
Solving Complex Decision-Making Problems

through Agent-Matrices Cooperation

Hao Lan Zhang1, Jiming Liu2, Yong Tang3, and Chaoyi Pang1

1 NIT, Zhejiang University, Ningbo, Zhejiang Province, China
2 Hong Kong Baptist University, Kowloon Tong, Hong Kong

3 South China Normal University, 55, West Zhong Shan Avenue, China
haolan.zhang@nit.zju.edu.cn, jiming@comp.hkbu.edu.hk,

ytang@scnu.edu.cn, chaoyi.pang@csiro.au

Abstract. Making decisions in a dynamic environment is complicated
and indefinite because of various unpredictable factors and large volumes
of information. It has become a key issue for modern organizations to
have efficient systems and tools to support rational decision-making in
problem-solving processes, particularly, for problems with a lack of pre-
defined structure. This paper provides a novel agent-based framework
for Decision Support Systems (DSS) based on the analysis of the major
problems in existing DSS. The proposed multi-agent-based framework,
namely the Agent-Matrices framework, provides an open, efficient and
flexible architecture for DSSs. The Agent-Matrices framework overcomes
the compatibility and connectivity problems in most traditional DSS ap-
plications. This framework utilises Matrices to allow agents to acquire
information, self-upgrade, perform tasks, travel to other Matrices, and
be reused. This paper primarily introduces the methods used for coordi-
nating the Matrices and agents to solve a complex problem.

Keywords: Agent-based Systems, DSS, Agent-Matrices.

1 Introduction

Agent architectural design has become a primary issue in the intelligent agent
area as more and more concrete developments has emerged in the intelligent
agent area such as JACK (agent development environment) [1], KAoS [2], etc.
Existing agent architectural design methodologies brought forth several basic
questions including: How would agent architectural design impact on the effi-
ciency of an agent-based application? What are the major factors affecting the
agent architectural design methodologies? Researchers in the field are pursuing
answers to these questions.

In this paper we suggest several new methods for agent architectural design
based on Agent-Matrices framework, which includes the concept of Matrices, the
core components of the framework, etc. In this framework, agents are assembled
through a mediator, i.e. the Matrix, which can coordinate agents to solve a
complex problem.

X. Lin et al. (Eds.): WISE 2013, Part II, LNCS 8181, pp. 489–498, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

490 H.L. Zhang et al.

The reminder of this paper is organized as follows: the next section describes
the core components in the Agent-Matrices framework. Section 3 introduces the
Matrices concept. Section 4 illustrates the structural design of Matrices. Section
5 introduces the unified Matrices structure and the last section concludes the
research findings.

2 The Matrix Concept

The Matrix concept in the Agent-Matrices framework suggests a new method for
agent cooperation and coordination, which incorporates and extends the agent
society concept into the Matrix design. Unlike the middle-agent-based DSS, the
Matrix not only acts as a middle-agent or an agent facilitator but also as a living
platform for agents. The Matrix provides a small community environment for
agents, where agents can self-upgrade and cooperate with other agents.

The unified Matrices structure provides a larger and more comprehensive
structure that allows the cooperation among various Matrices. This unified Ma-
trices structure extends the agent society concept that heterogeneous agents are
distributed in various agent groups (communities) and each group is dominated
by a Matrix. These groups, i.e. Matrices, form a large scale of interconnected
Matrix network as shown in Figure 1.

Fig. 1. Matrices Interconnection

2.1 Components in the Agent-Matrices Framework

An Agent-Matrices system basically consists of four major components, which in-
clude a number of agents, a number of Matrices, several databases (or knowledge-
bases) that can be accessed by the Matrices, and an Agent-Matrices network

Agent-Matrices Cooperation 491

maintainer for managing the connections between the Matrices and agent trans-
portations. Table 1 lists the core components deployed in the Agent-Matrices
framework and the major sub-components used in each of these core compo-
nents. An Agent-based Matrix normally assembles a group of agents to solve
the problems for a specific organization. Beyond the advantages of utilizing a
flexible and open structure in the Agent-Matrices framework, the unified Ma-
trices structure can support the cooperation between local agents and external
(remote) agents.

