
Formal Modeling and Reasoning

about the Android Security Framework

Alessandro Armando1,2, Gabriele Costa2, and Alessio Merlo3

1 Fondazione Bruno Kessler
armando@fbk.eu

2 Università degli Studi di Genova
gabriele.costa@unige.it

3 Università E-Campus
alessio.merlo@uniecampus.it

Abstract. Android OS is currently the most widespread mobile oper-
ating system and is very likely to remain so in the near future. The
number of available Android applications will soon reach the staggering
figure of 500,000, with an average of 20,000 applications being introduced
in the Android Market over the last 6 months. Since many applications
(e.g., home banking applications) deal with sensitive data, the security
of Android is receiving a growing attention by the research community.
However, most of the work assumes that Android meets some given high-
level security goals (e.g. sandboxing of applications). Checking whether
these security goals are met is therefore of paramount importance. Un-
fortunately this is also a very difficult task due to the lack of a detailed
security model encompassing not only the interaction among applications
but also the interplay between the applications and the functionalities
offered by Android. To remedy this situation in this paper we propose a
formal model of Android OS that allows one to formally state the high-
level security goals as well as to check whether these goals are met or to
identify potential security weaknesses.

1 Introduction

Modern smartphones not only act as cell phones, but also as handheld personal
computers, where users manage their personal data, interact with online pay-
ment systems, and so on. As stated in [12], “a central design point of the Android
security architecture is that no application, by default, has permission to perform
any operation that would adversely impact other applications, the operating sys-
tem, or the user. This includes reading or writing the user’s private data (such
as contacts or e-mails), reading or writing another application’s files, perform-
ing network access, keeping the device awake, etc.”. Android strives to achieve
this security goal through a cross-layer security architecture, the Android Secu-
rity Framework (ASF), leveraging the access control mechanisms offered by the
underlying Linux kernel.

Recent work (e.g., [2,23,19,16]) unveiled a plethora of vulnerabilities occurring
at different layers of the Android stack and a number of extensions to the Android

C. Palamidessi and M.D. Ryan (Eds.): TGC 2012, LNCS 8191, pp. 64–81, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Formal Modeling and Reasoning about the Android Security Framework 65

native securitypolicies (e.g., [17]) and to the framework itself (e.g., [13,8]) havebeen
put forward. However, a systematic assessment of the ASF and of the proposed
solutions is very difficult to achieve. Mainly, this is due to the lack of a detailed
security model encompassing not only the interaction among applications but also
the interplay between the applications and the functionalities offered by Android.

In this work we focus on modeling the Android OS in order to overcome
the aforementioned aspects. The contribution of this paper is twofold. Firstly,
we propose a formal model of Android that allows us to formally describe the
security-relevant aspects of the ASF. Secondly, we present a type and effect
system that we use for both producing the model of a platform and verifying
whether it meets some expected security goals. For modeling, we adopt a process
algebra-like formalism, namely history expressions [6], that can be exploited for
different purposes, as we detail in the following.
Structure of the paper. In Section 2 we briefly introduce the architecture of
Android and the principal interactions. In Section 3 we describe the ASF and
its enforcement mechanisms. In Section 4 we present our formal model for the
Android Security Framework. In Section 5 we present our type and effect system,
we prove its key properties and we describe its possible exploitations. Finally, in
Section 6 we draw some concluding remarks.

2 Android Architecture

The Android stack can be represented with 5 functional levels: Application, Ap-
plication Framework, Application Runtime, Libraries and the underlying Linux
kernel.

1. Application Layer. It includes both system (home,browser,email,..) and
user-installed Java applications. Applications are made of components cor-
responding to independent execution modules, that interact with each oth-
ers. There exist four kinds of components: 1) Activity, representing a single
application screen with a user interface, 2) Service, which is kept running
in background without interaction with the user, 3) Content Provider, that
manages application data shared among components of (potentially) distinct
applications, and 4) Broadcast Receiver which is able to respond to system-
wide broadcast announcements coming both from other components and the
system. Components are defined in namespaces that map components to a
specific name which allow to identify components in the system.

2. Application Framework. It provides the main OS services by means of a
set of APIs. This layer also includes services for managing the device and
interacting with the underlying Linux drivers (e.g. Telephony Manager and
Location Manager).

3. Android Runtime. This layer comprises the Dalvik virtual machine, the An-
droid’s runtime’s core component which executes applications.

4. Libraries. It contains a set of C/C++ libraries providing useful tools to the
upper layers and for accessing data stored on the device. Libraries are widely
used by the Application Framework services.

66 A. Armando, G. Costa, and A. Merlo

5. Linux kernel. Android relies on a Linux kernel for core system services. Such
services include process management and drivers for accessing physical re-
sources and Inter-Component Communication (ICC).

2.1 Interactions in Android

In Android, interactions can be horizontal (i.e. application to application) or
vertical (i.e. application to underlying levels). Horizontal interactions are used
to exploit functionalities provided by other applications, while vertical ones are
used to access system services and resources. Component services are invoked by
means of a message passing paradigm, while resources are referred by a special
formatted URI. Android URIs can also be used to address a content provider
database.

Horizontal interactions are based on a message abstraction called intent. In-
tent messaging is a facility for dynamic binding between components in the same
or different applications. An intent is a passive data structure holding an abstract
description of an operation to be performed (called action) and optional data in
URI format. Intents can be explicit or implicit. In the former case, the destina-
tion of the action is explicitly expressed in the intents (through the name of the
receiving application/component), while in the latter case the system has to de-
termine which is the target component accordingly to the action to be performed,
the optional data value and the applications currently installed in the system.

Intent-based communications are granted by a kernel driver called Binder
which offers a lightweight capability-based remote procedure call mechanism.
Although intent messaging passes through the Binder driver, it is convenient
to maintain intent’s level of abstraction for modeling purpose. In fact, every
Android application defines its entry points using intent filters which are lists
of intent’s actions that can be dispatched by the application itself. Furthermore,
an intent can be used to start activities, communicate with a service or send
broadcast messages.

