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Abstract. As two of the most important characteristics of Web systems’
workloads, burstiness and self-similarity are gaining more and more at-
tentions. And synthetically generating bursty and self-similar workloads
is a key technique for Web system performance analysis. In this paper, a
configurable synthetic approach for bursty and self-similar workload gen-
eration has been proposed based on a superposition of 2-state Markovian
arrival processes (MAP2). This method can generate workload with both
specified intension of burstiness and self-similarity. The detailed evalua-
tion show the accuracy and robustness of our method.
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1 Introduction

In recent years, more and more Web-based systems have been moved to cloud
computing platforms such as Amazon EC2 and Google App Engine, which can
promise of on-demand resource provisioning based on virtualization techniques.
And some characteristics such as burstiness of workloads can have critical im-
pact on resource provisioning strategies and performance of cloud platforms.
For example, flash-crowd service requests can cause resource allocation prob-
lems and seriously degrade system performance [1]; Simultaneously launching
jobs for different cloud applications, which are no longer single-program-single-
execution applications, during a short time period can immediately aggravate
resource competitions and load unbalancing among computing sites [16]. So syn-
thetically generating bursty workloads is an important technique for Web system
performance analysis, especially in the context of cloud computing.

Burstiness, which means highly variable request arrival rate or service time,
has been observed in Ethernet LAN, Web applications, storage systems [15] and
grid systems [10]. Many mathematical methods, including peakedness, peak-to-
mean ratio, coefficient of variation, and indices of dispersion for count (IDC)
have been proposed to characterize the intension of burstiness. The Markovian
Arrival Process (MAP) [5,13], which is a generalization of Markov Modulated
Poisson Process (MMPP), is usually leveraged to model bursty request arrivals.
And some workload generators such as SWAT [8] and Geist [7] can also support
the bursty workload generation.
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However, these methods only focus on the burstiness at some specific time-
scale, while self-similarity, which has been also observed in a variety of working
communication networks and computing systems, presents a process displaying
similar-looking workload burstiness over all or a wide range of time-scales. The
intension of self-similarity is often characterized by the Hurst parameter. And
some new models, such as chaotic maps [11], fractional brownian motion (FBM)
[17] and fractional autoregressive integrated moving average (FARIMA) model
[9], have been proposed to describe self-similar behavior in a relatively simple
manner. Also, a number of self-similarity models have been developed based on
traditional traffic models. Similarly, these methods merely focus on modeling
and fitting self-similarity, none of them can synthetically generate workloads
that exhibit both specified burstiness and self-similarity degree.

In order to deal with these deficiencies, a markovian approach for bursty
and self-similar workload generation has been proposed in this paper based on
a superposition of 2-state Markovian arrival processes (MAP2). Our approach
can leverage some simple traffic parameters, which can be straightforwardly
derived from real system logs or provided by performance analysts, to compose a
MAP with both required intension of bursiness and self-similarity. The detailed
analysis and experiment results show the accuracy and robustness of our method.

The remainder of this paper is organized as follows. Section 2 introduces
the motivation. Section 3 describes the Markovian approach for bursty and self-
similar workload generation. Section 4 evaluates our workload generation method
by conducting a detailed accuracy and robustness analysis. Finally, section 5
concludes and describes the future work.

2 Motivation

For workload analysis, the IDC has been widely used to characterize the bursti-
ness of arrival. This is a standard burstiness index first used in networking, and
then applied to model workload burstiness in Multi-Tier applications [12]. The
IDC at time t is the variance of the number of requests arrived in an interval of
length t divided by the mean number of requests arrived in this interval:

It =
V ar(Nt)

E(Nt)
(1)

where Nt represents the number of arrivals in the continuous interval of (0, t).
Traditional workload generators such as Surge [4] and Httperf [14], can not

support burstiness generation. Then, SWAT [8], Geist [7] and the method pro-
posed in [13] were developed to provide mechanisms for burstiness injection.
Although these methods can support injecting burstiness into workloads, the
resulting models, based on burstiness characterizations using IDC, are adequate
only over a limited range of time-scales. No one can synthetically generate work-
load with specified long range bursty behavior across large time-scales, i.e. the
self-similarity.
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Let the discrete-time stochastic process X = {Xi, i = 0, 1, ...} is used to
describe the number of arrivals in the i-th interval (length is Δ). And the aggre-
gated process of X is defined as follows:

X(m) = {X(m)
i } = {X1 + ...+Xm

m
, ...,

Xmk+1 + ...+X(m+1)k

m
, ...}

Then X is called exactly second-order self-similar with the Hurst parameter
H = 1− β/2 if

V ar(X(m)) = σ2m−β . (2)

where σ2 is the variance of X , m is the aggregate level. There are some other
equivalent definitions of self-similarity, we mainly consider the one relates to IDC
in this paper. That is if X satisfies the following formula, X is self-similar.