Table 1. Core Components of Agent-Matrices

Core Components Major Sub-Components

Matrix Matrix register, Matrix control panel, Ma-
trix learning centre

Agents BDI Model, Capability register, Travel
control centre, DSC container

Databases Data, rules, information, etc

Matrix Maintainer Matrix distribution information centre

This unified Matrices structure allows the heterogeneous agents in different
domains (Matrices) to work cooperatively to solve complex problems without
redundantly developing new agents for organizations. For instance, an agricul-
ture department’s Agent-Matrices-based DSS temporarily needs the population
statistics of a specific region for a specific task analysis. It is costly to develop
a new agent or several new agents to perform this task. Fortunately, a sim-
ilar Agent-Matrices-based agent has been developed in a statistical company
and this agent is also plugged into the company’s Agent-Matrices-based Matrix.
Therefore, the agriculture department could just send their requests to the sta-
tistical company’s Agent-Matrices-based DSS for the results. This framework is
cost-effective for the organizations that temporarily need outsourcings.

2.2 The Structural Design of Matrices

Based on the concepts of the Matrix, the four fundamental components in the
Matrix are listed, which include:

(1) the agent society that provides a virtual space to agents;
(2) the Matrix learning centre that acquires information, i.e. new Domain-

Specific-Component (DSC) items from the external environment;
(3) the Matrix control panel which is the core part that mainly handles agent

matching, requests processing, and resource allocation;
(4) the DSC Usage Centre that allows the functional components to be

used/reused by agents.

492 H.L. Zhang et al.

Each Agent-Matrices-based agent carries a DSC container, which holds a num-
ber of DSC items. Each DSC item can perform one (or several) specific task(s)
and produce results; and each item can be plugged/ unplugged into/from the
DSC container, which offers a flexible structure for upgrading agents’ capabili-
ties. These DSC items in an agent represent the agent’s problem-solving capabil-
ities. The Matrix control panel manages the agent society through establishing
relationships with agents. An agent society can be regarded as the aggregation
of a set of agent-relationships.

The Matrix-Agent connection design is based on a hybrid network topology.
The connections between agents and Matrix are centralised, whereas the con-
nections between agents are decentralised. The major role of the Matrix is to
organise the agents to accomplish the tasks sent by users.

3 A Unified Matrices Structure for Matrices Cooperation

EachMatrix in the Agent-Matrices framework is connected by a number of agents
that can deal with various problems in different domains. However, not every re-
quest can be solves by the internal agents in a Matrix. Once a request cannot be
solved in a Matrix, the Matrix will forward the request to its nearest or most fa-
miliar Matrix for further processing. In this paper, a unified Matrices structure is
employed based on the previous work [9, 10]. This is the fundamental motivation
of establishing the unified Matrices structure in the Agent-Matrices framework.

3.1 Matrix Searching Algorithms for Service-Provider Matrices

Two primary guidelines are deployed for searching a service-provider Matrix
based on a requesting Matrix in a unified Matrices structure [3], including the
Most familiar partner method and the Supplemental partner method. The fol-
lowing sections incorporate the Agent-Matrices framework with the previous
work conducted for unified Matrix design structure [10].

There are two situations when dealing with a request for cooperation (search-
ing for external Matrices): one situation is to search for a partner Matrix that
has similar capabilities to the requesting Matrix; the other situation is to find a
partner Matrix that can provide some services that the requesting Matrix does
not have. For instance, when an accounting agent in a company’s Matrix system
requires last year’s regional taxation statistics, then it would look for another
accounting agent that could provide regional statistical data, and the coopera-
tion between these two agents might happen regularly. In this case, we use the
most familiar partner method.

The following example explains the matching process. There is a huge natural
disaster in the region where this company is located and the company’s account-
ing agent requires a climate forecast report to analyse: (1) whether it is necessary
to inject more funds to strengthen the company’s buildings; (2) the amount of
funds. In this situation, the requesting Matrix is looking for a very unfamiliar
service provider Matrix, which has very different functionalities. Therefore, the
supplemental partner method is employed.

Agent-Matrices Cooperation 493

3.2 Most Familiar Partner Method

We use a Matrix capability description table to describe the functionalities and
capabilities of a Matrix as shown in Table 2.

Table 2. Matrix Capability Descriptions

Agent Functionality Keywords Agent ID Domain

Salary statistics, superannuation expenses,
facility maintenance, etc.

Agent 1 Accountant

Warehouse stocks, sales condition, trans-
portation expenses, etc.

