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Preface

This volume contains the proceedings of TGC 2012, the 7th International Sym-
posium on Trustworthy Global Computing held during September 7–8, 2012, in
Newcastle Upon Tyne, UK, co-located with CONCUR and PATMOS.

TGC is an international annual venue dedicated to safe and reliable compu-
tation in the so-called global computers, i.e., those computational abstractions
emerging in large-scale infrastructures such as service-oriented architectures, au-
tonomic systems and cloud computing.

The related models of computation incorporate code and data mobility over
distributed networks that connect heterogeneous devices and have dynamically
changing topologies.

The TGC series focuses on providing frameworks, tools, algorithms and pro-
tocols for designing open-ended, large-scale applications and for reasoning about
their behaviour and properties in a rigorous way.

The first TGC event took place in Edinburgh during April 7–9, 2005, with
the co-sponsorship of IFIP TC-2, as part of ETAPS 2005. TGC 2005 was the
evolution of the previous Global Computing I workshops held in Rovereto in
2003 and 2004 (see LNCS vol. 2874) and the workshops on Foundation of Global
Computing held as satellite events of ICALP and CONCUR (see ENTCS vol.
85). The last four editions of TGC were co-located with the reviews of the EU-
funded projects AEOLUS, MOBIUS and SENSORIA within the FP6 initiative.
They were held in Lucca, Italy (TGC 2006); in Sophia-Antipolis, France (TGC
2007); in Barcelona, Spain (TGC 2008); in Munich, Germany (TGC 2010); and
in Aachen, Germany (TGC 2011); see, respectively, LNCS vol. 4661, LNCS vol.
4912, LNCS vol. 5474, LNCS vol. 6084, LNCS vol. 7173.

The main themes investigated by the TGC community are concerned with
theories, languages, models and algorithms for global computing; abstraction
mechanisms, models of interaction and dynamic components management; trust,
access control and security enforcement mechanisms; privacy, reliability and busi-
ness integrity; resource usage and information flow policies; contract-oriented
software development; game-theoretic approaches to collaborative and compet-
itive behaviour; self configuration, adaptation, and dynamic components man-
agement; software principles and tools to support debugging and verification;
model checkers, theorem provers and static analyzers.

TGC 2012 received 14 submissions out of which the Program Committee
selected nine regular papers to be included in this volume and be presented
at the symposium. To guarantee the fairness and quality of the selection, each
paper received at least three reviews. Additionally, the program included four
invited speakers:

– Dan Ghica (University of Birmingham, UK)
– Cosimo Laneve (Università di Bologna, Italy)
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– David Naccache (ENS Cachan, France)
– Stefan Saroiu (Microsoft Research, USA)

All the invited speakers were invited to contribute to the proceedings with a
paper related to their talk, and Dan Ghica, Cosimo Laneve, and David Naccache
accepted. In addition, this volume contains a paper by Michele Bugliesi, who was
an invited speaker at TGC 2011, and whose paper, for logistical reasons, could
not appear in the proceedings.

We thank the Steering Committee of TGC for inviting us to chair the con-
ference and all PC members and external referees for their detailed reports and
the stimulating discussions that emerged in the review phase. We thank all the
authors of submitted papers and all the invited speakers for their interest in
TGC. We want to thank the providers of the EasyChair system, which was used
to manage the submissions, for reviewing (including the electronic PC meeting),
and to assemble the proceedings. We thank Joshua Phillips for administrating
the website, Maciej Koutny, Irek Ulidowski and the local organization of CON-
CUR and PATMOS for their help.

September 2012 Catuscia Palamidessi
Mark D. Ryan
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From Rational Number Reconstruction
to Set Reconciliation and File Synchronization

Antoine Amarilli, Fabrice Ben Hamouda, Florian Bourse,
Robin Morisset, David Naccache, and Pablo Rauzy

École normale supérieure, Département d’informatique
45, rue d’Ulm, f-75230, Paris Cedex 05, France

firstname.lastname@ens.fr (except for fabrice.ben.hamouda@ens.fr)

Abstract. This work revisits set reconciliation, the problem of synchro-
nizing two multisets of fixed-size values while minimizing transmission
complexity. We propose a new number-theoretic reconciliation protocol
called Divide and Factor (D&F) that achieves optimal asymptotic trans-
mission complexity – as do previously known alternative algorithms. We
analyze the computational complexities of various D&F variants, study
the problem of synchronizing sets of variable-size files using hash func-
tions and apply D&F to synchronize file hierarchies taking file locations
into account.

We describe btrsync, our open-source D&F implementation, and
benchmark it against the popular software rsync. It appears that
btrsync transmits much less data than rsync, at the expense of a rela-
tively modest computational overhead.

1 Introduction

File synchronization is the important practical problem of retrieving a file hi-
erarchy from a remote host given an outdated version of the retrieved files. In
many cases, the bottleneck is network bandwidth. Hence, transmission must be
optimized using the information given by the outdated files to the fullest possible
extent. Popular file synchronization programs such as rsync use rolling check-
sums to skip remote file parts matching local file parts; however, such programs
are usually unable to use the outdated files in more subtle ways, e.g., detect that
information is already present on the local machine but at a different location
or under a different name.

File synchronization is closely linked to the theoretical Set Reconciliation
Problem: given two sets of fixed-size data items on different machines, deter-
mine the sets’ symmetric difference while minimizing transmission complexity.
The size of the symmetric difference (i.e., the difference’s cardinality times the
elements’ size) is a clear information-theoretic lower bound on the quantity
of information to transfer, and several known algorithms already achieve this
bound [11].

This paper considers set reconciliation and file synchronization from both a
theoretical and practical perspective:

C. Palamidessi and M.D. Ryan (Eds.): TGC 2012, LNCS 8191, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 A. Amarilli et al.

– Section 2 introduces Divide and Factor (D&F), a new number-theoretic set
reconciliation algorithm. D&F represents the items to synchronize as prime
numbers, accumulates information during a series of rounds and computes
the sets’ difference using Chinese remaindering and rational number recon-
struction.

– Section 3 shows that D&F’s transmission complexity is linear in the size of
the symmetric difference of the multisets to reconcile.

– Section 4 extends D&F to perform file reconciliation, i.e., reconcile sets of
variable-size files. We show how to choose the hash functions to optimally
trade transmission for success probability. Several elements in this analysis
are generic and apply to all set reconciliation algorithms.

– Section 5 studies D&F’s time complexity and presents constant-factor trade-
offs between transmission and computation.

– Section 6 compares D&F with existing set reconciliation algorithms.
– Section 7 extends D&F to file synchronization, taking into account file lo-

cations and dealing intelligently (i.e., in-place) with file moves. We describe
an algorithm applying a sequence of file moves while avoiding the excessive
use of temporary files.

– Section 8 presents btrsync, our D&F implementation, and benchmarks it
against rsync. Experiments reveal that btrsync requires more computation
than rsync but transmits less data in most cases.

2 Divide and Factor Set Reconciliation

This section introduces Divide and Factor. After introducing the problem and
notations, we present a basic D&F version assuming that the number of differ-
ences between the multisets to reconcile is bounded by some constant t known to
the parties. We then extend this basic protocol to a complete algorithm dealing
with any number of differences.

2.1 Problem Definition and Notations

Oscar possesses an old version of a multiset H = {h1, . . . , hn} that he wishes to
update. Neil has a newer, up-to-date multiset H′ = {h′

1, . . . , h
′
n′}. The hi, h′

i are
u-bit primes. Note that Neil does not need to learn H1.

Let D = H \ H′ be the multiset of values owned by Neil but not by Oscar,
with adequate multiplicities. Likewise, let D′ = H′ \ H be the values owned by
Oscar and not by Neil.

Let T = #D+#D′ = #(DΔD′) be the number of differences between H and
H′, where DΔD = (D \ D′) ∪ (D′ \ D).

1 The protocol can be easily transformed to do so without changing asymptotic trans-
mission complexities.
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Oscar Neil

c←∏n
i=1 hi mod p

c−−−−−−−−→ c′ ←∏n′
i=1 h

′
i mod p

s← c′/c mod p
reconstruct a, b from s

D ← {hi ∈ H | b mod hi = 0} D′, b←−−−−−−−− D′ ← {h′
i ∈ H′ | a mod h′

i = 0}

Fig. 1. Basic D&F protocol (assuming that T ≤ t)

2.2 Basic Protocol with Bounded T

Assume that T ≤ t for some fixed t known by Neil and Oscar. The initial phases
of the protocol are as follows:
– Generate a prime p such that 22ut ≤ p < 22ut+1.
– Oscar computes the redundancy c =

∏n
i=1 hi mod p and sends it to Neil.

– Neil computes c′ =
∏n

i=1 mod p and s = c′
c mod p.

Because T ≤ t, H and H′ differ by at most t elements and s can be written
as follows:

s =
a

b
mod p where

{
a =

∏
h′
i∈H′\H h′

i ≤ 2ut − 1

b =
∏

hi∈H\H′ hi ≤ 2ut − 1
.

The problem of efficiently recovering a and b from s is called Rational Number
Reconstruction (RNR) [12,16]. The following theorem (cf. Theorem 1 of [8])
guarantees that RNR can be solved efficiently in the present setting:

Theorem 1. Let a, b ∈ Z be two co-prime integers such that 0 ≤ a ≤ A and
0 < b ≤ B. Let p > 2AB be a prime and s = ab−1 mod p. Then a and b are
uniquely defined given s and p, and can be recovered from A, B, s, and p in
polynomial time.

Taking A = B = 2ut − 1, we have AB < p, since 22ut ≤ p < 22ut+1. More-
over, 0 ≤ a ≤ A and 0 < b ≤ B. Thus Oscar can recover a and b from s in
polynomial time e.g., using Gauß’s algorithm for finding the shortest vector in
a bi-dimensional lattice [15].

Oscar and Neil can then test, respectively, the divisibility of a and b by ele-
ments of the sets H and H′ to identify the differences between H and H′ and
settle them2. This basic protocol is depicted in Figure 1.

2.3 Full Protocol with Unbounded T

In practice, we cannot assume that we have an upper bound t on the number
of differences T . This section extends the protocol to any T . We do this in two
2 Actually, this only works ifH andH′ are sets. In the case of multisets, if the multiplic-

ity of h′
i inH′ is j′, then we would need to check the divisibility of b by hi, h

2
i , . . . , h

j′
i .

For the sake of clarity we will assume that H and H′ are sets. Adaptation to the
general case is straightforward.
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steps. We first show that we can slightly change the protocol to detect whether a
choice of t was large enough for a successful reconciliation (which is guaranteed
to be true if t was ≥ T ). We then construct a protocol that works with any T .

Detecting Reconciliation Failures. If t < T , with high probability, a will not
factor completely over the set of primes H′3. We will (improperly) consider that
in such a case a is a random (tu)-bit number. For each i, the probability that h′

i

divides a is at most 1/2u. The probability that
∏

h′
i mod a = 0 is roughly the

probability that exactly t h′
i’s amongst n′ divide a, i.e.,

(
n′

t

)
2−ut(1− 2−u)n

′−t ≤
n2−ut which is very small if 2u � n′, a condition that we assume hereafter.

Thus, Neil can check very quickly that
∏

h′
i mod a = 0 without sending any

data to Oscar. We call ⊥1 the event where this test failed (which implies that
reconciliation failed), and⊥2 the event where this test succeeds but reconciliation
failed (which is very unlikely according to the previous discussion).

To handle ⊥2, we will use a collision-resistant hash function Hash, such as
SHA: Before any exchanges take place, Neil will send to Oscar H = Hash(H′).
After computing D, Oscar will compute a candidate H′ from {H,D′,D} and
check that this candidate H′ hashes into H . As Hash is collision-resistant, we
can detect event ⊥2 in this fashion.

Complete D&F Protocol. To extend the protocol to an arbitrary T , assume
that Oscar and Neil agree on an infinite set of primes p1, p2, . . . As long as ⊥1

or ⊥2 occurs, Neil and Oscar will repeat the protocol with a new p� to learn
more information on H′. Oscar will keep accumulating information about the
difference between H and H′ during these protocol runs (called rounds).

Formally, assume that 22utk ≤ pk < 22utk+1. Let Pk =
∏k

i=1 pi and Tk =∑k
i=1 ti. After receiving the redundancies c1, . . . , ck corresponding to p1, . . . , pk,

Neil has as much information as if Oscar would have transmitted a redundancy
Ck modulo Pk. Oscar can indeed compute Sk = C′

k/Ck from sk = c′k/ck and
Sk−1 using the Chinese Remainder Theorem (CRT):

Sk = CRT(Sk−1, Pk−1, sk, pk)

= Sk−1(p
−1
k mod Pk−1)pk + sk(P

−1
k−1 mod pk)Pk−1 mod Pk.

The full protocol is given in Figure 2 page 5. Note that no information is lost
and that the transmitted modular knowledge about the difference adds up until
it becomes sufficiently large to reconcile H and H′. Therefore, the worst-case
number of necessary rounds κ is the smallest integer k such that Tk ≥ T .

In what follows, we will focus on two interesting choices of tk:
– Fixed t: ∀k, tk = t for some fixed t, in which case κ =

⌈
T
t

⌉
;

– Exponential tk: ∀k, tk = 2kt for some fixed t, in which case κ =
⌈
log2

T
t

⌉
.

3 i.e.,
∏

h′
i mod a �= 0.
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Oscar Neil

Initial phase: Neil sends a global hash to detect ⊥2

H ← Hash(H′)
H←−−−−−−−−

Main phase: Neil amasses modular information on the difference between H and H′

Round 1
c1 ←∏n

i=1 hi mod p1
c1−−−−−−−−→ c′1 ←

∏n′
i=1 h

′
i mod p1

s1 ← c′1/c1 mod p1
S1 ← s1
reconstruct a, b from S1 (modP1)
D′ ← {h′

i ∈ H′ | a mod h′
i = 0}

if
∏

h∈D′ h mod P1 = a
then go to final phase
else continue (event ⊥1)

Round 2
c2 ←∏n

i=1 hi mod p2
c2−−−−−−−−→ c′2 ←

∏n′
i=1 h

′
i mod p2

s2 ← c′2/c2 mod p2
S2 ← CRT(S1, P1, s2, p2)
reconstruct a, b from S2 (modP2)
D′ ← {h′

i ∈ H′ | a mod h′
i = 0}

if
∏

h∈D′ h mod P2 = a
then go to final phase
else continue (event ⊥1)

...

Final phase: Oscar obtains a candidate H′ and hash-checks it

D ← {hi ∈ H | b mod hi} D′, b←−−−−−−−−
compute H′ from {H,D,D′}
if Hash(H′) �= H

then go back to Main phase
(event ⊥2)

else the protocol is complete.

Fig. 2. Complete D&F Protocol (for any T )

3 Transmission Complexity

This section proves that D&F achieves optimal asymptotic transmission
complexity.

Assuming that no ⊥2 occurred (since⊥2’s happen with negligible probability),
D&F’s transmission complexity is:
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κ∑
k=1

log ck + log b+ log |D′| ≤
κ∑

k=1

(utk + 1) +
1

2
(uTκ) + uT ≤ 5

2
uTκ + uκ,

where κ is the required number of rounds.
For the two choices of tk that we mentioned, transmission complexity is:

– Fixed t: κ = 	T/t
, Tκ = κt < T + t and transmission is ≤ 5
2u(T + t) +

	T/t
 = O(uT );
– Exponential t: κ = 	log(T/t′)
, Tκ < 2T and transmission is ≤ 5

2 × 2uT +
	log(T/t′)
 = O(uT ).

While asymptotic transmission complexities are identical for both choices, we
note that the fixed t option is slightly better in terms of constant factors and
halves transmission with respect to the exponential option. However, as we will
see in Section 5.2, an exponential t results in a lower computational complexity.

Note that in both cases asymptotic transmission complexity is proportional
to the size of the symmetric difference (i.e., the number of differences times the
size of an individual element). This is also the information-theoretic lower bound
on the quantity of data needed to perform reconciliation. Hence, the protocol is
asymptotically optimal from a transmission complexity standpoint.

Probabilistic Decoding: Reducing p. We now describe an improvement that re-
duces transmission by a constant factor at the expense of higher RNR failure
rates. For simplicity, we will focus on one round D&F and denote by p the cur-
rent Pk. We will generate a p about twice smaller than the p recommended in
Section 2.2, namely 2ut−1 ≤ p < 2ut.

Unlike Section 2.2, we do not have a fixed bound for a and b anymore; we
only have a bound for the product ab, namely ab ≤ 2ut.

Therefore, we define t + 1 couples of possible bounds: (Aj , Bj)0≤j≤t =(
2uj , 2u(t−j)

)
.

Because 2ut−1 ≤ p < 2ut and ab ≤ 2ut, there must exist at least one index j
such that 0 ≤ a ≤ Aj and 0 < b ≤ Bj . We can therefore apply Theorem 1 with
A = Aj and B = Bj : since AjBj = 2ut < p, given (Aj , Bj, p, s), one can recover
(a, b), and hence Oscar can compute H′.

This variant will roughly halve transmission with respect to Section 2.2. The
drawback is that, unlike Section 2.2, we have no guarantee that such an (a, b)
is unique. Namely, we could in theory stumble over an (a′, b′) �= (a, b) satisfying
the equation a′b′ ≤ 2ut for some index j′ �= j. We conjecture that, when u is
large enough, such failures happen with a negligible probability (that we do not
try to estimate here). This should lower the expected transmission complexity of
this variant. In any case, thanks to hashing (H = Hash(H′)), if a failure occurs,
it will be detected.

4 From Set Reconciliation to File Reconciliation

We now show how to perform file reconciliation using hashing and D&F. We
then devise methods to reduce the size of hashes and thus improve transmission
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by constant factors. The presented methods are generic and can be applied to
any set reconciliation protocol.

4.1 File Reconciliation Protocol

So far Oscar and Neil know how to synchronize sets of u-bit primes. They now
want to reconcile files modeled as arbitrary length binary strings. Let F =
{F1, . . . , Fn} be Oscar’s set of files and let F ′ = {F ′

1, . . . , F
′
n} be Neil’s. Let

η = |F ∪ F ′| ≤ n+ n′ be the total number of files.
A naïve way to reconcile F and F ′ is to simply hash the content of each file

into a prime and proceed as before. Upon D&F’s completion, Neil can send to
Oscar the actual content of the files matching the hashes in D′, i.e., the files that
Oscar does not have.

More formally, define for 1 ≤ i ≤ n, hi = HashPrime(Fi) and for 1 ≤ i ≤ n′,
h′
i = HashPrime(F ′

i ) where HashPrime is a collision-resistant hash function into
primes so that the mapping from F ∪ F ′ to H ∪H′ is injective for all practical
purposes. Section 5.1 shows how to construct such a hash function from usual
hash functions.

4.2 The File Laundry: Reducing u

What happens if we brutally shorten u in the basic D&F protocol? As expected
by the birthday paradox, we should start seeing collisions. [3] analyzes the statis-
tics governing the appearance of collisions. The average number of colliding files
is ∼ η(η − 1)2−u′

where u′ = u − ln(u). For instance, the expected number of
collisions for η = 106 and 42-bit digests, the average number of colliding files
is < 4. We remark that a collision can only yield a false positive, and never a
false negative. In other words, while a collision may make Oscar and Neil miss
a real difference, it will never create a nonexistent difference ex nihilo. Thus, it
suffices to replace HashPrime(F ) by a diversified �k(F ) = HashPrime(k|F ) to
quickly filter-out file differences by repeating the protocol for k = 1, 2, . . . We
call each complete D&F protocol repetition (which usually involves several ba-
sic protocol rounds) an iteration. At each iteration, the parties will detect files
in FΔF ′ whose hash �i,� or �′i,� does not collide, reconciliate these differences,
remove these files from F and F ′ to avoid further collisions, and “launder” again
the remaining files in the updated versions of F and F ′.

Let εη,u,k be the probability that at least one file will persist colliding during
k rounds. Assuming that η is invariant between iterations, we find that εη,u,k ≤
n((η − 1)2−u′

)k i.e., εη,u,k decreases exponentially in k (e.g., ε106,42,2 ≤ 10−3%,
see [3]).

We still need a condition to stop “laundering”, i.e., a condition ensuring that
there are no more differences hidden by collisions. Before we describe this con-
dition, let us first spell out the three kinds of collisions that can appear during
iteration �:
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1. Collisions in F ∩F ′ (i.e., between common files). These are never a problem
because they cannot hide any differences.

2. Collisions between between F ∩ F ′ and FΔF ′ (i.e., between a common file
of Oscar and Neil, and a file not in common). These collisions can be easily
detected by Oscar or Neil, at the end of iteration �. However, if there is a
collision of this kind involving an h ∈ HΔH′, we will not be able to find
the file in FΔF ′ matching h. For this reason, another D&F iteration will be
necessary to reconcile this file.

3. Collisions in FΔF ′ (i.e., between files not in common). Such collisions hide
real differences between F and F ′ and cannot be detected without a further
iteration. This is why we need a condition to detect that no more collisions
of this kind exist and stop laundering.

We propose the following method to decide termination. Before the first it-
eration, Neil sends a global hash H ′ = Hash(Hash(F ′

1), . . . , Hash(F
′
n′)) to Oscar.

This H ′ should not be confused with the H sent at the beginning of each itera-
tion4. Now, if iteration � is successful, Neil sends the list of Hash(F ′

i ) for the new
files F ′

i ∈ F ′ \F whose hash �′i,� does not collide with files in F ′∩F (i.e., type-2
collisions). Oscar can then use H ′ to check whether a type-3 collision remains, in
which case a new iteration is performed. If no type-2 or type-3 collisions remain,
then reconciliation is complete.

5 Computational Complexity

We now analyze D&F’s computational complexity. We first describe the time
complexity of a straightforward implementation (Section 5.1), and then present
four independent optimizations (Section 5.2). A summary of all costs is given in
Table 1. To simplify analysis, we assume that there are no collisions, and that
n = n′.

5.1 Basic Complexity and Hashing into Primes

Let μ(�) be the time required to multiply two �-bit numbers, with the assumption
that ∀�, �′, μ(� + �′) ≥ μ(�) + μ(�′). For naïve (i.e., convolutional) algorithms,
μ(�) = O(�2), but using FFT multiplication [13], μ(�) = Õ(�) (where Õ(f(�))
is a shorthand for O(f(�) logk f(�)) for some k). FFT is experimentally faster
than convolutional methods from � ∼ 106 and on. The modular division of a
2�-bit number by an �-bit number and the reduction of a 2�-bit number modulo
an �-bit number are also known to cost Õ(μ(�)) [4]. Indeed, in packages such as
GMP, division and modular reduction run in Õ(�) for sufficiently large �.

The naïve complexity of HashPrime is u2μ(u), as per [9,2].
– A recommended implementation of HashPrime(F ) consists in defining the

digest as h = 2 ·Hash(F |i)+1 and increasing i until h is prime. Because there
are roughly 2u

u u-bit primes we need to perform (on average) u primality

4 H is a hash of the (potentially colliding) diversified hashes �(�|F ).
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Table 1. Protocol Complexity Synopsis

Entity Computation Complexity in Õ of Optimization

Basic algo.a Opt. algo.b

Both computation of hi and h′
i nu2 · μ(u) φ(α)

α
nu2 · μ(u) fast hashing

Round k

Both compute redundancies
ck and c′k

n · μ(utk) n
tk
· μ(utk) prod. trees

Neil compute sk = c′k/ck
c or

Sk = C′
k/Ck

d
μ(uTk) μ(uTk)

Neil compute Sk from Sk−1

and sk (CRT)c
μ(uTk) none pk = 2utk

Neil find ak, bk such that
Sk = ak/bk mod Pk

e
μ(uTk) μ(uTk)

Neil factor ak n · μ(uTk)
n
Tk
· μ(uTk) prod. trees

Last round
Oscar factor bk n · μ(utk) n

tk
· μ(utk) prod. trees

global complexity
. . . with naïve mult. nu2T 3/t+ nu4 nu2T + φ(α)

α
nu4 doublingf

. . . with FFT nuT + nu3 nu+ φ(α)
α

nu3 doublingf

a using the basic algorithms of Section 5.1, and taking t1 = t2 = · · · = t
b using all the optimizations of Sections 5.1, 5.2 (pk = 2utk also yields substantial

constant factor accelerations not shown in this table), the product trees and the
doubling as described in the full version of this paper

c only for prime pi (or variant 1 or 2 in Section 5.2)
d only for pi = 2uti
e using advanced algorithms in [12,16] — naïve extended GCD gives (uTi)

2

f in addition to the previous optimizations

tests before finding a suitable h. The cost of a Miller-Rabin primality test
is Õ(uμ(u)). Hence, the total cost of this implementation is Õ(u2μ(u)). A
more precise analysis can be found in [2].

– If u is large enough (e.g., 160) one might sacrifice uniformity to avoid re-
peated file hashings using HashPrime(F ) = NextPrime(Hash(F )).

– Yet another acceleration option consists in computing h = α �Hash(F )/α�+
1, where α = 2×3×5×· · ·×Prime[d] is the product of the first primes until
some rank d, and then subtract α from h until h becomes prime. Denote
by φ Euler’s totient function and assume that this algorithm randomly
samples u-bit numbers congruent to 1 mod α until it finds a prime. There
are about 2u

uφ(α) u-bit primes congruent to 1 mod α, and there are 2u

α u-bit
numbers congruent to 1 mod α. Thus, the algorithm is expected to do about
2u

α / 2u

uφ(α) = φ(α)
α u primality tests before finding a prime, which improves
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over the u tests required by the naïve algorithm. The main drawback of
this algorithm is that, even if Hash is uniformly random, HashPrime isn’t.
This slightly increases HashPrime’s collision-rate and u has to be increased
subsequently.

5.2 Optimizations

Adapting pk. Taking the pk’s to be utk-bit primes is inefficient, because large
prime generation is slow. In this section, we study alternative pk choices yielding
constant factor improvements.

Let Prime[i] denote the i-th prime, with Prime[1] = 2. Besides conditions on
size, the only property required from a pk is to be co-prime with the {hi, h

′
i}. We

can hence consider the following variants, all which will imply a few conditions
on {hi, h

′
i} to ensure this co-primality:

– Variant 1. pk =
∏rk+1−1

j=rk
Prime[j] where the bounds rk are chosen to ensure

that each pk has the proper size. Generating such smooth numbers is much
faster than generating large primes.

– Variant 2. pk = Prime[k]rk where the exponents rk are chosen to ensure that
each pk has the proper size. This is faster than Variant 1 and requires that
min{hi, h

′
i} > max(Prime[k]).

– Variant 3. Pk = 2utk . In this case Ck =
∏n

i=1 hi mod Pk, c1 = C1 and
ck = (Ck − Ck−1)/Pk−1. i.e., ck is the slice of bits utk−1, . . . , utk − 1 of Ck

denoted ck = Ck[utk−1, . . . , utk]. Variant 3 is modular-reduction-free and
CRT-free: Ck is just the binary concatenation of ck and Ck−1. Computations
are thus much faster. Algorithm 1 (justified hereafter) computes ck efficiently.
Note that we only need to store Dk,i and Dk+1,i during round k (for all i).
So space overhead is O(nu).

Let Xi =
∏i

j=1 hj (with X0 = 1), Xi,k = Xi[utk−1 · · ·utk] and let Di,k be
the u most significant bits of the product of Yi,k = Xi[0 · · ·utk] and hi, i.e.,
Di,k = (Yi,k × hi)[utk · · ·u(tk + 1)] (with Di,0 = 0 and D0,k = 0). Since
Xi+1 = Xi × hi+1, we have, for k ≥ 0, i ≥ 0:

Di+1,k+1 × 2utk+1 + Yi+1,k+1 = Yi,k+1 × hi+1

= (Xi,k+1 × 2utk + Yi,k)× hi+1

= Xi,k+1 × 2utk × hi+1 + Yi,k × hi+1

= Xi,k+1 × hi+1 × 2utk + (Di,k × 2utk + · · · ).

Therefore, if we only consider bits [utk · · ·u(tk+1 + 1)], for k ≥ 1, i ≥ 0:

Di+1,k+1 × 2u(tk+1−tk) +Xi+1,k+1 = Xi,k+1 × hi+1 +Di,k.

Since ck = Xn,k, Algorithm 1 is correct.
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Algorithm 1. Computation of ck for pk = 2utk

Require: k, the set hi, (Dk,i) as explained in [3]
Ensure: ck+1 =

∏n
i=1 hi mod pk+1, (Dk+1) as explained in [3]

1: if k = 0 then X ← 1 else X ← 0
2: for i = 1, . . . , n do
3: Z ← X × hi

4: Di,k+1 ← Z[u(tk+1 − tk) · · ·u(tk+1 − tk + 1)]
5: X ← Z[0 · · ·u(tk+1 − tk)]

6: ck+1 ← X

Algorithmic Optimizations Using Product Trees. The non-overwhelming
(but nonetheless important) complexities of the computations of (c, c′) and of the
factorizations can be even reduced to Õ( n

tk
μ(utk)) and Õ( n

Tk
μ(uTk)) as explained

in [3].

Doubling. As seen at the end of Section 2.3, using the exponential t variant
(i.e., doubling tk at each iteration) doubles transmission (at most) with respect
to the fixed t option, but drastically reduces the amount of computation to
perform.

6 Related Work on Set Reconciliation

This section compares D&F with the set reconciliation algorithm of Minsky
et alii [11] (hereafter MTZ). We do not analyze here reconciliation algorithms
achieving better computational performances at the cost of supra-linear trans-
mission complexity (e.g., [7] or [5]).

Unlike MTZ which is based on polynomials, D&F is based on integers. D&F
and MTZ both achieve an optimal (i.e., linear) transmission complexity, but
D&F only deals with fixed-size primes, whereas MTZ deals with any fixed-size
bit strings.

MTZ is mostly designed for “incremental” settings where H and H′ are often
updated5 and re-synchronized. This differs from our setting and there seems to
be no straightforward manner to extend D&F in that fashion while maintaining
a low time complexity. For that reason, our analysis of MTZ’s time complexity
will take into account the cost of computing redundancies, as we did for D&F.
The main differences between MTZ and D&F are the following:
– MTZ synchronizes monic polynomials X − hi and X − h′

i over a field Fq

(where q is a (u+ 1)-bit prime), instead of u-bit primes {hi, h
′
i};

– In MTZ, pk are square-free, mutually co-prime polynomials which are also
co-prime with all X−hi and X−h′

i. In D&F this role is played by mutually
co-prime integers that are also co-prime with respect to the {hi, h

′
i} (for all

the variants in Section 5.2 except the last).
5 e.g., by adding or removing a few values to H or H′.
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Indeed, in the basic one-round version:
– If we write pk = (X − ρ1) · · · (X − ρt), then c =

∏n
i=1(X − hi) mod pk and

χH =
∏n

i=1(X−hi), χH(ρj) = c(ρj). Thus, thanks to Lagrange interpolation,
sending evaluations of χH in t points ρ1, . . . , ρj , as Oscar does in [11], is
equivalent to sending c.

– The rational function interpolation of [11] can also be seen as an RNR version
of Theorem 1 for polynomials: we try to recover two polynomials a, b (with
a correct bound on degrees) such that ab−1 mod p = c′c−1 mod p. Note that
this implies that the Gaussian elimination of cost O(t3μ(u)) (used for this
step by MTZ) can be replaced by an extended GCD computation that costs
only O(t2μ(u)) (and Õ(μ(ut)) using the advanced algorithms of [12,16]);

We will compare the computational complexities of MTZ and D&F without
taking into account the cost of hashing the files that has to be incurred by both
algorithms. MTZ’s time complexity is thus O(nu2T + u2T 3) when doubling is
used, which is not as good as our Õ(nu) with FFT, and also not as good as our
non-FFT complexity Õ(nu2T ) when n � T 2. However, our better complexity
bounds stems from optimizations that are all equally applicable to MTZ (except,
of course, the optimizations concerning the choice of pk).

An improved way to perform set reconciliation is presented in [10]. This al-
gorithm uses MTZ as a black box and requires at least about 24e ∼= 65.23 times
more bandwidth (with a bipartition) but substantially improves MTZ’s compu-
tational complexity. However, this construction is generic with respect to the
underlying reconciliation algorithm and can hence be applied to D&F to yield
identical complexity gains.

7 From File Reconciliation to File Synchronization

In Section 4, we reconciled file sets by looking only at their contents. However, in
practice, users synchronize file sets, and not just hierarchies. In other words, we
are not just interested in file contents but also in their metadata. The most im-
portant metadata is the file’s path (i.e., its name and location in the filesystem),
though other kinds of metadata exist (e.g., modification time, owner, permis-
sions). In many cases, file metadata change while the file contents do not: e.g.,
files can be moved to a different directory. When performing reconciliation, we
must be aware of this fact, and reflect file moves without re-transferring the
moved files’ contents. (This is an important improvement over popular synchro-
nization tools such as rsync).

We will call this task file synchronization. This section achieves file synchro-
nization using D&F as a black-box. The described algorithms are hence generic
and can leverage any reconciliation algorithm.

7.1 General Principle

To perform file synchronization, Oscar and Neil will hash the contents of each of
their files using a collision-resistant hash function Hash: we will call this the file’s
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content hash and denote it by Ci or C′
i for the i-th file in F or F ′. Likewise, we

denote by Mi or M ′
i the files’ metadata. We let Fi or F ′

i denote the pair (Ci,Mi)
or (C′

i,M
′
i). Oscar and Neil will reconciliate those sets as in Section 4.

Once the reconciliation has completed, Oscar is aware of the metadata and
the content hash of all of Neil’s files that do not exist in his disk with the same
content and metadata (we will call these the missing files).

Oscar now looks at the list of the missing files’ content hashes. For some of
these hashes, Oscar may already have a file with the same content hash, but
only with a wrong metadata. For others, Oscar may not have any file with the
same content hash. In the first case, Oscar can recreate Neil’s file by altering the
metadata, without retransferring the file’s contents. This is presented in Section
7.2. In the second case, Oscar needs to retrieve the full file contents from Neil.
This is presented in Section 7.3.

7.2 Moving Existing Files

Adjusting the metadata of existing files is trivial, except for file location which is
the focus of this section: Oscar needs to perform a sequence of file moves on his
copy to reproduce the structure of Neil’s copy. Sadly, it is not straightforward
to apply the moves, because, if we take a file to move, its destination might
be blocked, either because a file already exists (we want to move a to b, but b
already exists), or because a folder cannot be created (we want to move a to b/c,
but b already exists as a file and not as a folder). Note that for a move operation
a→ b, there is at most one file blocking the location b: we will call it the blocker.

If the blocker is absent on Neil, then we can just delete the blocker. However,
if a blocker exists and is a file which appears in Neil with different metadata,
then we might need to move this blocker somewhere else before we apply the
move we are interested in. Moving the blocker might be impossible because of
another blocker that we need to keep, and so on, possibly ending in a cycle (e.g.,
move a to b and b to a) in which case we need to use an intermediate temporary
location.

How should we perform the moves? A simple way would be to move each
file to a unique temporary location and then move them to their final location:
however, this performs many unnecessary moves and could lead to problems if
the process is interrupted. We can do something more clever by performing a
decomposition into Strongly Connected Components (SCC) of the move graph
(with one vertex per file and one edge per move operation going from to the file
to its blocker or to its destination if no blocker exists).

Once the SCC decomposition is known, moves can be applied by performing
them in each SCC in a bottom-up fashion, an SCC’s moves being solved either
trivially (for single files) or using one intermediate location (for cycles).

The detailed algorithm is implemented as two mutually recursive functions
and presented as Algorithm 2.
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Algorithm 2. Perform moves
Require: M is a dictionary where M[f ] denotes the intended destinations of f

1: C ← [] � Stores the color of a file (initially “not_done”)
2: T ← [] � Stores the temporary location assigned for a file
3: function unblock_copy(f, d)
4: if d is blocked by some b then
5: if b is not in M’s keys then delete(b) � We don’t need b
6: else resolve(b) � Take care of b and make it go away
7: if T [f ] was set then f ← T [f ]

8: copy(f , d)
9: function resolve(f)

10: if C[f ] = done then
11: return � Already managed by another in-edge
12: if C[f ] = doing then
13: if T [f ] was not set then
14: T [f ] ← mktemp() � Use a new temporary location
15: move(f , T [f ])
16: return � We found a loop, moved f out of the way
17: C[f ] ← doing
18: for d ∈M[f ] with d �= f do
19: unblock_copy(f , d) � Perform all the moves
20: if f /∈M[f ] and T [f ] was not set then delete(f)
21: if T [f ] was set then delete(T [f ])
22: C[f ] ← done
23: for f in M’s keys do
24: resolve(f)

7.3 Transferring Missing Files

Once all moves have been applied, Oscar’s hierarchy contains all of its files which
also exist on Neil. These have been put at the correct location and have the right
metadata. The only thing that remains is to transfer the contents of Neil’s files
that do not exist in Oscar’s hierarchy and create those files at the right position.
To do so, we can just use rsync to synchronize explicitly the correct files on Neil
to the matching locations in Oscar’s hierarchy, using the fact that Oscar is now
aware of all of Neil’s files and their locations. In so doing, we have to ensure that
multiple files on Neil that have the same content are only transferred once and
then copied to all their locations without being retransferred.

It is interesting to notice that if a file’s contents has been changed slightly on
Neil but its location hasn’t changed, then in most cases the rsync invocation will
reuse the existing copy of the file on Oscar when transferring this file from Neil
to Oscar. Because rsync uses rolling checksums to retransfer only relevant file
parts, this may actually reduce the transmission complexity. If a file’s content is
slightly changed and the file is moved, however, then this gain will not occur.
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8 Implementation

We implemented D&F, extended it to perform file synchronization, and bench-
marked it against rsync. The implementation is called btrsync, its source code
is available from [1]. btrsync was written in Python (using GMP to perform the
number theoretic operations), and uses a bash script (invoking SSH) to create a
secure communication channel between Oscar and Neil.

8.1 Implementation Choices

Our implementation does not take into account all the possible optimizations
described in Section 5: it implements doubling (Section 5.2) and uses powers
of small primes for the pk (variant 2 of Section 5.2), but does not implement
product trees (Section 5.2) nor does it use the prime hashing scheme (Section
5.1). Besides, we did not implement the proposed improvement in transmission
complexity for file reconciliation (Section 4.2).

As for file synchronization (Section 7), the only metadata managed by
btrsync is the file’s path (name and location). Other metadata types (modi-
fication date, owner, permissions) are not implemented, although it would be
very easy to do so. An optimization implemented by btrsync over the move
resolution algorithm described in Section 7.2 is to avoid doing a copy of a file F
and then removing F : the implementation replaces such operations by moves,
which are faster than copies on most file systems because the OS does not need
to copy the actual file contents.

8.2 Experimental Comparison to rsync

We compared rsync6 and our implementation btrsync. The directories used for
the benchmark are described in Table 2. Experiments were performed without
any network transfer, by synchronizing two folders on the same host. Hence,
time measurements mostly represent the synchronization’s CPU cost.

Results are given in Table 3. In general, btrsync spent more time than rsync
on computation (especially when the number of files is large, which is typically
seen in the experiments involving syn). Transmission results, however, are fa-
vorable to btrsync.

In the trivial experiments where either Oscar or Neil have no data at all,
rsync outperforms btrsync. This is especially visible when Neil has no data:
rsync, unlike btrsync, immediately notices that there is nothing to transfer.

6 rsync version 3.0.9, used both as a competitor to benchmark against and as an un-
derlying call in our own code. rsync was passed the following options: --delete to
delete Oscar’s files that were deleted on Neil like btrsync does, -I to disable heuris-
tics based on file modification times that btrsync does not use, --chmod="a=rx,u+w"
to make it unnecessary to transfer file permission that btrsync does not transfer
(though verbose logging suggest that rsync wastes a few bytes per file because it
transmits them anyway), and -v to count the number of sent and received bytes.
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Table 2. Test Directories

Directory Description

syn a directory containing 1000 very small files
syn_shuf syn changed by 10 deletions, renames and modifications
source a snapshot of btrsync’s own source tree
source_moved source with one big folder (a few megabits) renamed
ff-13.0 the source archive of Mozilla Firefox 13.0
ff-13.0.1 the source archive of Mozilla Firefox 13.0.1
empty an empty folder

Table 3. Experimental results. Synchronization is performed from Neil to Oscar. RX
and TX denote the quantity of received and sent bytes, rs and bt denote rsync and
btrsync, and δ� = TX�+RX�. δrs− δbt and δbt/δrs express the absolute and the relative
differences in transmission between rsync and btrsync. The last two columns show
timing results on an Intel Core i3-2310M CPU clocked at 2.10 Ghz.

Entities and Datasets Transmission (Bytes) Time (s)

Neil’s F ′ Oscar’s F TXrs RXrs TXbt RXbt δbt − δrs
δbt
δrs

trs tbt

source empty 778k 2k 780k 10k 10k 1.0 0.1 0.7
empty source 24 12 12k 6k 18k 496.6 0.0 0.4
empty empty 24 12 19 30 13 1.4 0.0 0.3
syn syn_shuf 55k 19k 7k 3k -63k 0.1 0.5 0.8
syn_shuf syn 54k 19k 7k 3k -63k 0.1 0.2 0.8
syn syn 55k 19k 327 30 -73k 0.0 0.5 0.7
ff-13.0.1 ff-13.0 41M 1k 40M 3k -1M 1.0 1.6 8.1
source_moved source 778k 1k 3k 2k -775k 0.0 0.1 0.4

In non-trivial tasks, however, btrsync outperforms rsync. This is the case of
the syn datasets, where btrsync does not have to transfer information about all
unmodified files, and even more so in the case where there are no modifications
at all. For Firefox source code datasets, btrsync saves a very small amount of
bandwidth, presumably because of unmodified files. For the btrsync source code
dataset, we notice that btrsync, unlike rsync, was able to detect the move and
avoid retransferring the moved folder.

9 Conclusion and Further Improvements

This paper introduced the new number-theoretic set reconciliation protocol
called Divide and Factor (D&F). We analyzed D&F’s transmission and time
complexities and describing several optimizations and parameter choices. We
have shown how D&F can be applied to file reconciliation using hashing, and to
solve the practical file synchronization problem. D&F was benchmarked against
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rsync. The comparison reveals that D&F transmits less data than rsync but
performs more computation.

Many interesting problems are left open. These problems are both theoreti-
cal and practical. A first theoretical challenge consists in eliminating the costly
hashing into primes. e.g., if the pk are powers of two then hashing into odd
integers might suffice. This would make reconciliation harder because multiple
factorizations of a and b as products of hi and h′

i could exist while only one
of them would be the correct one. A careful probabilistic analysis would be re-
quired to determine the probability of multiple factorizations and bound the cost
of recovering the correct factorization. This phenomenon is tightly linked to the
cryptographic notion of collision-division [6]. As for other aspects of our con-
struction, many bounds on transmission and computational complexities could
be refined and improved.

Other theoretical questions are left open by our study of move resolution: The
algorithm that we propose is suboptimal because there should never be any need
to use two different temporary file locations: one location is always sufficient to
break cycles, and a more careful exploration of the move graph could proceed
in that fashion. It is also interesting to find out if there is a way to perform a
minimal number of temporary moves (or if this problem is NP-complete), or if
we can reduce the total number of moves by moving folders in addition to files.

From a practical standpoint, our btrsync implementation could be improved
in several ways. First, the numerous possible improvements described in the pa-
per could be implemented and benchmarked. Then, heuristics could be added to
work around the situations in which btrsync is outperformed by rsync, such as
the ones identified during our experimental comparison of the two programs. For
instance, whenever the product of Neil’s hashes becomes smaller than Pk, then
Neil should send its hashes immediately to Oscar and terminate the protocol:
this would avoid transmitting a lot of data in situations where Neil’s copy is
empty or very small. Last but not least, the development of our btrsync proto-
type could be continued to make it suitable for real-world users, including proper
management of all metadata, using the file modification time as a heuristic to
detect changes, and caching of file content hashes to avoid recomputing them.

A possible additional feature that could be added to btrsync is to detect files
that have been both moved and altered slightly. A related improvement would
be to use a variant of rsync’s algorithm to transfer Neil’s new files to Oscar by
considering simultaneously several related files on Oscar’s copy and computing
rolling checksums.

Finally, we could study how additional information could be used to speed
up set reconciliation. An interesting possibility is to give to Neil and Oscar, in
addition to their files, a value for each file indicating the probability that the
other party does not have this file. To what extent could this prior knowledge
be exploited to perform reconciliation more efficiently?

Acknowledgment. The authors acknowledge Guillain Potron for his early in-
volvement in this research work.
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Abstract. Refinement type systems have proved very effective for se-
curity policy verification in distributed authorization systems. In earlier
work [12], we have proposed an extension of existing refinement typing
techniques to exploit sub-structural logics and affine typing in the analy-
sis of resource aware authorization, with policies predicating over access
counts, usage bounds and resource consumption. In the present paper,
we show that the invariants that we enforced by means of ad-hoc typing
mechanisms in our initial proposal can be internalized, and expressed
directly as proof obligations for the underlying affine logical system. The
new characterization leads to a more general, modular design of the sys-
tem, and is effective in the analysis of interesting classes of authentication
protocols and authorization systems.

1 Introduction

Authorization policies constitute an effective device for security specification in
distributed protocols and systems [3,5]. In language-based security, such poli-
cies are specified by means of code annotations marking authorization-sensitive
program points with logical formulas that serve as assumptions and assertions :
the former express the credentials available at the clients, and track the clients’
authorization requests; the latter are employed as resource guards at the server,
and express the conditions required to accept the authorization requests. The
annotations have no semantic import, and only serve the verification process: to
show a system safe, i.e., to prove that it complies with a given policy, one must
prove that all the active (unguarded) assertions at a given execution step are
entailed by the active assumptions at that step, for every possible system run.
Proving a system robustly safe amounts to prove that the same property holds
in the presence of other, possibly malicious agents [6].

Safety (and robust safety) proofs for annotated specifications such as those
of our present interests can be carried out statically, and effectively, with re-
finement typing systems [15,4,6,7]. Refinement types [16] are dependent types
of the form {x : T |F (x)}: a value M of this type is a value of type T such
that the formula F{M/x} holds. In type-based authorization systems, the re-
finement formulas are employed to capture the dynamic exchange of credentials
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required for authorization: this is accomplished by encoding such credentials as
formulas that refine the payload types of the cryptographic keys involved in the
authorization protocols.

Depending on the authorization properties expected, different logical frame-
works may be appealed to for specification and verification. Our focus in the
present paper is on resource conscious policies such as those governing large
classes of modern authorization frameworks, based on consumable credentials,
access counts and/or usage bounds. For such policies, and for the strong authen-
tication protocols supporting them, one may resort to sub-structural (e.g., linear
or affine) logics [17,25] for specification. Correspondingly, typing systems with
linear (or affine) refinements may be employed to achieve static accounts of the
desired safety proofs.

In our earlier work in [12], we made a first step towards the design of a
sound system for resource-sensitive authorization, drawing on techniques from
typing systems for authentication and an affine extension of existing refinement
typing systems. Here we make a step further, and show that the invariants that
were enforced by means of ad-hoc mechanisms in our original proposal can be
internalized into the underlying affine logical system, and expressed directly
as proof obligations for the logic. Besides shedding new light on the logical
foundations of the cryptographic patterns for authentication and distributed
authorization, the new characterization is interesting, and promising, as it leads
to a more modular and more powerful typing system.

Plan of the paper. Section 2 reviews the background material. Section 3 gives an
overview of our approach. Section 4 provides a detailed description of the type
system and its main properties. Section 5 demonstrates the effectiveness of the
type system with two small, yet significant, examples. Section 6 concludes.

2 Background

We give a brief review of the relevant components of our approach: affine logics
for policy specification, applied pi-calculus for protocol description, and refine-
ment typing systems for analysis and verification.

Affine logic. We focus on the following fragment of intuitionistic affine logic [25]:

F ::= A | F ⊗ F | F � F | ∀x.F | !F

This is the multiplicative fragment of affine logic, extended with the exponential
modality to express persistent truths. We presuppose an underlying signature of
predicate symbols which includes the binary equality predicate, and a countably
infinite set of terms. Atomic formulas, noted A in the above productions, are
built around predicates applied to terms, as in p(M1, . . . ,Mn); term equality
uses infix notation, as in M = N . We assume familiarity with the resource
interpretation of linear logic, by which each formula denotes a resource which is
consumed once used in a derivation. In sequent calculus presentations of linear
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logic, that is achieved by dispensing with the structural rules of weakening and
contraction, and by a careful manipulation of the environment, as exemplified
in two representative rules, below:

Γ1 � F Γ2 � G

Γ1, Γ2 � F ⊗G
(⊗-Right)

Γ1 � F Γ2, G � H

Γ1, F � G, Γ2 � H
(�-Left)

Affine logic is a variant of linear logic which admits the weakening rule, whereby
Γ, F � G is derivable when so is Γ � G. As a result, proofs in affine logics must
use each formula at most once (as to opposed to exactly once as in linear logic).

Applied pi-calculus. We specify protocols in a dialect of the applied pi-calculus [2],
in which destructors are only used in let-expressions and may not occur in ar-
bitrary terms [8]. We presuppose an underlying set of constructors and two
countable sets of names (a, b, c, k,m, n) and variables (w, x, y, z), and let u range
over names or variables uniformly. The syntax of terms M,N is as follows:

M,N ::= a | x | ek(M) | vk(M ) | inl(M ) | inr(M ) | (M ,N )

| enc(M,N) | sign(M,N) | senc(M,N).

Unary constructors include ek and vk to form encryption/verification keys from
the corresponding decryption/signing keys, and inl and inr to construct tagged
unions (see Section 4). Binary constructors comprise pairs and senc, enc and
sign for symmetric, asymmetric encryption and digital signature, respectively.
Destructors, ranged over by g, are partial functions to decompose terms. They
include the unary casel and caser to deconstruct tagged unions, sdec, dec and
ver for symmetric, asymmetric decryption and signature verification, respec-
tively. For technical reasons, pairs are not decomposed by destructors, but with
pattern matching within a specific process form (discussed below). Destructor

evaluation may succeed and return a term, noted g(M̃) ⇓ N , or fail. The seman-
tics of destructors is as expected, e.g., we have dec(enc(M, ek(K)),K) ⇓M and
ver(sign(N,K ′), vk (K ′)) ⇓ N .

The syntax of processes P,Q is defined as follows, in terms of two syntactic
categories of actions A, and proper processes P,Q (the distinction is technically
convenient in the definition of the typing rules):

A ::= 0 | in(M,x).P | ∗in(M,x).P | out(M,N).P | A|A
| if (M = N) then P else Q | let (x, y) = M in P else Q

| let x = g(M̃) in P else Q | �F.

P,Q ::= A | P |Q | new a : T.P | �F.

The scope of names and variables is delimited by restrictions, inputs and let
expressions. The notions of free names and variables, denoted by fn and fv
respectively, arise as expected. A process P is closed when fv(P ) = ∅. Processes
evolve according to the reduction relation P → Q (→∗ denotes the reflexive
and transitive closure of →). The definition of reduction is standard: 0 is the
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stuck process; new a : T.P creates a fresh name a and behaves as P ; in(M,x).P
waits for a message N on channel M and then behaves as P{N/x}; ∗in(M,x).P
acts as an unbounded replication of in(M,x).P ; out(M,N).P outputs N on M ,
synchronously, and then behaves as P ; P |Q is the parallel composition of P and
Q; if (M = N) then P else Q reduces to P if M is syntactically equal to N , to
Q otherwise; let (x, y) = M in P else Q behaves as P{M1/x}{M2/y} when M

is (M1,M2), as Q otherwise; finally, let x = g(M̃) in P else Q acts as P{N/x}
if g(M̃) ⇓ N , as Q otherwise. Assumptions (�F ) and assertions (�F ) are inert
process forms, built around the formulas of our affine logic, that express policy
annotations.

Definition 1 (Safety). A closed process P is safe iff whenever P →∗ new ã :

T̃ .(�G1 | . . . | �Gn | Q) one has Q ≡ �F1 | . . . | �Fm | A, with A containing
no top-level assertions, and F1, . . . , Fm � G1 ⊗ . . .⊗Gn.

Unlike most of the existing definitions of safety [15,4,6,7], we take the tensor
product of all the active assertions. That is required to remain faithful to the
chosen logical framework, and enforce an affine use of each active assumption in
our safety proofs. The definition extends readily to account for the presence of
opponents. We define an opponent as a closed, Un-typed (cf. Section 4) process
that does not contain any assertion.

Definition 2 (Robust Safety). A closed process P is robustly safe iff P | O
is safe for every opponent O.

The restriction to Un-typed processes is standard and does not involve any
loss of generality; we ban assertions from opponent code, because otherwise an
opponent could trivially break the safety property we target.

Refinement typing systems for distributed authorization. We review the main
ideas and intuitions with a simple example, inspired by [15], of an on-line book-
store system governed by the following authorization policy:

A � !∀u, b. (Order(u, b) � Clear(u, b))

The policy is stated as a persistent (reusable) formula: it establishes that an
e-book order can be cleared for a user if that user has indeed ordered the e-
book (note, in particular, the use of multiplicative implication to express the
desired injective correspondence between order and clearance). The components
are described by the annotated code below1

user :: �Order(user, book) | out(net, (user, sign((user, book), kuser)))
bookstore :: ∗in(net, (xu, y)).

let (xvk, xek) = keys(xu) in let (xu, xb) = ver(y, xvk) in
�Clear(xu, xb) | out(net, enc(url(xb), xek))

1 We assume that the bookstore keeps track of the public (encryption and verification)
keys of each registered user, so that keys(user) = (vk(kuser), ek(kuser)). Also, for
readability, we abuse the notation and use pattern-matching on input.
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Consider now the system �A | user | bookstore. In a system run, user authen-
ticates her order of book to the bookstore by signing the request, and corre-
spondingly assumes the formula Order(user,book) to declare her intention. The
bookstore, in turn, receives the data from its input channel, verifies the signa-
ture and asserts the formula Clear(user,book) as a guard to clear the order.
The system is safe, as the guard is entailed by the policy A and the assump-
tion Order(user,book), which is available when the assertion Clear(user,book) is
unleashed at top-level.

In a refinement type system, a safety proof can be derived by relying on the
types of cryptographic keys. Key types have the general formKey({x : T | C(x)})
representing keys with payload of (structural) type T for which the formula (cre-
dential) C may be assumed to hold. Given k : Key({x : T |C(x)}), packaging a
valuemwith k, as in enc(m, k), typechecks provided that the formulaC(m) can be
proved at the source site, using the assumptions available in the typing context as-
sociated with that site. Dually, extracting the payload from an encrypted packet,
as in dec(y, k), justifies the assumption of the formula C(y) conveyed by the key
type, hence the use of C(y) in a proof of the credentials acting as access guards. In
our example, wemay use the typeKey(xu : Tu, {xb : Tb |Order(xu, xb)}) for kuser
to convey the credentialOrder(xu, xb) from the user process to the bookstore site,
and derive a static safety proof based on that.

3 Authorization, Authentication and Affine Refinements

Continuing with our example, consider extending the system with the new
component:

dup :: ∗ in(net, x).(out(net, x) | out(net, x))
to form the composition �A |user | bookstore | dup. Unlike the original system,
the extended one is unsafe (hence the original is not robustly safe), as the pres-
ence of the dup process causes bookstore to clear each order twice. Clearly,
the problem arises from the absence of an authentication mechanism provid-
ing adequate guarantees of timeliness for the orders. The effect is captured by
our definition of safety. To see that, first observe that a reduction sequence
exists that unleashes two assertions Clear(user,book) for a single assumption
Order(user,book). Then, note that Order(user, book),A �� Clear(user,book) ⊗
Clear(user,book), as the assumption Order(user,book) is consumed in the proof
of either of the two clearing assertions at the bookstore, thereby causing the
derivation of the second assertion to fail.

Strong authentication is a long studied problem in static protocol analysis
and verification. First formalized as injective agreement in [23], it has subse-
quently been approached with a variety of typing techniques, targeted at the
analysis of various low-level mechanisms (timestamps, nonce handshakes, and
session keys) [18,19,9,10,20,11]. Though such mechanisms are fundamental build-
ing blocks for distributed authorization frameworks, little (if any) of the work
on strong authentication has resurfaced in existing typing systems for authoriza-
tion [14,15,4,6,7]. Our proposal in the present paper aims at reconciling these
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two streams of research, by building a unifying foundation for authentication
and authorization, based on an affine refinement type system.

Just like traditional refinement typing systems, we employ key types to cap-
ture the transfer of authorization credentials within a protocol. However, since
our refinements are affine formulas, we must control the use of keys so as
to protect against any unintended duplication of the refinements, upon de-
cryption. Specifically, when transferring a message m : T packaged with, say,
k : Key({x : T | C(x)}) we must ensure that each extraction of C(x) by the
receiver correspond to a derivation of C(m) at the source site. To accomplish
that, our type system protects the refinement C(x) with a guard, as in:

k : Key(w : U, {x : T | G(w) � C(x)})

where G(w) is a receiver-controlled formula that must be proved to derive the
credential C(x). In a nonce-handshake protocol, w represents the challenger-
generated nonce, call it n, and G(n) is the corresponding guard assumed by the
challenger. A responder willing to prove the possession of a credential C(m) for
the payload m will be able to do so, as follows. Upon receiving the nonce, the
responder transmits the pair (n,m) under the key k: that’s possible when the
responder has (or may derive) C(m), because C(m) � G(n) � C(m) in affine
logic. At the challenger end, extracting the payload (w, x) and checking that
w = n makes it possible to derive C(x), as G(n), w = n,G(w) � C(x) � C(x).
If we can ensure that G(n) can be proved at most once, we also ensure that C(x)
is derived at most once, as desired.

Though the details vary for the different low-level mechanisms, the core in-
tuitions we just outlined apply uniformly: data exchanged over the network is
inherently exposed to replays, hence their credentials must be protected so that
copying the data does not duplicate the credentials. In the type system, that
is accomplished by embedding the credentials into multiplicative implications
guarded by system-controlled formulas, which are built around reserved predi-
cate symbols, and are guaranteed to be assumed in at most one position in the
protocol code. As a result, key refinements become safely copyable, as the system-
controlled guards guarantee that the credentials they embed are unleashed at
most once, irrespective of any duplication the refinement may undergo.

In the next section, we provide full details of these mechanisms.

4 The Type System

The syntax of types T, U, V is defined by the following grammar.

T,U, V ::= Un | Private | Ch(T ) | {x : T | F} | (x : T,U) | T + U

| ηKey(x)(T ) η ∈ {Enc,Dec, Sig,Ver ,Sym}
| ηPkt(x)(T ) η ∈ {Enc,Sig, Sym}.

The variable x is bound in {x : T | F} with scope F , in (x : T, U) with scope
U , and in ηKey(x)(T ) and ηPkt (x)(T ) with scope T . Un is the type of data
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Table 1. Well-formed types and environments

(Type-Base)

fnfv(T ) ⊆ dom(Γ )
Γ � � T �= ηKey(x)(U)

Γ � T

(Type-Key)

fnfv(T ) \ {x} ⊆ dom(Γ )
Γ � � T copyable

Γ � ηKey(x)(T )

(Env-Empty)

ε � �

(Env-Form)

Γ � � fnfv(F ) ⊆ dom(Γ )

Γ, F � �

(Env-Bind)

u /∈ dom(Γ ) Γ � T
T a copyable, non-refinement type

Γ, u : T � �

coming from / flowing to the opponent (standard since [1]). Private is the type
of untainted, secret data; Ch(T ) the type of channels with T payload; {x : T | F}
the type of M : T such that F{M/x} holds. A pair (M,N) has type (x : T, U) if
M has type T and N has type U{M/x}. A term of type T +U is either inl(M)
where M has type T , or inr(M) where M has type U . Finally, we devise two
new types for cryptographic material – ηKey(x)(T ) and ηPkt (x)(T ) – for keys

with T payload and ciphertexts with T payload, respectively2. In both cases the
binder x acts as a placeholder for the encryption key or the verification key: this
technical device, first proposed in [13], is very effective and convenient to achieve
a uniform treatment for nonce handshakes and session keys in our type system.

Typing environments and well-formed types. Typing environments, noted Γ ,
collect bindings for names and variables, as usual, and formulas occurring in
assumptions. The domain of Γ , noted dom(Γ ), is the set of the values bound
to a type in Γ . forms(Γ ) denotes the multiset of the formulas occurring in Γ .
bindings(Γ ) is the environment obtained by erasing all the formulas from Γ . ε
is the empty environment. Well-formed types and environments are defined in
terms of the notions of copyable formulas and types, given below.

Definition 3 (Copyable Formulas and Types). A formula F is copyable
if it has either of the two forms p(M1, . . . ,Mn) � F ′ with p reserved, or !F ′.
Copyable types, then, are defined inductively as follows:

– Un,Private ,Ch(T ), ηKey(x)(T ) and ηPkt (x)(T ) are copyable;
– {x : T | F}, (x : T, U) and T + U are copyable if so are T , U and F .

The rules for types and environments are in Table 1. Notice that, by (Type-

Key), well-formed key types can only convey copyable payloads: hence, formulas
may occur as refinements of key types only if they are guarded by system-reserved
predicates, or they are prefixed by a bang modality: in the former case, the
guard protects them against uncontrolled replication, in the latter, replication

2 When x does not occur in T we often omit the binder and write simply ηKey(T ),
and ηPkt(T ), to ease the notation.
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is harmless as the formula may be duplicated in the logic as well. A similar
mechanism is enforced in the type system for injective agreement in [21].

