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Abstract. Recently, weighted k nearest neighbor based label prediction
model combined with distance metric learning (KNN+ML) [10, 14, 17],
has become more attractive and showed exciting results on image anno-
tation task. Usually, in KNN+ML framework, a uniform distance metric
is learned given a collection of similar/dissimilar image pairs from train-
ing data. Thus, for a couple of images, their distance is globally unique.
However, this might not be sufficient for label prediction on annotation
task because it is impossible to distinguish the multiple labels attached
to each image. In this paper, we are motivated to learn multiple label-
specific distance metrics, and measure the distance of an image pair under
different labels’ distance metrics. We also propose a novel label specific
prediction model, in which the weight of each label is determined by its
specific distance value rather than previous global distance value. Com-
pared with previous KNN+ML methods, our proposed method is able
to exactly discriminate each label in each neighbor, and efficiently re-
duce the prediction of false positive and false negative labels. Extensive
experimental results on three benchmark datasets demonstrate that pro-
posed method achieves more accurate annotation results and competitive
overall performance.

1 Introduction

The task of image annotation is to automatically assign keywords to an image,
and it has become an active topic in computer vision and machine learning ar-
eas due to its potential useful applications, including image search and photo
management. Recently, k nearest neighbor (KNN) based methods has been suc-
cessfully applied to image annotation problem, as this kind of local learning
technique has potentiality to capture the similarity graph of labeled and unla-
beled images.

In order to extend KNN based methods to image annotation task, two primary
issues need to be considered. The first is how to select appropriate neighbors for
an unlabeled image. Metric learning (ML) methods [11,13,19] are often imported
to find optimal metric over feature space of provided pairs of labeled images,
and linear combination of base metrics for multiple high-dimensional features
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is alternative to traditional low-dimensional Mahalanobis metric. The second is
how to design efficient label transfer mechanism through learned distance metric.
Some well known methodologies including greedy diffusion [14, 23], weighted
nearest neighbor label prediction [10, 17, 21], are usually adopted.

Test Image Nearest Neighbors

Proposed: woman,
man, smile, couple,

hat, eye

eye(0.97) hair(1.21)
couple(0.76) hat(0.82)
man(0.76) smile(0.66)
suit(1.49) tie(2.12)

woman(0.83)

asian(1.72) face(0.95)
couple(0.86) hat(0.91)
man(0.95) smile(0.94)

woman(0.93)

black(1.04) eye(0.78)
hair(1.06) white(0.74)
party(1.23) man(0.73)

woman(0.87)

black(0.92) hair(1.31)
couple(0.72) man(1.03)
smile(0.69) white(0.81)

woman(0.77)

JEC: woman,
girl, man, black,
smile, asian (hat)

(0.65): asian face
couple hat man
smile woman

(0.71): black dress
eye girl hair
party woman

(0.73): girl hair
movie woman

(0.74): asian hat
girl black man
woman smile

Fig. 1. For a test image from ESP Game dataset (first column), the first and second
rows on the right section show its 4 nearest images and distance value of each label
from proposed method (uses label-specific distance metrics) and JEC [17] (uses global
distance metric). Predicted labels (with smallest distance values) in two methods can
be compared with ground truth {couple, eye, hat, man, smile, woman}.

The main shortcomings of existing works based on KNN+ML are two folds.
First, these works incline to use a single global distance metric to measure the
similarity of an image pair, which is convincing to address traditional classi-
fication problem. However, in multi-label annotation condition, the degree of
similarity ought to vary upon different label affiliated to the image pair. Second,
in the celebrated weighted nearest neighbor label prediction model [10,17], each
label of one neighbor has identical weight (exp(−D(·)) in Equ. 1) since the dis-
tance is uniquely determined by global distance metric. Thus, during the final
label prediction, some labels would get equal weight, such as {asian, hat} in
JEC in Fig. 1, where we can only select these two labels {asian, hat} randomly
and the accuracy of final annotation would be disturbed.