Im = I(t=mΔ) =
V ar(N(mΔ))

E(N(mΔ))
= I1m

2H−1. (3)

where I1 denotes the IDC of the arrival process at the unit interval Δ.
Some new models such as chaotic maps, FBM and FAIMA have been devel-

oped to describe and model the self-similar behavior, and the corresponding ap-
proaches are also developed to generate self-similar traffic or workload based on
these models. Because the queueing theoretical techniques are hardly to be used
for these new models, a number of self-similarity models have been developed
based on traditional traffic models too. For instance, MMPP as a superposition
of 2-state Markov processes, is used to emulate self-similarity over a certain range
of time scales in [2,3,18]. In [6], markovian arrival process as a superposition of
a phase type renewal process and an interrupted Poisson Process (IPP), is pro-
posed to approximate real traffic behavior. However, all these methods proposed
to generate self-similar workload are only dedicated to the long range bursty
behavior across large time-scales, they can’t be used to generate self-similar
workloads with specified burstiness on certain time-scales.

Motivated by the fact that current workload generation methods only focus
on either burstiness or self-similarity, we claim a complete and practical work-
load generator should support workload generation with specified intension of
burstiness and self-similarity. Then two questions may come into being:

First, why should we consider both the burstiness and self-similarity during
workload generation. Here we use a real case to describe the reasons in the follow-
ing. Three workloads with identical burstiness profiles (IDC = 400) and differ-
ent intensions of self-similarity (H = 0.62, 0.76, 0.9 separately) are described in
Fig. 1. For each plot of this figure, there are 105 inter-arrival time samples, whose
mean value is 0.001 seconds. If single burstiness is enough to describe the bursty
characteristic of the workload, the performance of these three workloads should
be identical or nearly identical when they are imposed to the same system with
identical environment. In order to verify this claim, we show the queueing per-
formance of these workloads with ·/D/1 queueing network simulation in Fig. 2.
The constant service time for each request is set to 0.001 seconds.
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Fig. 1. Three workloads with identical burstiness (IDC = 400) but different self-
similarity (H = 0.62, 0.76, 0.9) separately
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Fig. 2. Performance of the workloads depicted in Fig. 1 with ·/D/1 queue
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Fig. 3. Three workloads with identical self-similarity H = 0.76 but different burstiness
(IDC = 10, 200, 400) separately

As shown in Fig. 2(a), the waiting time of each request when H = 0.62 is
much smaller than H = 0.76 and H = 0.9. Though the waiting time when
H = 0.76 is larger than H = 0.9 for some requests, the average and maximum
value when H = 0.9 is larger than H = 0.76. This observation is validated by
Fig. 2(b) and Fig. 2(c). From Fig. 2(b), we can see the waiting time for 80% of
the requests is 2.72, 7.26 and 10.05 separately for the corresponding workload
(H = 0.62, 0.76, 0.9). The queue length curve plotted in Fig. 2(c) also show
evident performance differentiation when H is assigned to different values, even
the IDC is identical. So we can see it’s apparently inaccurate to describe the
bursty characteristic of the workload merely by the burstiness parameter IDC.
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Fig. 4. Performance of the workloads depicted in Fig. 3 with ·/D/1 queue

Similarly, Fig. 3 shows the inter-arrival time samples for another three work-
loads with identical self-similarity (H = 0.76) but different burstiness (IDC =
10, 200, 500 separately), while Fig. 4 shows the corresponding performance for
these workloads with the same ·/D/1 queueing network. As shown in Fig. 4,
even with identical self-similarity intension, the performance is still significantly
different for different value of IDC. And the higher the IDC the worse the perfor-
mance. So single self-similarity is also not adequate to model the bursty behavior
of practical workload. That means combining the burstiness and self-similarity
is more completed and practical to generate workloads.