Type environments only include bindings for non-refinement typed names
and variables: that does not involve any loss of expressive power, as we may
simply define the environment Γ, u : {x : T |F} as Γ, u : T, F{u/x}. Also, type
bindings must introduce copyable types, to protect against the unintended dupli-
cation of affine refinements (occurring in dependent pair or disjoint union types)
upon the environment splitting distinctive of sub-structural type systems. We say
that Γ splits as Γ1 and Γ2 (Γ = Γ1 • Γ2) when bindings(Γ ) = bindings(Γ1) =
bindings(Γ2) and forms(Γ ) = forms(Γ1), forms(Γ2). More in general, we write
Γ = Γ1 • . . . • Γn when Γ = Γ ′ • Γn and Γ ′ = Γ1 • . . . • Γn−1. Finally, we write
Γ � F whenever forms(Γ ) � F , provided that Γ � � and fnfv (F ) ⊆ dom(Γ ).

Table 2. Typing rules for terms

(Term-Env)

Γ � � u : T ∈ Γ

Γ � u : T

(Term-EncKey)

Γ �M : DecKey (x)(T )

Γ � ek(M) : EncKey(x)(T )

(Term-VerKey)

Γ �M : SigKey(x)(T )

Γ � vk(M) : VerKey (x)(T )

(Term-Pair)

Γ1 �M : T Γ2 � N : U{M/x}
Γ1 • Γ2 � (M,N) : (x : T,U)

(Term-Refine)

Γ1 �M : T Γ2 � F{M/x}
Γ1 • Γ2 �M : {x : T | F}

(Term-AEnc)

Γ1 �M : T{N/x} Γ2 � N : EncKey(x)(T )

Γ1 • Γ2 � enc(M,N) : EncPkt (x)(T )

(Term-Left)

Γ �M : T Γ � U

Γ � inl(M) : T + U

(Term-Sign)

Γ1 �M : T{vk(N)/x} Γ2 � N : SigKey(x)(T )

Γ1 • Γ2 � sign(M,N) : SigPkt (x)(T )

(Term-Right)

Γ �M : U Γ � T

Γ � inr(M) : T + U

(Term-SEnc)

Γ1 �M : T{N/x} Γ2 � N : SymKey(x)(T )

Γ1 • Γ2 � senc(M,N) : SymPkt (x)(T )

Typing rules for terms. Table 2 details the typing rules for terms. We omit the
rules that define the subtype relation as well as the kinding rules for tainted
and public types: all details can be found in [12]. The novel rules for cryp-
tographic packets (Term-AEnc), (Term-Sign) and (Term-SEnc) exploit a
form of dependent typing to track the shared information between encryption
and decryption keys (respectively, signing and verification keys) [13].

Typing rules for processes. Table 3 presents the typing rules for actions and
processes: we only discuss the most interesting points. The side-condition to
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Table 3. Typing rules for actions and processes

(Proc-Out)

Γ1 �M : Ch(T ) Γ2 � N : T Γ3 � P

Γ1 • Γ2 • Γ3 � out(M,N).P

(Proc-In)

Γ1 �M : Ch(T ) Γ2, x : T � P

Γ1 • Γ2 � in(M,x).P

(Proc-Repl)

Γ1 �M : Ch(T ) Γ2, x : T � P Γ2 copyable

Γ1 • Γ2 � ∗in(M,x).P

(Proc-Stop)

Γ � �
Γ � 0

(Proc-Cond)

Γ1 �M : T Γ2 � N : T
Γ3, !(M = N) � P Γ3 � Q

Γ1 • Γ2 • Γ3 � if (M = N) then P else Q

(Proc-Split)

Γ1 �M : (x : T, U)
Γ2, x : T, y : U � P Γ2 � Q

Γ1 • Γ2 � let (x, y) = M in P else Q

(Proc-Case-Left)

Γ1 �M : T + U Γ2, x : T � P Γ2 � Q

Γ1 • Γ2 � let x = casel(M) in P else Q

(Proc-Case-Right)

Γ1 �M : T + U Γ2, x : U � P Γ2 � Q

Γ1 • Γ2 � let x = caser(M) in P else Q

(Proc-ADec)

Γ1 �M : EncPkt(y)(T )
Γ2 � N : DecKey(y)(T ) Γ3, x : T{ek(N)/y} � P Γ3 � Q

Γ1 • Γ2 • Γ3 � let x = dec(M,N) in P else Q

(Proc-Ver)

Γ1 �M : SigPkt(y)(T ) Γ2 � N : VerKey(y)(T ) Γ3, x : T{N/y} � P Γ3 � Q

Γ1 • Γ2 • Γ3 � let x = ver(M,N) in P else Q

(Proc-SDec)

Γ1 �M : SymPkt(y)(T )

Γ2 � N : SymKey(y)(T ) Γ3, x : T{N/y} � P Γ3 � Q

Γ1 • Γ2 • Γ3 � let x = sdec(M,N) in P else Q

(Proc-Assert)

Γ � F

Γ � �F

(Proc-Par)

Γ1 � A1 Γ2 � A2

Γ1 • Γ2 � A1 | A2

(Proc-Extr)

P � [Γ ′ ‖ A] Γ, Γ ′ � A fnfv(P ) ⊆ dom(Γ )

Γ � P

(Weak)

Γ1, Γ2 � P Γ1, F, Γ2 � �
Γ1, F, Γ2 � P

(Contr)

Γ1, !F, !F, Γ2 � P

Γ1, !F, Γ2 � P

(⊗-Left)
Γ1, F,G, Γ2 � P

Γ1, F ⊗G,Γ2 � P

(�-Left)

Γ ′
1 � F Γ ′

2, G � P Γ1, Γ2 = Γ ′
1 • Γ ′

2

Γ1, F � G,Γ2 � P

(∀-Left)
Γ1, F (M), Γ2 � P

Γ1, ∀x.F (x), Γ2 � P

(!-Left)

Γ1, F, Γ2 � P

Γ1, !F, Γ2 � P
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Table 4. The extraction relation P � [Γ ‖ A]

(Extr-New)

P � [Γ ‖ A]
T ∈ {Un,Private ,Ch(U), SigKey(x)(U),DecKey(x)(U),SymKey (x)(U)}

new a : T.P � [a : T, Γ ‖ A]

(Extr-Assume)

�F � [F ‖ 0]

(Extr-Empty)

A � [ε ‖ A]

(Extr-Par)

P � [ΓP ‖ AP ] Q � [ΓQ ‖ AQ]

P | Q � [ΓP , ΓQ ‖ AP | AQ]

(Proc-Repl-In), requiring that the continuation typechecks in a copyable en-
vironment, is needed for subject reduction as replicated processes may spawn
an unbounded number of copies of their continuation [22]. (Proc-Cond) keeps
track of the equality between two terms in the successful branch of a condi-
tional check: since this information can be used an arbitrary number of times, it
is made exponential. The rules for cryptography (Proc-ADec), (Proc-Ver)

and (Proc-SDec) mirror the idea of the corresponding rules for cryptographic
packets in Table 2. (Proc-Extr) is the only rule for proper processes, which are
typechecked by first extracting the top-level restrictions and assumptions into a
typing environment, and then using that environment to typecheck the residual
action process. Extracting the assumptions is needed to protect against using
them more than once in the same type derivation; extracting the restrictions
keeps all names in scope (cf. Table 4).

The type system is completed by a set of structural rules to enable weakening
and contraction, as well as the manipulation of the logical connectives in typing
derivations. Since proofs in sub-structural logics require careful management of
the environment, like in [24] these rules are needed to improve the expressiveness
of our framework.

Theorem 1 (Robust Safety). Let P be a closed process such that fn(P ) =
{a1, . . . , an} and let a1 : Un, . . . , an : Un � P , then P is robustly safe.

5 Case Study: Cryptographic Sessions

We show the type system at work on two small, but realistic case studies that
demonstrate the flexibility and effectiveness of our framework.

We start introducing additional notation for the system-controlled guards.
First, we presuppose two system predicates key(·) and nonce(·), to serve as
guards in the refinements associated with session keys, and (long-term) keys
in nonce-based protocols, respectively. As discussed earlier, nonce(·) guards are
used with keys such as k : ηKey (w : U, {x : T | nonce(w) � C(x)}) to exchange
a nonce n : U , packaged with a payload M : T such that C(M). The underlying
verification pattern presupposes that (at most one occurrence of) the formula
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nonce(n) be available at the receiver to obtain a proof that the sender possesses
the credential C(M). The pattern for session keys has the same rationale. In that
case, it is built around keys such as k : SymKey(y)({x : T | key(y) � C(x)})
intended for the exchange of payloadsM : T such that C(M), with key(k) acting
as the controlling guard, predicating on the key k itself through the binder y.

Both patterns can be generalized to enable multiple checks of the same nonce
and multiple uses of the same key within a session. That is achieved with key
types of the form ηKey(y)(

∑�
i=1(w : U, {x : Ti | nonce(w,Mi) � Ci(x)}) and

similarly SymKey(y)(
∑�

i=1{x : Ti | key(y,Mi) � Ci(x)}), used in conjunction
with assumptions of the form nonce(n,Mi) and key(k,Mi), respectively. The
Mi’s are closed, pairwise distinct terms that serve as tags to mark the � different
program points where the same nonce may be checked (the same key used)3.
The following notation helps structure our specification patterns:

def k = SessionKey[
∑�

i=1(Mi, Ti, Ci(x))] in P �
new(k : SymKey(y)(

∑�
i=1{x : Ti | key(y,Mi) � Ci(x)})).

(�key(k,M1) | · · · | �key(k,M�) | P )

def n = nonce[U,
∑�

i=1 Mi] in P � new(n : U).
(�nonce(n,M1) | . . . | �nonce(n,M�) | P )

Bounded sessions. Our first example is a protocol that implements a bounded
session, built around a finite, and fixed, flow of messages. It involves two agents
that perform a nonce-handshake to exchange a symmetric key k and then use the
key in a session that exchanges two messages, as shown in the diagram below:

A B

n��
{[(n,k)]kA

}ek(kB ) ��

�Msg1 (a)

{msg1(a)}k ��

�Msg1 (a) | �Msg2 (b)

{msg2(b)}k��

�Msg2 (b)

There is no global policy defined here, and the assumptions and assertions of the
specification are only meant to track the session steps, ensuring the timeliness
of the messages exchanged. The interesting part of the encoding in our applied
pi-calculus is in the choice of key types. We start with the type Tk of the shared
session key k. Assuming a and b may be given type Un, we define:

Tk = SymKey(y)(
∑2

i=1{x : Un | key(y, i) � Msgi(x)})

Tk presupposes two uses of k, to extract the two different types of messages
conveying the affine formulas Msg1(a) and Msg2(b). In the applied pi-calculus

3 When � ≤ 1, and we need no tag, we simply omit them from the notation.
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specification below, this type is introduced together with the two assumptions
for the guard predicates key(k, 1) and key(k, 2) (we use natural numbers as the
closed terms serving as tags). Based on Tk we may then construct the type TkA

of A’s signing key: TkA = SigKey(y : Un, {x : Tk | nonce(y) � key(x, 1)}).
Notice that the credential protected by the nonce is the system guard key(k, 1)
that will allow B to use the shared k and extract the credential Msg1 (a) marking
the completion of the first exchange. The other guard, key(k, 2) remains with
A itself, to enable A’s own use of the key at the completion of the protocol.

We are ready to define the protocol code: to ease the notation, we coalesce
subsequent destructor applications in a single let statement:

A � in(net, xn).
def k = SessionKey[(1,Un,Msg1 (x)) + (2,Un ,Msg2 (x))] in
out(net , enc(sign((xn, k), kA), ek(kB))).
�Msg1 (a)
| out(net , senc(inl(a), k)).
in(net , x).let y = caser(sdec(x, k)) in �Msg2 (y)

B � def n = nonce[Un] in out(net , n).
in(net , x).
let (yn, yk) = ver(dec(x, kB), vk(kA)) in
if (yn = n) then
in(net , z).
let w = casel (sdec(z, yk)) in �Msg1 (w)
| �Msg2 (b) | out(net , senc(inr(b), yk))

Typechecking the code goes as follows: we only comment on the most important
steps, looking at the code of A and B separately.

At A’s side, introducing the shared key k extends the typing environment
with the assumptions key(k, 1) and key(k, 2). Then, to sign k with kA, one
derives (xn, k) : (y:Un, {x:Tk | nonce(y) � key(x, 1)}) by (Term-Pair),
(Term-Refine), and a proof of key(k, 1),key(k, 2) � nonce(xn) � key(k, 1).
Similarly, to send the first message encrypted under k, an application of (Term-

SEnc) requires one to show a : {x : Un | key(k, 1) � Msg1(x)}, which in turn
derives by (Term-Refine) based on a proof ofMsg1 (a) � key(k, 1) � Msg1(a).

At B’s side, creating the fresh nonce n extends the environment with the guard
nonce(n). When B gets a response, she decrypts it and verifies the signature to
extract the pair (yn, yk) and the formula nonce(yn) � key(yk, 1) by (Proc-
Ver). Then, checking yn against n extends the typing environment with the
equality !(y2 = n), and the analysis of B proceeds breaking the implication as
follows:

· · · ,nonce(n), !(yn = n) � nonce(yn) · · · ,key(yk, 1) � in(net, z). · · ·
· · · ,nonce(n), !(yn = n),nonce(yn) � key(yk, 1) � in(net, z). · · · (�-Left)

The left premise is derived directly in the affine logical system. The right premise,
in turn, leaves the guard key(yk, 1) for B to use yk (the session key) in the
continuation. Indeed, when the packet z reaches B, it is decrypted as w using
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key yk (and the sum left destructor). By applying (Proc-SDec) (and subse-
quently (Proc-Case-Left)), the environment is extended with the informa-
tion w : Un,key(yk, 1) � Msg1(w). Note that the actual parameter yk in the
code replaces the formal parameter y in type Tk upon decryption, as dictated
by (Proc-SDec). Now, consuming the guard key(yk, 1), we may derive the
assertion Msg1(w) as desired.

Unbounded sessions. Though effective, the use of session keys illustrated in the
previous example only applies to sessions in which the key is used a predefined
(and finite) number of times. The next protocol, proposed in [18], shows how to
account for unbounded sessions, exchanging an arbitrarily long stream of timely
messages.

A B
n1 ��

�Auth(m1)

senc((m1,n1,n2),k)��

�Auth(m1)

...

�Auth(mr)

senc((mr ,nr ,nr+1),k)��

�Auth(mr)

...

Unlike the previous protocol, here the message flow is always in the same direc-
tion, from B to A, and the message exchanged at step i conveys a payload mi,
which is authenticated by consuming nonce ni, and a fresh nonce ni+1, which is
used to authenticate the next exchange. Again, the assumptions and assertions
of the specification only serve for verifying the timeliness of each exchange. In
this case, the timeliness proof relies on the following type for the shared key:

k : SymKey (y)(x1 : Un, (x2 : Un, {x3 : Un | nonce(x2) � (Auth(x1)⊗ nonce(x3))})).
At each use of k for decryption, A consumes the guard on the current nonce to
obtain a proof of the expected authorization credential, and the nonce to repeat
the process at the subsequent iteration.

The applied pi-calculus code for the protocol is as follows.

A = new a : Ch({x : Un | nonce(x)}).
def n = nonce[Un] in
out(net , n).(out(a, n) | A∗)

A∗ = ∗in(a, x).in(net , y).
let (z1, z2, z3) = sdec(y, k) in
if (z2 = x) then
�Auth(z1) | out(a, z3)

B = new b : Ch(Un).
in(net , x).(out(b, x) | B∗)

B∗ = ∗in(b, x).new m : Un.
�Auth(m)
| def n = nonce[Un] in
out(net , senc((m,x, n), k)).
out(b, n)

Both agents include replicated sub-processes whose iterations are controlled via
synchronization over private channels. While this is a standard practice in the
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pi-calculus, a remark is in order on the type chosen for channel a: this type
is needed to provide nonce capabilities to the replicated process A∗, since rule
(Proc-Repl-In) requires to typecheck this process in a copyable environment.
The guard formula nonce(n) is used to typecheck the output of n on a, so that
the associated capability can be recovered upon an input from the channel.

6 Conclusion

Authentication and authorization have been studied extensively in the literature
on protocol verification, yet mostly as independent problems. We have proposed a
unifying technique based on a novel affine refinement type system. The approach
appears promising, as it supports a modular design of the framework, and is
effective in the analysis of interesting classes of authentication protocols and
authorization systems.

We are currently investigating the applications of our technique to further au-
thentication mechanisms commonly employed in practice, e.g., timestamps and
session identifiers, and to further protocols where the same nonce is checked by
different principals. From our initial results, our approach appears to generalize
smoothly to all such cases. We are also porting our framework from the applied
pi-calculus to RCF [6], a concurrent functional programming language strongly
related to F#. By recasting our technique to this new setting, we will be able to
conduct our type-based analysis directly on application code.

Acknowledgments. Work partially supported by MIUR Project IPODS “In-
teracting Processes in Open-ended Distributed Systems”.
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from the Geometry of Interaction
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Abstract. In this paper we present a seamless approach to writing and
compiling distributed code. By “seamless” we mean that the syntax and
semantics of the distributed program remain the same as if it was exe-
cuted on one node only, except for label annotations indicating on what
node sub-terms of the program are to be executed. There are no re-
strictions on how node labels are to be assigned to sub-terms. We show
how the paradigmatic (higher-order functional recursive) programming
language PCF, extended with node annotations, can be used for this pur-
pose. The compilation technique is directly inspired by game semantics
and the Geometry of Interaction.

1 Introduction

The conventional view of a program running in a distributed system, commonly
called a distributed program, is of processes running on the nodes of a network,
exchanging information by passing messages. This is the view supported by the
ubiquitous Message Passing Interface system [15]. Although an effective method
for writing distributed programs, MPI-style programming is far more laborious
than programming a stand-alone computer. In order to create a distributed
version of a program developed to run on a single node the code needs to be
partitioned into modules that will run on each node in the distributed system,
and the communication between the modules needs to be reduced to data com-
munication and handled explicitly by the programmer.

A more abstract, and therefore more convenient, way of programming the
interaction between process running on different nodes is through Remote Pro-
cedure Call [16]. In RPC, communication is subsumed by function call, which
entails a certain protocol between the caller and the callee, i.e. first the arguments
are sent by the caller along with the function name, then the result is returned
by the callee. The success of RPC is reflected in the large number of variations
it spawned, such as Java’s Remote Method Invocation, SOAP, CORBA’s object
request broker, etc. With the advent of cloud computing more comprehensive
frameworks were developed based on this idea, such as Microsoft’s Windows
Communication Framework, Google’s Web Toolkit or Facebook’s Thrift frame-
work, and aimed specifically at web-delivered computational services. Although
significantly more convenient that MPI-style programming, RPC-style program-
ming still requires a certain amount of boilerplate code and, more importantly,
it is not compatible with higher-order functions and functional programming.

C. Palamidessi and M.D. Ryan (Eds.): TGC 2012, LNCS 8191, pp. 34–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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A higher-order version of RPC seems to require the sending of functions (code)
from the caller to the callee and vice versa, because functions can now be both
arguments and results. One solution is that all nodes have access to a local in-
stance of each function in the program and can send references to such functions
(possibly paired with some free variables, forming a closure). Erlang [1] and
Cloud Haskell [4] take this approach. Erlang, which runs in a virtual machine,
even allows the sending of syntax trees for terms that do not exist on the remote
node. However, both these approaches have the disadvantage that a program
running on a single node needs to be “ported” to the distributed setting by
including significant amounts of non-trivial boilerplate code.

What we will describe in this paper is a seamless approach to distributed pro-
gramming: the distributed program is syntactically and semantically identical to
the same program running on the single node, except for annotations (labels) in-
dicating the names of the nodes where particular terms are to be executed. There
is no language-induced restriction regarding the way locations are assigned: any
syntactic sub-term of the program can be given an arbitrary node label, which
will mean that it will be executed on the node of that label. There is no explicit
communication between nodes, all the interaction being automatically handled
“under the hood” by the generated code.

Example. To illustrate this point consider the same program written in Erlang
versus PCF annotated with location information. Consider the PCF program
let f = λx. x ∗ x in f 3 + f 4, and suppose that we want to delegate the
execution of the multiplication operation on a node C while the rest of the
program executes on the (main) node A. The annotated PCF code is simply:
(let f = (λx. x ∗ x) @ C in f 3 + f 4) @A

In Erlang, things are much more complicated. The f function can be set up
as a server which receives request messages:

c(A_pid) -> receive X -> A_pid ! X * X end, c(A_pid).

main() ->

C_pid = spawn(f, c, [self()]), C_pid ! 3,

receive X -> C_pid ! 4, receive Y -> X + Y end

end.

Arguably, the logical structure of the program is lost in the detail. Moreover, if
we want to further delegate the application of f itself to a different server B, the
annotated PCF is (letf = (λx. x ∗x)@C in (f 3)@B+(f 4)@B)@A whereas
the Erlang version of the three-server distribution is even more complicated than
the two-server version, which further obscures its logical structure:

c() -> receive {Pid, X} -> Pid ! X * X end, c().

b(A_pid, C_pid) ->

receive

request0 -> C_pid ! {self(), 3}, receive X -> A_pid ! X end;

request1 -> C_pid ! {self(), 4}, receive X -> A_pid ! X end

end,
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b(A_pid, C_pid).

main() ->

C_pid = spawn(f2, c, []),

B_pid = spawn(f2, b, [self(), C_pid]),

B_pid ! request0,

receive X -> B_pid ! request1, receive Y -> X + Y end

end.

Contribution. The main technical challenge we address in this paper is han-
dling higher-order and recursive computation. To be able to give a focussed and
technically thorough treatment we will handle the paradigmatic functional pro-
gramming language PCF [13], a language which is well understood semantically
and which lies at the foundation of practical programming languages such as
Haskell.

Conceptually, what makes the seamless distribution of PCF programs possible
is an interpretation inspired by game semantics [6] and the Geometry of Inter-
action (GoI) [10]. These models are built on the principle of reducing function
call to communication and computation to interaction.

Note that the idea of reducing computation to interaction also appeared
in the context of process calculi [11]. This was a development independent of
game semantics and GoI which happened around the same time. Compilation
of distributed languages via process calculi is also possible, in languages such
as Pict [12], but the methodology is different. Whereas we aim to hide all the
communication by making it implicit in function call, Pict and related languages
embedded process calculus syntax to develop communication protocols. A fur-
ther significant development in compilation based on process calculi was the
idea of mobile code, where software agents are explicitly sent across the net-
work between running processes [3,14]. By contrast, in our methodology no code
needs to be transmitted. Also note that GoI itself has been used before to com-
pile PCF-like programs to unconventional architectures, namely reconfigurable
digital circuits [7].1

The GoI model reduces a program to a static network of elementary nodes.
Although this is eminently suitable for hardware synthesis, where the elementary
nodes become elementary circuits and the network becomes the circuit intercon-
nect, it is too fine grained for distributed compilation. We address this technical
challenge by introducing a new style of abstract machine which has elementary
instructions for both control (jumps) and communication. These machines can
be (almost) arbitrarily combined by replacing communication with jumps, which
gives a high degree of control over the granularity of the network.

Our compiler works in several stages. First it creates the fine-grained net-
work of elementary communicating abstract machines. Then, using node anno-
tations (labels), it combines all machines which arise out of the compilation of
terms using the same label. The final step is to compile the abstract machines
down to executable code using C for local execution and MPI for inter-machine
communication.
1 Tool available at http://veritygos.org.

http://veritygos.org
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2 PCF and Its GoI Model

We use conventional PCF with natural numbers as the only base type, extended
with an annotation t@A, for specifying the locus of a term’s computation. This
annotation is to be thought of as a compiler directive: the operational semantics
and typing rules simply ignore the locus specifier and are otherwise standard [13].

Girard’s Geometry of Interaction [8] is a model for linear logic used for the
study of the dynamics of computation, seeing a proof in the logic as a net,
executed through the passing of a token along its edges. It is well known that
GoI can be extended to also interpret programming languages and that it is
useful in compiling programs to low-level machine code [10]. In this paper, we
will use it as an interpretation for terms in our language, but we will use the
notion of a proof net quite literally in that our programs will be compiled into
networks of communicating nodes that operate on and send a token to each
other.

We give an interpretation of terms in our language similar to the GoI interpre-
tations by Hoshino [9] and Mackie [10], where terms are coded into linear logic
proof nets. The only difference is that the interfaces of our nets are determined
by type instead of being homogeneous. In this regard, the interpretation is more
similar to the hardware circuits presented by the second author [5]. The reason
why this works is because our language is not polymorphic, which otherwise
necessitates that the interfaces are more homogeneous, since polymorphic terms
may be instantiated at different types.

Term interpretations are built by connecting the ports of graphical compo-
nents, that we think of as the nodes in our network. Two connected components
can communicate bidirectionally through data tokens, defined by the grammar:

e ::= • | 0 | S e | inl e | inr e | 〈e, e〉.

We first give a reading of these components as partial maps between data tokens.
In the next section we will give a low-level description of their inner workings as
communicating abstract machines.

The standard GoI components are given in Figure 1: dereliction (d), promotion
(δ) and contraction (c). The components are bidirectional and their behaviour
is given by a function mapping the values of a port at a given moment to their
values at the next moment. We denote the value on a port which sends/receives
no data as ⊥. Two well-formedness conditions of GoI nets are that at most one
port is not ⊥ (i.e. a single-token is received at any moment) and ⊥ = (⊥, . . . ,⊥)
is a fixed-point for any net (i.e. no spontaneous output is created).

Let π2, π2 be the first and second projections. Components are connected
by functional composition (in both directions) on the shared port, represented
graphically as:

(t; t′)(e,⊥) = t′(π2 ◦ t(e,⊥),⊥)
(t; t′)(⊥, e) = t(⊥, π1 ◦ t′(⊥, e)).
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d(〈•, e〉,⊥) = (⊥, e)
d(⊥, e) = (〈•, e〉,⊥)

δ(〈〈e, e′〉, e′′〉,⊥) = (⊥, 〈e, 〈e′, e′′〉〉)
δ(⊥, 〈e, 〈e′, e′′〉〉) = (〈〈e, e′〉, e′′〉,⊥)

c(〈inl e, e′〉,⊥,⊥) = (⊥, 〈e, e′〉,⊥)
c(〈inr e, e′〉,⊥,⊥) = (⊥,⊥, 〈e, e′〉)

c(⊥, 〈e, e′〉,⊥) = (〈inl e, e′〉,⊥,⊥)
c(⊥,⊥, 〈e, e′〉) = (〈inr e, e′〉,⊥,⊥)

Fig. 1. Dereliction, promotion, and contraction

Exponentials. Tokens need to carry both data and ‘routing’ information, but we
want the basic components to have no access to the routing information but to
act on data only. The role of the exponential functor (!) is to remove this routing
information from the enclosed component, pass the data to the component, then
restore the routing information. Diagrammatically this is represented as a dotted
box around a network, defined formally below:

!t(〈e, e′〉,⊥) = (⊥, 〈e, (π2 ◦ t(e′,⊥)〉)
!t(⊥, 〈e, e′〉) = (〈e, (π1 ◦ t(⊥, e)〉,⊥)

Types as interfaces. The interface of a net is determined by the typing judgement
of the term it interprets. The nat type corresponds to one port; the function
type, θ → θ′, induces an interface which is the disjoint union of those for θ, θ′.
A typing environment Γ = x1 : θ1, . . . xn : θn induces an interface which is
the disjoint union of the interfaces for each θi. A term with typing judgement
Γ, x : θ � t : θ′ interface given by the environment on the left and its type on the
right. Diagrammatically this is:

�x : θ, Γ � t : θ′� =

Note that type θ × θ′ can be interpreted, as convenient, either as a pair of
ports or as a single port sending or receiving pair-tokens. Because of the well-
formedness conditions the pairs are always of shape (e,⊥) or (⊥, e).

Terms as networks. As the variables in the context correspond to the linear !
type, the GoI interpretation requires the use of dereliction:

�x : θ, Γ � x : θ� =
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Abstraction and application. When interpreting an abstraction, the variable is
added to the context of the inner term, just like in the typing rule, and exposed in
the interface of the final component. We only show the diagrammatic definition,
the formalisation is obvious:

�Γ � λx. t : θ → θ′� =

In the interpretation of application note the use of dereliction and exponenti-
ation in the way the argument t′ is connected to function t; this corresponds to
the standard linear decomposition of call-by-name evaluation. Also note the use
of contraction to explicitly ‘share’ the use of the free identifiers in Γ .

�Γ � t t′ : θ′� =

Constants. The interpretation of a constant is a simple component that answers
with 0 when requested, i.e. 0(•) = 0. Diagrammatically,

�Γ � 0 : nat� =

Successor. A new component is needed for the interpretation of the successor
function. This handles the S operation directly on a natural number.

S (⊥, •) = (•,⊥)
S (n,⊥) = (⊥,S n).

To make it possible to use this component in our interpretation it needs to
be wrapped up in an abstraction and a dereliction to bring the argument to the
right linear type.

�Γ � S : nat→ nat� =

Conditionals. Similar to how addition was handled, conditionals are done by
constructing a new component and then wrapping it up as a function.

if(•,⊥,⊥,⊥) = (⊥, •,⊥,⊥)
if(⊥, 0,⊥,⊥) = (⊥,⊥, •,⊥)

if(⊥,S n,⊥,⊥) = (⊥,⊥,⊥, •)
if(⊥,⊥, n,⊥) = (n,⊥,⊥,⊥)
if(⊥,⊥,⊥, n) = (n,⊥,⊥,⊥).
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For the final interpretation of conditionals in the language, derelictions are
added as the arguments are of exponential type:

�Γ � if · then · else · :
nat→ nat→ nat→

nat� =

Recursion. Recursion is interpreted as a component that is connected to itself
as done by Mackie [10].

�Γ � Y : (θ → θ)→ θ� =

The abstract token machine interpretation given in this section is known to
be sound [9,10].

Theorem 1 (GoI Soundness). Let � t : nat be a closed PCF program (closed
ground-type term) and �t� its GoI abstract-token machine representation. If t
evaluates to n (t ⇓ n) then �t�(•) = n.

3 The SIC Machine

To be able to describe the inner workings of the components and see how they
can be compiled to executables we construct an abstract machine, the Stack-
Interaction-Control (SIC) machine, which has a small instruction set tailor made
for that purpose. The SIC machine works similar to Mackie’s [10] but with
the important distinction that it also allows sending and receiving messages
to and from other machines, to model networked distribution. The machine
descriptions and configurations are specified in Figure 2. An initial configura-
tion for a machine description 〈P,L〉 is given by the function initial (〈P,L〉) =
〈passive, •, P, L〉.

3.1 SIC Semantics

The semantics of the machines are given as a transition relation in Figure 3. The
machine instructions make it possible to manipulate the data token of an active
machine, using the stack for state and intermediate results. The last two rules
handle sending and receiving messages.
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Label l
Port p

Instruction I ::= inl | inr Tags
| fst | snd Projections
| unfst | unsnd Reverse projections
| flip | push | pop Stack operations
| zero | suc Operations on natural numbers

Code C ::= I; C Instruction cons
| jump l Jump to label l
| match l1 l2 Conditional jump
| if l1 l2 Conditional jump (nat)
| send p Send on port p

Stack S ::= • Empty
| d :: S Cons

Port map P : p→ l
Label map L : l→ C

Machine description ::= 〈P,L〉
Machine state Mstate ::= active C d

| passive
Machine configuration M ::= 〈Mstate, S, P, L〉

Fig. 2. SIC specification

Now it is possible to define a machine network where many of these machines
can operate together. This machine network is described in the style of the
Chemical Abstract Machine [2]. A machine network is simply a multiset (M)
of messages (port-data pairs (p, d)) that are “in the air” and a list of machine
configurations (M). The transition relation for the network is:

M −→M ′
Silent

〈M | N1,M,N2〉 −→ 〈M | N1,M
′, N2〉

M
send 〈p,d〉−−−−−−→M ′

Send

〈M | N1,M,N2〉 −→ 〈M� {〈p, d〉} | N1,M
′, N2〉

M
send 〈p,d〉−−−−−−→M ′

Receive

〈M � {〈p, d〉} | N1,M,N2〉 −→ 〈M | N1,M
′, N2〉

Let active(N) be a function that returns all the machines in N that are in
active state.

Proposition 1. For any sets of machine configurations N and N ′ and multisets
of messages M and M′, if 〈M | N〉 −→ 〈M′ | N ′〉, then |M′| + |active(N ′)| =
|M|+ |active(N)|.

Proof. By cases on the machine network step relation and construction of the
SIC machine’s step relation.
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〈active (inl; C) d, S, P, L〉 −→ 〈active C (inl d), S, P, L〉
〈active (inr; C) d, S, P, L〉 −→ 〈active C (inr d), S, P, L〉
〈active (fst; C) 〈d1, d2〉, S, P, L〉 −→ 〈active C d1, d2 :: S, P, L〉
〈active (snd; C) 〈d1, d2〉, S, P, L〉 −→ 〈active C d2, d1 :: S, P, L〉
〈active (unfst; C) d1, d2 :: S, P, L〉 −→ 〈active C 〈d1, d2〉, S, P, L〉
〈active (unsnd; C) d2, d1 :: S, P, L〉 −→ 〈active C 〈d1, d2〉, S, P, L〉
〈active (flip; C) d, d1 :: d2 :: S, P, L〉 −→ 〈active C d, d2 :: d1 :: S, P, L〉
〈active (push; C) d, S, P, L〉 −→ 〈active C •, d :: S, P, L〉
〈active (pop; C) d1, d2 :: S, P, L〉 −→ 〈active C d1, S, P, L〉
〈active (zero; C) d, S, P, L〉 −→ 〈active C 0, S, P, L〉
〈active (suc; C) n, S, P, L〉 −→ 〈active C S n, S, P, L〉
〈active (jump l) d, S, P, L〉 −→ 〈active L(l) d, S, P, L〉
〈active (match l1 l2) (inl d), S, P, L〉 −→ 〈active L(l1) d, S, P, L〉
〈active (match l1 l2) (inr d), S, P, L〉 −→ 〈active L(l2) d, S, P, L〉
〈active (if l1 l2) 0, S, P, L〉 −→ 〈active L(l2) •, S, P, L〉
〈active (if l1 l2) S n, S, P, L〉 −→ 〈active L(l1) •, S, P, L〉
〈active (send p) d, S, P, L〉 send 〈p,d〉−−−−−−→ 〈passive, S, P, L〉
〈passive, S, P, L〉 send 〈p,d〉, p∈dom(P )−−−−−−−−−−−−−→ 〈active L(P (p)) d, S, P, L〉

Fig. 3. SIC step relation

Case Silent : In this rule, M′ =M, so |M′| = |M|. The SIC machine M that
takes a step goes from active to active since all SIC machine step rules
that do not send or receive messages are on that form, which also implies
that |active(N)| = |active(N ′)|.

Case Send : HereM′ =M�{〈p, d〉} so |M′| = |M|+1. The only SIC machine
rule that applies here is the send rule, which takes the machine M from
state active to passive . So |active(N ′)| = |active(N)| − 1, and thus
|M′|+ |active(N ′)| = |M|+ 1 + |active(N)| − 1 = |M|+ |active(N)|

Case Receive : In this case, M = M′ � {〈p, d〉} so |M′| = |M| − 1. The only
SIC machine rule that applies is the receive rule, which takes the machine M
from state passive to active , meaning that |active(N ′)| = |active(N)|+1.
Thus |M′|+ |active(N ′)| = |M| − 1 + |active(N)|+ 1 = |M|+ |active(N)|.

In particular, this proof means that if we start out with one message and no
active machines, there can be at most one active machine at any point in the
network’s execution – the execution is single-token.

3.2 Components as SIC Code

In each of the components we take all ports px and labels lx to be distinct.
Components are connected by giving an output port the same name as the input
port of the component that it is connected to. To emphasise the input/output
role of a port we sometimes write them as pix when serving as input and pox
when serving as output. The machine descriptions for the different components
are described by giving their port mappings P and label mappings L as a tuple.
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The following three machines are stateless. They use the stack internally for
intermediate results, but ultimately return the stack to the initial empty state.

Dereliction, d, removes the first component of the token tuple when going
from left to right, and adds it when going in the other direction:

dereliction =

〈
pi0 �→ l0
pi1 �→ l1

,
l0 �→ snd; pop; send po1
l1 �→ push; unfst; send po0

〉
Promotion, δ, reassociates the data token to go from 〈〈e, e′〉, e′′〉 to 〈e, 〈e′, e′′〉〉

and back:

promotion =

〈
pi0 �→ l0
pi1 �→ l1

,
l0 �→ fst; snd; flip; unfst; unsnd; send po1
l1 �→ snd; fst; flip; unsnd; unfst; send po0

〉
Contraction, c, uses matching on the first component of the token to choose

the right port to send on when going from left to right.

contraction =

〈pi0 �→ l0
pi1 �→ l1
pi2 �→ l2

,

l0 �→ fst; match l3 l4
l1 �→ fst; inl; unfst; send po0
l2 �→ fst; inr; unfst; send po0
l3 �→ unfst; send po1
l4 �→ unfst; send po2

〉

Dotted boxes with k inputs are defined as follows: Let P i
in = {pi0, . . . , pik−1},

P i
out = {pik, . . . , pi2k−1}, Let P o

in = {po0, . . . , pok−1}, P o
out = {pok, . . . , po2k−1}, and

Lout = {lk, . . . , l2k−1}. The box for these sets of ports and labels is then the
following (note that boxes use the stack for storing their state):

box =

〈
pii �→ li | pii ∈ P i

in ∪ P i
out ,

li �→ snd; send poi+k | li ∈ Lin

li �→ unsnd; send poi−k | li ∈ Lout

〉
For a constant, the component’s abstract machine is defined as follows:

constant =
〈
pi0 �→ l0 , l0 �→ zero; send po0

〉
The successor machine first asks for its argument, then runs the successor

instruction on that.

suc =

〈
pi0 �→ l0
pi1 �→ l1

,
l0 �→ send po1
l1 �→ suc; send po0

〉
The conditional uses the matching instruction if to choose the right branch

depending on the natural number of the token.

if =

〈pi0 �→ l0
pi1 �→ l1
pi2 �→ l2
pi3 �→ l2

,

l0 �→ send po1
l1 �→ if ltrue lfalse
ltrue �→ send po2
lfalse �→ send po3
l2 �→ send po0

〉
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To connect the port p0 of machine M to p1 of M ′ we rename them in the
machine definitions to the same port name p. A port must be connected to at
most one other port; in this case the net is said to be deterministic, as each
message will be received by at most one other machine. A port of a machine
which is not connected to a port of another machine is said to be a port of
the network. By inputs(M) (outputs(M)) we mean the inputs (outputs) of a
machine, whereas by inputs(N) (outputs(N)) we mean the inputs (outputs) of
a net. Similarly, by π(M) (π(N)) we mean the ports of a machine (network).

Theorem 2 (Soundness). Let � t : nat be a closed PCF program (closed
ground-type term), �t� its GoI abstract-token machine representation and N
its SIC-net implementation. If t evaluates to n (t ⇓ n) then �t�(•) = n and
〈{〈pi, •〉} | N〉 −→∗ 〈{〈po, n〉} | N〉.

4 Combining Machines

When writing distributed applications, the location at which a computation is
performed is vital. Traditional approaches are sometimes explicit about that, for
instance by using message passing. Using our current term interpretation, and
thinking of each abstract machine as running on a different node in a network, we
get the communication in the network handled automatically, but will have one
abstract machine for each (very small) component. The interpretation produces
extremely fine grained networks where each node does very little work before
passing the token along to another node. It is expected that the communication
is one of the most performance critical parts in a distributed network, which is
why it would be better if bigger chunks of computations happened on the same
node before the token was passed along.

To make this possible, we devise a way to combine the descriptions of two
abstract machines in a deterministic network to get a larger abstract machine
with the same behaviour as the two original machines. Informally, the way to
combine two machines is to remove ports that are used internally between the two
machines (if any) and replace sends on those ports with jumps. The algorithm for
combining components M1 = 〈P1, L1〉 and M2 = 〈P2, L2〉 is described formally
below.

We use Δ for the symmetric difference of two sets. If f : A→ B is a function
we write as f � A′ the restriction of f to the domain A′ ⊆ A and we extend it in
the obvious way to relations. We use the standard notation C[s/s′] to denote the
replacing of all occurrences of a string s by s′ in C. We write C[s(x)/s′(x) | x ∈ A]
to denote the substitution of all strings of shape s(x) by strings of shape s′(x)
with x in a list A, defined inductively as

C[s(x)/s′(x) | x ∈ ∅] = C

C[s(x)/s′(x) | x ∈ a :: A] =
(
C[s(a)/s′(a)]

)
[s(x)/s′(x) | x ∈ A]

The combination of two machines is defined by keeping the ports which are
not shared and by replacing in the code the send operations to shared ports by
jumps to labels given by the port mappings.
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combine(M1,M2) = 〈(P1 ∪ P2) � (π(M1)Δπ(M2)),

(L1 ∪ L2)[send p/jump P (p) | p ∈ π(M1) ∩ π(M2)]〉.

There are two abuses of notation above. First, the union P1∪P2 above is on func-
tions taken as sets of pairs and it may not result in a proper function. However,
the restriction to π(M1)Δπ(M2) always produces a proper function. Second,
π(M1)∩ π(M2) is a set and not a list. However, the result of this substitution is
independent of the order in which the elements of this set are taken from any of
its possible list representations.

A network is said to be combinable if combining any of its components does
not change the overall network behaviour

Definition 1. A deterministic network of machines N = M1, . . . ,Mk is com-
binable if whenever

〈{〈p, d〉} | N〉 −→∗ 〈{〈p′, d′〉} | N ′〉

for some N ′, p in inputs(N), p′ in outputs(N), then for any Ncombined obtained
from N by replacing Mi,Mj with combine(Mi,Mj) for some i �= j we have that

〈{〈p, d〉} | Ncombined〉 −→∗ 〈{〈p′, d′〉} | N ′
combined〉

for some N ′
combined.

Note that the combined net is not equivalent to the original net (for a suitable
notion of equivalence such as bisimilarity) because it will have fewer observable
messages being exchanged.

Lemma 1. If a net N is combinable then Ncombined is also combinable.

The set of combinable machines is hard to define exactly, so we would just
like to find a sound characterisation of such machines which covers all the basic
components we used and their combinations.

Definition 2. A machine description M = 〈P,L〉 is stack-neutral if for all
stacks S and S′, p in inputs(M), p′ in outputs(M), if

〈{〈p, d〉} | 〈passive, S, P, L〉〉 −→∗ 〈{〈p′, d′〉} | 〈passive, S′, P, L〉〉

then S = S′.

Definition 3. A machine network N of k machines described by port map-
pings Pi and label mappings Li is stack-neutral, if for all stacks Si and S′

i, p in
inputs(N), p′ in outputs(N), if

〈{〈p, d〉} | [〈passive, Si, Pi, Li〉 | i ∈ {1, . . . , k}]〉 −→∗

〈{〈p′, d′〉} | [〈passive, S′
i, Pi, Li〉 | i ∈ {1, . . . , k}]〉

then all Si = S′
i.
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Note that this definition is more general than having a list of stack-neutral
machines, as a stack-neutral network’s machines may use the stack for state
after it has been exited as long as it’s cleared before an output on a network
port.

Proposition 2. If two machine networks N1 and N2 (of initially passive ma-
chines) are stack-neutral, combinable and N1, N2 is deterministic, then N1, N2

is stack-neutral and combinable.

For any SIC-net N let box (N) be N with an additional box machine M with
input ports outputs(N) and output ports inputs(N), defined as in Sec. 3.2.

Proposition 3. If a machine network N is stack-neutral and combinable then
box(N) is stack-neutral and combinable,

From the following two results it follows by induction on the structure of the
generated nets that

Theorem 3. If Γ � t : θ is a PCF term, �t� its GoI abstract-token machine
representation andN the implementation of �t� as a SIC-net thenN is combinable.

With the ability to combine components, we can now exploit the t @ A an-
notations in the language. They make it possible to specify where a piece of
code should be located (A is a node identifier). When this construct is encoun-
tered in compilation, the components generated in compiling t are tagged with
A (possibly overwriting older tags).

Next, the components with the same tag are combined using the algorithm
above and their combined machine placed on the node identified by the tag. This
allows the programmer to arbitrarily choose where the compiled representation of
a part of a term is placed. Soundness (Thm. 2) along with the freedom to combine
nets (Thm. 3) ensures that the resulting network is a correct implementation of
any (terminating) PCF program.

5 Compiling PCF

We developed an experimental compiler that compiles to C, using MPI for com-
munication, using SIC abstract machines as an intermediate formalism. 2 Each
machine description in a network is mapped to a C source file in a fairly straight-
forward manner, using a function for each machine instruction and global vari-
ables for the data token and the stack. An example of a predefined instruction
is that for the flip instruction:

inline void flip() {

Data d1 = pop_stack();

Data d2 = pop_stack();

push_stack(d1);

push_stack(d2);}

2 Download from http://veritygos.org/dpcf

http://veritygos.org/dpcf
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An abstract machine’s label l corresponds to a C function void l() whose
definition is a list of calls to the predefined machine instruction functions. In this
representation, jumps are function calls. All functions are small and not used
recursively so can be efficiently inlined.

Each process in MPI has a unique identifier called its rank, and messages can
also be assigned a tag. A port in a SIC machine is uniquely determined by its
tag, but also has to be assigned a rank so that the message can be sent to the
correct node. This is resolved at compile-time. The main loop for a machine
listening on ports corresponding to tags 0 and 1 looks like this:

while(1) {

int port = receive();

switch (port) {

case 0: l0(); break;

case 1: l1(); break;

default: break;}}

Here l0 and l1 are functions corresponding to the labels associated with the
ports. The predefined function receive calls MPI Recv, which is an MPI function
that blocks until a message is received. A process in this state thus corresponds
to a machine in passive state. Upon receiving a message, the receive function
de-serialises the message and assigns it to the global data token variable before
returning the message’s tag. The predefined function for the send instruction
now has to take two parameters: the destination node’s rank and the port’s tag:

inline void send(int node, int port);

The function takes care of serialising the data token sending it to the correct
node using MPI Send.

When all machines have been compiled to C, these can in turn be compiled to
executables and run on different machines in a network where they use message
passing for communication.

6 Conclusion and Future Work

We have shown a programming language and compilation model for seamless
distributed computing, that provides freedom in choosing the location at which
a computation takes place with implicitly handled communication. This was
achieved by basing the model on the Geometry of Interaction and constructing a
way to produce nodes that are more coarse grained than the standard elementary
nodes, and showing that this is still correct.

So far semantics of a term are sequential – there is nothing taking place in
parallel. The next step will be to investigate how to extend the system with a safe
and flexible parallelisation mechanism. A start is to identify internally sequential
partitions of the network that can safely be run in parallel. Then the evaluation
of a function’s arguments can be performed in parallel with the function as long
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as they are in different partitions of the network. Another idea is to add a more
specific construct for parallelisation, e.g. one for map-reduce.

An important point that has not been discussed in this paper is fault-tolerance:
A distributed system needs to be able withstand nodes crashing, becoming un-
available or being added by dynamically reassigning the locus of execution. This
is also something that we would like to look into in the future.
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Abstract. This paper is an introduction to the framework for the dead-
lock analysis of object-oriented languages we have defined in [6,5]. We
present a basic Java-like language and the deadlock analysis model in
an accessible way. We also overview the algorithm for deciding deadlock-
freeness by discussing a number of paradigmatic examples. We finally
explore the techniques for coping with extensions of the object-oriented
language.
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lar dependencies, lam, livelocks.

1 Introduction

Modern systems are designed to support a high degree of parallelism by en-
suring that as many system components as possible are operating concurrently.
Deadlock represents an insidious and recurring threat when such systems also
exhibit a high degree of resource and data sharing. In these systems, deadlocks
arise as a consequence of exclusive resource access and circular wait for accessing
resources. A standard example is when two processes are exclusively holding a
different resource and are requesting access to the resource held by the other.
An alternative description is that the correct termination of each of the two pro-
cess activities depends on the termination of the other. Since there is a circular
dependency, termination is not possible.

Deadlocks may be particularly insidious to detect in systems where the ba-
sic communication operation is asynchronous and the synchronization explicitly
occurs when the value is strictly needed. Speaking a Java idiom, methods are
synchronized, that is each method of the same object is executed in mutual
exclusion, and method invocations are asynchronous, that is the caller thread
continues its execution without waiting for the result of the called method. Ad-
ditionally, an operation of join explicitly synchronizes callee and called methods
(possibly returning the value of the called method). In this context, when a
thread running on an object x performs a join operation on a thread on y then
it blocks every other thread that is competing for the lock on x. This blocking
situation corresponds to a dependency pair (x, y), meaning that the progress on
x is possible provided the progress of threads on y. A deadlock then corresponds
to a circular dependency in some configuration.
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Further difficulties arise in the presence of infinite (mutual) recursion: con-
sider, for instance, systems that create an unbounded number of processes such
as server applications. In such systems, process interaction becomes complex
and really hard to predict. In addition, deadlocks may not be detected during
testing, and even if they are it can be difficult to reproduce them and find their
causes.

Deadlock detection has been largely investigated both with static and run-
time techniques [2,10,1] (just to cite few references). Static analysis guarantees
that all executions of a program are deadlock-free, at the cost of being not precise
because it may discard safe programs (false positives). Run-time checking cannot
be exhaustive. However, whenever applicable, it produces fewer false positives
than static analysis.

We adopt a static approach, while retaining the precision of a run-time checker
in a large number of cases. Our deadlock detection framework consists of an in-
ference algorithm that extracts abstract behavioral descriptions out of the con-
crete program. These abstract descriptions, called lam programs, an acronym for
deadLock Analysis Model, retain necessary informations for the deadlock analysis
(typically all the synchronization informations are extracted, while data values
are ignored). Then a decision algorithm evaluates the abstract program for ver-
ifying its circularity-freeness (every state has no circular dependency). In turn,
this property implies the deadlock-freeness of the original program. Our approach
is then both flexible (since only the inference algorithm has to be adapted to
the language, while the analyzer is language-independent) and precise (since the
analyzer is a decision algorithm on a large class of lam programs – see below).
The major benefits of our technique are that (i) it does not use any pre-defined
partial order of resources and that (ii) it accounts for dynamic resource creation.

To overview our analyzer, we observe that, in presence of recursion in the
code, the evaluation of the abstract description may end up into an infinite
sequence of states, without giving back any answer. Instead, our analysis always
terminates. The theoretical framework we have designed allow us to determine
when to stop the evaluation. Informally, when the abstract program is linear
– it has (mutual) recursions of the kind of the factorial function –, then states
reached after some point are going to be equivalent to past states. That point,
called saturated state, may be determined in a similar way as the orbit of a
permutation [3] (actually, our theory builds on a generalization of the theory
of permutations [6]). A saturated state represents the end of a pattern that
is going to repeat indefinitely. Therefore it is useless to analyze it again and,
if a deadlock has not been encountered up to that point, then it cannot be
produced afterwords. Analogously, if a deadlock has been encountered, then
a similar deadlock must be present each time the same pattern recurs. When
the abstract program is nonlinear – it has (mutual) recursions of the kind of
the fibonacci function – our technique is not precise because it introduce fake
dependency pairs. However, it is sound.

The aim of this paper is to present our deadlock technique informally,
by means of examples and without going into the (many) theoretical details.
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The interested reader may find the theoretical developments in [6] and the ap-
plication of our abstract descriptions to a programming language in [5,4].

The structure of the paper is as follows. In Section 2, we introduce the pro-
gramming language and the analysis model. In Section 3, we overview the algo-
rithm for detecting circularities in the analysis model. In Section 4, we discuss
a number of programs and their associated abstract models. In Section 5, we
explore two relevant extensions of the programming language: field assignment
and an operation for releasing the lock. We conclude in Section 6.

2 Languages and Models

2.1 The Language FJf

The programs that are analyzed in this paper will be written in a Java-like
language. Instead of using Java, which is quite verbose, we stick to a dialect
of the abs language [8], called FJf. To enhance readability, the semantics of
FJf will be given in an indirect way by discussing the compilation patterns of
the main constructs of FJf into Java (the reader is referred to [4] for a direct
operational semantics).

FJf syntax uses four disjoint infinite sets of names: class names, ranged over
by A, B, C, · · ·, field names, ranged over by f, g, · · ·, method names, ranged over
by m, n, · · ·, and variables, ranged over by x, y, · · ·. The special name this is
assumed to belong to the set of variables. The notation C̃ is a shorthand for
C1; · · · ;Cn and similarly for the other names. Sequences of pairs are abbreviated
as C1 f1; · · · ;Cn fn with C̃ f̃. The syntactic categories of class declarations CL,
method declarations M, expressions e, and types T are defined as follows

CL ::= class C extends C {T̃ f̃ ; M̃}
M ::= T m (T̃ x̃){ return e ; }
e ::= x | e.f | e!m(ẽ) | new C(ẽ) | e; e | e.get
T ::= C | Fut(T)

where sequences of field declarations T̃ f̃, method declarations M̃, and parameter
declarations T̃ x̃ are assumed to contain no duplicate names. A program is a pair
(ct, e), where the class table ct is a finite mapping from class names to class
declarations CL and e is an expression, called main expression.

According to the syntax, every class has a superclass declared with extends.
To avoid circularities, we assume a distinguished class name Object with no
field and method declarations and whose definition does not appear in the class
table. We always omit the declaration “extends Object”.

The main features of FJf are:

futures – Fut(T) these terms are called futures of type T and represent pointers
to values of type T that may be not available yet. Fut(T) are the types of
method invocations that have T as return type.
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asynchronous method invocation – x!m(y): the caller continues its execu-
tion when a method m of x is invoked without waiting for the result. The
called method is evaluated in parallel (on a new spawned thread). The invo-
cation x!m(y) has the same behavior as the following code written in Java

new Thread ( new Runnable() { public void run() { x.m(y); }

}).start();

where, for the sake of conciseness, the code for exception handling is omit-
ted. In particular, in Java, every join() statement and every synchronized
method invocation should handle an InterruptedException.

mutual exclusion : in FJf every method invocations spawns a new threads.
However at most one thread per object is executed at the same time. This
is translated in Java by declaring every method to be synchronized.

thread synchronization for value retrieval : in FJf the caller retrieves the
result of an invocation by the operation t.get, where t is a reference of
the invocation. The get operation is blocking until the returned value is
produced. The FJf code:

x!m(y).get;

corresponds to the synchronization behavior of the following code in Java

(without exception handling management)

Thread t = new Thread ( new Runnable() {

public void run() { x.m(y); }

});

t.start();

t.join();

The operations get in FJf and join in Java have not the exact same mean-
ing: while get synchronizes the two threads and retrieves the value, join
is just a synchronization between the callee’s and the caller’s threads. How-
ever, from the point of view of deadlock analysis, the behaviors of the two
operations are equivalent.

We omit examples at this stage: several FJf codes will be discussed in Section 4.

2.2 Analysis Models for Detecting Circularities

In [6], we have developed a theoretical framework for defining relations on names
(every pair of a relation defines a dependency between two tasks, the first one
is waiting for the result of the second) and for determining whether a definition
may produce a circular dependency – a deadlock – or not. The language for
defining relation is called lam – an acronym for deadLock Analysis Model. Lams
are defined by terms that use a set of names, ranged over by x, y, z, · · ·, and a
disjoint set of function names, ranged over m, m′, n, n′, · · ·. A lam program is a
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tuple
(
m1(x̃1) = L1, · · · , m�(x̃�) = L�, L

)
where mi(x̃i) = Li are function definitions

and L is the main lam. The syntax of Li and L is

L ::= 0 | (x, y) | m(x̃) | L‖L | L; L

such that (i) all function names occurring in Li and L are defined, and (ii)
the arity of function invocations matches that of the corresponding function
definition.

It is possible to associate a lam function to each method of a FJf program. The
purpose of the association is to abstract the object dependencies that a method
will generate out of its definition. For instance, the FJf method declaration

C m1( C y, C z ) { return ( y!m2( z ) ).get ; }

has the associated function declaration in a lam program

m1(x, y, z) = (x, y)‖m2(y, z)

where the first argument is the name of the object this, which is x for m1 and y in
the invocation of m2. The association method-definition/lam-function is defined
by an inference system in [5]. In this paper, in order to be as simple as possible,
we keep this association informal.

The semantics of a lam program requires a couple of preliminary notions. Let
V,V′, I, · · · be partial orders on names (relations that are reflexive, antisymmet-
ric, and transitive) and let V⊕ x̃<z̃, with x̃ ∈ V and z̃ /∈ V, be the least partial
order V′ that satisfies the following rules

V ⊆ V′
x ∈ x̃ (x, y) ∈ V z ∈ z̃

(y, z) ∈ V′

That is, z̃ become maximal names of V⊕ x̃<z̃. Let lam contexts, noted L[ ], be
terms derived by the following syntax:

L[ ] ::= [ ] | L‖L[ ] | L;L[ ]

As usual L[L] is the lam where the hole of L[ ] is replaced by L. Finally, let var (L)
be the set of names occurring in L.

The operational semantics of a program
(
m1(x̃1) = L1, · · · , m�(x̃�) = L�, L�+1

)
is defined by a transition relation between states that are pairs

〈
V, L

〉
and

satisfying the rule:

(Red)

m(x̃) = L var (L) \ x̃ = z̃ w̃ are fresh
L[w̃/z̃][ũ/x̃] = L′〈

V, L[m(ũ)]
〉
−→

〈
V⊕ ũ<w̃, L[L′]

〉
By (red), a lam is evaluated by successively replacing function invocations
with the corresponding lam instances. At every evaluation step, free names in
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a lam definition m(ũ) = L, namely var(L) \ x̃, are replaced by fresh names.
This replacement models name creation and correspond to the new operation
in FJf. For example, if m(x) = (x, y)‖m(y) and m(u) occurs in the main lam,
then m(u) is replaced by (u, v)‖m(v), where v is a fresh maximal name in some
partial order. The initial state of a program with main lam L is

〈
Ix̃, L

〉
, where

x̃ = x1, · · · , xn = var (L) and Ix̃ = {(x, x) | x ∈ x̃} (we are abusing of the
set-notation).

Lams record sets of relations on names. To make explicit these relations, let
�(·), called flattening, be the function inductively defined as follows

�(0) = 0, �((x, y)) = (x, y), �(m(x̃)) = 0,
�(L‖L′) = �(L)‖�(L′), �(L; L′) = �(L); �(L′).

For example

�(m(x, y, z); (x, y)‖n(y, z)‖m(u, y, z);n(u, v)‖(u, v); (v, u)) = (x, y); (u, v); (v, u)

that is, the argument of �(·) defines three relations: {(x, y)} and {(u, v)} and
{(v, u)}. It is easy to verify that, up-to the axioms

(x, y)‖(x, y) = (x, y) (L; L′)‖(x, y) = L‖(x, y); L′‖(x, y)

L = (x1, y1)‖ · · · ‖(xn, yn)

L; L = L

�(L) always returns sequences of pairwise different parallels of pairs (i.e. sets of
pairwise different relations).

Definition 1. A lam L has a circularity if

�(L) = (x1, x2)‖(x2, x3)‖ · · · ‖(xm, x1)‖L′; L′′

for some x1, · · · , xm. A state
〈
V, L

〉
has a circularity if L has a circularity. A

program
(
m1(x̃1) = L1, · · · , m�(x̃�) = L�, L

)
is circularity-free if no state yielded

by evaluating
〈
Ivar(L), L

〉
has a circularity.

3 The Algorithm for Deciding Circularity-Freeness

In case of non-recursive lam programs, since the evaluations always terminate,
the circularity-freeness problem is (easily) decidable. Otherwise – when functions
are (mutually) recursive – the evaluation would not terminate and would produce
infinite relations due to the creation of names. Nevertheless, the problem of
circularity-freeness is decidable for a large set of mutual recursive lam programs
– the linear ones.

Definition 2. A lam program
(
m1(x̃1) = L1, · · · , m�(x̃�) = L�, L

)
is linear if, for

every function mi0 , there is at most one sequence mi0 · · · mim such that, for every
0 ≤ j ≤ m, Lij contains exactly one invocation of mij+1%m

(the operation % is
the remainder of the natural division).
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For example, a factorial-like programs, such as
(
fact(x) = (x, y)‖fact(y),

fact(x)
)
, are linear, while fibonacci-like ones, such as

(
fib(x) = (x, y)‖(x, z)‖

fib(y)‖fib(z), fib(x)
)
, are not.

The idea of our technique is to recognize the pattern of the recursion in order
to be able to determine the states when the evaluation flow is going to repeat the
same pattern (with different names) and only produce pattern of dependencies
that were already discovered in the past of the evaluation. Once our algorithm
recognizes these states, called saturated states, it just interrupts avoiding non-
terminating evaluations.

Theorem 1 ([6]). The problem of circularity-freeness in linear lam programs
is decidable.

