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Preface

Vladimir Vapnik is a rare example of a scientist for whom the following three
statements hold true simultaneously: his work has led to the inception of a whole
new field of research, he has lived to see the field blossom and gain in popularity,
and he is still as active as ever in his field.

His field, the theory of statistical learning and empirical inference, did not
exist when he started his PhD in Moscow in the early 1960s. He was working at
the Institute of Control Sciences of the Russian Academy of Sciences under the
supervision of Professor Aleksandr Lerner, a cyberneticist and expert in control
theory who was later to become a prominent “Refusenik” (a Soviet Jew who was
denied permission to emigrate by the Soviet government). Vladimir Vapnik started
analyzing learning algorithms and invented the first version of a pattern recognition
algorithm termed the “Generalized Portrait”, whose successor (the “Support Vector
Machine”, co-invented by him 30 years later) would become the method of choice in
many pattern recognition problems ranging from computer vision to bioinformatics.
Following this, he started to collaborate with Aleksey Chervonenkis, also a PhD
student in Lerner’s laboratory at the time, on the Generalized Portrait and the theory
of the empirical risk minimization inductive principle.

Vapnik and Chervonenkis found a stimulating intellectual environment at the
Institute of Control Sciences. In 1951 Vadim Trapeznikov was appointed as the
institute’s director, and it is largely due to his efforts that in the early 1960s it
became a hub of new ideas and creativity. It included Mark Aizerman’s laboratory,
working on the theory of learning systems and having Emmanuel Braverman and
Lev Rozonoer among its members, as well as Lerner’s laboratory, where Vapnik
and Chervonenkis carried out their work that would lead to profound changes in our
understanding of machine learning.

The impact of Vapnik and Chervonenkis’s work has been considerable in many
areas of mathematics and computer science. In theoretical statistics and probability
theory, their work is known for extensions of the Glivenko—Cantelli theorem and for
uniform laws of large numbers. The latter can be considered as the starting point
of an important branch of probability theory, the theory of empirical processes.
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viii Preface

The introduction of certain classes of functions (now called Vapnik—Chervonenkis
classes) and of the notion now referred to as Vapnik—Chervonenkis, or VC,
dimension was a key contribution to this area, relating concepts from analysis
(approximation properties of classes of functions) to combinatorial parameters.
Also, it was the starting point of what Vapnik called “statistical learning theory”, an
interdisciplinary field combining mathematical statistics and machine learning.
The revolutionary aspect of this theory, when introduced, was that it focused on
non-asymptotic estimation properties of non-parametric classes.

The main achievement of Vapnik and Chervonenkis’s development of this theory
was the introduction and analysis of the inductive principle called “empirical risk
minimization.” This principle suggests that, given data and a class of functions, we
should choose the function that minimizes the error on the data (in other words, the
minimizer of the “training error”). Their work on this inductive principle culminated
in obtaining necessary and sufficient conditions for its consistency (i.e., the principle
asymptotically leading to optimal estimation), related to the validity of a uniform
law of large numbers. They also showed how to relate the uniform law to notions of
the “capacity” of the function classes used, such as the VC dimension. In machine
learning theory, this gave rise to a sizeable community of researchers computing
bounds on or estimates of the VC dimension for most popular function classes, such
as neural networks or decision trees.

Following the analysis of empirical risk minimization, Vladimir Vapnik devel-
oped an improved inductive principle called “structural risk minimization,” which
underlies a large number of today’s learning algorithms, and significantly con-
tributed to the birth of the research area of model selection in statistics.

As recognition of his groundbreaking work in the theory and applications of
pattern recognition, Vladimir Vapnik was awarded the Prize of the USSR Council
of Ministers, an achievement which is particularly outstanding considering that
Vladimir’s career in the USSR was hampered significantly due to his being Jewish.

In 1991, after the coup to overthrow Gorbachev had just taken place, Vladimir
decided to emigrate to the USA, where he joined the Adaptive Systems Research
Department at AT&T Bell Laboratories. There, he and his co-workers developed one
of the most successful methods in machine learning, the Support Vector Machine.
Based on an ingenious combination of methods from statistical learning (the Gen-
eralized Portrait algorithm) and functional analysis (the theory of positive definite
kernels), it transformed the field of machine learning. More than just an algorithm, it
is a whole approach to learning problems, pioneering the use of functional analysis
and convex optimization in machine learning. It has meanwhile set world records on
a variety of real-world pattern-recognition benchmark problems. This success has
attracted a large number of researchers as well as engineers from various disciplines
to the field of statistical learning theory.

