
Chapter 11
Kernel Ridge Regression

Vladimir Vovk

Abstract This chapter discusses the method of Kernel Ridge Regression, which is
a very simple special case of Support Vector Regression. The main formula of the
method is identical to a formula in Bayesian statistics, but Kernel Ridge Regression
has performance guarantees that have nothing to do with Bayesian assumptions.
I will discuss two kinds of such performance guarantees: those not requiring any
assumptions whatsoever, and those depending on the assumption of randomness.

11.1 Introduction

This chapter is based on my talk at the Empirical Inference Symposium (see
p. x). It describes some developments influenced by Vladimir Vapnik, which are
related to, but much less well known than, the Support Vector Machine. The
Support Vector Machine is a powerful combination of the idea of generalized
portrait (1962; see Chap. 3) and the kernel methods, and from the very beginning
the performance guarantees for it were non-Bayesian, depending only on the
assumption of randomness: the data are generated independently from the same
probability distribution. An example of such a performance guarantee is (3.2);
numerous other examples are given in Vapnik [15]. Kernel Ridge Regression (KRR)
is a special case of Support Vector Regression, which has been known in Bayesian
statistics for a long time. However, the advent of the Support Vector Machine
encouraged non-Bayesian analyses of KRR, and this chapter presents two examples
of such analyses. The first example is in the tradition of prediction with expert advice
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[3] and involves no statistical assumptions whatsoever. The second example belongs
to the area of conformal prediction [17] and only depends on the assumption of
randomness.

11.2 Kernel Ridge Regression

It appears that the term “Kernel Ridge Regression” was coined in 2000 by
Cristianini and Shawe-Taylor [5] to refer to a simplified version of Support Vector
Regression; this was an adaptation of the earlier “ridge regression in dual variables”
[12]. Take the usual Support Vector Regression in primal variables

minimize kwk2 C C

TX

tD1

�
.�t /

k C �
� 0

t

�k�

subject to .w � xt C b/ � yt � � C �t ; t D 1; : : : ; T;

yt � .w � xt C b/ � � C � 0
t ; t D 1; : : : ; T;

�t ; � 0
t � 0; t D 1; : : : ; T;

where .xt ; yt / 2 R
n � R are the training examples, w is the weight vector, b is the

bias term, �t ; � 0
t are the slack variables, and T is the size of the training set; �; C > 0

and k 2 f1; 2g are the parameters. Simplify the problem by ignoring the bias term
b (it can be partially recovered by adding a dummy attribute 1 to all xt ), setting
� WD 0, and setting k WD 2. The optimization problem becomes

minimize a kwk2 C
TX

tD1

.yt � w � xt /
2

(where a WD 1=C ), the usual Ridge Regression problem. And Vapnik’s usual
method ([15], Sect. 11.3.2) then gives the prediction

Oy D Ow � x D Y 0.K C aI/�1k (11.1)

for the label of a new object x, where Y is the vector of labels (with components
Y t WD yt ), K is the Gram matrix Ks;t WD xs �xt , and k is the vector with components
kt WD xt � x. The kernel trick replaces xt by F.xt /, and so K by the kernel matrix
Ks;t WD K.xs; xt / and k by the vector kt WD K.xt ; x/, where K is the kernel
K.x; x0/ WD F.x/ � F.x0/.

This simple observation was made in [12], where this simplified SVR method
was called “ridge regression in dual variables”. There is no doubt that this
calculation has been done earlier as well, but the result does not appear useful.
First, compared to the “full” SVM, there is no sparsity of examples (and there is
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no sparsity in attributes, as in the case of the Lasso). Having an explicit formula
is an advantage, but the formula is not new: mathematically, the formula for KRR
coincides with one of the formulas in kriging [4], an old method in geostatistics for
predicting values of a Gaussian random field; this formula had been widely used in
Bayesian statistics.

However, there is a philosophical and practical difference:

• In kriging, the kernel is estimated from the results of observations and in
Bayesian statistics it is supposed to reflect the statistician’s beliefs;

• In KRR, as in Support Vector Regression in general, the kernel is not supposed
to reflect any knowledge or beliefs about reality, and the usual approach is
pragmatic: one consults standard libraries of kernels and uses whatever works.

In the remaining sections of this chapter we will explore KRR in the SVM style,
without making Bayesian assumptions. The practical side of this non-Bayesian
aspect of KRR is that it often gives good results on real-world data, despite the
Bayesian assumptions being manifestly wrong. We will, however, concentrate on
its theoretical side: non-Bayesian performance guarantees for KRR.