Vertical interactions are used by applications to access system resources and
functionalities which are exposed through a set of APIs. Although system calls
can cause a cascade of invocations in the lower layers, possibly reaching the
kernel, all of them are mediated by the application framework APIs. Hence,
APIs mask internal platform details to the invoking applications. Internally, API
calls are handled according to the following steps. When an application invokes
a public API in the library, the invocation is redirected to a private interface,
also in the library. The private interface is an RPC stub. Then, the RPC stub
initiates an RPC request with the system process that asks a system service to
perform the requested operation.

3 Android Security Framework

The Android Security Framework (ASF) consists of a set of decentralized security
mechanisms spanning on all layers of the Android stack. The ASF enforces an
informal and cross-layer security policy focused on the concept of permission.

Formal Modeling and Reasoning about the Android Security Framework 67

3.1 Android Permissions

In Android, a permission is a string expressing the ability to perform a specific
operation. Permissions can be system-defined or user-defined. Each application
statically declares the set of permissions it requires to work properly. Such a
set is generally a superset of the permissions effectively used at runtime. During
installation of an application, the user must grant the whole set of required
permissions, otherwise the installation is aborted. Once installed, an application
cannot modify such permissions.

Each application package contains an XML file, called Android Manifest, con-
taining two types of permissions:

– declared permissions are defined by the application itself and represent
access rights that other applications must have for using its resources.

– requestedpermissions representing thepermissionsheldby the application.

Since permissions specified in the manifest are static (i.e., they cannot possi-
bly change at runtime), they are not suited to regulate access to resources that
are dynamically defined by the application (e.g., shared data from a content
provider). For this reason Android APIs include special methods for dynamically
(i) granting, (ii) revoking and (iii) checking access permissions. These methods
handle per-URI permissions thereby letting the application give temporary ac-
cess privileges for some owned URI to other applications.

3.2 Android Security Policy

The Android security policy defines restrictions on the interactions among ap-
plications and between each application and the system. The Android security
policy is globally enforced by the ASF. Both the policy and the ASF strongly
rely on permissions associated with the components. We detail here the security
policy related to the architecture and the interactions explained in Sec. 2.

Horizontal interactions. Horizontal interactions between components are carried
out through permissions associated with intents. Each application can declare
a list of permissions for their incoming intents. When application A sends an
intent I to application B, the platform delivers I only if A has the privileges
(granted at installation time) requested by B. Otherwise, the intent does not
reach B (still, it could be delivered to other recipients).

Vertical interactions. By default, an Android application can only access a lim-
ited range of system resources. These restrictions are implemented in different
forms. Some capabilities are restricted by an intentional absence of APIs medi-
ating sensitive accesses. For instance, there is no API that allows for the direct
manipulation of the SIM card. In other cases, the sensitive APIs are reserved for
trusted applications and are protected through permissions.

Each API in the library layer is associated with a certain permission. Once a
component invokes an API, the privileges of the component are checked against

68 A. Armando, G. Costa, and A. Merlo

the permission required for the API. If an application attempts to invoke an
API without having the proper privileges, a security exception is thrown and
the invocation fails.

Linux layer and IPC. The Android platform takes advantage of the Linux user-
based access control model as a means to identify and isolate application re-
sources. The Android system assigns a unique user ID (UID) to each Android
application and runs it as that user in a separate Linux process. This sets up
a kernel-level Application Sandbox. This approach uses the native Linux isola-
tion for users to implement a security policy that avoids direct communications
among Android applications by forcing all their interactions to rely upon the
IPC system. However, such a policy does not prevent a Linux process (running
an application) from communicating through one of the native UNIX mecha-
nisms such as sockets or files. Notice that the Linux permissions apply on such
channels.

The previous analysis shows the cross-layer nature of Android Security policy.
The ASF is distributed and involves distinct security-relevant aspects (from UID
and GID at Linux layer to human-readable and high level Android permissions).
Assessing the effectiveness of all the security mechanisms and their interplay is
difficult due to such heterogeneity and the lack of a detailed and comprehensive
model of the security-relevant aspects of Android.

4 Android Model

In this section we describe how we model Android applications and components.
In particular, we introduce a framework for defining an application in terms of
its (i) components, (ii) manifest and (iii) name space. Moreover, we present
a formal semantics for describing computations in our model. We believe that
our framework can be used to accurately describe most of the security-relevant
aspects of the Android OS. Indeed, even though Java-like languages have been
proposed for the application of formal methods, e.g., see [7,15], here we aim at
focussing on application-to-application and application-to-system interactions
which do not depend on object orientation. To this purpose, we show, through
examples, that our model covers a number of security flaws that have been
recently reported.

4.1 Applications and Components

In Table 1 we report the syntax of the elements of our framework.
Intuitively, an application A is a triple consisting of a manifest M , a naming

function Δ and a finite list of components C̄ = C1 . . . Cn. A manifest M contains
three parts: requested permissions Π , declared permissions P and an intents
resolution function Λ. The permission request part Π is a finite sequence of (i)
intent permission requests ρα and (ii) system permission requests ρσ. Instead,
the permission declaration P is a list of pairs (α, ū) binding intent names α, α′

Formal Modeling and Reasoning about the Android Security Framework 69

Table 1. Syntax of applications and components

A ::= 〈M,Δ, C̄〉 Application
M ::= Π ;P ;Λ Manifest
Π ::= ε | ρα.Π | ρσ.Π Permission requests
P ::= ε | (α, ū).P Exported permissions
Λ ::= ε | (α �→ η).Λ Intent binding
Δ ::= ∅ | Δ{C/η} Name space
C ::= skip | icastE | ecast η E | grantσ η E | Statements

revokeσ η E | checkσ η E | new x inC | receiveα x �→ C |
applyE toE′ | systemσ E | if (E = E′){C} else{C′} | C;C′

E ::= null | u | x | Iα(E,E′) | E.d | Expressions
E.e | proc f(x){C}

to lists of resources ū = u1, . . . , uk. The function Λ maps each intent name α
to a set of (identifiers of) components {η1, . . . , ηn} that can serve it, namely
the available receivers. Finally, Δ resolves components identifier η, η′ into actual
components C,C′.