Vladimir has continued to develop the theory of support vector machines in
unexpected directions. For example, in 2006 he came up with the idea of using
“privileged information” in machine learning: information that is available only at
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the training stage. In a surprisingly wide range of applications such information
improves the performance of learning algorithms.

Vladimir’s work has found wide recognition throughout the world. In 2003 his
groundbreaking work in theoretical and applied statistics and machine learning was
recognized with the Alexander Humboldt Research Award. He received the 2005
Gabor Award of the International Neural Network Society. In 2006 he was elected
a member of the United States National Academy of Engineering “for insights into
the fundamental complexities of learning and for inventing practical and widely
applied machine-learning algorithms”. In 2008 he received, together with Corinna
Cortes, the Paris Kanellakis Award from the Association for Computing Machinery
“for the development of Support Vector Machines, a highly effective algorithm for
classification and related machine learning problems”. In 2010 came the Neural
Networks Pioneer Award from the IEEE Computational Intelligence Society. In
2012 Vladimir was honoured with the IEEE Frank Rosenblatt Award “for devel-
opment of support vector machines and statistical learning theory as a foundation
of biologically inspired learning”. In the same year he was awarded the Benjamin
Franklin Medal in Computer and Cognitive Science by the Franklin Institute “for his
fundamental contributions to our understanding of machine learning, which allows
computers to classify new data based on statistical models derived from earlier
examples, and for his invention of widely used machine learning techniques”.

Vladimir has published a number of papers and books that are considered
classics. His monographs contain not only a comprehensive account of statistical
learning theory and its applications, but they also host a wealth of original and
unexplored directions for future research and improvements.

It is remarkable for the development of humankind that we have now arrived at
a point where there exist regularities (non-random structures) in the world that are
so complex that they cannot be detected by humans, yet they can reliably be learnt
by machine learning methods. We believe this will have a transformative effect on
our interaction with the world, and we cannot think of an individual whose impact
on this transformation has been larger than that of Vladimir Vapnik.

Vladimir’s impact on the machine learning community, both through his techni-
cal contributions and his philosophy of research as conveyed by numerous keynote
talks, has been so large that his standing in the field is that of a living legend. There
is no doubt that he will continue to have a profound influence on the field of machine
learning, as more and more of his ideas are being put into practice.

Tiibingen, Germany and Egham, UK Bernhard Scholkopf
June 2013 Zhiyuan Luo
Vladimir Vovk



X Preface
Festschrift

In December 2011 Vladimir Vapnik, one of the founders of statistical learning
theory, turned 75 years. To celebrate this event, the Max Planck Institute for
Intelligent Systems (Krikamol Muandet, Yevgeny Seldin, and Bernhard Scholkopf)
organized a symposium entitled Empirical Inference. It was held from 8 to 10
December 2011 in Tiibingen, Germany.

The first 2 days consisted of talks given by invited researchers in the fields of
statistical learning theory and kernel methods, to which Vladimir has contributed so
much. The third day featured additional talks by alumni of the Empirical Inference
department at the MPI for Intelligent Systems.

This Festschrift contains both written versions of many of the talks presented at
the symposium and chapters written especially for the Festschrift. They reflect the
breadth of the research fields deeply affected by Vladimir’s extraordinary research
contributions, which have served as a constant source of inspiration for other
researchers.

Vladimir is active as ever and continues to generate new ideas and provide
profound insights. He is an inspiring teacher to his students and a dear friend to
many of his colleagues. We wish him happiness and success for many years to come.

Acknowledgements We are grateful to Alexey Chervonenkis, Alex Gammerman, and Chris
Watkins for their help and advice. Thanks to Springer, and Ronan Nugent in particular, for their
support of this project.
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Part I
History of Statistical Learning Theory

Part T of the book contains three chapters describing and witnessing several
contributions by Vladimir Vapnik to science. In Chap. 1, Léon Bottou discusses
the seminal paper published in 1968 by Vapnik and Chervonenkis and laying the
foundations of statistical learning theory. An English translation of this important
paper is included as Chap.2. In Chap.3, Alexey Chervonenkis, the other main
developer of the Vapnik—Chervonenkis theory, presents a first-hand account of the
early history of Support Vector Machines and provides valuable insights into the
first steps in the development of the SVM in the framework of the “Generalised
Portrait” method. Different chapters sometimes use different names for Vapnik and
Chervonenkis’s home institution at the time; in 1969, the Institute of Automation
and Remote Control, where they had worked since the early 1960s, was renamed
the Institute of Control Sciences. For a detailed technical exposition of several
of the results mentioned in Chap.3, see Chap.3 of Vapnik and Chervonenkis’s
monograph [1].