An important special case of KRR is (ordinary) Ridge Regression (RR): it is a
special case (as far as the output is concerned) of KRR for K as the dot product.
However, in the case of RR the usual representation of the prediction is

Oy D Ow � x D x0.X 0X C aI/�1X 0Y (11.2)

rather than (11.1), where X is the matrix whose rows are x0
1; : : : ; x0

T ; there are many
ways to show that (11.2) and (11.1) indeed coincide when K is the dot product.

Under a standard Bayesian assumption (which we do not state explicitly in
general; see, e.g., [17], Sect. 10.3), the conditional distribution of the label y of a
new example .x; y/ given x1; : : : ; xT ; x and y1; : : : ; yT is

N

�
Y 0.K C aI/�1k; �2 C �2

a
K.x; x/ � �2

a
k0.K C aI/�1k

�
; (11.3)

where K and k are as before (the postulated probability distribution generating
the examples depends on K and a, and we parameterize a normal probability
distribution N.�; �2/ by its mean � and standard deviation �2). The mean of
the distribution (11.3) is the KRR prediction, but now we have not only a point
prediction but also an estimate of its accuracy.

When K is the dot product, (11.3) can be rewritten as

N
�
x0.X 0X C aI/�1X 0Y; �2x0.X 0X C aI/�1x C �2

�
: (11.4)

In this case the Bayesian assumption can be stated as follows: x1; x2; : : : are fixed
vectors in R

n (alternatively, we can make our analysis conditional on their values)
and
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yt D � � xt C �t ; (11.5)

where � � N.0; .�2=a/I / and �t � N.0; �2/ are all independent.
Equations (11.3) and (11.4) give exhaustive information about the next observa-

tion; the Bayesian assumption, however, is rarely satisfied.

11.3 Kernel Ridge Regression Without Probability

It turns out that KRR has interesting performance guarantees even if we do not make
any stochastic assumptions whatsoever. Due to lack of space no proofs will be given;
they can be found in the technical report [21].

In this section we consider the following perfect-information protocol of on-line
regression:

Protocol 1 On-line regression protocol
for t WD 1; 2; : : : do

Reality announces xt 2 X
Learner predicts Oyt 2 R

Reality announces yt 2 R

end for

First we consider the case where the space X from which the objects xt are drawn
is a Euclidean space, X WD R

n, and our goal is to compete with linear functions;
in this case ordinary Ridge Regression is a suitable strategy for Learner. Then we
move on to the case of an arbitrary X and replace RR by KRR.

11.3.1 Ordinary Ridge Regression

In this section, X D R
n. The RR strategy for Learner is given by the formula

Oyt WD b0
t�1A

�1
t�1xt , where b0; b1; : : : is the sequence of vectors and A0; A1; : : : is

the sequence of matrices defined by

bT WD
TX

tD1

yt xt ; AT WD aI C
TX

tD1

xt x
0
t

(cf. (11.2)), where a > 0 is a parameter. The incremental update of the matrix
A�1

t can be done effectively by the Sherman–Morrison formula. The following
performance guarantee is proved in [21], Sect. 2.



11 Kernel Ridge Regression 109

Theorem 11.1. The Ridge Regression strategy for Learner with parameter a > 0

satisfies, at any step T ,

TX

tD1

.yt � Oyt /
2

1 C x0
t A

�1
t�1xt

D min
�2Rn

 
TX

tD1

.yt � � 0xt /
2 C ak�k2

!
: (11.6)

The part x0
t A

�1
t�1xt in the denominator of (11.6) is usually close to 0 for large t .

Theorem 11.1 has been adapted to the Bayesian setting by Zhdanov and
Kalnishkan [20], who also notice that it can be extracted from [1] (by summing
their (4.21) in an exact rather than an estimated form).

Theorem 11.1 and its kernel version (Theorem 11.2 below) imply surprisingly
many well-known inequalities.

Corollary 11.1. Assume jyt j � y for all t , clip the predictions of the Ridge
Regression strategy to Œ�y; y�, and denote them by Oyy

t . Then

TX

tD1

.yt � Oyy
t /2 � min

�

 
TX

tD1

.yt � � 0xt /
2 C ak�k2

!

