely Goodman and Kruskals gamma and Kendalls
tau. The idea is to treat the visual words histograms as ordinal data, in which
data is ordered but cannot be assumed to have equal distance between values. In
this case, a histogram will be considered as a rank of visual words according to
their frequencies in that histogram. Usage of the ranking of visual words instead
of the actual values of the frequencies may seem as a loss of information, but
the process of ranking can actually make PQ more robust, acting as a filter
and eliminating the noise contained in the values of the frequencies. This work
proves that PQ is a kernel and it also shows how to build its feature map.

Experiments are conducted in order to assess the performance of different
kernels, including PQ, on two benchmark datasets of images. The idea behind
the evaluation is to use the same framework and variate only the feature maps
computed with different kernels. The experiments show that the PQ kernel has
the best mean average precision on both datasets.

The paper is organized as follows. Section [2] presents the learning framework
used for image retrieval, image categorization and related tasks. The PQ kernel
for histograms of visual words is discussed in section Bl Experiments conducted
on two benchmark datasets are presented in section @l Finally, the conclusions
are drawn in section

2 Learning Model

In computer vision, the BoW model can be applied to image classification and
related tasks, by treating image descriptors as words. A bag of visual words is
a sparse vector of occurrence counts of a vocabulary of local image features.
This representation can also be described as a histogram of visual words. The
vocabulary is usually obtained by vector quantizing image features into visual
words. The proposed learning model (framework) has two stages, one for training
and one for testing. Each stage is divided in two important steps. The first step
in both stages is for feature detection and representation. The second step is to
train a kernel method (in the training stage) in order to predict the class label
of new images (in the testing stage).

The feature detection and representation step in the training stage works as
follows. Features are detected using a regular grid across the input image. At
each interest point, a SIFT feature [I0] is computed. This approach is known as
dense SIFT [Il[3]. Next, SIFT descriptors are vector quantized into visual words
and a codebook of visual words is obtained. The vector quantization process
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is done by k-means clustering [9], and visual words are stored in a randomized
forest of k-d trees [I1] to reduce search cost. The frequency of each visual word
is then recorded in a histogram which represents the final feature vector for the
image. The histograms of visual words enter the training step. A kernel method
is used for training. Several kernels can be used, such as the linear SVM, the
intersection kernel, the Hellinger’s kernel, the x? kernel or the Jensen-Shannon
kernel. In this paper, a novel approach is proposed, that of using the PQ kernel
described in section Bl

Feature detection and representation is similar during the testing stage. The
only difference is to use the same vocabulary that was already obtained in the
training stage by vector quantization. The histogram of visual words that rep-
resents the test image is compared with the histograms learned in the training
stage. The system can return either a label (or a score) for the test image or a
ranked list of images similar to the test image, depending on the application.
For image categorization a label (or a score) is enough, while for image retrieval
a ranked list of images is more appropriate.

As expected for an image retrieval system, the training stage can be done
offline. For this reason, the time that is necessary for vector quantization and
learning is not of great importance. What matters most is to return the result
for a new (test) image as quick as possible.

Performance level of the described model depends on the number of training
images, but also on the number of visual words. The number of visual words
must be set a priori. The accuracy gets better as the number of visual words is
greater.

Note that the described model ignores spatial relationships between image
features. Despite this fact, visual words showed a high discriminative power and
have been used for region or image level classification [2[6,19]. Although most
approaches are based on sparse descriptors, others have used dense descriptors [0
17]. A good way to improve performance is to include spatial information [g].
This can be done by dividing the image into spatial bins. The frequency of
each visual word is then recorded in a histogram for each bin. The final feature
vector for the image is a concatenation of these histograms. The aim of this
paper is to improve the performance of the learning model by trying different
kernel methods. Therefore, other methods of improving the performance level
are disregarded, since they are beyond the purpose of this work. However, one
should be aware of all the possibilities of improving the described model for a
real application, where the level of performance is of great importance.

3 PQ Kernel for Visual Words Histograms

All common kernels used in computer vision treat histograms of visual words
either as finite probability distributions, for example, the Jensen-Shannon ker-
nel, either as random variables whose values are the frequencies of different
visual words in the respective images, for example, the Hellinger’s kernel (Bhat-
tacharyya’s coefficient) and the x? kernel. Even the linear kernel can be seen as
the Pearson’s correlation coefficient if the two histograms are standardized.
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But the histograms of visual words can also be treated as ordinal data, in
which data is ordered but cannot be assumed to have equal distance between
values. In this case, the values of histograms will be the ranks of visual words
according to their frequencies in image rather than of the actual values of these
frequencies.