Reference

1. Vapnik, V.N., Chervonenkis, A.Y.: Teopusi pacnosnasanusi obpaszos (Theory of Pattern
Recognition). Nauka, Moscow (1974). German translation: Theorie der Zeichenerkennung.
Akademie, Berlin, 1979



Chapter 1
In Hindsight: Doklady Akademii Nauk SSSR,
181(4), 1968

Léon Bottou

Abstract This short contribution presents the first paper in which Vapnik and
Chervonenkis describe the foundations of Statistical Learning Theory (Vapnik,
Chervonenkis (1968) Proc USSR Acad Sci 181(4): 781-783).

This short contribution presents the first paper in which Vapnik and Chervonenkis
describe the foundations of Statistical Learning Theory [10]. The original paper
was published in the Doklady, the Proceedings of the USSR Academy of Sciences,
in 1968. An English translation was published the same year in Soviet Mathematics,
a journal from the American Mathematical Society publishing translations of the
mathematical section of the Doklady.! The importance of the work of Vapnik
and Chervonenkis was noticed immediately. Dudley begins his 1969 review for
Mathematical Reviews [3] with the simple sentence “the following very interesting
results are announced.”

This concise paper is historically more interesting than the celebrated 1971
paper [11] because the three-page limit has forced its authors to reveal what they
consider essential. Every word in this paper counts. In particular, the introduction
explains that a uniform law of large numbers “is necessary in the construction of
learning algorithms.” The mention of learning algorithms in 1968 seems to be an
anachronism. In fact, learning machines were a popular subject in the 1960s at the
Institute of Automation and Remote Control in Moscow. The trend possibly started
with the work of Aizerman and collaborators on pattern recognition [1] and the work

A slightly modified version of this English translation of the 1968 paper follows this brief
introduction.

L. Bottou (<)
Microsoft Research, 1 Microsoft Way, Redmond, WA 98052, USA
e-mail: leon@bottou.org

B. Scholkopf et al. (eds.), Empirical Inference, DOI 10.1007/978-3-642-41136-6__1, 3
© Springer-Verlag Berlin Heidelberg 2013
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4 L. Bottou

of Fel’dbaum on dual control [4]. Tsypkin then wrote two monographs [7, 8] that
clearly define machine learning as a topic for both research and engineering.

These early works on machine learning are supported by diverse mathematical
arguments suggesting that learning takes place. The uniform convergence results
introduced in the 1968 paper provide powerful tools to construct such arguments.
In fact, in their following works [9, 12], Vapnik and Chervonenkis show how
the uniform convergence concept splits such arguments into three clearly defined
parts: the approximation properties of the model, the estimation properties of the
induction principle, and the computational properties of the learning algorithm.
Instead of simply establishing proofs for specific cases, the work of Vapnik and
Chervonenkis reveals the structure of the space of all learning algorithms. This is a
higher achievement in mathematics.

Whereas the law of large numbers tells us how to estimate the probability of
a single event, the uniform law of large numbers explains how to simultaneously
estimate the probabilities of an infinite family of events. The passage from the
simple law to the uniform law relies on a remarkable combinatorial result (Theo-
rem 1 in the 1968 paper). This result was given without proof, most likely because
the paper would have exceeded the three page limit. The independent discovery
of this combinatorial result is usually attributed to Vapnik and Chervonenkis [11],
Sauer [5], or Shelah [6]. Although this cannot be established with certainty, several
details suggest that the 1968 paper and its review by Dudley attracted the attention of
eminent mathematicians and diffused into the work of their collaborators.2 However,
Sauer gives a better bound in his 1972 paper than Vapnik and Chervonenkis in their
1971 paper.> The combinatorial result of the first theorem directly leads to the
best known Vapnik—Chervonenkis theorem, namely, the distribution-independent
sufficient condition for uniform convergence. A detailed sketch of the proof
supports this second theorem. Although the paper mentions the connection with the
Glivenko—Cantelli theorem [2], the paper does not spell out the notion of capacity,
now known as the Vapnik—Chervonenkis dimension. However, the definition of the
growth function is followed by its expression for three simple families of events,
including the family of half-spaces associated with linear classifiers.