And the second question is how can we combine the burstiness and self-
similarity. From previous description we know MMPP2 is often used to model
workload burstiness, and some superpositions of Markov processes can be used to
generate self-similar workload. So the natural way we may consider is to develop
a method to generate the bursty and self-similar workload based on Markovian
models, and with which the queueing theoretic techniques developed in the past
can be used to guide the performance evaluation.

In a word, motivated by current workload generation methods usually focus on
single burstiness or self-similarity, we aim to seek for a completed and practical
approach for bursty and self-similar workload generation. Considering the com-
putational tractability and the convenience for performance evaluation based on
queuing theoretic techniques, the proposed approach for workload generation is
based on Markovian models.

3 Markovian Modeling for Bursty and Self-similar
Workload Generation

The proposed Markovian approach for bursty and self-similar workload genera-
tion is based on the model by Anderson et al. [2,3], where workload is modeled
by the superposition of several 2-state MMPPs. The benefits of using a Markov
model is that it is possible to re-use the well-known queuing theoretical tech-
niques developed before and a whole array of tools for calculating performance
measures is already available.
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3.1 Superposition of Two State Markovian Sources

In this subsection, some main characteristics of MMPP will be summarized first.
In the case of m-state MMPP, the underlying Markov process can switch among
m Poisson processes, each of which has a unique request arrival rate λi, (1 ≤ i ≤
m). That is, the arrival rate is λi when the Markov chain is in state i. In the
2-state case, two square matrices Q and Λ are used to define a MMPP2 from a
client’s point of view.

Q =

[−r1 r1
r2 −r2

]
. Λ =

[
λ1 0
0 λ2

]
,

For the case of MMPP2, the mean value of Nt is given by

E(Nt) =
r2λ1 + r1λ2

r1 + r2
t. (4)

And the variance of Nt is can be calculated as follows:

V ar(Nt) =
r2λ1 + r1λ2

r1 + r2
t+ 2A1t− 2A1

r1 + r2
(1− e−(r1+r2)t)

where A1 = r1r2(λ1−λ2)
2

(r1+r2)3
.

Since any MMPP obtained by superposing several MMPP2s can be described
by a superposition of several interrupted Poisson processes (IPP) and one Poisson
process. We consider the required MMPP is composed of d(> 1) IPPs and one
Poisson process. ith IPP can be give by

Qi =

[−r1i r1i
r2i −r2i

]
, Λi =

[
ri 0
0 0

]
.

The superposition can be described as follows

Q = Q1

⊕
Q2

⊕
...
⊕

Qd

Λ = Λ1

⊕
Λ2

⊕
...
⊕

Λd

⊕
λp,

where
⊕

is the Kronecker’s sum and λp means the arrival rate of the Poisson
process. The whole arrival rate of the superposition process λ can be given by

λ = λp +

d∑
i=1

r2iλi

r1i + r2i
(5)

In the next subsection, we show how to determine the parameters of the IPPs
and the Poisson process.
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Table 1. Preliminarily Required Parameters

Parameter Meaning

λ Average arrival rate of the whole process.

mmin, mmax Minimum and Maximum of the time-scales over which self-similarity
is taken into consideration.

Immin The IDC value at the minimum time-scale.

H Hurst parameter.

d Number of IPPs.

3.2 Applied Parameterizing Algorithm

In this subsection, a procedure is given to determine the parameters of the IPPs
and the Poisson procss to construct a MMPP such that the properties of the
workload generated by our approach match predefined values. Table 1 shows the
preliminary required parameters for our generation model.

Let Nt|i and Nt|p be the number of arrivals during the t-th time slot in the i-th
IPP and the Poisson process separately, and let Nm

t|i and Nm
t|p be the correspond-

ing aggregated processes of them. Considering the computational tractability,
we assume the r1 and r2 satisfy the following relation, for each IPP.

f =
r2i

r1i + r2i
, (1 ≤ i ≤ d) (6)

Then using (5), we have

λ = λp +

d∑
i=1

fλi (7)

and using (4), we obtain the variance of the i-th IPP as

V ar(Nt|i) = fλit+
2(1− f)2λ2t

r1if
− 2(1− f)3λ2

i

fr21i
(1− e−

r1i
1−f t) (8)