Agent 2 Accountant

........
Market share history, market trends, major
rivals’ products, etc.

Agent i Marketing

This table contains the information on all the connected agents’ capabilities
and the domain information, which indicates agents’ major tasks or responsibil-
ity. Each agent’s capability is described by several keywords and these keywords
also represent the capabilities of the Matrices as Figure 2 shows [10].

Fig. 2. Intersections of Matrices Capabilities [3]

In Figure 2, we aggregate all the keyword descriptions of the other Matrices,
which intersect with Matrix 1’s keyword descriptions. If there is one keyword
intersection between the requesting Matrix and a corresponding Matrix, we add
a score, namely the intersection score, for these two joined Matrices, expressed as
Ri→j , which means Matrix i and j intersect and their intersection score is Ri→j .

494 H.L. Zhang et al.

If a corresponding Matrix has the most keyword intersections with a requesting
Matrix (compared to other Matrices), then this Matrix is regarded as the most
familiar partner of the requesting Matrix.

When there are two or more corresponding Matrices having the same number
of keyword intersections with a requesting Matrix, then the Matrix that has
keyword intersections least shared by other Matrices is selected as the most
familiar partner. Thus, the calculation of the most familiar partner method can
be expressed as follows. In the following example, we search a most familiar
partner of Matrix 1.

Step 1. ∀Si ∈ Ω, ∀Kj ∈ Si

where i = 1, 2, n. Si denotes a set of keyword aggregation of Matrix i; Ω denotes
the total aggregation of all keywords in all Matrices. j = 1, 2, m; j denotes the
keyword number in a set; Kj denotes the keyword j in a keywords set; Φ denotes
empty set.

∃(S1 ∩ Sj �= Φ) → (R1→j = |S1 ∩ Sj |)
∃(S1 ∩ Sj �= Φ) → (R1→j = 0)

where S1, Sj denote the keywords set 1, j of Matrix 1, j, respectively. Ri→j

denotes the intersection score of Matrix 1 to Matrix j.
Step 2. If Ri→j is the maximum value among all the other intersection scores

with Matrix 1, then Matrix j is the most familiar partner of Matrix 1 and the
most familiar partner process is completed. If ∃(R1→j = R1→g) then go to Step
3 (Ri→g denotes the intersection score of Matrix 1 to Matrix g).

Step 3. ∃(Ki ⊂ (S1 ∩ Sj ∩ ... ∩ Sx)) → (R1→j = R1→i + 1/Mi)
where Mi denotes the total number of the Matrices (including the Matrix 1) that
have the same intersections with Matrix 1. Sx denotes a keyword set of Matrix
X that intersects with S1 and Sj at keyword Ki.

R1→j =
∑S1→j

i=1 (R1→i + 1/Mi)
where S1→j denotes the total elements in Set 1.

∃(Ki ⊂ (S1 ∩ Sg ∩ ... ∩ Sy)) → (R1→g = R1→i + 1/Zi)
where Zi denotes the total number of Matrices (including the Matrix 1) that
have same intersections with Matrix 1. Sy denotes a keyword set of Matrix y
that intersects with S1 and Sg at keyword Ki.

R1→g =
∑S1→g

i=1 (R1→i + 1/Zi)
If R1→j < R1→g then Matrix g is the most familiar partner of Matrix 1 and

the process is over. If R1→j = R1→g then go to Step 4.
Step 4. Choose the nearest neighbour as the most familiar partner of Matrix

1. If there are two or more nearest neighbours then randomly choose a Matrix
among them.

3.3 Supplemental Partner Method

In previous work [10], the supplemental partner method has been introduced.
In such a method, a service-provider Matrix of a requesting Matrix is choosen
that has minimum keywords intersections with the requesting Matrix. The sup-
plemental partner method seeks a service provider Matrix that has a minimum

Agent-Matrices Cooperation 495

intersection score. We still use the same example to search a supplemental part-
ner for a specific Matrix. The detailed steps are described as follows, which
mainly based on the previous work [10].

Step 1. It is the same procedure as in the most-familiar-partner method .
∀Si ∈ Ω, ∀Kj ∈ Si

∃(S1 ∩ Sj �= Φ) → (R1→j = |S1 ∩ Sj |)
∃(S1 ∩ Sj �= Φ) → (R1→j = 0)

Step 2. If R1→j is the minimum value among all the other intersection scores
with Matrix 1, then Matrix j is the supplemental partner of Matrix 1 and the
supplemental partner process is completed.