2Sauer motivates his work with a single sentence, “P. Erdis transmitted to me in Nice the following
question: is it true that [statement of the theorem]”, without attributing the conjecture to anyone.
Sauer kindly replied to my questions with interesting details: “When I proved that Lemma, I was
very young, and have since moved my interest more towards model theoretic type questions. Erdos
visited Calgary and told me at that occasion that this question had come up. But I do not remember
the context in which he claimed that it did come up. I then produced a proof and submitted it as
a paper. 1 did not know about that question before the visit by Erdos,” and “the only thing I can
contribute is that I believe Weiss in Israel told me that Shelah had asked Perles to prove such a
Lemma, which he did, and subsequently both forgot about it and Shelah then asked Perles again to
prove that Lemma.”

3In fact, Sauer gives the optimal bound (Dudley, personal communication).
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The third and final theorem states the distribution-dependent necessary and

sufficient condition for uniform convergence. The paper provides a minimal proof
sketch. The proof takes in fact 7 pages in [11] and 23 pages in [9].

In conclusion, this concise paper deserves recognition because it contains the

true beginnings of Statistical Learning Theory. The work is clearly motivated by the
design of learning algorithms and its results have provided a new foundation for
statistics in the computer age.
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Chapter 2
On the Uniform Convergence of the Frequencies
of Occurrence of Events to Their Probabilities

Vladimir N. Vapnik and Alexey Ya. Chervonenkis

Abstract This chapter is a translation of Vapnik and Chervonenkis’s pathbreaking
note
B. H. Bannuk, A. ¢1. Yepsonenkuc, O paBHOMEPHOM CXOAUMOCTU YACTOT IOSIBJIEHUS

cobbITuil K ux BeposaTHOCcTaM, Jlokmaner Axkanemun Hayk CCCP 181(4), 781-783
(1968)

essentially following the excellent translation

V. N. Vapnik, A. Ya. Cervonenkis, Uniform Convergence of Frequencies of Occurrence of
Events to Their Probabilities, Soviet Mathematics Doklady 9(4), 915-918 (1968)

by Lisa Rosenblatt (the editors only corrected a few minor mistakes and in some
places made the translation follow more closely the Russian original).

(Presented by Academician V. A. Trapeznikov, 6 October 1967)

2.1 Introduction

According to the classical theorem of Bernoulli, the frequency of occurrence of
an event A converges (in probability, in a sequence of independent trials to the
probability of this event). In some applications, however, it is necessary to draw
conclusions about the probabilities of the events of an entire class S from one and
the same sample. (In particular, this is necessary in the construction of learning
algorithms.) Here it is important to find out whether the frequencies converge
to the probabilities uniformly over the entire class of events S. More precisely,
it is important to find out whether the probability that the maximal deviation of
frequency from the corresponding probability over the class S exceeds a given small
number approaches zero in an unbounded number of trials. It turns out that even in
the simplest examples such uniform convergence may not take place. Therefore
we would like to have a criterion by which we can decide whether there is such

B. Scholkopf et al. (eds.), Empirical Inference, DOI 10.1007/978-3-642-41136-6_2, 7
© Springer-Verlag Berlin Heidelberg 2013
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convergence or not. In this note we consider sufficient conditions for such uniform
convergence which do not depend on the properties of the distribution but are related
only to the internal properties of the class S, and we give a bound on the rate
of convergence also not depending on the distribution, and finally we point out
necessary and sufficient conditions for the uniform convergence of the frequencies
to the probabilities over the class of events 5.

2.2 Statement of the Problem

Let X be a set of elementary events on which a probability measure w is defined.
Let S be a collection of random events, i.e., of subsets of the space X measurable
relative to the measure p (the system S belongs to a Borel system but does not
necessarily coincide with it).

Let X denote the space of samples from X of length /. On the space X
we define the probability product measure by the condition P(Y; - Y2 -...- Y;) =
P(Yy)- P(Yy)-...- P(Y;), where Y; are measurable subsets of X . This formalises
the fact that sampling is repeated, i.e., the elements are chosen independently with
a fixed distribution.

For every sample xi, ..., x; and an event A we can define the frequency vil =
v4(x1,...,x7) of occurrence of the event A as equal to the ratio of the number 7 4
of those elements of the sample which belong to A to the overall length [ of the
sample:

va(xy,...,x;) =na/l.
Bernoulli’s theorem asserts that
lim P([v), = P4| > &) = 0.
[—>o00

We, however, will be interested in the maximal deviation of the frequency from
the probability

7 = sup vil - Py
Aes

over the class. The quantity () is a point function on the space X ).