Software components are obtained from the composition of statements and
expressions. Expressions, ranged over by E,E′, can be null, resources u, u′, vari-
ables x, y, intents constructors Iα(E,E′), data and extra field getters (E.d and
E.e, respectively) or procedure declarations proc f(x){C} (where f is bound in
C).

Similarly, statements, denoted by C,C′, can be a skip command, an im-
plicit intent cast icastE, an explicit intent cast ecast η E, an access per-
mission grant grantσ η E, a permission revocation revokeση E, a permission
checking checkσ η E, a fresh resource creation newx inC, an intent receiver
receiveα x �→ C, an application of a procedure to a parameter applyE toE′,
a system call systemσ E, a conditional branching if (E = E′){C} else{C′} or
a sequence C;C′.

4.2 Operational Semantics

The behaviour of programs follows the small step semantics rules given in Ta-
ble 2. Computations are sequences of reductions steps from a source configuration
to a target one. For expressions, a configuration only contains the element un-
der evaluation E. The operational semantics reduces expressions E,E′ to values
v, v′. A value can be either the void element ⊥, a resource u, a intent Iα(u, v), or
a procedure proc f(x){C}. If no reductions apply to a configuration E (where
E is not a value), we write E �→ and we say it to be stuck.

The semantic rules for commands are more tricky. Basically, we evaluate state-
ments under a configuration U,Φ,C where C is the program under computation,
U is a resources ownership function (i.e., U(η) = U means that the component

70 A. Armando, G. Costa, and A. Merlo

Table 2. Semantics of expressions and statements (fragment)

(E−NULL) null → ⊥ (E−FLD)
E → E′

E.f → E′.f
(E−DATA) Iα(u, v).d → u

(E−EXT) Iα(u, v).e → v (E−INTL)
E → E′′

Iα(E,E′) → Iα(E
′′, E′)

(E−INTR)
E → E′

Iα(v,E) → Iα(v,E
′)

(S−SKIP) U,Φ, skip � U,Φ, · (S−GRNT)
self = η′ u ∈ U(η′) Φ′ = Φ ∪ {(η, σ, u)}

U,Φ, grantσ η u� U,Φ′, ·

(S−REVK)
self = η′ u ∈ U(η′) Φ′ = Φ \ {(η, σ, u)}

U,Φ, revokeσ η u� U,Φ′, ·

(S−ICST)
self = η η′ ∈ Λ(α) η, α, u |= Φ

U,Φ, icast Iα(u, v)
αη′
η (u,v)
�Λ U,Φ, ·

(S−ECST)
self = η η′ ∈ Λ(α) η, α, u |= Φ

U,Φ, ecast η′ Iα(u, v)
αη′
η (u,v)
�Λ U,Φ, ·

(S−CHK)
η, σ, u |= Φ

U,Φ, checkσ η u� U,Φ, ·
(S−SYS)

self = η η, σ, u |= Φ

U,Φ, systemσ u
ση(u)� U,Φ, ·

(S−NEW)
self = η fresh u

U,Φ, new x inC � U ∪ {η/u}, Φ, C[u/x]

(S−APP) U,Φ, apply proc h(y){C} to v � U,Φ, C[v/y, proc h(y){C}/h]
(S−CND) U,Φ, if (v = v′){Ctt} else {Cff }� U,Φ, CB(v=v′)

(S−SEQ)
U,Φ,C

b�, U ′, Φ′, C′′

U,Φ,C;C′ b� U ′, Φ′, C′′;C′
(S−SEQ

−) U,Φ, ·;C � U,Φ, C

(identified by) η owns the resources in U) and Φ is the system policy (we write
η, β, u |= Φ for (η, β, u) ∈ Φ with β ∈ {α, σ}). Slightly abusing the notation, we
also use · in the configuration to represent computation termination.

Computational steps consist of transitions from a source configuration to a
target one. Transitions have the form U,Φ,C

a�Λ U ′, Φ′, C′ where a is an observ-
able action, i.e., an intent or a system call, that the computation can perform and
Λ is an intents destination table, i.e, Λ(α) = {η1, . . . , ηk} means that η1, . . . , ηk
are the candidates for handling an intent α. When not necessary, we feel free to
omit a and Λ from the transitions.

According to the rules of table 2,1 the commands behave as follows. The
statement skip does not change the system state and terminates (S−SKIP).
Both implicit (rule (S−ICST)) and explicit (rule (S−ECST)) casts produce an ob-
servable action αη′

η (u, v) and reduce to ·. The only difference is that the receiver
η′ for an implicit cast can be any of the elements of the destination table Λ, while

1 For brevity, table 2 only reports the rules which are more interesting our presentation.
The full semantics can be found at http://www.ai-lab.it/merlo/publications/

AndroidModel.pdf

http://www.ai-lab.it/merlo/publications/AndroidModel.pdf
http://www.ai-lab.it/merlo/publications/AndroidModel.pdf

Formal Modeling and Reasoning about the Android Security Framework 71

an explicit cast declares the destination (which still must be a legal one, i.e.,
η′ ∈ Λ). Note that, these reduction steps take place only if they are allowed by
the current policy Φ. Permission granting and revocation (rules (S−GRNT) and
(S−REVK)) are symmetrical. Indeed, granting a permission causes the current
policy to be extended with a possibly new, allowed action, while revocation
removes some existing privileges. Both the operations require u to be owned by
the executing component, i.e., u ∈ U(η′) where self = η′. Then, a security check
checkσ η u interrupts the computation if η has no rights to access to u through
σ (rule (S−CHK)). A system call systemσu is performed (rule (S−SYS)) if the
current component is allowed to invoke it and generates a corresponding access
action ση(u) (where η is the source of the access σ). Resource creation (S−NEW)
causes a statement C to be evaluated under a state in which a fresh resource u is
associated to the variable x. As expected, the owner of the resource is the current
component. Procedure application (rule (S−APP)) reduces to the computation
of the procedure body C where the formal parameter y and the variable h are
replaced with the actual parameter v and the procedure definition, respectively.
A conditional statement (rule (S−CND)) reduces to one of its branches depending
on the value of its guard (we write B(v = v′) as an abbreviation of the two
conditions v = v′ and v �= v′ which evaluate to either tt or ff). Finally, a sequence
of statements C;C′ behaves like C until it terminates and then reduces to the
execution of C′ (rules (S−SEQ) and (S−SEQ−)).