The theoretical details of this theorem are out of the scope of this paper. Here
we illustrate the algorithm on two sample programs. The first one is

(
fact(x) =

(x, y)‖fact(y), fact(x)
)
. In this case, our theory affirms that the saturated state

is reached in two steps of evaluation. That is〈
Ix, fact(x)

〉
−→

〈
Ix ⊕ (x<y), (x, y)‖fact(y)

〉
−→

〈
Ix ⊕ (x<y)⊕ (y<z), (x, y)‖(y, z)‖fact(z)

〉
.

We observe that, if we perform a further step of evaluation, we get〈
Ix ⊕ (x<y)⊕ (y<z)⊕ (z<u), (x, y)‖(y, z)‖(z, u)‖fact(u)

〉
and there is an injective partial map ρ on Ix ⊕ (x<y) ⊕ (y<z) ⊕ (z<u), namely
ρ = [z �→ x, u �→ y], such that

1. fact(u) is mapped to an invocation that is already evaluated – that is
fact(x);

2. dependencies produced by fact(z), namely (z, u) are mapped to dependen-
cies that have been already produced, namely (x, y).

These properties allow us to decide that the evaluation is repeating the same
pattern (on new names) and conclude that no circularity will be ever manifested
since the saturated state is circularity-free.

When the lam program is nonlinear, our technique is imprecise but sound:
the nonlinear lam program is transformed into a linear one by contracting mul-
tiple method invocations to one. This contraction introduces fake dependencies
(i.e. false positives in terms of circularities). Once the linear transformed pro-
gram is obtained, then the analysis is run on it. It turns out that these additional
dependencies cannot be eliminated because of a cardinality argument. More pre-
cisely, the evaluation of a method invocation m(ũ) in a linear program may pro-
duce at most one invocation of m, while an invocation of m(ũ) in a nonlinear
program may produce two or more invocations of m. When the invocations of m
create names, contracting different invocations into one means reducing an expo-
nential number of new names to a linear number. This, in terms of the analysis
means losing precision. Nevertheless, we prove the soundness of our technique:
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if the transformed linear program is circularity-free then the original nonlinear
one is also circularity-free. For example, consider the fibonacci-like program(

fib(x) = (x, y)‖(x, z)‖fib(y)‖fib(z), fib(x)
)

The transformed program is(
fibaux (x, x′) = (x, y)‖(x, z)‖(x′, y)‖(x′, z)‖fibaux (y, z) ,
fibaux (x, x)

)
which is linear but adds dependencies. In this transformation, the two invocations
of fib have been contracted into one – the fibaux invocation – that carries two
arguments, one for every invocation – notice that the invocation fibaux (y, z)
corresponds to the two invocations fib(y) and fib(z). In the body of fibaux ,
the creation of the two names in fib is simulated by creating two names as well.
However, these two names are the same both for the first argument and for the
second one (that correspond to the two recursive invocations of fib). This results
into fake dependencies between names originally belonging to two different and
independent invocations. In particular, after two steps of evaluation, fibaux (x, x)
gives,

(x, y)‖(x, z)‖(y, y′)‖(y, z′)‖(z, y′)‖(z, z′)‖fibaux (y′, z′)
whilst the corresponding lam of the original nonlinear program is

(x, y)‖(x, z)‖(y, y′)‖(y, y′′)‖(z, z′)‖(z, z′′)‖fib(y′)‖fib(y′′)‖fib(z′)‖fib(z′′) .

We demonstrate that, if no circularity is manifested by the saturated state of
fibaux then the original fibonacci program is circularity-free. Since the circularity-
freeness of fibaux is decidable, by Theorem 1, then, in case of circularity-freeness,
we are able to state the same property for fib.

4 The Technique by Examples

We illustrate our analysis technique by discussing a number of programs written
in FJf. Every example is discussed as follows:

1. we first present the FJf description;
2. then we give the associated lam, by keeping informal the association tech-

nique (see [5] for on a inference system defining the formal association);
3. we finally inspect and evaluate lams looking for circularities.

Getting started: a simple deadlocked program. Consider the following class C with
three synchronized methods m1, m2, and m3:

class C {

C m1( C y, C z ) { return y!m2(z).get ; }

C m2( C z ){ return z!m3( ).get ; }

C m3( ) { return new C( ) ; }

}
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An invocation x!m1(y,z) spawns a thread (in the thread pool of x) that will
invoke y!m2(z) and immediately blocks because of the get (hence it will not
release the lock on x), waiting for the value that is returned by m2. The invocation
y!m2(z), in turn, causes a new thread to be spawned (in the thread pool of
y) that invokes z!m3() and blocks waiting for its result. The lam functions
associated to the above methods are

m1(x, y, z) = (x, y)‖m2(y, z)
m2(x, y) = (x, y)‖m3(y)
m3(x) = 0

That is, to every method declaration we associate a lam declaration with an
additional first argument representing the object this (which is always x). The
body of the lam declaration ignores every local computation and translates FJf
method invocations into lam function invocations and get operations into de-
pendency pairs.

If the code of the main is

new C()!m1( new C(), new C() )

then the evaluation of the program will lock objects as depicted below

object x

method m1

object y

method m2

object z

method m3

and no deadlock will appear. Since in this case the lam program is not recur-
sive, our analysis technique is straightforward: just evaluate completely the lam
program and verify whether the final lam is circularity-free. In fact, we get:〈

Ix,y,z, m1(x, y, z)
〉 −→ 〈

Ix,y,z, (x, y)‖m2(y, z)
〉 −→ 〈

Ix,y,z, (x, y)‖(y, z)‖m3(z)
〉

−→ 〈
Ix,y,z, (x, y)‖(y, z)‖0

〉
which has no circularity. On the contrary, if the code of main is

C x = new C(); x!m1( new C(), x )

then a deadlock will occur. In fact, in this case x = z and the thread execut-
ing y!m2(x) will block waiting for the result of x!m3(). In turn, this method
will never be executed since the object x is locked by the initial invocation, as
depicted below

object x

method m1

object y

method m2

method m3
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This circularity is exactly what our analysis is able to catch. In this case, the
main lam is m1(x, y, x) and the computation is〈

Ix,y, m1(x, y, x)
〉 −→ 〈

Ix,y, (x, y)‖m2(y, x)
〉 −→ 〈

Ix,y , (x, y)‖(y, x)‖m3(x)
〉

−→ 〈
Ix,y, (x, y)‖(y, x)‖0

〉
which has a final state with a circularity.

Scheduler’s choices and deadlocks. Deadlocks that are usually difficult to detect
are those caused by scheduler’s choices. Consider the following class D

class D {
D m1( D y, D z ) { return new D()!m4(y,z).get ; z!m2(y) ; new D() ; }
D m2( D y ){ return y!m3( ).get ; }
D m3( ) { return new D( ) ; }
D m4( D y, D z ) { return y!m2(z) ; new D() ; }

}

and evaluate (new D)!m1(new D, new D). This evaluation is nondeterministic:
it may yield a deadlock or not according to the scheduling of the threads. In
particular, the execution terminates successfully if the lock of the object z is
grabbed by z!m3() (inside m2) before the invocation of z!m2(y) (inside m1)
obtains the lock. If, on the contrary, the lock on z is taken by the invocation of
z!m2(y) inside m1, then a deadlock occurs. Let us analyze the program with our
technique. The lam functions associated to the above methods are:

m1(x, y, z) = (x, u)‖m4(u, y, z) ; m2(z, y)‖m2(y, z) ,
m2(x, y) = (x, y)‖m3(y) ,
m3(x) = 0 ,
m4(x, y, z) = m2(y, z) ,

In this case, the lam of m1 has shape T1; T2 because the corresponding code
spawns two threads in sequence: the invocation of m2 after the termination of
the invocation of m4. In turn, since the invocation of m4 spawns an asynchronous
behavior (the asynchronous invocation of m2), then T2 also contains an invocation
of m2 caused by m4. That is, the leftmost invocation of m2 in T2 is due to the
code of m1, the rightmost one is due to the invocation of m4.

As before, this lam program is not recursive and, in order to analyze it, we
have to compute the final state, assuming m1(x, y, z) as the main function:〈

Ix,y,z, m1(x, y, z)
〉 −→ 〈

Ix,y,z ⊕ (x, y, z < u), (x, u)‖m4(u, y, z) ; m2(z, y)‖m2(y, z)〉
−→ 〈

Ix,y,z ⊕ (x, y, z < u), (x, u)‖m2(y, z) ; m2(z, y)‖m2(y, z)〉
−→ ... −→ 〈

Ix,y,z ⊕ (x, y, z < u), (x, u)‖(y, z) ; (z, y)‖(y, z)〉
thus manifesting a circularity.

The cooperative factorial function. Let us extend the language of Section 2.1 with
the primitive type int, the arithmetic operations and the conditional expression.
The meanings of these features are standard. Then consider the following class
Maths where the method fact(n) computes the factorial of the of the argument
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(when positive) by performing a recursive invocation on a newly created object.
The evaluation produces a finite chain of newly created threads waiting for the
termination of the next thread on a new object.

class Maths {

int fact(int n) { return if (n==0) then 1 ;

else n*((new Maths)!fact(n-1).get) ; }

}

The evaluations of fact(n) never yield a deadlock, since no circular dependency
can be constructed. This may be verified by translating the program into the
lam formalism (

fact(x) = (x, y)‖fact(y), fact(x)
)

(the integer parameter is abstracted away, and the method shows only the pa-
rameter x representing the object this) and evaluating fact(x) till the satu-
rated state, as discussed in Section 3. We notice that the conditional expression
is translated into a lam by gathering the dependencies of the two branches,
a standard technique in static analysis (in this case, the dependencies of the
then-branch are empty).

A complex recursive pattern. As an example of recursive program, consider the
following FJf class:

class R { R m1(R y, R z){ return y!m1(z,new R()).get ; z } }

The method m1 is a recursive method (of the same kind of the foregoing factorial
function) that invokes m1 on its first argument with the second argument that
is a new object. It does not generate any circularity when invoked with different
arguments. However, several concurrent instances of its may produce a circular
dependency. For instance, consider the main expression containg two invocations
of m1 with the swapped arguments:

R x = new R() ; R y = new R() ; R z = new R() ; x!m1(y,z); x!m1(z,y)

(we are using local variables ; these may be easily encoded in our calculus as
arguments of additional auxiliary methods). The associated lam program is(

m1(x, y, z) = (x, y)‖m1(y, z, w) , m1(x, y, z)‖m1(x, z, y)
)

which is linear. Our theory guarantees that, unfolding six times the two invo-
cations of m1, it is possible to establish the circularity-freeness of the program.
This means that, in order to get the saturated state we have a computation of
length twelve. In particular, after four steps of the computation, we get〈
Ix,y,z, m1(x, y, z)‖m1(x, z, y)

〉 −→2
〈
V1, (x, y)‖(x, z)‖m1(y, z, u)‖m1(z, y, v)

〉
−→2

〈
V2, (x, y)‖(x, z)‖(y, z)‖(z, y)‖m1(z, u, u′)‖m1(y, v, v′)〉

where V1 = Ix,y,z ⊕ (x, y, z < u) ⊕ (x, y, z < v) and V2 = V1 ⊕ (y, z, u <
u′) ⊕ (y, z, v < v′). Since the last state has a circular dependency, we can stop
the analysis here and deduce that the corresponding program deadlocks.
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Another complex recursive pattern. The following FJf class manifest another
issue about saturation. Let

class Rec {
Rec m1(Rec y, Rec z, Rec w){

return z!m2(y) ; this!m2(z) ; w!m2(z) ; y!m1(this,w,new Rec()) ; z ;
}
Rec m2(Rec y){ return y!m3().get; }
Rec m3() { new Rec(); }

}

and let new Rec()!m1(new Rec(), new Rec(), new Rec()) be the main ex-
pression. The lam function associated to the above methods are

m1(x, y, z, w) = m2(z, y)‖m2(x, z)‖m2(w, z)‖m1(y, x, w,w′) ,
m2(x, y) = (x, y)‖m3(y) ,
m3(x) = 0 ,

and our theory guarantees that the saturated state is obtained after four unfold-
ings of m1 (and completely unfolding the auxiliary method invocations m2 and
m3). However, we notice that it is possible to obtain a state with a circularity
after two unfoldings of m1(x, y, z) (which we assume as the main function):〈

Ix,y,z, m1(x, y, z)
〉 −→∗ 〈

V, (z, y)‖(x, z)‖(w, z)‖m1(y, x, w)
〉

−→∗ 〈
V′, (z, y)‖(x, z)‖(w, z)‖(w, x)‖(y, w)‖(w′, w)‖m1(x, y,w′)

〉
where V = Ix,y,z ⊕ (x, y, z < w) and V′ = V⊕ (y, x, w < w′). In particular, the
last state has circularity (z, y)‖(y, w)‖(w, z). However, if we perform a further
unfolding of m1(x, y, w′) we get the relation

(z, y)‖(x, z)‖(w, z)‖(w, x)‖(y, w)‖(w′, w)‖(w′, y)‖(x,w′)‖(w′′, w′)

that manifests the additional circularity (w, x) (x,w′) (w′, w), which has no
counterpart in the previous states (it cannot be mapped to a past circularity).
That is, in order to have a complete account of circular dependencies, it is
necessary to compute the lam till the saturated state.

The cooperative fibonacci function. A paradigmatic program that yields a non-
linear lam is the one computing fibonacci numbers. Consider to augment the
above class Maths with the following method fib

int fib(int n) {

return if n==0 then 1 ;

else if n==1 then 1 ;

else new Maths()!fib(n-1).get + new Maths()!fib(n-2).get ; }

}

that implements the standard recursive algorithm of fibonacci. As in the facto-
rial example, the above code is a cooperative solution: the recursive invocations
are performed on new objects every time, so that the result is computed in



A Beginner’s Guide to the DeadLock Analysis M odel 61

parallel threads. The values of the spawned threads are retrieved by get oper-
ations, which corresponds to synchronization points. To analyze this program,
we consider the associated lam:(

fib(x) = (x, y)‖(x, z)‖fib(y)‖fib(z), fib(x)
)

(as before, the integer parameter is abstracted away and the method only carries
the parameter x representing the object this). This lam program is not linear
and, as discussed in Section 3, it is circularity-free.

5 Additional Issues

Two relevant extensions of the language FJf are field assignment and the op-
eration await. In this section we indicate the techniques we are developing for
coping with them.

Fields and assignments. The update operation increases the difficulties of the
deadlock analysis. In particular, a field of an object that is modified by con-
current threads has a nondeterminate final value. This, in turn, may cause un-
predictable behaviors due to the scheduling of the threads (see also Section 4).
In [7] there is a preliminary study of this issue. For instance, consider the two
classes E and F below

class E {

E m1( F y ) { return y!n1 ; new E() ; }

E m2( ) { return new E( ); }

}

class F {

E f;

E n1( ) { return f = this ; }

E n2( ) { return f!m2().get ; }

}

and the main expression

F x = new F( new E() ) ; new E()!m1(x) ; x!n2() ;

(as before, we are using local variables). The evaluation of this expression yields
a thread (spawned inside m1) that modifies the field f of x (because of the
invocation x!n1). This thread is concurrent with the invocation x!n2(). If the
execution flow is such that the invocation f.m2() (inside x!n2()) is evaluated
before the assignment, then the execution will terminate (with a new object
stored in f), otherwise f will contain a reference to this and the computation
deadlocks.

In order to take into account the updates, we extend lams with the possibility
of specifying sets of objects, which model the possible values that may be stored
in fields. In particular, the lam program associated to the above code is(

m1(x, y,Y) = n1(y,Y), m2(x) = 0, n1(z,Z) = 0, n2(z,Z) = m2(Z)‖(z,Z),
m1(x, y, {x, y})‖n2(y, {y, z})

)
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where Y is the set of possible values the fields of the object y may be assigned.
Analogously for Z with respect to z. Notice that the first arguments of m1 and
m2 are of class E, therefore they do not have any fields. This is why they do not
have any associated set. The body of n2 has the pair (z,Z), which represent
the set of pairs {(z, z′) | z′ ∈ Z}. The execution of the lam program will be the
following:〈
Ix,y,z, m1(x, y, {x, y})‖n2(y, {y, z})

〉 −→ 〈
Ix,y,z, n1(y, {x, y})‖n2(y, {y, z})

〉
−→ 〈

Ix,y,z, n2(y, {y, z})
〉

−→ 〈
Ix,y,z, (y, {y, z})‖m2({y, z})

〉
−→ 〈

Ix,y,z, (y, {y, z})
〉 −→ 〈

Ix,y,z, (y, y)‖(y, z)
〉

The final state has a circular dependency, i.e. (y, y).

Await and livelocks. A further synchronization operator of ABS is await (see [8,5]
for its formal semantics and examples). The operation await suspends the cur-
rent thread, by releasing the lock on its own object, while waiting for a thread
termination. Later on, the thread competes again for grabbing the lock and,
when acquired, it tries again for the result. If it is available, the computation
proceeds, otherwise the lock is released again and so on. With this semantics, a
circular dependency does not correspond to a blocking situation, but to a sit-
uation where one or more threads are caught in an infinite loop of getting and
releasing the lock. This phenomenon is usually called a livelock.

In the presence of livelocks, a circular dependency may not necessarily be a
bad situation. Let us discuss this issue. A dependency pair (x, y) in a livelock
analysis means that some thread on x is waiting – not busy-waiting – for the
result of some thread on y. Under this meaning, the term (x, y)‖(y, x), which is
signaled as an incorrect state by our technique, may be safe because the involved
threads can be different. In fact, in this case, since the threads do not busy-wait
on the objects x and y, the computation terminates successfully.

In order to distinguish between the two types of circularities, we extend
the names used in lams with thread names. In this extension – lams with two
sorts of names, thread names have a “type”, which is the (object) name –, the
livelocks are those manifested by terms such as (t, t′)‖(t′, t); while terms as
(t, t′)‖(t′, t′′), even if t and t′′ have the same object type, are painless.

6 Conclusion

This paper surveys a technique for the static analysis of deadlocks. This tech-
nique associates abstract descriptions, called lams, to programs and then evalu-
ates such descriptions to catch circular dependencies. The technique does not use
any pre-defined partial order of resources and does account for dynamic resource
creation. We stuck to a popularizing exposition; therefore the technical details
have been omitted and several examples should help in clarifying the difficult
points.

We are currently experiencing our technique in the hats European project
(www.hats-project.eu) on large programs written in an object-oriented lan-
guage with futures [4]. An inference systems for deriving lams [5], for a subset of

www.hats-project.eu


A Beginner’s Guide to the DeadLock Analysis M odel 63

this language, has been defined and additional annotations allow us to instruct
the inference system when structured data types and iterations occur.

Lams have been used in the first place for detecting the so-called resource
allocation deadlocks, as encountered in e.g. operating systems. However, our
technique seems also adequate for deadlocks due to process synchronizations,
as those in process calculi [11,10,9]. A thorough comparison with these works is
scheduled for the next future.

An interesting direction of research is the application of our algorithm for
static analysis to verify properties different than deadlocks. This might boil down
to devise languages different than lams and to different definitions of saturated
states.
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Abstract. Android OS is currently the most widespread mobile oper-
ating system and is very likely to remain so in the near future. The
number of available Android applications will soon reach the staggering
figure of 500,000, with an average of 20,000 applications being introduced
in the Android Market over the last 6 months. Since many applications
(e.g., home banking applications) deal with sensitive data, the security
of Android is receiving a growing attention by the research community.
However, most of the work assumes that Android meets some given high-
level security goals (e.g. sandboxing of applications). Checking whether
these security goals are met is therefore of paramount importance. Un-
fortunately this is also a very difficult task due to the lack of a detailed
security model encompassing not only the interaction among applications
but also the interplay between the applications and the functionalities
offered by Android. To remedy this situation in this paper we propose a
formal model of Android OS that allows one to formally state the high-
level security goals as well as to check whether these goals are met or to
identify potential security weaknesses.

1 Introduction

Modern smartphones not only act as cell phones, but also as handheld personal
computers, where users manage their personal data, interact with online pay-
ment systems, and so on. As stated in [12], “a central design point of the Android
security architecture is that no application, by default, has permission to perform
any operation that would adversely impact other applications, the operating sys-
tem, or the user. This includes reading or writing the user’s private data (such
as contacts or e-mails), reading or writing another application’s files, perform-
ing network access, keeping the device awake, etc.”. Android strives to achieve
this security goal through a cross-layer security architecture, the Android Secu-
rity Framework (ASF), leveraging the access control mechanisms offered by the
underlying Linux kernel.

Recent work (e.g., [2,23,19,16]) unveiled a plethora of vulnerabilities occurring
at different layers of the Android stack and a number of extensions to the Android
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native securitypolicies (e.g., [17]) and to the framework itself (e.g., [13,8]) havebeen
put forward. However, a systematic assessment of the ASF and of the proposed
solutions is very difficult to achieve. Mainly, this is due to the lack of a detailed
security model encompassing not only the interaction among applications but also
the interplay between the applications and the functionalities offered by Android.

In this work we focus on modeling the Android OS in order to overcome
the aforementioned aspects. The contribution of this paper is twofold. Firstly,
we propose a formal model of Android that allows us to formally describe the
security-relevant aspects of the ASF. Secondly, we present a type and effect
system that we use for both producing the model of a platform and verifying
whether it meets some expected security goals. For modeling, we adopt a process
algebra-like formalism, namely history expressions [6], that can be exploited for
different purposes, as we detail in the following.
Structure of the paper. In Section 2 we briefly introduce the architecture of
Android and the principal interactions. In Section 3 we describe the ASF and
its enforcement mechanisms. In Section 4 we present our formal model for the
Android Security Framework. In Section 5 we present our type and effect system,
we prove its key properties and we describe its possible exploitations. Finally, in
Section 6 we draw some concluding remarks.

2 Android Architecture

The Android stack can be represented with 5 functional levels: Application, Ap-
plication Framework, Application Runtime, Libraries and the underlying Linux
kernel.

1. Application Layer. It includes both system (home,browser,email,..) and
user-installed Java applications. Applications are made of components cor-
responding to independent execution modules, that interact with each oth-
ers. There exist four kinds of components: 1) Activity, representing a single
application screen with a user interface, 2) Service, which is kept running
in background without interaction with the user, 3) Content Provider, that
manages application data shared among components of (potentially) distinct
applications, and 4) Broadcast Receiver which is able to respond to system-
wide broadcast announcements coming both from other components and the
system. Components are defined in namespaces that map components to a
specific name which allow to identify components in the system.

2. Application Framework. It provides the main OS services by means of a
set of APIs. This layer also includes services for managing the device and
interacting with the underlying Linux drivers (e.g. Telephony Manager and
Location Manager).

3. Android Runtime. This layer comprises the Dalvik virtual machine, the An-
droid’s runtime’s core component which executes applications.

4. Libraries. It contains a set of C/C++ libraries providing useful tools to the
upper layers and for accessing data stored on the device. Libraries are widely
used by the Application Framework services.
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5. Linux kernel. Android relies on a Linux kernel for core system services. Such
services include process management and drivers for accessing physical re-
sources and Inter-Component Communication (ICC).

2.1 Interactions in Android

In Android, interactions can be horizontal (i.e. application to application) or
vertical (i.e. application to underlying levels). Horizontal interactions are used
to exploit functionalities provided by other applications, while vertical ones are
used to access system services and resources. Component services are invoked by
means of a message passing paradigm, while resources are referred by a special
formatted URI. Android URIs can also be used to address a content provider
database.

Horizontal interactions are based on a message abstraction called intent. In-
tent messaging is a facility for dynamic binding between components in the same
or different applications. An intent is a passive data structure holding an abstract
description of an operation to be performed (called action) and optional data in
URI format. Intents can be explicit or implicit. In the former case, the destina-
tion of the action is explicitly expressed in the intents (through the name of the
receiving application/component), while in the latter case the system has to de-
termine which is the target component accordingly to the action to be performed,
the optional data value and the applications currently installed in the system.

Intent-based communications are granted by a kernel driver called Binder
which offers a lightweight capability-based remote procedure call mechanism.
Although intent messaging passes through the Binder driver, it is convenient
to maintain intent’s level of abstraction for modeling purpose. In fact, every
Android application defines its entry points using intent filters which are lists
of intent’s actions that can be dispatched by the application itself. Furthermore,
an intent can be used to start activities, communicate with a service or send
broadcast messages.

Vertical interactions are used by applications to access system resources and
functionalities which are exposed through a set of APIs. Although system calls
can cause a cascade of invocations in the lower layers, possibly reaching the
kernel, all of them are mediated by the application framework APIs. Hence,
APIs mask internal platform details to the invoking applications. Internally, API
calls are handled according to the following steps. When an application invokes
a public API in the library, the invocation is redirected to a private interface,
also in the library. The private interface is an RPC stub. Then, the RPC stub
initiates an RPC request with the system process that asks a system service to
perform the requested operation.

3 Android Security Framework

The Android Security Framework (ASF) consists of a set of decentralized security
mechanisms spanning on all layers of the Android stack. The ASF enforces an
informal and cross-layer security policy focused on the concept of permission.
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3.1 Android Permissions

In Android, a permission is a string expressing the ability to perform a specific
operation. Permissions can be system-defined or user-defined. Each application
statically declares the set of permissions it requires to work properly. Such a
set is generally a superset of the permissions effectively used at runtime. During
installation of an application, the user must grant the whole set of required
permissions, otherwise the installation is aborted. Once installed, an application
cannot modify such permissions.

Each application package contains an XML file, called Android Manifest, con-
taining two types of permissions:

– declared permissions are defined by the application itself and represent
access rights that other applications must have for using its resources.

– requestedpermissions representing thepermissionsheldby the application.

Since permissions specified in the manifest are static (i.e., they cannot possi-
bly change at runtime), they are not suited to regulate access to resources that
are dynamically defined by the application (e.g., shared data from a content
provider). For this reason Android APIs include special methods for dynamically
(i) granting, (ii) revoking and (iii) checking access permissions. These methods
handle per-URI permissions thereby letting the application give temporary ac-
cess privileges for some owned URI to other applications.

3.2 Android Security Policy

The Android security policy defines restrictions on the interactions among ap-
plications and between each application and the system. The Android security
policy is globally enforced by the ASF. Both the policy and the ASF strongly
rely on permissions associated with the components. We detail here the security
policy related to the architecture and the interactions explained in Sec. 2.

Horizontal interactions. Horizontal interactions between components are carried
out through permissions associated with intents. Each application can declare
a list of permissions for their incoming intents. When application A sends an
intent I to application B, the platform delivers I only if A has the privileges
(granted at installation time) requested by B. Otherwise, the intent does not
reach B (still, it could be delivered to other recipients).

Vertical interactions. By default, an Android application can only access a lim-
ited range of system resources. These restrictions are implemented in different
forms. Some capabilities are restricted by an intentional absence of APIs medi-
ating sensitive accesses. For instance, there is no API that allows for the direct
manipulation of the SIM card. In other cases, the sensitive APIs are reserved for
trusted applications and are protected through permissions.

Each API in the library layer is associated with a certain permission. Once a
component invokes an API, the privileges of the component are checked against
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the permission required for the API. If an application attempts to invoke an
API without having the proper privileges, a security exception is thrown and
the invocation fails.

Linux layer and IPC. The Android platform takes advantage of the Linux user-
based access control model as a means to identify and isolate application re-
sources. The Android system assigns a unique user ID (UID) to each Android
application and runs it as that user in a separate Linux process. This sets up
a kernel-level Application Sandbox. This approach uses the native Linux isola-
tion for users to implement a security policy that avoids direct communications
among Android applications by forcing all their interactions to rely upon the
IPC system. However, such a policy does not prevent a Linux process (running
an application) from communicating through one of the native UNIX mecha-
nisms such as sockets or files. Notice that the Linux permissions apply on such
channels.

The previous analysis shows the cross-layer nature of Android Security policy.
The ASF is distributed and involves distinct security-relevant aspects (from UID
and GID at Linux layer to human-readable and high level Android permissions).
Assessing the effectiveness of all the security mechanisms and their interplay is
difficult due to such heterogeneity and the lack of a detailed and comprehensive
model of the security-relevant aspects of Android.

4 Android Model

In this section we describe how we model Android applications and components.
In particular, we introduce a framework for defining an application in terms of
its (i) components, (ii) manifest and (iii) name space. Moreover, we present
a formal semantics for describing computations in our model. We believe that
our framework can be used to accurately describe most of the security-relevant
aspects of the Android OS. Indeed, even though Java-like languages have been
proposed for the application of formal methods, e.g., see [7,15], here we aim at
focussing on application-to-application and application-to-system interactions
which do not depend on object orientation. To this purpose, we show, through
examples, that our model covers a number of security flaws that have been
recently reported.

4.1 Applications and Components

In Table 1 we report the syntax of the elements of our framework.
Intuitively, an application A is a triple consisting of a manifest M , a naming

function Δ and a finite list of components C̄ = C1 . . . Cn. A manifest M contains
three parts: requested permissions Π , declared permissions P and an intents
resolution function Λ. The permission request part Π is a finite sequence of (i)
intent permission requests ρα and (ii) system permission requests ρσ. Instead,
the permission declaration P is a list of pairs (α, ū) binding intent names α, α′
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Table 1. Syntax of applications and components

A ::= 〈M,Δ, C̄〉 Application
M ::= Π ;P ;Λ Manifest
Π ::= ε | ρα.Π | ρσ.Π Permission requests
P ::= ε | (α, ū).P Exported permissions
Λ ::= ε | (α �→ η).Λ Intent binding
Δ ::= ∅ | Δ{C/η} Name space
C ::= skip | icastE | ecast η E | grantσ η E | Statements

revokeσ η E | checkσ η E | new x inC | receiveα x �→ C |
applyE toE′ | systemσ E | if (E = E′){C} else{C′} | C;C′

E ::= null | u | x | Iα(E,E′) | E.d | Expressions
E.e | proc f(x){C}

to lists of resources ū = u1, . . . , uk. The function Λ maps each intent name α
to a set of (identifiers of) components {η1, . . . , ηn} that can serve it, namely
the available receivers. Finally, Δ resolves components identifier η, η′ into actual
components C,C′.

Software components are obtained from the composition of statements and
expressions. Expressions, ranged over by E,E′, can be null, resources u, u′, vari-
ables x, y, intents constructors Iα(E,E′), data and extra field getters (E.d and
E.e, respectively) or procedure declarations proc f(x){C} (where f is bound in
C).

Similarly, statements, denoted by C,C′, can be a skip command, an im-
plicit intent cast icastE, an explicit intent cast ecast η E, an access per-
mission grant grantσ η E, a permission revocation revokeση E, a permission
checking checkσ η E, a fresh resource creation newx inC, an intent receiver
receiveα x �→ C, an application of a procedure to a parameter applyE toE′,
a system call systemσ E, a conditional branching if (E = E′){C} else{C′} or
a sequence C;C′.

4.2 Operational Semantics

The behaviour of programs follows the small step semantics rules given in Ta-
ble 2. Computations are sequences of reductions steps from a source configuration
to a target one. For expressions, a configuration only contains the element un-
der evaluation E. The operational semantics reduces expressions E,E′ to values
v, v′. A value can be either the void element ⊥, a resource u, a intent Iα(u, v), or
a procedure proc f(x){C}. If no reductions apply to a configuration E (where
E is not a value), we write E �→ and we say it to be stuck.

The semantic rules for commands are more tricky. Basically, we evaluate state-
ments under a configuration U,Φ,C where C is the program under computation,
U is a resources ownership function (i.e., U(η) = U means that the component
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Table 2. Semantics of expressions and statements (fragment)

(E−NULL) null→ ⊥ (E−FLD)
E → E′

E.f → E′.f
(E−DATA) Iα(u, v).d→ u

(E−EXT) Iα(u, v).e→ v (E−INTL)
E → E′′

Iα(E,E′)→ Iα(E
′′, E′)

(E−INTR)
E → E′

Iα(v,E)→ Iα(v,E
′)

(S−SKIP) U,Φ, skip � U,Φ, · (S−GRNT)
self = η′ u ∈ U(η′) Φ′ = Φ ∪ {(η, σ, u)}

U,Φ, grantσ η u � U,Φ′, ·

(S−REVK)
self = η′ u ∈ U(η′) Φ′ = Φ \ {(η, σ, u)}

U,Φ, revokeσ η u � U,Φ′, ·

(S−ICST)
self = η η′ ∈ Λ(α) η, α, u |= Φ

U,Φ, icast Iα(u, v)
αη′

η (u,v)
�Λ U,Φ, ·

(S−ECST)
self = η η′ ∈ Λ(α) η, α, u |= Φ

U,Φ, ecast η′ Iα(u, v)
αη′

η (u,v)
�Λ U,Φ, ·

(S−CHK)
η, σ, u |= Φ

U,Φ, checkσ η u � U,Φ, ·
(S−SYS)

self = η η, σ, u |= Φ

U,Φ, systemσ u
ση(u)� U,Φ, ·

(S−NEW)
self = η fresh u

U,Φ, new x inC � U ∪ {η/u}, Φ, C[u/x]

(S−APP) U,Φ, apply proc h(y){C} to v � U,Φ, C[v/y, proc h(y){C}/h]

(S−CND) U,Φ, if (v = v′){Ctt} else {Cff }� U,Φ, CB(v=v′)

(S−SEQ)
U,Φ,C

b�, U ′, Φ′, C′′

U,Φ,C;C′ b� U ′, Φ′, C′′;C′
(S−SEQ−) U,Φ, ·;C � U,Φ, C

(identified by) η owns the resources in U) and Φ is the system policy (we write
η, β, u |= Φ for (η, β, u) ∈ Φ with β ∈ {α, σ}). Slightly abusing the notation, we
also use · in the configuration to represent computation termination.

Computational steps consist of transitions from a source configuration to a
target one. Transitions have the form U,Φ,C

a�Λ U ′, Φ′, C′ where a is an observ-
able action, i.e., an intent or a system call, that the computation can perform and
Λ is an intents destination table, i.e, Λ(α) = {η1, . . . , ηk} means that η1, . . . , ηk
are the candidates for handling an intent α. When not necessary, we feel free to
omit a and Λ from the transitions.

According to the rules of table 2,1 the commands behave as follows. The
statement skip does not change the system state and terminates (S−SKIP).
Both implicit (rule (S−ICST)) and explicit (rule (S−ECST)) casts produce an ob-
servable action αη′

η (u, v) and reduce to ·. The only difference is that the receiver
η′ for an implicit cast can be any of the elements of the destination table Λ, while

1 For brevity, table 2 only reports the rules which are more interesting our presentation.
The full semantics can be found at http://www.ai-lab.it/merlo/publications/

AndroidModel.pdf

http://www.ai-lab.it/merlo/publications/AndroidModel.pdf
http://www.ai-lab.it/merlo/publications/AndroidModel.pdf


Formal Modeling and Reasoning about the Android Security Framework 71

an explicit cast declares the destination (which still must be a legal one, i.e.,
η′ ∈ Λ). Note that, these reduction steps take place only if they are allowed by
the current policy Φ. Permission granting and revocation (rules (S−GRNT) and
(S−REVK)) are symmetrical. Indeed, granting a permission causes the current
policy to be extended with a possibly new, allowed action, while revocation
removes some existing privileges. Both the operations require u to be owned by
the executing component, i.e., u ∈ U(η′) where self = η′. Then, a security check
checkσ η u interrupts the computation if η has no rights to access to u through
σ (rule (S−CHK)). A system call systemσu is performed (rule (S−SYS)) if the
current component is allowed to invoke it and generates a corresponding access
action ση(u) (where η is the source of the access σ). Resource creation (S−NEW)
causes a statement C to be evaluated under a state in which a fresh resource u is
associated to the variable x. As expected, the owner of the resource is the current
component. Procedure application (rule (S−APP)) reduces to the computation
of the procedure body C where the formal parameter y and the variable h are
replaced with the actual parameter v and the procedure definition, respectively.
A conditional statement (rule (S−CND)) reduces to one of its branches depending
on the value of its guard (we write B(v = v′) as an abbreviation of the two
conditions v = v′ and v �= v′ which evaluate to either tt or ff ). Finally, a sequence
of statements C;C′ behaves like C until it terminates and then reduces to the
execution of C′ (rules (S−SEQ) and (S−SEQ−)).

In addition to the standard syntax, we define the following abbreviations
which we adopt for the sake of presentation.

if (E �= E′){C} else {C′} � if (E = E′){C′} else{C}

if (E1 = E′
1 ∧ E2 = E′

2){C} else {C′} � if (E1 = E′
1){ if (E2 = E′

2){C} else {C′}} else {C′}

if (E1 = E′
1 ∨ E2 = E′

2){C} else {C′} � if (E1 �= E′
1){ if (E2 �= E′

2){C
′} else {C}} else {C}

if (E ∈ U){C} else {C′} � if (
∨

u∈U
E = u){C} else {C′}

while (E �= v) do {C} � apply procw(x){ if (E �= x){C; applyw toE} else { skip } to v

Finally, we say that a configuration is stuck (we write U,Φ, S ��Λ) if S �= · and
the configuration admits no transitions. In real Android systems, this situation
corresponds to program termination or exception raising, but this aspect does
not impact on our framework. If a configuration reduces to a stuck one, we say
it to go wrong.

Example 1. Consider the following statement.

C = apply proc f(x){systemσ x; icast Iα(x, null)} tou

We simulate a computation under a configurationU,Φ,C where Φ = {(η, σ, u)}
and self = η. The resulting computation follows.
U,Φ, apply proc f(x){systemσ x; icast Iα(x, null)} tou �Λ U,Φ, systemσ u; icast Iα(u, null)
ση(u)�Λ U, Φ, ·; icast Iα(u, null) �Λ U, Φ, icast Iα(u, null)
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The first step consists of a procedure application to an argument u. This
reduces the statement to the procedure body where the variable x is replaced
by u. The next step is a system call σ. Since η is allowed to perform access,
i.e., η, σ, u |= Φ, the statement fires the corresponding action and reduces to an
implicit cast statement. Then, as η, α, u �|= Φ, the computation cannot proceed
further and the configuration is stuck.

4.3 Execution Context

As described in Section 2, application manifests declare (i) activities, (ii) receivers
and (iii) content providers. The information contained in the manifest contribute
to defining how the components interact with each other and with the platform.
We describe this mechanism by means of an execution context (and its semantics)
which we define below.

Definition 1. An execution context (context for short) is P =
U,Φ, [C1]η1 · · · [Cn]ηn . The operational semantics of a context is defined by
the rules

(CTX−S)
U,Φ,Cj

b�Λ U ′, Φ′, C′

U, Φ, [C1]η1 · · · [Cj ]ηj · · · [Cn]ηn
b⇒Λ U ′, Φ′, [C1]η1 · · · [C′]ηj · · · [Cn]ηn

(CTX−I)
U,Φ,Ci

α
ηj
ηi

(u,v)

�Λ U ′, Φ′, C′

U, Φ, · · · [Ci]ηi · · · [receivex �→ C]ηj · · · ⇒Λ U ′, Φ′, · · · [C′]ηi · · · [C{Iα(u, v)/x}]ηj · · ·

Intuitively, the state of a platform is entirely defined by its execution context,
i.e., the configuration of the components running on it. Each component C is
wrapped by a local context [·]η labelled with its name. The execution context
changes according to the computational steps performed by the components
running on it and can see any action b (rule (CTX−S)). Also, the context provides
the support for the intent-based communications (rule (CTX−I)). In practice, the
context observes an action α

ηj
ηi (u, v) fired by a component ηi and delivers it to

the right destination ηj .
When a platform is initialised, e.g., at system boot, a default, starting context

is created. We now present the procedure that, given a system S = A1, . . . , An,
returns the corresponding initial context. To do that, we introduce some prelim-
inary notions.

Definition 2. Given an application A = 〈M,Δ, C̄〉 such that M = Π ;P ;Λ we
define:

– the permissions set of A, in symbols Perm(A) = {| P |}, where

{| ε |} = ∅ {| (α, ū).P ′ |} =
⋃
ui∈ū

{(α, ui)} ∪ {| P ′ |}
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– the privileges set of A, in symbols PrivP(A) =
⋃

η∈dom(Δ)

〈〈Π〉〉ηP , where P is

a permissions set and

〈〈ε〉〉ηP = ∅ 〈〈ρσ.Π〉〉ηP = 〈〈Π〉〉ηP∪
⋃
u

{σ(u)} 〈〈ρα.Π′〉〉ηP = 〈〈Π′〉〉ηP∪
⋃
τ

{αη(u, τ) | (α, u) ∈ P})

Briefly, Perm(A) is the set of new permissions which A exposes in its mani-
fest while PrivP(A) is the set of privileges it requests. We also write Perm(S)
and PrivS(A), where S = A1, . . . , An, as a shorthand for

⋃
i Perm(Ai) and

PrivPerm(S)(A), respectively. Even though Android does not check intents’ extras,
we annotate privileges with types τ, τ ′ (see Section 5). Intuitively, the expression⋃

τ{αη(u, τ) | . . .} denotes the set of intents α coming from η and carrying data
u, no matter what extra (of type) τ they contain. We can now explain how we
create an initial context.

Definition 3. Givena systemS=A1, . . . , An, such thatAi=〈Mi, Δi, C
i
1 . . . C

i
ki
〉2

and Mi = Πi;Pi;Λi, we define

– US = λη.∅;
– ΦS =

⋃
Ai∈S

{(η, σ, u) | ση(u) ∈ PrivS(Ai)} ∪ ⋃
Ai∈S

{(η, α, u) | αη(u, τ ) ∈ PrivS(Ai)};
– ΛS = λα.

⋃
i Λi(α);

Then, the default context for S is US ,ΦS , [C
1
1 ]η1

1
· · · [Cn

kn
]ηn

kn
where Ci

j = Δi(η
i
j).

The computation is then driven by ⇒ΛS .

In words, when a platform is initialised, all the components are loaded in
the execution context. Also, the applications contribute to create the ownership
function US , the policy ΦS and the destinations table ΛS. Initially, we assume
no resources to be owned by the applications, i.e., US = λη.∅. Note that still
resources can exist and we call them static or system resources. Instead, the
system policy ΦS is obtained from the union of all the privileges requested
by the applications (according to the existing permissions). In particular, we
combine the privileges for the system calls, i.e., (η, σ, u) and those for intents,
i.e., (η, α, u). The destination table ΛS is straightforward: for each intent α
it returns the set of all the declared receivers. Finally, all the components are
labelled with the unique name3 that is declared in the name space function of
their application.

Example 2. We propose the following implementation of the Denial of Service
(DoS) attack reported in [2]. The zygote socket is a system resource of the
Android platform. Briefly, upon receiving a request (intent fork) from an ap-
plication, the system connects to the zygote (system call zygote) for creating
and starting a new process. For balancing the computational load, the system
service grants that only certain processes can be allocated (we assume a finite
set T = {t1, . . . , tk}). We model the corresponding component as

CZ = receiveforkw �→ if (w.d ∈ T ){systemzygotew.d} else{ skip}
2 We also assume that ∀i, j.dom(Δi) ∩ dom(Δj) = ∅.
3 Recall that we assumed ∀i, j.i �= j ⇒ dom(Δi) ∩ dom(Δj) = ∅.
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and then the service application is AZ = 〈MZ ;ΔZ ;CZ〉 with MZ = ρ zygote.ε;
(fork, T ).ε;(fork �→ ηZ).ε and ΔZ(ηZ) = CZ .

Due to a wrong implementation of the access permissions, any application
having the network privileges can communicate with the zygote socket. Hence,
the application A = 〈M,Δ,C〉 where M = ρ zygote.ε;ε;(start �→ η).ε and
Δ(η) = C with C = newx in systemzygotex.

The elements of the initial context for S = A,AZ (see definition 3) are

– US = λη.∅ and ΦS = {(ηZ , zygote, ), (η, zygote, )} (where means “any value”);
– ΛS such that ΛS(fork) = {ηZ}.
Hence, the initial context is US ,ΦS , [C]η[CZ ]ηZ . A possible reduction for it

is (CTX−S)

US,ΦS, [ new x in systemzygotex]η[CZ ]ηZ ⇒ΛS US ∪ {η/u},ΦS, [systemzygoteu]η[CZ ]ηZ

where u is a fresh resource. A further step is again (CTX−S)

US ∪ {η/u},ΦS, [systemzygoteu]η [CZ ]ηZ ⇒ΛS US ∪ {η/u},ΦS, [·]η [CZ ]ηZ

This last reduction is legal for the platform since (η, zygote, u) ∈ ΦS . However,
as u �∈ T , this operation corresponds to a violation of the requirement described
above.

5 Type and Effect

In this section we present our type and effect system for the language introduced
in Section 4. Also, we conclude this section with a brief dissertation about the
advantages and the possible applications of history expressions for the analysis
and verification of security properties which we plan to investigate in future
work.

5.1 History Expressions

The type and effect system assigns types to expressions and history expressions
to statements. Intuitively, a history expression represents the security-relevant,
side effects produced by computations. History expressions are defined through
the following syntax.

Definition 4. (Syntax of history expressions)

H,H ′ ::= ε | h | αη(u, τ) | ᾱηh.H | ση(u) | �ησ,u | �ησ,u | ?ησ,u |

νu.H | H ·H ′ | H +H ′ | H ‖ H ′ | μh.H | H\L

Briefly, they can be empty ε, variables h, h′, parametric actions αη, input pre-
fixed expressions ᾱηh.H , system actions ση, permission granting �ησ,u, permis-
sion revocations �ησ,u, permission checks ?ησ,u, resource creation νu.H , sequences
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Table 3. History expressions semantics

αη(u, τ)
αη(u,τ)
−−−−−−→ ε ση(u)

ση(u)
−−−−→ ε �ησ,u

�
η
σ,u
−−−→ ε �ησ,u

�
η
σ,u
−−−→ ε ?

η
σ,u

?
η
σ,u
−−−→ ε H

·
−→ H

νu.H
·
−→ H

H
a
−→ H′′

H ‖ H′ a
−→ H′′ ‖ H′

H′ a
−→ H′′

H ‖ H′ a
−→ H′ ‖ H′′

H
α
η′ (u,τ)

−−−−−−→ H′′

H ‖ ᾱηh.H
′ ·
−→ H′′ ‖ H′{αη(u, τ)/h}

H
a
−→ H′′

H ·H′ a
−→ H′′ ·H′

H
a
−→ H′ a ∈ L

H\L
a
−→ H\L

H
a
−→ H′′

H + H′ a
−→ H′′

H′ a
−→ H′′

H + H′ a
−→ H′′

H{H/h}
a
−→ H′

μh.H
a
−→ H′

�H� = {a1 . . . an | ∃H
′.H

a1−→ · · ·
an−−→ H ′}

H · H ′, non deterministic choices H + H ′, concurrent compositions H ‖ H ′,
recursions μh.H or action restrictions H\L.

We define the semantics of history expressions through a labelled transition
system (LTS) according to the rules in Table 3.

As expected, most of the transitions of Table 3 are common to many process
algebrae semantics. In particular, history expressions αη(u, τ), ση(u), �ησ,u, �ησ,u
and ?ησ,u simply fire the corresponding actions and reduce to ε. A sequence H ·H ′

behaves like H until H = ε (in which case we force ε ·H ′ = H ′), while a resource
creation νu.H reduces to H producing no visible effects. Instead, a restriction
H\L makes the same transitions as H , provided they are allowed by L, i.e.,
a ∈ L. Two concurrent history expressions H ‖ H ′ admit different reductions:
either one of the two sub-expressions independently performs one step or both of
them synchronise on a certain action. In order to perform a synchronisation, one
of the two must be a receiver for an action emitted by the other, i.e., ᾱη′h.H .
Note that received actions are relabelled with the identity of the receiver. Instead,
Non conditional choice H + H ′ can behave like H or H ′, respectively. Finally,
a recursive history expression μh.H can reduce to H where the instances of the
variable h have been replaced by the recursive expression.

Denotational semantics function �·� maps each history expression H into a
set of finite execution traces which H can generate.

5.2 Type and Effect System

Before presenting our type and effect system, we need to introduce two prelimi-
nary definitions for types and type environment.

Definition 5. (Types and type environment)

τ, τ ′ ::= 1 | U | Iα(U , τ) | τ H−→ 1 Γ, Γ ′ ::= ∅ | Γ{τ/x}
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Table 4. Typing rules

(TE−NULL)Γ � null : 1 (TE−RES)Γ � u : {u} (TE−VAR)
Γ (x) = τ

Γ � x : τ
(TE−PROC)

Γ{τ/y, τ
H
−→ 1/h} �η

O
C : H

Γ � proch(y){C} : τ
H
−→ 1

(TE−INT)
Γ � E : U Γ � E′ : τ

Γ � Iα(E,E′) : Iα(U , τ)
(TE−DATA)

Γ � E : Iα(U , τ)

Γ � E.d : U
(TE−EXT)

Γ � E : Iα(U , τ)

Γ � E.e : τ

(TS−SKIP) Γ �η
O skip : ε (TS−ICST)

Γ � E : Iα(U , τ)

Γ �η
O

icastE :
∑

u∈U

αη(u, τ)
(TS−ECST)

Γ � E : Iα(U , τ)

Γ �η
O

ecastη′ E :
∑

u∈U

αη(u, τ)

(TS−SYS)
Γ � E : U

Γ �η
O

systemσ E :
∑

u∈U

ση(u)
(TS−CHK)

Γ � E : U

Γ �η′

O
checkσ η E :

∑
u∈U

?ησ,u

(TS−GRNT)
Γ � E : U

Γ �η′

O
grantσ η E :

∑
u∈U∩O

�ησ,u

(TS−REVK)
Γ � E : U

Γ �η′

O
revokeσ η E :

∑
u∈U∩O

�ησ,u

(TS−APP)
Γ � E : τ

H
−→ 1 Γ � E′ : τ

Γ �η
O applyE toE′ : H

(TS−SEQ)
Γ �η

O
C : H Γ �η

O
C′ : H′

Γ �η
O C;C′ : H ·H′

(TS−NEW)
Γ{{u}/x} �η

O∪{u}
C : H fresh u

Γ �η
O newx inC : νu.H

(TS−RECV)
Γ{Iα(U , τ)/x} �η

O C : H

Γ �η
O receiveα x �→ C : ᾱηh.H

(TS−CND)
Γ �η

O C : H Γ �η
O C′ : H

Γ �η
O

if (E = E′){C} else {C′} : H
(TS−WKN)

Γ �η
O C : H′ H′ � H

Γ �η
O

C : H

A type can be a unit 1, a finite set of resources U = {u1, . . . , un}, an intent

Iα(U , τ) or an annotated arrow τ
H−→ 1. We use annotated types in the style

of [4,22] (to which we refer the reader for more details) for denoting the latent
effect that a procedure can generate when applied to a target input. A type
environment Γ maps variable names into types and can be either empty ∅ or a
new binding in an existing environment Γ{τ/x}.

Type judgements assign types to expressions and history expressions to state-
ments. For expressions, the syntax is Γ � E : τ and shall be read “expression E
has type τ under environment Γ”. Similarly, for statements we have Γ �ηO C : H
with the meaning that, under environment Γ , statement C (which is part of
package η) generates effect H . Also, we use O to denote the set of resources
owned by the package η. The rules of the type and effect system are reported in
Table 4.

In words, the expression null has type 1 and a resource u has type {u}
(rules (TE−NULL) and (TE−RES)). Instead, the type of a variable x is provided
by the environment Γ (rule (TE−VAR)). Procedures require more attention (rule
(TE−PROC)). Indeed, we say that a procedure proc f(x){C}, has arrow type

τ
H−→ 1 where τ is the type of its input and H is the latent effect obtained by
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typing C (see rules for statements). Also, typing C requires to recursively keep
trace of the type of x and of the procedure f . Typing intents (rule (TE−INT))
is quite intuitive: an intent Iα(E,E′) has type Iα(U , τ) where U and τ are the
types of the sub-expressions E and E′. Conversely, the type of the data and
extra fields (rules (TE−DATA) and (TE−EXT)) of an intent of type Iα(U , τ) have
type U and τ , respectively.

Typing rules for statements are also straightforward. A skip command (rule
(TS−SKIP)) generates the void effect ε, while casting an intent (both implicitly
or explicitly, rule (TS−ICST) and (TS−ECST)) inside a component η, can generate
an action αη(u, τ) for each possible instance of u compatible with the intent type
(we use

∑
Hi as a shorthand for the finite summation H1+H2+ . . .). Similarly,

system calls, permission granting, revocation and checks produce corresponding,
observable actions (rules (TS−SYS), (TS−GRNT), (TS−REVK) and (TS−CHK), re-
spectively). In particular, a command systemσ(E) is typed to the sum of all the
possible accesses σ to the resources denoted by E. Instead, permission grant-
ing (revocation) evaluates to the special action �ησ,u (�ησ,u). Then, permission
checks produce the special actions ?ησ,u. Applying a procedure to a parame-
ter (rule (TS−APP)) results in its latent effect to be carried out. The sequence
of statements (TS−SEQ) is typed to the sequence of their effects, the resource
creation command (TS−NEW) results in the history expression νu.H , a receiver
(rule (TS−RECV)) has effect ᾱηh.H and a conditional branching (rule (TS−CND))
has effect equal to those of its two branches. Finally, we include a rule, called
weakening (TS−WKN), for extending the effect of statements (where H ′ " H iff
�H ′� ⊆ �H�).

Example 3. Consider the following two statements:

C = apply ( proc f(y){ receivex �→ systemσ (x.d); apply f to y}) to null
C′ = icast Iα(u, null)

We type them as follows:

∅ �η∅ apply ( proc f(y){ receive x �→ systemσ (x.d); apply f to y}) to null : μh.ᾱηh′.ση(u) · h
∅ �η

′
∅ icast Iα(u, null) : αη′ (u,1)

The complete derivations are reported at http://www.ai-lab.it/merlo/
publications/AndroidModel.pdf.

A fundamental property of our type system is that it generates history ex-
pressions which correctly represent the behaviour of the statements they are
extracted from. This is granted by the following lemma.

Lemma 1. For each C such that ∅ �ηO C : H and for each Φ,Λ and U such that
U(η) = O, for all arbitrary long sequences of actions performed by U,Φ,C there
exists a trace in �H� denoting it.

As far as the overall behaviour of a system depends on several components and
their permissions and privileges, typing each single component is not sufficient to

http://www.ai-lab.it/merlo/publications/AndroidModel.pdf
http://www.ai-lab.it/merlo/publications/AndroidModel.pdf
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create a model of an entire platform. Hence, we define a compositional operator,
based on our typing rules, which, given a system generates a corresponding
model.

Definition 6. Given a systemS = A1, . . . , An such thatAi = 〈Mi, Δi, C
i
1 . . . C

i
ki
〉

we define

he(S) = (H1
1\LA1

) ‖ . . . ‖ (H1
k1
\LA1

) ‖ . . . ‖ (Hn
1 \LAn

) ‖ . . . ‖ (Hn
kn
\LAn

) where

– ∅ �η∅ Ci
j : Hi

j (with Δi(η) = Ci
j);

– LAi = {αη(u, τ ) | αη(u, τ ) ∈ PrivS(Ai)}.

The operator he(S) generates a history expression which correctly models S
as stated by the following theorem.

Theorem 1. For each S = A1, . . . , An such that Ai = 〈Mi, Δi, C
i
1 . . . C

i
ki
〉 for

any arbitrary long computation performed by US ,ΦS , [C
1
1 ]η1

1
· · · [Cn

kn
]ηn

kn
there

exists a trace in �he(S)� denoting it.

Such property guarantees that any possible behaviour that a platform has at
runtime is contained in its model which we can analyse statically.

5.3 Future Directions

We showed that type and effect systems can be used to compute an over-
approximation of the behaviours of programs called the history expressions.
History expressions can be exploited for different kinds of analysis, e.g., vali-
dation against security policies [5] or deployment of extra security checks [22].
We plan to investigate the existing techniques which rely on history expressions
for verifying whether they apply, as we believe, to our model.

Another possibility is to exploit type systems as proof systems. Let H be a his-
tory expression and C be a statement. Typing ∅�Oη C : H corresponds to proving
that the behaviour of C is bounded by H . This means that, if we specify security
policies through history expressions, then we can verify a program by typing it to
that particular history expression. Also, we can obtain similar results by typing
a statement and checking whether the obtained history expression is a subtype
(relation") of the policy ones. A convenient way to do that can be via simulation-
based techniques, which can be applied here since " is indeed a simulation rela-
tion (see http://www.ai-lab.it/merlo/publications/AndroidModel.pdf).

6 Conclusion and Related Work

In this work we presented an approach which aims at modeling the Android
Application Framework. Furthermore, such model is automatically inferred by
means of a type and effect system. The type and effect system can either gen-
erate or verify history expressions from the Android applications (components

http://www.ai-lab.it/merlo/publications/AndroidModel.pdf
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and manifests). The resulting model is safe in the sense that it correctly repre-
sents all the possible runtime computations of the applications. Moreover, the
history expressions representing (the components of) each single application can
be combined together in order to create a global model for a specific Android
platform. History expressions, originally proposed by Bartoletti et al. [5], have
been successfully applied to the security analysis of Java applications [3] and
web services [4], and we plan to apply similar approaches to Android.

Related work. Only recently researchers focussed on the formal modeling and
analysis of the Android platform and its security aspects. In [21] the authors
formalise the permission scheme of Android. Briefly, their formalisation consists
of a state-based model representing entities, relations and constraints over them.
Also, they show how their formalism can be used to automatically verify that
the permissions are respected. Unlike our proposal, their language only describes
permissions and obligations and does not capture application interactions which
we infer from actual implementations. In particular, their framework provides
no notion of interaction with the platform, while we represent it through system
calls.

Similarly to the present work, Chaudhuri [10] proposes a language-based ap-
proach to infer security properties from Android applications. Moreover, this
work propose a type system that guarantees that well-typed programs respects
user data access permissions. The type and effect system that we presented here
extends the proposal of [10] as it also infers/verifies history expressions. History
expressions can denote complex interactions and behaviours and which allow for
the verification and enforcement of a rich class of security policies [1].

Most of the literature on Android security contains proposals for i) extending
the native security policy, ii) enhancing the ASF with new tools for specific
security-related checks, and iii) detecting vulnerabilities and security threats.
Regarding the first category, in [20] Android security policy is analysed in terms
of efficacy and some extensions are proposed. Besides, in [17] authors propose
an extension to the basic Android permission systems and corresponding new
policies. Moreover, in [24] new privacy-related security policies are proposed for
addressing security problems related to users’ personal data.

Related to ASF, many proposal have been made to extend native security
mechanisms. For instance, [13] and [18] are focused on permissions: the first pro-
poses a monitoring tool for assessing the actual privileges of Android applications
while the latter describes SAINT, a modification to Android stack that allows
to manage install-time permissions assignment. Other tools are mainly focused
on malware detection (e.g. XManDroid [8] and Crowdroid [9]) and application
certification (e.g. Scandroid [14] and Comdroid [11]).

Some works have been carried out to detect vulnerabilities which are often
independent from the Android version. Many of them show that the Android
platform may suffer from DoS attacks [2], covert channels [19], web attacks [16]
and privilege escalation (see [8]).

All the analysed approaches are unrelated and may work independently on the
same Android stack. However, since different approaches often share common
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security features they should integrate one another. Such result is currently
unachievable, due to the lack of common and comprehensive reference model for
the security of the Android platform.
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Abstract. Communication protocols in distributed systems often spec-
ify the roles of the parties involved in the communications, namely for
enforcing security policies or task assignment purposes. Ensuring that
implementations follow role-based protocol specifications is challenging,
especially in scenarios found, e.g., in business processes and web ap-
plications, where multiple peers are involved, single peers impersonate
several roles, or single roles are carried out by several peers. We present a
type-based analysis for statically verifying role-based multi-party interac-
tions, based on a simple π-calculus model and prior work on conversation
types. Our main result ensures that well-typed systems follow the role-
based protocols prescribed by the types, including systems where roles
are flexibly assigned to processes.

1 Introduction

Communication is a central feature of nowadays software systems, as more and
more often systems are built using computational resources that are concur-
rently available and distributed in the web. Examples range from operating sys-
tems where functionality is distributed between distinct threads in the system,
to services available on the Internet, which rely on third-party (remote) service
providers to carry out subsidiary tasks, following the emerging model of SaaS
(software as a service) and cloud computing. Building software from the compo-
sition of communicating interacting pieces is very flexible, at least in principle,
since resources can be dynamically discovered and chosen according to criteria
such as declared functionality, availability and work load. In such a setting, all
interacting parties must agree on communication protocols without relying on
centralized control. Verification mechanisms that automatically check whether
the code meets some common protocol specification become then of crucial
importance.

A protocol specification describes a set of message exchanges, recording when
these should occur as well as the parties involved in the interaction. A party
involved in a protocol may have a spatial meaning, for instance denoting a dis-
tinguished site or process, or, more generally, a party may have a behavioral
meaning, a role in the interaction that may be realized by one or more processes
or sites. Conversely, a process may impersonate different roles throughout its
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execution. Such flexibility is essential to address systems, e.g., where a leader
role is impersonated by different sites at different stages of the protocol, and the
role of each site changes accordingly.

A challenge that arises is then to devise techniques to verify whether a sys-
tem complies to a protocol specification, given such dynamic and distributed
implementation of roles, just by inspecting the source code. A particular situa-
tion where roles must be traced is when checking conformance against security
policies like, for example, those involving separation of duties.