C 4y2 ln det

 
I C 1

a

TX

tD1

xt x
0
t

!
: (11.7)

The bound (11.7) is exactly the bound obtained in [16] (Theorem 4) for the
algorithm merging linear experts with predictions clipped to Œ�y; y�, which does not
have a closed-form description and so is less interesting than clipped RR. The bound
for the strategy called the AAR in [16] has y2 in place of 4y2 ([16], Theorem 1). (The
AAR is very similar to RR: its predictions are b0

t�1A
�1
t xt rather than b0

t�1A
�1
t�1xt ;

it is called the Vovk–Azoury–Warmuth algorithm in [3].) The regret term in (11.7)
has the logarithmic order in T if kxt k1 � X for all t , because

ln det

 
I C 1

a

TX

tD1

xt x
0
t

!
� n ln

�
1 C TX2

a

�
(11.8)

(the determinant of a positive definite matrix is bounded by the product of its
diagonal elements; see [2], Chap. 2, Theorem 7). From Theorem 11.1 we can also
deduce Theorem 11.7 in [3], which is somewhat similar to Corollary 11.1. That
theorem implies (11.7) when RR’s predictions happen to be in Œ�y; y� without
clipping (but this is not what Corollary 11.1 asserts).

RR is not as good as the AAR in the setting where supt jyt j � y and the goal is
to obtain bounds of the form (11.7) (since the AAR is to some degree optimized for
this setting), but is still very good; and we can achieve an interesting equality (rather
than inequality) for it.
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The upper bound (11.7) does not hold for the RR strategy if the coefficient
4 is replaced by any number less than 3

2 ln 2
� 2:164, as can be seen from an

example given in Theorem 3 [16], where the left-hand side of (11.7) is 4T C o.T /,
the minimum on the right-hand side is at most T , y D 1, and the logarithm is
2T ln 2 C O.1/. It is also known that there is no strategy achieving (11.7) with the
coefficient less than 1 instead of 4, even in the case where kxt k1 � X for all t : see
Theorem 2 in [16].

There is also an upper bound on the cumulative square loss of the RR strategy
without a logarithmic part and without assuming that the labels are bounded.

Corollary 11.2. If kxt k2 � Z for all t then the Ridge Regression strategy for
Learner with parameter a > 0 satisfies, at any step T ,

TX

tD1

.yt � Oyt /
2 �

�
1 C Z2

a

�
min
�2Rn

 
TX

tD1

.yt � � 0xt /
2 C ak�k2

!
:

This bound is better than the bound in Corollary 3.1 of [8], which has an additional
regret term of the logarithmic order in time.

Asymptotic properties of the RR strategy can be further studied using Corol-
lary A.1 of Kumon et al. [9]. Kumon et al.’s result states that when kxt k2 � 1 for
all t , then x0

t A
�1
t�1xt ! 0 as t ! 1. It is clear that we can replace kxt k2 � 1 for all

t by supt kxt k2 < 1. This gives the following corollary, which can be summarized
as follows. If there exists a very good expert (asymptotically), then RR also predicts
very well. If there is no such very good expert, RR performs asymptotically as well
as the best regularized expert.

Corollary 11.3. Let a > 0 and Oyt be the predictions output by the Ridge Regression
strategy with parameter a. Suppose supt kxt k2 < 1. Then

 
9� 2 R

n W
1X

tD1

.yt � � 0xt /
2 < 1

!
H)

1X

tD1

.yt � Oyt /
2 < 1

and

 
8� 2 R

n W
1X

tD1

.yt � � 0xt /
2 D 1

!

H) lim
T !1

PT
tD1.yt � Oyt /

2

min�2Rn

�PT
tD1.yt � � 0xt /2 C ak�k2

� D 1:
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11.3.2 Kernel Ridge Regression

In this section, X is an arbitrary set. Let F be the RKHS with kernel K of functions
on X. The KRR strategy for Learner with parameter a > 0 is defined by the
formula (11.1) applied to the past examples.

The following version of Theorem 11.1 for KRR can be derived from Theo-
rem 11.1 itself (see [21], Sect. 6, for details).

Theorem 11.2. The KRR strategy with parameter a > 0 for Learner satisfies, at
any step T ,

TX

tD1

.yt � Oyt /
2

1 C 1
a
K.xt ; xt / � 1

a
k0

t .Kt�1 C aI/�1kt

D min
f 2F

 
TX

tD1

.yt � f .xt //
2 C akf k2

F

!
:

The denominator on the left-hand side tends to 1 under some regularity conditions:

Lemma 11.1 ([20], Lemma 2). Let K be a continuous kernel on a compact metric
space. Then

K.xt ; xt / � k0
t .Kt�1 C aI/�1kt ! 0 as t ! 1:

Again, we can derive several interesting corollaries from Theorem 11.2.