As the proverb goes, “there are a thousand Hamlets in a thousand people’s
eyes.” Given an image pair, we are motivated to measure discriminative distance
values (“Hamlets”) by different label specific distance metrics (“eyes”). Then we
can distinguish labels according to their specific distance values. In this paper, we
propose a new weighted nearest neighbor type model that predicts each label’s
weight (exp(−Dyl

(·)) in Equ. 2) according to its specific distance value. As shown
in Fig.1, unlike that different labels of one neighbor share same distance value
in JEC, each label of one neighbor has its specific distance value in proposed
method. This ensures proposed method to discriminate labels in one neighbor,
select proper labels and avoid irrelevant labels simultaneously.
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Our contributions are: 1) We propose a label-specific prediction model for
annotation task, where the weight of each label in a neighbor is measured by its
specific distance metric. 2) We extend [11] in a high dimensional multi-feature
fusion setting to learn distance metric for each label. 3) We design a complete an-
notation framework of training and testing procedures, including learning label-
specific distance metrics and predicting labels for new image.

In the next section, we review previous notable works in image annotation
field. In Sect.3, we describe our label-specific prediction model, distance metric
learning algorithm, and entire training and testing procedures. Experimental re-
sults compared with previous KNN+ML based methods are presented in Sect.4.
Finally, we make conclusion in Sect.5.

2 Related Work

Large quantities of approaches have been proposed to address image annota-
tion problem. One pipeline of research focuses on modeling medium sized im-
age databases with fixed vocabularies. A common consensus has been reached
from [3,8,10,14,17,23] that three main groups exist: 1) Generative models [2,5,22]
aim to learn the joint probability of labels and image features, various relation-
ships between semantic and visuality have been imagined, e.g. mixture of topics,
and different hypotheses of probability distribution of labels and image features
have been assumed, such as multinomials, separate Bernoullis, mixture of Gaus-
sian. 2) Discriminative models [3, 12] treat each label as a semantic class of
multi-class multi-label problem, and learn a separate classifier for each label,
where balanced training data is required and correlation among the labels may
be ignored. 3) Nearest neighbor based models [3,10,14,17,23] have become more
attractive recently and shown state-of-the-art annotation performance. As visual
close similar images possess certain semantic similarity, after selecting proper
neighbors for unlabeled image, labels are then transferred from these neighbors.

On the other line of research, data-driven approaches [4, 16, 18] have demon-
strated their capacity on large-scale web-based image databases with open vo-
cabularies. These approaches usually firstly search a group of visually closely
similar candidates for the query image, and then mine relevant tags from as-
sociated clues (such as image filename, URL and surrounding texts) available
on the web. These approaches can be regarded as hybrid models which com-
bine the generative/discriminative/nearest neighbor models in more practical
circumstance.

3 Proposed Method

In this section, we first propose the label-specific prediction model, then de-
scribe the label-specific distance metric learning algorithm, finally depict our
annotation framework of training and testing procedures.
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3.1 Label-Specific Prediction Model

Consider a collection of labeled images C = {{I1, Y1}, ..., {ID, YD}} with a fixed
vocabulary of L labels Y = {y1, ...yL}, where each Yi ⊆ Y contains multiple
labels. In weighted nearest neighbor based label prediction model [10, 17], each
label’s presence/absence of an unseen image J is a weighted sum over its K
nearest neighbors NJ = {I1, ...IK} in training set. We denote the weight of k-th
neighbor Ik to image J as πJ,Ik , where πJ,Ik ≥ 0 and

∑
k πJ,Ik = 1. In previous

KNN+ML works, πJ,Ik is usually represented by a smooth exponential func-

tion over distance D(J, Ik), as πJ,Ik = exp (−D(J, Ik))/
∑K

k′=1 exp (−D(J, Ik′)).
Thus, the presence probability of l-th label yl in J can be formulated as,

P (yl = +1|J) =
∑

(Ik,Yk)∈NJ

πJ,Ik · δ(yl ∈ Yk|Ik)

=
∑

(Ik,Yk)∈NJ

exp (−D(J, Ik)) · δ(yl ∈ Yk|Ik), (1)

where δ(yl|Ik) is an indicator function that denotes the presence/absence of label
yl in Ik, with δ(·) = 1 when yl ∈ Yk and δ(·) = 0 otherwise. Through ranking
probabilities of all the labels y1 → yL based on Equ. 1, top-ranked labels can be
assigned to the unseen image J .