In this paper we present a type-based analysis for verifying whether systems
defined in a model programming language follow the role-based protocol de-
scriptions as prescribed by types. Our development is based on conversation
type theory [4], extending it with the ability to specify and analyze the roles
involved in the interactions. The underlying model of our analysis is an ex-
tremely parsimonious extension of the π-calculus [13,15], where communication
actions specify a message label and the role performing the action, inspired by
TyCO [16]. Conversations generalize sessions [10,12] with support to multiparty
interaction, addressing dynamically established collaborations between an unan-
ticipated number of partners. A distinguishing feature of the conversation types
approach is that multiple parties interact using labeled messages in a single
medium of communication, while other works support multiparty communica-
tion via message queues [11] and indexed communication channels [2]. We choose
to adopt the simplest possible setting where session-like multiparty interaction
may be studied, and extend it in a minimal way so as to support general reason-
ing about roles. So, apart from retaining the simplicity of conversation types, our
theory addresses systems where a single role may be realized by several parties
and where processes may dynamically change the role on behalf of which they
are interacting, as needed to model communicating workflows as present in ac-
tual business processes. This contrasts with related approaches (see, e.g., [7,11])
where roles have a “spatial” meaning, as they are mapped into the structure of
systems or sites in a static way.

In the remainder of this section we informally describe our type analysis by
going through some examples. Consider the protocol specification given by type

Sender→ Receiver hello().Sender→ Receiver bye()

which captures a binary interaction where messages hello and bye are sequen-
tially exchanged, and the communicating partners are identified by Sender and
Receiver, which send and receive the messages, respectively (read → as “sends
to”). A non surprising implementation of this interaction is given by process

chat �Sender hello().chat �Sender bye() | chat �Receiver hello().chat �Receiver bye()

where two concurrent processes interact on channel chat following the proto-
col above. The process on the left sends the two messages under role Sender
(�Sender), as described by type !Senderhello(). !Sender bye(), while the process on
the right receives the two messages under role Receiver (�Receiver), described by
type ?Receiver hello(). ?Receiver bye().
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In this first example there is a perfect match between processes and the roles
under which the processes interact. However, this does not need to be the case.
Consider a different implementation of the same protocol

chat �Sender hello().chat �Receiver bye() | chat �Receiver hello().chat �Sender bye()

where the process on the left sends message hello as Sender and then receives
message bye as Receiver, described by type !Sender hello(). ?Receiver bye(), and
the process on the right first acts as Receiver and then as Sender, described by
type ?Receiverhello().!Senderbye(). Notice each role is carried out by two distinct
processes and each process implements two distinct roles.

Our type analysis ensures that both implementations follow the prescribed
protocol, since the protocol Sender→ Receiver hello().Sender → Receiver bye() is
decomposed in “complementary” types that describe the behavior of the indi-
vidual processes (for instance, in type !Sender hello(). ?Receiver bye() and type
?Receiverhello(). !Sender bye()). Although very simple, this example already dis-
tinguishes our approach from previous works, since the ability to specify roles
is absent in [4] while [7,11] do not support such role distribution. Conceivably
channel delegation (channel-passing) supported by previous works may be used
to represent a similar notion but, to model this example in particular, two chan-
nel delegations would be necessary, which implies it would not be possible to
directly observe that the two interactions take place in a related medium (in
our case the chat channel) and the ability to audit role participation locally
would be lost (as the personification of a different role would be a consequence
of channel-passing).

Now consider a more realistic scenario (adapted from [4]) described by type

Buyer→ Seller buy(). Seller→ Buyer price().
Seller→ Shipper product(). Shipper→ Buyer details() (1)

which captures the interactions in a purchase system involving three parties.
Messages buy , price, product and details are exchanged between a Buyer, a Seller,
and a Shipper. First, the buyer sends the seller a buy request, then the seller
replies the price back to the buyer. After that, the seller informs the shipper of
the chosen product and the shipper sends the buyer the delivery details.

Fig. 1 shows a possible implementation of the purchase interaction system. Us-
ing the new construct, process Buyer creates a fresh channel chat that will host
the purchase interaction described by (1). This newly created name is passed to
a shop, via message buyService. Code shop �Buyer buyService(chat) represents the
output of message buyService on channel shop, passing name chat under role
Buyer. The Buyer process then sends message buy , after which it is simultane-
ously active to receive price and to send name chat on mailBox storeService.

The Shop process starts by receiving a channel name (that instantiates vari-
able x) in message buyService. Then, in this received channel the Shop imper-
sonates the Seller role and receives message buy, after which it sends message
price. At this point, process Shop simultaneously impersonates Seller and Shipper,
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Buyer � (new chat)
shop �Buyer buyService(chat).

chat �Buyer buy().
(chat �Buyer price() |mailBox �Buyer storeService(chat))

Shop � shop �Shop buyService(x).
x �Seller buy().

x �Seller price().
(x �Seller product() | x �Shipper product().x �Shipper details())

Mail � mailBox �Mail storeService(x).
x �Buyer details()

System � (∗Buyer | ∗ Mail | ∗ Shop)

Fig. 1. Code for the Purchase System

which exchanges message product , after which message details is sent. Notice that
this particular Shop carries out both the role of the Seller and the role of the
Shipper, allowing to represent a shop equipped with its own shipping service.

The Mail process defines a message storage service that impersonates the
buyer in receiving the shipping delivery details. Notice that the buyer passes
name chat to the mailbox, allowing in this way a third party to dynamically
join the ongoing interaction, while still interacting on the delegated channel (via
message price). Hence, in this system the Buyer role is actually carried out by
two distinct processes (Buyer and Mail), which can be simultaneously active.

The implementation shown in Fig. 1 involves three distinguished processes
that carry out the three roles identified in the protocol, albeit not in a one-to-
one-correspondence. The type given in (1) captures the interaction in channel
chat , which is passed from the buyer to the shop and to the mailbox in mes-
sages buyService and storeService, respectively. In order to analyze the protocol
distribution between the three parties, we must consider the “slices” of protocol
that are delegated in messages. Namely, the overall protocol is split in the type
that captures the behavior that is sent to the shop (via message buyService)

?Seller buy(). !Seller price(). Seller→ Shipper product(). !Shipper details()

and in the type that captures the behavior retained by the buyer

!Buyer buy().?Buyer price().�?Buyer details()

The � type expresses the fact that the input of message details occurs “some-
time in the future”, i.e., it does not necessarily occur exactly after the input of
message price . In fact the Buyer process illustrated in Fig. 1 does not guarantee
that the input is active only after the reception of message price. However, the
sequentiality of the message exchanges is ensured by the Shop process, since the
output of message details only occurs after the output of message price. A type
�B denotes a behavior that must occur sometime, but not necessarily “now” —
�B types obey the basic laws of the eventually temporal logic operator.
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When typing the buyer process there is a further type decomposition, at
the level of messages price and details , resulting in types ?Buyer price() and
�?Buyer details(), the former being retained by the buyer process and the latter
delegated to the mailbox. When typing the shop process there is another type
decomposition, at the level of message product , resulting in types !Sellerproduct()
and ?Shipperproduct().!Shipperdetails(), which explain the behaviors of the par-
allel processes in the shop code. All decompositions sketched above are captured
by a type split, ◦, relation that explains how protocols may be split in two com-
plementary slices, along with subtyping. �B types are crucial to the definition
of type split, as they provide algebraic support to the flexibility required to
sequentially order message exchanges among multiple parties.

In the previous example, the fact that message details is exchanged after
message price is not observable just by looking at the source code of the buyer
and mail. However, such ordering is guaranteed by the shop. If we specify
that the buyer, in general, exhibits such behaviors concurrently (for example,
?Buyer price() | ?Buyer details()) we would require (order preserving) decomposi-
tions of protocols into multiple threads of behavior. The flexibility
introduced by �B types solves this problem as they support the specification
of orderings that are guaranteed via synchronization. For example, the type
?Buyer price().�?Buyer details() says that the reception of message details takes
place (sometime) after the reception of message price. On the other hand, the
type !Sellerprice().Seller→ Shipperproduct(). !Shipperdetails() says that the out-
put of details necessarily occurs immediately after the output of message price.
The combination of the two typed guarantees the overall ordering: first message
price, then product and finally details .

The purchase interaction of the system shown in Fig. 1 follows the protocol
specification given in (1). Notice that the Buyer role is distributed between two
processes (Buyer and Mail), and that roles Seller and Shipper are carried out by
a single process (Shop). From the point of view of our type analysis the system
follows the prescribed protocols, regardless of the spatial configuration of the
processes that implement the roles.

2 Process Language

In this section we present the process model, first by introducing the syntax
and second by defining the operational semantics. Our process language is the
π-calculus [13,15] extended with labeled communication and role-based anno-
tations. The syntax, inspired in TyCO [16], is illustrated in Fig. 2, where we
consider given an infinite sets of labels L, of channel names N and of roles R.
Labels, used to index communication, are identifiers that may neither be created
nor communicated (e.g., XML tags). Names are used to identify mediums of com-
munication. For typing purposes, we distinguish two distinct usages of channels:
public (shared) communication mediums (e.g., gateways to service providers,
like the shop and mailBox channels in the example) and private (linear) medi-
ums, where a set of related interactions among several parties may take place



A Type System for Flexible Role Assignment 87

P ::= 0 � (new x)P � P1 |P2 � ∗P � x �r {li(xi).Pi}i∈I � x �r l(y).P

l ∈ L(abels) x, y ∈ N (ames) r, s ∈ R(oles)

Fig. 2. Process Syntax

P | 0 ≡ P P1 |P2 ≡ P2 |P1 (P1 |P2) |P3 ≡ P1 | (P2 |P3)

(new x)(new y)P ≡ (new y)(new x)P

P1 | (new x)P2 ≡ (new x)(P1 |P2) (if x �∈ fn(P1))

(new x)0 ≡ 0 ∗ P ≡ ∗P |P P1 ≡ P2 (if P1 ≡α P2)

Fig. 3. Structural Congruence

(capturing, e.g., service instance interactions, like the chat channel in the exam-
ple). Roles are used to identify the parties involved in communications.

A process is either an inactive process 0, a name restriction (new x)P where
name x is known only to process P , a parallel composition P1 |P2 where P1 and
P2 are simultaneously active, or a replication ∗P where unlimited copies of P are
simultaneously active. Process constructs described up to here (the static frag-
ment) correspond exactly to the ones found in π-calculus. As for communication
primitives, we extend the (monadic) π-calculus output and input primitives with
labeled communication and role annotations. Process x �r l(y).P is able to send
a message on channel x, under role r, labeled by l. Upon synchronization the
name y is sent and the continuation P activated. Notice that the r annotation
identifies the role in which the emission is performed. The input summation pro-
cess x �r {li(xi).Pi}i∈I is able to receive one message in name x, under role r,
labeled by any of the li labels, where i ranges over index set I (we assume that
all labels li in an input prefix are distinct). Upon synchronization with an lj
labeled message, the respective parameter xj is instantiated and the respective
continuation Pj activated. In (new x)P all occurrences of x are bound in P ,
and in x �r {li(xi).Pi}i∈I all occurrences of xi are bound in Pi, for each i ∈ I.

We introduce some auxiliary notions: we use fn(P ) to denote the set of free
names of process P , defined as expected, and P [x ← y] to denote the process
obtained by replacing all free occurrences of x by y in P . As usual, we omit
inactive continuations (e.g., x �r l(y) stands for x �r l(y).0).

The operational semantics is given by a reduction relation and by a struc-
tural congruence. We consider the standard definition of structural congruence,
denoted by ≡, defined as the least congruence that satisfies the rules in Fig. 3.
Structural congruence is used in the definition of the reduction relation to syn-
tactically rearrange the process, in order to allow reduction to be defined, as
usual, by capturing the basic case for synchronization and identifying the active
contexts in which a synchronization may take place.
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k ∈ I

x �r {li(xi).Pi}i∈I | x �s lk(y).P
x:s→rlk−→ Pk[xk ← y] | P

(Red-Comm)

P
λ−→ P ′ λ ∈ {τ, x : s→ rl}
(new x)P

τ−→ (new x)P ′
P

x:s→rl−→ P ′ y �= x

(new y)P
x:s→rl−→ (new y)P ′

(Red-New1,Red-New2)

P1
λ−→ P ′

1

P1 |P2
λ−→ P ′

1 |P2

P1 ≡ P ′
1 P ′

1
λ−→ P ′

2 P ′
2 ≡ P2

P1
λ−→ P2

(Red-Par,Red-Struct)

Fig. 4. Reduction Relation

For typing purposes, and since we intend to match process behaviors against
type specifications, our reduction relation records (public) synchronization infor-
mation in labels. Reduction labels (ranged over by λ) are of two forms: a τ label
captures a private internal interaction, whereas an x : s→ rl label captures an
l-labeled message exchange on channel x, between roles s(ender) and r(eceiver).

We may now present the reduction relation, defined by the rules given in
Fig. 4, where we use P1

λ−→ P2 to represent that process P1 reduces to P2 with
label λ. Rule (Red-Comm) says that two parallel input and output processes
may exchange message lk on channel x, the interaction being captured by la-
bel x : s→ rlk, where also the roles involved in the interaction are recorded. As
the result of the synchronization, name y activates the continuation (respective
to lk) instantiating parameter xk. The continuation of the output process is
also activated as a consequence of the synchronization. Rule (Red-Par) closes
reduction under parallel contexts, while rules (Red-New1) and (Red-New2)
close reduction under name restriction. (Red-New1) captures synchronization
in private names in the scope of the name restriction, either by “hiding” a public
synchronization in the restricted name or by allowing private synchronizations.
(Red-New2) captures public synchronizations in the scope of the name restric-
tion, not involving the restricted name. (Red-Struct) closes reduction under
structural congruence.

3 Type System

In this section we present our type system. The type language is given in Fig. 5,
where we distinguish between behavioral types that describe linear interactions
(B) from types that describe shared interactions (T ) (cf. conversation [4] or
session [12] initiation primitives). We also use message (argument) types (M)
that specify either a linear protocol or a shared message type, and communication
prefixes (ρ) that describe role-based communication actions.

A behavioral type B specifies the inactive behavior end, the parallel compo-
sition B1 |B2 of two independent behaviors B1 and B2, the sometime �B, which
says that behavior B may occur at any point in time, or a menu of labeled ac-
tions ρ{li(Mi).Bi}i∈I , each one specifying the type of the name communicated
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B ::= end � B |B � �B � ρ{li(Mi).Bi}i∈I

T ::= l(B) M ::= B � T ρ ::= !s � ?r � s→ r

Fig. 5. Conversation Types Syntax

� end
B1#B2 � B1 � B2

� B1 |B2

∀i ∈ I � Bi ρ{li(Mi).end}#Bi

� ρ{li(Mi).Bi}i∈I

� �end
� B1 |B2 � �B1 � �B2

� �(B1 |B2)

∀i ∈ I � ρ{li(Mi).Bi} ρ ∈ {!s, ?r}
� �ρ{li(Mi).Bi}i∈I

Fig. 6. Well-Formed Type Predicate

in the message Mi, and the respective continuation behavior Bi. Depending on
the communication prefix ρ, an action menu represents either an input branching
(when ρ is ?r), an output choice (when ρ is !s)—cf. branch and choice session
types [12]—or an internal choice s→ r, i.e., a matched communication between
an output and an input. Notice that the communication roles are identified in
the communication prefixes: the sender role in !s, the receiver role in ?r, and
the two roles involved in the interaction in s→ r (s sends to r). Notice also that
input and output actions (interface types that capture interactions with the en-
vironment) are mixed with matched actions (capturing internal interactions) at
the same level in the type language.

The conversation type language is extended with role-based annotations and
sometime types (�B). Although a specification is not expected to use �B types,
these are crucial to allow the decomposition of protocols into slices, some of which
related to interactions that occur later in the protocol.

A message argument type M either specifies a behavioral linear type B, in
case a linear name is communicated in the message, or a shared type T , in case
a shared name is communicated in the message. A shared type T abbreviates
l(B), identifying the label of the message exchanged and the (linear) type of the
name sent in the message — to simplify the presentation we consider that only
linear names can be communicated in shared messages (communicating shared
names can be easily encoded).

We now introduce some auxiliary notions, namely the type apartness, well-
formed types, and matched types, all defined as predicates. Type apartness is
used to identify non-interfering concurrent behaviors that may be safely com-
posed in a linear interaction. To define type-apartness we use lab(B) to denote
the set of labels occurring in type B, defined as expected. We say that two types
B1 and B2 are apart, and we write B1#B2, if the set of labels of B1 is disjoint
from the set of labels of B2 (lab(B1) ∩ lab(B2) = ∅). Building on apartness, we
introduce well-formed type predicate, noted � B, given by the rules in Fig. 6.
Informally, in a well-formed type labels do not appear repeatedly in parallel
(to ensure race-free behavior) or in sequence (useful to simplify presentation).
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B1 <: B′
1

B1 |B2 <: B′
1 |B2

∀i ∈ I Bi <: B′
i

ρ{li(Mi).Bi}i∈I <: ρ{li(Mi).B′
i}i∈I

� �B

B <: �B

(B1 |B2) |B3 ≡ B1 | (B2 |B3) B1 |B2 ≡ B2 |B1 B | end ≡ B

�(B1 |B2) ≡ �B1 |�B2 �end ≡ end

Fig. 7. Subtyping Relation

� B

B = end ◦B
B1 = B′

1 ◦ B′′
1 B2 = B′

2 ◦B′′
2 � B1 |B2

B1 |B2 = B′
1 |B′

2 ◦ B′′
1 |B′′

2

(S-END,S-PAR)

∀i ∈ I Bi = B′
i ◦ B′′

i {ρ1, ρ2} = {!r1, ?r2} � r1 → r2{li(Mi).Bi}i∈I

r1 → r2{li(Mi).Bi}i∈I = ρ1{li(Mi).B′
i}i∈I ◦�ρ2{li(Mi).B′′

i }i∈I
(S-TAU)

∀i ∈ I Bi = B′
i ◦�B � ρ{li(Mi).Bi}i∈I

ρ{li(Mi).Bi}i∈I = ρ{li(Mi).B′
i}i∈I ◦�B

(S-BRK)

∀i ∈ I Bi = B′
i ◦�B � �ρ{li(Mi).Bi}i∈I

�ρ{li(Mi).Bi}i∈I = �ρ{li(Mi).B′
i}i∈I ◦�B

(S-BRKS)

B = B2 ◦B1

B = B1 ◦B2

B′
1 = B′

2 ◦ B′
3 B1 ≡ B′

1 B2 ≡ B′
2 B3 ≡ B′

3

B1 = B2 ◦ B3

(S-SYM,S-EQU)

Fig. 8. Type Split Relation

Also well-formed � types are not applied directly to message exchanges (s→ r),
since we are interested in specifying message exchanges that happen exactly at
some point in the protocol. Also used by our typing is the notion of matched
types, which captures systems where all input actions have a matching output.
We say that type B is matched, noted matched(B), if all communication prefixes
in B are of the form s→ r.

The subtyping relation between behavioral types, noted B1 <: B2, is the least
reflexive and transitive relation satisfying the rules in Fig. 7, where we write
B1 ≡ B2 when B1 <: B2 and B2 <: B1. We remark on the use of subtyping
to introduce flexibility at the level of � types: type B is a subtype of �B,
which, intuitively, means that carrying out behavior B immediately is a safe
implementation of eventually carrying out behavior B.

We may now introduce type split, a ternary relation that explains how a
behavioral type may be safely decomposed in two slices of behavior, capturing,
in a compositional way, the behavioral contribution of distinct processes to the
overall interaction. The split relation is defined by the rules given in Fig. 8, where
B = B1 ◦B2 denotes that type B may be decomposed in parts B1 and B2.

We briefly discuss the splitting rules. Rule (S-END) specifies that a behavioral
type may be decomposed in itself and the inactive behavior, typing processes
that contribute “all or nothing” to the interaction. Rule (S-PAR) explains the
decomposition of two independent behaviors in two slices of behaviors each,
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capturing the decomposition of a system in two processes that contribute both
to independent interactions.

Rule (S-TAU) separates a matched communication, between roles r1 and r2,
in the respective output by role r1 and input by role r2, given a splitting of the
continuation behaviors. The rule captures the decomposition of a system in two
processes that synchronize in a message, each with a given role in the interaction,
where one of them carries out the behavior immediately, while the other may
carry out the behavior at some point in time (�). In such way, since one of the
behaviors occurs immediately we ensure that also the message exchange takes
place immediately. Notice that a rule to separate the message exchange in two
immediate behaviors is not necessary since the sometime behavior may also take
place immediately (via subtyping).

Rule (S-BRK) separates a � (sometime) distinguished slice of behavior from
a communication prefixed type, provided this behavior can be split from the
continuations in all branches. The rule thus captures the decomposition of a
system in two parts, where one retains the (entire) interaction capability speci-
fied by the communication prefixed type while the other contributes to ensuing
interactions—singled out by the �. Notice that (S-BRK) allows to split be-
haviors such that the same slice is shared between all branches, useful when
addressing, e.g., a branching protocol where every branch terminates with an
ok or ack message. Rule (S-BRKS) expresses the same principle as (S-BRK)
but for � prefixed types. Rule (S-SYM) closes the relation under symmetry and
rule (S-EQU) closes the relation under type equivalence.

To simplify the presentation, we sometimes write B1 ◦B2 to represent a type
B such that B = B1 ◦ B2 (if any such B exists). Notice that B1 ◦ B2 does not
uniquely identify a type, as B1 and B2 may be the result of splitting distinct
types. Notice also that a type may be split in several ways. In prior work on
conversation types [4], we use “merge” instead of “split”, in the sense that if
B = B1 ◦B2 then we may see B as the result of merging the behaviors B1 and
B2. The merge was originally inspired in the (non-algebraic) end-point projection
introduced in [5]. We can show that split is an associative relation, which is a
crucial property to our type system since we rely on the flexibility of the type
decomposition to address the behavioral contributions of multiple parties.

We may now present the type system. A typing judgment is of the form
Δ;Γ � P where Δ is the typing environment that describes the interactions on
linear channels, and Γ is the typing environment that describes the interactions
on shared channels. We write Δ;Γ only when the domains of Δ and Γ are
disjoint. A typing environment Δ is an assignment of identifiers to behavioral
types (Δ � x1 : B1, . . . , xk : Bk) and a typing environment Γ is an assignment
of identifiers to shared types (Γ � x1 : T1, . . . , xk : Tk). We introduce some
auxiliary notation to simplify presentation: we use (x1 : B′

1, . . . , xk : B′
k, Δ1) ◦

(x1 : B′′
1 , . . . , xk : B′′

k , Δ2) to denote x1 : B1, . . . , xk : Bk, Δ1, Δ2 such that
Bi = B′

i ◦ B′′
i , for all i in 1, . . . , k and the domains of Δ1 and Δ2 are disjoint.

Also, we use x1 : B1, . . . , xk : Bk <: x1 : B′
1, . . . , xk : B′

k when Bi <: B′
i, for all i

in 1, . . . , k, and Δend to denote x1 : end, . . . , xk : end.
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Δend;Γ � 0
Δ1;Γ � P1 Δ2;Γ � P2

Δ1 ◦Δ2;Γ � P1 |P2
(T-END,T-PAR)

Δ, x : B;Γ � P matched (B)

Δ;Γ � (new x)P

Δ;Γ, x : l(B) � P

Δ;Γ � (new x)P
(T-NEW,T-SNEW)

Δ, y : B;Γ, x : l(B) � P

Δ;Γ, x : l(B) � x �r {l(y).P}
Δ;Γ, x : l(B) � P

Δ ◦ y : B;Γ, x : l(B) � x�rl(y).P
(T-SIN,T-SOUT)

∀i ∈ I Δ ◦ x : Bi, yi : B
′
i;Γ � Pi ?r{li(B′

i).Bi}i∈I <: B

Δ ◦ x : B;Γ � x �r {li(yi).Pi}i∈I
(T-IN)

k ∈ I Δ ◦ x : Bk;Γ � P !r{li(B′
i).Bi}i∈I <: B

Δ ◦ x : B ◦ y : B′
k;Γ � x �r lk(y).P

(T-OUT)

∀i ∈ I Δ ◦ x : B′
i;Γ, yi : Ti � Pi ?r{li(Ti).B

′
i}i∈I <: B

Δ ◦ x : B;Γ � x �r {li(yi).Pi}i∈I
(T-LSIN)

Δ ◦ x : B′
k;Γ, y : Tk � P !r{li(Ti).B

′
i}i∈I <: B

Δ ◦ x : B;Γ, y : Tk � x �r lk(y).P
(T-LSOUT)

Δ1;Γ � P Δ1 <: Δ2

Δ2;Γ � P

Δend;Γ � P

Δend;Γ � ∗P (T-SUB,T-REP)

Fig. 9. Typing Rules

We say process P is well-typed if Δ;Γ � P may be derived using the rules
given in Fig. 9. We discuss the key features of the typing rules. Rule (T-END)
says the inactive process has no linear behavior (but complies to any shared
behavior specification). Rule (T-PAR) types the parallel composition process
with the linear types that are split in the behaviors of the two parallel branches,
while ensuring both branches comply to the same usage of shared types. Rule
(T-NEW) types a restricted linear name provided its usage is matched, i.e., it
has no outstanding unmatched (? or !) communications. Rule (T-SNEW) types
a restricted shared name, if it is used according to a shared type.

Rules for communication prefixes are divided in three groups, depending on
the shared or linear usage of both communication subject and object. Rules
(T-SIN) and (T-SOUT) address the case when the communication subject has
shared usage while the object has linear usage. Notice that the behavioral type
B, specified in the argument type of the shared type l(B) of x, captures the slice
of behavior that is delegated in the communication. Type B describes the linear
usage of the input parameter in the premise of (T-SIN). Argument type B is
also used in the conclusion of (T-SOUT), singled out via splitting so as to take
into account the usage of y (the sent name) by the continuation (crucial to type
processes that delegate a name and continue to interact in it).

Rules (T-IN) and (T-OUT) address the cases when both the communication
subject and object have linear usage, and follow the lines above. Both rules record
the prefixed type ρ{li(B′

i).Bi}i∈I in the conclusions, where ρ is either ?r or !r for
input and output, respectively. A single output is typed with a communication
menu (containing the label of the emitted message) so as to directly match input
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k ∈ I

s→ r{li(Mi).Bi}i∈I
s→rlk−→ Bk

B1
s→rl−→ B2

B1 |B s→rl−→ B2 |B
B1

s→rl−→ B2

B |B1
s→rl−→ B |B2

Fig. 10. Type Reduction

Δ;Γ
τ−→ Δ;Γ Δ;Γ, x : l(B)

x:s→rl−→ Δ;Γ, x : l(B)
B1

s→rl−→ B2

Δ,x : B1;Γ
x:s→rl−→ Δ, x : B2;Γ

Fig. 11. Typing Environment Reduction

menus. Notice that the prefixed type is taken up to subtyping, so as to allow to
introduce � types that may be necessary for the split in the conclusion. Notice
also that the prefixed type is singled out via splitting, so as to take into account
behaviors of x originally assigned to other threads (due to name delegation).
Rules (T-LSIN) and (T-LSOUT) follow similar lines, addressing the case when
the communication subject/object have linear/shared use. The last two rules are
(T-REP), which types the replicated process, provided it uses no linear names,
and the subsumption rule (T-SUB).

We can show that typing is preserved by substitution and by structural con-
gruence. Given that our main result involves relating process actions and type
specifications, we introduce type reduction, defined by the rules given in Fig. 10.
In this way, we are able to precisely describe process reductions via the corre-
sponding type reductions. Type reduction specifies how matched types reduce,
explaining a message exchange that activates the respective continuation. Type
reduction relies on reduction labels of the form s→ rl, identifying the roles in-
volved in the communication and the label of the exchanged message.

Type reduction provides the expected semantics of behavioral types. Building
on type reduction and in order to simplify the presentation of the results we
introduce typing environment reduction, given by the rules in Fig. 11. Typing
environment reduction specifies that environments seamlessly mimic internal τ
(non public) reductions as well as synchronizations on shared channels. Also,
typing environments exhibit linear reductions provided the reduction is observ-
able at the level of the type of the respective channel. We may now state our
main result that explains process reduction via typing environment reduction.

Theorem 1 (Type Preservation)
If Δ;Γ � P and P

λ−→ P ′ then Δ;Γ
λ−→ Δ′;Γ and Δ′;Γ � P ′.

The proof follows by induction on the length of the derivation of P
λ−→ P ′ (full

details can be found in the supporting technical report [1]). Theorem 1 states
that any reduction of a well-typed process is explained by the corresponding
type reduction, thus ensuring that processes interact according to the protocols
prescribed by the types. Notice that this compliance entails that the protocols
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are actually carried out by the roles accordingly to the type specifications. We
provide a precise characterization of this property as follows.

We now define role-based protocol fidelity. Let P be a process and Δ,Γ typing
environments. We say P follows the role-based protocols prescribed by Δ,Γ if for
any reduction sequence of the process P λ1−→ P1

λ2−→ . . . λk−→ Pk there is a matching
reduction sequence of the typing environments Δ;Γ λ1−→ Δ1;Γ

λ2−→ . . . λk−→ Δk;Γ .
We have that well-typed processes satisfy role-based protocol fidelity as a direct
consequence of Theorem 1.

Corollary 1 (Role-Based Protocol Fidelity)
If Δ;Γ � P then P follows the role-based protocols prescribed by Δ,Γ .

In order to provide further intuition on our type system we show part of
the typing of the running example (see Fig. 1). The type of name chat , as
described in (1), is checked by successively splitting and matching resulting types
with subprocesses. For example, in the typing of the Buyer process, after the
first delegation, the type of chat can be decomposed by using rules (S-END),
(S-BRK) and (S-BRK) (b abbreviates Buyer).

�?b{details().end} = end ◦�?b{details().end}
?b{price().�?b{details().end}}=?b{price().end} ◦�?b{details().end}

!b{buy().?b{price().�?b{details().end}}}= !b{buy().?b{price().end}} ◦�?b{details().end}

Now, the split given above appears when typing the subprocess

chat �Buyer buy().(chat �Buyer price() |mailBox �Buyer storeService(chat))

Here, the delegation of name chat , on message storeService, requires that the
behavior of chat is split between the two processes. Using (T-SUB), (T-SOUT)
and (T-END) we have the following derivation.

chat : end;mailBox : storeService(?b{details().end}) � 0

chat :?b{details().end};mailBox : storeService(· · ·) � mailBox �Buyer storeService(chat)

chat : �?b{details().end};mailBox : storeService(· · ·) � mailBox �Buyer storeService(chat)

The example shows that the sometime operator behaves as a delayed choice
between a dot, which expresses the sequentiality of behaviors, and a parallel
composition, which types concurrent actions. These alternatives are introduced
by rules (S-TAU), in only one of the branches of the split types, and in order to
preserve, globally, the specified order of labels. Conceivably, the same flexibility
would be achieved by a different (S-TAU) rule, which would immediately select
between dot and parallel. Nevertheless, such rule would need to “look inside”
the types and pull parallels to the top level. Therefore, this extension of session
types with a new modality for breaking sequentiality, enriches the languages of
types with an operator that enables us to perform choices locally and as needed.
Such innovation supports a simple algebraic definition of the split operation.
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4 Concluding Remarks

Our development is based on previous work on conversation types [4], extended
so as to address assignment of dynamic roles to the several parties involved in a
concurrent system. Technically, we identified a minimal set of ingredients to add
to a core process specification language (the π-calculus [13,15], TyCO [16] more
precisely) so as to address role-based protocol verification (labeled channels and
role annotations) and extended the type analysis accordingly. Noticeably, the
split relation defined in this paper is much more readable and also more expres-
sive than the merge relation in [4] — in particular, it allows for splitting (the
same) behavior out of the continuations of a branching behavior. Crucial to our
development is the introduction of the � type to control behavior interleaving.

We discuss some possible extensions to our work. A necessary further devel-
opment is the extension of the model to consider infinite behavior. An essential
feature of any type analysis is a verification procedure. We are yet to implement
such a procedure, but we may already assert there exists such a procedure in
a setting where all bound names are type annotated. Another crucial property
left out of this paper is progress. However, we expect that the progress analysis
introduced in [4] for a labeled π-calculus, combined with our typing analysis,
may be used to single-out systems that enjoy progress. An interesting further
development to be addressed is the dynamic delegation of roles. In our setting
roles are statically annotated in processes. Extending the language with role
delegation would allow parties to dynamically assume unanticipated roles.

Several works address role-based type specifications to enforce security con-
cerns (for example [8] introduces a type analysis to discipline role-based ac-
cess control to data). We focus on communication protocol assignment and
leave security to be handled orthogonally. Our approach builds on conversation
type theory, introduced as a generalization of session types [10,12] to discipline
multiparty interaction, including dynamically established conversations with an
unanticipated number of participants. Other works share the goal to address
multiparty interaction [2,3,6,11,14]. In particular with respect to the works more
closely related to ours [2,11], we single out the approach of conversation types
since it addresses multiparty interaction where the number of participants is not
fixed a priori, while considering a simpler underlying model. We remark that
in [2,6,11] a notion of role assignment is explicit, unlike in [4] where types do not
mention identities of communicating partners. However, such role assignment
is achieved via a structural projection, forcing single roles to be carried out by
single threads. A different notion of dynamic roles is also considered in the ap-
proaches described in [7,9], allowing for several processes, much like a thread
pool, to simultaneously carry out a single role.

In this work we have presented a type-based analysis that ensures that systems
follow the prescribed role-based protocol specifications. Novel to our approach
is the flexibility of role assignment, allowing us to address dynamic distributed
implementations of role specifications, where a single role can be distributed
among several processes and a single process can dynamically switch between
roles. To the best of our knowledge, ours is the only (session-type like) approach
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that addresses such configurations, that are actually found in, e.g., real world
business protocols. Our development extends conversation types with role-based
protocol specifications, retaining the simplicity of the approach, simplifying and
generalizing the underlying technical framework, and contrasting with related
approaches in the dynamic and flexible nature of roles.
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Abstract. Recent work on the enhancement of multiparty sessions types with
logical annotations enables not only the validation of structural properties of the
conversations and on the sorts of the messages, but also the validation of proper-
ties on the actual values exchanged. However, the specification and verification of
the mutual effects of multiple cross-session interactions is still an open problem.
We introduce a multiparty logical proof system with virtual states that enables
the tractable specification and validation of fine-grained inter-session correctness
properties of processes participating in several interleaved sessions. We present a
sound and relatively complete static verification method.

1 Introduction

In extensively distributed computing environments, application scenarios often cen-
tre around structured conversations among multiple distributed participants. A funda-
mental challenge is to establish an effective specification and verification method to
ensure safety in distributed software, where correctness depends on the state of indi-
vidual participants and span over multiple conversations and applications. This require-
ment emerged from our ongoing collaboration with the Ocean Observation Initiative
OOI [21], an NSF program to develop a long-term computational infrastructure for en-
vironmental ocean observation. The principals within the OOI infrastructure perform
interactive activities involving distributed resources, e.g., remote instruments, off-shore
sensors, data. It is important to: (1) ensure that the principals carry out each activity
(session) in a way that conform a well-defined protocol, (2) express and ensure proper-
ties that span the single activities (e.g., associating a principal with a credit for resource
usage, and ensuring that this credit will always be non negative across sessions1).

A promising direction is the logical elaboration of types for programming lan-
guages [16]. Types offer a stable linkage between the fundamental dynamics of pro-
grams and their mathematical abstractions, serving as a highly effective basis for safety
assurance. In the context of process algebras, approaches like [5,13,18] allow tractable2
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EP/G015481/1.

1 This example is taken from the OOI Instrument Control case study and is illustrated in the
Appendix of the online report [4].

2 In [13, 18] verification is decidable and has linear complexity.

C. Palamidessi and M.D. Ryan (Eds.): TGC 2012, LNCS 8191, pp. 97–111, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



98 L. Bocchi, R. Demangeon, and N. Yoshida

(e.g., with respect to model checking techniques) validation of properties such as ses-
sion fidelity, progress, and error freedom. Furthermore, they enable the specification of
global properties of multiparty interactions, yet enabling modular local verification of
each principal. The key idea is that conversations are built as the composition of units
of design called sessions which are specified from a global perspective (i.e., a global
session type). Each global type is then projected, making the responsibilities of each
endpoint explicit. Validation guarantees that if each endpoint conforms to its projected
specification(s), then the resulting conversation conforms to the corresponding global
specification(s).

These approaches require to build applications starting from a set of global types that
have to be agreed upon by the principals in the network. This assumption, which poses
some limitations to the flexibility with which the single local processes are modelled,
is reasonable in many scenarios, provided that local processes can be built as the com-
position of multiple, possibly interleaved, types of sessions. However, these approaches
can only verify properties that are confined to the single multiparty sessions, and do not
treat stateful specifications incorporating mutual effects of the multiple sessions run by
a principal.

This paper presents a simple but powerful extension of multiparty session specifi-
cations, by enriching the assertion language studied in [5] with the capability to refer
to virtual states, each local to one network principal. The resulting protocol specifica-
tions are called multiparty stateful assertions (MPSAs), and model the skeletal structure
of the interactions of a session, the constraints on the exchanged messages and on the
branches to be followed, and the effects of each interaction on the virtual state. We use
invariants to express properties, on the state of each principal, that must hold even when
several sessions are executed in parallel. Principals in a network hence serve as units
of verification: static validation ensures that principals behave as prescribed by MPSAs
and their invariants are satisfied.

To see the kind of properties we are interested in, consider the following fragment
of specification for the dialogue between a ticket allocation server (S) and its client
(C), where the server allocates numbered tickets of increasing value to each client in
consecutive, separate sessions:

S� C : �y :int��y � S.x��S.x++�

The protocol between the server and each client is the single message-passing action
where S sends C a message of type int. The description of this simple distributed
application implies behavioural constraints of greater depth than the basic communi-
cation actions. The (sender-side) predicate and effect for the interaction step, �y �
S.x��S.x++�, asserts that the message y sent to each client must equal the current value
of S.x, a state variable x allocated to the principal serving as S; and that the local ef-
fect of sending this message is to increment S.x. In this way, S is specified to send
incremental values across consecutive sessions.

The behaviour described above cannot be encoded by only using the primitives in [5].
In fact, in order to ensure inter-session properties one must discipline concurrent state
updates with some mechanism of lock/unlock or atomic access/update, but lock/unlock
and atomic access/update can only be described as properties that span over multiple
sessions.
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Contribution. We present a sound and relatively complete validation method for
MPSAs, based on statically-verifiable proof rules. The most distinctive feature with re-
spect to [5] is the possibility of expressing properties that span several sessions. The
decidability/complexity of verification depends on the decidability/complexity of pred-
icate evaluation in the logic that is chosen to express constraints and invariants (Proposi-
tion 10). We prove that our analysis is sound (Theorem 13) and complete (Theorem 14)
w.r.t. the semantical satisfaction relation induced by the two labelled transition systems
for processes and specifications.

Synopsis. In § 2 we present MPSAs, that is the language for (stateful) protocol spec-
ifications, and their consistency criteria (i.e., well-assertedness). In § 3 we present the
calculus for networks of principals, each running a process. In § 4 we give the validation
rules of networks against MPSAs; their properties are presented in § 5. Related work is
discussed in § 6. Use cases from [21], auxiliary definitions, and full proofs can be found
in the online report [4].

2 Multiparty Assertions with Virtual States

In the proposed framework, applications are built as the composition of units of de-
sign called sessions. Each type of session is specified as a MPSA, that is an abstract
description of the interactions of the roles of a multiparty session.

The syntax of MPSAs is given in Figure 1. Global assertions (G,G�, . . .) describe a
multiparty session from a global perspective; and local assertions (L,L�, . . .) describe
it from the perspective of one role. U are types of the message contents, which can be
sorts S or local assertions �L� (i.e., for delegation).

A ::� true � false � e1 � e2 � �A � A1 �A2 � �x.A, U ::� S � �L�, S ::� bool � int � ..

G ::� p�q : 	li
xi : Ui�	Ai��Ei�.Gi�i�I (G-int)
� G1 � G2 (G-par)
� μt�y : A��
x : S�	A�.G (G-def)
� t�y : A�� (G-call)
� end (G-end)

L::� p!	li
xi : Ui�	Ai��Ei�.Li�i�I (L-sel)
� p?	li
xi : Ui�	Ai��Ei�.Li�i�I (L-bra)
� μt�y : A��
x : S�	A�.L (L-def)
� t�y : A�� (L-call)
� end (L-end)

Fig. 1. Global and local MPSAs

For expressing constraints we use predicates (A,A�, . . .) with the syntax illustrated
in Figure 1, although we may use other predicates than equality in examples. Predicates
are defined on interaction variables, modelling the content of a message exchanged by
the roles in the session, and on state variables, which are variables of the virtual state
local to one role.

Global Assertions. Interaction (G-int), p� q : �li�xi : Ui	�Ai��Ei�.Gi�i�I , models
a message exchange where role p sends q one of the branch labels li and an interaction
variable xi, with xi binding its occurrences in Ai, Ei, and Gi. Ai is the predicate which
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needs to hold for p to select li, and which may constrain the values to be sent for xi.
Note that Ai is at the same time an assumption for the receiver q and a constraint for
the sender p (i.e., if Ai is violated then the blame is on p). Ei is the update prescribed
on the virtual states of p and q, modelling the persistent effects (i.e., with respect to the
lifetime of the single session) of that interaction. An update is a vector of assignments
of the form x :� e, where x is updated by the result of evaluating e in the current state.
We assume E does not contain two assignments to the same state variable, and is an
atomic action. Assertion (G-par) is for parallel composition. The recursive definition
(G-def) is the guarded recursion definition and defines a recursion parameter x initially

set equal to a value satisfying the initialisation predicate A�, with A being an invariant
predicate. Global assertions are unfolded implicitly, following an equi-recursive view
on types. (G-call) is the recursive instantiation and (G-end) is the termination.

Hereafter we omit true predicates, empty vectors of variables/updates, and labels of
single branches.

Example 1. Consider a session with two roles, C and S. C makes an offer x to S for
buying a ticket; S either accepts or refuses the offer. In the former case C spends x credits
and receives a ticket, and S earns x credits. Tickets are modelled as serial numbers; they
must all be increasing numbers not exceeding 1000. GT below specifies this scenario:

GT � C � S : �x : int��x 	 0
 C.credit 	 x��C.credit :� C.credit � x�.
S � C : �ok�y : int��S.count � 1000 
 y � S.count��Eok�.end,

ko�C.credit :� C.credit  x�.end �
Eok � S.credit :� S.credit  x,S.count :� S.count 1

C has state variable credit, and S has state variables credit and count (a counter
for serial numbers). The first interaction requires that the offer x does not exceed C’s
credit, and decrements the credit by x. S selects one of the two branches by either label
ok or ko. The former branch can be selected only if S.count 
 1000.

We denote with var�G	 the set of (interaction/state) variables and recursion parame-
ters in G, and with var�A	 the free variables of A (same for e). The set of variables that
p � G knows, written var�G	 � p, consists of: (i) the state variables of the form p.x for
some x, (ii) the interaction variables sent or received by p in G, and (iii) the parameters
of the recursive definitions μt�y : A���x : S	�A�.G� in G such that p knows all the free
variables in initialisation A�, and all free variables in A� for all t�y : A�� in G� (we
assume each recursion parameter known by exactly two participants).

Well-assertedness. Our theory relies on two consistency principles: history-sensitivity
and temporal-satisfiability. These principles were first introduced in [5]; we discuss
them here as their adaptation to our stateful scenario requires non-trivial extensions.

By history-sensitivity each role must have enough information to fulfil the specified
obligations, namely it requires that: (1) each role p knows all free variables in the pred-
icates that p must guarantee, and (2) each role has enough information to perform the
prescribed updates, that is (i) when to make an update, and (ii) which values to assign.
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Definition 2 (History-sensitivity). G is history-sensitive if for each interaction, of the
form p� q : �li�xi : Ui	�Ai��Ei�.Gi�i�I , occurring in G, for all i � I:

1. var�G	 � p  var�Ai	 (i.e., p knows all variables in var�Ai	),
2. for all r.x :� e in Ei: (i) either r � p or r � q, and (ii) var�G	 � r  var�e	.

A checker for history-sensitivity can be found in the online report [4]. Consider the
assertions:

G � p� q : �x :int	. q� r : �y :int	. r� s : �z :int	�z � x�
G� � p� q : �y :int	. q� r : �ok�w :int	�r.x1 :� y, p.x2 :� y�, ko�

G violates (1) because r has to send a value for z that is greater than x without knowing
x. G� violates both clauses of (2): (i) because p must update x2 not knowing whether
and when the update should be done, and (ii) because in the second interaction r has to
update x1 with y without knowing y.3

By temporal-satisfiability, for each participant p � G, whenever it is p’s turn to send a
value, p can find at least one selection branch and one value which satisfies the specified
constraint. Temporal satisfiability is defined (and checked) using a function ts�G, A	
which returns true only if G always allows a path of interactions going through G in
any possible state. Considering all possible states makes the specification robust with
respect to arbitrary interactions the same principal may be engaged in through other ses-
sions. Predicate A is incrementally built as a conjunction of the predicates that appear
in G in all the recursive invocations and models the current set of assumptions.

Definition 3 (Temporal-satisfiability). Let G be a global specification, and A a predi-
cate. ts�G, A	 is given by:

1. ts�p�q : �li�xi : Ui��Ai��Ei�.Gi�i�I , A��
��

i�I ts�Gi, A
Ai� if A�
�

i�I �xi.Ai

false otherwise

2. ts�G1 � G2, A� � ts�G1, A� 
 ts�G2, A�

3. ts�μt�e��x :S��A��.G�, A� �
�
ts�G�, A
A�� if A � �A��e�x��

false otherwise

4. ts�tA��x��e�, A� �

�
true if A � A��e�x�

false otherwise

5. ts�end, A� � true

G satisfies temporal satisfiability if ts�G, true	 � true.4

3 [6] proposes algorithms to amend assertions that violate history-sensitivity and temporal-
satisfiability as in [5]. No such algorithms have yet been investigated for the definitions in-
troduced in this paper. Although relevant, the issue of amending inconsistent assertions is out
of the scope of the current work.

4 This property can be relaxed by starting from a stronger precondition A as long as A is then
implied by the principal invariants (which are defined in § 4).
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In (1) the first condition for “if” demands that there exists at least one branch for which
it is possible to find a value for xi that satisfies the current predicate Ai. The function
is called recursively extending the set of preconditions A with with the closure Ai of
predicate Ai (see Remark 4 below). (2) demands both parts of the composition are
satisfiable. (3) and (4) check recursion, the latter relying on the annotation of recursive
calls with the invariants of the corresponding recursive definitions.

Remark 4. The closure of a predicate A in G, written A, is the predicate obtained
by closing the free state variables of G in A with existential quantifiers. Whereas the
values of interaction variables in a session do not change after they are introduced5,
state variables can be updated a number of times. Hence a predicate on state variables
may be true at a certain time, and become false at a later time. Hereafter we use A
when we want to ‘keep’ only the persistent parts of a predicate A (i.e., those interaction
variables), discarding those on state variables.

The following global specification violates temporal satisfiability

p� q : �x : int	�x � 0�.q� p : �y : int	�y � x� y � 100�

In fact, in the first interaction p is allowed to choose any positive value for x, for instance
10. In this case, q cannot find any value for y such that y � 10� y � 100.

Proposition 5. Given a global assertion G, let m be the size of the syntactic tree of G, n
be the maximum number of variables occurring in each predicate in G, and eval�A	 be
the complexity of predicate evaluation (if decidable). History-sensitivity can be checked
in O�m � n	. Temporal-satisfiability is decidable if predicate evaluation is decidable
and, if decidable, it can be checked in O�m	 � eval�A	.

Hereafter, we assume assertions to be well-asserted.

Local Assertions. Each local assertion L refers to a specific role. Syntax is given in
the right part of Figure 1. Selection (L-sel) p!�li�xi : Ui	�Ai��Ei�.Li�i�I models an
interaction where the role sends p a branch label li and a message xi. Ai and Ei are the
predicate and update respectively. (L-bra) is the dual branching. The others are as in
the global assertions, except that a local assertion cannot be multi-threaded.

Given a global assertion G, we can automatically derive the local assertions for each
role p � G by projection. The projection rules rely on a few auxiliary definitions: pro-
jection of a predicate, and projection of an update. The projection of a predicate A on
p in G, written A � p, is defined as �x̃.A where x̃ � var�A	��var�G	 � p	 (i.e., the
existential closure of the variables that p does not know). The projection of an update E
on p in G, written E � p is the update E� containing only the assignments pj.xi :� ej
such that pj � p.

The projection rules for global assertions are as in [5], except that updates are now
considered; their detailed presentation is not necessary to understand the results in this
paper, hence we only give an illustration through Example 6. Henceforth, in G � p we
shall omit the p. prefix when referring to p’s state variables.

5 Actually, interaction variables in a recursion body are reused at each iteration. However, their
values are due to follow the same constraints at each iteration.
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Example 6. LC (resp. LS) is the projection of GT from Example 1 on C (resp. S).

LC � S ! �x : int��x 	 0
 credit 	 x��credit :� credit� x�.L�
C

L�
C � S ?�ok�y : int���S.count.S.count � 1000 
 y � S.count�.end,

ko�credit :� credit x�.end�

LS � C ?�x : int���C.credit.x 	 0
 C.credit 	 x�.L�
S

L�
S � C ! �ok�y : int��count � 1000 
 y � count�

�credit :� credit  x,count :� count 1�.end,
ko.end�

The projection of the first interaction of GT on sender C (resp. receiver S) is a send/select
(resp. a receive/branch). The predicates/updates of the projections on a role are the pro-
jections of the predicates/updates on that role.6 The continuation is projected similarly,
proceeding point-wise for each branch. Sometimes the projected predicate includes in-
formation about constraints of interactions between third parties (without however re-
vealing the actual values exchanged by the third parties), e.g., �S.count.S.count 

1000� y � S.count provides C with precondition y 
 1000.

Well-assertedness is easily extended to local assertions.

3 Multiparty Networks with Local States

We consider networks of interactional entities called principals linked by a common
global transport, modelled as queues. Each principal runs a located process, that is a
process with multiparty session primitives [1, 18] (to enable rigorous representation of
conversation structures) and with a local state.

Syntax. The syntax of networks and processes is given in Figure 2 and is a refined
version of the multiparty session π-calculus from [1, 10] with local states. A local state
σ maps a signature �x̃ : S̃� of typed pairwise disjoint state variables x̃ to their sorts. We
use the injective function id�σ	 to map each local state to an identifier.

A network can be an empty network�, a located process �P �σ, a parallel composi-
tion of networks N1 � N2, a new session name �νs	N which binds s in N , or a queue
s : h where h are messages in transit through session channel s. A network is initial
if it has no new session names and queues, otherwise it is runtime. We denote the free
session channels in N with fn�N	, similarly for P with fn��P �σ	 � fn�P 	.

Session request (P-req) multicasts a request to each session accept process (P-acc),
e.g., a�i��y	.P with i � �2, .., n�, by synchronisation through a shared name a and con-
tinuing as P . (P-sel) is Dijkstra’s guarded command [15] and (P-bra) is the branching
process; they represent communications through an established session k. (P-sel) acts
as role p in session k and sends role q one of the labels li. The choice of the label
is determined by boolean expressions ei, assuming �i�Iei � true and i �� j implies

6 Note that by well-assertedness (clause 1) the projection of a predicate on the sender of an
interaction is always the predicate itself.
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(network) N ::� � � �P �σ � N1�N2 � �νs�N � s : h

(state/queue/value) σ ::� �x̃ : S̃� �	 S̃ h ::� � � �p, q, l
v�� � h v ::� n � s�p�

(process) P ::� a�n��y�.P (P-req)
� a�i��y�.P (P-acc)
� k�p, q�!ei �	 li
e�i��xi�
Ei�;Pi�i�I (P-sel)
� k�p, q�?li�xi�
Ei�.Pi�i�I (P-bra)

� P �Q (P-par)
� �μX�x�.P �
e� (P-def)
�X
e� (P-call)
� 0 (P-idle)

(channel/update/exp) k ::� y � s E ::� � � E; x :� e e ::� v � e op e

x, y, . . . interaction variables x, y, . . . state variables X,Y, . . . process variables
a, b, . . . shared name s, s�, . . . session name n, n�, . . . constants

Fig. 2. Syntax of networks and processes

ei � ej � false. Each label li is sent with the corresponding expression e�i which
specifies the value for xi, assuming e�i and xi have the same type.7 (P-bra) plays role
q in session k and is ready to receive from p one of the labels li and a value for the
corresponding xi, then behaves as Pi after instantiating xi with the received value. In
guarded command (resp. branching), the local state of the sender (resp. receiver) is
updated according to update Ei; in both processes each xi binds its occurrences in Pi

and Ei.

Example 7. Processes PS and PC implement LS and LC, respectively, from Example 6.

PS � a�2��z�.z�C, S�?�x�;P �
S Eok � count :� count 1, credit :� credit x

P �
S � z�S, C�!��count � 1000 
 x 	 10� �� ok�count��y��Eok�.0,

�count 	 1000 � x � 10� �� ko.0�

PC � a�2��w�.w�C, S�!�8��x��credit :� credit � x�;P �
C

P �
C �w�S, C�?�ok�y�.0, ko�credit :� credit x�.0�

We let C � 1 and S � 2. PS accepts a request to participate to a session specified by
GT (assuming a has type GT ) on channel z as role 2. In the established session z, the
principal receives an offer x from the co-party. It follows a guarded command with two
cases; if count has not reached its maximum value for serial numbers and the offer is
greater than 10 then the first branch (ok) is taken and count is sent as y, otherwise the
second branch (ko) is taken. Dually, PC sends a request to participate to one instance of
session GT as the role 1. A principal may repeatedly execute a process using recursion,
or run concurrent instances of the same type of session (e.g., �PS � PS�σ) or different
types of session (e.g., �PS � PC�σ) as discussed in Example 9.

Operational Semantics. The LTS is generated from the rules in Figure 3 using the
following labels: � ::� a�n��s� � a�i��s� � s�p, q�!l�v� � s�p, q�?l�v� � τ . We denote

7 Guarded command can be implemented using selection, if-then-else and lock-unlock. Al-
though our theory is applicable to these primitives, we choose to make these low-level steps
atomic for minimising the syntax.
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�a�n��y�.P �σ
a�n��s�
������ �P �s�y��σ �a�i��y�.P �σ

a�i��s�
������ �P �s�y��σ �s � fn�P ��

�s�p, q�!	ei 
� li�e
�
i��xi��Ei�;Pii�I �σ

s�p,q�!lj�v�
��������� �P �v�xj��σ

�

�j � I σ �� e�j � v σ �� ej σ� � σ afterEj�v�xj��

�s�p, q�?	li�xi��Ei�.Pii�I �σ
s�p,q�?lj�v�
��������� �Pj�v�xj��σ

� �j � I σ� � σ afterEj�v�xj��

�P1�σ1
a�n��s�
������ �P �

1�σ1 �Pi�σi
a�i��s�
�������P �

i �σi �2 � i � n�

�P1�σ1 � � � � � �Pn�σn
τ
�� �νs��s : � � �P �

1�σ1 � � � � � �P �
n�σn�

�P �σ
s�p,q�!lj�v�
��������� �P ��σ�

�P �σ � s : h
τ
�� �P ��σ� � s : h � �p, q, lj�v��

�P �σ
s�p,q�?lj�v�
��������� �P ��σ�

�P �σ � s : �p, q, lj�v�� � h
τ
�� �P ��σ� � s : h

Fig. 3. Labelled transition for networks

with σ afterE the state σ after the update E. We write σ �� e � v for a closed
expression e when it evaluates to v in σ.
The first and second rule are for requesting and accepting a session initialisation. The
guarded command checks if condition ej is satisfied in the current state σ, and sends a
message consisting of one of the labels lj and an expression e�j (which is evaluated to
a value v in state σ), updates σ according to Ej , and behaves as P �v�xj�. Branching
is symmetric. The synchronous session initialisation creates a new queue. We omit the
standard context/structural equivalence rules.

4 Proof System for Multiparty Session Logic with Virtual States

In this section we outline how to obtain the syntactic validation of networks, written
Γ � N � Σ, assuming processes typable, following [5]. The proof rules rely on the
following environments:

Γ ::� � � Γ, a : G � Γ,X : �x : S�L1 @ p1, . . . ,Ln @ pn, Δ ::� � � Δ, s�p� : L,
Σ ::� � � Σ, �Δ�σ

Γ maps shared names to global assertions and process variables to their parameters.
If Γ � a : G then a session specified by G can be initiated by processes (via session
request or accept) using a. By the standard kinding rules, we check if the same free
variable appears in different global types in Γ , then they have the same sort. The map-
ping of process variables is for the validation of recursive assertions. Δ maps session
channels/roles to local assertions. If Δ � s�p� : L then a session is active (i.e., it has
been initialized) on channel s for role p; L specifies the (part of the) session that has
still to be executed. Σ is the specification of a network; each �Δ�σ is the specification
of a located process with the respective virtual state.

We also use an assertion environment C, which is incrementally built by conjunction
of the predicates and boolean expressions (i.e., the conditions of a guarded commands)
occurring in the processes being validated, and models their assumptions. Hereafter,
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given a predicate A and an update E, we define A afterE to be the predicate obtained
by substituting, for each assignment x :� e in E, each occurrence of x in A with e.

Modelling Cross-Session Properties: the Principal Invariant. Given a located process
�P �σ in a network, we want to allow the architect to model stable properties (i.e., in-
variant) over the variables in σ on across multiple sessions. We call these properties
principal invariant of �P �σ, that is a predicate (following the syntax for A in Figure 1)
over the state variables of σ. Hereafter we assume there exists a function I�σ	 that given
a local state σ returns the principal invariant for σ. Principal invariants depend from the
application domain, and the architect should define them prior to the verification.

Example 8. Consider a located process �PC � PS�σp with PC and PS from Example 7.
Assume we want to require that the credit is always non-negative (i.e., the principal
does not contracts debts) and that the counter does not exceed the maximum number of
tickets which is 1000. We can enforce these constraints by setting the principal invariant
I�σp	 to be credit � 0� 0 � count � 1000.

Proof Rules. Figure 4 illustrates the proof rules for initial networks and processes.
�N1� decomposes the validation of a network into the validations of each located pro-

cess against its corresponding specification Δ. The correspondence between principal
and specification in checked by the clause id�σp	 � id�σa	. Furthermore, local and

id�σp� � id�σa� σp, σa �� I�σp� I�σp� � C;Γ � P �Δ
C;Γ � 	P 
σp � 	Δ
σa

�N1�

�Γ �, Δ�, σ�� � �Γ,Δ, σ� C � C� C�;Γ � � N � 	Δ�
σ�

C;Γ � N � 	Δ
σ
�N2�


C;Γ � ���

C;Γ � N �Σ C;Γ � N � �Σ�

C;Γ � N � N � �Σ,Σ�
�N3/N4�

C;Γ, a : G � P � y	i
 : G � i, Δ
C;Γ, a : G � a	i
�y�.P �Δ

�MACC�

�i � I, C �Ai;Γ � Pi �Δ, k	q
 : Li C �Ai � �C afterEi�

C;Γ � k	p, q
?�li�xi��Ei�.Pi�i�I � Δ, k	q
 : p?�li�xi : Ui��Ai��Ei�.Li�i�I
�BCH�

�i � I�j � J, li � lj C � ei;Γ � Pi	e�i�xi
 �Δ, k	p
 : Lj	e�i�xj

C � ei � �Aj � �Ei � Ej� � �C afterEj��	e�i�xi


C;Γ � k	p, q
!�ei �� li�e�i��xi��Ei�;Pi�i�I �Δ, k	p
 : q!�lj�xj : Uj��Aj��Ej�.Lj�j�J
�SEL�

C;Γ � P1 �Δ1 C;Γ � P2 �Δ2

C;Γ � P1 � P2 �Δ1, Δ2

Δ end only
C;Γ � 0�Δ

�PAR/END�

L1	e�x
, . . . ,Ln	e�x
 well-asserted
C;Γ,X : �x�L1 @ p1, . . . ,Ln @ pn � X�e� � s	p1
 : L1	e�x
, . . . , s	pn
 : Ln	e�x


�VAR�

C;Γ,X : �x�L1 @ p1, . . . ,Ln @ pn � P � s	p1
 : L1, . . . , s	pn
 : Ln

C;Γ � �μX�x�.P ��e� � s	p1
 : L1	e�x
, . . . , s	pn
 : Ln	e�x

�REC�

Fig. 4. Proof rules for networks (top) and proof rules for processes (bottom)



A Multiparty Multi-session Logic 107

virtual states must satisfy the principal invariant I�σp	. P is then validated in the asser-
tion environment extended (i.e., in conjunction with) the principal invariant.

�N2� is the rule for refinement. This rule is useful to validate processes even if they do
not match exactly a given assertion as long as they implement a behaviour that is ‘more
refined’ than the one prescribed. Refinement is also necessary to prove completeness
of these rules (Theorem 14). We use the following refinement relation between spec-
ifications: �Γ �, Δ�, σ�	  �Γ,Δ, σ	 if �Γ �, Δ�, σ�	 specifies a more refined behaviour
than �Γ,Δ, σ	, in that it poses more restrictions on the output actions and poses less
restrictions on the input actions. �N2� allows to refine the assertion environment C by
considering, in the premise, a weaker set of assumptions C�.