The variance of aggregated arrival process N
(m)
t|i can be expressed as

V ar(N
(m)
t|i ) =

V ar(N(mΔ)|i)
(mΔ)2

(9)

where Δ is previous mentioned sampling resolution. Here we consider Δ one
time unit, using (8) and (9), we can get

V ar(N
(m)
t|i ) =

fλi

m
+ 2f(1− f)2ηiλ

2
i (10)

where

ηi =
1

mr1i
− 1− f

m2r21i
(1 − e

1
f−1mr1i) (11)
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The corresponding variance of the Poisson process is λp/m. For independent
subprocesses, the variance of the superposition equals the sum of individual
variances, so the variance of the whole process is given by

V ar(X
(m)
t ) =

λp

m
+Σd

i=1V ar(Nm
t|i) =

λ

m
+ 2f(1− f)2

d∑
i=1

ηiλ
2
1i (12)

where we used (7). Then using (12) and (1), we can get

Im =
V ar(N(mΔ))

E(N(mΔ))
=

m2V ar(X
(m)
t )

mλ
= 2f +

2mf(1− f)2

λ

d∑
i=1

ηiλ
2
1i (13)

Since the superposition of d IPPs and a Poisson process is expected to show
self-similarity over d different time-scaless, and the sojourn time of each IPP
is in accordance with the different time-scales, so there are d different points
mi(1 ≤ i ≤ d). According to the range of time-scales specified by the input
parameters, we have mmin ≤ mi ≤ mmax, let

mi = mmina
i−1 (14)

where

a = (
mmax

mmin
)

1
d−1 , d > 1. (15)

In order to reduce the number of parameters which have to be determined,
we also assume mir1i = 1, i.e.

r1i =
1

mi
, (1 ≤ i ≤ d). (16)

Then using (6), (14)-(16), we can obtain r2i for each IPP. Now the parameters
we need to obtain are only f and λi, since λp can be derived from (7) if λi is
determined. Based on the above analysis, the applied parameterizing algorithm
is in the following:

– SETP1. Determine λi as the function of f . From (4) and (14), we have

I1

⎡
⎢⎢⎢⎢⎣

m
(2H−1)
1

m
(2H−1)
2
...

m
(2H−1)
d

⎤
⎥⎥⎥⎥⎦ = 1 +B

⎡
⎢⎢⎢⎣
λ2
1

λ2
2
...
λ2
d

⎤
⎥⎥⎥⎦ (17)

where B is the d× d matrix whose (i, j) element is

Bij =
2f(1− f)2

r1iλ
− 2f(1− f)3

mir21iλ
(1− e

mir1i
f−1 ) (18)

Solving this, we can determine λi as the function of f .
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– STEP2. Find the value of f heuristically. First, find the range of f
heuristically, and set an initial value for f and the largest number of itera-
tions. Then, use STEP1 to obtain λi and further other needed parameters
to determine the MMPP. Next, use this model to generate specified number
of the inter-arrival time sample. Then we calculate the value of the average
arrival rate, IDC and H from the generated sample data, to obtain the com-
bined error. The value of f that minimizes the combined error is selected
as the final value of f . Then other parameters can also be determined to
generate the required workload.

To conclude, we compare our method with that of [2] and [18] in Table 2.
Here, we call the procedure of [2] covariance method, the procedure of [18] vari-
ance method, and ours IDC method. The generation procedure of our method
and the variance method are exactly constructed while that of [2] contains
some approximations. Furthermore, the variance method does not hold when

V ar(N
(m)
t ) ≤ λ/m or V ar(N

(m)
t ) ≥ λ/m+ λ2, while our method does not have

this constraint. This is significant to workload generator, which not only needs
to fit the original trace, but also need to allow the generation of workload with
desired characteristics which may cover a large different range.

Table 2. Comparison between IDC, Variance, and Covariance Methods

IDC Variance Covariance

Required Parameters λ,H, I1, d, λ,H, d, σ2, λ,H, d, r(1),
Time scale Time scale Time scale

Type of Component MMPPs IPP IPP SPP

Parameter Fitting Exact Exact Approximation

Constraint None λ
m

< V ar(N
(m)
t ) < λ

m
+ λ2 None

4 Evaluation

Accurately and robustly generating required workloads is the most important cri-
teria to evaluate a workload generator. Thus in this section, we mainly evaluate
the accuracy and robustness of our bursty and self-similar workload generation
approach with the notion of average deviation, which is the relative error be-
tween the derived indicator parameter values with the expected ones. And it can
be calculated as follows:

Avg Dev =
1

n
∗

n∑
i=1

Dev(Xi)− Expec(Xi)

Expec(Xi)
(19)

where Dev(Xi) and Expec(Xi) denotes the derived and expected value of λ,
IDC or H during i-th execution. For each indicator parameter, we execute the
generation approach n = 100 times to derive the average value of deviations.
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4.1 Accuracy Analysis

In this subsection, we evaluate the accuracy of generating workloads with spec-
ified intension of IDC and H . During these experiments, we experimentally set
the expected average arrival rate λ = 1000, the number of IPPs d = 4, the
burstiness IDC = 10, 50, 100, 200, 400, 500 (in practice, the maximum value 500
is enough to present the typical large value of IDC when λ = 1000), the self-
similarity H = 0.55, 0.62, 0.69, 0.76, 0.83, 0.9, 0.97, and the minimum and maxi-
mum time-scale is 1 and 104 separately. By changing the value of IDC and H ,
we can derive the generating accuracy of our approach under different intension
of burstiness and self-similarity. For giving an intuitive presentation of the gen-
erated workload by our approach and describing the motivation of this paper,
we plot one set of the inter-arrival time samples with identical burstiness and
different self-similarity in Fig.1, while inter-arrival time samples with identical
self-similarity but different burstiness in Fig.3. And the corresponding queueing
performance of these samples is depicted in Fig.2 and Fig.4 separately.

In table 3, we describe the average deviation of λ for each composition of
IDC and H . From this table, we can see the deviation of λ is low, even when
IDC = 500 and H = 0.97 the value is only 6.63%. And the tendency is evident
that the deviation of λ increases with IDC (or H) when the value of H (or IDC)
is identical. That is the higher the intension of burstiness or self-similarity the
lower the accuracy of our method. The main reason for this behavior is that
higher intension of burstiness or self-similarity means more variability of the
inter-arrival times, which often brings more difficulty in accurately estimating
the mean value, so the resulted average arrival rate may have a larger deviation.

The average deviation of IDC is described in table 4, generally the value of
these deviations is larger than the ones of λ, since the calculation of IDC is more
complex and inaccurate than the mean value of average arrival rate. It is also
obvious that the deviation of IDC increases with the expected value of IDC
and H . For instance, the deviation of IDC is only 0.75% when IDC = 10 and
H = 0.55, while the value of deviation reaches 10.06% when IDC = 500 and
H = 0.97. The reason is similar to the one of the deviation of λ.

However, the average deviation of H , as shown in table 5, shows a different
tendency compared with the one of λ and IDC. First, the deviation of H doesn’t
show a complete increasing or decreasing tendency during the entire range of H .
It decreases initially and then increases with the value of H . The main reason
can be explained as follows: Our approach is developed based on the assumption
that the required workload is self-similar, it doesn’t work well under the case of
no or low intension of self-similarity. Thus the lower the value of H the higher
the inaccuracy to generate self-similar inter-arrival time samples, and further
the higher the inaccuracy to derive the expected value of H . Furthermore, when
the value of H closes to the maximum value 1, the relative error to get the
required parameters of the MMPP model is larger than the low or moderate H ,
so the deviation of H begins to increase again after the minimum value. Second,
although the deviation of H show an increasing tendency with the value of IDC,
the increasing rate is not identical for different intensions of self-similarity. From
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table 5, we can see the increasing rate when H closes to the extreme value (1/2
or 1) is much larger than the one when H is moderate. That means the value
of IDC plays less influences on the deviation of H when the self-similarity is
moderate. The reason is also due to the extreme values of H make the fitting
method more inaccurate during the workload generation process.

From above analysis, we can see our bursty and self-similar workload genera-
tion approach can ensure the accuracy within a reasonable range (< 10%) for a
wide range of specified intension of IDC and H .

