

X. Lin et al. (Eds.): WISE 2013, Part II, LNCS 8181, pp. 515–518, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Toolkit for Simplified Web-Services Programming

Moshe Chai Barukh and Boualem Benatallah

School of Computer Science & Engineering,
University of New South Wales, Sydney – Australia
{mosheb,boualem}@cse.unsw.edu.au

Abstract. The Internet has truly transformed into a global deployment and
development platform. For example, Web 2.0 inspires large-scale collaboration;
Social-computing empowers increased awareness; as well as Cloud-computing
for virtualization of resources. As a result, developers have thus been presented
with ubiquitous access to countless web-services. However, while this enables
tremendous automation and re-use opportunities, new productivity challenges
have also emerged: The same repetitive, error-prone and time consuming
integration work needs to get done each time a developer integrates a new API.
In order to address these challenges, we designed and developed ServiceBase, a
“programming” knowledge-base to abstract, organize, incrementally curate and
thereby re-use service-related programming-knowledge. Empowered by this
knowledge we then provide: (a) A set of APIs that expose a common and high-
level interface to developers for integrating services in a simplified manner; (b)
An extended version of the GIT repository, creating a plug-n-play environment
for services; (c) A mind-map based visualization tool to help explore the base.

1 Introduction

It is no doubt that the inception of the Service Oriented Architecture (SOA) paradigm
has significantly empowered the capabilities for modern software engineering.
Moreover, coupled with other recent advances in web-technology, such as Web 2.0,
Social and Cloud computing, the Internet has delivered developers with ubiquitous
access to a plethora of rich and logical services along with computing resources, data
sources, and tools – and the potential to build powerful systems. For instance,
ProgrammableWeb now lists more than 6,700 APIs in its directory. Moreover, in
order to increase the dispersion of APIs, organizations such as Mashery1 and Apigee2
are building on these trends to provide platforms for the management of APIs.
However, while advances in Web-service and services composition have enabled
tremendous automation and reuse, new productivity challenges have also emerged.
The same repetitive, error-prone and time consuming integration work needs to get
done each time a developer integrates a new API. Moreover, the heterogeneity
associated with services also means service programming has remained a technical
and complex task. For example, the developer require sound understanding of the
different service types and access-methods, as well as being able to format input data,

1 http://www.mashery.com
2 http://apigee.com

516 M.C.Barukh and B. Benatallah

or parse and interpret output data in the various formats, (e.g. XML, JSON, SOAP,
Multimedia, HTTP, etc.). In addition, programmers may also need to develop
additional functionality such as: user management, authentication-signing, access
control and third-party authorization; tracing as well as version management, etc.

In order to address these challenges, we have designed and developed ServiceBase,
a “programming” knowledge-base, where common service-related low-level logic can
be abstracted, organized, incrementally curated and thereby re-used by other
application-developers. Architecturally, we have drawn inspiration from Freebase
and Wikipedia, where just as encyclopediatic information is distributed in the form of
user-contributed content, similarly, technical knowledge about services could be both
populated and shared amongst other developers. Empowered by that knowledge, we
then provide a set of APIs that expose a common and high-level interface to
developers for integrating services in a simplified manner, despite their underlying
heterogeneity. This is facilitated by the implemented service-bus middleware that
translates high-level methods to more concrete service calls, by looking-up and then
building the necessary information from the knowledge-base. While this itself
significantly simplifies service-programming, we have been motivated to provide
further support in the form of a supporting programming toolkit for service-based
programming. In particular we implement two extensions: (a) To ease access,
navigation and exploration of the service-base from within a typical programming
environment, we implement an extended version of the GIT repository, creating a
plug and play environment of services. This means new services can be added to the
knowledge-base (i.e. "plugged"), and registered services can be utilized in application
development (i.e. "played"); and (b) In order to help visualize service meta-data, (for
example determining what are the message-parameters and formats for some service),
we have implemented a mind-map visualization of the service knowledge-base.

Inevitably, our work provides the potential for a vast increase in application-
development productivity and greater code-maintainability. We have endeavored to
fill the gap amongst non-highly skilled programmers who often resort to homebrewed
systems; or even skilled programmers who often end up re-implementing systems (or
part of systems) due to being unable to locate a suitable API, or if it being too hard to
understand how to use. In order to substantiate our results, we demonstrate in this
paper how a service-oriented application can be built using various services that cover
the 3 main different service-types, (WSDL, REST & ATOM/RSS), and implemented
faster and in much fewer lines of code than if using a traditional coding approach.

2 ServiceBase System Architecture

As illustrated in Figure 1, ServiceBase has been realized in three layers of abstraction:
(i) Firstly, the Programming Knowledge-Base acts as the central repository for storing
all service-related programming information. (ii) The ServiceBus then exposes a set of
Java (client-library) and RESTful APIs that enable simplified programmatic access to
registered services. Finally, (iii) we provide a toolkit in order to initiate a supportive
programming environment. Consisting of: an extended GIT-Repository that enables
plug-n-play capabilities via a command-line interface; as well as a web-based mind-
map visualization GUI for exploring and traversing the graph service-base.