An entire set of correlation statistics for ordinal data are based on the num-
ber of concordant and discordant pairs among two variables. The number of
concordant pairs among two variables (or histograms) X,Y € R is:

P=K@i,j) : 1<i<j<n, (& —2;)(yi —y;) > O}
In the same manner, the number of discordant pairs is:
Q=H(@J) : 1<i<j<mn (zi—x)(yi —y;) <0}
Goodman and Kruskal’s gamma [14] is defined as:

_P-Q

TTpto

Kendall developed several slightly different types of ordinal correlation as al-
ternatives to gamma. Kendall’s tau-a [14] is based on the number of concordant
versus discordant pairs, divided by a measure based on the total number of pairs
(n is the sample size):

_r-Q

Ta = n(n—1)
2

Kendall’s tau-b [14] is a similar measure of association based on concordant
and discordant pairs, adjusted for the number of ties in ranks. It is calculated
as (P — Q) divided by the geometric mean of the number of pairs not tied on X
and the number of pairs not tied on Y, denoted by X, and Y, respectively:

P-Q
Ty =
V(P +Q+Xo)(P+Q+Yp)

All the above three correlation statistics are very related. If n is fixed and X
and Y have no ties, then P, Xy and Y{ are completely determined by n and Q.
Actually, all are based on the difference between P and Q, normalized differently.

The PQ kernel between two histograms X and Y is defined as:

kpQ(X,Y)=2(P-Q)

To prove that kpg is indeed a kernel, the explicit feature map induced by
kpg is provided next.
Let X,Y € R"™ be two histograms of visual words. Let ¥ be defined as follows:

ViR - My, U(X) = (Y(X)ij)i<i<ni<j<n
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with

1 ifa; >y
U(X)={ —1lifz; <z
0 lfl‘z =Ty

Note that ¥ associates to each histogram a matrix that describes the order of
its elements.
If matrices are treated as vectors, then the following equality is true:

kpe(X,Y) =2(P - Q) = (¥(X),¥(Y)),

where (-,-) denotes the scalar product. This proves that kpg is a kernel and
provides the explicit feature map induced by kpq.

Another approach inspired from rank correlation measures is the WTA hash
proposed in [I8]. For K=2, the WTA hash is closesly related to the PQ kernel.
However, there are two important differences. The first one is that WTA hash
works with a random selection of pairs from the feature set. The second one is
that, unlike PQ kernel, the WTA hash ignores equal pairs. In terms of feature
representation, the PQ kernel represents a histogram with a feature vector con-
taining {—1,0,1} (0 for equal pairs), while the WTA hash with K = 2 uses only
{1,0}. In the experiments, one can observe that these differences have direct
consequences to the performance level, creating an even greater gap between the
two methods.

The authors of [16] state that histograms of y-homogeneous kernels should be
L.-normalized. Being linear in the feature space, PQ is a 2-homogeneous kernel
and the histograms should be Ly-normalized. Therefore, in the experiments, the
PQ kernel is based on the Lo-norm. An important advantage of PQ being linear
is that it can be used with linear SVMSs, such as the PEGASOS algorithm [12],
that are much faster to learn and evaluate than the original non-linear SVMs.

Treating visual words frequencies as ordinal variables means that in the calcu-
lation of the distance (or similarity) measure, the ranks of visual words according
to their frequencies in image will be used, rather than the actual values of these
frequencies. Usage of the ranking of visual words in the calculation of the dis-
tance (or similarity) measure, instead of the actual values of the frequencies,
may seem as a loss of information, but the process of ranking can actually make
the measure more robust, acting as a filter and eliminating the noise contained
in the values of the frequencies. For example, the fact that a specific visual word
has the rank 2 (is the second most frequent feature) in one image, and the rank
4 (is the fourth most frequent feature) in another image can be more relevant
than the fact that the respective feature appears 34 times in the first image, and
only 29 times in the second. It is important to note that for big vocabularies
(with more than 1.000 words), the kernel trick should be employed to obtain the
kernel representation of PQ instead of computing its feature map, since there
is a quadratic dependence between the feature map and the number of visual
words.
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4 Experiments

4.1 Datasets Description

The Pascal Visual Object Classes (VOC) challenge [4] is a benchmark in visual
object category recognition and detection, providing the vision and machine
learning communities with a standard dataset of images and annotation, and
standard evaluation procedures. In the experiments of this work, the Pascal
VOC 2007 dataset is used. The reason for this choice is that this is the latest
dataset for which testing labels are available for download, and the experiments
can be done offline.