In addition to the standard syntax, we define the following abbreviations
which we adopt for the sake of presentation.

if (E �= E′){C} else {C′} � if (E = E′){C′} else{C}

if (E1 = E′
1 ∧ E2 = E′

2){C} else {C′} � if (E1 = E′
1){ if (E2 = E′

2){C} else {C′}} else {C′}

if (E1 = E′
1 ∨ E2 = E′

2){C} else {C′} � if (E1 �= E′
1){ if (E2 �= E′

2){C′} else {C}} else {C}

if (E ∈ U){C} else {C′} � if (
∨

u∈U
E = u){C} else {C′}

while (E �= v) do {C} � apply procw(x){ if (E �= x){C; applyw toE} else { skip } to v

Finally, we say that a configuration is stuck (we write U,Φ, S ��Λ) if S �= · and
the configuration admits no transitions. In real Android systems, this situation
corresponds to program termination or exception raising, but this aspect does
not impact on our framework. If a configuration reduces to a stuck one, we say
it to go wrong.

Example 1. Consider the following statement.

C = apply proc f(x){systemσ x; icast Iα(x, null)} tou

We simulate a computation under a configurationU,Φ,C where Φ = {(η, σ, u)}
and self = η. The resulting computation follows.
U,Φ, apply proc f(x){systemσ x; icast Iα(x, null)} tou�Λ U,Φ, systemσ u; icast Iα(u, null)
ση(u)�Λ U, Φ, ·; icast Iα(u, null)�Λ U, Φ, icast Iα(u, null)

72 A. Armando, G. Costa, and A. Merlo

The first step consists of a procedure application to an argument u. This
reduces the statement to the procedure body where the variable x is replaced
by u. The next step is a system call σ. Since η is allowed to perform access,
i.e., η, σ, u |= Φ, the statement fires the corresponding action and reduces to an
implicit cast statement. Then, as η, α, u �|= Φ, the computation cannot proceed
further and the configuration is stuck.

4.3 Execution Context

As described in Section 2, application manifests declare (i) activities, (ii) receivers
and (iii) content providers. The information contained in the manifest contribute
to defining how the components interact with each other and with the platform.
We describe this mechanism by means of an execution context (and its semantics)
which we define below.

Definition 1. An execution context (context for short) is P =
U,Φ, [C1]η1 · · · [Cn]ηn . The operational semantics of a context is defined by
the rules

(CTX−S)
U,Φ,Cj

b�Λ U ′, Φ′, C′

U, Φ, [C1]η1 · · · [Cj]ηj · · · [Cn]ηn
b⇒Λ U ′, Φ′, [C1]η1 · · · [C′]ηj · · · [Cn]ηn

(CTX−I)
U,Φ,Ci

α
ηj
ηi

(u,v)

�Λ U ′, Φ′, C′

U, Φ, · · · [Ci]ηi · · · [receivex 	→ C]ηj · · · ⇒Λ U ′, Φ′, · · · [C′]ηi · · · [C{Iα(u, v)/x}]ηj · · ·

Intuitively, the state of a platform is entirely defined by its execution context,
i.e., the configuration of the components running on it. Each component C is
wrapped by a local context [·]η labelled with its name. The execution context
changes according to the computational steps performed by the components
running on it and can see any action b (rule (CTX−S)). Also, the context provides
the support for the intent-based communications (rule (CTX−I)). In practice, the
context observes an action α

ηj
ηi (u, v) fired by a component ηi and delivers it to

the right destination ηj .
When a platform is initialised, e.g., at system boot, a default, starting context

is created. We now present the procedure that, given a system S = A1, . . . , An,
returns the corresponding initial context. To do that, we introduce some prelim-
inary notions.

Definition 2. Given an application A = 〈M,Δ, C̄〉 such that M = Π ;P ;Λ we
define:

– the permissions set of A, in symbols Perm(A) = {| P |}, where

{| ε |} = ∅ {| (α, ū).P ′ |} =
⋃

ui∈ū

{(α, ui)} ∪ {| P ′ |}

Formal Modeling and Reasoning about the Android Security Framework 73

– the privileges set of A, in symbols PrivP(A) =
⋃

η∈dom(Δ)

〈〈Π〉〉ηP , where P is

a permissions set and

〈〈ε〉〉ηP = ∅ 〈〈ρσ.Π〉〉ηP = 〈〈Π〉〉ηP∪
⋃

u

{σ(u)} 〈〈ρα.Π′〉〉ηP = 〈〈Π′〉〉ηP∪
⋃

τ

{αη(u, τ) | (α, u) ∈ P})

Briefly, Perm(A) is the set of new permissions which A exposes in its mani-
fest while PrivP(A) is the set of privileges it requests. We also write Perm(S)
and PrivS(A), where S = A1, . . . , An, as a shorthand for

⋃
i Perm(Ai) and

PrivPerm(S)(A), respectively. Even though Android does not check intents’ extras,
we annotate privileges with types τ, τ ′ (see Section 5). Intuitively, the expression⋃

τ{αη(u, τ) | . . .} denotes the set of intents α coming from η and carrying data
u, no matter what extra (of type) τ they contain. We can now explain how we
create an initial context.

Definition 3. Givena systemS=A1, . . . , An, such thatAi=〈Mi, Δi, C
i
1 . . . C

i
ki
〉2

andMi = Πi;Pi;Λi, we define

– US = λη.∅;
– ΦS =

⋃

Ai∈S

{(η, σ, u) | ση(u) ∈ PrivS(Ai)} ∪ ⋃

Ai∈S

{(η, α, u) | αη(u, τ) ∈ PrivS(Ai)};
– ΛS = λα.

