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Preface

Welcome to the proceedings of the 14th International Conference on Web Infor-
mation Systems Engineering (WISE 2013), held in Nanjing, China in October
2013. The series of WISE conferences aims to provide an international forum for
researchers, professionals, and industrial practitioners to share their knowledge
in the rapidly growing area of web technologies, methodologies, and applications.
The first WISE event took place in Hong Kong, China (2000). Then the trip con-
tinued to Kyoto, Japan (2001); Singapore (2002); Rome, Italy (2003); Brisbane,
Australia (2004); New York, USA (2005); Wuhan, China (2006); Nancy, France
(2007); Auckland, New Zealand (2008); Poznan, Poland (2009); Hong Kong,
China (2010); Sydney, Australia (2011); and Paphos, Cyprus (2012). This year,
for a sixth time, WISE was held in Asia, in Nanjing to be precise.

WISE 2013 hosted four well-known keynote and invited speakers: Wen Gao
of Peking University, who gave a talk on “Towards Web-Based Video Process-
ing”; Divy Agrawal of the University of California at Santa Barbara, who gave a
lecture on “Data-Driven Methodologies for Understanding, Managing, and Ana-
lyzing Online Social Networks”; Chengqi Zhang of the University of Technology
Sydney, who gave a talk on “Big Data Related Research Issues and Progresses”;
and Marek Rusinkiewicz of the Florida International University, who talked on
“Security of Cyber-physical Systems (a Case Study)”.

A total of 198 research papers were submitted to the conference for consid-
eration, and 48 submissions were selected as full papers (with an acceptance
rate of 24% approximately), plus 29 as short papers. The program also featured
10 demonstration papers and 5 challenge papers. The research papers cover the
areas of web mining; web recommendation; web services; data engineering and
databases; semi-structured data and modeling; web data integration and hidden
web; social web; information extraction and multilingual management; networks,
graphs, and web-based business processes; event processing, web monitoring and
management; and innovative techniques and creations.

We wish to take this opportunity to thank the honorary general chair, Jian
Lv; the industry program co-chairs, Min Wang and Lei Chen; the demo co-chairs,
Hong Gao, Yoshiharu Ishikawa and Rui Zhang; the challenge program co-chairs,
Weining Qian and Yabo (Arber) Xu; the panel co-chairs, Guoren Wang and
Junzhou Lou; the tutorial co-chairs, Wojciech Cellary and Jeffrey Xu Yu; the
workshop co-Chairs, Zhisheng Huang and Chengfei Liu; the publication chair,
Guangyan Huang; the local arrangement chair, Jie Cao; the financial chair, Jing
He; the publicity co-chairs, Haolan Zhang, Athena Vakali, and Wenjie Zhang; the
WISE society representative, Xiaofang Zhou, and finally the webmaster, Zhiang
Wu.

In addition, special thanks are due to the members of the International Pro-
gram Committee and the external reviewers for a rigorous and robust reviewing



VI Preface

process. All the papers were reviewed by at least three academic referees. In
total, 727 reviews were uploaded by the members of the International Program
Committee and the external reviewers.

Finally, we are also grateful to the UCAS (University of Chinese Academy
of Sciences)-VU (Victoria University) Joint Lab for Social Computing and E-
Health Research, to the Jiangsu Provincial Key Laboratory of E-Business at
Nanjing University of Finance and Economics, and to the Nanjing Science and
Technology Commission for their sponsorship of WISE 2013. We expect that the
ideas that have emerged here will result in the development of further innovations
for the benefit of science and society.

October 2013 Ricardo Baeza-Yates
Yanchun Zhang

Jie Cao

Xuemin Lin

Yannis Manolopoulos

Divesh Srivastava
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Towards Web-Based Video Processing

Wen Gao

Peking University
wgaol@pku.edu.cn

Image and video data is becoming the majority in big data era, a reasonable
improvement of video coding efficiency may get a big cost saving in video trans-
mission and/or storage, that is why so many researchers working on the new
coding technologies and standards. For example, a team under IEEE standard
association works on a new standard IEEE 1857 for internet/surveillance video
coding, which targets to achieves about 50% bits saving than any of existing
standards. However, the video coding story will be changed in the case of web
application, because so many data we can reference comparing to the case of
normal video coding, in that only a few frame of images can be referenced. In
this talk, the recent developments of model-based video coding will be given,
special on background picture model based surveillance coding and cloud-based
image coding, and a on-going project that using web image and video to enhance
the efficiency of video processing will be discussed also.