We will assume that this function is measurable relative to the measure on
XD e, that 7¥) is a random variable. If 7() approaches 0 in probability with
unbounded increase of the sample size /, then we will say that the frequencies of the
events A € § converge in probability to the probabilities of these events uniformly
over the class S.
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The theorems below are concerned with estimating the probability of the event

7 — 0
[—00

and finding out conditions when

2.3 Some Additional Definitions

Let X, = Xxi,...,X, be a finite sample of elements from X. Every set A from
S determines a subsample X/ = x;,,...,x;, on this sample consisting of those
elements of the sample X, which are in A. We will say that the set A induces the
subsample X on the sample X;.

Denote the set of all distinct subsamples induced by the sets from S on the sample
X, by S(x1, ..., x,). The number of distinct subsamples of the sample X, induced
by the sets from S (the number of elements of the set S(xy, ..., x,)) will be called
the index of the system S relative to the sample X, and denoted by AS (x, ..., x,).

Obviously it is always true that

AS(xl, co X)) <27,
The function mS(r) = maxy,, AS(x1,...,x,), where the maximum is taken

over all samples of length r, is called the growth function of the class S.

Example 2.1. Let X be a straight line and S the set of all rays of the form x < a;
mS(r)y=r+ L.

Example 2.2. X is the segment [0, 1]; S consists of all open sets; m5 (r) = 2.

Example 2.3. Let X be n-dimensional Euclidean space. The set of events S consists
of all half-spaces of the form (x¢) > ¢, where ¢ is a vector and ¢ a constant;
mS(r) <r" (r > n).

Along with the growth function m5 (r) consider the function
MS5(r) = / InAS(xy, ..., x)duw(X");
X

MS (r) is the mathematical expectation of the logarithm of the index AS (x1,...,x)
of the system S.
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2.4 A Property of the Growth Function

The main property of the growth function of the class S is established by the
following theorem.

Theorem 2.1. The growth function mS(r) is either identically equal to 2" or
majorized by the function r", where n is the first value of r for which m® (n) # 2".

2.5 Sufficient Conditions for Uniform Convergence
Not Depending on Properties of the Distribution

Sufficient conditions for the uniform convergence (with probability 1) of the
frequencies to the probabilities are established by the following theorem.

Theorem 2.2. Ifm®(r) < r", then

P (n([) — 0) =1.
[—00

To prove this theorem, we establish the following lemma.

Take a sample x, ..., X/, X;+1,. .., Xy of length 2/ and compute the frequencies
of occurrence of an event A on the first half-sample x;,...,x; and the second
half-sample x; 41, ..., xy. Denote the corresponding frequencies by v/, and v’} and
consider pif) = |v;1 - | We will be interested in the maximal deviation of p) ,

over all events of S, i.e., ) = sup 4c5 0.

Lemma 2.1. For each & with | > 2 /&% we have the inequality
P(xV>¢)<2P (p") >¢/2).
We further establish for the proof of Theorem 2.2 that
P (p" > /2) < 2m’ 21)e=1,
whence
P (xD > &) < 4m® 211, ()
In the case where m® (r) < r", the inequality (*) implies uniform convergence in

probability. By a well-known lemma [1] from probability theory, we also establish
convergence with probability 1 under the conditions of the theorem.
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According to Theorem 2.2 there is uniform convergence in Examples 2.1 and 2.3
considered in Sect. 2.3. The fact that there is uniform convergence in Example 2.1
coincides with the assertion of Glivenko’s theorem.

In many applications it is necessary to know the required sample size in order
to assert with probability at least 1 — n that the maximal deviation of the frequency
from the probability over the class of events S does not exceed ¢.

In the case where the growth function m5 (/) < I" for the class S, the inequality
(*) easily yields

32 32
lz—n ln—n—an .
&2 g2 4

2.6 Necessary and Sufficient Conditions for the Uniform
Convergence of Frequencies to Probabilities

Theorem 2.3. For the uniform convergence (with probability 1) of the frequencies
to the probabilities over the class of events S the condition

o M3()
lim =
[—o00

0; (M3(I) = E(InA%(xi,...,x1)))
is necessary and sufficient (here we assume the measurability of the function
AS(xy,....x7))
For the proof of Theorem 2.3 we consider a lemma.
Lemma 2.2. The sequence M3(1)/1 has a limit as | — o.