The second dataset was collected from the Web by the authors of [7] and
consists of 100 images each of 6 different classes of birds: egrets, mandarin ducks,
snowy owls, puffins, toucans, and wood ducks. This dataset of 600 images is used
in order to assess kernels behavior when less training data is available. The Birds
dataset is available at http://www-cvr.ai.uiuc.edu/ponce_grp/data/.

4.2 Implementation and Evaluation Procedure

The framework described in section [2lis used for object class recognition. Details
about the implementation of the model are given next. In the feature detection
and representation step, a variant of dense SIFT descriptors extracted at multiple
scales, called PHOW features [1], are used. The number of visual words used in
the experiments is 500. For better accuracy, up to 10.000 visual words or more
can be used.

Several state of the art kernel methods are compared with the PQ kernel in both
experiments. The baseline method is the linear SVM, for which the histograms are
Lo—normalized. One of the state of the art methods is based on the Hellinger’s ker-
nel. Two variants with different norms of this kernel are used. The first one is based
on L —normalized feature vectors, and the second one is based on Lo —normalized
feature vectors. Another state of the art kernel is Jensen-Shannon, which is
Li—normalized. Finally, these kernels are to be compared with the PQ kernel de-
scribed in this paper. The PQ kernel is Lo—normalized. For all kernel methods,
feature maps are computed from the visual words histograms. The training is al-
ways done using a linear SVM on the computed feature maps. The linear SVM
is based on a implementation of the PEGASOS algorithm described in [12]. Note
the feature map of the JS kernel cannot be computed directly. In order to use the
same learning setting, its feature map has to be approximated using the method
proposed in [16]. To approximate the JS kernel, 10.500 features are used. The idea
behind the evaluation is to use the same framework and variate only the feature
maps computed with different kernels, since the final goal of the experiments is to
evaluate the difference between these kernels, in terms of performance. The imple-
mentation of both the feature detection and representation step, and the learning
step, is mostly based on the VLFeat library [15].

The evaluation procedure for both experiments follows the Pascal VOC bench-
mark. The qualitative performance of the learning model is measured by using
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Table 1. Mean AP on Pascal VOC 2007 dataset for machine learning methods based on
visual words histograms with different kernels. The best AP on each class is highlighted
with bold.

Class Lin. Ly Hel. L, Hel. Ly WTA L, JS L; PQ L, JS+PQ
Aeroplane  0,395% 0,555% 0,558% 0,534% 0,564% 0,526% 0,574%
Bicycle 0,189% 0,339% 0,337% 0,398% 0,367% 0,409% 0, 386%
Bird 0,178% 0,248% 0,247% 0,274% 0,284% 0,281% 0,305%
Boat 0,334% 0,540% 0,551% 0,476% 0,549% 0,505% 0,553%
Bottle 0,122% 0,143% 0,139% 0,139% 0,127% 0,140% 0,129%
Bus 0,239% 0,334% 0,336% 0,404% 0,379% 0,419% 0,406%
Car 0,518% 0,599% 0,602% 0,659% 0,644% 0,670% 0,659%
Cat 0,281% 0,349% 0,351% 0,382% 0,378% 0,402% 0,393%
Chair 0,308% 0,399% 0,399% 0,398% 0,414% 0,405% 0,414%
Cow 0,117% 0,174% 0,172% 0,209% 0,169% 0,209% 0,198%
Dining Table 0,205% 0,238% 0,227% 0,237% 0,242% 0,253% 0,255%
Dog 0,212% 0,271% 0,266% 0,263% 0,293% 0,287% 0,299%
Horse 0,484% 0,518% 0,530% 0,601% 0,595% 0,609% 0,614%
Motorbike  0,213% 0,398% 0,389% 0,427% 0,413% 0,451% 0,450%
Person 0,639% 0,715% 0,717% 0,756% 0,759% 0,773% 0,774%
Potted Plant 0,099% 0,125% 0,110% 0,110% 0,112% 0,111% 0,115%
Sheep 0,220% 0,217% 0,237% 0,219% 0,222% 0,259% 0,243%
Sofa 0,184% 0,304% 0,320% 0,310% 0,325% 0,322% 0,333%
Train 0,363% 0,534% 0,528% 0,547% 0,554% 0,570% 0,574%
TV Monitor 0,196% 0,309% 0,295% 0,345% 0,336% 0,351% 0,342%
Overall 0,275% 0,365% 0,365% 0,384% 0,386% 0,398% 0,401%