If ∃(R1→j = R1→j = 0) then choose a nearest partner among these same
intersection score Matrices. If there are two or more nearest neighbours then
randomly choose a Matrix among them.

If ∃(R1→j = R1→j > 0) then go to Step 3 (R1→g denotes the intersection
score of Matrix1 to Matrix g).

Step 3. In this step, the supplemental partner method seeks a minimum
intersection score.

R1→j =
∑S1→j

i=1 (R1→i + 1/Mi)

R1→g =
∑S1→g

i=1 (R1→i + 1/Zi)
If R1→j > R1→g then Matrix g is the supplemental partner of Matrix 1 and

the process is over. If R1→j = R1→g then go to next step.
Step 4. Choose a nearest partner among these same intersection score Matri-

ces. If there are two or more nearest neighbours, then randomly choose a Matrix
among them.

The most familiar partner and supplemental partner methods are basically
for matching capabilities and functionalities among Matrices. For more spe-
cific agent capability search and agent relationship management, we use a novel
Agent-rank algorithm. The agent-rank algorithm is the most efficient means to
search a service provider for a request. The most familiar partner and supple-
mental partner methods help to narrow the searching range for the agent-rank
algorithm. These two methods based on Matrix matching are complementary;
the combination of these two methods could enhance the matching efficiency
and accuracy.

4 The Optimised Model and Performance Evaluation

The unified Matrices structure introduced in the previous sections has its lim-
itations on central control and fault-tolerance. These limitations lead to the
circumstances of low efficiency in the matching process, massive traffic chaos in
the cooperation process and vulnerability to partial system breakdown. In the
Agent-Matrices framework, an optimised model, namely Super-node model, is
introduced.

496 H.L. Zhang et al.

4.1 Super-Node Model in the Matrices Cooperation

Based on the early work [10], a super-node model is suggested to tackle the
above problems. The super-node model [4] has been extensively applied to many
online systems, such as KaZaA [5], SkypeNet [6], etc. In a super-node model, a
number of nodes are selected as super nodes, which manage a limited number
of other nodes. The major advantages of the super-node model include reducing
time and bandwidth for search, enhancing manageability, etc.[4]. This model
avoids mesh peer-to-peer connections, which minimizes the probability of the
occurrence of concurrency. The concurrency problem often causes repetitions of
communications, which increases network traffic volume.

The criteria of determining whether a computing terminal is suitable to be a
super-node are quite simple, which include: (1) it must have a high bandwidth
connection; (2) it needs to have a reasonable computing capability; (3) it should
be flexible and efficient in entering and exiting a network. Generally, each super-
node Matrix is directly connected to a Matrix network maintainer.

4.2 Performance Evaluation

The Agent-Matrices framework employs the optimised methods including the
most familiar partner method, supplemental partner method, and super-node
model. Figure 3 and 4 show the performance comparison between optimised and
non-optimised Agent-Matrices-based framework. The following figures illustrate
the performance comparison.

Fig. 3. Success rate comparison based on NFRC and FRC (200 requests)

The performance comparison clearly indicate that the most familiar partner
and supplemental partner methods adopted in the Agent-Matrices framework
can successfully improve the matching success rate and reduce the matching

Agent-Matrices Cooperation 497

Fig. 4. Time consumption based on NFRC and FRC (200 requests)

time consumption. The application of the super-node model in the Unified Ma-
trices Framework enhances the fault-tolerance capability and the system man-
ageability. In the unified Matrices structure, the super-nodes are those selected
Matrices that play a coordinator role in processing the other Matrices’ requests.
These super-nodes receive the requests from the other Matrices and search the
corresponding Matrices.

5 Conclusion

Autonomy oriented computing (AOC) unifies the methods for effective analysis,
modelling, and problem-solving in complex systems [7, 8]. This paper addresses
AOC-by-prototyping and AOC-by-self-discovery issues through introducing the
Matrix concept [7].

The Matrix provides a virtual platform for intelligent agents through man-
aging Matrix-agent relationships in an agent society. The Matrix maintains a
superior transmission performance in its virtual platform through combining
centralized and decentralized topologies. The Matrix also presents seemly mo-
bility as the peer-to-peer connections between agents only exist temporarily.