In the case where this limit is equal to 0, the sufficiency of the condition is proved
analogously to Theorem 2.2. For the proof of necessity we first establish that

1
PV >¢) > EP(p(l) > 2¢).

We further establish that if lim;_, M5 (I)/] =t # 0 then there is a § such that

lim P (p) > 258) =1,
[—00

whence limj oo P (7 > §) # 0.
The theorem is proved.

V.N. Vapnik and A. Ya. Chervonenkis

Institute of Automation and Remote Control Received
(Technical Cybernetics) 6 October 1967
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Chapter 3
Early History of Support Vector Machines

Alexey Ya. Chervonenkis

Abstract Many of the ideas now being developed in the framework of Support
Vector Machines were first proposed by V. N. Vapnik and A. Ya. Chervonenkis
(Institute of Control Sciences of the Russian Academy of Sciences, Moscow,
Russia) in the framework of the “Generalised Portrait Method” for computer
learning and pattern recognition. The development of these ideas started in 1962
and they were first published in 1964.

3.1 The “Generalised Portrait” Method for Pattern
Recognition (1962)

3.1.1 Initial Heuristic Ideas

Patterns (pictures) were considered as unit vectors X (|x| = 1) in some Euclidian
space. That means they are situated on a unit sphere. A class of patterns is then a
subset S of such a sphere. Of course, this is a heuristic: in reality vectors (patterns)
may not be unit vectors.

The “generalised portrait” of a class S was defined as the unit vector ¢ that attains

max min(e, X) = c.
@ Xx€S

It means that the vector ¢ should be closest to the vectors in the set S that are most
distant from ¢. And we hope that

c >0,

A. Ya. Chervonenkis (<)
Institute of Control Sciences, Laboratory 38, Profsoyusnaya ulitsa 65, Moscow 117997, Russia
e-mail: chervnks @ipu.ru

B. Scholkopf et al. (eds.), Empirical Inference, DOI 10.1007/978-3-642-41136-6_3, 13
© Springer-Verlag Berlin Heidelberg 2013
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i.e., that the set S is rather compact and does not cover too large part of the sphere.
See [3].

In this way we try to cut off the segment of the unit sphere which contains
completely the set S and has the minimum volume. This is done by the hyperplane

((p,X) =,

and the segment is determined by the inequality (¢, x) > c.
For all vectors in the set S it is true that the scalar product

(¢.x) > c,

and there are some vectors of S for which

(p,x) =c.

They were called support vectors, or marginal vectors. All marginal vectors of the
set S are just on the edge of the segment; all others are within it.

3.1.2 Reducing to a Convex (Quadratic) Programming
Problem

Instead of maximising the scalar product of marginal vectors with the vector ¢ of a
fixed norm, we may minimise some collinear vector ¥ under fixed restrictions. Thus
our problem is equivalent to the following: find a vector ¥ with minimum norm (or
its square (¥, ¥)) under the restrictions

.x) =1,

for all x € S. Then by the normalisation of this vector to norm 1,

o=9v/1¥l

we get the required vector ¢ (of course, it is true only if ¢ > 0). So we have reduced
the problem to a quadratic programming problem.

3.1.3 Generalisation of the Idea

When we tried to apply this idea to practical pattern recognition learning (using
a training sequence as the set S, i.e., using only patterns of the class we want to
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recognise), we found out that it is impossible in most cases to achieve good results
without presenting examples of the opposite class or classes.
In reality, we want the scalar products (¢, x) for all vectors x of the opposite class
or classes to be less than those for the worst (marginal) vectors of our initial class.
Now we return to the initial idea, denoting by Sy our initial class of patterns and
by S; the opposite one. We want to find such a unit vector ¢ which delivers

max min(@, X) = ¢
¢ Xx€S)

under the condition that
(@,x) < kc for all vectors x of the class Sy,

where the constant 0 < k < 1 determines the margin between the two classes.
Again, we want to find the least volume segment of the sphere which contains all
vectors of class Syp and does not include any vector of class S; (with some margin,
determined by k). We call this vector ¢ the “generalised portrait” of the class Sy
against the class S;. See [1, 2].
And again the problem may be reduced to a quadratic programming problem:
find such a vector ¥ that gives

min(y, ¥)
under the constraints
W,x) > 1, forall x € Sp, and
(¥.y) <k, forally € S,

with the constant k < 1 determining the margin (there is no need to assume k > 0).