Data-Driven Methodologies for Understanding,
Managing, and Analyzing Online Social
Networks

Divy Agrawal

University of California at Santa Barbara
agrawal@cs.ucsb.edu

Online social networks provide unprecedented amounts of information about so-
cial interactions and therefore enable the study of various problems in the context
of social networks on a scale and at a level of detail that has never been possible
before. In this talk, we will consider ways of systematically exploring this vast
space of online social network problems. Namely, we will consider three dimen-
sions; understanding, managing and reporting on social networks and focus on
example studies relating to these dimensions. To this end, we will consider three
applications: modeling adoption behavior, limiting the spread of misinformation,
and trend analysis in social networks. In modeling adoption behavior, we will
challenge the common use of pure local models and revive research done in the
context of diffusion of innovations and demonstrate the value of this technique in
two different social networks. Next, we study the notion of competing campaigns
in a social network and develop protocols whose goal is to limit the spread of
misinformation by identifying a subset of individuals that need to be convinced
to adopt the competing (or ”"good”) campaign so as to minimize the number of
people that adopt the "bad” campaign. And finally, relating to reporting on on-
line social networks, we explore novel trend detection mechanisms. We propose
two novel structural trend definitions that use friendship information to identify
topics that are discussed among clustered and unconnected users respectively.
Our analyses and experiments show that structural trends provide new insights
into the way people share information online.
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Abstract. As the volumes of Al problems involving human knowledge are likely
to soar, crowdsourcing has become essential in a wide range of world-wide-web
applications. One of the biggest challenges of crowdsourcing is aggregating the
answers collected from the crowd since the workers might have wide-ranging lev-
els of expertise. In order to tackle this challenge, many aggregation techniques
have been proposed. These techniques, however, have never been compared and
analyzed under the same setting, rendering a ‘right’ choice for a particular ap-
plication very difficult. Addressing this problem, this paper presents a benchmark
that offers a comprehensive empirical study on the performance comparison of the
aggregation techniques. Specifically, we integrated several state-of-the-art meth-
ods in a comparable manner, and measured various performance metrics with our
benchmark, including computation time, accuracy, robustness to spammers, and
adaptivity to multi-labeling. We then provide in-depth analysis of benchmarking
results, obtained by simulating the crowdsourcing process with different types of
workers. We believe that the findings from the benchmark will be able to serve as
a practical guideline for crowdsourcing applications.

1 Introduction

In recent years, crowdsourcing becomes a promising methodology to overcome prob-
lems that require human knowledge such as image labeling, text annotation, and product
recommendation [[16]. Leveraging this methodology, a wide range of applications [J5]]
(e.g. ESP game [1l], reCaptcha [2], and SMART [3]) have been developed on top of
more than 70 platform like Amazon Mechanical Turk and CloudCrowd. The rapid
growth of such applications opens up a variety of technical challenges [18I9l8]].

One of the most important technical challenges of crowdsourcing is answer aggrega-
tion [[19], which aggregates a set of human answers into a single value. In our setting, we
consider a broad class of problems in which there is an objective ground truth external
to human judgment; i.e. each question has an exact answer but no one knows what it is.
The goal of answer aggregation is to find this hidden ground truth from a set of answers
given by the crowd workers. This goal is, however, difficult to achieve for two main
reasons. First, the crowd workers have wide-ranging levels of expertise [23]] , leading
to high contradiction and uncertainty in the answer set. Second, the questions vary in
different degrees of difficulty, resulting in an incorrect assessment of the true expertise

'http://wuw.crowdsourcing.org/
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between truthful workers and malicious workers. To fully overcome this challenge, a
rich body of research has proposed different techniques for the answer aggregation.

In general, the aggregation techniques are broadly classified into two categories ac-
cording to their computing model:

— Non-iterative: uses heuristics to compute a single aggregated value of each ques-
tion separately. One simple approach is Majority Decision (MD) [[15]], in which the
answer with highest votes is selected as the final aggregated value. Other techniques
are Honeypot (HP) [17] and ELICE [13].

— Iterative: performs a series of iterations, each consisting of two updating steps: (i)
updates the aggregated value of each question based on the expertise of workers
who answer that question, and (ii) adjusts the expertise of each worker based on the
answers given by him. This incremental mechanism serves as the basis in EM [7]],
GLAD [25], SLME [21]], and ITER [10].