The Matrix employs a Domain-Specific-Component usage centre to assure
that every agent is upgradeable. Different from agent mediators and facilita-
tors in other middle-agent-based systems, a Matrix in the Agent-Matrices [9,
10, 11] framework not only coordinates its internal agents but also provides its
internal agents with various information resources, such as the DSC items, data
resources, etc. An agent can perform self-upgrade through obtaining new DSC
items from the Matrix and replacing dated items. This Matrix-agent connec-
tion design simplifies the self-upgrade processes of an agent, which are rather
complicated in many agent-based systems.

498 H.L. Zhang et al.

The unified Matrices structure consists of a number of Matrices groups; and
one of the Matrices in each group is selected as a super-node to manage a group.
These selected super-node Matrices normally possess superior computing perfor-
mances; and each super-node Matrix manages the group through using a Matrix
network maintainer that contains the Matrix distribution information in the
group.

Acknowledgement. This project is funded by the Zhejiang Philosophy and
Social Science Project Grant (No. 11JCSH03YB), National Excellent Science and
Technology Fund for Overseas Scholars (Ministry of HR of China, 2011[508]),
Ningbo Nature Science Grant (No. 2012A610060, 2012A610025), Ningbo Soft
Science Grant (No. 2012A10050), Ningbo International Cooperation Grant (No.
2012D10020) and National Nature Science Grant (No. 61272480).

References

1. Evertsz, R., Fletcher, M., Frongillo, R., Jarvis, J., Brusey, J., Dance, S.: Imple-
menting Industrial Multi-agent Systems Using JACK. In: Dastani, M., Dix, J., El
Fallah-Seghrouchni, A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 18–48.
Springer, Heidelberg (2004)

2. Bradshaw, J.M., Dutfield, S., Benoit, P., Woolley, J.D.: KAoS: Toward an
Industrial-Strength Generic Agent Architecture. In: Software Agents, pp. 375–418.
AAAI/MIT Press, Cambridge (1997)

3. Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intelligent
Agents. In: Proc. of AAMAS, Bologna, Italy, pp. 37–38 (2002)

4. Fiorano, Software Inc.: Super-Peer Architectures for Distributed Computing. Tech-
nical report, Fiorano Copyrights (2007)

5. KazaA, Inc.: How Peer-to-Peer (P2P) and Kazaa Software Works. Technical report,
KazaA Copyrights (2006)

6. Skype, Inc.: Skype Guide for Network Administrators. Technical report, Skype
Copyrights (2005)

7. Liu, J., Jin, X., Tsui, K.C.: Autonomy Oriented Computing: From Problem Solving
to Complex Systems Modeling. pp. 8–10. Springer (2004)

8. Liu, J., Jin, X., Tsui, K.C.: Autonomy oriented computing (AOC): Formulating
computational systems with autonomous components. IEEE Transaction on Sys-
tems, Man and Cybernetics, Part A: Systems and Humans 35(6), 879–902 (2005)

9. Zhang, H.L., Leung, C.H.C., Raikundalia, G.K.: Topological analysis of AOCD-
based agent networks and experimental results. Journal of Computer and System
Sciences 74(2), 255–278 (2008)

10. Zhang, H.L., Leung, C.H.C., Raikundalia, G.K.: Matrix-Agent Framework: A Vir-
tual Platform for Multi-agents. Journal of Systems Science and Systems Engineer-
ing 15(4), 436–456 (2006)

11. Zhang, H.L., Pang, C., Li, X., Shen, B., Jiang, Y.: A Topological Description
Language for Agent Networks. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G.
(eds.) APWeb 2012. LNCS, vol. 7235, pp. 759–766. Springer, Heidelberg (2012)

	Solving Complex Decision-Making Problems through Agent-Matrices Cooperation

	1 Introduction
	2 The Matrix Concept
	2.1 Components in the Agent-Matrices Framework
	2.2 The Structural Design of Matrices

	3 A Unified Matrices Structure for Matrices Cooperation
	3.1 Matrix Searching Algorithms for Service-Provider Matrices
	3.2 Most Familiar Partner Method
	3.3 Supplemental Partner Method

	4 The Optimised Model and Performance Evaluation
	4.1 Super-Node Model in the Matrices Cooperation
	4.2 Performance Evaluation

	5 Conclusion
	References