⋃
i Λi(α);

Then, the default context for S is US ,ΦS , [C
1
1]η1

1
· · · [Cn

kn
]ηn

kn
where Ci

j = Δi(η
i
j).

The computation is then driven by ⇒ΛS .

In words, when a platform is initialised, all the components are loaded in
the execution context. Also, the applications contribute to create the ownership
function US , the policy ΦS and the destinations table ΛS. Initially, we assume
no resources to be owned by the applications, i.e., US = λη.∅. Note that still
resources can exist and we call them static or system resources. Instead, the
system policy ΦS is obtained from the union of all the privileges requested
by the applications (according to the existing permissions). In particular, we
combine the privileges for the system calls, i.e., (η, σ, u) and those for intents,
i.e., (η, α, u). The destination table ΛS is straightforward: for each intent α
it returns the set of all the declared receivers. Finally, all the components are
labelled with the unique name3 that is declared in the name space function of
their application.

Example 2. We propose the following implementation of the Denial of Service
(DoS) attack reported in [2]. The zygote socket is a system resource of the
Android platform. Briefly, upon receiving a request (intent fork) from an ap-
plication, the system connects to the zygote (system call zygote) for creating
and starting a new process. For balancing the computational load, the system
service grants that only certain processes can be allocated (we assume a finite
set T = {t1, . . . , tk}). We model the corresponding component as

CZ = receiveforkw �→ if (w.d ∈ T){systemzygotew.d} else{ skip}
2 We also assume that ∀i, j.dom(Δi) ∩ dom(Δj) = ∅.
3 Recall that we assumed ∀i, j.i 	= j ⇒ dom(Δi) ∩ dom(Δj) = ∅.

74 A. Armando, G. Costa, and A. Merlo

and then the service application is AZ = 〈MZ ;ΔZ ;CZ〉 with MZ = ρ zygote.ε;
(fork, T).ε;(fork �→ ηZ).ε and ΔZ(ηZ) = CZ .

Due to a wrong implementation of the access permissions, any application
having the network privileges can communicate with the zygote socket. Hence,
the application A = 〈M,Δ,C〉 where M = ρ zygote.ε;ε;(start �→ η).ε and
Δ(η) = C with C = newx in systemzygotex.

The elements of the initial context for S = A,AZ (see definition 3) are

– US = λη.∅ and ΦS = {(ηZ , zygote,), (η, zygote,)} (where means “any value”);
– ΛS such that ΛS(fork) = {ηZ}.
Hence, the initial context is US ,ΦS , [C]η[CZ]ηZ . A possible reduction for it

is (CTX−S)
US,ΦS, [new x in systemzygotex]η[CZ]ηZ ⇒ΛS US ∪ {η/u},ΦS, [systemzygoteu]η[CZ]ηZ

where u is a fresh resource. A further step is again (CTX−S)
US ∪ {η/u},ΦS, [systemzygoteu]η [CZ]ηZ ⇒ΛS US ∪ {η/u},ΦS, [·]η [CZ]ηZ

This last reduction is legal for the platform since (η, zygote, u) ∈ ΦS . However,
as u �∈ T , this operation corresponds to a violation of the requirement described
above.

5 Type and Effect

In this section we present our type and effect system for the language introduced
in Section 4. Also, we conclude this section with a brief dissertation about the
advantages and the possible applications of history expressions for the analysis
and verification of security properties which we plan to investigate in future
work.

5.1 History Expressions

The type and effect system assigns types to expressions and history expressions
to statements. Intuitively, a history expression represents the security-relevant,
side effects produced by computations. History expressions are defined through
the following syntax.

Definition 4. (Syntax of history expressions)

H,H ′ ::= ε | h | αη(u, τ) | ᾱηh.H | ση(u) | �ησ,u | �ησ,u | ?ησ,u |
νu.H | H ·H ′ | H +H ′ | H ‖ H ′ | μh.H | H\L

Briefly, they can be empty ε, variables h, h′, parametric actions αη, input pre-
fixed expressions ᾱηh.H , system actions ση, permission granting �ησ,u, permis-
sion revocations �ησ,u, permission checks ?ησ,u, resource creation νu.H , sequences

Formal Modeling and Reasoning about the Android Security Framework 75

Table 3. History expressions semantics

αη(u, τ)
αη(u,τ)
−−−−−−→ ε ση(u)

ση(u)
−−−−→ ε �ησ,u

�
η
σ,u
−−−→ ε �ησ,u

�
η
σ,u
−−−→ ε ?

η
σ,u

?
η
σ,u
−−−→ ε H

·
−→ H

νu.H
·
−→ H

H
a
−→ H′′

H ‖ H′ a
−→ H′′ ‖ H′

H′ a
−→ H′′

H ‖ H′ a
−→ H′ ‖ H′′

H
α
η′ (u,τ)

−−−−−−→ H′′

H ‖ ᾱηh.H
′ ·
−→ H′′ ‖ H′{αη(u, τ)/h}

H
a
−→ H′′

H ·H′ a
−→ H′′ ·H′

H
a
−→ H′ a ∈ L

H\L
a
−→ H\L

H
a
−→ H′′

H + H′ a
−→ H′′

H′ a
−→ H′′

H + H′ a
−→ H′′

H{H/h}
a
−→ H′

μh.H
a
−→ H′

�H� = {a1 . . . an | ∃H ′.H
a1−→ · · · an−−→ H ′}

H · H ′, non deterministic choices H + H ′, concurrent compositions H ‖ H ′,
recursions μh.H or action restrictions H\L.

We define the semantics of history expressions through a labelled transition
system (LTS) according to the rules in Table 3.