Then the original vector ¢ can be found as ¢ = ¥/ |¥|. Those vectors of both
classes for which the inequalities turn to equalities are called marginal (or support)
vectors. If the system of inequalities is consistent, then the problem has a unique
solution.

3.2 The Kuhn-Tucker Theorem and Its Application
to the “Generalised Portrait” Method

As long as we had a convex programming problem, we could apply to it the well
known Kuhn-Tucker theorem, which says: if you minimise a convex function F(x)
under the constraints

Vi(x) <0 i=1,...,n) with convex functions V; (x),
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then the necessary and sufficient condition for x to deliver a minimum is that there
are such nonnegative values g, that

grad F(x) = — Z a; grad V; (x),

anda; V;(x) = 0,foralli = 1,...,n. The last expression means that the coefficients
a; may differ from 0 only for those constraints which are reached.

Applying this result to our problem with F(x) = %(W ¥), we get for the
optimal ¢:

¥ = Z a;X; — Z biyi,

x; €Sp yi €S

where the coefficients a; and b; are nonnegative, and only those which correspond
to marginal (support) vectors are nonzero. From this formula it follows also that, for
the optimal ¢,

W)= D a.x)— Y bi(.y) =) ai—k ) b

x; €So Yi €Sy x; €So yi €81

Now it becomes evident that we can remove anyhow those vectors which are not
marginal (until they become marginal), or just exclude them from the training
sequence, and it will not affect the “generalised portrait” position. In particular,
all of them would be recognised correctly.

These results were also obtained in 1962 (first published in 1964 [1, 2]), though
we did not use the Kuhn—Tucker theorem, but just proved the results directly.

3.3 Searching for Coefficients Instead of Coordinates

Now we can see that it is possible, instead of searching for the “generalised portrait”
in coordinate form, to look for it in the form of a decomposition into the vectors of
the training sequence. For brevity, I shall illustrate this fact for the case of a single
class generalised portrait, but it can be easily extended to the case of two classes. So
we are looking for

w = Za,-x,-.

Now the functional (¥, ¥) can be presented in the form

W.¥) = (r/r,zaixi) =D aia;(x.%)).

(@.J)
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and the constraints in the form

(W,Xj) = (Zaixi,xj) = Zai(X,‘,X/‘) > 1.

So in this form we do not use representations either of the initial vectors or of the ¥
vector in the coordinate form, but use only the scalar products of the initial vectors
and the coefficients of the decomposition of ¥ into these vectors.

This idea was used from the very beginning, as soon as we first used analogue
computers for computation, and it was more convenient to present data in this form.
Later, when using digital computers, we presented data mostly in the coordinate
form. But now V. Vapnik has returned to this form using kernel functions, and this is
the main difference between the generalised portrait method and the support vector
machine method.

3.4 Optimum (Largest Margin) Hyperplane

If we look over different values of the constant k for the two-class generalised
portrait, we will get different margins between the classes. For a generalised portrait
¢ we determine the width of the margin as

d = min(¢,x) — max(e,y) = min(g, (x —y)), @3.D
X€E€Sy YES; X,y
i.e., the distance between the projections of the classes onto the normal vector to the
separating hyperplane.
There has been a desire to find the optimal separating hyperplane, the one that
gives the maximum margin width. There are several ways to reduce this problem to
generalised portrait search. One is to construct the set of vectors z of the form

z=x—yforallx € Spandy € Sy;
then it is evident that the generalised portrait ¢z of this set is the normal vector to
the optimum hyperplane. However, this requires looking through all pairs of x € Sg

and y € S;. Notice that marginal (support) vectors z in this case would be those
formed by marginal pairs, i.e., those xs for which

(¢z,x) = min(¢z, x)
X€S)
and those ys for which

(pz,y) = max(¢pz,y).
YES;
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Another way is to look through all possible values of the constant k and find the
value which delivers the maximum to d in (3.1). The vector ¢z will correspond
to some particular value of the constant k (though maybe the roles of the classes
should be swapped).

Indeed, let us define the constant k as

k = max(¢z,y)/ min(gz, x).
yES] x€So

It is always possible for separable classes, perhaps by swapping their roles, to make
the values minyes, (¢z,x) > 0 and k < 1. Now

9z = Zaizi = Zai(xi -yi) = Zaixi - ZaiYi,

where a; > 0 and z; are marginal differences formed by pairs of marginal vectors
x; and y;. Some vectors can be repeated in the latter sums. But in this case the
vector ¥z satisfies the Kuhn—Tucker sufficient conditions, and thus coincides with
the generalised portrait of the classes for this particular value of the constant k.