�N3� is for empty networks and �N4� is for decomposing the validation of networks.
�MACC� validates a session accept on a shared channel a as role i provided that a is

in the domain of Γ , and that the continuation P is validated against the specification Δ
extended with the new session y�i�. In the (now active) session y�i�, P must behave as
Γ �a	 projected on role i. The rule for session request is similar hence omitted.

�BCH� validates the branching process. Δ must include an active session k�q� on ses-
sion channel k for the receiver role q. In the premise, the continuation for each branch
i is required to be still valid in the assertion environment extended with Ai. In the sec-
ond clause of the premise, for each branch i the update Ei must not invalidate C; this
ensures that the update does not invalidate the principal invariant. The invariant is not
mentioned explicitly (to keep the proof rules concise), but it is implied by C. In fact, C
is the conjunction of (1) the principal invariant (by �N1�), (2) possibly some interaction
predicates (by �BCH�), and (3) possibly some boolean expressions (by �SEL�). Since predi-
cates (2), (3) and Ai do not contain free state variables8, then Ei can only invalidate the
principal invariant (1); on the other hand (2), (3) and Ai are necessary premises (i.e.,
C �Ai before the implication) as they may constrain interaction variables used by Ei.

In �SEL� each branch i of the process must correspond to a branch j of the specification
(li � lj). The continuation must be validated in assertion environment C extended with
the closure ei of the condition of the branch ei. The closure of boolean expression ei
is defined as the closure for predicates (see Remark 4). The clause at the bottom of the
premise requires that, under the assumption C � ei: (1) expression e�i satisfies Aj , (2)
assertion and process have the same effects/updates on the states, (3) update Ej does
not invalidate the principal invariant. 9

�PAR� is similar to �N2� but for parallel processes. �END� validates the idle process pro-
vided that each active session in the specification Δ is of the form y�p� : end.

�VAR� validates recursive call given that the active sessions in Δ correspond to the
roles and local assertions associated to process variable X in Γ and that each Li is still
well-asserted when the recursion parameter is substituted with e. �REC� is the standard
rule for recursion definition. The validation of recursive processes is handled in a sim-
ilar way to [5]; it uses a refinement rule for processes, similar to �N2� and omitted for

8 By history-sensitivity Ai does not include any free state variable.
9

�BCH�/�SEL� can be extended to delegation adding the following clause for Ui � �L�: (�BCH�)
C 
 Ai;Γ � Pi � Δ, k�q� : Li, xi : L, and (�SEL�) C 
 ei;Γ � P �e�i�xi� � Δ�, k�p� :
Lj�e

�
i�xj� with Δ � Δ�, ei : L�

i and Δ� � Δ�.
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simplicity, and the fact that assertions are refined by their unfolding. See [4] for more
details.

Example 9. Consider the located process �PS � PC�σp from Example 8 that executes
two parallel threads: one selling a ticket and the other one buying another kind of ticket
from another principal (the other principal is not modelled here). We show the validation
of true;Γ � �PS � PC�σp � ���σa proceeding top-down using the rules in Figure 4.

The global specification ���σa is initially empty since there are no active sessions.
The active sessions will be added upon session request/accept by PS and PC. We assume
σp � σa � �count : int, credit : int� !� �10, 500� and initially C � true.

We first apply �N1� with I�σp	 � credit � 0�0 � count � 1000 from Example 8.
For readability we will write I instead of I�σp	 in this example. Note that I is satisfied
by the local and virtual state. Next we apply rule �PAR� that decomposes the derivation
of two threads for PS and PC. We omit the illustration of the latter thread.

Below we illustrate the application of rule �MACC� and �BCH� to the former thread:

I 
 ��C.credit.C.credit 	 x�;Γ � P �
S � z�S� : L�

S

I 
 ��C.credit.C.credit 	 x� � �I after��
�BCH�I;Γ � z�C, S�?�x�.P �

S � z�S� : C?�x : Nat���C.credit.C.credit 	 x�.L�
S

�MACC�I;Γ � PS ��

For readability we will simplify I � ��C.credit.C.credit � x� with the equivalent
predicate I. Next, by �SEL�, setting e � count 
 1000� x � 10, and Eok � count :�
count" 1, credit :� credit" x:

I � e � �count � 1000 � y � count� Eok � Eok � I afterEok	
count�y� I;Γ  0 � z
S� : end
I ��e � true I;Γ  0 � z
S� : end

I;Γ  z
S, C�!�e �� ok�count��y	�Eok�.0,�e �� ko.0�
 z
S� : C!�ok�y : Nat	�count � 1000 � y � count��Eok�.end, ko.end�

where each line in the premise refers to a branch (i.e., ok and ko). The most delicate
clause is I�e # �count 
 1000�y � count�Eok � Eok�I afterEok	�count�y�
which requires: (1) the interaction predicate to be satisfied under the current assump-
tions, and in fact �count 
 1000 � y � count	�count�y� is implied by e, (2) the
updates to be consistent, and in fact trivially Eok � Eok, and (3) the update to not
invalidate the invariant, and in fact credit" x � 0� 0 � count" 1 � 1000 is true
under the assumptions credit � 0, x � 10 and 0 � count. Finally we apply �END� to
the second premise of each branch.

The effectiveness of the proof rules depends on the logic chosen for the predicates,
which depends on the application scenario. An example which fits these criteria is the
Presburger arithmetic, which is often sufficiently expressive: practical uses of mul-
tiplication are encodable [17], and formulae with quantifiers may be calculated effi-
ciently [20, 22].

Proposition 10. The proof of C;Γ � N � Σ is decidable if predicate evaluation is
decidable.
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5 Soundness and Completeness of the Validation Rules

We define a labelled transition relation for specifications �Γ,Σ� using the same labels
as for networks. The main difference with the rules for networks is that predicates must
be satisfied for the transition to occur. We illustrate below the most remarkable rules
(see [4] for the other rules). The rule for session request:

��a : G, Γ �; �Δ�σ� a�n�	s

����� ��a : G, Γ �; �Δ, s�1� : G � 1�σ�

extends Δ with the new session, given that a : G in Γ and the current state satisfies
assertion invariant A. The rule for session accept is dual. The rule for selection/send:

j � I σ �� Aj�n�xj� σ� � σ afterEj�n�xj�

�Γ ; �Δ, s�p� : q!�li�xi : Ui��Ai��Ei�.Li�i�I �σ�
s�p,q�!lj	n

�������� �Γ ; �Δ, s�p� : Lj�n�xj��σ

��

moves to the continuation Lj of the selected branch with the updated state σ�, given
that the sent value n satisfies predicate Aj for branch j in the current state σ.

Semantic conformance is defined using conditional simulation [5] to relate networks
N to specifications �Γ ;Σ�.

Definition 11 (Conditional Simulation). A binary relationR over N and �Γ ;Σ� is a

conditional simulation if, for each �N, �Γ ;Σ�	 � R, if N �
$� N � with � being:

(1) a branching then �Γ ;Σ� is capable to move at the subject of �, and if �Γ ;Σ�
�
$�

�Γ ;Σ�� then �N �, �Γ ;Σ��	 � R;

(2) a select, session request/accept, τ then �Γ ;Σ�
�
$� �Γ ;Σ�� and �N �, �Γ ;Σ��	 � R.

We write N � �Γ ;Σ� if there exists a conditional simulationR s.t. �N, �Γ ;Σ�	 � R.

Conditional simulation is like standard simulation for all types of actions except for
branching, for which it requires N to be simulated only for legal values/labels (i.e., a
process must conform to a given specification as long as its environment does so).

Definition 12 (Satisfaction). N satisfies Σ in Γ and C, written C;Γ �� N �Σ, if for
all closing substitutions σ̃ over N and Σ respecting Γ and C, Nσ̃ � �Γ ;Σσ̃�.

We write Γ �� N � Σ when C is true (e.g., for initial networks). Soundness and
completeness for initial networks are stated below.

Theorem 13 (Soundness of Proof Rules). Let N be an initial network. Then Γ �
N �Σ implies Γ �� N �Σ.

Theorem 14 (Completeness of Proof Rules). Let N %
�

i�I�Pi�σpi be an initial
network and Σ �

�
i�I�Δi�σai be a specification. Assume that for all i � I: (1)

id�σpi	 � id�σai	, (2) dom�σpi	 � dom�σai	, and (3) I�σpi	 equivalent to true. If
Γ �� N �Σ then Γ � N �Σ.

(1-2) are for symmetry between N and Σ. (3) is necessary since the principals in N
can make updates that differ from those made by the corresponding specifications in Σ;
this may not compromise the observable behaviour of N with respect to Σ, but N may
invalidate some principal invariant which would make the thesis false.
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6 Related Work and Further Topics

The preceding integrations of session types with logical constraints include [13], based
on concurrent constraints ensuring bi-linear usage of channels, and [5], based on logical
annotations on interactions, do not treat stateful properties. The combination of types
and logical assertions referring to local state newly proposed in this paper enable fine-
grained specifications and validation, which are not possible in [5, 13].

The expressiveness of the session type-based analyses has been greatly extended
these past few years. On one side, the conversation calculus [8], contracts [11] and dy-
namic multirole session types [14] have opened the way to the modelling of protocols
complex in their shapes, by describing more accurately how sessions can be joined or
left, who is allowed participate. On the other side, works such as [5, 9] improved the
way interactions inside a session are described: in [5], an assertion framework ensures
logical properties on the communicated values, in [9], a security analysis guarantees
that the coherence of the information flow is preserved. Our work improves the session
type analyses in both directions: by proposing a division of the process being tested
into separate principals that can join one or several sessions independently when condi-
tions are matched and manage their own state, and by giving a description, inside each
session, of the internal state of each participant and the property it should satisfy. A re-
cent work [12] examines conditions to ensure that a stateful specification is robust w.r.t.
asynchronous communications. Our work provides a complete proof system ensuring
soundness for processes, whereas [12] only addresses properties of types.

The refinement types for channels (e.g. [3]) specify value dependency with logical
constraints. For example, one might write ?�x : int, !�y : int � y � x�	 (using the nota-
tion from [16]). It specifies a dependency at a single point (channel). Our theory, based
on multiparty sessions, can verify processes against a contract globally agreed by mul-
tiple distributed peers. [2] uses refinement types for channels to verify authentication in
multiparty session protocols, but does not consider multi-session properties.

The work [7] investigates a relationship between a dual intuitionistic linear logic and
binary session types, and shows that the former defines a proof system for a session cal-
culus which can automatically characterise and guarantee a session fidelity and global
progress. None of the above works treat either virtual states or logical specifications for
interleaved multiparty sessions.

The use of Rely-Guarantee conditions or other related methods [19] instead of a sin-
gle invariant does not increase the expressiveness of our system, but could ease proofs
for parallel composition.

A future direction is to link between our static analysis and a dynamic monitor-based
approach. Using our local specification as a monitor at each end-point, incoming and
outgoing messages can be verified and filtered. We are currently working on this topic
with [21] based on the logic developed in this paper.
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Abstract. Business processes design is an error-prone task often relying
on long-running transactions with compensations. Unambiguous formal
semantics and flexible verification tools should be used for early valida-
tion of processes. To this aim, we define a small-step semantics for the
Sagas calculus according to the so-called “coordinated interruption” pol-
icy. We show that it can be tuned via small changes to deal with other
compensation policies and discuss possible enhancements.

1 Introduction

Long-running transactions (LRTs) in business processes are composed by ser-
vices taken off-the-shelf. One important problem is failure recovery, i.e., the
ability to bring a faulty process back to a consistent state. Processes may grow
large and complex and when a fault occurs the designer has to take several con-
straints into account: all sibling activities that run unaware of the fault should
be stopped and all the activities that were executed before the fault need to be
undone in a suitable order. Moreover, in many cases, an action, like a service
invocation, cannot simply be undone: it can be an ACID transaction on its own,
or it may involve asynchronous messaging (e.g., via SMTP).

A compensation is the means of reversing the effects of an activity in case
a later fault occurs in the business process. Compensations were introduced
in [17] to implement (non-ACID) database LRTs as a sequence of short, ACID
sub-transactions t1...tn. Each ti had an associated activity ci, its compensation,
to be installed when ti committed, and to be executed if a fault occurred before
the whole LRT was committed. Compensations are executed in the reverse order
of installation. For example, if t3 fails, then the observed activities are t1t2c2c1.
Service-oriented computing is a particularly favourable setting for the concept
of compensation, because services are designed without knowing in advance the
context where they will be used. For example, take a process that receives an
order form with multiple items and delegates each request to a different supplier.
If some request fails while others already succeeded, the process may cancel
the successful requests and inform the customer about the failure. Still, certain
cancellations may involve fees and others may not be possible at all. Moreover,
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Centralised Distributed

No interruption �������	1
⊆ ��

⊆
��

�������	2

⊆
��

Näıve Sagas

�������	5
��������⊆
�����

����� ⊆
������

�����
�

Interruption �������	3 ⊆
��

Original cCSP

�������	4
Revised Sagas

Fig. 1. Compensation policies (arrows stand for trace inclusion)

when the fault occurs one would like to interrupt non-issued requests. Thus, it is
natural to demand that a service comes with one (or more) companion service(s)
for compensation. An action and its compensation form a compensation pair.

Concurrency makes process design an error-prone activity: processes must be
assigned with unambiguous semantics and early validated to detect unwanted
behaviour and to suppress as many inconsistencies as possible. We focus on the
semantics of the Sagas calculus [7]. The core fragment of parallel Sagas has been
sufficient to characterise different compensation policies for parallel processes.
A thorough analysis is presented in [3] by comparing the Sagas calculus with
compensating CSP [10] (cCSP) along two axes of classification: i) interruption of
siblings in case of an abort (interruption vs no interruption); ii) whether com-
pensations are started at the same time or siblings can start their compensation
on their own (centralised vs distributed). The relation between the four different
policies is displayed in Fig. 1. The fifth policy (double lined in Fig. 1) has been
formalised in [6] and proved more satisfactory than #1–4, and all semantics #1–
5 coincide on the sequential fragment of Sagas. A key contribution in [6] is the
definition of a concurrent semantics for policy #5, obtained by encoding Sagas
processes in (safe) Petri nets. The Petri net model is more informative than trace
semantics, because it accounts for the branching of processes arising from the
propagation of interrupts, but the sophisticated mechanism needed for handling
interrupts introduces many auxiliary places and transitions that make the Petri
net model quite intricate to parse (§ 5.1) and difficult to extend (§ 7).

Our aim is to provide an operational semantics for Sagas whose main require-
ments are: i) it must follow the small-step style of operational semantics, so
to account for the branching caused by the propagation of interrupts; ii) other
policies can be implemented without radical redesign; iii) it must be easy to in-
troduce other features, like choice, iteration, and faulty compensations (crashes).

In this paper we propose an LTS semantics that meets all the above require-
ments. The main result consists of the correspondence theorems with the existing
semantics. We started by considering the “optimal” policy #5 and were guided
by the correspondence with the Petri net semantics to correct many wrong de-
sign choices in our first attempts. The main result is the proof that our LTS
semantics matches the Petri nets semantics in [6] up to weak bisimilarity. This
gives a way to read markings as (weak bisimilar) terms of a process algebra that
describes the run-time status of the process.
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(act) A,B ::= a | skip | throw
(step) X ::= A÷B

(process) P,Q ::= X | P ;Q | P |Q
(saga) S, T ::= A | S; T | S|T | {[P ]}

Fig. 2. Core fragment of Sagas

Synopsis. In § 2 we recall the denotational semantics of Sagas. In § 3 we define
the LTS semantics for the sequential fragment only, and extend it to the parallel
case in § 4. In § 5 we sketch the Petri net semantics from [6] and outline the
technique used for proving the main result. In § 6 and § 7 we show the flexibility
of our LTS semantics in accommodating other policies and advanced features.
Related work, concluding remarks and future work are collected in § 8.

2 Background

The syntax of the parallel Sagas calculus is in Fig. 2. Atomic actions A include
generic activities a ∈ A, the vacuous activity skip and the faulty activity throw .
In a compensation pair A÷B, the activity B compensates A. We write throww
for throw ÷ skip. Beside the ordinary sequential and parallel composition, we
use {[P ]} to enclose a compensable process within a saga. Below, we outline the
denotational semantics of policies #1–5, while the Petri net semantics for policy
#5 is recalled in § 5.1. The Petri net semantics and our novel LTS semantics
are parametric to the context of execution that fixes the success or failure of
activities. Let Ω = {�,�}. A context Γ is a function Γ : A → Ω that maps
a basic activity to � or � depending on whether it commits or aborts, with
Γ (skip) = � and Γ (throw) = �. We assume a compensation activity cannot
fail. Dealing with faulty compensations is discussed in § 7. The denotational
semantics does not use Γ : only throww is used for failures.

Notation. A trace for a saga is a string s〈ω〉, where s ∈ A∗ is said the observable
flow and ω ∈ R is the final event, with R = {�, !, ?} and A ∩R = ∅ (� stands
for success, ! for fail, and ? for yield to an interrupt). Note that ? appears only
in traces of compensable processes. We let ε denote the empty observable flow.
Slightly abusing the notation, we let p, q, ... range over traces and also observable
flows. We denote by p|||q the set of all possible interleavings of the observable
flows p and q, with final event ω&ω′, where & is associative and commutative.
A trace of a compensable process P is a pair (p, q), where p is the forward trace
and q is a compensation trace for p. We find it convenient to define policy #3
first (see Fig. 3) and then explain the other ones by difference. We use policy
numbers as subscripts of the symbol � when the defining equation may not be
valid for other policies (e.g., �3,4 means the definition is valid for policies #3
and #4). Later, we write �·�i to denote the trace semantics w.r.t. policy #i.

Sagas (policies #1–5). For sagas, the most interesting case is the one of {[P ]}:
it selects all successful forward traces s〈�〉 of P , and the traces sq, corresponding
to failed forward flows s〈!〉 followed by their compensations q.

Interruption and Centralized Compensation (Policy #3).When compos-
ing compensable traces in series, the forward trace corresponds to the sequential
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Traces of sagas

S;T � {p; q | p ∈ S ∧ q ∈ T} a � {a〈�〉}
S|T � {r | r ∈ (p||q) ∧ p ∈ S ∧ q ∈ T} skip � {〈�〉}
{[P ]} � {s〈�〉 | (s〈�〉, q) ∈ P} ∪ {sq | (s〈!〉, q) ∈ P} throw � {〈!〉}
Composition of standard traces

Sequential
{ p〈�〉; q � pq

p〈ω〉; q � p〈ω〉 when ω �= �

Parallel p〈ω〉||q〈ω′〉 � {r〈ω&ω′〉 | r ∈ (p|||q)}, where

ω ! ! ! ? ? �
ω′ ! ? � ? � �

ω&ω′ ! ! ! ? ? �
and

{
p|||ε � ε|||p � {p}

a p|||b q � {a r | r ∈ (p|||b q)} ∪ {b r | r ∈ (a p|||q)}
Traces of compensable processes

A÷B �3,4 {(p, q) | p ∈ A ∧ q ∈ B} ∪ {(〈?〉, 〈�〉)}
P ;Q � {pp; qq | pp ∈ P ∧ qq ∈ Q}
P |Q � {rr | rr ∈ (pp||qq) ∧ pp ∈ P ∧ qq ∈ Q}

Composition of compensable traces

Sequential
{ (p〈�〉, p′); (q, q′) � (pq, q′; p′)
(p〈ω〉, p′); (q, q′) � (p〈ω〉, p′) when ω �= �

Parallel (p, p′)||(q, q′) �1,3 {(r, r′) | r ∈ (p||q) ∧ r′ ∈ (p′||q′)}

Fig. 3. Denotational semantics (policy #3)

composition of the original forward traces, while the compensation trace starts
by the second compensation followed by the first one. The parallel composition is
defined (pairwise) interleaving the forward flows and the backward flows.

No Interruption and Centralized Compensation (Policy #1). Policy #1
differs from policy #3 just by ruling out interruption.

A÷B �1,2 {(p, q) | p ∈ A ∧ q ∈ B}

Interruption and Distributed Compensation (Policy #4). Policy #4
differs from policy #3 only by the following definition of parallel composition
of compensable traces. Note that compensations can be triggered by “guessing”
that a fault will be issued.

(p〈�〉, p′)||(q〈�〉, q′) �2,4 {(r〈�〉, r′) | r ∈ (p|||q) ∧ r′ ∈ (p′||q′)} ∪
{(r〈?〉, 〈ω〉) | r〈ω〉 ∈ (pp′||qq′)}

(p〈ω〉, p′)||(q〈ω′〉, q′) �2,4 {(r〈ω&ω′〉, 〈ω′′〉) | r〈ω′′〉 ∈ (pp′||qq′)} if ω&ω′ �= �

No Interruption and Distributed Compensation (Policy #2). Policy #2
differs from policy #3 by combining together the two changes above.

Coordinated Compensation (Policy #5). Policy #5 differs from policy #3
by slightly changing the semantics of compensation pairs, to allow a successfully
completed activity to yield, and the semantics of parallel composition, to account
for distributed compensation without the guessing mechanism.



116 R. Bruni and A.K. Kauer

A÷B �5 {(p, q) | p ∈ A ∧ q ∈ B} ∪ {(〈?〉, 〈�〉)} ∪
{(p〈?〉, q) | p〈�〉 ∈ A ∧ q ∈ B}

(p〈�〉, p′)||(q〈�〉, q′) �5 {(r〈�〉, r′) | r ∈ (p|||q) ∧ r′ ∈ (p′||q′)}

(p〈ω〉, p′)||(q〈ω′〉, q′) �5

⎧⎨⎩ itp((p〈ω〉, p′), (q〈ω′〉, q′)) ∪
itp((q〈ω′〉, q′), (p〈ω〉, p′)) when ω, ω′ �= �
∅ otherwise

itp((p〈ω〉, p′), (q〈ω′〉, q′)) � {((p|||q1)〈ω〉, (p′||q2q′)) | q = q1q2}

In Summary: in #1 and #2 all sibling processes will finish their execution
before compensating; in #3, aborted and interrupted processes cannot start the
compensation before all their siblings are ready to compensate; #2 and #4 rely
on a “guessing” mechanism for which a process may start its compensation when
a sibling will fail in the future; #5 is “optimal” in the sense that distributed com-
pensations can start as soon as needed, but only after an actual fault occurred.

Example 1. Consider the processing of an order in an eStore. First the order is
accepted, then, in parallel, the customer’s credit card is processed and the order
is packed and the courier is booked. If something goes wrong each activity can
be compensated, the courier will be cancelled, the order unpacked, for the credit
card an error message will be sent and the order can be deleted. Assume that
the booking of the courier will always fail and is thus replaced with throww .

eStore � aO÷ aO; (pC÷ pC|pO÷ pO; throww)

In policies #1 and #2, pC and its compensation will always be executed, while
policies #3 and #4 admit, e.g., the trace aO pOpO aO. Policies #1 and #3
are centralized and no compensation activity can precede a forward activity.
Policies #2 and #4 admit the trace aO pOpO pCpC aO (distributed case). They
also admit the less realistic trace aO pCpC pOpO aO where the compensation
pC is executed before the actual throww could have issued a fault. This trace is
forbidden in policy #5 (where aO pOpO pCpC aO is still allowed).

3 A Small-Step Semantics for Sequential Sagas

In this section we define a small-step LTS semantics for the sequential fragment of
the Sagas calculus. (w.r.t. the syntax in Fig. 2, we ignore parallel composition).
To be able to reason on intermediate states in the execution of a process we
introduce a runtime syntax.

(comp) C ::= A | C;C | nil (process) P ::= . . . | P$C | [C]
(saga) S ::= . . . | nil

First we add a distinct type for compensations. They can either be basic activities
A, the sequential composition of compensations C;C or nil. With nil we denote
completion of a compensation, in the sense that, e.g., the compensation nil;C
can never execute activities in C. For compensable processes, P$C denotes a
process P running with the already installed compensation C. Compensations
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(c-act)

Γ � A
A−→ nil

(c-seq1)

Γ � C
λ−→ C′ ∧ ¬dn(C′)

Γ � C;D
λ−→ C′;D

(c-seq2)

Γ � C
λ−→ C′ ∧ dn(C′)

Γ � C;D
λ−→ D

Fig. 4. LTS for sequential compensations

(s-act)

A �→Γ �

Γ � �, A÷B
A−→ �, [B]

(seq)

Γ � �, P
λ−→ �, P ′ ∧ ¬dn�(P ′)

Γ � �, P ;Q
λ−→ �, P ′;Q

(f-act)

A �→Γ �
Γ � �, A÷B

τ−→ �, [nil]

(s-seq)

Γ � �, P
λ−→ �, P ′ ∧ dn�(P ′)

Γ � �, P ;Q
λ−→ �, Q$cmp(P ′)

(a-seq)

Γ � �, P
λ−→ �, P ′

Γ � �, P ;Q
λ−→ �, P ′

(step)

Γ � σ, P
λ−→ σ′, P ′ ∧ ¬dnσ′(P ′)

Γ � σ, P$C
λ−→ σ′, P ′$C

(as-step1)

Γ � σ, P
λ−→ σ′, P ′ ∧ dnσ′(P ′) ∧ tocmp(P ′)

Γ � σ, P$C
λ−→ σ′, [cmp(P ′);C]

(as-step2)

Γ � σ, P
λ−→ σ′, P ′ ∧ dnσ′(P ′) ∧ ¬tocmp(P ′)

Γ � σ, P$C
λ−→ σ′, [C]

(comp)

Γ � C
λ−→ C′

Γ � �, [C]
λ−→ �, [C′]

Fig. 5. LTS for sequential compensable processes

of P will be installed on top of C once P is finished. The completion of forward
activities is denoted by [C] instead of nil, because we need to consider the
installed compensation C (informally, [C] can be read as nil$C). We also add
nil for marking the completion of a saga.

The small-step semantics is defined by three LTSs, one for each syntax cate-
gory. Given the set of compensations C, the set of compensable processes P and
the set of sagas S, we let SC = C, SP = Ω × P , SS = Ω × S.

Definition 1. The LTS semantics of (sequential) sagas is the least LTS (S, L, T )
generated by the rules in Fig. 4–6, whose set of states is S = SC∪SP ∪SS , whose
set of labels is L = A ∪ {τ}.

We will write transitions t ∈ T as t : Γ � s
λ−→ s′ for states s, s′, a label λ ∈ L

and a context Γ . The component Ω in a state describes whether the process can
still commit (it can still move forward) or must abort (a fault was issued that
needs to be compensated). Note that states of the LTS for compensations have
clearly no Ω component. Sagas initially start executing in a commit state.

The semantics exploits some auxiliary notation. The predicate dnσ checks the
completion of (the forward execution of) a compensable process. The subscript
σ stands for � or � and means that the process is either evaluated in a commit
or an abort context. The predicate dnσ is inductively defined as:

dnσ([C]) � tt dnσ(A÷B) � ff dnσ(P$C) � dnσ(P ;Q) � dnσ(P )
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(s-sact)

A �→Γ �

Γ � �, A
A−→ �,nil

(sseq)

Γ � σ, S
λ−→ σ′, S′ ∧ ¬dn(S′)

Γ � σ, S;T
λ−→ σ′, S′; T

(f-sact)

A �→Γ �
Γ � �, A

τ−→ �,nil

(s-sseq)

Γ � σ, S
λ−→ �, S′ ∧ dn(S′)

Γ � σ, S; T
λ−→ �, T

(a-sseq)

Γ � σ, S
λ−→ �, S′ ∧ dn(S′)

Γ � σ, S;T
λ−→ �, S′

(saga)

Γ � σ, P
λ−→ σ′, P ′ ∧ ¬dnσ′(P ′)

Γ � σ, {[P ]} λ−→ σ′, {[P ′]}

(a-saga1)

Γ � σ, P
λ−→ �, P ′ ∧ dn�(P

′) ∧ tocmp(P ′)

Γ � σ, {[P ]} λ−→ �, {[P ′]}
(s-saga)

Γ � �, P
λ−→ �, P ′ ∧ dn�(P ′)

Γ � �, {[P ]} λ−→ �,nil

(a-saga2)

Γ � σ, P
λ−→ �, P ′ ∧ dn�(P

′) ∧ ¬tocmp(P ′)

Γ � σ, {[P ]} λ−→ �,nil

Fig. 6. LTS for sequential sagas

Note that for sequential processes dn is independent of the subscript; this will
change when introducing parallel composition. Analogously, we define a pred-
icate dn on compensations and sagas, together with a function cmp(P ) that
extracts the installed compensation from a process P that is “done”. When P
is done, we use the shorthand tocmp(P ) � ¬dn(cmp(P )) (i.e., tocmp(P ) holds
when there is some compensation to run).

dn(nil) � tt dn(A) � ff dn(C;C ′) � dn(C)

dn(nil) � tt dn(A) � dn({[P ]}) � ff dn(S;T ) � dn(S)

cmp([C]) � C

cmp(P ;Q) � cmp(P )
cmp(P$C) �

{
C if dn(cmp(P ))
cmp(P );C if ¬dn(cmp(P ))

The rules in Fig. 4 handle compensations. As we assume a compensation is
always successful, only rule c-act is needed for basic activities. Rules c-seq1

and c-seq2 exploit the “done” predicate to avoid reaching states such as nil;C.
For processes (Fig. 5), a basic activity A of A÷B can either commit or abort,

depending on the context: if A commits then B is installed (s-act); if A fails,
then there is nothing to be compensated (f-act). A sequential composition P ;Q
acts according to how P acts (seq and a-seq). If P finishes successfully (s-seq),
then Q will run under the installed compensation cmp(P ′). The process P$C
acts according to P . When P finishes its compensation is installed on top of C
(as-step1). The rule as-step2 ensures that a nil is not installed on top of a
compensation. Compensations are executed via comp.

The rules for sagas A and S;T are as expected (Fig. 6). A saga {[P ]} can be
executed as long as either it is still running forward (saga and s-saga) or it has
already aborted and compensates (saga and a-saga1). If the saga aborts but
is able to compensate, then it reaches a good state (a-saga2).
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The formal correspondence between the LTS semantics and the denotational
semantics of policies #1–5 is an immediate consequence of our main result and
will be deferred to § 4 (see Corollary 1).

Example 2. Let eS � aO ÷ aO; pC ÷ pC; pO ÷ pO; bC ÷ bC. Assume that the
packing of the order fails, and let Γ map pO to � and the other actions to �.

We have e.g. �, {[eS ]} aO−→ pC−→ τ−→ pC−→ aO−→ �,nil, because

�, eS
aO−→ �, (pC÷ pC; pO÷ pO; bC÷ bC)$aO

pC−→
�, ((pO÷ pO; bC÷ bC)$pC)$aO

τ−→ �, [pC; aO]
pC−→ �, [aO]

aO−→ �, [nil]

4 Extension to Concurrency

In this section we extend the LTS semantics to handle parallel Sagas. First, we
extend the runtime syntax as follows:

(comp) C ::= A | C;C | nil | C|C
(process) P ::= X | P ;P | P$C | [C] | P σ|σ′P
(saga) S ::= A | S;S | {[P ]} | nil | Sσ|σ′S

We add parallel composition to compensations. We use subscripts for the
parallel composition of processes or sagas σ|σ′ such that σ, σ′ ∈ Ω. If a thread
is denoted with �, it can still move forward and commit. A thread denoted
with � either aborted or was interrupted, so it can compensate. If a thread is
denoted with a � then also every parallel composition contained as a subprocess
in this thread must have a �. Similarly if the global state is a �, any parallel
composition in this state has subscripts �. We consider P�|�Q part of the
normal syntax, not just of the runtime syntax, and usually write just P |Q. We
sometimes use ‖ instead of σ|σ′ if the values of σ, σ′ are irrelevant.

Definition 2. The LTS semantics of parallel sagas is the least LTS (S, L, T )
generated by the rules in Fig. 4–6 together with the rules in Fig. 7 (symmetric
rules c-par-r, par-r, int-l and spar-r are omitted).

The semantics exploits some auxiliary notation. First, the binary function
% : Ω × Ω → Ω is defined such that σ % σ′ = � iff σ = σ′ = �. It is easy to
check that % is associative and commutative. Then, the predicates dnσ, dn and
the function cmp are extended to parallel composition:

dn(C|C′) � dn(C) ∧ dn(C′) dnσ(P σ1 |σ2Q) � dnσ(P ) ∧ dnσ(Q) ∧ (σ = σ1 = σ2)

dn(Sσ1 |σ2T ) � dn(S) ∧ dn(T ) cmp(P ‖ Q) � cmp(P )|cmp(Q)

The process P σ1 |σ2Q is done when both P and Q are done and both subscripts
are the same and coincide with the global state σ.

The rules c-par-l/c-par-r define just the ordinary interleaving of compen-
sations. The rules par-l/par-r are analogous, but the subscript determines the
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(c-par-l)

Γ � C
λ−→ C′

Γ � C|D λ−→ C′|D

(spar-l)

Γ � σ1, S
λ−→ σ′

1, S
′

Γ � σ, Sσ1 |σ2T
λ−→ σ′

1 � σ2, S
′
σ′
1
|σ2T

(par-l)

Γ � σ1, P
λ−→ σ′

1, P
′

Γ � σ, P σ1 |σ2Q
λ−→ σ � σ′

1, P
′
σ′
1
|σ2Q

(int-r)

Q � Q′

Γ � �, P σ|�Q
τ−→ �, P σ|�Q′

Fig. 7. LTS rules for parallel Sagas (symmetric rules omitted for brevity)

[C] � [C] A ÷ B � [nil]

P � P ′ ∧ ¬par(P )

P ;Q � P ′
par(P )

P ;Q � P

P � P ′

P |Q � P ′
�|�Q

Q � Q′

P |Q � P�|�Q′

P � P ′ ∧ dn�(P ′) ∧ tocmp(P ′)

P$C � [cmp(P ′);C]

P � P ′ ∧ ¬dn�(P ′)

P$C � P ′$C

P � P ′ ∧ dn�(P ′) ∧ ¬tocmp(P ′)

P$C � [C]

Fig. 8. Predicate P � P ′ for interrupting a process

modality of execution. A thread can move forward when it is in a commit state.
If a thread aborts, the failure is annotated also in the global state by taking
σ%σ′

1. A commit thread can still move forward even if the global mode is abort.
The rules int-l/int-r use an “extract” predicate P � P ′ to interrupt a com-

mit thread if the global process is in abort mode. In P � P ′, the process P ′ is a
possible result of interrupting P (see Fig. 8). As a special case, note the interrupt
of a sequential composition: we distinguish whether P is a parallel composition
(predicate par(P ) is true) or not. This is motivated by the intention to adhere
to the Petri net semantics, where (P |Q);R can be interrupted discarding R but
without necessarily interrupting P or Q.

For the parallel composition of sagas (spar-l/spar-r) we just remark that
in the case of fault of one thread we let the other threads execute as much as
possible and just record the global effect in the σ component of the state.

Example 3. Let eS ′ � aO ÷ aO; (pC ÷ pC|pO ÷ pO; bC ÷ bC), and assume that
the processing of the card fails while the other actions are successful.

�, eS ′ aO−→ �, (pC÷ pC | pO÷ pO; bC÷ bC)$aO
pO−−→

�, (pC÷ pC | (bC÷ bC)$pO)$aO
τ−→ �, ([nil] �|� (bC÷ bC)$pO)$aO

τ−→
�, [(nil | pO); aO] pO−−→ �, [aO]

aO−→ �, [nil]

5 Operational Correspondence

In this section we will show a weak bisimilarity between our novel LTS semantics
and the Petri net semantics of [6].
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5.1 Petri Net Semantics (for Policy #5)

In [6] Sagas processes are encoded in safe Petri nets by structural induction (see
Fig. 9). A saga has just three places to interact with the environment: F1 starts
its flow, F2 signals successful termination, and E raises a fault. Each compensable
process has six places to interact with the environment: a token in F1 triggers
the forward flow, to end in F2; a token in R1 starts the compensation, to end in
R2; a token in I1 indicates the arrival of an interrupt from the outside; a token
in I2 informs the environment that a fault occurred. For sagas, a computation
starting in F1 will lead either to F2 or to E, while for compensable processes we
expect to have the following kinds of computations:

(a) A process P (b) A÷B with A �→Γ � (c) A÷B with A �→Γ �

(d) P ;Q

(e) A saga {[P ]}

(f) Parallel composition P |Q

Fig. 9. Encoding of compensable processes as (safe) Petri nets
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Successful (forward) computation: from marking F1 the net reaches F2

Compensating (backward) computation: from R1 the net reaches R2.
Aborted computation: from F1 the net reaches R2 + I2.
Interrupted computation: from F1 + I1 the net reaches R2.

The nets for compensable processes are depicted in Fig. 9. The encoding
introduces several auxiliary transitions (thinner and black filled), e.g., to fork
and join the control flow, to catch an interrupt and reverse the flow.

Depending on the context, for a successful compensation pair A÷B (Fig. 9b)
we have the obvious transitions modelling activities A and B together with
auxiliary transitions for handling interruption. The net for a failing compensation
pair (Fig. 9c) has a transitionK that models the abort of the transaction. The net
for the sequential composition P ;Q (Fig. 9d) is obtained by merging the forward
output place F3 of P with the forward input place of Q and the backward output
place R3 of Q with the backward input place of P . Moreover, P and Q share
also the places for I1 and I2.

The encoding of parallel composition P |Q (Fig. 9f) is more complex. We
use two subnets for the two processes, with places F ′

1, F
′
2, . . . and F ′′

1 , F ′′
2 , . . .

resp. The upper part of the figure highlights the transitions used in absence of
interruptions and the lower part focuses on transitions exploited by interruption.

5.2 Weak Bisimilarity Result

In the following, we write p
τ̂⇒ q if (p, q) ∈ (

τ−→)∗. Moreover, for μ �= τ we write

p
μ̂⇒ q if there exists p′, q′ such that p′

μ−→ q′ and (p, p′), (q, q′) ∈ (
τ−→)∗.

Definition 3. Let (S1, L, T1) and (S2, L, T2) be two LTSs. A relation R ⊆ S1×
S2 is a weak bisimulation if whenever (s1, s2) ∈ R, then:

1. if s1
μ−→1 s′1 then there exists s′2 such that s2

μ̂⇒2 s′2 and (s′1, s
′
2) ∈ R; and

2. if s2
μ−→2 s′2 then there exists s′1 such that s1

μ̂⇒1 s′1 and (s′1, s
′
2) ∈ R.

The largest weak bisimulation is called weak bisimilarity and denoted by ≈.

We shall let the marking graph of the net NP play the role of (S1, L, T1) and
(the fragment of) the LTS reachable from process P play the role of (S2, L, T2),
so that ≈ relates markings of NP with processes P ′ reachable from P . More
precisely, we assume the only observable actions in the marking graph are those
corresponding to activities a ∈ A; all the other transitions are labelled with τ .

We have seen that the Petri net semantics associates to a compensable process
P a corresponding net NP that exchanges tokens with the context via six places.
The places F1, R1, I1 are used to receive tokens in input from the environment,
while the places F2, R2, I2 are used to output tokens to the environment. Nets
are usually considered up-to isomorphism, therefore the names of their places
and transitions are not important, as long as the same structure is maintained.
However, to establish the behavioural correspondence between our LTS for P
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and the marking graph of the net NP we need to fix a particular naming of
the elements in NP . Moreover, the same activity can occur many times in a
process and every instance corresponds to a different element of the net. One
way to eliminate any ambiguity is to annotate processes with the names of the
places to be used for building the interface of the corresponding net (before the
translation takes place). The proof of the main theorem requires some ingenuity
to fix the correspondence between net markings and process terms. Here, we just
mention that we write P@〈F1, F2, R1, R2, I1, I2〉 meaning that process P (and
all its sub-processes) has been annotated in such a way that the names of the
places in the “public interface” of the net NP are F1, F2, R1, R2, I1, I2.

Theorem 1. Let NP be the Petri net associated with the tagged compensable
process P@〈F1, F2, R1, R2, I1, I2〉. Then, F1 ≈ (�, P ).

As an immediate consequence of the theorem and the main result of [6] the
correspondence to the denotational semantics given in § 2 follows.

For any sagas S we let �S� denote the set of weak traces in our LTS semantics:

�S� � { a1...an〈�〉 | ∃S1, ..., Sn, σ1, ..., σn−1. �, S
â1⇒ σ1, S1

â2⇒ · · · ân⇒ �, Sn �→ }∪
{ a1...an〈!〉 | ∃S1, ..., Sn, σ1, ..., σn−1. �, S

â1⇒ σ1, S1
â2⇒ · · · ân⇒ �, Sn �→ }

Actually, under the assumption that compensation cannot fail, only successful
traces are present in �S� (as well as in �S�i for any i ∈ [1, 5]). This is not
necessarily the case for the last extension in § 7.

Corollary 1. For any sagas S = {[P ]} we have �S�5 = �S�. Moreover, if P is
sequential then �S�i = �S� for i ∈ [1, 5].

6 Dealing with Other Compensation Policies

In this section we show that we can tune the LTS semantics to match and
improve other compensation policies discussed in the literature.

Notification and Distributed Compensation. To remove the possibility
to interrupt a sibling process before it ends its execution we just redefine the
“extract” predicate by removing most cases, so that the interrupt is possible
only when the process is “done”.

[C] � [C]

P � P ′

P$C � P ′$C

P � P ′

P |Q � P ′�|�Q

Q � Q′

P |Q � P�|�Q′

Now, the rule int is only applicable if the interrupted process consists of an in-
stalled compensation [C]. The new extract predicate only changes the subscripts,
not the process: since any interrupted thread is “done” we never inhibit sibling
forward activities upon a fault.

We call this strategy Notification and distributed compensation (policy #6)
to emphasize the fact that siblings are notified about the fault, not really inter-
rupted. Since compensations are distributed and the fault is not observable, it
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can happen that a notified thread starts compensating even before the sibling
that actually aborted. However, contrary to policy #2, a thread cannot guess
the presence of faulty siblings, so it is not possible to observe a forward activity
of the only faulty thread after a compensation activity of a notified thread. Thus
policy #6 defines a variant of policy #2 where unrealistic traces are discarded.

Proposition 1. Let �·�6 denote the set of weak traces generated by policy #6
above. Then, for any sagas S = {[P ]} we have �S�1 ⊆ �S�6 ⊆ �S�2. Moreover, for
some P the inclusion is strict, while for sequential processes �P �1 = �P �6 = �P �2.

Interruption and Centralized Compensation. To move from distributed to
centralized execution we simply strengthen the premise in par-l (and par-r):

(par-l)

(σ1 = � ∨ dn�(P σ1 |σ2Q) ∨ ¬dn�(P )) Γ � σ1, P
λ−→ σ′

1, P
′

Γ � σ, P σ1 |σ2Q
λ−→ σ % σ′

1, P
′
σ′
1
|σ2Q

Thus a process can only be executed if it is either moving forward (σ1 = �) or
the complete parallel composition finished in a failing case (dn�(P σ1 |σ2Q)) or
the thread has not yet finished its execution in a failing case (¬dn�(P )).

Proposition 2. Let �·�3 denote the set of weak traces generated by policy #3
above. Then, for any sagas S = {[P ]} we have �S�3 = �S�3.

No Interruption and Centralized Compensation. By combining the above
changes we recover policy #1.

7 Possible Extensions

Choice and Iteration. Our first extension adds choice P +P and iteration P ∗

operators to the syntax for processes The corresponding rules are in Fig. 10. In a
process P +Q one option is nondeterministically executed while the alternative
is dropped. For iteration, a process P ∗ either executes a τ and finishes or acts
as the sequential composition P ;P ∗. Note that, while it is easy to account for
choice and iteration in the denotational semantics, the extension is harder for
the Petri net semantics. For example, let us consider the sequential process
(A ÷ A′ + B ÷ B′)∗; throww . At any iteration, either A or B is executed and
thus either A′ or B′ is installed. When the iteration is closed, the installed
compensation may be any arbitrary sequence of A′ or B′, an information that
cannot be recorded in the state of a finite (safe) Petri net.

Failing Compensations. One important contribution of [7] was the ability to
account for the failure of compensations. Here we discuss how to extend our LTS
semantics accordingly.

For compensations, we extend the states with Ω = {�,�}, modify the sources
/ targets from C to �, C in the rules we have presented, change the rule c-act as
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dnσ(P +Q) � dnσ(P ) ∧ dnσ(Q) dnσ(P
∗) � dnσ(P )

P +Q � [nil] P ∗ � [nil]

(choice-l)

Γ � �, P
λ−→ σ, P ′

Γ � �, P +Q
λ−→ σ, P ′

(e-iter)

Γ � �, P ∗ τ−→ �, [nil]

(s-iter)

Γ � �, P
λ−→ �, P ′ ∧ ¬dn(P ′)

Γ � �, P ∗ λ−→ �, P ′;P ∗

(choice-r)

Γ � �, Q
λ−→ σ,Q′

Γ � �, P +Q
λ−→ σ,Q′

(a-iter)

Γ � �, P
λ−→ �, P ′

Γ � �, P ∗ λ−→ �, P ′

(s-iter2)

Γ � �, P
λ−→ �, P ′ ∧ dn(P ′)

Γ � �, P ∗ λ−→ �, P ∗$cmp(P ′)

Fig. 10. LTS for choice and iteration

below and add the rules f-c-seq, c-par-l and c-par-r that record the execution
of a faulty compensation in the target of the transition:

(c-act)

A �→Γ σ

Γ � �, A
A−→ σ,nil

(f-c-seq)

Γ � �, C
λ−→ �, C′

Γ � �, C;D
λ−→ �, C′

(c-par-l)

Γ � �, C
λ−→ σ,C′

Γ � �, C|D λ−→ σ,C′|D

For compensable processes, we extend the state in LTS to Ω� = {�,�,�},
where the symbol � denotes the fault of a compensation, i.e., a non recoverable
crash. As a matter of notation for meta-variables, we let σ, . . . ∈ Ω and δ ∈
{�,�}. When executing a compensation [C], we must take into account the
possibility of a crash (comp-1 and comp-2). Moreover, if we generate a crash,
previously installed local compensations will not be executed (c-step):

(comp-1)

Γ � �, C
λ−→ �, C′

Γ � δ, [C]
λ−→ δ, [C′]

(comp-2)

Γ � �, C
λ−→ �, C′

Γ � δ, [C]
λ−→ �, [C′]

(c-step)

Γ � �, P
λ−→ �, P ′

Γ � �, P$C
λ−→ �, P ′

(Note that in the premises of rules comp-1 and comp-2 we intentionally put
� in the source of the transition, because the LTS for compensations has only
such states as sources of transitions.) The other rules for sequential Sagas stay
as before. For parallel composition we redefine the predicate dn such that

dn�(P�|�Q) � dn�(P ) ∧ dn�(Q) dnδ(P δ1 |δ2Q) � dnδ(P ) ∧ dnδ(Q)

where δ, δ1, δ2 ∈ {�,�}. The rules par-l/par-r are as before however for any
meta-variable we allow also � as a possible value, i.e., σ, σ1, σ2, σ

′
1, σ

′
2 ∈ Ω�.

Thus we have to extend the operation % such that � % σ = �. The rules int-

l/int-r are also applicable in a global � state.
The rules guarantee that in case of a crash parallel branches can execute their

compensations as far as possible, only previously installed compensation (i.e.,
before the parallel composition) are not reachable anymore.
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8 Concluding Remarks

We presented an LTS semantics for the Sagas calculus. Using a weak bisimula-
tion we investigated the correspondence with previously defined Petri net and
denotational semantics. Moreover, with small changes we can deploy a different
policy for the execution of concurrent compensable processes. We have shown
suitable semantics extensions enriching first the syntax and then the LTS itself.

This work is a first step towards a flexible tool for specifying and verifying
LRTs. While previous semantic definitions for Sagas gave a formal model for
LRTs, the LTS semantics is more suitable for custom property verification, like
model-checking. The LTS has been implemented in Maude, a language based on
rewriting logic and including tools like an inductive theorem prover or an LTL
model-checker (http://maude.cs.uiuc.edu). In the end we would like to inte-
grate the specified extensions as well as the option to choose which compensation
policy should be used together with a high-level dynamic logic for validation and
verification. Some promising steps in this direction are described in [5].

Related Work. One of the first attempt to a process algebraic formalization
of LRTs is StAC [9], from which both Sagas [7] and cCSP [10] later originated.
A small-step semantics for cCSP was defined in [11]. It relies on the centralized
compensation policy, but is otherwise similar to our approach. Using a synchro-
nizing step at the end of the forward flow the success or failure of the transaction
is published, in case of a failure the compensations are executed as normal saga
processes (outside the transaction scope). In our approach the information about
a failure is kept in the state and compensations are executed inside the saga.

Compensation for a simple class of nets, called workflow nets, has been studied
in [1]. It is simpler than the net semantics of [6] as it does not account for
interruption after a fault, but it is less elegant because a compensated run may
end with some remaining tokens. A dynamic policy for compensation is defined
in [20], where the compensation of a concurrent process depends on the order
of the interleaving of the forward actions, i.e., there is a unique compensation
stack that is updated by each action. The above studies have been applied to
provide formal support to standard technologies for web services [12,25,15,2] and
to develop provably correct engines for transactional workflows [4,18,22,19].

Finally, we mention other approaches that focus on the interaction between
processes. Notable examples are: webπ [23] and dcπ [26] that extend the π-
calculus, cJoin [8] that extends the Join calculus, CommTrans [14] for CCS and
the reversible process calculi in [13,24,21], where the special case of perfect roll-
back is investigated. We refer to [16] for some conceptual comparisons.
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Abstract. Unlinkability is a privacy property of crucial importance for several
systems (such as RFID or voting systems). Informally, unlinkability states that,
given two events/items in a system, an attacker is not able to infer whether they
are related to each other. However, in the literature we find several definitions
for this notion, which are apparently unrelated and shows a potentially problem-
atic lack of agreement. This paper sheds new light on unlinkability by comparing
different ways of defining it and showing that in many practical situations the
various definitions coincide. It does so by (a) expressing in a unifying framework
four definitions of unlinkability from the literature (b) demonstrating how these
definitions are different yet related to each other and to their dual notion of “in-
separability” and (c) by identifying conditions under which all these definitions
become equivalent. We argue that the conditions are reasonable to expect in iden-
tification systems, and we prove that they hold for a generic class of protocols.

1 Introduction

Unlinkability is a privacy property which holds when an attacker cannot identify the link
between two or more items in a system. This property is fundamental in the context of
identification systems. For instance, a person who buys an item with an EPC tag at a
shop may expect that the protocol used to identify tags prevents his/her tracking.

In this paper we use Radio Frequency Identification (RFID) systems as a case study
for our protocol analysis. RFID systems are a wireless technology for automatic iden-
tification consisting of a set of tags, readers and a backend. Tags usually offer very
limited resources, while backends and readers have standard computational resources.
An identification protocol allows tags to authenticate to a backend exchanging informa-
tion through a reader. One of the main issues raised by the widespread use of RFID is
that of privacy. The problem is that anyone in the neighbourhood of a tag may access it
wirelessly, and the resource limitation of RFID tags makes it difficult to use full-fledged
cryptographic algorithms. The ease of access paves the way to misuse: an attacker could
exploit tags to follow the movements of people or goods. The attacker does not even
need to break anonymity, since a tag sending the expiry date of a product already allows
a certain degree of tracking.

These privacy concerns lead to the definition of unlinkability (sometimes called un-
traceability or privacy). In the case of RFID systems, unlinkability [17,21,4,5,22,8,26]
is satisfied if an attacker is not able to infer whether two sessions have been executed by
the same agent. In the RFID literature, unlinkability is usually defined either in a compu-
tational setting in terms of games [10,17,21,4,22] or in a symbolic setting [12,13,2,3,7].
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[12] proposes a definition of untraceability in a trace-based model. [2,3] formalize pro-
tocols in the applied pi calculus and define weak and strong unlinkability in terms of
trace and observational equivalence respectively. Finally, [7] proposes a definition of
unlinkability in the applied pi calculus, inspired by the unlinkability games of the com-
putational setting.

As most definitions are different in model and strength, there is no agreement in the
literature on the concept of unlinkability. The goal of this paper is to create a better
understanding of this notion by comparing the strength of different definitions and de-
termining whether the differences have a practical impact on real world systems. Our
contribution is threefold. First, we express four trace-based definitions of unlinkability
from the literature in a unifying model. We start with the one of weak unlinkability
from [12,3]. By strengthening it, we obtain the definition of strong unlinkability from
[3]. Then, we express two game-based notions [10,17,4,20,7], and we give a definition
that capture them both. We also investigate inseparability, a notion dual to unlinkability,
which requires that the attacker cannot infer that two messages are not linked. Second,
we identify a set of conditions and demonstrate that, when they hold, all the above
forms of unlinkability and inseparability coincide. Last, we prove that these conditions
are satisfied by a generic class of simple identification protocols from [7].

These results help us to understand the essence of these privacy properties. Working
in an abstract setting, we can concentrate on their inherent nature – the inability to dis-
tinguish certain traces – without dealing with the complications of a concrete model. As
a result, the definitions and the conditions under which they coincide become intuitive,
while the results can be transferred to a concrete trace model as we do in Section 6.

Plan of the paper. Section 2 briefly introduces epistemic logic. Section 3 presents our
abstract trace model. Section 4 states several definitions of privacy using epistemic
logic. Section 5 presents several conditions and shows that all the privacy properties
coincide under them. Section 6 presents the class of RFID single-step protocols and
shows that they satisfy all the conditions stated in Section 5. Section 7 lists the related
work. Section 8 and provides conclusions.

2 Preliminaries

In this section we briefly introduce epistemic logic with public announcements, a logic
modeling agent knowledge, that we later use to formalize privacy properties. Only the
basic concepts are stated here, we refer the reader to [18] for more details.

Let P be a set of propositional constants (atoms). The setL(P ) of epistemic formulas
ϕ, ψ, . . . over A is given by:

ϕ, ψ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | Kϕ | [ϕ]ψ

with p ∈ P . The formula Kϕ means “the attacker knows ϕ”, while [ϕ]ψ means “after
ϕ is revealed, ψ holds”. The semantics is given in terms of Kripke structures. A Kripke
structure M is a tuple (S, f,∼) where S is a set of possible states, f : S → 2P is
a function assigning to each state a set of atoms that hold in that state, and ∼ is an
equivalence relation on S. Intuitively, s1 ∼ s2 means that from the attacker’s point of
view, the two states are indistinguishable. The semantics of the logic is given by:
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M, s 	 p iff p ∈ f(s)
M, s 	 ϕ ∧ ψ iff M, s 	 ϕ and M, s 	 ψ
M, s 	 ϕ ∨ ψ iff M, s 	 ϕ or M, s 	 ψ
M, s 	 ¬ϕ iff s � ϕ
M, s 	 Kϕ iff s′ 	 ϕ for all s′ such that s′ ∼ s
M, s 	 [ϕ]ψ iff (M, s 	 ϕ implies M |ϕ, s 	 ψ)

Intuitively, M, s 	 ϕ means that M satisfies ϕ at state s (we write s 	 ϕ when M is
clear from the context). The interesting case is the knowledge operator K: the attacker
knows ϕ at state s iff ϕ is satisfied in all states that are indistinguishable from s from the
attacker’s point of view. For the [ϕ] operator, let M |ϕ be a Kripke structure obtained by
M by restricting only to states satisfying ϕ, i.e. having state space S′ = {s ∈ S |M, s 	
ϕ}. Intuitively, revealing ϕ (in a state where ϕ holds) restricts the model to a smaller
one where ϕ always holds. Then [ϕ]ψ is true if ψ holds in the restricted model.

3 A Trace-Based Model

In a system, agents exchange messages according to a protocol with a specific purpose.
To capture one or more protocol runs in our model, we introduce the concept of trans-
actions. A transaction starts when the attacker gains access to an agent and lasts until
the attacker loses it. During the transaction the attacker can passively eavesdrop or ac-
tively forge messages. We allow the attacker to execute an arbitrary number of protocol
sessions within a transaction, while knowing that the agent participating in the transac-
tion does not change. However, when a new transaction starts, the agent involved can
be either the same as before, or a different one, and the attacker’s goal is to distinguish
these two cases. The attacker’s intentions are captured by the concept of a strategy. For
example, the attacker might passively eavesdrop a session, then build a new message
and send it to the agent executing another transaction, and so on. An attacker strategy
and a mapping of transactions to agent identities, completely defines a trace.

Definition 1. A system is a tuple (A,Σ,T,∼) where:

– A = {a1, a2, . . .} is a (possibly infinite) set of agents; we assume an ordered set
of transactions {p1, p2, . . .}, and we denote by Πn = {p1, . . . , pn} → A the set of
assignments of n transactions to agents;

– Σ is a set of strategies; each strategy σ ∈ Σ has a length |σ|; we denote the set of
transactions involved in the strategy by Domσ = {p1, . . . , p|σ|};

– T = {(π, σ) | σ ∈ Σ, π ∈ Π|σ|} is a set of traces; each trace τ ∈ T is a tuple
(π, σ) where σ is a strategy and π is a mapping of transactions to agents;

– ∼ is an equivalence relation on T such that (π1, σ1) ∼ (π2, σ2)⇒ σ1 = σ2.

A trace τ ∈ T is a complete execution of the system, and is determined by a strategy
σ, chosen by the attacker, and a mapping π, which the attacker does not control, that
defines which agent participates in each transaction. A protocol is an abstract object
that describes the behaviour of the agents in a system. Each protocol generates the set
T of all the possible traces that can be obtained under any attacker strategy σ ∈ Σ. The
relation ∼ is crucial for defining privacy properties. Consider two traces τ1 = (π1, σ)
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Table 1. Unlinkability and Inseparability

Property Epistemic formula The attacker cannot infer

WU ¬Klink(p, p′) that two messages p, p′ are linked

SU ¬K(anyLink) the existence of linked messages

GB-1 [πa ∨ πa′ ]¬Kπa the mapping πa even when πa ∨ πa′ is revealed

GB-2 [πa,a ∨ πa1,a2 ]¬Kπa,a the mapping πa,a even when πa,a ∨ πa1,a2 is revealed

WI ¬K(unlink(p, p′)) that two messages p, p′ are unlinked

SI ¬KanyUnlink the existence of unlinked messages

and τ2 = (π2, σ), produced when the attacker chooses the strategy σ and interacts with
two different sets of agents. If τ1 ∼ τ2, it means that when using the strategy σ, the
attacker cannot distinguish between the sets of the agents.

We sometimes use πτ to emphasize that it belongs to the trace τ . For a trace τ =
(π, σ), we write Domτ for Domσ , |τ | for |σ| and Aτ , Aπ for the image of π (i.e. the
set of agents involved in the trace). For a mapping π ∈ Πn we define |π| = n and we
denote Π = ∪n≥1Πn. Since transactions are ordered, we write mappings as sequences
of agents, e.g. π = (a4, a1, a2) assigns agent a4 to the first transaction, a1 to the second
and a2 to the third ones. We extend∼ to mappings as follows:

π ∼ π′ iff |π| = |π′| and (π, σ) ∼ (π′, σ) ∀σ ∈ Σ s.t. |σ| = |π|

Note that we keep our model abstract and do not explicitly define the messages in the
protocol, the exact strategies Σ and the relation ∼. We assume that these are produced
by a concrete protocol model (such as the one given in Section 6).

4 Unlinkability Definitions

In this section we express several definitions of unlinkability from the literature in our
trace-based model: the weak unlinkability of [12,3], the strong unlinkability of [3], and
two game-based definitions [10,17,4,20,7]. Finally, we introduce the notion of insep-
arability, which does not appear in the literature, but arises as a natural dual notion
to unlinkability. Table 1 summarizes all the resulting notions. Note that our purpose
is not a technical comparison between definitions expressed in different models, but a
comparison between the ideas behind each definition, expressed in a common unifying
model.

4.1 Kripke Structure

To express unlinkability using epistemic logic, first we have to define a Kripke structure
M = (T, f,∼) corresponding to a system (A,Σ,T,∼). T is the set of states and the
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attacker’s indistinguishability relation ∼ is provided directly by the system. The set of
atomic propositions P and the assignment function f : T→ P are built as follows:

P = Π ∪ {link(p, p′) | p, p′ ∈ Domτ , p �= p′, τ ∈ T}
f((π, σ)) = {π} ∪ {link(p, p′) | π(p) = π(p′)}

We use two types of propositions: π ∈ Π denotes that the mapping of the trace is
π, while link(p, p′) denotes that the transactions p, p′ are linked, i.e. they are mapped
to the same agent in a given trace. Note that link(p, p′) holds iff p �= p′, which we
implicitly assume in all the definitions.

4.2 Weak Unlinkability

The first definition is the one of weak unlinkability of [12,3]. Although presented in
different models, they are similar in nature, both requiring that, given a trace where two
messages are linked, an equivalent trace must exist where those messages are unlinked.