Note that in Equ. 1, all labels in Yk share the same weight value exp (−D(J, Ik))
since the distance value D(J, Ik) is unique given the learned global distance met-
ric. This may lead to significant potential risk that, although we can correctly
predict true positive labels of one neighbor for image J , it is still ambiguous
to reject the false positive or false negative labels in that neighbor. Inspired
by [7, 20] which learns local distance functions for every training image or im-
age clusters in visual classification task, here we aims to learn local distance
metric for each label. For one image pair, under distance metrics of different
labels, the distances are various. Thus, based on these local distance metrics,
our label-specific prediction model can be formulated as:

P (yl = +1|J) =
∑

(Ik,Yk)∈NJ

exp (−Dyl
(J, Ik)) · δ(yl ∈ Yk|Ik). (2)

Different fromtraditional predictionmodel inEqu. 1, hereweight exp(−Dyl
(J, Ik))

includes multiple values involved in different yk ∈ Yk. Intuitively, we can measure
the distance between neighbor image Ik and J using the specific distance metrics
of labels in Ik. This allows us to distinguish the importance of each label yk ∈ Yk of
Ik, reduce the prediction of irrelevant labels and preserve relevant labels from Yk.

3.2 Learning Label-Specific Distance Metrics

Suppose we have generated a collection of similar and dissimilar image pairs for
the l-th label, in the manner of learning distance metric [11,13,19,20], our goal is
to learn a distance metric for the l-th label to ensure distances of similar image
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pairs are smaller than dissimilar pairs. Following [11], we model the probability
pn that an pair n = (A,B) is similar (positive), and the pair response rn is 1,
as:

pn = p(rn = 1|A,B;Dyl
(A,B), b) = σ(b −Dyl

(A,B)), (3)

where σ(z) = (1 + exp(−z))−1 is the sigmoid function and b is a bias term. No-
tably, Dyl

(A,B) =
∑

i ul(i)
∑

j vl(j) · diA,B(j) represents the distance of (A,B)
on the view of l-th label yl. Here in the multiple features fusion setting,Dyl

(A,B)
is a linear combination of base distances diA,B(·) of multiple features [17]. Inter-
feature weights ul(i) and intra-feature weights vl(j) are specific parameters we
need to learn for the l-th label. We use maximum log-likelihood to optimize the
parameters of the model. The log-likelihood L can be written as:

L =
∑

n

rn ln pn + (1 − rn) ln(1− pn), (4)

and the gradient of L with respect to ul and vl equals

∂L
∂ul

=
∑

n

(rn − pn)vl · dA,B,
∂L
∂vl

=
∑

n

(rn − pn)ul · dA,B, (5)

which are smooth and concave. Moreover, non-negative constraints are required
to weights {ul, vl} as the distance value should be non-negative. In practice,
we use projected gradient ascend method to optimize {ul, vl} in an alternating
manner.

It is worth saying that our label-specific distance metric learning algorithm is
quite different from “word-specific logistic discriminate model (σML)” proposed
in [10]. Firstly, the target of our algorithm is to learn a metric to identify the
similarity of a pair under a label, while σML aims to learn word-specific smooth
factors for the weighted nearest neighbor prediction model. Secondly, our algo-
rithm directly impacts the weight of each label (see Equ. 2, exp (−Dyl

(J, Ik))),
whereas σML does not effect weight factor, which implies similarity of a pair is
still considered on a global viewpoint.

3.3 Training and Testing Procedures

To learn distance metric of each label, it’s necessary to create a training set
of similar/dissimilar image pairs for each label. Our scheme of obtaining label-
specific image pairs is a modified version of [17], first we give some key definition:

Semantic cluster. For a label yl ∈ Y, its semantic cluster Syl ⊆ C contains all

images annotated with label yl in training set C.
Semantic neighborhood. For an image T , its semantic neighborhood ST has L sub-

sets {ST,y1

⋃
...

⋃
ST,yL}, where the l-th subset ST,yl ⊆ Syl includes K1 images that

are most similar to T in semantic cluster Syl .

Similar/dissimilar pairs. For an labeled image (T, YT ) with its semantic neighbor-

hood ST , its similar samples are images from ST,yp , yp ∈ YT , the residual ST,yq ,

yq ∈ Y\YT are dissimilar samples.
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Training
Input: A set of annotated training images C = {{I1, Y1}, ..., {ID, YD}}, L semantic
cluster SY1 , ...,SyL . For each label l = {1, ..., L}, do
1. Generate semantic neighborhood using base distance measure for each sample.
2. Generate similar/dissimilar pairs for each sample in Syl .
3. Learn parameters {bl, ul, vl} for l-th distance metric following Sect.3.2.