As expected, most of the transitions of Table 3 are common to many process
algebrae semantics. In particular, history expressions αη(u, τ), ση(u), �ησ,u, �ησ,u
and ?ησ,u simply fire the corresponding actions and reduce to ε. A sequence H ·H ′

behaves like H until H = ε (in which case we force ε ·H ′ = H ′), while a resource
creation νu.H reduces to H producing no visible effects. Instead, a restriction
H\L makes the same transitions as H , provided they are allowed by L, i.e.,
a ∈ L. Two concurrent history expressions H ‖ H ′ admit different reductions:
either one of the two sub-expressions independently performs one step or both of
them synchronise on a certain action. In order to perform a synchronisation, one
of the two must be a receiver for an action emitted by the other, i.e., ᾱη′h.H .
Note that received actions are relabelled with the identity of the receiver. Instead,
Non conditional choice H + H ′ can behave like H or H ′, respectively. Finally,
a recursive history expression μh.H can reduce to H where the instances of the
variable h have been replaced by the recursive expression.

Denotational semantics function �·� maps each history expression H into a
set of finite execution traces which H can generate.

5.2 Type and Effect System

Before presenting our type and effect system, we need to introduce two prelimi-
nary definitions for types and type environment.

Definition 5. (Types and type environment)

τ, τ ′ ::= 1 | U | Iα(U , τ) | τ H−→ 1 Γ, Γ ′ ::= ∅ | Γ{τ/x}

76 A. Armando, G. Costa, and A. Merlo

Table 4. Typing rules

(TE−NULL)Γ � null : 1 (TE−RES)Γ � u : {u} (TE−VAR)
Γ (x) = τ

Γ � x : τ
(TE−PROC)

Γ{τ/y, τ
H
−→ 1/h} �η

O C : H

Γ � proch(y){C} : τ
H
−→ 1

(TE−INT)
Γ � E : U Γ � E′ : τ

Γ � Iα(E,E′) : Iα(U , τ)
(TE−DATA)

Γ � E : Iα(U , τ)

Γ � E.d : U
(TE−EXT)

Γ � E : Iα(U , τ)

Γ � E.e : τ

(TS−SKIP) Γ �η
O skip : ε (TS−ICST)

Γ � E : Iα(U , τ)

Γ �η
O icastE :

∑
u∈U

αη(u, τ)
(TS−ECST)

Γ � E : Iα(U , τ)

Γ �η
O ecastη′ E :

∑
u∈U

αη(u, τ)

(TS−SYS)
Γ � E : U

Γ �η
O systemσ E :

∑
u∈U

ση(u)
(TS−CHK)

Γ � E : U

Γ �η′
O checkσ η E :

∑
u∈U

?ησ,u

(TS−GRNT)
Γ � E : U

Γ �η′
O grantσ η E :

∑
u∈U∩O

�ησ,u

(TS−REVK)
Γ � E : U

Γ �η′
O revokeσ η E :

∑
u∈U∩O

�ησ,u

(TS−APP)
Γ � E : τ

H
−→ 1 Γ � E′ : τ

Γ �η
O applyE toE′ : H

(TS−SEQ)
Γ �η

O C : H Γ �η
O C′ : H′

Γ �η
O C;C′ : H ·H′

(TS−NEW)
Γ{{u}/x} �η

O∪{u} C : H fresh u

Γ �η
O newx inC : νu.H

(TS−RECV)
Γ{Iα(U , τ)/x} �η

O C : H

Γ �η
O receiveα x �→ C : ᾱηh.H

(TS−CND)
Γ �η

O C : H Γ �η
O C′ : H

Γ �η
O if (E = E′){C} else {C′} : H

(TS−WKN)
Γ �η

O C : H′ H′ � H

Γ �η
O C : H

A type can be a unit 1, a finite set of resources U = {u1, . . . , un}, an intent

Iα(U , τ) or an annotated arrow τ
H−→ 1. We use annotated types in the style

of [4,22] (to which we refer the reader for more details) for denoting the latent
effect that a procedure can generate when applied to a target input. A type
environment Γ maps variable names into types and can be either empty ∅ or a
new binding in an existing environment Γ{τ/x}.

Type judgements assign types to expressions and history expressions to state-
ments. For expressions, the syntax is Γ
 E : τ and shall be read “expression E
has type τ under environment Γ”. Similarly, for statements we have Γ �ηO C : H
with the meaning that, under environment Γ , statement C (which is part of
package η) generates effect H . Also, we use O to denote the set of resources
owned by the package η. The rules of the type and effect system are reported in
Table 4.

In words, the expression null has type 1 and a resource u has type {u}
(rules (TE−NULL) and (TE−RES)). Instead, the type of a variable x is provided
by the environment Γ (rule (TE−VAR)). Procedures require more attention (rule
(TE−PROC)). Indeed, we say that a procedure proc f(x){C}, has arrow type

τ
H−→ 1 where τ is the type of its input and H is the latent effect obtained by

Formal Modeling and Reasoning about the Android Security Framework 77

typing C (see rules for statements). Also, typing C requires to recursively keep
trace of the type of x and of the procedure f . Typing intents (rule (TE−INT))
is quite intuitive: an intent Iα(E,E′) has type Iα(U , τ) where U and τ are the
types of the sub-expressions E and E′. Conversely, the type of the data and
extra fields (rules (TE−DATA) and (TE−EXT)) of an intent of type Iα(U , τ) have
type U and τ , respectively.

Typing rules for statements are also straightforward. A skip command (rule
(TS−SKIP)) generates the void effect ε, while casting an intent (both implicitly
or explicitly, rule (TS−ICST) and (TS−ECST)) inside a component η, can generate
an action αη(u, τ) for each possible instance of u compatible with the intent type
(we use

∑
Hi as a shorthand for the finite summation H1+H2+ . . .). Similarly,

system calls, permission granting, revocation and checks produce corresponding,
observable actions (rules (TS−SYS), (TS−GRNT), (TS−REVK) and (TS−CHK), re-
spectively). In particular, a command systemσ(E) is typed to the sum of all the
possible accesses σ to the resources denoted by E. Instead, permission grant-
ing (revocation) evaluates to the special action �ησ,u (�ησ,u). Then, permission
checks produce the special actions ?ησ,u. Applying a procedure to a parame-
ter (rule (TS−APP)) results in its latent effect to be carried out. The sequence
of statements (TS−SEQ) is typed to the sequence of their effects, the resource
creation command (TS−NEW) results in the history expression νu.H , a receiver
(rule (TS−RECV)) has effect ᾱηh.H and a conditional branching (rule (TS−CND))
has effect equal to those of its two branches. Finally, we include a rule, called
weakening (TS−WKN), for extending the effect of statements (where H ′ � H iff
�H ′� ⊆ �H�).