the classifier score to rank all the test images. Next, the retrieval performance
is measured by computing a precision-recall curve. In order to represent the re-
trieval performance by a single number (rather than a curve), the mean average
precision (mAP) is often computed. The average precision as defined by TREC
is used in the experiments. This is the average of the precision observed each
time a new positive sample is recalled.

4.3 Pascal VOC Experiment

The first experiment is on the Pascal VOC 2007 dataset. There are 20 classes
available in this dataset, and for each class the dataset provides a training set, a
validation set and a test set. The training and validation sets have about 2.500
images each, while the test set has about 5.000 images. The validation set is
used to validate the parameter C' of the linear SVM algorithm. Table [I] presents
the mean AP of the linear SVM, the Hellinger’s kernel, the JS kernel, the WTA
hash (with K = 2 and 10.000 random pairs) and the PQ kernel, on the Pascal
VOC dataset. Looking at the results obtained by the JS kernel on one hand, and
the PQ kernel on the other, one can observe that these methods are somehow
complementary in terms of performance. This gives the idea of combing the
two kernels to possibly obtain better results. Indeed, in this experiment another
kernel based on the sum of JS and PQ kernels is presented. In order to obtain the
feature map of this kernel combination, the feature maps of JS and PQ kernels
are simply concatenated.

The accuracy of the state of the art kernels is well above the accuracy of the
baseline linear SVM. In terms of AP, the state of the art kernels are about 10%
better than the baseline method. The PQ kernel improves the accuracy of the
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Table 2. The time for the second stage of the learning model and the number of
features for each kernel. The time is measured in seconds.
Lin. Ly Hel. L; Hel. Lo WTA Ly JS L; PQ L JS+PQ

Time 1-2 2-3 2—-3 15 —-16 15— 16 830 — 860 850 — 880
Features 500 500 500 10.000 10.500 250.000 260.500

learning model, when compared to the state of the art methods. The mAP of
the PQ kernel is 3,3% above the mAP of the Hellinger’s kernels, 1,4% above
the mAP of the WTA hash, and 1,2% above the mAP of the JS kernel. The
combination of JS and PQ kernels improves the performance even further. The
mAP of the JS+PQ kernel is 3,6% above the mAP of the Hellinger’s kernels,
1,7% above the mAP of the WTA hash, and 1, 5% above the mean AP of the JS
kernel. PQ kernel improves results over WTA hash by 1, 4%, showing that the two
methods are distinct. If the best AP per class is considered, the PQ kernel and
the JS4+PQ kernel win most of the classes (18 out of 20). The results presented in
Table [l come to support this statement. The L;—normalized Hellinger’s kernel
seems to work best when classes are very difficult for all kernel methods.

The feature detection and representation stage, that builds a vocabulary of
visual words and obtains histograms, takes a few hours on this dataset. The time
for the second stage of the learning framework, that includes computing feature
maps, training and testing, depends on the number of features in the feature
space for each kernel. The time for the second stage and the number of features
for each kernel is given in Table 2l The time was measured on a computer with
Intel Core i7 2.3 GHz processor and 8 GB of RAM memory using a single Core.
While the feature maps can be computed only once for the entire experiment
along with the feature detection and representation stage, training and testing
has to be repeated for each class. Despite the time for the PQ kernel (14 — 15
minutes) is higher than the time for other kernels (2— 15 seconds), it doesn’t add
an overhead to the overall time of the learning framework, since the overall time
is about 4 — 6 hours. The PQ kernel and the JS+PQ kernel are constantly better
than the other methods. In conclusion, the PQ kernel, used either alone or in
combination with the JS kernel, has the best performance on this experiment.