While many aggregation techniques have been developed over the last decades, there
has been no work on the evaluation of their performance altogether. The main reason
is the lack of a common setting (i.e. no common dataset and no common metrics of
success). As a result, understanding the performance implications of these techniques
is challenging, since each of them has distinct characteristics. One, for example, may
achieve very high accuracy over certain types of workers, while another is sensitive to
spammers. Moreover, aggregation techniques have never been compared systematically,
and each work often reported its superior performance generally using a limited variety
of datasets or evaluation methodologies. Therefore, there is a need of common settings
to test, research, and assess the advantage and disadvantage of these techniques.

The primary goal of this paper is to evaluate aggregation techniques within a com-
mon framework. To this end, we present a benchmark that offers an overview of compre-
hensive performance comparison among the aggregation techniques, describes in-depth
analysis on the performance behavior of each method, and provides guidance on the se-
lection of appropriate aggregation schemes. Moreover, potential users (e.g. researchers
and developers) can utilize our benchmarking framework to assess their own techniques
as well as reuse its components to reduce the development complexity. Specifically, the
salient features of the benchmark are highlighted as follows:

— We developed or integrated, in a fair manner for comparisons, the most representa-
tive state-of-the-art techniques in each category of answer aggregation approaches,
includin£ MD, HP, ELICE, EM, GLAD, SLME, and ITER.

— We designed a generic, extensible benchmarking framework to assist in the eval-
uation of different aggregation techniques, so that subsequent studies are able to
easily compare their proposals with the state-of-the-art techniques.

— We simulated different types of crowd workers and questions. In addition, our
benchmark allows users to customize the distribution of these workers. By this
way, the users can predict the accuracy of worker answers and save their money
before really posting the questions to the crowd.

— We offer extensive as well as intensive performance analyses. We believe that the
analyses can serve as a practical guideline for how to select a well-suited aggrega-
tion technique on particular application scenarios.

2 Full names of all abbreviations are given in section 2
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The remainder of the paper is organized as follows. Section [2] reviews state-of-the-
art aggregation techniques. We then describe the methodology used in the benchmark
in Section 3l Section Ml offers in-depth discussions on the benchmark results. Section
finally summarizes and concludes this study, where we provide important suggestions
for the applications that consider employing an aggregation technique.

2  Answer Aggregation Techniques

In the domain of crowdsourcing, a large body of work has studied the problem of aggre-
gating worker answers, which is formulated as follows. There are n objects {01, ..., 0,},
where each object can be assigned by k workers [wi,...,w;} into one of m possible
labels L = {l1, 5, ...1,}. The aggregation techniques take as input the set of all worker
answers that is represented by an answer matrix:

ai ... ik
Apl ... dpk

where a;; € L is the answer of worker w; for object 0;. The output of aggregation
techniques is a set of aggregated values {y,,,¥o,, - - - ¥o,}» Where vy, € L is the unique
label assigned for object o;. In order to compute aggregated values, we first derive the
probability of possible aggregations P(X,, = [;), where X,, is a random variable of the
aggregated value y,, and its domain value is L. Each technique applies different models
to estimate these probabilities. For simplicity sake, we denote y,, and Xo, as y; and X;,
respectively. After obtaining all probabilities, the aggregated value is computed by B:
yi = argmax P(X; = 1) @)
l.eL
In the following, we offer the details of aggregation techniques commonly used in the
literature. We organize them into two categories: (i) non-iterative aggregation, includ-
ing MD, HP, and ELICE; and (ii) iterative aggregation, including EM, GLAD, SLME,
and ITER. Table [[l summarizes the important notations used in this paper.

2.1 Non-iterative Aggregation

The literature suggests various non-iterative techniques, including Majority Decision
(MD)[l15], Honeypot (HP)[17]], and ELICE[13]]. They differ in the preprocessing step
as well as the probability computation. In particular, MD does not require preprocess-
ing. HP filters the answers of spammers in advance, whereas ELICE considers both
worker expertise and question difficulty. This section presents the details for these three
techniques, which cover the characteristics of other non-iterative methods.

Majority Decision. Majority Decision (MD) is a straightforward method that aggre-
gates each object independently. Given an object 0;, among k received answers for o;,
we count the number of answers for each possible label /.. The probability P(X; = [)

? Note that Yo, P(X; =1,) = L.
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Table 1. Summary of important nota- Table 2. Characteristics of aggregation tech-

tions niques
Symbol Description algo trapping aggregation worker question computing
M,k answer matrix of n objects and k workers set model  expertise difficulty  model
0i, wj, I, an object, a worker, a possible label MD no non-iterative no no online
a;j answer of worker w; for object o; HP yes  non-iterative no no online
Yo OI Yi aggregated value of object o; ELICE  yes non-iterative  yes yes offline
PX; =1,) the probability of object o; thatits ~ EM no iterative yes no offline
aggregated value y;is I, SLME  no iterative yes no offline
Q a set of trapping questions used to test GLAD  no iterative yes yes offline
worker expertise  ITER no iterative yes yes offline

of a label /; is the percentage of its count over k; i.e. P(X; = ;) = ,]{ Z];:] 1,,=:.. How-
ever, MD does not take into account the fact that workers might have different levels of
expertise and it is especially problematic if most of them are spammers.