Example 3. Consider the following two statements:

C = apply (proc f(y){ receivex �→ systemσ (x.d); apply f to y}) to null
C′ = icast Iα(u, null)

We type them as follows:

∅ �η∅ apply (proc f(y){ receive x �→ systemσ (x.d); apply f to y}) to null : μh.ᾱηh′.ση(u) · h
∅ �η

′
∅ icast Iα(u, null) : αη′ (u,1)

The complete derivations are reported at http://www.ai-lab.it/merlo/
publications/AndroidModel.pdf.

A fundamental property of our type system is that it generates history ex-
pressions which correctly represent the behaviour of the statements they are
extracted from. This is granted by the following lemma.

Lemma 1. For each C such that ∅ �ηO C : H and for each Φ,Λ and U such that
U(η) = O, for all arbitrary long sequences of actions performed by U,Φ,C there
exists a trace in �H� denoting it.

As far as the overall behaviour of a system depends on several components and
their permissions and privileges, typing each single component is not sufficient to

http://www.ai-lab.it/merlo/publications/AndroidModel.pdf
http://www.ai-lab.it/merlo/publications/AndroidModel.pdf

78 A. Armando, G. Costa, and A. Merlo

create a model of an entire platform. Hence, we define a compositional operator,
based on our typing rules, which, given a system generates a corresponding
model.

Definition 6. Given a systemS = A1, . . . , An such thatAi = 〈Mi, Δi, C
i
1 . . . C

i
ki
〉

we define

he(S) = (H1
1\LA1

) ‖ . . . ‖ (H1
k1
\LA1

) ‖ . . . ‖ (Hn
1 \LAn

) ‖ . . . ‖ (Hn
kn

\LAn
) where

– ∅
η∅ Ci
j : Hi

j (with Δi(η) = Ci
j);

– LAi = {αη(u, τ) | αη(u, τ) ∈ PrivS(Ai)}.

The operator he(S) generates a history expression which correctly models S
as stated by the following theorem.

Theorem 1. For each S = A1, . . . , An such that Ai = 〈Mi, Δi, C
i
1 . . . C

i
ki
〉 for

any arbitrary long computation performed by US ,ΦS , [C
1
1]η1

1
· · · [Cn

kn
]ηn

kn
there

exists a trace in �he(S)� denoting it.

Such property guarantees that any possible behaviour that a platform has at
runtime is contained in its model which we can analyse statically.

5.3 Future Directions

We showed that type and effect systems can be used to compute an over-
approximation of the behaviours of programs called the history expressions.
History expressions can be exploited for different kinds of analysis, e.g., vali-
dation against security policies [5] or deployment of extra security checks [22].
We plan to investigate the existing techniques which rely on history expressions
for verifying whether they apply, as we believe, to our model.

Another possibility is to exploit type systems as proof systems. LetH be a his-
tory expression and C be a statement. Typing ∅�Oη C : H corresponds to proving
that the behaviour of C is bounded by H . This means that, if we specify security
policies through history expressions, then we can verify a program by typing it to
that particular history expression. Also, we can obtain similar results by typing
a statement and checking whether the obtained history expression is a subtype
(relation�) of the policy ones. A convenient way to do that can be via simulation-
based techniques, which can be applied here since � is indeed a simulation rela-
tion (see http://www.ai-lab.it/merlo/publications/AndroidModel.pdf).

6 Conclusion and Related Work

In this work we presented an approach which aims at modeling the Android
Application Framework. Furthermore, such model is automatically inferred by
means of a type and effect system. The type and effect system can either gen-
erate or verify history expressions from the Android applications (components

http://www.ai-lab.it/merlo/publications/AndroidModel.pdf

Formal Modeling and Reasoning about the Android Security Framework 79

and manifests). The resulting model is safe in the sense that it correctly repre-
sents all the possible runtime computations of the applications. Moreover, the
history expressions representing (the components of) each single application can
be combined together in order to create a global model for a specific Android
platform. History expressions, originally proposed by Bartoletti et al. [5], have
been successfully applied to the security analysis of Java applications [3] and
web services [4], and we plan to apply similar approaches to Android.

Related work. Only recently researchers focussed on the formal modeling and
analysis of the Android platform and its security aspects. In [21] the authors
formalise the permission scheme of Android. Briefly, their formalisation consists
of a state-based model representing entities, relations and constraints over them.
Also, they show how their formalism can be used to automatically verify that
the permissions are respected. Unlike our proposal, their language only describes
permissions and obligations and does not capture application interactions which
we infer from actual implementations. In particular, their framework provides
no notion of interaction with the platform, while we represent it through system
calls.

Similarly to the present work, Chaudhuri [10] proposes a language-based ap-
proach to infer security properties from Android applications. Moreover, this
work propose a type system that guarantees that well-typed programs respects
user data access permissions. The type and effect system that we presented here
extends the proposal of [10] as it also infers/verifies history expressions. History
expressions can denote complex interactions and behaviours and which allow for
the verification and enforcement of a rich class of security policies [1].

Most of the literature on Android security contains proposals for i) extending
the native security policy, ii) enhancing the ASF with new tools for specific
security-related checks, and iii) detecting vulnerabilities and security threats.
Regarding the first category, in [20] Android security policy is analysed in terms
of efficacy and some extensions are proposed. Besides, in [17] authors propose
an extension to the basic Android permission systems and corresponding new
policies. Moreover, in [24] new privacy-related security policies are proposed for
addressing security problems related to users’ personal data.