Table 3. Average deviation of average arrival rate λ (%)

IDC
H

0.55 0.62 0.69 0.76 0.83 0.90 0.97

10 0.11 0.13 0.18 0.23 0.44 0.51 0.91

50 0.20 0.32 0.53 0.51 0.93 1.01 2.12

100 0.35 0.51 0.62 0.79 0.80 1.61 3.07

200 0.49 0.54 1.10 1.23 1.73 2.34 4.82

400 0.85 0.92 1.56 2.37 3.15 4.26 5.89

500 1.54 2.03 2.98 3.52 4.36 5.49 6.63

Table 4. Average deviation of burstiness intension IDC (%)

IDC
H

0.55 0.62 0.69 0.76 0.83 0.90 0.97

10 0.75 0.80 0.94 1.25 1.97 3.51 5.81

50 0.67 0.71 1.06 1.37 2.33 3.63 6.32

100 0.59 0.71 1.11 1.45 2.23 3.58 6.85

200 0.84 0.95 1.47 1.55 2.56 3.79 7.94

400 1.11 1.56 2.16 2.79 3.25 4.56 8.60

500 1.94 2.23 2.94 3.44 4.32 5.07 10.06

4.2 Robustness Analysis

For a robust workload generation approach, it is not only to ensure the accuracy
for different input parameters of the generation model, but also required to
make sure the number of samples won’t influence the generation accuracy. In
order to evaluate the impact of the number of samples on the accuracy, we test
the deviation of λ, IDC and H with different number of generation samples.
During these experiments, we change the number of samples from 105 to 106

with the interval of 105, and for each of which, we generate the specified number
of inter-arrival samples 100 times for different compositions of the value of IDC
and H . And other parameters are also set λ = 1000, d = 4, the minimum and
maximum time-scale 1 and 104 separately.
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Table 5. Average deviation of self-similarity intension H (%)

IDC
H

0.55 0.62 0.69 0.76 0.83 0.90 0.97

10 2.36 0.95 0.81 0.90 0.87 0.91 0.96

50 2.71 1.05 0.85 0.87 0.84 0.89 1.04

100 2.83 1.38 0.93 0.92 0.86 0.91 1.16

200 3.09 1.17 0.84 0.95 1.08 0.115 1.32

400 3.42 1.32 0.89 0.93 1.32 1.28 1.67

500 3.61 1.43 0.95 0.97 1.41 1.35 1.95
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Fig. 5. Accuracy analysis with different number of samples for different compositions
of the value of IDC and H

During these experiments, the deviation of λ, IDC and H show little fluctua-
tion with the number of samples. The deviations roughly stay around a constant
value when the number of samples exceed 2 × 105 or 3 × 105. We plot the de-
viations in Fig.5 with six typical compositions of IDC and H . The first three
with identical value of IDC = 200 and different value of H , while the last three
with identical value of H = 0.76 but different value of IDC. As shown by these
plots, the deviations generally vary a little even though the higher the value of
H or IDC, the larger the average value of these deviations. Furthermore, the
deviations show significant improvement when the number of samples start to
increase initially, while then the improvement begins to ease up until reaching
around a constant value. The main reason for this kind of behavior lies in that
when the number of samples is very small (e.g. 105), there maybe no enough data
samples to fitting the expected value of λ, IDC and H . Thus the deviations de-
crease greatly when the number of samples start to increase initially. However,
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once the number of samples is large enough to fit the required parameters, the
deviations begin to stay around a constant value, even though the number of
samples is still keep increasing.

The results in above experiments show strong robustness of our approach.
Even with extremely large number of samples to be generated, our approach can
still ensure the accuracy of the required parameters within a reasonable range.
This property is meaningful to the practical Web system workload generation,
especially in the context of cloud computing, in which the large scale of sys-
tem architecture and users often require a large number of workload samples to
evaluate system performance or do optimal resource provision.

5 Conclusion and Future Work

Synthetical workloads modeling emerging or future applications is extremely
important in the design of efficient system architecture. However, current ap-
proaches for workload generation only focus on either burstiness or self-similarity.
With accurate characterization of the two key properties of the workloads by IDC
and Hurst parameter separately, we developed a markovian approach for bursty
and self-similar workload generation by fitting a MMPP model as a superposition
of several IPPs and one Poisson process. The main contribution of the proposed
approach lies in workload generation with specified intension of both bursti-
ness and self-similarity, the simultaneous occurrence of which is the real case
for cloud applications in the production. And the experiments and evaluation
show the accuracy and robustness of our approach. After focusing on bursty and
self-similar workload generation in this paper, our future work on this subject is
mainly to evaluate the system performance under such kind of workloads, and
find approaches for performance optimalization and resource efficient utilization
to reduce the negative impacts of burstiness and self-similarity.
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