4.4 Birds Experiment

The second experiment is on the Birds dataset. The training set consists of 300
images and the test set consists of another 300 images. There are 6 classes in
this dataset. For each class, the dataset contains 50 positive train images and 50
positive test images. Since there is no validation set this time, the parameter C'
of the linear SVM algorithm is cross-validated on the training set.

Table [3] presents the mAP of the linear SVM, the Hellinger’s kernel, the JS
kernel, the WTA hash (with K = 2 and 10.000 random pairs) and the PQ kernel,
on the Birds dataset. A variant of the PQ kernel that ignores equal pairs (PQ
ieq), which is more similar to the WTA hash, is also added to the experiment
to emphase the difference between PQ kernel and WTA hash. The performance
of the Hellinger’s kernels is above the baseline linear SVM, as in the previous
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Table 3. Mean AP on Birds dataset for machine learning methods based on visual words
histograms with different mthods. The best AP on each class is highlighted with bold.

Class Lin. Ly Hel. L1 Hel. Ly JS L1 WTA L, PQ ieq L> PQ Lo
Egret 0,552% 0,760% 0,747% 0,416% 0,735% 0,738% 0,753%
Mandarin Duck 0,446% 0,585% 0,607% 0,375% 0, 784% 0,791% 0,835%
Owl 0,815% 0,895% 0,887% 0,490% 0,879% 0,889% 0,915%
Puffin 0,427% 0,696% 0,730% 0,369% 0, 708% 0,703% 0,764%
Toucan 0,572% 0,715% 0,747% 0,558% 0,776% 0,787% 0,845%
Wood Duck 0,608% 0,795% 0,816% 0,361% 0,767% 0,769% 0,849%
Overall 0,570% 0,741% 0,756% 0,428% 0,775% 0,779% 0,827%

experiment. Both Hellinger’s kernels are about 18% better than the baseline
method. Unlike the previous experiment, the JS kernel has the worst accuracy
on this dataset, when compared to the rest of the methods. The mAP of the JS
kernel is 14,2% below the baseline AP. The bad performance of the JS kernel
on this dataset can be explained by the fact that it is based on an informational
measure that uses an estimation of the distribution of the data. The number of
training samples may not be enough for a good estimation.

The results of the PQ kernel on this experiment are consistent with the previ-
ous experiment. The PQ kernel improves the performance of the learning model,
when compared to the state of the art kernels. The mean AP of the PQ kernel is
8,6% above the mAP of the L;—normalized Hellinger’s kernel, 7,2% above the
mAP of the Lo—normalized Hellinger’s kernel, and 5,2% above the mAP of the
WTA hash. Table 3 also shows that by ignoring equal pairs the mAP of the PQ
kernel drops by 4, 8%. By taking into account equal pairs and by considering the
entire feature set, PQ has a significant improvement in terms of accuracy over
WTA hash. There is no question that the two methods are distinct. If the best
AP per class is considered, the PQ kernel wins most of the classes, again. The
Hellinger’s kernel based on the L;—norm wins the Egret class. The PQ kernel
wins the rest 5 classes. Note that the linear SVM, the Ly—normalized Hellinger’s
kernel and the JS kernel are not able to win any class. The PQ kernel is con-
stantly better than the other methods. In conclusion, the PQ kernel has the best
performance on the Birds dataset experiment.

5 Conclusion and Further Work

This paper discussed learning methods based on the BoW model. Usually, ker-
nel methods, such as the linear SVM, the Hellinger’s kernel or the JS kernel,
are used to compare such histograms. This work showed that results for image
classification, image retrieval or related tasks, can be improved by changing the
kernel. Object recognition experiments compared the PQ kernel with other state
of the art kernels on two benchmark datasets. The PQ kernel, used either alone
or in combination with the JS kernel, has the best accuracy on the Pascal VOC
2007 experiment. The mAP of the JS+PQ kernel is at least 1, 5% above the best
mAP of the state of the art kernels. On the Birds experiment, the PQ kernel
improved the performance again. The mAP of the PQ kernel is at least 5,2%
above the best mAP of the state of the art kernels. The PQ kernel is constantly
better than the other methods.
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A possible way of improving the results for the PQ kernel may be that of

using a TF-IDF measure for visual words as in [I1]. Furthermore, eliminating
visual words that have a low TF-IDF score can lead to an approximation of the
PQ kernel that works faster and possibly better. In future work, other methods
inspired from ordinal measures can be investigated.
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