Related to ASF, many proposal have been made to extend native security
mechanisms. For instance, [13] and [18] are focused on permissions: the first pro-
poses a monitoring tool for assessing the actual privileges of Android applications
while the latter describes SAINT, a modification to Android stack that allows
to manage install-time permissions assignment. Other tools are mainly focused
on malware detection (e.g. XManDroid [8] and Crowdroid [9]) and application
certification (e.g. Scandroid [14] and Comdroid [11]).

Some works have been carried out to detect vulnerabilities which are often
independent from the Android version. Many of them show that the Android
platform may suffer from DoS attacks [2], covert channels [19], web attacks [16]
and privilege escalation (see [8]).

All the analysed approaches are unrelated and may work independently on the
same Android stack. However, since different approaches often share common

80 A. Armando, G. Costa, and A. Merlo

security features they should integrate one another. Such result is currently
unachievable, due to the lack of common and comprehensive reference model for
the security of the Android platform.

References

1. Abadi, M., Fournet, C.: Access control based on execution history. In: Proceed-
ings of the 10th Annual Network and Distributed System Security Symposium,
pp. 107–121 (2003)

2. Armando, A., Merlo, A., Migliardi, M., Verderame, L.: Would you mind forking this
process? A denial of service attack on Android (and some countermeasures). In:
Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol. 376,
pp. 13–24. Springer, Heidelberg (2012)

3. Bartoletti, M., Costa, G., Degano, P., Martinelli, F., Zunino, R.: Securing Java
with Local Policies. Journal of Object Technology 8(4), 5–32 (2009)

4. Bartoletti, M., Degano, P., Ferrari, G.L.: Planning and verifying service composi-
tion. Journal of Computer Security (JCS) 17(5), 799–837 (2009)

5. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Types and effects for resource
usage analysis. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 32–47.
Springer, Heidelberg (2007)

6. Bartoletti, M., Degano, P., Ferrari, G.-L., Zunino, R.: Local policies for resource
usage analysis. ACM Transactions on Programming Languages and Systems 31(6),
1–43 (2009)

7. Bierman, G.M., Parkinson, M.J., Pitts, A.M.: MJ: An imperative core calculus for
Java and Java with effects. Technical report, University of Cambridge (2003)

8. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R.: Xmandroid: A
new android evolution to mitigate privilege escalation attacks. Technical Report
TR-2011-04, Technische Univ. Darmstadt (April 2011)

9. Burguera, I., Zurutuza, U., Nadjm-Therani, S.: Crowdroid: behavior-based mal-
ware detection system for android. In: Proceedings of the 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, SPSM 2011 (2011)

10. Chaudhuri, A.: Language-based security on Android. In: Proceedings of the ACM
SIGPLAN FourthWorkshop on Programming Languages and Analysis for Security,
PLAS 2009, pp. 1–7. ACM, New York (2009)

11. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in Android. In: Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, MobiSys 2011, pp. 239–252. ACM,
New York (2011)

12. Android Developers. Security and permissions,
http://developer.android.com/guide/topics/security/security.html

13. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security, CCS 2011, pp. 627–638 (2011)

14. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: Automated security certifica-
tion of android applications

15. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A Minimal Core Calcu-
lus for Java and GJ. ACM Transactions on Programming Languages and Systems,
132–146 (1999)

http://developer.android.com/guide/topics/security/security.html

Formal Modeling and Reasoning about the Android Security Framework 81

16. Luo, T., Hao, H., Du, W., Wang, Y., Yin, H.: Attacks on webview in the an-
droid system. In: Proceedings of the 27th Annual Computer Security Applications
Conference, ACSAC 2011, pp. 343–352. ACM, New York (2011)

17. Nauman, M., Khan, S., Zhang, X.: Apex: extending android permission model and
enforcement with user-defined runtime constraints. In: Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security, ASIACCS
2010, pp. 328–332. ACM, New York (2010)

18. Ongtang, M., Mclaughlin, S., Enck, W., Mcdaniel, P.: Semantically rich
application-centric security in android. In: ACSAC 2009: Annual Computer Se-
curity Applications Conference (2009)

19. Schlegel, R., Zhang, K., Zhou, X., Intwala, M., Kapadia, A., Wang, X.: Sound-
comber: A Stealthy and Context-Aware Sound Trojan for Smartphones. In: Pro-
ceedings of the 18th Annual Network & Distributed System Security Symposium
(2011)

20. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google
android: A comprehensive security assessment. IEEE Security Privacy 8(2), 35–44
(2010)

21. Shin, W., Kiyomoto, S., Fukushima, K., Tanaka, T.: A Formal Model to Analyze
the Permission Authorization and Enforcement in the Android Framework. In:
Proceedings of the 2010 IEEE Second International Conference on Social Comput-
ing, SOCIALCOM 2010, pp. 944–951. IEEE Computer Society, Washington, DC
(2010)

22. Skalka, C., Smith, S.: History effects and verification. In: Chin, W.-N. (ed.) APLAS
2004. LNCS, vol. 3302, pp. 107–128. Springer, Heidelberg (2004)

23. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone ap-
plications in third-party android marketplaces. In: Proceedings of the Second
ACM Conference on Data and Application Security and Privacy, CODASPY 2012,
pp. 317–326. ACM, New York (2012)

24. Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming information-stealing smart-
phone applications (on android). In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) TRUST 2011. LNCS, vol. 6740,
pp. 93–107. Springer, Heidelberg (2011)

	Formal Modeling and Reasoning about the Android Security Framework

	1 Introduction
	2 Android Architecture
	2.1 Interactions in Android

	3 Android Security Framework
	3.1 Android Permissions
	3.2 Android Security Policy

	4 Android Model
	4.1 Applications and Components
	4.2 Operational Semantics
	4.3 Execution Context

	5 TypeandEffect
	5.1 History Expressions
	5.2 Type and Effect System
	5.3 Future Directions

	6 Conclusion and Related Work
	References