Definition 2 (Weak unlinkability). A protocol generating the set of traces T guaran-
tees weak unlinkability iff

∀τ ∈ T, p, p′ ∈ Domτ : τ 	 ¬K(link(p, p′))

This definition imposes that the attacker does not know whether any two given transac-
tions are linked to each other. This implies that for all traces τ and all pairs of distinct
transactions, there must exist an equivalent trace τ ′ ∼ τ in which the transactions are
mapped to two different agents. So the above definition can be written as:

∀τ ∈ T, p, p′ ∈ Domτ : ∃τ ′ ∈ T, τ ′ ∼ τ : τ ′ 	 ¬link(p, p′)

which corresponds exactly to the one of [12,3]. The weakness of this definition lies in
the fact that it does not completely prevent the attacker from obtaining knowledge about
linked transactions. For example, in a system satisfying weak unlinkability, the attacker
could still know that p1 is linked to either p2 or p3, but without knowing which one.

4.3 Strong Unlinkability

[3] also defines a strong version of unlinkability by requiring that a system is equivalent
to one where each agent executes one session only. Their definition, in a simplified form
and without entering into details, requires that !T ≈ !Ts where T = νm. init. !main
and Ts = νm. init. main. T represents an agent executing an initialization phase
(init) and an unbounded number (denoted by !) of protocol sessions (main), while Ts

is an agent executing one session.≈ denotes observational equivalence in [3], while we
use trace equivalence here because it is directly expressable in our model. To capture
this definition in our framework, we not only require that the attacker is not able to infer
the link between two given transactions, but also the existence of linked transactions.
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Definition 3 (Strong unlinkability). We say that a protocol generating the set of traces
T guarantees strong unlinkability iff

∀τ ∈ T : τ 	 ¬K(anyLink)∀p, p′ ∈ Domτ

where anyLink =
∨

p

∨
p′ link(p, p′).

anyLink holds for a trace if there exists at least a linked transaction. Thus, strong
unlinkability holds iff the attacker does not know whether there exists a link at all. For
this to hold, each trace must be equivalent to one with no linked transactions:

∀τ ∈ T : ∃τ ′ ∈ T, τ ′ ∼ τ : ∀p, p′ ∈ Domτ : τ ′ 	 ¬link(p, p′)

This formulation corresponds exactly to the definition of Arapinis et al. since τ ′ is a
trace that can be produced by the process !Ts, where no agent executes more than one
transaction.

4.4 Game-Based Definitions of Privacy

In the game-based definitions, privacy is defined as the result of a game between an
attacker (whose goal is to distinguish between the actions of different agents) and a
challenger. We refer to two different types of game-based definition of privacy: the first
is related to the definition of [21], variations of which can be found also in [10,17,4,22],
while the second corresponds to the definition given by [10,20]. We demonstrate that
in our model, these two classes of definitions are equivalent to each other and to a third
simpler definition of game-base unlinkability based on trace equivalence.
Both types of games consist of three phases. In the first game, which we call two-agents
game unlinkability, during the first phase the attacker can interact with all the agents of
the system. In the second phase, the attacker is asked to select two agents a, a′. The
challenger selects an agent x ∈ {a, a′}, and gives x to the attacker, hiding its identity.
The attacker can interact with all the agents, including a and a′, and, in the final phase,
she wins the game if she can infer whether x is a or a′ with non-negligible probability.
We use πx to denote a partial mapping from transactions to agents, where some trans-
actions are mapped to a variable x, while all the others are known to the attacker; Πx is
the set of all the partial mappings. πa is a mapping obtained from πx by mapping to an
agent a all transactions previously mapped to the variable x. We formalize this game by
requiring that the attacker cannot infer whether she is given a mapping πa or πa′ . Thus,
a protocol generating the set of traces T guarantees two-agents game unlinkability iff

∀τ ∈ T, a, a′ ∈ A, πx ∈ Πx : τ 	 [πa ∨ πa′ ]¬Kπa (1)

Although the only forbidden knowledge concerns πa, (1) is equivalent to τ 	 [πa ∨
πa′ ]¬Kπa′ , thus the attacker cannot know πa′ either. This property implies the equiva-
lence of the mappings πa and πa′ under all strategies, thus we can express (1) as:

∀a, a′ ∈ A, πx ∈ Πx : πa ∼ πa′

The second game, which we call three-agents game unlinkability, can be found in a
computational [10,20] and a formal setting [7]. Only the second phase differs from the
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previous game: the attacker selects three agents a, a1, a2 and the challenger gives her
two agents x, y, that are set to either x = y = a or x = a1, y = a2; the attacker wins if
she can infer whether x and y are linked. We now use πx,y as a partial mapping, Πx,y

as a set of all the partial mappings and πa,b as a complete mapping obtained from πx,y .
We require that the attacker cannot infer whether she is given a mapping πa,a or πa1,a2 .
A protocol generating the set of traces T guarantees three-agents game unlinkability iff

∀τ ∈ T, a, a1, a2 ∈ A, πx,y ∈ Πx,y : τ 	 [πa,a ∨ πa1,a2 ]¬Kπa,a (2)

In terms of equivalence of traces, (2) can be restated as follows:

∀τ ∈ T, a, a1, a2 ∈ A, πx,y ∈ Πx,y : πa,a ∼ πa1,a2

It is easy to see that both the games require all mappings to be equivalent. Thus, we
give a definition of game-based unlinkability which unifies these two notions.

Definition 4 (Game-based unlinkability). We say that a protocol generating the set
of traces T guarantees game-based unlinkability iff

∀π, π′ ∈ Π, |π| = |π′| : π ∼ π′ (3)

Each of the referenced works uses a variant of either (1) or (2), while [10] mentions
both, referring to the first as untraceability and to the second as unlinkability, but does
not explore the relation between them. Instead, we can prove that they reduce to Def. 4:

Theorem 1. A protocol satisfies game-based unlinkability iff it satisfies two-agents
game unlinkability, which it does iff it satisfies three-agents game unlinkability.

From now on we will only use the definition of game-based unlinkability. However, by
Theorem 1, all the results that hold for game-based unlinkability hold also for the other
game-based notions. Finally, as one may expect, we can show that strong unlinkability
and game-based unlinkability are both stronger than weak unlinkability.

Theorem 2. Strong unlinkability and game-based unlinkability imply both weak
unlinkability.

Note that strong unlinkability has already been proven to imply weak unlinkability by
[3] in their model in the applied pi calculus.

4.5 Inseparability

In some situations we want to hide the existence of unlinked transactions. In fact, an
attacker might be interested in changes in the system rather than in tracking agents.
For example, consider a high security location protected by a guard who authenticates
himself using an RFID tag. The attacker might want to be alerted when a new guard
appears. The definitions of weak and strong unlinkability impose no condition when two
messages are unlinked, thus we introduce the concept of inseparability, which requires
that the attacker does not know that two transactions are not linked.
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Definition 5 (Inseparability). We say that a protocol generating the set of traces T
guarantees weak inseparability iff ∀τ ∈ T, p, p′ ∈ Domτ : τ 	 ¬K(unlink(p, p′))
and strong inseparability iff ∀τ ∈ T : τ 	 ¬K(anyUnlink) where unlink(p, p′) =
¬link(p, p′) and anyUnlink =

∨
p

∨
p′ �=p unlink(p, p′).

As expected, strong inseparability is stronger than weak inseparability. On the other
hand, somewhat surprisingly, game-based unlinkability is stronger than strong insep-
arability, although game-based unlinkability is incomparable to strong unlinkability,
which is incomparable to strong inseparability. The reason is that game-based unlinka-
bility enforces all traces to be equivalent to one performed by a single agent.

Theorem 3. Game-based unlinkability implies strong inseparability, which in turn im-
plies weak inseparability.

The above properties are in general different (the implications not covered here do not
hold in general), as shown by the following examples; in the next section we investigate
conditions under which some or all of the properties become equivalent.

4.6 RFID Systems: Protocols Where the Properties Do Not Coincide

In this section we list some examples of RFID protocols that guarantee only some of
the properties described in Section 4. They are variations of the OSK protocol (see
Section 6, although understanding the protocol is not needed to follow the examples)
that satisfies all the properties. Here we introduce features that cause some properties to
fail. These features are artificial and unlikely to be present in realistic protocols. In fact,
in the next section, we identify some conditions under which all properties coincide.

Example 1 (System with a bounded number of tags). Consider a system with a bounded
number of tags. If the attacker observes a number of sessions greater than the number
of tags, she knows that there exist some linked sessions, although she cannot point to
any specific message, i.e. weak unlinkability holds, but strong unlinkability does not.
Still, all the traces of equal length produced by the OSK protocol are equivalent, thus
game-based unlinkability holds. As a consequence, also strong inseparability holds. 

Example 2 (System with several “types” of tags). Consider a system with two distin-
guishable types of tags Type1 and Type2, for example because they differ in technical
characteristics. Weak inseparability and game-based unlinkability are violated since the
attacker can distinguish tags of different type. Instead, strong unlinkability holds: the
adversary cannot know the existence of linked transactions since all transactions of the
same type could come from different tags. Together with the previous example, this
shows that strong unlinkability and the game-based definition are incomparable. How-
ever, if the number of tags of Type2 is bounded, we have a situation similar to the
previous example (although the total number of tags might still be unbounded); again,
strong unlinkability is violated while weak unlinkability holds. 

Example 3 (Protocol outputs depending on past sessions I). Consider a variation of the
OSK protocol where the reader beeps when the session it is executing is linked to a
previous session, but only if at least two tags appeared before it. This protocol satisfies
weak unlinkability: the beep does not allow the attacker to point to any two specific
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linked sessions. Despite this, the attacker knows that the session that made the reader
beep must be linked to a past session. Consider the observation where the reader beeps
at the third session. The beep tells him that the third session is either linked to the first or
the second one, and the first two sessions are not linked, violating strong unlinkability
and weak inseparability. Since not all mappings are equivalent to each other due to the
beep, game-based unlinkability is also violated. 

Example 4 (Protocol outputs depending on past sessions II). Consider a variation of
the OSK protocol where the reader beeps when the third tag of a trace first appears.
The protocol satisfies weak unlinkability, but violates strong unlinkability: if the reader
beeps after four or more sessions, there must be a link. Game-based unlinkability is
violated, since not all the traces are equivalent. It also breaks weak inseparability, since
a beep during the third session means that the first three sessions are unlinked. 

Example 5 (Protocol outputs depending on past sessions III). Consider a variation of the
OSK protocol where the reader beeps when it sees at least two tags and one link. The
protocol satisfies weak unlinkability but violates strong unlinkability and game-based
unlinkability. Strong inseparability is also violated, because a beep means that at least
two tags run some session. However, the attacker cannot link two specific sessions, thus
weak inseparability holds. 


5 Conditions under Which the Properties Coincide

In this section we identify a (large) class of protocols C and we demonstrate for these
protocols that all the notions of unlinkability and inseparability are equivalent: if a pro-
tocol in C satisfies any of them, then it satisfies all of them. The class C is given by all
the protocols satisfying the five conditions that we identify in the next section, where
we argue that most RFID protocols actually satisfy them, at least in their abstract form.

5.1 Conditions

Condition Unbounded Number of Agents. As we showed in Example 1, a system
with a bounded number of agents cannot satisfy strong unlinkability, since observing
a greater number of transactions reveals that at least two transactions are linked. Thus,
protocols in C contain an unbounded number of agents.

Definition 6. A protocol has an unbounded number of agents iff ∀n > 0∃τ ∈ T :
|Aτ | = n.

Clearly, an unbounded number of agents is not realistic. However, identification systems
have usually a wide number of agents, thus an attacker cannot usually communicate
with all of them in a limited amount of time, and does not know the total number of
agents. This is why, at an abstract level, this condition is often assumed in the literature.

Condition Renaming. As shown in Example 2, having distinguishable types of agents
can be problematic. However, in real systems agents are usually identical in function-
ality, differing only in the secret information. As a result, we can expect that replacing
all transactions of an agent with a new one will not have a visible effect.
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Definition 7. Let π be a mapping, a ∈ Aπ and a′ /∈ Aπ . The renaming of a to a′ in π,
denoted by π[a′/a], is a mapping such that

π[a′/a](p) =

{
a′ if π(p) = a

π(p) otherwise

A protocol satisfies the condition Renaming iff π ∼ π[a′/a]∀π ∈ Π, a′ /∈ Aπ.

In other words, only the positions in which an agent appears in the trace matters. In
the rest of the paper, we assume that this condition holds and we write all mappings
in a normalized form, sorting the agents by their order of appearance: the first agent is
always a1, the next agent different from a1 will be a2 and so on. For example, we write
(a1, a1, a2, a3, a1, a2) instead of (a5, a5, a3, a1, a5, a3). Thus, the number of possible
traces is always finite for any given length, even when the number of agents is infinite.

Condition Swapping. Consider π1 = (. . . , a1, a2, . . .) and π2 = (. . . , a3, a4, . . .),
two mappings where the k-th and k + 1-st transactions involve different agents. Now
assume that π1 ∼ π2 and consider the mappings π′

1 = (. . . , a2, a1, . . .) and π′
2 =

(. . . , a4, a3, . . .) that differ from π1 and π2 only for the k-th and k+1-st agents. We re-
quire that different agents act in an independent way and the execution of the one should
not affect the execution of the other. Thus, π′

1 and π′
2 should also be indistinguishable.

Definition 8. Let π be a mapping. The swapping of π at position k < |π|, denoted by
swk(π) is a new mapping such that:

swk(π)(pi) =

⎧⎪⎨⎪⎩
π(pk+1) if pi = pk

π(pk) if pi = pk+1

π(pi) otherwise

A protocol satisfies the condition Swapping iff π ∼ π′ ⇒ swk(π) ∼ swk(π
′) for all

π, π′, k such that π(pk) �= π(pk+1) and π′(pk) �= π′(pk+1).

In practice, the condition Swapping simply implies that the agents are independent of
each other. As a consequence, the order of appearance of agents does not affect the
knowledge of the attacker. Note that this condition is violated in the Example 3. The
mappings (a1, a1, a2) and (a1, a2, a3) produce the same observations (_, _, _). How-
ever, by swapping the second and third transactions, we obtain the mappings (a1, a2, a1)
and (a1, a2, a3), which produce different observations: (_, _, beep) and (_, _, _). This
happens because the execution of one agent depends on the previous executions of other
agents.

Conditions: Extension I and II. We now introduce two last conditions. The first states
that two equivalent mappings should preserve their equivalence when extended with a
new transaction mapped to a new agent. The underlying idea is that adding a new agent
should not make two traces distinguishable, if they could not be distinguished before.
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Definition 9. Let π be a mapping. The extension of π with a new agent a /∈ Aπ , denoted
by extn(π), is a mapping of length |π|+ 1 such that

extn(π)(pi) =

{
π(pi) i ≤ |π|
a i = |π|+ 1

A protocol satisfies the condition Extension I if π ∼ π′ ⇒ extn(π) ∼ extn(π′) for all
mappings π, π′.

Note that this condition is violated by the protocol in the Example 4. The mappings
(a1, a1, a1), (a1, a1, a2) are equivalent (produce no beep), while their extensions are
not, since (a1, a1, a1, a2) does not make the reader beep while (a1, a1, a2, a3) does.

For the second extension condition, consider two equivalent mappings π1, π2 of
length n. We extend these mappings with a new transaction pn+1, which is mapped
to the last agent appearing in each mapping. Since the attacker had access to these
agents during the transaction pn, and she could not distinguish the two mappings, she
does not gain any new knowledge by querying the same agents in the new transactions.

Definition 10. Let π be a mapping. The extension of π with the last appearing agent,
denoted by extl(π) is a mapping of length |π|+ 1 such that

extl(π)(pi) =

{
π(pi) i ≤ |π|
π(p|π|) i = |π|+ 1

A protocol satisfies the condition Extension II if π ∼ π′ ⇒ extl(π) ∼ extl(π′) for all
mappings π, π′.

This condition is violated by the protocol in the Example 5. In fact, the traces with
mappings (a1, a1) and (a1, a2) are not distinguishable, while their extensions are dis-
tinguishable because the first trace produces no beep while the second beeps.

5.2 Equivalence Results

In this section we demonstrate that under the conditions stated in Section 5.1, all the
definitions of unlinkability coincide. Moreover, we prove that, under a smaller set of
conditions, the definitions of inseparability coincide as well as all the strong definitions.

Theorem 4 (Unification of unlinkability). If a protocol guarantees all the conditions
of Section 5.1 then all the unlinkability properties (weak unlinkability, strong unlinka-
bility, game-based unlinkability) coincide.

The intuition is that, under these conditions, all the definitions require all the equal
length mappings to be equivalent in particular to a mapping where all the transactions
are not linked.

Theorem 5 (Unification of inseparability). Under the conditions Renaming and Ex-
tension II, a protocol satisfies weak inseparability iff it satisfies strong inseparability.
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Again, under these conditions, both properties require all the mappings of the same
length to be equivalent, in particular to one where all the transactions are linked.

Theorem 6 (Unification of strong properties). Under the conditions Unbounded num-
ber of agents and Renaming, all the strong properties (strong unlinkability, game-based
unlinkability, strong inseparability) coincide.

It is worth noting that this result uses weaker assumptions than the previous ones; in-
deed, the conditions Swapping and Extension I and II are not needed. An unbounded
number of agents is required to guarantee the existence of completely unlinked traces
(for strong unlinkability), while the condition Renaming implies that agents are not
observationally different (for strong inseparability and game-based unlinkability).

Finally, we can state the result we were aiming at.

Corollary 1. If a protocol guarantees all the conditions of Section 5.1 then all the forms
of unlinkability and inseparability coincide.

This result shows that all the privacy definitions of Section 4 coincide under a set of
conditions.

6 RFID Systems: Single-Step Protocols

In this section, we show that the conditions stated in the previous section are satisfied
by a generic class of “single-step” protocols [7]. To this end, we express such protocols
in the applied pi calculus, using the model of [3], which defines an instantiation of our
model, i.e. it provides a concrete set of traces and an equivalence relation between them.

Single-step protocols consist of a single message from a tag to a reader. A protocol
of this class is shown in Figure 1. Each tag is initialized with an internal state S0,
which contains a secret s that is unique to that tag. At each run of the protocol, the tag
computes an output function O(S) on its current state S, and sends the result to the
reader. Then, the tag computes an update function U(S) on its current state S. O and
U can be arbitrary functions, using any cryptographic operation that can be modelled
by an equational theory in the applied pi calculus. As discussed in [7], two well-known
protocols from the literature, namely the OSK protocol [21] and the basic hash protocol
of [27], fall in this class.

6.1 Modelling Single-Step Protocols

We model single-step protocols in the applied pi calculus [1], a language for describing
concurrent processes and their interaction. It extends the pi calculus [19] adding the
possibility to model cryptographic primitives using a signature and an equational theory.
A detailed description of the calculus is available in [1]; here, we only assume a basic
understanding of the calculus.

Tags are modelled as processes in the calculus, using a public channel c to commu-
nicate with the reader. To model the state of a tag, we use an internal channel w. The
content of the state is available to the tag by a sub-process w〈S〉 running in parallel to
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Fig. 1. A single-step protocol

it, so the tag can read the state by an input on w. A tag execution can be modelled as
follows:

TagExec
Δ
= c(_). w(x). νρ̃. c〈O(x)〉. w〈U(x)〉

The tag is first triggered by an input on the public channel c (without reading a value).
Then, it reads the current state x by an input on w and outputs O(x) on a public channel.
νρ̃ denotes the possibility of generating fresh nonces for the output. Finally, the tag
outputs U(x) on w, updating its state with the new value.

A complete tag starts with an initial state S0, containing the tag secret s, and can
execute an unbounded number of sessions.

Tag
Δ
= νs.νw.(w〈S0〉 | !TagExec)

Note that the secret is private to the tag, thus we use a freshly generated name s. We
also restrict w so that only the tag can access its state. Finally, the complete system P

consists of an unbounded number of tags: P
Δ
= !Tag. Here the reader only triggers

tags. Since c is public, the tag can be triggered by any external process, so we can
simply omit the reader altogether.

6.2 Instantiating Our Trace Model

The system P can perform labelled transitions, according to the semantics of the applied
pi calculus. We denote by

α
=⇒ a sequence of internal transitions, followed by the visible

transition α, followed again by internal transitions. A trace tr is a sequence

tr = P
α1=⇒ P1

α2=⇒ P2
α3=⇒ . . .

αq
=⇒ Pq

Two traces are equivalent, denoted by tr1 ∼tr tr2 if they contain the same transitions,
and all intermediate processes are statically equivalent according to the definition of
[1], which states that the processes provide the attacker with the same static knowledge.
We refer to [3] for the formal definition of ∼tr.
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To instantiate our trace model, we need do define a set of agents A, a set of strategies
Σ such that a strategy σ together with a mapping π give rise to a trace τ = (π, σ), and
an equivalence relation ∼ between traces. The agents A = {ai|i ∈ N} correspond to
the tags of the system. In the applied pi calculus model, we use replication to denote an
unbounded number of tags. We identify the tags by their secret s, which is unique for
each tag. When ai is spawned we denote its secret by si.

Since tags in single-step protocols have no input, the only thing that the attacker
can decide is how many transactions she will run, and how many protocol executions
she will trigger in each transaction. Thus, a strategy σ is a sequence σ = (σ1, . . . , σk)
such that k is the number of transactions the attacker performs, and σi the number of
executions that she triggers in the transaction pi. A mapping π determines which tag
will participate in each transaction. Given a strategy σ and a mapping π, we can define
a unique trace tr(π, σ) starting from P . We also define trace equivalence as follows:

(π, σ) ∼ (π, σ′) iff tr(π, σ) ∼tr tr(π, σ′)

Now that we have a concrete trace model for single-step protocols, we can show that
they satisfy all the conditions of Section 5.1.

Theorem 7. Single-step protocols satisfy all the conditions of Section 5.1, thus all the
unlinkability and inseparability properties coincide.

We can conclude that all the forms of unlinkability and inseparability defined in Sec-
tion 4 coincide for the class of single-step protocols. As a consequence, if any of these
properties is proven to hold for a single-step protocol, by Theorem 7 all the unlinkability
and inseparability properties should be satisfied.

7 Related Work

Our work makes direct use of several definitions of unlinkability from the literature.
As explained in detail in Section 4, we express the notion of weak unlinkability of
[12,3], strong unlinkability of [2,3], and game-based definitions of [10,17,21,4,22,20].
While all these works have given their own definitions of privacy properties in a very
specific context, ours provides a more general and abstract framework where all other
definitions can be captured.

Epistemic models have been used in the past to formalize privacy. Similarly to our
work, [15] gives general privacy definitions for a multiagent system using a modal logic
of knowledge. The paper considers different levels of strength for unlinkability, provid-
ing some probabilistic definition as well. In [9], epistemic logic is used to give intuitive
definitions of privacy in voting systems, with the applied pi calculus as the underly-
ing model. Similarly, [11] proposes a framework in which protocols are expressed in
a process language while security properties in a logic with both temporal and epis-
temic operators. The properties considered in the above works are quite different than
the unlinkability properties that we consider in this paper. Moreover, the above works
are involved with the mechanics of the corresponding formalisms, while we try to com-
pletely abstract from the concrete model, viewing a system as an abstract set of traces.
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Several other definitions of unlinkability have also been studied in the literature. A
logic approach has been followed in [25], where an axiom system is defined to reason
about anonymity, and in [16] that expresses privacy properties using logic and models
the system through other formalisms, like CSP, combining two different techniques.
As in our work, logic is used to define in a natural way privacy properties, while hav-
ing an abstract model applicable to any real system. However, while our work focuses
on unlinkability, [15] and [25] study anonymity, namely a property that ensures that
the identity of the agent which executes some action remains hidden from other ob-
servers. [23] proposes a terminology for anonymity, unlinkability, unobservability and
pseudonimity. While it aims at clarifying terminology at an informal level, our work
aims instead at comparing definitions of unlinkability in a unifying formal model.

Finally, other papers introduce the notion of unlinkability using approaches based on
information theory. Examples are [14], [24], and [6] that give probabilistic descriptions
of unlinkability, quantifying the linkability of items in the system. Our work does not
provide any probabilistic definition, but this would be possible following the approach
used in [15], that we leave as future work.

8 Conclusion and Future Work

In this paper we studied the privacy notion of unlinkability. We captured several defini-
tions from the literature into a simple abstract model based on epistemic logic, obtaining
natural and intuitive definitions in terms of the attacker’s knowledge. We also identified
inseparability, a notion dual to unlinkability, in weak and strong forms. Moreover, we
showed that these privacy definitions are different in general, but do coincide in systems
satisfying a set of conditions. Finally, we proved that the conditions hold for a class of
identification protocols.

As future work, we plan at investigating probabilistic descriptions of unlinkability.
We also plan at developing a more concrete model in the style of [11]. This work bridges
the gap between operational semantics and epistemic logic, offering a combined frame-
work where it is possible to easily model the behavior of a protocol in a process lan-
guage with an operational semantics and reason about properties expressed in a rich
epistemic temporal logic. This would allow to automatically verify privacy properties.
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Abstract. Opacity is a general approach for describing and unifying
security properties expressed as predicates. A predicate is opaque if an
observer of the system is unable to determine the satisfaction of the pred-
icate in a given run of the system. The meaning of opacity is straightfor-
ward when considering the standard (qualitative) operational semantics,
but there are a number of possible interpretations in a context where
quantitative information about system evolutions is available. We pro-
pose four variants of quantitative opacity defined for probabilistic la-
belled transition systems, with each variant capturing a different aspect
of quantifying the opacity of a predicate. Moreover, we present results
showing how these four properties can be checked or approximated for
specific classes of probabilistic labelled transition systems, observation
functions, and system predicates.

Keywords: Probabilistic opacity, Probabilistic labelled transition sys-
tems, Observations.

1 Introduction

Opacity has been shown to be a promising technique for describing and unifying
security properties [6]. For a given observer of a system (or adversary), a predi-
cate capturing a system property is opaque if the observer will never be able to
determine the truth of that predicate.

The definition of [6] is based on a qualitative operational semantics. In it,
observation functions are used in order to give fine-grained control over the
capabilities of an observer. Through such observations, an observer can establish
certain properties of the system. Informally, an observer cannot establish the
predicate (and hence the predicate is opaque) if for any run of the system in
which the predicate is true, there is a run for which the predicate is false, and the
two runs are observationally equivalent under the defined observation function.
However, in the case where the probability of the first run is significantly higher
than the probability of the second, the observer (although not able to be certain)
may have good reason to believe that the predicate (although opaque) is none the
less true. The formalism of probabilistic opacity can play an important role with
regard to the representation and unification of security properties of concurrent
system behaviours. This paper presents the results of our initial investigations
into this probabilistic case.
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Quantified security properties have recently turned into one of the key re-
search topics in the computer security community. A main reason for this is
that access control systems designed to regulate access to sensitive information
can no longer fully control the propagation of information which has already
been accessed. However, possible applications of the quantitative approach to
security properties goes far beyond access control systems, as explained below.
Absolute (or qualitative) security properties, such as non-interference [16] and
opacity [7], abstract away to large extent the non-predictability is a system’s be-
haviour. They are therefore attractive from the theoretical and analytical point
of view, but the drawback is that they are rarely satisfied by the actual comput-
ing systems. A promising approach to relaxing the absolute nature of security
properties, and bringing them closer to the real life application domain, is to
quantify them, allowing one to tolerate ‘small’ violations. The paper focuses
on quantifying opacity security property in transition systems. Our early work
developed a method in modelling opacity property using Petri Nets [7], and in
generalising the opacity property to transition systems [5,6]. The contribution of
this paper is to show how the work referenced above extends to the more general
case when the information given about the system is qualitative. We therefore
consider the general theory of probabilistic opacity in the context of probabilistic
labelled transition systems which allows one to reason about the quantitative
security properties of systems. Based on the probabilistic model of opacity, we
introduced four alternative definitions of probabilistic opacity, and investigated
the efficiency with which they can be verified or approximated. We relate the
definitions to the existing work on qualitative opacity. The obtained results can
be used in a quantified security analysis of a computing system.

This paper is organised as follows. In Section 2 we recall some definitions from
the literature in particular relating to probability distributions, and in Section 3
we give the definition of probabilistic labelled transition systems and prove a
property which is then needed to estimate the efficiency of our approximations
of probabilistic opacity. Section 4 contains our main contribution, i.e., the def-
initions of four variants of opacity together with an investigation of their basic
properties. Section 5 contains a brief comparison with other work, and in Sec-
tion 6 we present our concluding remarks.

2 Preliminaries

We use the standard mathematical notation. In particular, ε denotes the empty
sequence, |λ| denotes the length of a finite sequence λ, and λk denotes the con-
catenation of k copies of λ.

A probability distribution on a countable set X is a function f : X → [0, 1] such
that

∑
x∈X f(x) = 1. To measure difference between probability distributions

on the same set, we will use Jensen-Shannon divergence [20] which is related
to information-theoretical functionals. It is symmetric, always well-defined and
bounded by 1.

Let P = {px}x∈X and P ′ = {p′x}x∈X be two probability distributions on a
countable set X with associated weights w and w′, respectively (0 ≤ w,w′ ≤ 1
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and w+w′ = 1). Then the weighted Jensen-Shannon divergence between P and
P ′ is given by:

DJS (w ·P,w′ ·P ′) = H
({

w · px + w′ · p′x
}
x∈X

)
−w ·H ({px}x∈X

)−w′ ·H
({

p′x
}
x∈X

)
,

whereH({qx}x∈X) = −
∑

x∈X qx log2 qx denotes Shannon entropy [26] (note that
if qx = 0 then qx log2 qx is taken to be 0 which is justified by limq→0+ q log2 q = 0).

If, in the above formula, we denote by dx the ‘contribution’ made by a single
element x ∈ X , then:

DJS(w · P,w′ · P ′) =
∑
x∈X

dx ,

where:

dx = −(w ·px+w′ ·p′x) · log2(w ·px+w′ ·p′x)+w ·px · log2 px+w′ ·p′x · log2 p′x . (1)

An individual contribution is minimal (dx = 0) if px = p′x, i.e., when P and P ′

do not diverge at x. It is maximal if one of the probabilities is 0, which gives
dx = −w · px · log2 w or dx = −w′ · p′x · log2 w′, and so:

dx ≤ −w · px · log2 w − w′ · p′x · log2 w′ ≤ c · (px + p′x) ,

where c > 0 is a constant depending on w and w′. As a consequence, if we take
Y ⊂ X then the contribution dY of the elements of Y to the overall divergence
satisfies:

dY ≤ c · (P (Y ) + P ′(Y )) . (2)

3 Probabilistic Labelled Transition Systems

In order to consider probabilistic behaviour and quantitative analysis of opacity,
we use probabilistic labelled transition systems which adapts the well-known
model introduced in [19].

A labelled transition system is a tuple: LTS = (S,L,Δ, s0) , where S is a
countable set of states, L is a countable set of labels, Δ ⊆ S × L × S is the
transition set, and s0 ∈ S is the initial state. We consider deterministic labelled
transition systems,1 and so for any transitions (s, l, s′), (s, l, s′′) ∈ Δ, it is the
case that s′ = s′′. For every state s ∈ S, we will denote by Δs the set of all
transitions outgoing from s, i.e., Δs = {(s′, l, s′′) ∈ Δ | s = s′} .

A run of LTS is a finite sequence of labels λ = l1 . . . ln (n ≥ 0)2 such that
there are states s1, . . . , sn satisfying (si−1, li, si), for i = 1, . . . , n. We will denote
the state sn by sλ and call it reachable. Note that sλ is well-defined since LTS
is deterministic. Moreover, sε = s0, where ε denotes the empty run. The set of
all runs of LTS will be denoted by runs(LTS ).

Probabilistic labelled transition systems are labelled transition systems with
probability distributions attached to all the states.

1 Nondeterminism is introduced in the next section, through the notion of an obser-
vation function.

2 If n = 0 then λ = ε.
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Definition 1. A probabilistic labelled transition system is a tuple:

PLTS = (S,L,Δ, s0, μ) ,

such that LTS = (S,L,Δ, s0) is a labelled transition system and μ : S∪Δ→ [0, 1]
is a mapping satisfying the following:

(i) for every s ∈ S, μ restricted to {s} ∪Δs is a probability distribution:

μ(s) +
∑
d∈Δs

μ(d) = 1 ,

and inf{μ(s) | s ∈ S ∧ μ(s) �= 0} > 0.
(ii) there is an integer k ≥ 1 such that there is no sequence of transitions in Δ:

(s, l1, s2), (s2, l2, s3), . . . , (sm, lm, sm+1)

such that μ(s2) = μ(s3) = . . . = μ(sm) = 0 and m > k.

The set of runs of PLTS, denoted runs(PLTS ), is the same as that of the un-
derlying labelled transition system. Other notations are also inherited.

Definition 1(i) ensures that for every state s, the probability μ(s) of remaining
in that state together with the probabilities associated with all transitions out
of that state form a probability distribution. We also require that non-empty
probabilities μ(s) cannot be arbitrarily small (similarly as in [19] it was assumed
that non-empty probabilities μ(s, l, s′) cannot be arbitrarily small). Note that
this is always the case if there are finitely many states.

We extend the mapping μ to each run λ = l1 . . . lk of PLTS , in the following
way. Let s0, s1, . . . , sk be states such that (si−1, li, si) ∈ Δ, for i = 1, . . . , k.
Then:

μ(λ) = μ(sk) ·
k∏

i=1

μ(si−1, li, si) .

Note that μ(λ) is well-defined as the underlying labelled transition system is
deterministic. We also denote:

μ̃(λ) =
k∏

i=1

μ(si−1, li, si)

(i.e., μ(λ) = μ(sk) · μ̃(λ)) and, for every set of runs Λ ⊆ runs(PLTS ):

μ(Λ) =
∑
λ∈Λ

μ(λ) and μ̃(Λ) =
∑
λ∈Λ

μ̃(λ) .

Proposition 1. μ(runs(PLTS )) ≤ 1.

Proof. Follows from the fact that, for every i ≥ 0:

μ({λ ∈ runs(PLTS ) | |λ| ≤ i}) + μ̃({λ ∈ runs(PLTS ) | |λ| = i+ 1}) = 1 .

The above can be shown by a straightforward induction on i, using Defini-
tion 1(i). 
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The formalisation of a probabilistic labelled transition system is tailored to
reflect our understanding of observation of a computing system. In a nutshell,
we treat

∏k
i=1 μ(si−1, li, si) in the standard way as the probability of executing

a sequence of transitions making up the run λ. In addition to that, the factor
μ(sk) gives the probability that the observation is concluded after the state
sk has been reached. For instance, it may be the probability that the process
terminates after reaching sk, similarly as it was done in [2]. It therefore follows
that Definition 1(ii) captures our intuition that the system cannot be indefinitely
‘unobserved’ (i.e., probability of a conclusive observation cannot be zero forever).

Example 1. Consider the following probabilistic labelled transition system:

(1− p).s0 (1− q).s1

p.a

q.b

where 0 ≤ p, q ≤ 1 and the notation x.y indicates that x = μ(y). According
to Definition 1(ii), we must have p · q �= 1. We can then show that μ defines a
probability distribution, as follows:

μ(runs(PLTS )) =

∞∑
k=0

μ((ab)k) +

∞∑
k=0

μ(a(ba)k)

=
∞∑
k=0

(p · q)k · (1 − p) +
∞∑
k=0

p · (q · p)k · (1− q)

= (1− p) ·
∞∑
k=0

(p · q)k + p · (1− q) ·
∞∑
k=0

(q · p)k

= (1− p) · 1

1− p · q + p · (1− q) · 1

1− p · q

= 1 .

Note that if in the above example we assumed that p = q = 1, and hence
μ(s0) = μ(s1) = 0, then we would have μ(runs(PLTS )) = 0, and so μ would
not be a probability distribution on the runs of PLTS . To avoid this, we intro-
duced condition (ii) in Definition 1 which rules out this case. Note also that the
condition captured through Definition 1(ii) is easy to verify by checking that in
the graph of PLTS there are no cycles passing only through reachable states s
satisfying μ(s) = 0.

Since the set of runs is in general infinite, we will be approximating various
quantities defined on the basis of the set of runs, by looking only at runs up to
certain length. We therefore define, for every m ≥ 0:
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runsm(PLTS ) = {λ ∈ runs(PLTS ) | |λ| ≤ m} .

The next result is crucial for the soundness of such approximations.

Proposition 2. There is an integer κ ≥ 1 and a real number 0 ≤ δ < 1 such
that, for every i ≥ 0:

μ(runsκ·i(PLTS )) ≥ 1− δi .

Proof. See Appendix. 

In other words, we know how far to ‘unfold’ the transition system to approx-

imate with arbitrary accuracy ‘almost all’ the runs (in probabilistic terms).
As a corollary of our previous results, μ always defines a probability distribu-

tion for the set of runs of the probabilistic labelled transition system.

Theorem 1. μ(runs(PLTS )) = 1.

Proof. Follows directly from Propositions 1 and 2. 


4 Probabilistic Opacity

In this section, we introduce concepts relating to the definitions of probabilistic
opacity, and prove our main results.

In what follows, PLTS = (S,L,Δ, S0, μ) is a probabilistic labelled transition
system, and Obs is a set of elements called observables. To model the different
capabilities for observing the system modelled by PLTS , we use an observation
function:

obs : runs(PLTS )→ Obs∗ .

We will, in particular, use the static observation function obs for which there is
a map obs ′ : L→ Obs ∪ {ε} such that, for every run λ = l1 . . . ln of PLTS :

obs(λ) = obs ′(l1)obs
′(l2) . . . obs

′(ln) .

Consider now an observation function obs . We are interested in whether an
observer (or attacker) can establish a property φ (a predicate over system runs)
for a run of PLTS having only access to the result of the observation function. We
will identify φ with its characteristic set, i.e., the set of all those runs for which
it holds. Now, given an observed execution of the system, we would want to find
out whether the fact that the underlying run belongs to φ can be deduced by
the observer. We will, in particular, be interested in the final opacity predicates,
φZ , where Z ⊆ S, defined as the set of all the runs λ of PLTS satisfying sλ ∈ Z.
Intuitively, this means that we are interested in finding out whether an observed
run of the system represented by PLTS ended in one of secret (or sensitive)
states belonging to Z. (Note that we are not interested in establishing whether
the underlying run does not belong to φ; to do this, we would consider the
property runs(PLTS ) \ φ.)

We will now introduce a series of notions relating to the idea of opacity,
recalling first its standard non-probabilistic (or qualitative) definition. In what
follows, obs is an observation function for PLTS , φ is a subset of runs(PLTS ),
and φ = runs(PLTS ) \ φ. Intuitively, φ captures a property which we want to
declare opaque.
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4.1 Qualitative (Non-probabilistic) Opacity of [6]

When no probabilistic information is supplied, or if one is simply not interested
in probabilistic aspects of the system, we say that φ is opaque w.r.t. obs if, for
every run λ ∈ φ, there is another run λ′ /∈ φ such that obs(λ) = obs(λ′), i.e., λ′

covers λ. In other words, all runs in φ are covered by runs in φ:

obs(φ) ⊆ obs(φ) . (3)

Different variants of qualitative opacity have been discussed in, for example, [6].

4.2 Quantitative (Probabilistic) Opacity

What it means to deduce (or satisfactorily cover) a property expressed as φ in
the probabilistic case may mean different things, depending on what is relevant
or important from the point of view of a real application. In particular, one may
consider different ways of quantifying the degree to which runs contained in φ
are covered by the runs in φ (c.f. the inclusion (3)), leading to different variants
of quantitative opacity.

π-Opacity. A straightforward approach to defining probabilistic opacity might
be to require that the likelihood of ever witnessing an uncovered run of φ is
negligible. That is, we say that φ is π-opaque w.r.t. obs if the probability of
having a run in φ which is not covered by a run in φ is zero:

μ(φ \ obs−1(obs(φ))) = 0 . (4)

Example 2. Consider the following probabilistic labelled transition system:

1
2 .s0 1

2 .s1
1
5 .s2

1.s3

1
4 .s4

1
2 .s5

1
3 .b

1
2 .c

4
5 .b

1
6 .c 3

4 .a
1
2 .b

where obs(a) = a, obs(b) = ε and obs(c) = c, as well as the property φ = φ{s2,s3}.
We then have:

φ = {bc, bcb} and φ = {ε, b, c, ca, ca(b)∗} .

In this case, we have

obs(runs(PLTS )) = obs(φ) = {ε, c, ca}, and obs(φ) = {c},

and so, obviously, π-opacity is satisfied:

μ(φ \ obs−1(obs(φ))) = μ(∅) = 0.
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Checking pi-opacity is decidable, as shown by the next result and its proof.

Theorem 2. For a finite PLTS and a static observation function obs, it is
decidable whether φZ (where Z ⊂ S) is π-opaque.

Proof. We first observe that, in this case, μ(φZ \ obs−1(obs(φZ))) = 0 is equiva-
lent to obs(L) ⊆ obs(L′), where L is the regular language obtained from PLTS
by changing each label l to obs(l) and setting as the final states all those s ∈ Z
for which μ(s) > 0; and L′ is the regular language obtained from PLTS by
changing each label l to obs(l) and setting S \ Z as the final states. Since the
inclusion of two regular languages is decidable, the result follows. 


πξ-opacity One could argue that the probabilistic opacity captured by (4) is
too demanding, and one might require only that the probability of witnessing
an uncovered run of φ is low. To capture this, we say that φ is πξ-opaque w.r.t.
obs if 0 ≤ ξ ≤ 1 is the probability of having a run in φ which is not covered:

μ(φ \ obs−1(obs(φ))) = ξ . (5)

One would then declare φ opaque if ξ was sufficiently small number. Note that
π0-opacity coincides with π-opacity.

In practice, knowing the value of ξ with high accuracy (see Theorem 3) would
allow a designer or verifier to compare it with a given required opacity level,
ξreq . The system represented by PLTS would then satisfy the opacity w.r.t. φ
if ξ ≤ ξreq . Similar comment applies to other opacity notions introduced in the
rest of this paper.

Example 3. Consider the following probabilistic labelled transition system:

5
8 .s0 3

4 .s1
5
6 .s2

1.s3

7
8 .s4

1
2 .s5

1
4 .b

1
4 .c

1
6 .a

1
8 .c 1

8 .a
1
2 .b

where obs(a) = a, obs(b) = ε and obs(c) = c, as well as the property φ =
φ{s2,s3,s5}. We then have:

φ = {bc, bca, ca(b)∗} and φ = {ε, b, c} .

Hence:

φ \ obs−1(obs(φ)) = {bca, ca(b)∗} .
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and we obtain:

μ(φ \ obs−1(obs(φ))) =
1

4
· 1
4
· 1
6
+

1

8
· 1
8
· 1
2
+

1

8
· 1
8
· 1
2
· 1
2
+

1

8
· 1
8
· 1
2
· 1
2
· 1
2
+. . .

=
5

192
≈ 0.026.

The property φ{s2,s3,s5} is therefore π0.026-opaque.

Although determining the πξ-opacity may in general be difficult, in several
important cases it is possible to approximate the value of ξ with a desired
accuracy.

The next result requires that the observation function is such that one does
not have to wait for ‘too long’ in order to find a run in φ covering λ ∈ φ. More
precisely, we say that obs is N -efficient for PLTS and φ, if N is a positive integer
such that, for every run λ ∈ φ which is covered by runs in φ, there exists a run
λ′ ∈ φ covering λ and satisfying |λ′| ≤ N · |λ|. Note that being efficient is not too
demanding a requirement; in particular, each static observation function obs is
N -efficient provided that PLTS is finite and φ = φZ for some Z ⊂ S (N can then
be taken to be the number of states of PLTS ). Below, φk = φ ∩ runsk(PLTS )
and φk = φ ∩ runsk(PLTS ), for every k ≥ 0.

Theorem 3. If obs is N -efficient for PLTS and φ, then there is an integer
ζ ≥ 1 and a real number 0 ≤ η < 1 such that, for every i ≥ 0:

|μ(φ \ obs−1(obs(φ)))− μ(φζ·i \ obs−1(obs(φζ·i)))| ≤ ηi .

Proof. By Proposition 2, there exists a positive integer κ and a real number
0 ≤ δ < 1 such that μ(runsκ·i(PLTS )) ≥ 1− δi, for every i ≥ 0. In other words,
for every i ≥ 0:

μ(runs(PLTS ) \ runsκ·i(PLTS )) ≤ δi . (6)

Let us now take any i ≥ 0, and consider:

x = μ(φ \ obs−1(obs(φ))), y = μ(φN ·κ·i \ obs−1(obs(φN ·κ·i))) .

We then observe that, by obs being N -efficient, we have:

y = μ(φκ·i \ obs−1(obs(φN ·κ·i))) + μ((φN ·κ·i \ φκ·i) \ obs−1(obs(φN ·κ·i)))

= μ(φκ·i \ obs−1(obs(φ))) + μ((φN ·κ·i \ φκ·i) \ obs−1(obs(φN ·κ·i))) .

We therefore obtain:

x− y = μ((φ \ φκ·i) \ obs−1(obs(φ))) − μ((φN ·κ·i \ φκ·i) \ obs−1(obs(φN ·κ·i)) .

Now, since

(φ \ φκ·i) \ obs−1(obs(φ)) ⊆ runs(PLTS ) \ runsκ·i(PLTS )

(φN ·κ·i \ φκ·i) \ obs−1(obs(φN ·κ·i) ⊆ runs(PLTS ) \ runsκ·i(PLTS )

and x, y ≥ 0, we obtain from (6) that |x − y| ≤ δi. Hence the result holds with
ζ = N · κ and ξ = δ. 
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In other words, finite unfoldings of a probabilistic labelled transition system
can approximate the probability of the uncovered runs in φ with a desired pre-
cision, providing a natural way of estimating πξ-opacity.

πγ-Opacity. Let us consider the set φcov of runs of φ which cover at least one
run in φ, i.e., φcov = φ ∩ obs−1(obs(φ)) . The first two notions of quantitative
opacity retained the flavour of the original (qualitative) opacity. In particular, so
far we have accepted that a set of runs φ with non-zero occurrence probability,
μ(φ) > 0, can be covered by a set of runs with occurrence probability much
lower than that of φ, μ(φcov ) � μ(φ) , or indeed with a negligible chance of
ever occurring, μ(φcov ) = 0. That is, we were basically demanding very low
occurrence probability of totally uncovered runs in φ. In our next definition, we
remedy this by intuitively requiring that each run in φ is covered by γ runs,
where γ > 0 would normally be expected to be (much) greater than 1. More
precisely, for every γ ≥ 0, we say that φ is πγ-opaque if:

μ(φ) > 0 and
μ(φcov )

μ(φ)
= γ , (7)

or, slightly more generally (as we do not have to assume that μ(φ) > 0), if the
following holds:

μ(φcov )− γ · μ(φ) = 0 . (8)

In combination with πξ-opacity for small ξ, πγ-opacity for large γ would clearly
increase our confidence in declaring φ opaque.

Example 4. Consider the following probabilistic labelled transition system:

1
2 .s0 1

2 .s1
1
2 .s2

1.s3

3
4 .s4

1
2 .s5

1
4 .b

1
2 .c

1
2 .a

1
4 .c 1

4 .a
1
2 .b

where obs(a) = ε, obs(b) = b and obs(c) = c, as well as the property φ = φ{s3,s5}.
We then have:

φ = {bca, ca, ca(b)∗} and φcov = {bc, c} .

and so we obtain:

μ(φ) =
1

4
· 1
2
· 1
2
+

1

4
· 1
4
· 1
2
+

1

4
· 1
4
· 1
2
· 1
2
+

1

4
· 1
4
· 1
2
· 1
2
+ . . . =

1

8

μ(φcov ) =
1

4
· 1
2
· 1
2
+

1

4
· 3
4
=

1

4



Towards Quantitative Analysis of Opacity 155

which leads to:
μ(φcov )

μ(φ)
= 2.

The property φ{s3,s5} is therefore π2-opaque.

As before, we will now investigate how one could approximate πγ-opacity.
Below we assume that obs is inversely M -efficient for PLTS and φ, by which
we mean that M is a positive integer such that, for every run λ ∈ φcov , there
exists a run λ′ ∈ φ covered by λ and satisfying |λ′| ≤ M · |λ|. Again, being
inversely efficient is not too demanding a requirement; in particular, each static
observation function obs is inversely M -efficient provided that PLTS is finite
and φ = φZ for some Z ⊂ S (M can then be taken to be the number of states
of PLTS ).

Theorem 4. Let φ be πγ-opaque. If obs is inversely M -efficient for PLTS and
φ, then there is an integer ρ ≥ 1 and a real number 0 ≤ ν < 1 such that, for
every i ≥ 0:

|(μ(φcov )− γ · μ(φ)) − (μ(φcov
ρ·i )− γ · μ(φρ·i))| ≤ (1 + γ) · νi .

Proof. See Appendix. 


In practice, one could approximate the value of γ using the inequalities |x| ≤ δi

and y ≤ δi from the proof in the Appendix. More precisely, we approximate this
value provided that μ(φcov

M·κ·i) > 0 as then we also have μ(φcov ) ≥ μ(φcov
M·κ·i) > 0.

From |x| ≤ δi we further obtain: μ(φcov )− μ(φcov
M·κ·i) ≤ δi . Hence:

μ(φcov
M·κ·i) ≤ μ(φcov ) ≤ μ(φcov

M·κ·i) + δi .

Moreover, from y ≤ δi and μ(φ) ≥ μ(φM·κ·i) we obtain:

μ(φM·κ·i) ≤ μ(φ) ≤ μ(φM·κ·i) + δi .

Hence we obtain:

μ(φcov
M·κ·i)

μ(φM·κ·i) + δi
≤ γ ≤ μ(φcov

M·κ·i) + δi

μ(φM·κ·i)
.

π̃ψ-Opacity. The above notions of defining probabilistic opacity may still find
it difficult to distinguish between subtle differences in which obs acts upon φ
and φ. A possible way to assess such differences could be, e.g., to look at the
probability distributions induced by obs(φ) and obs(φcov ) and conclude that
they are rather similar.

In our last attempt at a notion of quantitative opacity, we define π̃ψ-opacity
which uses Jensen-Shannon divergence as a way to measure the differences in
which obs acts upon φ and φcov . Below we assume that μ(φ) > 0 and μ(φcov ) > 0.

The reason we choose the Jensen-Shannon divergence as a measures is that it is
related to information-theoretical functionals, such as Kullback-Leibler distance
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(the relative entropy). It therefore shares some of their properties as well as
their intuitive interpretation, and measures the difference in information bits.
Specifically, unlike the Kullback-Leibler distance, it is symmetric, always well-
defined and bounded by 1.

Since runs(PLTS ) with μ is a probabilistic space, obs(runs(PLTS )) can also
be turned into a probabilistic space by defining

π(o) = μ(obs−1(o) ∩ runs(PLTS )) ,

for every o ∈ O = obs(runs(PLTS )). Moreover, any subset Λ of runs(PLTS )
with μ(Λ) ≥ 0 gives rise to a probability distribution ΠΛ on O. More precisely,
for every o ∈ O:

ΠΛ(o) =
μ(obs−1(o) ∩ Λ)

μ(Λ)
.

Then, for a property φ, we can define Πφ and Πφcov and say that φ is π̃ψ-opaque
if 0 ≤ ψ ≤ 1 is their weighted Jensen-Shannon divergence:

DJS(w ·Πφ, w
′ ·Πφcov ) = ψ ,

where w = μ(φ)
μ(φ)+μ(φcov ) and w′ = μ(φcov )

μ(φ)+μ(φcov) .

Example 5. Consider the following probabilistic labelled transition system:

1
6 .s0 1

4 .s1
1
3 .s2

1.s3

1
4 .s4

1
2 .s5

1
2 .b

3
4 .c

2
3 .a

1
3 .c 3

4 .a
1
2 .b

where obs(a) = a, obs(b) = ε and obs(c) = c, as well as the property φ = φ{s2,s3}.
We then have:

φ = {bc, bca} and φcov = {c, ca, ca(b)∗} .

and so:

μ(φ) =
1

2
· 3
4
· 1
3
+

1

2
· 3
4
· 2
3
· 1 =

3

8

μ(φcov ) =
1

3
· 1
4
+

1

3
· 3
4
· 1
2
+

1

3
· 3
4
· 1
2
· 1
2
+ · · · = 1

3

In this case, O = {ε, c, ca}, and we obtain:

Πφ =

{
ε �→ 0, c �→

1
8
3
8

, ca �→
1
4
3
8

}
=

{
ε �→ 0, c �→ 1

3
, ca �→ 2

3

}

Πφcov =

{
ε �→ 0, c �→

1
12
1
3

, ca �→
1
4
1
3

}
=

{
ε �→ 0, c �→ 1

4
, ca �→ 3

4

}
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We calculate the weights of Πφ and Πφcov as:

wΠφ
=

3
8

3
8 + 1

3

=
9

17
and wΠφcov =

1
3

3
8 + 1

3

=
8

17

and finally calculate:

DJS (wΠφ
·Πφ, wΠφcov ·Πφcov ) = H

(
0 ,

9

17
· 1
3
+

8

17
· 1
4

,
9

17
· 2
3
+

8

17
· 3
4

)

−
(

9

17
· H
(
0,

1

3
,
2

3

)
+

8

17
· H
(
0,

1

4
,
3

4

))
≈ 0.006 .

The property φ{s2,s3} is therefore π̃0.006-opaque.

Similarly as in the previous cases, it may be possible to approximate the
value of ψ in π̃ψ-opacity with a desired accuracy, using finite unfoldings of the
probabilistic transition system. Below we assume that obs is K,L-bounded for
PLTS and φ, by which we mean that K and L are positive integers such that:

– for every observation o ∈ O and λ ∈ φ∪φcov , if obs(λ) = o then |λ| ≤ K · |o|.
– for every run λ ∈ φ ∪ φcov , |obs(λ)| ≤ L · |λ|.

Note that each static observation function obs is K, 1-bounded provided that
PLTS is finite and obs does not induce ε-loops in the part of PLTS which is
covered by the runs in φ ∪ φcov (K can then be taken to be the length of the
longest ε-path in such a part of PLTS plus 1).

In the next result, we attempt to approximate the value of:

DJS

(
w ·
{
μ(obs−1(o) ∩ φ)

μ(φ)

}
o∈O

, w′ ·
{
μ(obs−1(o) ∩ φcov )

μ(φcov )

}
o∈O

)
.

To simplify the discussion, we assume that we are given the values of w, w′,
μ(φ) and μ(φcov ) (note that we can calculate them with a desired accuracy
using Proposition 2).

Below Ok denotes {o ∈ O | |o| ≤ k}, for every k ≥ 0. Moreover, for every
o ∈ O and m ≥ 0:

dmo = −(w · p+ w′ · p′) · log2(w · p+ w′ · p′) + w · p · log2 p+ w′ · p′ · log2 p′ ,

where:

p =
μ(obs−1(o) ∩ φm)

μ(φ)
and p′ =

μ(obs−1(o) ∩ φcov
m )

μ(φcov )
.

Theorem 5. Let obs be K,L-bounded for PLTS and φ, and κ and 0 ≤ δ < 1
be as in Proposition 2. Then there is α > 0 such that, for every i ≥ 0:

0 ≤ DJS (w ·Πφ, w
′ ·Πφcov )−

∑
o∈Oκ·L·i

dκ·L·K·i
o ≤ α · δi . (9)

Proof. See Appendix. 
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5 Related Work

Opacity and related concepts were first studied and related to information flow
properties in a qualitative context in [6,7,5]. In the probabilistic context, opacity
has been studied in [18,2]. [18] studied the notion of opacity in the probabilistic
computational world. There opacity was based on the probabilities of observer’s
pre-beliefs on the truth of the predicate. The work in [2] presents a quantitative
information leakage analysis concerning probabilistic opacity, and there is a clear
relationship between that work and the work in this paper. Indeed, although the
setting in [2] is based on finite probabilistic automata, our probabilistic labelled
transition system could be viewed as a generalisation of the fully probabilistic
automaton (FPA) considered there. Note, however, that the automata in [2] are
always finite and the notion of opacity is symmetric, while our system model
allows infinite state spaces and we consider asymmetric opacity. The asymmetry
here comes from the weights in the Jensen-Shannon divergence. We introduce
approximation approaches to deal with the infinite transition systems. Our work
can also be related to quantitative analysis for secure information flow conceptu-
ally. In general, the following measures have been investigated and applied quan-
tified secure flow analysis w.r.t. non-interference properties: including Shannon’s
information entropy [15,9,11,10,3,12,22,17,24,23,8,4], min-entropy [27], guessing
entropy [17], and belief-based measures [13,14]. Furthermore, [25] gave a defi-
nition of probabilistic measures on flows in a specific probabilistic declarative
language: Probabilistic Concurrent Constraint Programming (PCCP). [21] mea-
sured information flow in CSP by counting refusals. [1] measured the process
similarity relation with regard to an approximation of weak bisimulation of CCS.
Most of these works relate to the property of non-interference from the security
literature, and focus on flow measurement rather than the more general property
opacity as studied in this paper.

Opacity has already provided a promising technique for describing and uni-
fying more general security properties. This paper has extended the notion of
opacity to the model of probabilistic labelled transition systems. The results
presented allow one to investigate and represent concepts from the literature on
secure flow analysis.

6 Conclusions and Further Work

We have presented a formal model for the description of probabilistic opacity
based on probabilistic labelled transition systems. We extend and generalise the
notion of qualitative opacity and show how it applies to probabilistic and quanti-
tative systems. We have investigated four alternative definitions of probabilistic
opacity and given initial efficiency and approximation results. We believe that
these results are promising and merit further consideration.

There is a clear link between the work presented here and the work on quan-
tified information flow within the security community. Information flow security
aims to ensure that information propagates throughout the execution environ-
ment without security violations such that only controlled secure information
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is deducible from observations of the system. The information we require to be
confidential can be described as a predicate which we require to be opaque. By
studying opacity in a quantified context we can relax the strict qualitative secu-
rity policies, and tolerate a low probability that a quantitatively ‘small’ amount
of secure information is leaked. We therefore believe our general model and re-
sults will be useful for quantified flow analysis in the security community.

More generally, we believe our work can provide a framework for the mea-
surement of system security, by quantifying the opacity of key predicates with
respect to the system. In future work, we plan to develop and extend the initial
results presented here, as well as investigate and establish links between our work
and the other work in the security community on the measurement of quantified
information flow.
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Appendix: Proofs of Proposition 2, Theorem 4 and 5

Proposition 2. There is an integer κ ≥ 1 and a real number 0 ≤ δ < 1 such
that, for every i ≥ 0:

μ(runsκ·i(PLTS )) ≥ 1− δi .

Proof. In what follows, for every state s ∈ S, we denote by PLTS s the prob-
abilistic labelled transition system obtained from PLTS by setting the initial
state to s.

In the first part of the proof, we assume that PLTS satisfies the following two
properties:

(i) μ(s) > 0, for all s ∈ S \ {s0}.
(ii) If μ(s0) = 0 then there is no transition (s, l, s′) ∈ Δ such that s′ = s0.

We also define:

δ =

{
sup{1− μ(s) | s ∈ S} if μ(s0) > 0
sup{1− μ(s) | s ∈ S \ {s0}} otherwise .
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Note that 0 ≤ δ < 1 is well-defined by Definition 1(i). Proceeding by induction
on i ≥ 0, will now show that, for every i ≥ 0 and every s ∈ S:

μ(runsi(PLTS s)) ≥
{
1− δi if s = s0 and μ(s0) = 0
1− δi+1 otherwise .

(10)

In the base case:

μ(runs0(PLTS s)) = μ(ε) = μ(s) ≥
{
1− 1 = 1− δ0 if s = s0 and μ(s0) = 0
1− δ = 1− δ1 otherwise .

In the induction step, we assume that the thesis holds for i, and proceed as
follows:

μ(runsi+1(PLTS s)) = μ(s) +
∑

(s,lj ,sj)∈Δs

μ(s, lj, sj) · μ(runs i(PLTS sj ))

= 1− μ(Δs) +
∑

(s,lj,sj)∈Δs

μ(s, lj , sj) · μ(runs i(PLTS sj )) .

By the induction hypothesis, we obtain the following (note that sj �= s0, for
every (s, lj , sj) ∈ Δs):

μ(runs i+1(PLTS s)) ≥ 1−μ(Δs) +
∑

(s,lj ,sj)∈Δs

μ(s, lj , sj) · (1− δi+1) = 1− δi+1 ·μ(Δs) .

Now, if s = s0 and μ(s0) = 0, then μ(Δs) = 1 and we get μ(runsi+1(PLTS s)) ≥
1 − δi+1; otherwise, δ ≥ μ(Δs) and we obtain: μ(runs i+1(PLTS s)) ≥ 1 − δi+2.
Hence (10) holds.

In the second part of the proof, we transform PLTS into a probabilistic la-
belled transition system PLTS ′ satisfying (i) and (ii) above, in the following
way:

– For every s ∈ S, we set μ′(s) = μ(s).
– We create a fresh initial state s′0 with μ′(s′0) = μ(s0) and, for every sequence

of transitions of PLTS of the form:

(s0, l1, s1), (s1, l2, s2) . . . (sk−1, lk, sk)

such that 0 = μ(s1) = . . . = μ(sk−1) �= μ(sk), we introduce a transition
(s′0, l1l2 . . . lk, sk) and set:

μ′(s′0, l1l2 . . . lk, sk) = μ(s0, l1, s1) · μ(s1, l2, s2) · . . . · μ(sk−1, lk, sk) .