Corollary 11.4. Assume jyt j � y for all t and let Oyy
t be the predictions of the KRR

strategy clipped to Œ�y; y�. Then

TX

tD1

.yt � Oyy
t /2 � min

f 2F

 
TX

tD1

.yt � f .xt //
2 C akf k2

F

!

C 4y2 ln det

�
I C 1

a
KT

�
: (11.9)

But now we have a problem: in general, the ln det term is not small compared to T .
However, we still have the analogue of Corollary 11.3 (for a detailed derivation, see
[20]).

Corollary 11.5 ([20], Corollary 4). Let X be a compact metric space and K be a
continuous kernel on X. Then

 
9f 2 F W

1X

tD1

.yt � f .xt //
2 < 1

!
H)

1X

tD1

.yt � Oyt /
2 < 1
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and

 
8f 2 F W

1X

tD1

.yt � f .xt //
2 D 1

!

H) lim
T !1

PT
tD1.yt � Oyt /

2

minf 2F
�PT

tD1.yt � f .xt //2 C akf k2
F
� D 1:

To obtain a non-asymptotic result of this kind under the assumption supt jyt j � y,
let us first assume that the number of steps T is known in advance. We will need
the notation cF WD p

supx2X K.x; x/. Bounding the logarithm of the determinant
in (11.9) we have

ln det

�
I C 1

a
KT

�
� T ln

�
1 C c2

F
a

�

(cf. (11.8)). Since we know the number T of steps in advance, we can choose a
specific value for a; let a WD cF

p
T . This gives us an upper bound with the regret

term of the order O.
p

T / for any f 2 F :

TX

tD1

.yt � Oyy
t /2 �

TX

tD1

.yt � f .xt //
2 C cF .kf k2

F C 4y2/
p

T :

If we do not know the number of steps in advance, it is possible to achieve a similar
bound using a mixture of KRR over the parameter a with a suitable prior over a:

TX

tD1

.yt � Oyy
t /2 �

TX

tD1

.yt � f .xt //
2 C 8y max

�
cFkf kF ; yıT �1=2Cı

�p
T C 2

C 6y2 ln T C c2
Fkf k2

F C O.y2/ (11.10)

for any arbitrarily small ı > 0, where the constant implicit in O.y2/ depends only
on ı. (No proof of this result has been published.) The inequality (11.10) still looks
asymptotic in that it contains an O term; however, it is easy to obtain an explicit
(but slightly messier) non-asymptotic inequality.

In particular, (11.10) shows that if K is a universal kernel [14] on a topological
space X, KRR is competitive with all continuous functions on X: for any continuous
f W X ! R,

lim sup
T !1

1

T

 
TX

tD1

.yt � Oyy
t /2 �

TX

tD1

.yt � f .xt //
2

!
� 0 (11.11)
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(assuming jyt j � y for all t). For example, (11.11) holds for X a compact set in
R

n, K an RBF kernel, and f W X ! R any continuous function (see Example 1
in [14]). For continuous universal kernels on compact spaces, (11.11) also follows
from Corollary 11.5.

11.4 Kernel Ridge Regression in Conformal Prediction

Suppose we would like to have prediction intervals rather than point predictions,
and we would like them to have guaranteed coverage probabilities. It is clear that
to achieve this we need a stochastic assumption; it turns out that the randomness
assumption is often sufficient to obtain informative prediction intervals. In general,
our algorithms will output prediction sets (usually intervals, but not always); to
obtain prediction intervals we will apply convex closure (which can only improve
coverage probability).

The special case of conformal prediction discussed in this section works as
follows. Suppose we have an “underlying algorithm” (such as KRR) producing
point predictions in R. Let .x1; y1/; : : : ; .xT ; yT / be a training set and xT C1 be a
new object. To find the prediction set for yT C1 at a significance level � 2 .0; 1/:

• For each possible label z 2 R:

– Set yT C1 WD z;
– For each t 2 f1; : : : ; T C1g compute the nonconformity score ˛z

t WD jyt � Oyz
t j,

where Oyz
t is the point prediction for the label of xt computed by the underlying

algorithm from the extended training set .x1; y1/; : : : ; .xT C1; yT C1/;
– Compute the p-value

p.z/ WD 1

T C 1

T C1X

tD1

1f˛z
t �˛z

T C1
g;

where 1f�g is the indicator function;

• Output the prediction set fz 2 R j p.z/ > �g, where � is the given significance
level.