Output: L label-specific parameters {b1, u1, v1}, ..., {bL, uL, vL}.
Testing
Input: L label-specific parameters {b1, u1, v1}, ..., {bL, uL, vL}, L semantic clusters
S = {Sy1 , ...,SYL} from training data, a test image J . For test image J , do

1. Generate its semantic neighborhood SJ = {SJ,y1

⋃
...

⋃
SJ,yL}, where the l-th

SJ,y1 contains K1 training samples that are most similar to J measured by
the l-th distance metric.

2. For each image ∀{It, Yt} ∈ SJ , do
• Calculate the presence probability (Equ. 2) of label yt ∈ Yt by its label
specific distance Dyt(J, It), using l-th distance metric.
• Accumulate probability score of label yt.

3. From probability scores of all labels in SJ , select top-5 labels with highest
probability scores.

Output: predicted top-5 labels for test image J .

The training and testing procedures are incorporated into the complete anno-
tation framework depicted above. Distance metrics are learned in training stage
through the well organized semantic neighborhood of each training sample, which
fully leverages image-image, image-label, label-label similarities. In testing stage,
similarities between the test image and its neighbors are calculated according to
different label’s metric, finally labels that are most semantically similar to test
image are dug out.

4 Experiments

In this section, we first present the experimental configuration: datasets, multiple
features, evaluation measures and details, then we compare our proposed method
with previous methods from different aspects.

4.1 Configuration

Datasets and Features. To keep coherence with previous works [10, 14, 17],
we also consider three well-explored data sets: Corel 5K [6], ESP Game [1],
IAPR TC12 [9]. Table 1 summarizes the general statistics of the images and
fused multiple features we use in our experiments.

Evaluation Measures. Following [10,17], we choose top-5 most relevant labels
for each test image. Then we compute the mean precision P, mean recall R and



Image Annotation by Learning Label-Specific Distance Metrics 107

Table 1. General statistics for the three datasets and multiple features. In column 6
and 7, the items are in the format “mean, maximum.” Total dimension of multiple
features is 13,900.

Dataset Num. of
images

Num. of
labels

Training
images

Test im-
ages

Labels per im-
age

Images per la-
bel

Corel 5K 5000 260 4500 500 3.4, 5 58.6, 1004

ESP Game 20,770 268 18,689 2,081 4.7, 15 326.7, 4553

IAPR TC12 19,627 291 17,665 1,962 5.7, 23 34.7, 4999

Feature RGB LAB HSV Gist SIFT hue

Dimension 4,096 4,096 4,096 512 1,000 100

Base metric L1 L1 L1 L2 χ2 χ2

their trade-off F1 score (F1 = 2.P.R/(P +R)). Moreover, number of words with
non-zero recall N+ is also taken into account.

Details. In Sect.3.3, to extract similar/dissimilar image pairs, we use entire
training images to form semantic cluster of each label on entire Corel 5K dataset,
subsets of 30% random training samples of both ESP Game and IAPR TC12
datasets. K1 is set as 4 for Corel 5K, 3 for both ESP Game and IAPR TC12
datasets. Since for a labeled image, its dissimilar pairs is far more than similar
pairs ((L − K1) � K1), following the advice in [23], we find that randomly
selecting partial dissimilar pairs 4 ∼ 10 times larger than similar pairs (there are
average 500 ∼ 6000 pairs (N) for each label in all three datasets) is sufficient to
learn stable distance metrics.

The training and testing procedures are repeated three times on each dataset,
and we choose models that perform best on testing sets for comparison. All
experiments are executed using MATLAB 7.11 on a 3.4 GHz, 8GB RAM PC.

4.2 Comparison

Global vs. Label-Specific Distance Metric. First we compare our method
with celebrated work of JEC [14] which uses global distance metric, and Fig. 2
(top row) shows performance in terms of P, R and N+ with respect to changing
neighborhood size. It is remarkable that our method makes significant improve-
ment on these measures compared with global distance metric based method on
all three datasets. In addition, unlike JEC which needs large numbers of neigh-
bors (nearly 200) to improve performance, our proposed method achieves best
performance using less neighbors (30, 100 and 80) on three datasets correspond-
ingly. This is because in our testing procedure (in Sect.3.3), more semantically
related neighbors are pulled nearer when generating semantic neighborhood.