– For every sequence of transitions of PLTS of the form:

(s1, l1, s2), (s2, l2, s3) . . . (sk, lk, sk+1)

such that μ(s1) �= 0 = μ(s2) = . . . = μ(sk) �= μ(sk+1), we introduce a
transition (s1, l1l2 . . . lk, sk+1) and set:

μ′(s1, l1l2 . . . lk, sk+1) = μ(s1, l1, s2) · μ(s2, l2, s3) · . . . · μ(sk, lk, sk+1) .
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Note that by Definition 1(ii), there is the largest k as above, denoted by kmax .
We then delete all the states s ∈ S with μ(s) = 0 together with the adjacent
arcs. Thanks to Definition 1(ii), PLTS ′ is a well-defined probabilistic labelled
transition system whose labels are finite sequences of labels from PLTS ,

runs(PLTS ′) = {λ ∈ runs(PLTS ) | μ(λ) > 0} ,

and μ(λ) = μ′(λ), for all λ ∈ runs(PLTS ′). Moreover, we can apply (10) to
PLTS ′ and conclude that, for every i ≥:

μ(runs i(PLTS
′)) ≥ 1− δi .

Thus, by:

runsi(PLTS
′) ⊆ {λ ∈ runs(kmax+1)·i(PLTS ) | μ(λ) > 0} ,

we have that μ(runsκ·i(PLTS )) ≥ 1− δi for κ = kmax + 1. 


Theorem 4. Let φ be πγ-opaque. If obs is inversely M -efficient for PLTS and
φ, then there is an integer ρ ≥ 1 and a real number 0 ≤ ν < 1 such that, for
every i ≥ 0:

|(μ(φcov )− γ · μ(φ)) − (μ(φcov
ρ·i )− γ · μ(φρ·i))| ≤ (1 + γ) · νi .

Proof. By Proposition 2, there exists a positive integer κ and a real number
0 ≤ δ < 1 such that, for every i ≥ 0:

μ(runs(PLTS ) \ runsκ·i(PLTS )) ≤ δi . (11)

Let us now take any i ≥ 0, and consider:

x = μ(φcov )− μ(φcov
M·κ·i), y = μ(φ)− μ(φM·κ·i) .

We then observe that, by obs being inversely M -efficient, we have:

x = μ(φ ∩ obs−1(obs(φ))) − (μ(φκ·i ∩ obs−1(obs(φM·κ·i)))

+ μ((φM·κ·i \ φκ·i) ∩ obs−1(obs(φM·κ·i))))

= μ(φ ∩ obs−1(obs(φ))) − (μ(φκ·i ∩ obs−1(obs(φ)))

+ μ((φM·κ·i \ φκ·i) ∩ obs−1(obs(φM·κ·i))))

= μ((φ \ φκ·i) ∩ obs−1(obs(φ))) − μ((φM·κ·i \ φκ·i) ∩ obs−1(obs(φM·κ·i)))

y = μ(φ \ φM·κ·i) ≤ μ(φ \ φκ·i) .

We therefore obtain from (11) that |x| ≤ δi and y ≤ δi. Consequently, we obtain:

|x− γ · y| ≤ (γ + 1) · δi .

Hence the result holds with ρ = M · κ and ν = δ. 
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Theorem 5. Let obs be K,L-bounded for PLTS and φ, and κ and 0 ≤ δ < 1
be as in Proposition 2. Then there is α > 0 such that, for every i ≥ 0:

0 ≤ DJS (w ·Πφ, w
′ ·Πφcov )−

∑
o∈Oκ·L·i

dκ·L·K·i
o ≤ α · δi . (12)

Proof. Let do be the individual contribution of each o ∈ O to DJS (w ·Πφ, w
′ ·

Πφcov ) as defined in (1). By the first part of K,L-boundedness, we obtain do =
dκ·L·K·i
o , for every o ∈ Oκ·L·i. This and (2) yields:

0 ≤ DJS (w ·Πφ, w
′ ·Πφcov )−

∑
o∈Oκ·L·i

dκ·L·K·i
o =

∑
o∈O\Oκ·L·i

do

≤ c · (Πφ(O \ Oκ·L·i) +Πφcov (O \ Oκ·L·i)) .

Now, by the second part of K,L-boundedness, we have that

obs−1(O \ Oκ·L·i) ⊆ runsκ·i(PLTS ).

Hence, by Proposition 2, we obtain

Πφ(O \ Oκ·L·i) ≤
δi

μ(φ)
and Πφcov (O \ Oκ·L·i) ≤

δi

μ(φcov )
.

As a result, (12) holds with α = c ·
(

1
μ(φ) +

1
μ(φcov)

)
. 
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Abstract. We study the algebra underlying symbolic protocol analysis
for protocols using Diffie-Hellman operations. Diffie-Hellman operations
act on a cyclic group of prime order, together with an exponentiation
operator. The exponents form a finite field: this rich algebraic structure
has resisted previous symbolic approaches.

We define an algebra that validates precisely the equations that hold
almost always as the order of the cyclic group varies. We realize this
algebra as the set of normal forms of a particular rewriting theory.

The normal forms allow us to define our crucial notion of indicator, a
vector of integers that summarizes how many times each secret exponent
appears in a message. We prove that the adversary can never construct a
message with a new indicator in our adversary model. Using this invari-
ant, we prove the main security goals achieved by UM, a protocol using
Diffie-Hellman for implicit authentication.

Despite vigorous research in symbolic analysis of security protocols, many lim-
itations remain. While systems such as NPA-Maude [21], ProVerif [8], AVISPA
[3, 5], CPSA [36], and Scyther [16] are extremely useful, great ingenuity is still
needed—as for instance in [31]—for the analysis of protocols that use funda-
mental cryptographic ideas such as Diffie-Hellman key agreement [17], hence-
forth, DH. Moreover, important protocols, such as the implicitly authenticated
key-agreement protocol MQV [7], appear to be out of reach of known symbolic
techniques. Indeed, for these protocols, computational techniques have led to
arduous proofs after which controversy remains [27,29,30,33]. In this paper, we
develop algebraic ideas that allow us to give rigorous proofs of security goals
such as authentication and confidentiality in a symbolic model. Moreover, our
techniques also help identify the security goals that the protocol does not achieve.

DH protocols work in a cyclic group of prime order q, which we will write
multiplicatively, using an agreed-upon generator g. For a particular session, A
and B choose random values x, y respectively, raising a base g to these scalar
powers:

A, x • gx

�� •gy

�� B, y (1)
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They can then each compute the value (gy)x = gxy = (gx)y as a new shared
secret for A,B. The Decisional Diffie-Hellman assumption (DDH) says that, in
suitable groups, any observer who has observed neither x nor y, cannot distin-
guish gxy from the gz we would get from a randomly chosen z.

This basic protocol—while secure against a passive adversary, who observes
messages, but can neither create them nor alter (or misdirect) messages of com-
pliant principals—is, however, vulnerable to an active attacker. The adversary
chooses his own values w, gw, substituting gw for the values each participant
should receive. Then the two participants will end up with different keys, gxw

and gyw, unfortunately each shared with the attacker.
One idea to avoid this man-in-the-middle attack is for each of the principals

A and B to maintain a long-term secret value. We will write A’s long term secret
as a, and B’s as b. They publish the long term public values YA = ga, YB = gb,
having a certificate authority certify the bindings to A and B. Now any pair of
participants may each use the long term public value of the other—and their
own long term secrets—to compute the same fresh secret, in such a way that no
principal other than A or B can. The “Unified Model” UM of Ankney, Johnson,
and Matyas [2] is an example. A and B send only the messages shown in Eqn. 1.
For clarity, the valueB receives, purportedly fromA, will be calledRA. A receives
the value RB, purportedly from B. Without adversary interference,RA = gx and
RB = gy. Letting h(x) be a hash function, A and B compute their keys:

A : k = h(YB
a ‖ RB

x) B : k = h(YA
b ‖ RA

y), (2)

obtaining the shared value h(gab ‖ gxy) if RA = gx and RB = gy. We will
present a technique for proving authentication and confidentiality results about
protocols such as this.

The heart of this paper develops a well-behaved rewriting theory for DH
values, which yields a powerful tool for symbolic analysis. The challenge for
such a theory derives from the fact that, since we are operating in a cyclic
group of prime order, the exponents form a field. Although UM uses only the
field multiplication, some protocols (including MQV) also use the field addition.
This is challenging for rewriting-based approaches to protocol analysis since
the theory of fields does not admit an axiomatization using equations, or even
conditional equations. The standard axiomatization uses negation to say that 0
has no multiplicative inverse; to see that there can be no conditional-equational
axiomatization, note that the category of fields is not closed under products.
This paper makes the following contributions:

1. We define an order-sorted equational theory AGˆ whose models include all
fields. We equip AGˆ with a rewrite system modulo associativity and com-
mutativity (AC), and show that this system is terminating and confluent
modulo AC: an equation s = t is derivable in AGˆ if and only if s and t
rewrite to the same normal form modulo AC. The free algebra over this
rewrite system offers a natural DH message algebra. (Section 1.)

2. We show, via a model-theoretic argument using ultraproducts, that AGˆ
captures uniform equality in the theory of finite fields. Namely, if s = t is an
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equation that is valid in the field Fq of characteristic q for infinitely many q,
then AGˆ proves s = t. In particular, AGˆ proves every equation that is valid
in Fq aymptotically as q increases. (Section 2.)

3. We use AGˆ to prove Thm. 12, the indicator theorem, a symbolic analogue
to the computational Diffie-Hellman assumption (CDH). It states that the
adversary cannot obtain a new exponentiated value txy without access either
to x, or to y, or to some value that already included txy. Thm. 12 gives a
proof method in AGˆ that avoids unification. (Section 3.)

4. We apply the indicator theorem within the strand space framework (intro-
duced in Section 4) to prove that UM meets its authentication and confiden-
tiality goals (construed as trace properties). We also explain why it does not
meet another goal, resisting impersonation attacks. (Section 5.)

Elsewhere, we apply our method to more challenging protocols, e.g. MQV [18].

Related Work. Within the symbolic model, there has been substantial work
on some aspects of DH, starting with Boreale and Buscemi [9], which provides
a symbolic semantics [1, 22, 34] for a process calculus with algebraic operations
for DH. Their symbolic semantics is based on unification.

Indeed, symbolic approaches to protocol analysis have relied on unification as
a central part of their reasoning. Goubault-Larrecq, Roger, and Verma [24] use a
method based on Horn clauses and resolution modulo AC, providing automated
proofs of passive security. Maude-NPA [20, 21] is also usable to analyze many
protocols involving DH, again depending heavily on unification. Tamarin [15]
offers a new approach to analysis, also relying on unification.

All of these approaches model the multiplication in the exponents, but do not
explicitly model the addition. This suffices for many protocols, but not for proto-
cols such as Menezes-Qu-Vanstone MQV [7] and Cremers-Feltz CF [14], in which
the ring structure in the exponents is used in the protocol definition. Indeed,
even in protocols which use only the multiplicative structure, the adversary may
choose to use the ring or field properties. The richer theory is needed to prove
no new attacks can arise.

This field structure combines poorly with the heavy reliance of previous ap-
proaches on unification. Unifiability is undecidable in the theory of rings, by the
unsolvability of Hilbert’s tenth problem. There are, however, many related theo-
ries for which undecidability is not known, for instance the diophantine theory of
the rationals [6]; see the beautiful paper by Kapur, Narendran, and Wang [28].

Küsters and Truderung [31] finesse this issue by rewriting protocol analysis
problems. The original problems use an AC theory involving exponentiation.
They transform it into a corresponding problem that does not require the AC
property, and so can work using standard ProVerif resolution [8]. Their approach
covers a surprising range of protocols, although, like [13], not Implicitly Authen-
ticated Diffie-Hellman protocols such as MQV.

Another contrast between this paper and previous work is our uniform treat-
ment of security goals (see Figs. 2–3). Our methods are applicable to confiden-
tiality, authentication, and further properties such as forward secrecy.
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Meadows and Pavlovic [35], cf. [11], do not explicitly represent the algebra.
Instead, they offer a family of authentication axioms. Each axiom in the fam-
ily expresses a limitation on the adversary by saying that some receptions can
be only explained only by actions of regular principals. Such an axiom may be
justified by a computational principle such as CDH. While this method leads
to illuminating results, it appears to sidestep a foundational question about the
algebraic structures in which these axioms are satisfied. our paper is a comple-
mentary attempt to fill in information about these models.

Our adversary model is active. For passive attacks, there has been some work
on computational soundness for Diffie-Hellman, with Bresson et al. [10] giving
an excellent treatment.

1 An Equational Theory of Messages

By DH-structure we mean a cyclic group G of prime order q, together with
an exponentiation operator. The exponents E are integers modulo the prime q,
which form a field of characteristic q. In cryptographic applications G is often
taken to be a subgroup of the multiplicative group of integers modulo a prime
p, where q divides p− 1; sometimes G is a prime-order subgroup of the group of
points over an elliptic curve.

Our challenge is to define an equational theory that captures the relevant
algebra of DH structures, with a notion of reduction that supports modeling
messages as normal forms. By the Decisional Diffie-Hellman assumption, an ad-
versary cannot retrieve the exponent x from a value gx that a regular participant
has constructed. Our formalism reflects this limitation by not including a loga-
rithm function in the signature of DH-structures.

Our strategy for handling the fact that the field of exponents in a DH structure
cannot be axiomatized by equations is as follows. We work with a sort G for base-
group elements and a sort E for exponents. The novelty is that we enrich E by
adding a subsort NZE. Its intended interpretation is the non-0 elements of E,
and it does not include 0 in any interpretation.

The device of approximating “non-zero” reflects a philosophy of capturing
uniform capabilities algebraically. For instance no term which is a sum e1+ e2 is
syntactically of sort NZE because each finite field has finite characteristic and
so there are instantiations of the variables in e1 + e2 driving the term to 0. On
the other hand, we will want to ensure that NZE is closed under multiplication;
this is the role of the operator ∗∗ below.

We show in this section that AGˆ admits a confluent and terminating notion
of reduction. In section 2 we prove Thm. 9 that describes the sense in which AGˆ
captures the equalities that hold in almost all finite prime fields.

Definition 1. The order-sorted signature Σ(AG )̂ has the sorts G, E, and NZE,
with NZE a subsort of E with operators:

· :G×G→ G id :→ G inv : G→ G
+, −, ∗ : E × E → E 0 :→ E exp : G× E → E

i :NZE → NZE 1 :→ NZE ∗∗ : NZE → NZE
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and axioms (writing exp(t, e) as te):

1. (G, ·, inv , id) is an abelian group;
2. (E,+, 0,−, ∗ ,1) is a commutative ring with identity;
3. Exponentiation makes G a right E-module with identity, i.e.

(ax)y = ax ∗ y a1 = a idx = id
(a · b)x = ax · bx a(x+y) = ax · ay

4. Multiplicative inverse, closure at sort NZE:

u ∗∗ v = u ∗ v u ∗ i(u) = 1 i(−u) = −i(u)
i(u ∗ v) = i(u) ∗ i(v) i(1) = 1 i(i(w)) = w

We extract an AC rewrite system from AGˆ by orienting the non-AC equations,
using additional equations derivable from AGˆ to join critical pairs:

Definition 2. Let R be the set of rewrite rules given by the natural orientation
of the equations in Definition 1, other than associativity and commutativity,
together with the additional rules presented in Table 1. The rewrite relation→AGˆ

is rewriting with R modulo the associativity and commutativity equations.

Theorem 3. The reduction →AGˆ is terminating and confluent modulo AC.

Proof. Termination can be established using the AC-recursive path order defined
by Rubio [37] with a precedence in which exponentiation is greater than inverse,
which is in turn greater than multiplication (and 1). This has been verified with
the Aprove termination tool [23].

Then confluence follows from local confluence, which is established via a ver-
ification that all critical pairs are joinable. This result has been confirmed with
the Maude Church-Rosser Checker [19]. %*

Terms that are irreducible with respect to →AGˆ are called normal forms. The
following taxonomy of the normal forms will be crucial in what follows, most of all
in the definition of indicators, Definition 10. The proof is a routine simultaneous
induction over the size of e and t. By G-variables and E-variables, we mean
variables of those types.

Table 1. Additional rewrite rules for →AGˆ

At sort G

inv(id) → id

inv(a · b) → inv(a) · inv(b)
inv(inv(b)) → b

(inv(a))x → inv(ax)

a0 → id

a−(x) → inv(ax)

At sort E

−(0) → 0

−(x+ y) → −(x) + (−(y))
−(−(x)) → x

0 ∗ x → 0

−(x) ∗ y → −(x ∗ y)
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Lemma 4. 1. If e : E is a normal form then e is a sum m1 + . . .+mn where
(i) each mi is of the form ±(e1 ∗ . . . ∗ ek) where k ≥ 0, (ii) no ei is of
the form i(ej), and (iii) each ei is one of x and i(x), with x an E-variable.
When n = 0, e is the ring element 0; when k = 0, mi is the ring element 1.
We call terms of the form ±mi irreducible monomials.

2. If t : G is a normal form then t is a product t1 · . . . · tn, for n ≥ 0 where
(i) no ti is of the form inv(tj), and (ii) each ti is one of: v, inv (v),
ve, inv(ve), with v a G-variable, and e : E an irreducible monomial.
When n = 0, t = id.

2 Uniform Equality and the Completeness of AGˆ

In this section we justify the use of AG ,̂ specifically the use of AG -̂normal
forms to model messages. Since the axioms of AGˆ are clearly true in all DH-
structures, any theorem of AGˆ holds in all DH-structures. Theorem 9 gives us a
strong converse, namely that every equation that holds in infinitely many DH-
structures is a theorem of AG .̂ If fact we show how to construct a single structure
MD that is “generic” for all DH-structures: An equation s = t is holds in MD if
and only if it holds in infinitely many DH-structures.

Algebraically isomorphic DH-structures can have very different computational
properties. Indeed, the prime field Fq presented as the group of integers mod q
can be viewed as a DH-structure where the base group is the additive group of Fq

and exponentiation is multiplication. The discrete log problem in this structure
is computationally tractable. However, Fq is isomorphic to a subgroup of order q
of the multiplicative group of integers modulo some prime p. There, the discrete
log problem may be intractable. We focus on algebraic equations between terms
in DH-structures; the absence of the log operator in our signature models the
fact that our intended models are those in which discrete log is intractable.

First, we observe that the field of scalars, i.e. the exponents, carries all the
algebraic information in a model of AG .̂

Definition 5. Let F be a field. We define the model MF of theory AGˆ to be as
follows. The sorts E and G are each interpreted as the domain of F ; the sort
NZE is interpreted as the set of non-0 elements of E. The operations of E are
interpreted just as in F itself. The group operation · in G is taken to be + from
E, thus id and inv are taken to be 0 and −. Exponentiation is multiplication: ae

is interpreted as a ∗ e.

For each field F , MF satisfies all of the equations in AG .̂ It is easy to check the
following.

Lemma 6. Every DH-structure is isomorphic to some MFq , where F is the
prime field of order q.

The key device for reasoning about uniform equality across DH-structures
is the notion of ultraproduct, cf. e.g. [12]. We let the variable D range over
non-principal ultrafilters over the set of prime numbers. The crucial facts about
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ultraproducts for our purposes are: (i) a first-order sentence is true in an ul-
traproduct if and only if the set of indices at which it is true is a set in D;
(ii) every infinite set belongs to some non-principal ultrafilter; (iii) when D is
non-principal, every set whose complement is finite is in D.

Definition 7. Let D be a non-principal ultrafilter over the set of prime num-
bers and let FD be the ultraproduct structure

∏
D{Fq | q prime}. MFD is the DH

structure obtained from FD via Definition 5. For brevity we write MD for MFD .

FD is a field, since each Fq satisfies the first-order axioms for fields, and has
characteristic 0, since each equation 1 + . . . + 1 = 0 is false in all but finitely
many Fq.

When F is the additive group of rational numbers then MF = MQ is of special
interest to us. The proof of the following lemma is in Appendix A.

Lemma 8. 1. The structure MQ can be embedded as a submodel in any MD.

2. If s and t are distinct normal forms then it is not the case that MQ |= s = t.

Our main result is that AGˆ is complete for uniform equality, in the following
sense:

Theorem 9. For each pair of G-terms s and t, the following are equivalent

1. AGˆ � s = t

2. For all q, MFq |= s = t

3. For all non-principal D, MD |= s = t

4. For infinitely many q, MFq |= s = t

5. For some non-principal D, MD |= s = t

6. MQ |= s = t

7. If s reduces to s′ and t reduces to t′, with s′, t′ irreducible, then s′ and t′ are
identical modulo associativity and commutativity of ·, +, and ∗ .

Proof. It suffices to establish the cycle of entailments 1 implies 2 . . . implies 7
implies 1. The first four of these steps are immediate, as is the fact that 7 implies
1. The fact that 5 implies 6 follows from Lemma 8, item 1. To conclude 7 from
6, use Lemma 8, item 2. %*

The results of Theorem 9 hold as well for equations between E-terms. Given
terms e and e′, form the equation ge = ge

′
. It is provable iff e = e′ is provable,

and is true in a given model M iff e = e′ is.
The model MQ is convenient: this single model, based on a familiar structure,

witnesses uniform equality faithfully. The models MD satisfy another striking
property. It follows from results of Ax [4] that a first-order sentence in the
language of rings/fields is true in a given MD if it is in the set of sentences
true in all but a finite set of finite fields. Moreover this theory is decidable. So
the structures MD are attractive for closer study of the “uniform” properties of
DH-structures.
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3 Indicators

We turn now to a formal definition of indicators and the proof of a key invariant
that all adversary actions preserve. For intuition about the following definition,
think of N as being a set of secret values in a protocol run (such as A’s x)
not transmitted by any participant (although a related value such as gx may
be transmitted). Say that a monomial m is a maximal-monomial of t if t has a
subterm of the form bm.

Definition 10 (Indicators). Let N = 〈v1, . . . , vd〉 be a vector of NZE-
variables. If m is an irreducible monomial, the N -vector for m is 〈z1, . . . , zk〉
where zi is the multiplicity of vi in m, counting occurrences of i(vi) negatively.

An E-term e = m1 + . . .+mk is N -free if each mi has N -vector 〈0, . . . , 0〉.
If t is irreducible, then IndN (t) is the set of all vectors z such that z is the

N -vector of m, where m is a maximal-monomial subterm of t.

Example: For N = 〈x, y〉, IndN ( gx i(y) · gzxy · gxx ) = {〈1,−1〉, 〈1, 1〉, 〈2, 0〉}.
If e is N -free, then IndN (te) = IndN (t), because no new occurrences of N -
variables are created in passing from t to te.

Definition 11. Let T = {t1, . . . , tk} be a set of terms. The set Gen(T ) gener-
ated by T is the least set of terms including T and closed under applications of
function symbols.

Functions cannot cancel to reveal a vi ∈ N , which leads to our main theorem.

Theorem 12 (Indicator Theorem). Let N be a vector of NZE-variables
and let T be a set of terms where each e : E ∈ T is N -free. Then

1. every e ∈ Gen(T ) of sort E is N -free, and
2. if u ∈ Gen(T ) is of sort G and z ∈ IndN (u), then for some t ∈ T , z ∈

IndN (t).

Proof. By induction on operations used to construct terms from elements of T .
The main cases are for 2., when (i) u = u1 · u2 or (ii) u = te, where t, u1, u2

and e are irreducible terms in Gen(T ). First, if u = u1 · u2, then u is a product
t1 · . . . · tn, and each factor ti is of the form v, inv(v), ve, or inv(ve) and comes
from u1 or u2. Thus, the normal form of this term results by canceling any pair
of factors, one from u1 and one from u2 that are inverses of each other. No
new E-subterms are created, so no new indicator vectors are created, and our
assertion holds.

Otherwise u = te. Since e is in Gen(T ), we know inductively that e is N -free.
It suffices to show that IndN (te) = IndN (t). Letting t be in normal form, te is
(t1)

e · . . . · (tn)e. However, as we just observed, IndN (tei ) = IndN (ti). %*

This “conservation of indicators” principle essentially restricts adversary behav-
ior; Theorem 15 below makes this precise in the strand-space setting.
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4 Strands and Indicators

We will now adapt the strand space theory [25,38] to the case where the messages
include a free algebra over AG .̂ A strand is a sequence of local actions called
nodes, each of which is:

– a message transmission, written • →;
– a message reception, written • ←; or
– a neutral node ◦. Neutral nodes are local events in which a principal consults

or updates its local state [26].

If n is a node, and the message t is transmitted, received, or coordinated with
the state on n, then we write t = msg(n). We sometimes write +t = msg(n) and
−t = msg(n) when n is respectively a transmission or reception node. Double
arrows indicate successive events on the same strand, e.g. ◦ ⇒ • ⇒ •.

A protocol Π is a set of strands, called the roles of the protocol. We assume ev-
ery protocol contains a specific role, called the listener role, consisting of a single
reception node n =→ •. Listener strands provide “witnesses” when msg(n) has
been disclosed, aiding in specifying confidentiality properties. A regular strand
for Π means an instance of one of the roles of Π .

Adversary strands consist of zero or more reception nodes followed by one
transmission node. The adversary obtains the transmitted value as a function of
the values received; or creates it, if there are no reception nodes. All values that
the adversary handles are received or transmitted; none are silently obtained
from long-term state. Allowing the adversary to use neutral nodes—or strands
of other forms—provides no additional power. (See Defn. 13.)

Messages. The messages transmitted and received on • nodes, and obtained
from long-term state on neutral nodes ◦, form an abstract algebra. The message
algebra MA includes as basic values:

– Elements of the free algebra over AGˆ built from the infinite sets of E-
variables VE and G-variables VG; we denote this algebra by Free(AG )̂,

– Disjoint infinite sets of names, symmetric and asymmetric keys, and texts.

The elements of the algebra Free(AG )̂ are equivalence classes of terms. How-
ever, the results in Section 1 say that each class has a canonical representative,
namely an AC normal form modulo →AGˆ. This justifies a syntactic approach,
particularly in our treatment of indicators in Thm. 15.

We assume that some of the asymmetric keys are of the form pk(A) and
vk(A), where A ranges over names, denoting the public encryption and signature
verification key of A. We also assume that asymmetric keys are equipped with
an inverse operation; for instance, pk(A)−1 is A’s private decryption key.

The parameters of an AGˆ normal form are the VE and VG variables occurring
in it. The parameter of a value pk(A) or vk(A) is A. For all other basic values
a, the parameter of a is a. MA is closed under the constructors:

– Pairing, where the pair of t1 and t2 is written t0 ‖ t1;
– Encryption, where the encryption of t0 using t1 as key is written {|t0|}t1 .
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As constructors, the operations are free, yielding equal results only when the
arguments are equal: {|t0|}t1 = {|t2|}t3 implies t0 = t2 and t1 = t3, etc. We
regard hashes and digital signatures as coded using (deterministic) encryption:
the hash h(t) = {|t|}K0 , where K0 is an asymmetric encryption key to which no
one knows the inverse. We will always assume that K−1

0 is uncompromised. The
digital signature [[ t0 ]]t1 can be encoded as t0 ‖ {|t0|}t1 .

The parameters of a pair, encryption, digital signature, or hash are the union
of the parameters of its immediate subterms.

A parameter represents a “degree of freedom” in describing executions, which
can be instantiated or restricted. It may also represent an independent choice,
as A’s choice of a group element x to build gx is independent of B’s choice of y.

Ingredients and Origination. A value t1 is an ingredient of another value t2,
written t1 " t2, if t1 contributes to t2 via concatenation or as the plaintext of
encryptions: " is the least reflexive, transitive relation such that:

t1 " t1 ‖ t2, t2 " t1 ‖ t2, t1 " {|t1|}t2 .

By this definition, t2 " {|t1|}t2 implies that (anomalously) t2 " t1. For basic
values a, b, we have a " b iff a = b. Thus, the ingredient relation is much coarser
than the “occurs in” relation.

A value t originates on a transmission node n if t " msg(n), so that it is an
ingredient of the message sent on n, but it was not an ingredient of any message
earlier on the same strand. That is, m⇒+ n implies t �" msg(m).

A basic value is uniquely originating in a bundle B if there is exactly one
n ∈ node(B) at which it originates. Freshly chosen nonces or DH values gx are
typically assumed to be uniquely originating. A basic value is non-originating
if there is no n ∈ node(B) at which it originates. An uncompromised long term
secret (e.g. a private decryption key) is assumed to be non-originating. Because
adversary strands receive their arguments as incoming messages, an adversary
strand that decrypts a message receives its key as a message, which must orig-
inate somewhere. The set of non-originating values is denoted non; the set of
uniquely originating values is denoted unique.

In DH protocols unique origination and non-origination are used in tandem.
When a compliant principal generates a random x and transmits gx, the former
will be non-originating and the latter uniquely originating. A probabilistic im-
plementation of the (non-probabilistic) unique- and non-origination randomly
chooses values from large sets, with overwhelming probability of faithfulness.

Adversary Model. The adversary strands are defined:

Definition 13. 1. A strand +a, having one transmission node, is an adversary
strand if a is a parameter or a constant id, 1, 0.

2. A strand −t ⇒ +f(t), having a reception node and a transmission node, is
an adversary strand if f is any of the unary functions inv , i ,−, pk, sk, h.

3. A strand −t1 ⇒ −t2 ⇒ +g(t1, t2), having two reception nodes and a trans-
mission node, is an adversary strand if g is any of the binary functions
·, ∗ ,+, · ‖ ·, {| · |}·, [[ · ]]·.
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4. A strand −{|t1|}K ⇒ −K−1 ⇒ +t1 is an adversary strand.

Importantly, there is no adversary strand executing the asymmetric key inverse
function K−1, nor any logarithm operation.

This adversary model suggests a game between adversary and system:

1. The system chooses a security goal Φ, involving secrecy, authentication, key
compromise, etc., as in Figs. 2–3.

2. The adversary proposes a potential counterexample A consisting of regular
strands with equations between values on the nodes, e.g. an equation between
session keys as computed by two participants.

3. For each message reception node in A, the adversary chooses a recipe, in-
tended to produce an acceptable message, using the strands of Def. 13. The
adversary may use earlier transmission events on regular strands to build
messages for subsequent reception events.
These recipes determine a set of equalities between the values computed by
the adversary and the values t “expected” by the recipient (i.e. acceptable
to the recipient). They are the adversary’s proposed equations.

4. The adversary wins if his proposed equations are valid in MFq , for infinitely
many primes q; or equivalently, by Theorem 9, valid for all primes q.

This game may seem too challenging for the adversary. First, it wins only if
the equations are valid, i.e. true for all instances of the variables. Second, the
adversary must choose how to generate all the messages, its adversary strategy,
before seeing any concrete bitstrings, or indeed learning the prime q.

These objections motivate work on computational soundness. The hardness of
DDH suggests that, when an equation is not valid, it is hard to obtain a satisfying
instance. Moreover, the adversary should acquire no advantage from seeing the
values gx etc. However, precise results will require reduction arguments.

Executions Are Bundles. We formalize protocol executions by bundles. A
bundle is a directed, acyclic graph. Its vertices are nodes on some strands (which
may include both regular and adversary strands). Its edges include the succession
edges n1 ⇒ n2, as well as communication edges written n1 → n2. Such a dag
B = (V,E⇒ ∪ E→) is a bundle if it is causally self-contained, meaning:

– If n2 ∈ V and n1 ⇒ n2, then n1 ∈ V and (n1, n2) ∈ E⇒;
– If n2 ∈ V is a reception node, then there is a unique transmission node

n1 ∈ V such that msg(n2) = msg(n1) and (n1, n2) ∈ E→;
– Precedence +B for B, defined to be (E⇒ ∪E→)∗, is a well-founded relation.

Indicators and the Adversary. We justify now our central technique, that
the adversary cannot generate messages with new indicators. We will write 0 for
the all zero vector, i.e. the origin. We will also write 1v for the vth basis vector
〈. . . , 0, . . . , 1, . . . , 0, . . .〉.
Definition 14. Let N be a vector of NZE-variables. If a is a name, symmetric
key, asymmetric key, or text, then its indicator set IndN (a) = {0}, the singleton
of the origin. IndN (t0 ‖ t1) = IndN (t0) ∪ IndN (t1).

IndN ({|t0|}t1) = IndN ([[ t0 ]]t1) = IndN (h(t0)) = IndN (t0).
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◦ ��
A,a,cA

• ��
gx��

• �� • �� ◦
d(A,B)

RA��

RB
��

cB
��

cA��◦ ��
B,b,cB • �� • ��

gy
��

• �� ◦
d(B,A)

cP = [[ cert YP ‖ P ]]sk(CA) d(P, P ′) = keyrec P ‖ P ′ ‖ K

Fig. 1. UM Initiator and Responder Strands

A basic value a is non-originating before n in bundle B if, for all n′ +B n, a
does not originate at n′. The indicator basis IBB(n) of node n, where n is a
node of B, is the set (ordered in some conventional way):

{a ∈ Params(B) : a of sort E is non-originating before n}.

Theorem 15 (Indicator Theorem for Strands). Let n be an adversary
transmission node of B, and let N be a sequence of elements drawn from IBB(n).
If v ∈ IndN (msg(n)) and v �= 0, then there is a regular transmission node
n′ ≺B n in B such that v ∈ IndN (msg(n′)).

Proof. Let TR be the set of messages transmitted on a regular node m ≺ n, and
let TM be the set of parameters and constants transmitted on one-node adversary
strands ≺ n. By induction on adversary actions, msg(n) ∈ Gen(TR ∪ TM ). TR

and TM are N -free, by the definition of IB. So Theorem 12 applies.
Since t : G ∈ TM implies IndN (t) = {0}, we conclude that every non-zero

indicator in u comes from a message in TR, as desired. %*

5 Analyzing the Unified Model

Regular participants in the UM protocol [2] act as initiators and responders as
shown in Figure 1. We specify, for the initiator A:

1. A retrieves from its secure storage its principal name A, its long term secret
a, and its public certificate cA.

2. A chooses an ephemeral parameter z ∈ VE to instantiate x, sending RA = gz.
3. A receives some RB, which it checks to be a non-trivial group element, i.e. a

value of the form gy for some y �= 0, 1 mod q.
4. It receives a certificate cB associating YB with B’s identity. How the par-

ticipant determines what name B to require in this certificate, or how it
determines which cas to accept, is implementation-dependent.

5. A computes K = h(YB
a ‖ RB

z), depositing a key record into its local
database, so that K may be used as a session key between A and B.

In clause 2, A chooses z freshly. A never sends z as an ingredient in any message,
only gz, and the adversary cannot find a strategy to guess the same value z, we
model z as non-originating, and gz as uniquely originating. In other Implicitly
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Authenticated Diffie-Hellman protocols, other key computations may be used
instead of Eqn. 2. A responder B behaves correspondingly. The syntax of Fig. 1
entails that no regular node n ever transmits a product t1 · t2 as a (normal form)
ingredient of any message, t1 · t2 �" msg(n).

Regular initiator and responder strands that choose that parameters x, y
transmit only messages gx, gy, where

Ind〈a,b,x,y〉g
x = {1x} and Ind〈a,b,x,y〉g

y = {1y}.

Strands with other choices transmit the zero vector 0 relative to this x, y basis.
In case 2, Ind〈a,b,x,y〉(Y ) = {1a}. However, the key K has indicators

Ind〈a,b,x,y〉 = {〈1, 1, 0, 0〉, 〈0, 0, 1, 1〉}.

Here, the regular principals transmit only messages with basis vectors 1v or 0
as indicators, but the key has two non-zero entries in its two indicators.

Cryptographically, DH ensures that the choices of the principals always con-
tribute in a non-cancellable way to the result. An analogue is:

Lemma 16 (Contributive Parameters). Let B be a UM-bundle, and s be an
initiator or responder strand with long term secret a and ephemeral value x:

1. If x ∈ nonB, then for K = h(YB
a ‖ RB

x), we have 1x ∈ Ind〈x〉(K).
2. If a ∈ nonB, then 1a ∈ Ind〈a〉(K).

Proof. Since h(·) and ‖ are constructors, a or x can cancel only if s receives a
value RB or Yb with indicator 〈−1〉 for a or x, resp. Hence there is some earlier
node m on which some message with indicator 〈−1〉 was transmitted, and let
m0 be a minimal such node.

However, by the definitions, m0 is not a regular node, which transmit only
values with non-negative indicators. By Thm. 15, m0 cannot be an adversary
node either, when x ∈ nonB or a ∈ nonB resp. %*

Key Secrecy and Impersonation. In Fig. 2 we present the core idea of key se-
crecy. Suppose that the upper strand s is an initiator or responder run that ends
by computing session key K. Moreover, suppose that a listener

s ◦ �� • �� • �� • �� ◦
K

• K��

Fig. 2. Key secrecy: This diagram
cannot occur

strand is present, which receives K. Then, if
the long term secrets a, b ∈ non, this dia-
gram cannot be completed to a bundle B. This
holds even without the freshness assumptions
on regular initiator and responder strands. It
includes bundles in which we add any number
of regular strands, so long as these particular
long-term secrets a, b ∈ non. Other principals’

long term keys may be freely compromised or not.

Security Goal 17 (Key Secrecy). Suppose B is a bundle with a, b ∈ nonB,
and s is an initiator or responder strand with long term secret parameter a and
long term peer public value Y = gb. Then B does not contain a listener • ← K.
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Theorem 18. UM achieves the security goal of key secrecy.

Proof. Suppose instead that • ← K is in B, so some node transmits K.
Computing indicators using the basis 〈a, b〉 by applying Lemma 16 to both a

and b,K has indicator 〈1, 1〉. By Thm. 15, some regular node transmits a message
with indicator 〈1, 1〉. But regular strands transmit only values with indicators 0
and, in certificates, 1a, 1b, relative to basis 〈a, b〉. %*

Curiously, resistance to impersonation attacks concerns the same diagram,
Fig. 2, although with different assumptions. An impersonation attack is a case
in which the adversary, having compromised B’s long term secret b, uses it to
obtain a session key K, while causing B to have a session yielding K as session
key. If B’s session uses YA = ga, where a is the uncompromised long term secret
of A, then the adversary has succeeded in impersonating A to B. By contrast,
it is hopeless—when b is compromised—to try to prevent the adversary from
impersonating B to others.

Security Goal 19 (Impersonation Resistance). Suppose B is a bundle with
a, x ∈ nonB, and s is an initiator or responder strand with long term secret
parameter a ephemeral value x. Then B does not contain a listener • ← K.

This goal trades off a long term secret for an ephemeral value. UM does not
achieve it. Its key K = h(gab ‖ gxy) has indicators {〈1, 0〉, 〈0, 1〉} in the basis
〈a, x〉, suggested by our assumptions. Thus, Theorem 15 buys us nothing.

Example 20. The adversary can impersonate A to B by supplying its own gz,
as B supplies gy; it computes K = h(gab ‖ gzy) by raising A’s public ga to the
compromised value b, and raising gy to its own ephemeral value z.

Implicit Authentication. Implicit authentication takes two forms [7, 27, 32].
The essential common idea is expressed in Figure 3. It shows two strands that

compute the same session key K. One has parameters [A,B′, . . .]

◦ �� • ��

[A,B′,...]

• �� • �� ◦
K

◦ �� • ��

[A′,B,...]

• �� • �� ◦
K

Fig. 3. Implicit authentica-
tion: In this diagram, A = A′

and B = B′

and the other has parameters [A′, B, . . .], where we
assume that the parameter for the initiator’s name
appears first (A,A′) and parameter for the respon-
der’s name appears second (B′, B). The authen-
tication property is that the participants agree
on each other’s identities, so that the responder
has the correct opinion about the initiator’s iden-
tity and vice versa. That is, we want A = A′

and B = B′ whenever the computed keys agree.
Stronger and weaker implicit key authentication
properties differ in what non-compromise assump-
tions they make. The stronger property is that

A = A′ and B = B′ whenever a, b ∈ non. A weaker assertion is that A = A′ and
B = B′ whenever a, b, a′ ∈ non. The additional non-compromise assumption is
about a′, the long term secret of the principal E that B thinks he is communi-
cating with [7,18,32]. MQV satisfies only this weaker form [27]. We focus on the
stronger property here.
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Authentication depends on the certification protocol, which ensures proof of
possession. Rather than representing it, we characterize it by an assumption:

Assumption 21. If cP " msg(n) for n ∈ node(B), then cP = [[ cert ge ‖ P ]]sk(CA)
for some E-value e �= 0, 1, and either:

1. there exists n ∈ B with e " msg(n), or else
2. (i) e ∈ VE is a parameter, and

(ii) if [[ cert ge ‖ P ′ ]]sk(CA) " msg(n′) for any n′ ∈ node(B), then P = P ′.

Clause (1) holds when e is generated by the adversary; clause (2) applies when
e is chosen by a compliant principal.

Security Goal 22 (Implicit Authentication). Suppose that B is a Π-bundle
with a, b ∈ nonB, and strands s1, s2 are Π initiator and responder strands with
parameters [A,B′, a, x, YB′ , RB′ ] and [A′, B, b, y, YA′ , RA′ ] resp. If s1, s2 both
yield session key K, then A = A′ and B = B′.

Theorem 23. UM achieves implicit authentication.

Proof. Let s1, s2 be strands in B as in the implicit authentication goal, where
also a, b ∈ nonB. Since s1 receives a certificate [[ cert YB′ ‖ B′ ]]sk(CA), by Assump-

tion 21, YB′ = ge for some e �= 0, 1. By symmetry, YA′ = gd.
The key computation ensures gdb = gae; by injectiveness, db = ae. Thus, there

is some c such that d = ca and e = cb. Thus, by Assumption 21 either:

1. there exists nd ∈ node(B) such that cb " msg(nd), or else
2. cb’s normal form is a parameter, i.e. c = 1 and e = b.

In the latter case, we also have that B′ = B. In the former case, nd lies on an
adversary strand. It must result from multiplying the values b and c, since no
regular strand transmits a message with any product as an ingredient. But this
contradicts b ∈ non(B). Symmetrically, A′ = A. %*

Future Work. We will apply these methods to more challenging protocols [18].
We will also study their computational soundness. A tool implementation ap-
proach is to represent AGˆ and protocols using it in geometric logic; model-
finding can generate counterexamples or establish their absence. An alternative
approach is integration with Tamarin [15]. AGˆ appears to extend to represent
bilinear pairings.

Acknowledgments. We have benefited from discussions with Shriram Krish-
namurthi, Moses Liskov, Cathy Meadows, Paliath Narendran, John Ramsdell,
Paul Rowe, Paul Timmel, and Ed Zieglar.
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A Appendix

Lemma 8

1. The structure MQ can be embedded as a submodel in any MD.
2. If s and t are distinct normal forms then it is not the case that MQ |= s = t.

1. Since FD has characteristic 0, and Q is the prime field of characteristic 0, Q
is embeddable in FD. The models MD and MQ are definitional expansions of
FD and Q, so the embedding of Q into FD extends to embed MQ into MD.

2. If s and t are distinct normal forms, the term u ≡ s · inv(t) is in normal form
and not identically id. With this observation we see that our result follows if
we establish the following fact: if u is a normal form not identically id then
it is not the case that MQ |= u = id.
To see this, note that in the structure MQ, the group operation is interpreted
as addition, inverse by additive inverse, and exponentiation as multiplication,
so it suffices to consider the expression obtained from u by replacing · and
inv by + and −, and the exponentiation operator by ∗ . In this way we
may view u as an ordinary rational expression in the variables x1, . . . , xk

occurring in u. So u determines a real function fu : Rk → R not identically
0. We can find a rational point r = (r1, ..., rk) such that fu(r) �= 0. Then
the environment η : Vars → Q with η(xi) = ri witnesses the fact that
MQ �|= u = id. %*
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Abstract. We present a framework to analyze security properties in
distributed protocols. The framework is constructed on top of the so
called (strongly) distributed schedulers where secrecy is also considered.
Secrecy is presented as an equivalence class on actions to those compo-
nents that do not have access to such secrets; however these actions can
be distinguished by those with appropriate clearance. We also present an
algorithm to solve bounded reachability analysis on this kind of models.
The algorithm appropriately encodes the nondeterministic model by in-
terpreting the decisions of the schedulers as parameters. The problem is
then reduced to a polynomial optimization problem.

1 Introduction

Model-based verification has proven very useful in the verification of a hand-
ful of systems. It is particularly fit for the verification of distributed systems,
in which the model of the system is obtained by composing simpler models de-
scribing the behaviour of each component. A particular class of these systems are
distributed algorithms that aim to provide information hiding, i.e., they try to
prevent an adversary to infer confidential information from the observables [2].
Many of these algorithms propose a solution by adding randomization to their
decisions (e.g. [8,15]). In addition, the security property is best understood quan-
titatively by contrasting the likelihood of producing a secret w.r.t. the likelihood
of guessing such secret after reading the observables (see e.g. [3,16,2,1]). Notice
that, due to the nature of distributed systems, the model needs to consider both
probabilistic and nondeterministic behaviour: probabilities allow to model ran-
domization (including the likelihood of secrets) while nondeterminism expresses
the interleaving of different processes, abstraction of decision mechanisms, and
model underspecification among other things.

In this paper, we focus in quantitative reachability properties, i.e. those that
assert about the probability of reaching some states of particular interest, be it
because it is desirable or undesirable. In particular, we are interested in accu-
rately verifying security properties of distributed system where private actions
and interactions between some components are effectively hidden from others.
In this setting, we consider a system secure if the probability of reaching states
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Fig. 1. Output actions are suffixed with “!” and input actions are suffixed with “?”.
The set of actions of each component are only those depicted in the component. To
ensure input enabledness, all states are assumed to have self-loops labeled with the
inputs others than those already depicted leaving the state. For every final state s we
also omitted the transition s⇒ μ with μ(s) = 1.

where these properties are violated is between certain known bounds. For exam-
ple, in an anonymous message exchanging protocol, we would like to verify that
the probability of guessing the anonymous sender of a message is not greater
than the probability of guessing the sender by chance alone.

Probabilistic model checking is –in principle– adequate to achieve this. How-
ever, traditional analysis techniques do not necessarily provide results reflecting
the security guarantees of the modeled systems: they only provide pessimistic
over-approximations for the actual probability of the property. This is due to
the fact that traditional techniques consider all possible resolutions of nondeter-
minism [4]. To understand the problem we present an example that we will use
along the paper. Consider a protocol where a client Cl chooses randomly one out
of two available service providers Sa and Sb (see Fig. 1). This component asks for
service with an encrypted message (a1 or b1, depending on the chosen provider).
To misguide possible attackers it also interchanges a dummy (encrypted) mes-
sage with the other provider (a0 or b0). Once the provider receives any of the
notifications it acknowledges reception of the message. If the encryption scheme
is secure, the selection and its outcome should be known only by the client and
the providers. Any other component of the system (in particular, the adversary
A) should not be able to infer it with certainty.

Resolution of nondeterminism is done by the so called schedulers which are
functions that select the next step based on the past execution of the system.
Traditional probabilistic model checking will consider the scheduler that, when-
ever enabled, selects action ga1 (for “guess Sa got 1”) if action a1 appears in the
execution, and it selects gb1 (“guess Sb got 1”) if b1 appears in the execution.
This is a valid scheduler that lets the adversary A guess with probability 1.

One of the reasons this happens is because the resolution of the local nonde-
terminism in A is made using global knowledge. This problem has been recently
observed by several authors [9,13,14,11] who proposed to restrict to the so called
distributed schedulers. Distributed schedulers enforce that local decisions of the
processes are based only on local knowledge [14]. However, nondeterminism
originated by interleaving in parallel composition is still resolved using global
knowledge in this new framework. Since distributed schedulers were not defined
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in a context were secrecy was important, actions a1 and b1 are considered differ-
ent from a0 and b0. As they are part of the global knowledge, the resolution of the
interleaving nondeterminism can be different in each case. This may lead to some
unrealistic leakage of information. We present an example in detail in Sec. 3.

In this paper we adapt distributed schedulers to deal also with secrecy, pre-
sented as an equivalence class on local states and actions. Therefore, two actions
in the same equivalence class can only be distinguished locally in components
with the appropriate clearance but cannot be distinguished globally.

In general, reachability under distributed schedulers is an undecidable prob-
lem [13]. However, if restricted to reachability properties where the goal states
should be reached within a given number of steps (i.e. (time-)bounded reachabil-
ity properties), the problem becomes decidable [5]. This is done by reducing the
bounded reachability problem to a polynomial optimization problem. In this pa-
per we adapt and improve the algorithm of [5] to work on the class of distributed
schedulers under secrecy. As an example of the application to information hiding,
we automatically verify the anonymity property in a case study.

2 Modeling Probabilistic Distributed System

To assert or refute a quantitative reachability property about a distributed sys-
tem, we first construct a model of each component of the system. The full model
is constructed by composing these submodels, considering possible interactions
between the components and all possible interleaving. Each component is de-
scribed with a state-based model that combines discrete-time Markov chains and
labeled transition systems. In this work we use a restricted variant of interactive
probabilistic chains (IPCs) [10,5], a formalism where probabilistic transitions
and action-labelled transitions are handled orthogonally.

Definition 1. A basic I/O-IPC is a tuple 〈S,A,→,⇒, ŝ〉 where S is a finite set
of states with initial state ŝ ∈ S, A = AI ∪AO is a finite set of actions consisting
of disjoint sets of input actions (AI) and output actions (AO), → ⊆ S × A × S
is the set of interactive transitions, and ⇒ : S ⇀ Dist (S) is a partial function
representing probabilistic transitions. We require that the I/O-IPC is (i) input
enabled, i.e. for all s ∈ S and a ∈ AI , there exists s′ ∈ S s.t. s

a−→ s′; and
(ii) action deterministic, i.e. for all s ∈ S and a ∈ A, s

a−→ s′ and s
a−→ s′′

implies s′ = s′′.

We use the shorthand notation s
a−→ s′ for an interactive transition (s, a, s′) ∈

→, s⇒ μ for (s, μ) ∈ ⇒ and s �→ if there is no a ∈ AO and s′ such that s
a−→ s′.

The requirement of input action determinism is present in this work to simplify
presentation. The general model can be treated just like in [14].

Parallel Composition. Distributed I/O-IPC are obtained by composing basic
ones through the parallel composition. We define it simultaneously on a finite
set of basic I/O-IPC. To avoid unnecessary technicalities, we require output
isolation, i.e. no output action can be performed by more than one basic process.
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Similarly to action determinism, the framework may be extended to models
without output isolation (see [14,12]).

Definition 2. A finite set of basic I/O-IPCs Pi = 〈SPi , APi ,→Pi ,⇒Pi , ŝPi〉,
1 ≤ i ≤ n, is composable if AO

Pi
∩ AO

Pj
= ∅, ∀i �= j. Provided that {Pi}ni=1 is

composable, the parallel composition C = P1 ‖ · · · ‖ Pn is defined by the I/O-IPC〈
SC , A

I
C ∪ AO

C ,→C ,⇒C , ŝC
〉
, where SC = SP1×· · ·×SPn and ŝC = (ŝP1 , . . . , ŝPn)

is the initial state; AO
C :=

⋃n
i=1 A

O
Pi

, AI
C :=

⋃n
i=1 A

I
Pi
\ AO

C and the transition
relations are defined according to the following rules:

{si a−→Pi s
′
i | a ∈ APi} ti = if (a ∈ APi) then s′i else si

(s1, . . . , sn)
a−→C (t1, . . . , tn)

(1)

{si ⇒Pi μi ∧ si �→ | 1 ≤ i ≤ n}
(s1, . . . , sn)⇒C μ1 × · · · × μn

(2)

with μ1 × · · · × μn denoting the product distribution on SP1 × · · · × SPn defined
by (μ1 × · · · × μn) (s1, . . . , sn) =

∏n
i=1 μi (si) for all si ∈ SPi .

Notice that composability guarantees that at most one processes performs an
output action when synchronizing according to rule (1). Moreover, every other
process that knows the action will perform the step because of input enabledness.

We consider that output transitions are immediate and probabilistic transi-
tions are timed. We assume that immediate transitions always take precedence
over timed transitions. This assumption is known as maximal progress [17] and
it is reflected on rule (2). Following this criteria, a state is called vanishing if
at least one output-labeled transition is enabled on it. If only probabilistic or
input-labeled transitions are enabled in a state then it is called tangible. The
introduction of maximal progress may induce an infinite sequence of consecutive
output-labeled transitions. We consider this as Zeno behaviour and require that
composed models do not exhibit this type of behaviour. We will also assume that
composed systems are closed, that is, its set of input actions is empty. Dealing
with open systems in our context demands some assumption on the environment
behaviour. In any case, such assumption (even the most general) can be encoded
in one or more extra components such that the whole system is finally closed.

Resolving Nondeterminism through Schedulers. To obtain the probabil-
ity of reaching some states, nondeterministic choices between enabled transitions
have to be resolved. This is achieved by the so called schedulers (also adversaries
or policies). A scheduler is a function mapping each partial execution (or finite
path) to a distribution on actions enabled in the last state of the execution.

Let P = 〈S,A = AI ∪ AO,→, ⇒ , ŝ〉 be an I/O-IPC. We define enab(s) =

{a ∈ AO | ∃s′. s a−→ s′}, the set of output actions enabled in s.
A finite path of P is a sequence σ = s0a0s1a1 · · · an−1sn with s0 = ŝ, where

states and either actions or distributions alternate, that is, for i = 0, . . . , n− 1:
(i) ai ∈ enab(si) and si

ai−→ si+1, or (ii) ai ∈ Dist (S), si ⇒ ai, ai (si+1) > 0,
and enab (si) = ∅. The last state sn is denoted by last (σ), and length (σ) = n
is the total number of transitions (interactive or probabilistic) along the path.
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Moreover, we denote enab (last (σ)) as enab (σ) for finite path σ. An infinite
path of P is an infinite sequence s0a0s1a1 · · · alternating states and actions or
distributions satisfying the previous condition. We denote with Paths (P) and
Pathsfin (P) the set of paths and finite paths of P , respectively.

Definition 3. A scheduler for P is a function ηP : Pathsfin (P) → Dist (A)
such that ηP (σ)(enab(σ)) = 1 (that is ηP(σ)(a) > 0 implies a ∈ enab(σ)).

Probability Measure Induced by a Scheduler. When all the nondetermin-
istic choices in an I/O-IPC are resolved by a scheduler the resulting system is
a (possibly infinite) Markov chain. Hence it is possible to define a probability
measure over the sets of infinite paths of the model.

For the sake of simplicity we will assume that the I/O-IPC does not contain
tangible states which do not have an outgoing probabilistic transition. That is,
for every tangible state s,⇒(s) is defined. If this is not the case, we just complete
it by extending ⇒ with the tuple (s, δs) where δs(s) = 1.

We first define the σ-algebra on the set of infinite paths of the I/O-IPC and
then the probability measure on this σ-algebra induced by a given scheduler.
The cylinder induced by the finite path σ is the set of infinite paths σ↑ = {σ′ ∈
Paths (P) | σ′ is infinite and σ is a prefix of σ′}. Define F to be the σ-algebra
on the set infinite paths of P generated by the set of cylinders.

Definition 4. Let η be a scheduler for P. The probability measure induced by
η on F is the unique probability measure Pr η such that, for any state s ∈ S, any
action a ∈ A and any distribution μ ∈ Dist(S):

Pr η(s
↑) = 1 if s = ŝ

Pr η(σas
↑) = Pr η(σ

↑) · η(σ)(a) if enab(σ) �= ∅ and last(σ)
a−→ s

Pr η(σμs
↑) = Pr η(σ

↑) · μ(s) if enab(σ) = ∅ and last(σ)⇒ μ

Pr η(σ
↑) = 0 in any other case

By the assumption that tangible states are in the domain of ⇒, enab (σ) = ∅
implies that last (σ)⇒ μ for some μ. Hence, Pr η is indeed a probability measure.

Time-bounded reachability properties demand that the system reaches a goal
state from a given set G within a given time t. In our case, the notion of time
is given by each probability step. So, for any finite path σ, we let time(σ) be
the number of probability steps appearing on σ. Then, given a scheduler η for
P , the probability of reaching a goal state in G within time t, can be computed
by Pr η(♦≤tG) = Pr η(

⋃
{σ↑ | time(σ) ≤ t ∧ last(σ) ∈ G}). Let Ḡ be the set of

paths σ ∈ Pathsfin (P) such that last(σ) ∈ G and for any proper prefix σ̂ of σ,
last(σ̂) �∈ G. Notice that for every σ′ ∈ Paths (P) reaching a state in G, there
exists a unique σ ∈ Ḡ such that σ′ ∈ σ↑. Then, we have that

Pr η
(
♦≤tG

)
= Pr η

(⊎{
σ↑ | time(σ) ≤ t ∧ σ ∈ Ḡ

})
=
∑

σ∈Ḡ
time(σ)≤t

Pr η(σ
↑). (3)

The model checking problem on nondeterministic probabilistic systems is
focused on finding worst case scenarios. Therefore, it aims to find the maxi-
mum or minimum probability of reaching a set of goal states ranging over a
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particular class of schedulers. That is, if K is a class of schedulers (i.e. a set of
all schedulers satisfying some given condition), then we are interested on finding
supη∈K Pr η(♦≤tG) or infη∈K Pr η(♦≤tG).

Distributed Schedulers. Not all resolutions of nondeterminism are appro-
priate in a distributed setting. There are “almighty schedulers” that allow a
component to guess the outcome of a probabilistic choice of a second compo-
nent even when they have no communication at all (not even indirectly). The
reader is referred to, e.g., [14,12] for a discussion. Therefore, we restrict to the
class of distributed schedulers [14]. This leads to a more realistic resolution of
nondeterminism, but unfortunately it also renders the model checking problem
undecidable in general [13,12].

Distributed schedulers consider a notion of local knowledge of each component
which is obtained by partially observing the global system behaviour. Thus, a
component can only see the global execution through its local states and the
actions it performs. Hence, two different global execution may appear the same
to a single component. We implement this with a projection function.

From now on we will consider a composed model C = P1 ‖ · · · ‖ Pn =
〈SC , AC ,→C ,⇒C , ŝC〉, where each Pi = 〈Si, Ai = AI

i ∪AO
i ,→i,⇒i, ŝi〉. For every

path σ ∈ Paths (C), the projection σ [Pi] ∈ Paths (Pi) of σ over Pi is defined as:

(s1, . . . , sn) [Pi] = si

σa(s1, . . . , sn) [Pi] = if a ∈ Ai then (σ [Pi])asi else σ [Pi]

σ(μ1 × · · · × μn)(s1, . . . , sn) [Pi] = (σ [Pi])μisi

In a (composed) state with enabled interactive transitions, the nondetermin-
ism is resolved in two phases. First, a component is chosen among all enabled
components. This choice may be probabilistic, and it is performed by the so
called interleaving scheduler. Afterwards, the chosen component decides which
transition to perform among all its enabled output transitions. This local choice
is resolved by a local scheduler taking into account only local knowledge. Hence
they are functions on local executions which are obtained by properly project-
ing the global executions. Therefore, a local scheduler is a scheduler as defined
in Def. 3, only that its domain is the set of all finite paths of the local compo-
nent. An interleaving scheduler is defined on finite paths of the composed system
(hence, global executions) as follows.

Definition 5. A function I : Pathsfin (C) → Dist ({P1, . . . ,Pn}) is an inter-
leaving scheduler if for all σ ∈ Pathsfin (C), I (σ) (Pi) > 0 ⇒ enab (σ [Pi]) �= ∅.

A distributed scheduler is obtained by properly composing the interleaving
schedulers with all local schedulers.

Definition 6. A function ηC : Pathsfin (C) → Dist(AC) is a distributed sched-
uler if there are local schedulers ηP1 , . . . , ηPn and an interleaving scheduler I,
such that, for all σ ∈ Pathsfin (C) with enab(σ) �= ∅ and for all a ∈ AC:
ηC(σ)(a) =

∑n
i=1 I(σ)(Pi) · ηPi(σ [Pi])(a).

Since at most one component can output action a, last equation reduces to:
ηC(σ)(a) = I(σ)(Pi) · ηPi(σ [Pi])(a) whenever a ∈ AO

Pi
.
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It has been shown that distributed scheduler as defined above still permeates
information from one component to others with no apparent reason (see [14,12]).
In essence, the problem is that the interleaving scheduler may use information
from a component P1 to decide how to pick between components P2 and P3.
Therefore, we need to restrict the set of possible interleaving schedulers. We will
require that, if neither components P2 and P3 can distinguish execution σ from
σ′, the interleaving scheduler has to consider the same relative (i.e. conditional)
probabilities for choosing P2 or P3 after both paths.

Definition 7. A scheduler η of C is said to be strongly distributed if it is dis-
tributed and for every two components Pi,Pj, and σ, σ′ ∈ Pathsfin (C) the inter-
leaving scheduler I of η satisfies that, whenever (i) σ [Pi] = σ [Pj] and σ′ [Pi] =
σ′ [Pj ], and (ii) I(σ)(Pi)+I(σ)(Pj) �= 0 and I(σ′)(Pi)+I(σ′)(Pj) �= 0, it holds
that I(σ)(Pi)

I(σ)(Pi)+I(σ)(Pj)
= I(σ′)(Pi)

I(σ′)(Pi)+I(σ′)(Pj)
.

The previous restriction generalizes to I(σ)(Pj)∑
i∈I I(σ)(Pi)

=
I(σ′)(Pj)∑
i∈I I(σ′)(Pi)

, where I ⊆
{1, . . . , n} and j ∈ I [14, Theorem 3.4].