This set predictor is the conformal predictor based on the given underlying
algorithm. Conformal predictors have a guaranteed coverage probability:

Theorem 11.3. The probability that the prediction set output by a conformal
predictor is an error (i.e., fails to include yT C1) does not exceed the significance
level �.

Moreover, in the on-line prediction protocol (Protocol 1, in which Reality out-
puts .xt ; yt / independently from the same probability distribution), the long-run
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frequency of errors also does not exceed � almost surely. For a proof, see [17]
(Theorem 8.1).

The property of conformal predictors asserted by Theorem 11.3 is their validity.
Validity being achieved automatically, the remaining desiderata for conformal
predictors are their “efficiency” (we want the prediction sets to be small, in a suitable
sense) and “conditional validity” (we might want to have prespecified coverage
probabilities conditional on the training set or some property of the new example).

The idea of conformal prediction is inspired by the Support Vector Machine
(and the notation ˛ for nonconformity scores is adapted from Vapnik’s Lagrange
multipliers). The immediate precursor of conformal predictors was described in the
paper [7] co-authored by Vapnik, which is based on the idea that a small number of
support vectors warrants a high level of confidence in the SVM’s prediction. This
idea was present in Vapnik and Chervonenkis’s thinking in the 1960s: see, e.g., (3.2)
and [15], Theorem 10.5. The method was further developed in [17]; see [13] for a
tutorial.

In the case where the conformal predictor is built on top of RR or KRR, there
is no need to go over all potential labels z 2 IR. The set prediction for the example
.xT C1; yT C1/ can be computed in time O.T log T / (in the case of RR) or O.T 2/ (in
the case of KRR). This involves only solving linear equations and sorting; the simple
resulting algorithm is called the Ridge Regression Confidence Machine (RRCM)
in [11] and [17]. There is an R package implementing the RRCM (in the case of
RR), PredictiveRegression, available from CRAN.

The Bayes predictions (11.3) and (11.4) can be easily converted into prediction
intervals. But they are valid only under the postulated probability model, whereas
the prediction intervals output by the RRCM are valid under the randomness
assumption (as is common in machine learning). This is illustrated by Fig. 11.1,
which is a version of Wasserman’s Fig. 1 in [19]. We consider the simplest case,
where xt D 1 for all t ; therefore, the examples .xt ; yt / can be identified with their
labels yt 2 IR, which we will call observations. The chosen significance level is
20 % and the kernel K is the dot product. In the top plot, the four observations are
generated from N.1; 1/; in the middle plot, from N.10; 1/; and in the bottom plot,
from N.100; 1/. The blue lines are the prediction intervals computed by the RRCM
with a D 1 and the red lines are the Bayes prediction intervals computed as the
shortest intervals containing 80 % of the mass (11.4) with a D 1 and � D 1.

All observations are generated from N.�; 1/ for various constants � . When � D 1

(and so the Bayesian assumption (11.5) can be regarded as satisfied), the Bayes
prediction intervals are on average only slightly shorter than the RRCM’s (the Bayes
prediction interval happens to be wider in Fig. 11.1; for a random seed of the random
number generator, the Bayes prediction intervals are shorter in about 54 % of cases).
But as � grows, the RRCM’s prediction intervals also grow (in order to cover the
observations), whereas the width of the Bayes prediction intervals remains constant.
When � D 100 (and so (11.5) is clearly violated), the Bayes prediction intervals give
very misleading results.
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Fig. 11.1 In the top plot, the four observations (shown as short vertical lines) are generated from
N.1; 1/; in the middle plot, from N.10; 1/; and in the bottom plot, from N.100; 1/. The blue lines
are prediction intervals computed by a conformal predictor, and the red lines are Bayes prediction
intervals

In parametric statistics, it is widely believed that the choice of the prior does not
matter much: the data will eventually swamp the prior. However, even in parametric
statistics the model (such as N.�; 1/) itself may be wrong.

In nonparametric statistics, the situation is much worse:

the prior can swamp the data, no matter how much data you have

(Diaconis and Freedman [6], Sect. 4). In this case, using Bayes prediction intervals
becomes particularly problematic. The RRCM can be interpreted as an example of
renormalized Bayes, as discussed in [18] and later papers.

As mentioned earlier, the RRCM is valid under the assumption of randomness;
no further assumptions are required. However, conditional validity and, especially,
efficiency do require extra assumptions. For example, [10] uses standard statistical
assumptions used in density estimation to demonstrate the conditional validity and
efficiency of a purpose-built conformal predictor. It remains an open problem to
establish whether similar results hold for the RRCM.
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