Secondly, we follow σML in [10] and group labels according to their frequency
in each dataset and explore which labels benefit most by using specific distance
metrics. From Fig. 2 (bottom row), it is illustrated that our method could fur-
ther care for rare labels and achieve significant improvements for these labels
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Table 2. Comparison of annotation performance between proposed label-specific vs.
previous global distance metric models

Corel 5K ESP Game IAPR TC12

Method P R F1 N+ P R F1 N+ P R F1 N+

JEC [14] 27 32 29.3 139 22 25 23.4 224 28 29 28.5 250

GS [23] 30 33 31.4 146 - - - - 32 29 30.4 252

TagProp (ML) [10] 31 37 33.7 146 49 20 28.4 213 48 25 32.9 227

TagProp (σML) [10] 33 42 37.0 160 39 27 31.9 239 46 35 39.8 266

2PKNN [17] 39 40 39.5 177 51 23 31.7 245 49 32 38.7 274

2PKNN+ML [17] 44 46 45.0 191 53 27 35.7 252 54 37 43.9 278

Proposed 40.5 44.7 42.5 185 44.1 26.2 32.9 247 47.6 36.1 41.1 264
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Fig. 2. Label-specific vs. global distance metric: performance in terms of P, R and
N+ with respect to neighborhood size changing (top row) and mean recall of labels
(bottom row) on three datasets (from left to right: Corel 5K, ESP Game and IAPR
TC12)

compared with σML. The reason is that smooth factor learned in σML could
only change the weight for a rare label slightly, whereas the weight is directly
decided and promoted by its specific distance metric in proposed method.

Comparison by Annotation Measures. Table 2 summarizes the overall eval-
uation from our results as well as those reported by previous KNN+ML methods
on three datasets. It shows that our method outperforms previous global metric
based methods, such as JEC, TagProp, and 2PKNN, but is worse than the promi-
nent 2PKNN+ML. As for 2PKNN+ML, it utilizes sophisticated metric learning
algorithm (LMNN [19]) to learn a global large marginalized distance metric, and
it requires large quantities of seriously unbalanced similar/dissimilar pairs, e.g.
for Corel 5K dataset, there are total 2 million training pairs, and the proportion
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ESP Game IAPR TC12

tree, grass,
house, green,
road

couple,
glasses, peo-
ple, smile,
car

car, dirt,
tree, water,
wheel

bed, room,
lamp, table,
window

mountain,
range, wall,
terrace, front

sky, sea, hill,
view, city

home, car,
street, tree,
people

face, man,
woman,
teeth, smile

truck, road,
tree, green,
water

bed, table,
shelf, bag,
night

landscape,
mountain,
sky, people,
wall

bank, house,
sky, boat,
tree

Fig. 3. Annotations of example images from ESP game (left three images) and IAPR
TC12 (right three images). Since these exemplars have ground truth labels more than
5 words, we explicitly compare proposed method (second row) with JEC [14] (third
row) on accuracy of predicted top-5 labels.

of similar/dissimilar pairs is about 1:50. The training procedure is complex and
needs to be well designed for unbalanced setting. Our method requires much less
(e.g. thousands pairs per label for Corel 5K) and fairly balanced pairs for each
label and is scalable to larger vocabulary. On this point, we think our method
is promising and competitive to the state-of-the-art method. Moreover, in Fig.3
we present some qualitative annotation results from our method compared with
results from global metric based method JEC. It shows that proposed method
is able to assign more accurate labels related to image content, whereas JEC
might be ambiguous to distinguish the relevant/irrelevant labels, since some
equal weighted labels are selected randomly.

5 Conclusion

In this paper, we have proposed a novel label prediction model for image an-
notation task. In proposed model, labels of one neighbor have different weights
depending on their label-specific distance values. And we have extended [11] to
high dimensional multiple-feature fusion setting, to learn the specific distance
metric for each label. Moreover, we have also designed complete annotation
framework of training and testing procedures. To further explore our annotation
framework, it is feasible to import more sophisticated metric learning algorithms
in high dimensional feature (distance) space, such as LMNN based methodology
used in [17] [15]. This would be a primary issue to be tackled in our future work.
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