Honeypot. In principle, Honeypot (HP) operates as MD, except that untrustworthy
workers are filtered in a preprocessing step. In this step, HP merges a set of trapping
questions £ (whose true answer is already known) into original questions randomly.
Workers who fail to answer a specified number of trapping questions are neglected as
spammers and removed. Then, the probability of a possible label assigned for each ob-
ject o; is computed by MD among remaining workers. However, this approach has some
disadvantages: Q is not always available or is often constructed subjectively; i.e truthful
workers might be misidentified as spammers if trapping questions are too difficult.

Expert Label Injected Crowd Estimation. Expert Label Injected Crowd Estimation
(ELICE) is an extension of HP. Similarly, ELICE also uses trapping questions £, but to
estimate the expertise level of each worker by measuring the ratio of his answers which
are identical to true answers of Q. Then, it estimates the difficulty level of each ques-
tion by the expected number of workers who correctly answer a specified number of
the trapping questions. Finally, it computes the object probability P(X; = [;) by logistic
regression [6] that is widely applied in machine learning. In brief, ELICE considers not
only the worker expertise (@ € [—1, 1]) but also the question difficulty (8 € [0, 1]). The
benefit is that each answer is weighted by the worker expertise and the question diffi-
culty; and thus, the object probability P(X; = [) is well-adjusted. However, ELICE also
has the same disadvantages about the trapping set 2 like HP as previously described.

2.2 [Iterative Aggregation

Iterative aggregation is the approach that consists of a sequence of computational rounds.
In each round, object probabilities—probability about possible labels of each object—are
updated incrementally and this computation is repeated until convergence. This approach
also differs from non-iterative one in the fact that the trapping set Q is not required. The
widely used techniques in this category includes EM, SLME, GLAD, and ITER. Each
of them has different ways to initialize and update object probabilities. While EM and
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SLME only concern about worker expertise, GLAD and ITER consider both worker
expertise and question difficulty. The details are explained as follows.

Expectation Maximization. The Expectation Maximization (EM) technique [7] itera-
tively computes object probabilities in two steps: expectation (E) and maximization (M).
In the (E) step, object probabilities are estimated by weighting the answers of workers
according to the current estimates of their expertise. In the (M) step, EM re-estimates
the expertise of workers based on the current probability of each object. This iteration
is repeated until all object probabilities are unchanged. Briefly, EM is an iterative al-
gorithm that aggregates many objects at the same time. Since it takes a lot of steps to
reach convergence, running time is a critical issue.

Supervised Learning from Multiple Experts. In principle, Supervised Learning from
Multiple Experts (SLME) [21]] also operates as EM, but characterizes the worker exper-
tise by sensitivity and specificity—two well-known measures from statistics—instead
of the confusion matrix. Sensitivity is the ratio of positive answers which are correctly
assigned, while specificity is the ratio of negative answers which are correctly assigned.
One disadvantage of SLME is that it is incompatible with multiple labels since the sen-
sitivity and specificity are defined only for binary labeling (aggregated value y € {0, 1}).

Generative Model of Labels, Abilities, and Difficulties. Generative Model of Labels,
Abilities, and Difficulties (GLAD) [25] is an extension of EM. This technique takes into
account not only the worker expertise but also the question difficulty of each object. It
tries to capture two special cases. The first case is when a question is answered by
many workers, the worker with high expertise have a higher probability of answering
correctly. Another case is when a worker answers many questions, the question with
high difficulty has a lower probability of being answered correctly. In general, GLAD
as well as EM-based approaches are sensitive to arbitrary initializations. Particularly,
GLAD’s performance depends on the initial value of worker expertise @ and question
difficulty B. In fact, there is no theoretical analysis for the performance guarantees and it
is necessary to have a benchmark for evaluating different techniques in the same setting.