 A Toolkit for Simplified Web-Services Programming 517

Fig. 1. ServiceBase System Architecture

The programmatic interface to ServiceBase offers the following APIs:
The UsersAPI provides a means for end-users and apps to register and identify.

Identity management is achieved via Facebook login credentials as well as native
login. 3rd-party application interaction is achieved via OAuth 2.0 Provider interface.

The ServicesAPI is used to register new services into the knowledge base; as well
as search, explore, update and delete service-models that are already registered.

The ServiceBusAPI is the main gateway for application-developers to interact
with typical request-reply ops via the invoke(..) methods. The main innovation is
the common programming interface provided to interact with services, irrespective of
their underlying heterogeneity (e.g. JSON/REST vs. XML/REST vs. SOAP/WSDL).

The StreamsAPI is used to enable interaction with real-time feeds-services. It
provides a subscribe(..) method to any registered feed. The API then exposes
three modes for working with subscriptions: (a) It provides querying (i.e. pull) of feed
events; (b) It enables setting up listeners (i.e. asynchronous callback push) of events;
and (c) It enables navigating streams using pause(), stop() and rewind(date).

The Plug-n-Play API is used to even further simplify service-programming. We
have done this by extending the standard GIT commands with “plug” (helps to
automate adding new services); and “play” (generates a code-stub to use a service).
Usage shown below:

git plug <service_model_file>

git play [-operation | -feed [-get | -callback]]
 <service_name><operation_name>|<feedtype_name>
 <destination_location>

518 M.C.Barukh and B. Benatallah

3 Demo Scenario

We demonstrate the toolkit over a reasonably complex scenario involving 3 different
service-types: Namely, Amazon MTurk expressed in WSDL, Flickr expressed in
REST/ATOM; and Apache HBase Database-as-a-Service, expressed in REST.

Description. We want to build an application to employ the crowd for determining
appropriate captions for photos added to some Flickr photo-stream. Upon an MTurk
worker accepting the work, we would like to store this result in HBase for later
retrieval. Finally, we want to write an app to query-on-demand the proposed captions
and ask for verification – upon approval the captions can then be updated on Flickr.

Screencast. As described below, we demonstrate the implementation of this
scenario in only three simple stages and in less than 100 lines of code with no extra
dependencies. We have only shown snippets of generated code-stubs below, however
we demonstrate the entire implementation scenario and execution in the following
screencast: http://www.cse.unsw.edu.au/~mosheb/servicebase.html

Stage 1. Subscribe to the required photo-stream feed, and then set-up a callback
listener. The callback is formulated using two services, and for each the code stubs
can be generated. I.e. (i) Listening to the stream for photo-uploads (Lines 11–19); and
then (ii) Posting a HIT on Mturk (Lines 1–10). Therefore, the code in (i) calls (ii).

Stage 2. When each HIT has been completed by the crowd-worker, we invoke the
HBase data-store service to curate the results. The HIT is in fact represented as an
HTML form, which post data to the HBase services via the Service-bus RESTful API.

Stage 3. Finally, we write the verifier web-app. Again, most of the code could be
auto-generated via the play function: i.e. getting the photos from HBase and
displaying to the verifier. Then if verified, updating the photo by posting to Flickr.

1. public class MTurk_CreateHit {
2. public static Message invoke(String title, String desc, File qn,

 String duration, String lifetime, String reward) {

3. WSDLService mturk = ServiceAPI.getService(“AmazonMTurk”);
4. TupleField hit = mturk.getOperationType(“createHit”)
 .getInputMessage().getField();

5. hit.getField(“title”).setValue(title);
6. hit.getField(“description”).setValue(desc);
 ...
7. hit.getField(“question”).setValue(qn);

8. return ServiceBus.invoke(acs_key, mturk, “createHit”, hit);
9. }
10. }

❖ ❖ ❖
11. public class Flickr_GroupPoolFeed {
12. public static void callback(Field field, String sub_id){

13. TupleField photo = ((TupleField)field);
14. String id = photo.get(“photo_id”).getValueAsString();
15. String url = photo.get(“photo_url”).getValueAsString();

16. File question_html = getHtmlQuestion(id, url);
17. MTurk_CreateHit

 .invoke(“Describe an Image”, //title
 “Tagging of an Image”, //description
 question_html, //question HTML
 “86400”, //duration = 1 day
 “7”, //lifetime = 7 days
 “1” //reward = 1 dollar

18. }
19. }

	A Toolkit for Simplified Web-Services Programming
	1 Introduction
	2 ServiceBase System Architecture

	3 Demo Scenario