3 Distributed Schedulers in Systems with Secrecy

Recall the example of Fig. 1 and consider the following paths:

σa = 〈c0, sa0, sb0, ad0〉μ 〈c1, sa1, sb1, ad1〉 a1 〈c3, sa2, sb1, ad1〉 b0 〈c5, sa2, sb3, ad1〉
σb = 〈c0, sa0, sb0, ad0〉μ 〈c2, sa1, sb1, ad1〉a0 〈c4, sa3, sb1, ad1〉 b1 〈c6, sa3, sb2, ad1〉
σ′
a = σa acka 〈c5, sa4, sb3, ad1〉 σ′

b = σb ackb 〈c6, sa3, sb4, ad1〉

with μ(〈c1, sa1, sb1, ad1〉) = μ(〈c2, sa1, sb1, ad1〉) = 1
2 .

σa and σb are the only two possible paths of the system in which Cl executes
all its outputs before any other component. σ′

a (resp., σ′
b) is the path in which

server Sa (resp., Sb) acknowledge reception after both servers were contacted by
the client Cl. Define the interleaving scheduler I by I(σa)(Sa) = I(σb)(Sb) =
I(σ′

a)(A) = I(σ′
b)(A) = 1, and I(σ)(Cl) = 1 if σ is a prefix of σa or σb. The

definition of I in any other case is not relevant as long as it satisfies the condition
of Def. 7. Then I satisfies in general the condition of Def. 7. (Notice, in particular,
that σa [Sa] �= σb [Sa] and σa [Sb] �= σb [Sb].)

Define the local scheduler for the adversary A by ηA(σ acka ad1)(ga1) =
ηA(σ ackb ad1)(gb1) = 1. I.e., the scheduler chooses with probability 1 to guess
that server Sa has being selected (action ga1) if the last acknowledgement it
observes comes from Sa (action acka). Instead, if Sb is the last to acknowledge,
the scheduler choses to guess Sb. Note that all other local schedulers are trivial.

Let η be the strongly distributed scheduler obtained by properly combining
the previous interleaving and local schedulers. It is not difficult to verify that

Pr η

(
(σ′

a ga1 〈c5, sa4, sb3, ad2〉)↑ ∪ (σ′
b gb1 〈c6, sa3, sb4, ad3〉)↑

)
=

= Pr η(σ
′
a
↑) · I(σ′

a)(A) · ηA(σ′
a [A])(ga1) + Pr η(σ

′
b
↑) · I(σ′

b)(A) · ηA(σ′
b [A])(gb1)

= Pr η(σ
′
a
↑) + Pr η(σ

′
b
↑) = 1

2
+ 1

2
= 1.
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Notice that the adversaryA guesses right whenever the system reaches a state of
the form 〈c5, ∗, ∗, ad2〉 or 〈c6, ∗, ∗, ad3〉. Therefore, the previous calculation states
that the adversary guesses the server chosen by the client with probability 1.

It is nonetheless clear that there is no apparent reason for the adversary A
to guess right all the time. In fact, scheduler ηA is defined in a pretty arbi-
trary manner. The correct guessing is actually a consequence of the interleaving
scheduler I that let the chosen server acknowledge first and immediately after
it passes the control to the adversary A (hence making A guess through the
arbitrary scheduler ηA).

Observe that the interleaving scheduler of the previous example decides which
is the next enabled component based on the outcome of a secret. However, a se-
cret should not be directly observed by the environment. Hence, the interleaving
should not be able to distinguish action a1 from a0 and neither b1 from b0. Sim-
ilarly, internal states of a component that only differ on the value of confidential
information should not influence the decision of the interleaving scheduler.

Therefore the notion of a valid interleaving scheduler of Def. 7 needs to be
strengthen. In the new definition, the interleaving scheduler has to consider the
same relative (i.e. conditional) probabilities for two components if both of them
show the same behaviour to the environment. By “showing the same behaviour”
we mean the projected traces are the same after hiding secret information.

The way in which we have chosen to hide information is through an equiva-
lence relation. Thus, two actions that are equivalent share a secret and should
not be distinguished by the environment, and similarly for states. This idea of
indistinguishability is local to each component. So for each component Pi we
consider an equivalence relation ∼Ai on actions and another equivalence rela-
tion ∼Si on states. In our example, we need to define equivalence relations for
Cl, Sa, and Sb such that:

a1 ∼ACl
a0

b1 ∼ACl
b0

a1 ∼ASa
a0

b1 ∼ASb
b0

c1 ∼SCl
c2

c3 ∼SCl
c4

c5 ∼SCl
c6

sa2 ∼SSa
sa3

sa4 ∼SSa
sa5

sb2 ∼SSb
sb3

sb4 ∼SSb
sb5

This relations can be lifted to an equivalence relation on paths as expected:
if ∼Si ⊆ Si × Si and ∼Ai ⊆ Ai ×Ai are equivalence relations, we define ∼Pi ⊆
Paths (Pi)× Paths (Pi) recursively by

s ∼Pi s′ ⇔ s ∼Si s
′

σas ∼Pi σ′a′s′ ⇔ σ ∼Pi σ
′ ∧ a ∼Ai a′ ∧ s ∼Si s

′

σμs ∼Pi σ
′μ′s′ ⇔ σ ∼Pi σ

′ ∧ s ∼Si s
′

Notice that in our example, σa [Sa] ∼Sa σb [Sa], σa [Sb] ∼Sb
σb [Sb], and

σa [Cl] ∼Cl
σb [Cl]. Therefore, under some secrecy assumptions, the environment

is not able to distinguish the local execution of Sa under σa from the local ex-
ecution under σb (and similarly Sb and Cl). Hence, the interleaving scheduler
should not make a difference on the relative probabilities of choosing Sa or Sb.
Therefore, we define distributed scheduler under secrecy as follows.

Definition 8. Let C = P1 ‖ · · · ‖ Pn and let ∼Si⊆ Si × Si,∼Ai⊆ Ai × Ai,
with i = 1, . . . , n, be equivalence relations. A scheduler η of C is a distributed
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scheduler under secrecy if it is distributed and, for every I ⊆ {1, . . . , n}, and
σ, σ′ ∈ Pathsfin (C), the interleaving scheduler I of η satisfies that, whenever

(i) σ [Pi] ∼Pi σ′ [Pi] for all i ∈ I,
(ii)

∑
i∈I I(σ)(Pi) �= 0 and

∑
i∈I I(σ′)(Pi) �= 0, and

(iii) enab (σ [Pi]) �= ∅ ⇔ enab (σ′ [Pi]) �= ∅, for all i ∈ I,

it holds that, for every j ∈ I, I(σ)(Pj)∑
i∈I I(σ)(Pi)

=
I(σ′)(Pj)∑
i∈I I(σ′)(Pi)

. We let DSS denote
the set of all distributed scheduler under secrecy.

Just like for the case of strongly distributed schedulers, it suffices to consider
a pair of components for the restriction of I (i.e., sets I s.t. #I = 2). We choose
instead this more general definition because it plays an important role later.

Conditions (i) and (ii) already appear in the definition of strongly distributed
schedulers (see Def. 7) only that (i) is consider under equality rather than the
secrecy equivalences ∼Pi . Condition (iii) is new here and not needed in Def. 7.
This has to do with the fact that, though σ [Pi] and σ′ [Pi] may appear the
same to the environment due to hidden secrets, they may be different executions
of Pi and hence enable different sets of output actions. This is not the case for
Def. 7 in which item (i) requires that σ [Pi] = σ′ [Pi]. In fact, strongly distributed
schedulers are a particular case of distributed schedulers under secrecy in which
there is no secret (i.e. ∼Ai and ∼Si are the identity relation).

Returning to our running example, notice that the interleaving scheduler
defined at the beginning of this section is not a valid interleaving scheduler
for a distributed scheduler under secrecy. In effect, notice that (i) σa [Sa] ∼Sa

σb [Sa] and σa [Sb] ∼Sb
σb [Sb], (ii) I(σa)(Sa) + I(σa)(Sb) = 1 and I(σb)(Sa) +

I(σb)(Sb) = 1 (since I(σa)(Sa) = I(σb)(Sb) = 1), and (iii) enab (σa [Sa]) =
enab (σb [Sa]) = {acka} and enab (σa [Sb]) = enab (σb [Sb]) = {ackb}; hence con-
ditions (i), (ii), and (iii) from Def. 8 hold. However, I(σa)(Sa)

I(σa)(Sa)+I(σa)(Sb)
= 1 �=

0 = I(σb)(Sa)
I(σb)(Sa)+I(σb)(Sb)

, contradicting the requirement on I in Def. 8.

4 Parametric Characterization

��
ad0
1 ��
ad1

acka? �� ackb?��
ad2

acka? �� ackb?��
ad3

ga1!

����
� gb1!

�
���

ad4 ad5

Fig. 2. A

A scheduler resolves all nondeterministic choices of an I/O-
IPC thorough probabilistic choices. Therefore, it defines an
(infinite) Markov chain which is a particular instance of the
original I/O-IPC where all nondeterminism has been replaced
by a probabilistic transition.

To illustrate this, consider our example of Fig. 1 with com-
ponent A replaced by the one in Fig. 2 (which we adopt for
simplicity). The resolution through a scheduler of the com-
posed system would look very much like the tree of Fig. 3,
except that variables xi should be omitted and variables yi
should be interpreted as probability values in the interval [0, 1]
properly defining a probabilistic distribution (e.g., y1 = 1 and
y3 + y4 = 1). However, if variables yi are not interpreted we
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Fig. 3. Parametric scheduler η. States are the obvious tuples. Underlined states are
guessing states.

could think of such parametric tree as a symbolic representation of any possible
scheduler. (Keep ignoring xi’s by the time being.)

The probability of path σ = s0 μ s1 a1 s3 b0 s6 acka s10 ackb s16 can be calcu-
lated using Def. 4 for the symbolic scheduler: Pr (σ↑) = 1

2 · y1 · y4 · y8 · y14.
To construct a distributed scheduler under secrecy, we need to consider the

interleaving scheduler and the local schedulers. Notice that in our example, only
the local scheduler of A is relevant. In the parametric scheduler η of Fig. 3,
variables yi’s correspond to the probabilistic choices of the interleaving scheduler,
while variables xj ’s correspond to the probabilistic choices of the local scheduler
of A (all other local schedulers only have trivial choices and hence we omit
them). The multiplication of variables yi’s and xj ’s in the last step corresponds
to the composition of the interleaving scheduler with the local scheduler in order
to define the distributed scheduler η as it is in Def. 6 (which extends to Def. 8).
Notice that, contrarily to the fact that variables yi’s are all different, x1, x2, x3,
and x4 repeat in several branches. This has to do with the fact that some local
paths ofA are the same for different paths of the composed system. For example,
the choice of the local scheduler of A at states s15, s16, s19, and s20 is determined
by the same local path ad0 μ

′ ad1 acka ad2 ackb ad3, with μ′(ad1) = 1. (Notice
that, e.g. (s0 μ s1 a1 s3 acka s5 b0 s9 ackb s15) [A] = ad0 μ

′ ad1 acka ad2 ackb ad3.)
Following Def. 4 and equation (3), the parametric probability of reaching a

guessing state (which are underlined in Fig. 3), is given by the polynomial
1
2
· y1 · y3 · y7 · y13 · y19 ·x1 + 1

2
· y1 · y4 · y8 · y14 · y20 ·x1 + 1

2
· y1 · y4 · y9 · y15 · y21 ·x3 +

1
2
· y2 · y5 · y10 · y16 · y22 · x4 + 1

2
· y2 · y5 · y11 · y17 · y23 ·x2 + 1

2
· y2 · y6 · y12 · y18 · y24 ·x2 .

Maximizing (resp. minimizing) the previous polynomial under the obvious con-
straints (each variable takes a value within [0, 1], and they define proper prob-
ability distribution, e.g. y3 + y4 = 1), yields to the maximum (resp. minimum)
probability under distributed schedulers. This was presented in [5].

However, this is not sufficient to characterize distributed schedulers under se-
crecy. Notice that, for σa = s0μs1a1s3b0s6 and σb = s0μs2a0s4b1s7 (which are
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the same σa and σb of Sec. 3), and components Sa and Sb, we are under conditions
(i), (ii), and (iii) of Def. 8. Therefore, it should hold that I(σa)(Sa)

I(σa)(Sa)+I(σa)(Sb)
=

I(σb)(Sa)
I(σb)(Sa)+I(σb)(Sb)

. Since I(σa)(Sa) = y8, I(σa)(Sb) = y9, I(σb)(Sa) = y11 and
I(σb)(Sb) = y10, this means that constraint y8

y8+y9
= y11

y10+y11
needs to be con-

sidered in the optimization problem. Similarly, constraints y9

y8+y9
= y10

y10+y11
,

y3

y3+y4
= y6

y5+y6
, and y4

y3+y4
= y5

y5+y6
are also needed.

In the following, we give the formal construction of the optimization problem.
Let Paths≤t (C) = {σ ∈ Pathsfin (C) | time(σ) ≤ t}. We consider the following
set of variables

V =
{
yi
σ | σ ∈ Paths≤t (C) ∧ 1 ≤ i ≤ #C ∧ enab(σ [Pi]) �= ∅

} ∪{
xa
σ[Pi]

| σ ∈ Paths≤t (C) ∧ 1 ≤ i ≤ #C ∧ a ∈ enab(σ [Pi])
} ∪{

wj,I
f | I ⊆ {1, . . . ,#C} ∧ j ∈ I ∧ f : I → Pathsfin ∧

∃σ ∈ Paths≤t (C) : ∀i ∈ I : enab(σ [Pi]) �= ∅ ∧ f(i) = [σ [Pi]]∼i

} (4)

Variables yiσ and xa
σ[Pi]

are associated to the interleaving and local schedulers
respectively, and we expect that I(σ)(i) = yiσ and ηPi(σ [Pi])(a) = xa

σ[Pi]
. Vari-

ables wj,I
f are associated to the restriction of the interleaving scheduler in Def. 8.

We expect that wj,I
f =

I(σ)(Pj)∑
i∈I I(σ)(Pi)

=
yj
σ∑

i∈I yi
σ

whenever f(i) = [σ [Pi]]∼i
for all

i ∈ I. Notice that, if there is another σ′ such that f(i) = [σ′ [Pi]]∼i
for all i ∈ I,

then also wj,I
f =

I(σ′)(Pj)∑
i∈I I(σ′)(Pi)

. This ensure the desired equality.
In our example of Fig. 3, if σ = s0 μ s1 a1 s3 b0 s6, then y8 and y9 corre-

spond respectively to ySa
σ and ySb

σ . If σ̂ = ad0 μ
′ ad1 acka ad2 ackb ad3, then x1

and x2 correspond respectively to xga1

σ̂ and xgb1
σ̂ . Moreover, notice that if σ′ =

s0 μ s1 a1 s3 b0 s6 acka s10 ackb s16 and σ′′ = s0 μ s1 a1 s3 acka s5 b0 s9 ackb s15,
then xga1

σ̂ , xga1

σ′ [A], and xga1

σ′′ [A] are the same variable.
Let G be the set of goal states and let t be the time bound of the time-

bounded reachability property under study. Let Paths≤t
G (C) = Paths≤t (C) ∩ Ḡ.

The function P that assigns a polynomial term with variables in V to each path
in Paths≤t

G (C), is defined by

P(ŝC) = 1

P(σαs) =

{
P(σ) · yi

σ · xα
σ[Pi]

if enab(σ) �= ∅ ∧ α ∈ AO
Pi
∧ last(σ)

α−→ s

P(σ) · α(s) if enab(σ) = ∅ ∧ last(σ)⇒ α

P(σ) = 0 in any other case

(5)

Then, following (3), the objective polynomial of the optimization problem is∑
σ∈Paths≤t

G (C) P(σ) (6)
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and it is subject to the following constraints:

0 ≤ v ≤ 1 if v ∈ V (7a)∑
a∈A xa

σ[Pi]
= 1 if σ ∈ Paths≤t (C) , 1 ≤ i ≤ #C, A = enab (σ [Pi]) (7b)∑

i∈I y
i
σ = 1 if σ ∈ Paths≤t (C) , I = {i | 1 ≤ i ≤ #C, enab(σ [Pi]) �= ∅} (7c)

wj,I
f (

∑
i∈I y

i
σ) = yj

σ if

{
σ ∈ Paths≤t (C) , I ⊆ {i | 1≤i≤#C, enab(σ [Pi]) �= ∅} ,
j ∈ I, ∀i ∈ I : enab(σ [Pi]) �= ∅ ∧ f(i) = [σ [Pi]]∼i

(7d)

Equations (7a–7c) ensure that the probabilisitic choices of the local and interleav-
ing schedulers are well defined. Equation (7d) is a rewriting of wj,I

f =
yj
σ∑

i∈I yi
σ

to
avoid possible division by 0. (Notice that, when

∑
i∈I y

i
σ = 0, the constraint be-

comes trivially valid.) These constraints encode the restriction on the interleaving
scheduler. In effect, let σ and σ′ be such that, for all i ∈ I, σ [Pi] ∼Pi σ′ [Pi],
enab (σ [Pi]) �= ∅ and enab (σ′ [Pi]) �= ∅. Then, equations wj,I

f (
∑

i∈I y
i
σ) = yjσ

and wj,I
f (
∑

i∈I yiσ′) = yjσ′ , with f(i) = [σ [Pi]]∼i
= [σ′ [Pi]]∼i

, are present in the

constraints and hence yj
σ∑

i∈I yi
σ
=

yj

σ′∑
i∈I yi

σ′
.

We have the following theorem, whose proof we omit as it follows closely the
proof of [5, Theorem 2].

Theorem 1. Time-bounded reachability for a distributed I/O-IPC C under the
class DSS is equivalent to solve the polynomial optimization problem with objec-
tive function in (6) under constraints (7). The result of maximizing (resp. min-
imizing) polynomial (6) is supη∈DSS Pr η(♦≤tG) (resp. infη∈DSS Pr η(♦≤tG)).

5 Implementation

We developed a prototypical tool to produce the optimization problem. It takes
as input the model of each component of the system (as transitions between
states with the initial state and equivalence classes indicated); a list of goal
states G and a time-bound t.

The tool computes elements of Paths≤t (C) from the composed initial state
following rules (1) and (2). While generating paths, new variables and constraints
are defined if the conditions of Eq. (7) hold. Also the expression P of the path
is determined according to Eq. (5). This process is iterated for each generated
path as long as its last state is not in G and it has successors in Paths≤t (C), i.e.,
as long as the enabled transitions also lead to a finite path within the requested
time-bound. When all the elements of Paths≤t

G (C) are identified, the tool exports
the constrained optimization problem. For an exact solution, we set a quantifier
elimination problem over the real domain as an input for Redlog1 (within the
Reduce computer algebra system) or QEPCAD2. For a numeric solution, we
generate source code for compiling against the IPOPT3 library.
1 http://redlog.dolzmann.de
2 http://www.usna.edu/cs/~qepcad
3 https://projects.coin-or.org/Ipopt

http://redlog.dolzmann.de
http://www.usna.edu/cs/~qepcad
https://projects.coin-or.org/Ipopt
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The complexity of the algorithm is clear: the optimization problem grows ex-
ponentially with the number of components in the system and the degree of local
nondeterminism. Therefore it is essential to find ways to reduce it to a smaller
equivalent optimization problem. Curiously enough, the fact of considering ar-
bitrary summations in the constraints for the interleaving scheduler (see Def. 8)
rather than only binary, permits a drastic reduction on the number of variables
and constraints as well as the size and degree of the objective polynomial.

Notice that if I = {i | enab(σ [Pi])} in (7d), we know by (7c) that
∑

i∈I y
i
σ = 1.

As a consequence, wj,I
f = yjσ for all j ∈ I. If there is another σ′ such that

I = {i | enab(σ′ [Pi])} and f(i) = [σ [Pi]]∼i
for all i ∈ I, then wj,I

f = yjσ′ = yjσ
for all j ∈ I. This only simplification has allowed us to eliminate a large number
of variables and, more importantly, non-linear constraint introduced by (7d).

Moreover, this unification of variables reduces also the size and degree of the
polynomial. Often, after substitution, we find out that by factorizing, we can
single out

∑
i∈I y

i
σ which, when I = {i | enab(σ [Pi])}, equals to 1. This reduces

the number of terms in I − 1 and the degree of these terms by 1.

Case Study: The Dining Cryptographers Protocol. As a case study we
automated the verification of sender untraceability in dc-net, a protocol inspired
on a solution for the dining cryptographers problem [8]: Three cryptographers
are having dinner at a restaurant while the waiter informs that the bill has been
paid anonymously. If one of the cryptographers is paying they want to respect
his anonymity, but they like to know if their boss is paying. Briefly, the protocol
goes as follows. Each participant toss a fair coin and share the outcome with his
neighbour at the left, then he publicly announces if his outcome and the one of
the neighbour are the same, but if the participant is paying, he announces the
opposite. If the number of “different” announces is odd, one of the participants
is paying but the others cannot distinguish which one.

This protocol has been analyzed a large number of times with different tech-
niques. It is noticeable that most of the proofs, if not all (in particular model-
based fully automated proofs), fix the order in which the participants make their
announcements. Most generally, this has to do precisely with the inability of the
techniques to control the arbitrariness of the scheduler. The model we verify
does not impose such restrictions. We anyway prove that the protocol preserves
anonymity when the participants’ announcement do not follow a fixed order.

We consider the case of three cryptographers C1, C2 and C3. We fix the
probability of the boss paying in 1

2 . Otherwise, the probability of any of the
participants paying is uniformly distributed ( 16 each). We want to know what
is the probability Pguess that participant C3 correctly guesses if C1 or C2 have
paid, knowing that one of them has actually paid. We will then calculate the
maximum and minimum probability of reaching the set of states G = {s |
C3 guesses Ci and Ci paid, i = 1, 2}, say P+

♦G and P−
♦G, respectively. Knowing

that the probability that C1 or C2 have paid is 1
3 , if it turns out that P+

♦G =

P−
♦G = p, the conditional probability that we are looking for is Pguess = p/ 1

3 = 3p.



Security Analysis in Probabilistic Distributed Protocols 195

Indeed, after running our tool, we verified that P+
♦G = P−

♦G = 1
6 . Hence

Pguess =
1
2 , proving that C3 has no better knowledge than previously known (i.e.

that any of C1 or C2 pay with probability 1
2 ). The original system contains 9606

variables, 1348 linear constraints, 16176 nonlinear constraints and the polyno-
mial has 3456 terms and degree 7. After unification of variables the numbers
are 774, 200, 36, 3456, and 7, resp., and after factorization and elimination of
irrelevant variables, numbers reduces to 351, 17, 0, 544, and 5, resp. Given the
complexity of the optimization problem, we were unable to solve it exactly, but
the numerical computation was almost immediate. On an aside note, a similar
verification of our running example was solved using only the simplifications.

6 Concluding Remarks

Related Work. The interest on understanding and verifying probabilistic dis-
tributed systems under the assumption that not all information is shared by all
components has appeared several times before in the literature (e.g. [9,14,11,1]).
We base this work on extending the framework of [12] and the algorithm of [5].

Our ideas about equivalence relations and limiting the interleaving scheduler
based on projections under equivalences are inspired in task-PIOAs [6]. Task-
PIOAs are a variation of probabilistic I/O automata with an equivalence relation
over the set of “controllable actions” of the composed system. The model restrict
to output isolation and action determinism. The set of schedulers they con-
sidered are a combination of a task schedule with a regular total-information
scheduler. The resulting scheduler maps equivalent execution fragments to prob-
ability measures that ensure that equivalent actions receive the same probability
value. This roughly corresponds to our interleaving scheduling under secrecy as-
sumptions. Because of output isolation, no other scheduler is needed. Despite
that [6] provides techniques to analyze time-bounded attacks in Task-PIOA, to
our knowledge, no fully automatic algorithm is provided.

[2] proposes another restricted family of schedulers over tagged probabilistic
automata, a formalism with similar semantics to ours. The actions in composed
systems are “tagged” with the components engaged in the action (or compo-
nents, in case of synchronization). The set of enabled tags in a state is part
of the observable behavior. Then, the scheduler is defined as a function from
observable traces to tags. In this sense, the schedulers are quite like our inter-
leaving schedulers, and no local scheduler is needed. Another restriction is that
they only consider deterministic schedulers (which are strictly less expressive
than randomised schedulers, see [14]). [2] also provides an automatic technique
based on automorphism that check for sufficient conditions to ensure anonymity
in systems whose components do not have internal nondeterminism (comparable
to our output nondeterminism).

A somewhat similar approach is presented in [7] where labels are also used for
the scheduler to resolve the nondeterminism. In this case the scheduler is provided
explicitly as a deterministic component that only synchronizes with the system
through labels. Again randomized schedulers are not considered. A particularity
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of this work is that the “equivalence classes” (which are actually defined by how
labels are associated to actions) can change dynamically.

Conclusion and Further Work. We refined the schedulers of [14] to deal with
information hiding and adapted the technique of [5] to the new setting. Moreover,
the generation of the polynomial optimization problem has been significantly
improved, first by avoiding the generation of the intermediate parametric Markov
chain, and then by adding simplification rules that drastically reduced the size of
the optimization problem. In addition, the connection to numerical tools allow
for effective and rapid calculations. In particular, our technique allowed for the
verification of a more nondeterministic version of the dining cryptographers,
without constraining the ordering of independent actions.

In the future, we propose to revise the synchronisation mechanism. Notice
that, in the running example, adversary A does not observe the communication
of the secret at all. However, it is reasonable that A observes the transmission
of the encrypted secret, that is, A should synchronize with the equivalence class
without knowing which particular action was executed. Another further work
is to study the use of our framework to analize timing attacks, after all it is
already prepared for it. Moreover, by properly bounding the numbers of steps
of the attackers, we may explore the possibility of restricting the computational
complexity of the attack.
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Abstract. The verification of systems for protecting sensitive and confidential
information is becoming an increasingly important issue. Differential privacy
is a promising notion of privacy originated from the community of statistical
databases, and now widely adopted in various models of computation. We con-
sider a probabilistic process calculus as a specification formalism for concurrent
systems, and we propose a framework for reasoning about the degree of differ-
ential privacy provided by such systems. In particular, we investigate the preser-
vation of the degree of privacy under composition via the various operators. We
illustrate our idea by proving an anonymity-preservation property for a variant of
the Crowds protocol for which the standard analyses from the literature are in-
applicable. Finally, we make some preliminary steps towards automatically com-
puting the degree of privacy of a system in a compositional way.

1 Introduction

The most recent developments and usages of information technologies such as data
profiling in databases, or user tracking in pervasive computing, pose serious threats
to the confidential information of the users. For instance, the social networks Twitter
and Flickr carefully protect their user’s data by anonymization, and yet Narayanan and
Smatikov [17] were able to conceive a de-anonymization algorithm which could re-
identify 30% of the people who have accounts in both of them, with only a 12% error
rate. The verification of systems for protecting sensitive and confidential information is
becoming an increasingly important issue in the modern world.

Many protocols for protecting confidential information have been proposed in the
literature. In order to obfuscate the link between the secret and the public information,
several of them use randomized mechanisms. Typical examples are the DCNets [6],
Crowds [19], Onion Routing [23] and Freenet [7]. Another common denominator is
that various entities involved in the system to verify occur as concurrent processes and
present typically a nondeterministic behavior. It is therefore natural and standard to ap-
ply process calculi, and the adaptation of the process-algebraic framework to specify
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and reason about security protocols is an active line of research. See e.g. the CCS ap-
proach [16,9,4]. In this paper, we consider a probabilistic extension of CCS, which we
call CCSp. In addition to the standard parallel composition and nondeterministic choice
of CCS, CCSp provides also a primitive for the probabilistic choice.

Several formalizations of the notion of protection have been proposed in the
literature. Among those based on probability theory, there are strong anonymity and
conditional anonymity [6,13,3] and probable innocence [19]. Different from the pre-
vious notions providing only true-or-false properties, the concepts from Information
Theory [8] based on entropy, notably mutual information and capacity, express the de-
gree of protection in a quantitative way.

Differential privacy [10,12,11] is a promising definition of confidentiality that has
emerged recently from the field of statistical databases. It provides strong privacy guar-
antees, and requires fewer assumptions than the information-theoretical approach. We
say that a system is ε-differentially private if for every pair of adjacent datasets (i.e.
datasets which differ in the data of an individual only), the probabilities of obtaining a
certain answer differ at most by a factor eε. Differential privacy captures the intuitive
requirement that the (public) answer to a query should not be affected too much by
the (private) data of each singular individual. In this paper we consider a version of
differential privacy using a generic notion of adjacency, which provides the basis for
formalizing also other security concepts, like anonymity.

The main contribution of this work is to investigate differential privacy for concurrent
systems in the context of a probabilistic process calculus (CCSp). We present a modular
approach for reasoning about differential privacy, where the modularity is with respect
to the constructs of CCSp. More specifically, we show that the restriction operator,
the probabilistic choice, the nondeterministic choice and a restricted form of parallel
composition are safe under composition, in the sense that they do not decrease the
privacy of a system. Compositionality plays an important role in the construction and
analysis of security systems: Rather than analyzing a complex system as a whole, the
safe constructs allow us to split the system in parts, analyze the degree of privacy of
each part separately, and combine the results to obtain the global degree of privacy.

We illustrate our compositionality results by proving an anonymity-preservation
property for an extension of the Crowds protocol [19]. Crowds is an anonymity protocol
which allows Internet users to perform web transactions without revealing their private
identity. This is achieved by using a chain of forwarders, chosen randomly, rather than
sending the message directly to the final recipient. In the standard Crowds all members
have the same probability of being used as forwarders, which gives the protocol a sym-
metric structure (cf. equations (13-14) in [5]). In practice, however, the protocol can be
asymmetric, because a sender may trust some agents (as forwarders) more than others,
or may prefer those which are geographically closer, or more stable, in order to achieve
a better performance. In this paper, our extension of Crowds consists in allowing each
member to have a set of trusted users to which they can forward the message. This
breaks the symmetry properties of the original protocol, thus making the standard anal-
yses of [19] inapplicable. In contrast, our compositional method gives a simple proof.

Finally, we make some preliminary steps towards automatically computing the de-
gree of privacy of a CCSp process in a compositional way. In this paper, we only
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consider the case of finite processes in which the secret choices are all at the top level.
We leave the general case for future work.

Nowadays differential privacy is widely adopted in many models of computation, for
instance, it has been investigated in the context of a SQL-like language [15], a linear
type system [18], a relational Hoare logic [2], in MapReduce for cloud computing [20],
and in probabilistic labeled transition systems for interactive systems [24]. To the best
of our knowledge, this paper is the first to investigate differential privacy within the
setting of a process algebra.

Summary of Contributions Our contributions are three-fold. We present a modular ap-
proach for reasoning about differential privacy for protocols expressed in a probabilistic
process algebra (CCSp). We apply our compositionality method to prove an anonymity-
preservation property for an extended version of Crowds, i.e. with member-wise trusted
forwarders. We show an algorithm for computing the privacy degree of a finite process.

Plan of the paper In Sections 2 - 4 we review the preliminary notions of CCSp and dif-
ferential privacy. In Section 5 we investigate the compositionality of differential privacy
with respect to CCSp constructs. In Section 6, we apply our compositionality result to
Crowds with trust. In Section 7, we present the algorithm for computing the degree of
privacy. Finally, Section 8 and 9 discuss further related work and conclude. Detailed
proofs of the theorem in Section 5 can be found in the full version of this paper [25].

Acknowledgments The author gratefully acknowledges the contributions of Catuscia
Palamidessi and Kostas Chatzikokolakis. Discussions with them helped the author to
substantially improve the paper.

2 Preliminaries

2.1 Probabilistic Automata

We recall the formalism of probabilistic automata [22], to be used as the operational
semantics for the probabilistic CCS.

We denote the set of all discrete probability distributions over a set X by Disc(X).
For x ∈ X , we denote by δ(x) (the Dirac measure on x) the probability distribution
that assigns probability 1 to {x}.

A (simple) probabilistic automaton is a tuple M = (P , Pinit ,Act , T ) where P is
a set of states, Pinit ∈ P is the initial state, Act is a set of labels and T ⊆ P ×
Act × Disc(P) is a transition relation. Informally, if (P, a, μ) ∈ T then there is a
transition from the state P performing a label a and then leading to a distribution μ
over a set of states instead of a single state. Intuitively, the idea is that the transition
in T is chosen nondeterministically, and the target state among the ones allowed by μ
is chosen probabilistically. A fully probabilistic automaton is a probabilistic automaton
without nondeterminism, at each state only one transition can be chosen.

An execution α of a probabilistic automaton is a (possibly infinite) sequence of al-
ternating states and labels Pinita0P1a1P2a2P3 · · · , such that for each i, there is a tran-
sition (Pi, ai, μi) ∈ T with μi(Pi+1) > 0. We will use exec∗(M) to represent the set
of all the finite executions of M, exec(M) to represent the set of all the executions of
M, and lst(α) to denote the last state of a finite execution α ∈ exec∗(M).
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The execution tree of M, denoted by etree(M), is an automatonM′ = (P ′, P ′
init,

Act , T ′) such that P ′ ⊆ exec(M), P ′
init = Pinit , and (α, a, μ′) ∈ T ′ if and only if

(lst(α), a, μ) ∈ T for some μ and μ′(αaP ) = μ(P ) for all P . Intuitively, etree(M) is
produced by unfolding all the executions ofM.

A scheduler of a probabilistic automationM is a function ζ : exec∗(M)→ T such
that ζ(α) = (P, a, μ) ∈ T implies that P = lst(α). (We omitM when it is clear from
the context.) The idea is that a scheduler resolves the nondeterminism by selecting a
transition among the ones available in T , based on the history of the execution.

The execution tree ofM relative to a scheduler ζ, denoted by etree(M, ζ), is a fully
probabilistic automaton M′′ = (P ′′, P ′′

init,Act , T ′′), obtained from M′ by removing
all the transitions in T ′ that are not chosen by the scheduler, that is, (α, a, μ′′) ∈ T ′′

if and only if ζ(α) = (lst(α), a, μ) for some μ and μ′′(αaP ) = μ(P ) for all P .
Intuitively, etree(M, ζ) is produced from etree(M) by resolving all nondeterministic
choices using ζ. Note that etree(M, ζ) is a simple and fully probabilistic automaton.

3 Probabilistic CCS

In this section, we present a probabilistic version of Milner’s CCS [16], that allows for
both nondeterministic and probabilistic choice. Following [4] we make a distinction be-
tween observable and secret labels, for applications to security systems and protocols.

We consider a countable set Act of labels a, partitioned into a set Sec of secrets s,
a set Obs of observables o, and the silent action τ . For each o ∈ Obs , we assume a
complementary label o ∈ Obs with the convention that o = o. The syntax of CCSp is:

P ::= process term

|
⊕

i piPi probabilistic choice

| �i si.Pi secret choice (si ∈ Sec)

| �i ri.Pi nondeterministic choice (ri ∈ Obs ∪ {τ})
| P |P parallel composition

| (νa)P restriction

| !P replication

The term
⊕

i piPi, in which the pis are positive rationals that sum up to one, repre-
sents a blind probabilistic choice, in the sense that the choice of the branch is decided
randomly (according to the corresponding probabilities) and there is no visible label
associated to the decision. We use the notation P1⊕p P2 to represent a binary sum with
p1 = p and p2 = 1 − p. Similarly, we use a1.P1

�
a2.P2 to represent a binary secret

or nondeterministic choice. Finally the term 0, representing the terminated process, is
syntactic sugar for an empty (secret or nondeterministic) choice.

The operational semantics of a CCSp term P is a probabilistic automaton whose
states P are the processes reachable from P , and whose transition relation is defined
according to the rules in the Table 1, where we use P

a−→ μ to represent the transition
(P, a, μ). We denote by μ |P the measure μ′ such that μ′(P ′ |P ) = μ(P ′) for all
processes P ′ ∈ P and μ′(P ′′) = 0 if P ′′ is not of the form P ′ |P . Similarly (νa)μ = μ′
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Table 1. The semantics of CCSp

PROB ⊕
i pi Pi

τ−→
∑

i pi δ(Pi)
ACT

j ∈ I
�

Iai.Pi
aj−→ δ(Pj)

PAR1
P1

a−→ μ

P1 |P2
a−→ μ |P2

PAR2
P2

a−→ μ

P1 |P2
a−→ P1 |μ

REP
P | !P a−→ μ

!P
a−→ μ | !P

COM
P1

a−→ δ(P ′
1) P2

a−→ δ(P ′
2)

P1 |P2
τ−→ δ(P ′

1 |P ′
2)

RES
P

b−→ μ b �= a, a

(νa)P
b−→ (νa)μ

such that μ′((νa)P ) = μ(P ). A transition of the form P
a−→ δ(P ′), having for target a

Dirac measure, corresponds to a transition of a non-probabilistic automaton. From the
rule PROB, we know that all transitions to non-Dirac measures are silent.

Following [4] we assume the secret labels to be the inputs of the system. Secrets
are given in input to the scheduler and determine completely the secret choices. The
scheduler then has to resolve the residual nondeterminism, which is originated by the
nondeterministic choice and the parallel operator. From the observer’s point of view,
only the nondeterministic choices can be observed.

The definition of a scheduler of a CCSp term is specified as follows. X ⇀ Y repre-
sents the partial functions from X to Y , and α|Sec is the projection of α on Sec.
Definition 1. Let P be a process in CCSp andM be the probabilistic automaton gen-
erated by P . A scheduler is a function ζ : Sec∗ → exec∗(M) ⇀ T such that if:

(i) s = s1s2 . . . sn and α|Sec = s1s2 . . . sm with m < n, and
(ii) there exists a transition (lst(α), a, μ) such that a ∈ Sec ⇒ a = sm+1

then ζ(s)(α) is defined as one of such transitions. We will write ζs(α) for ζ(s)(α).

We now define the execution tree of a CCSp term, in a way similar to what is done in
the probabilistic automata. The main difference is that in our case the execution tree
depends not only on the scheduler, but also on the secret input.

Definition 2. Let M = (P , Pinit ,Act , T ) be the probabilistic automaton generated
by a CCSp process P . Given an input s and a scheduler ζ, the execution tree of P ,
denoted by etree(P, s, ζ), is a fully probabilistic automatonM′ = (P ′, Pinit ,Act , T ′)
such that:

(i) P ′ ⊆ exec(M),
(ii) (α, a, μ′) ∈ T ′ iff ζs(α) = (lst(α), a, μ) for some μ and μ′(αaP ) = μ(P )

Process Terms as Channels. We now show how CCSp terms can be used to specify
systems manipulating confidential information. A system can be seen as an information-
theoretic channel [8]. Sequences of secret labels constitute the secret information
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(or secrets), given in input to the channel, and sequences of observable labels con-
stitute the public information (or observables), obtained as output from the channel.
We denote secrets and observables by S and O, and we assume that they have finite
cardinality m and n, respectively. We also assume that each sequence in S ∪ O is fi-
nite. Thus, S ⊆fin Sec∗ and O ⊆fin Obs∗. This is usually enough to model the typical
security systems, where each session is supposed to terminate in finite time.

Given an input s ∈ S, a run of the system will produce each o ∈ O with a certain
probability p(o|s) which depends on s, on the randomized operations performed by
the system, and also on the scheduler resolving the nondeterminism. The probabilities
p(o|s), for a given scheduler ζ, constitute a m× n array Mζ which is called the matrix
of the channel, where the rows are indexed by the elements of S and the columns are
indexed by the elements of O. (See some examples of channel matrix in Section 7.2.)

Definition 3 ([4]). Given a term P and a scheduler ζ : S → exec∗ ⇀ T , the matrix
Mζ(P ) associated to P under ζ is defined as the matrix such that, for each row s ∈ S
and column o ∈ O, the element at their intersection, pζ(o|s), is the probability of the
set of the maximal executions in etree(P, s, ζ) whose projection in Obs is o.

4 Differential Privacy

Differential Privacy [10] captures the idea that a query on a dataset does not provide too
much information about a particular individual, regardless of whether the individual’s
record is in the dataset or not. In order to achieve this goal, typically some probabilistic
noise is added to the answer. The formal definition is the following (where κ denotes the
randomized answer, Pr the probability measure, and ε a finite non-negative number):

Definition 4 (Differential Privacy, [10]). A mechanism κ provides ε-differential pri-
vacy iff for all datasets D1 and D2 differing in only one record, and for all S ⊆
Range(κ),

Pr[κ(D1) ∈ S] ≤ eε Pr[κ(D2) ∈ S]

Clearly, the smaller the value ε is, the higher is the protection.
We now adapt the notion of differential privacy to our framework. We consider a

symmetric adjacency relation ∼ between secrets, which extends the dataset-based no-
tion of “differing for only one record” to more general settings. The confidential data
can be complex information like sequences of keys or tuples of individual data (see
Example 2).

Example 1 (Anonymity). In the case of anonymity, the confidential data S are the agents’
identities. Since the identities are just names without any particular structure, it is natu-
ral to assume that each name is adjacent to any other. Hence (S,∼) is a clique, i.e. for
all s1, s2 ∈ S we have s1 ∼ s2.

Example 2 (Geolocation). In the case of geolocation, the confidential data are the co-
ordinates (latitude, longitude) of a point on the earth’s surface. If the purpose is to
protect the exact location, a good definition of adjacency is: two points are adjacent if
their Manhattan distance is 1, i.e. (x1, y1) ∼ (x2, y2) iff |x2−x1| = 1 or |y1−y2| = 1.
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It can be proved that if the set of answers is discrete (which is our case) Definition 4
can be equivalently stated in terms of singleton S’s. This leads to the following:

Definition 5. A process P provides ε-differential privacy iff for all schedulers ζ, for all
secret inputs s1, s2 ∈ S such that s1 ∼ s2, and for all observable o ∈ O,

pζ(o|s1) ≤ eε pζ(o|s2)

We use dpζ�P � to denote the smallest ε such that the process term P , under the sched-
uler ζ, provides ε-differential privacy. Furthermore we define

dp�P � = sup
ζ

dpζ�P �

Note that if there are both zero and non-zero probabilities occurring in the same
column of the channel matrix, when the respective secrets are connected by∼, then the
process does not provide differential privacy for any ε.

Relation between Differential Privacy and Strong Anonymity. Strong anonymity
for purely probabilistic systems was formalized by Chaum [6] as the property that the
observation o does not change the probabilistic knowledge of the culprit’s identity s,
i.e. p(s|o) = p(s). This notion was extended in [3] to probabilistic and nondeterminis-
tic systems, essentially by requiring that the equation holds under any scheduler. Next
proposition is an immediate consequence of the characterization given in [3].

Proposition 1. An anonymity system P is strongly anonymous iff dp �P � = 0.

Relation between Differential Privacy and Probable Innocence. Probable innocence
was defined in [19] as the property that, to the eyes of an observer, each user is more
likely to be innocent rather than culpable (of having initiated the message). In [5] it was
shown that this is equivalent to requiring (m − 1)p(o|xi) ≥ p(o|xj) for all o, i and
j, where m is the number of anonymous users, and p(o|xi) denotes the probability of
detecting o given that the initiator is i. It is straightforward to see the following:

Proposition 2. An anonymity system P provides probable innocence iff dp�P � ≤
ln(m− 1).

5 Modular Reasoning

In this section we investigate the compositional properties of CCSp constructs with
respect to differential privacy and state our first main result. We start by introducing the
notions of safe component and sequential replication. The latter can be used to represent
a sequence of sessions re-executing the same protocol. .

Definition 6. Consider a process P , and observables o1, o2, . . . , ok, we say that
(νo1, o2, . . . , ok)P is a safe component if

(i) P does not contain any secret label, and
(ii) all the observable labels of P are included in o1, o2, . . . , ok.



Modular Reasoning about Differential Privacy 205

Definition 7. Given a process term P assumed to terminate by performing a specific
action done , the sequential replication of P n times is defined as

�n P = (νdone)(P | !ndone.P )

where !0P = 0 and !n+1P = P | !nP .

We now show that the nondeterministic choice, the probabilistic choice, the restriction
operator and a restricted form of parallel composition are safe, in the sense that com-
bining components does not compromise the privacy of the system, while the sequential
replication degrades the privacy in proportion to the number of replication times.

Theorem 1. Consider a set of processes {Pi}i, for i = 1, 2, . . ., and assume that for
each i, dp�Pi� = εi. Then:

(1) dp�
�

i oi.Pi� ≤ max
i
{εi} ;

(2) dp�
⊕

i piPi� ≤ max
i
{εi};

(3) dp�(νo)Pi� ≤ εi ;

(4) Assume that (νo1, o2, . . . , ok)Pi is a safe component, that Pi and Pj can commu-
nicate with each other only via the labels of the set {oh, . . . , ok}, with 1 ≤ h ≤ k,
and that dp �(νo1, . . . , oh−1)Pj)� = εj . Then dp�(νo1, o2, . . . , ok) (Pi |Pj)� ≤ εj .

(5) dp��n Pi� ≤ n εi.

Properties (1) and (2) point out that the degree of privacy of a system, consisting
of some subsystems in a nondeterministic or probabilistic choice, is determined by the
subsystem with the lowest degree of privacy. Properties (3) and (4) intuitively say that,
turning an observable label to be unobservable, and paralleling with a safe component,
maintain the level of privacy. Property (5) means that the degree of privacy of a process
degrades through multiple runs, since more information may be exposed.

Unfortunately the secret choice and the unrestricted form of parallel composition
do not preserve the privacy, essentially due to the presence of nondeterminism. This is
illustrated by the following counterexamples taken from [4]. (In Examples 3 - 5, we use
the original definition of the adjacency relation, that is, the difference in only one label.)

Example 3 (For the secret choice). Let Sec = {s1, s2} and assume that S does not con-
tain the empty sequence. Consider the process P = o1.0

�
o2.0. Clearly, P provides

0-differential privacy, because for every sequence s ∈ S we have p(o1|s) = p(o2|s).
Consider now a new process P ′ = s1.P

�
s2.P , and the scheduler ζ for P ′ which

selects o1 if the secret is s1, and o2 if the secret is s2. The resulting matrix under
ζ does not preserve differential privacy, since p(o1|s1s) = p(o2|s2s) = 1 while
p(o1|s2s) = p(o2|s1s) = 0.

Example 4 (For the need of condition (i) in Def. 6). Let Sec and S be as in Example 3.
Define P1 = s1.0

�
s2.0 and P2 = o1.0

�
o2.0. Clearly, P2 provides 0-differential

privacy. Consider now the parallel term P1 |P2 and define a scheduler that first executes
a secret label s in P1 and then, if s is s1, it selects o1, while if s is s2, it selects o2. The
rest proceeds like in Example 3.
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Example 5 (For the need of condition (ii) in Def. 6). Let Sec and S be as in Example 3.
Define P1 = o.0 and P2 = s1.(o1.0 ⊕.5 o2.0)

�
s2.(o1.0 ⊕.5 o2.0). It is easy to see

that P2 provides 0-differential privacy. Consider the term P1 |P2 and define a scheduler
that first executes a secret label s in P2 and then, if s is s1, it selects first P1 and then the
continuation of P2, while if s is s2, it selects first the continuation of P2 and then P1.
Hence, under this scheduler, for every sequence s ∈ S, p(oo1|s1s) = p(oo2|s1s) = 0.5
and also p(o1o|s2s) = p(o2o|s2s) = 0.5 while p(oo1|s2s) = p(oo2|s2s) = 0 and
p(o1o|s1s) = p(o2o|s1s) = 0. Therefore s1 and s2 are disclosed.

Intuitively, the existence of free observables (i.e. o of P1 in this example) may create
different interleavings, which can be used by the scheduler to mark different secrets.

6 A Case Study: The Crowds Protocol

In this section, we apply the result in Theorem 1 to prove the anonymity-preservation
property of an extended Crowds protocol with member-wise trusted forwarders. The
novelty of our proof is that it is simple. Moreover, it does not require the symmetry
property that is usually made in the literature in order to simplify the analysis.

Crowds is an anonymity protocol which allows Internet users to send messages with-
out revealing their identity. More specifically, a crowd is a group of n participants con-
stituted by m honest members and c (= n−m) corrupted members (the attackers). The
destination of messages is named the server. The protocol works as follows:

- When a member, called the initiator, wants to send a message to the server, instead
of sending it directly to the server, she randomly selects a member (possibly herself)
in the crowd and she forwards the message to this member.

- Every member who receives the message, either
– with probability 1− pf , delivers the message to the server, or
– with probability pf , randomly selects another member (possibly herself) in the

crowd as the new forwarder and relays the message to this new forwarder to
repeat the same procedure again.

In this way, even if the message is caught by an attacker, the attacker cannot be sure
whether the previous forwarder is the initiator or just a forwarder on behalf of somebody
else. Members (including attackers) are assumed to have only access to messages routed
through them, so that they only know the identities of their immediate predecessors and
successors in the path, and of the destination server.

6.1 The Crowds with Member-Wise Trusted Forwarders

The above standard Crowds protocol implicitly requires the symmetry conditions (see
[5]), in the sense that a new forwarder is chosen among all the members in the crowd
with uniform probability. In this context, it has been proved in [19] that Crowds can
satisfy probable innocence under certain conditions.

In this paper, we consider a member-wise trusted forwarders scenario, in which
the member currently holding the message selects a forwarder only among the members
which she thinks are trustable. We also consider the case of reputed initiators. The idea
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Table 2. The CCSp code for standard Crowds (i.e. with the symmetry conditions)

Initiator =
⊕U

xi∈Hr
pi.acti.(

⊕U
xj∈C pj .x̄j〈i〉)

honest i = xi.((
⊕U

xj∈C pj .x̄j〈i〉.done)⊕pf
ser .done)

Honest i = � honest i

Attacker i = xi(j).detect〈j〉

Server = ser .S

crowdn = Server | Initiator |
∏

xi∈HHonest i|
∏

xj∈A Attacker j

Crowdn = (νser )(νx1, x2, . . . , xn)crowdn

Table 3. The new definitions for Crowds with member-wise trusted forwarders

Initiator =
⊕U

xi∈Hr
pi.acti.(

⊕U
xj∈Ti

pj .x̄j〈i〉)

honest i = xi.((
⊕U

xj∈Ti
pj.x̄j〈i〉.done)⊕pf

ser .done)

is that a new member has the right to initiate requests only when she has acquired a cer-
tain level of reputation. This is motivated by some kinds of social networks in which,
when a new agent wants to join a web conversation, her behavior needs to be examined
for a while until she becomes a totally legal member.

The standard Crowds protocol expressed in CCSp is stated in the Table 2. For sim-
plicity, we introduce a notation for value-passing in CCSp, following standard lines.

Input x(i).P =
�

j xj .P [j/i]
Output x̄〈i〉 = x̄i

We use H, Hr and A to denote the set of honest members, of reputed honest members
and of attackers, respectively. C = H ∪ A representing the set of all participants in
Crowds. We use x1, x2, . . . , xn to range over C, and

⊕U to represent an uniform dis-
tribution. For simplicity we assume that once an attacker receives a message from an
honest member, it will terminate after reporting the detection through the observable
detect . The reason is that by forwarding the message after the first detection, attack-
ers can not gain more useful information. Hence at most one honest member can be
detected. Precisely, the set of secret labels is { acti |xi ∈ Hr} and the set of observ-
able labels is { detect〈i〉 |xi ∈ H} ∪ { S }. We denote by Ti the subset of Crowds
members which the ith honest member trusts. Then the process terms for Crowds with
member-wise trusted forwarders are similar to the terms showed in Table 2, except that
the process Initiator and the process honest i are modified as shown in Table 3.

An Anonymity-Preservation Property. Consider the scenario in which there exists a
Crowds with n members (shown in Table 2). Assume that a new honest agent is allowed
to join the crowd but she does not enjoy the reputation to be an initiator right away.
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Table 4. Specification of the addition of the n+ 1th agent

crowdn+1 = crowdn |Honestn+1

Crowdn+1 = (νser )(νx1, x2, . . . , xn+1)crowdn+1

Old members in Crowds can decide by themselves to trust the agent or not, which means
that there is no restriction of how the new agent is added, thus resulting in a Crowds
with member-wise trusted forwarders. Applying the compositionality theory in Section
5, we show that the privacy level of Crowds with n + 1 members can be estimated by
the value of privacy of a simplified Crowds, obtained by considering the non-reputed
agent as an attacker and therefore ignoring her following trust links to successors. The
fact is supported by the following theorem.

Theorem 2. dp�Crowdn+1� ≤ dp�Crowdn�.

Proof. The addition of a new honest agent to a Crowds with n participants is presented
in Table 4. Basically, it is a parallel composition of the process term crowdn of old
crowd, and the process term Honestn+1 of the new agent. In crowdn, although there
is no entity of Honestn+1, we assume that the identity xn+1 is already available in the
set C as a free label, to be selected as a forwarder.

Consider the term Crowdn+1. Remove the term Honestn+1 and the corresponding
restriction operators. Note that the free labels through which old Crowds communicates
with the new agent are {ser} ∪ {xj |xj ∈ Tn+1} ∪ {x̄n+1〈i〉|xi ∈ Sn+1}, where Sn+1

is the subset of Crowds members who trust the new agent. The label x̄n+1〈i〉 behaves
like an attacker, because it can reveal the identity of member (ex. xi) who is sending
the request. Since this new agent is known not to be an initiator (because she is not
reputed). Her presence will not induce an addition of the secret label actn+1. In the
sense that the process Honestn+1 does not contain any secret labels. Clearly,

(νser )(νx1, x2, . . . , xn+1)Honestn+1

is a safe component. By Theorem 1(4), Crowdn+1 provides at least as much privacy as
Crowdn.

7 Computing the Degree of Privacy

In this section, we study the possibility of computing the degree of privacy in CCSp in a
fine-grained way, precisely, in a bottom-up fashion. We make a first step by considering
finite processes in which the secret choices are only at the top-level, and give some toy
examples to illustrate the basic ideas of the approach.

7.1 The Algorithm

Consider a process term T =
�

i si.Ti starting with a secret choice. For simplicity,
in this paper, we assume that there is no secret choice inside any of Ti, and no oc-
currence of ! , (while considering ! is a real difficult problem, the restriction about the
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secret choice can be lifted by using more complicated definitions of how to combine
the schedulers of the components. We however leave them for future work). We also as-
sume that every occurrence of the parallel operator is removed by using the expansion
law [16]. We construct the set of all possible schedulers for a process P , denoted by
Δ(P ). We denote its size by |Δ(P )|. Thus the residual constructs possibly occurring in
Ti are the following cases:

- Case P =
⊕

i piPi : Intuitively, P ’s scheduler selects for each Pi a scheduler from
Δ(Pi). Hence, |Δ(P )| = O(

∏
i |Δ(Pi)|).

- Case P =
�

i ri.Pi : P ’s scheduler first resolves the top nondeterministic choice
and then proceeds the continuation of the process corresponding to the selected label.
Thus, |Δ(P )| = O(

∑
i |Δ(Pi)|).

- Case P ′ = (νo)P : A scheduler of P ′ is obtained from a scheduler in Δ(P ) by remov-
ing the assignments of the executions containing o. Hence, |Δ(P ′)| = O(|Δ(P )|).

- Case P ′ =�n P : Intuitively, a scheduler of P ′ selects for each run of P a scheduler
from Δ(P ), and use them in a sequential way. Hence, |Δ(P ′)| = O(|Δ(P )|n).

For every term Ti in T , we are able to obtain the scheduler set Δ(Ti). The cor-
responding matrix under each scheduler in Δ(Ti) is computed in a bottom-up way
(see [25]). We now turn to the construction of the matrix of T . For every secret la-
bel si, T ’s scheduler ζ chooses a scheduler ζi from the set Δ(Ti). Let pζ(o|sis) (resp.
piζi(o|s)) be the probability in the matrix M(T )ζ (resp. Mζi(Ti)). Hence pζ(o|sis) =
piζi(o|s). By the definition of differential privacy we get:

dpζ�T � = min{ε | s ∼ s′ ⇒ ∀o ∈ O. pζ(o|s) ≤ eεpζ(o|s′)}

and
dp�T � = max

ζ∈Δ(T )
dpζ�T �.

Complexity Analysis. The time complexity of the above algorithm is determined by
the size of the set of all possible schedulers, that is, the time complexity is O(|Δ(T )|).
However we can make it more efficient in the case in which differential privacy does
not hold: Whenever we find a scheduler ζi in Δ(Ti) producing an observable o which
is not included in the set of observables generated by a previous scheduler ζj in Δ(Tj)
(with j < i and si ∼ sj), then we can halt the algorithm and claim that T does not
provide differential privacy for any ε. In fact, assigning the scheduler ζi (resp. ζj ) to
the secret si (resp. sj) differentiates the two secrets by producing a non-null (resp. null)
probability in the column of o.

7.2 Some Toy Examples

Example 6. Let Sec = {s1, s2},Obs = {o1, o2}, and consider the following processes:
P1 = o1.0⊕0.3o2.0, P2 = o1.0⊕0.5o2.0, P3 = o1.0⊕0.8o2.0, P = P1

�
P2
�

P3

and P ′ = s1.P
�

s2.P .
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For P1, P2 and P3, we have Δ(P1) = Δ(P2) = Δ(P3) = {∅}, M(P1) =
o1 o2
0.3 0.7

,

M(P2) =
o1 o2
0.5 0.5

, and M(P3) =
o1 o2
0.8 0.2

.

For the term P , we have Δ(P ) = {ζ1, ζ2, ζ3} with ζi representing the choice of
Pi. The corresponding matrices are: Mζ1(P ) = M(P1), Mζ2(P ) = M(P2) and
Mζ3(P ) = M(P3).

For the term P ′ we can define the scheduler ζ′ which selects ζ1 and ζ3 for the secret

s1 and s2, respectively. The corresponding matrix is Mζ′(P ′) =

o1 o2
s1 0.3 0.7
s2 0.8 0.2

, which

gives (ln 3.5)-differential privacy.

Example 7. Let Sec = {s1, s2},Obs = {o, o1, o2}, and consider the processes P1 =
o1.0⊕0.3 o2.0, P2 = o.0, P = P1 |P2, and P ′ = s1.P

�
s2.P .

First we use the expansion law to rewrite P into (o1.o.0⊕0.3 o2.o.0)
�
(o.o1.0⊕0.3

o.o2.0). Through steps similar to the above example, we can find a scheduler producing

a matrix breaking the differential privacy, for example
o1o o2o oo1 oo2

s1 0.3 0.7 0 0
s2 0 0 0.3 0.7

.

8 Related Work

- Compositionality properties of probabilistic process calculi for security protocols.
In [9] Deng et al. used the notion of relative entropy to measure privacy. In [4] Braun
et al. proved that the safety measured by Bayes risk is maintained under the composi-
tion of CCSp constructs with a restricted form of parallel composition and without the
secret choice. The compositionality results in our paper are closely related to those of
[4], although we use a different measure of protection (differential privacy).

- Compositionality of Differential Privacy. As stated in the introduction, there is a vast
body of work on formal methods for differential privacy. Compositional methods, as
one of the most important features, have been intensively investigated in the field of
statistical databases [15] and programs [2,18]. These works investigate the so-called
sequential and parallel compositions of queries (programs), which, in their context,
mean a sequence of queries (programs) applied to the same dataset and to disjoint
parts of the dataset, respectively. Under this setting, they have proved that the se-
quential composition decreases the privacy, and the parallel composition maintains
the privacy. Our result about the sequential replication and the parallel composition
in CCSp are reminiscent of the above results. But the context is different. In par-
ticular, the parallel composition concerned in this paper is different from the above
one, in that the parallel operator here represents interactions of concurrent agents.
Our restrictions on the parallel composition are incomparable with those of [15,2,18]
(disjointness of databases).

- Other extensions on the Crowds protocol. Hamadou et al. [14] have taken into account
attackers’ additional information correlated to anonymous agents before attacking the
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protocol. In [21] Sassone et al. extended Crowds by allowing members to turn corrupt,
and considering a trust estimation over participants. This kind of trust estimation is
the same from all members’ points of view, and therefore can still be thought of as
the symmetry condition. We consider a more realistic scenario in which users can
choose to communicate only with the users they think are reliable, which is the most
common case in web transactions of the real world.

9 Conclusion and Future Work

In this paper, we have defined the degree of differential privacy for concurrent sys-
tems expressed in a probabilistic process calculus, and investigated how the privacy
is affected under composition of the CCSp constructs. We have applied our approach
to give a simple proof for the anonymity-preservation of an extended Crowds proto-
col with member-wise trusted forwarders. Finally, we have presented an algorithm for
computing the degree of differential privacy for a finite process.

Fine-grained methods for computing the channel matrix have been studied in [1].
In future work, we plan to optimize our current algorithm, extend it to more general
processes, more precisely, develop an approach that can deduce the global property of
differential privacy from local information, w.r.t. the adjacency relation. Another inter-
esting problem is the applicability of our approach to the problem of preserving privacy
in geolocation-related applications. More specifically, we intend to use (a possibly ex-
tended version of) our probabilistic process calculus to express systems of concurrent
agents moving in space and time, and interacting with each other in ways that depend
on the adjacency relation. We believe that our compositional method will provide a way
to synthesize differentially private mechanisms in a (semi-)automatic way.
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