Iterative Learning. Iterative Learning (ITER) is an iterative technique based on stan-
dard belief propagation [10]. It also estimates the question difficulty and the worker ex-
pertise, but slightly different in details. While others treat the reliability of all answers
of one worker as a single value (i.e. worker expertise), ITER computes the reliability of
each answer separately. And the difficulty level of each question is also computed indi-
vidually for each worker. As a result, the expertise of each worker is estimated as the
sum of the reliability of his answers weighted by the difficulty of associated questions.
One advantage of ITER is that it does not depend on the initialization of model param-
eters (answer reliability, question difficulty). Moreover, while other techniques often
assume workers must answer all questions, ITER can divide questions into different
subsets and the outputs of these subsets are propagated in the end.
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2.3 Summary

To sum up, we already implemented seven aggregation techniques—MD, HP, ELICE,
EM, SLME, GLAD, ITER—which aggregate worker answers by computing the proba-
bility of possible labels. Each technique exhibits various aggregation characteristics. In
fact, often these characteristics are not exclusive; a technique might have multiple ones.
Table 2l features each implemented technique with following key characteristics.

— Trapping set: the set of trapping questions, whose answers are known before-hand.
It is mainly used to filter spammers and initialize the expertise of other workers.

— Aggregation model: computation model of answer aggregation. It provides the ba-
sic categorization of aggregation techniques and the indication of their complexity.

— Worker expertise: the ability to capture the behavior of a worker; i.e. the accuracy
and reliability of his answers. This ability is important since human workers often
have wide-ranging levels of knowledge.

— Question difficulty: the ability to measure the difficulty degree of questions. This
ability is a supplement of worker expertise: answering an easy question incorrectly
is worse than answering a difficult question incorrectly.

— Computing model: the ability to perform (online or offline) in response to the new
arrival of worker answers. An online technique can process answer-by-answer in a
serial fashion, whereas offline ones have to re-compute the whole aggregation.

One interesting point to note is that all of the above techniques support aggregation on
questions with binary choices (i.e. yes/no questions). For the questions with multiple
choices, only three algorithms—MD, HP, and EM—are applicable. Another worth-
noting point is that estimating worker expertise can serve as a quality indicator in
practical scenarios such as payment mechanism and worker profiling.

3 Benchmark Setup

This section describes the setup used in our benchmark. We first present the details
for our benchmarking framework as well as the simulation of crowdsourcing process.
We then offer an insight of the implementation of aggregation techniques followed by
descriptions of the measures used to assess their performance.

3.1 Framework

A primary goal of this study is to provide a flexible and powerful tool to support the
comparison and facilitate the benchmarking analysis of aggregation techniques. To this
end, we have developed a framework that employs original performance studies of each
technique. Figure [[] illustrates the simplified architecture of the framework. It is built
upon a component-based architecture having three layers. (1) The data access layer
abstracts the underlying data objects, and loads the data to the upper layer. (2) The
application layer interacts with users to receive configurable parameters and visualize
outputs from the computing layer. (3) The computing layer consists of two modules: (i)
aggregation module and (ii) simulation module. On one hand, the aggregation module is
responsible for invoking plugged algorithms (algorithm component) upon inputs from
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Fig. 1. Benchmarking framework Fig. 2. Characterization of worker types

data access layer and delivering summarized information (evaluation component) to the
application layer. On the other hand, the simulation module simulates the crowdsourc-
ing process in which the workers (worker simulator) label a set of objects by answering
various questions (answer simulator). This simulation will be described in Section[3.21
We believe that subsequent studies are able to easily compare their algorithms with
the state-of-the-art techniques by using our framework. It is flexible and extensible,
since a new technique as well as a new measurement can be easily plugged in. More-
over, users are also supported to use their crowd simulators or real datasets. The frame-
work is described in details in [[11] and available for download from our websiteﬂ.

3.2 Crowd Simulation

The simulation module helps benchmark users simulate the crowdsourcing process in
the literature. It is implemented with two components: (i) worker simulator—simulates
different types of workers—and (ii) answer simulator—generates numbers of objects
(questions) and their true labels (answers). Both of them demonstrate an online process
where each worker is assigned to answer a set of questions. Details are provided below.

Worker Simulator. While some applications relied on expert workers only [14120],
many previous studies [[12l24] characterized various types of crowd workers with dif-
ferent expertise levels. Based on the classification in [24]], we simulate 5 worker types
as depicted in Figure[2l (1) Experts: who have deep knowledge about specific domains
and answer questions with very high reliability. (2) Normal workers: who have gen-
eral knowledge to give correct answers, but with few occasional mistakes. (3) Sloppy
workers: who have very little knowledge and thus often give wrong answers, but unin-
tentionally. (4) Uniform spammers: who intentionally give the same answer for all their
own questions. (5) Random spammers: who carelessly give the random answer for any
question. To model these types of workers, we use two parameters: se