Moreover, one can see that in this case the sums of coefficients before xs and
before ys are equal. And it gives us a third way to find the optimum hyperplane. It
is just to look for such a value of k that ensures this condition. So, in some sense,
searching for the optimum hyperplane is a particular case of the generalised portrait
method.

3.5 Lagrangian Dual Function

Instead of solving the initial quadratic programming problem, it is for many reasons
more convenient to maximise the Lagrangian dual function

W)=Y a kY b~ 3. ¥).

where

¥ = Yax - Yy
under the constraints

a; =

—_ Y

b; > 0.

In this case we have simpler constraints, but a more complicated quadratic function
as compared with the initial problem. From the computational point of view this
form is preferable.
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To find the normal vector to the optimal hyperplane, it suffices to put k = —1
here and add the additional constraint

Zai = Zb,-.

3.6 Generalisation Properties

Generalisation properties of the generalised portrait method (and then of the optimal
hyperplane and the support vector machine) become obvious if we apply the
“Jackknife”” method in this case. This method takes off one object from the training
sequence, constructs a decision rule using some procedure, and then tests the
omitted object by this rule. Then it does the same with other objects of the training
sequence one by one and calculates the frequency of correct answers and errors.

Theoretically it will be an unbiased estimation of what you will have for a test
sequence (though I am not aware of a good theoretical evaluation of its variance).

In our case, if we remove from the training sequence a vector which is not
marginal (support vector), then the position of the generalised portrait will not
change, and then the omitted vector will be recognised correctly. So the frequency of
errors by the “Jackknife” testing method cannot exceed the share of support vectors
within the total training sequence. Of course if you already have some errors in
the training sequence, their frequency should be added to this estimate. Even more
can be said. If the system of support vectors is linearly independent, there exists
a unique decomposition of the generalised portrait into the support vectors. But if
not, we can find some decompositions where some coefficients become equal to 0
while others are positive. We call “informative” those support vectors which never
have 0 coefficients in such decompositions. It can be easily seen that the number of
errors made by the “Jackknife” method can never exceed the number of informative
vectors. In turn, the number of informative vectors never exceeds the dimensionality
of the parameter space. Due to the fact that the “Jackknife” estimation is unbiased,
we obtain a theoretical result: for linearly separable classes and the generalised
portrait method, the error expectation for an exam is at most

Eerror <n/(l + 1), (3.2)

where 7 is the space dimension and / is the length of the training sequence. In
practice, it often happens that the number of marginal (support) vectors is much less
than the dimension of the parameter space.

It is interesting to mention that, as our experience shows, the number of support
vectors for the optimal hyperplane often turns out to be larger than that for the
generalised portrait for other constants k. And, though V. Vapnik now proposes
using only the optimal hyperplane, it might be reasonable to return to the idea of
the generalised portrait with an arbitrary constant k, looking for a value for it that
provides the fewest number of support vectors. It seems that the result will depend
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on the nature of the problem. If both classes are approximately equal in size the
optimum hyperplane is preferable. In the case when we separate a rather narrow
class from a rather wide one (for instance, the letter “a” from all the others) the
generalised portrait with constant k near 1 is preferable.

The ratio of the number of support vectors to the total length of the training
sequence was used by us first as heuristic evaluation. Its theoretical significance
was realised only in 1966, and then it led to the notions of the growth function and
VC dimension to conditions for uniform convergence, etc.

3.7 Support Vector Machines

As already mentioned, the method of support vector machines differs from the
generalised portrait method mainly in the fact that no coordinate representation
is used there. Everything is done using only decompositions into support vectors
and scalar products presented in kernel form. It allows us to deal with very high
dimensional spaces. Still, generalization properties of the method are preserved due
to the rather small number of support vectors. Of course, this number depends on
the real geometry of classes and on how far we are ready to go in making errors on
the training sequence.
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Part 11
Theory and Practice of Statistical Learning
Theory

Part IT contains 20 technical contributions from some of the leading researchers in
the key areas of machine learning, kernel methods, and statistical learning theory
influenced by Vladimir Vapnik’s work. Some of the papers are accessible surveys of
these key research areas, some are original research contributions, and some contain
elements of both.

Vladimir Vapnik’s Support Vector Machines (SVMs) have become a very
popular subject of research in many communities, and in Chap.4 Ingo Steinwart
reviews several recent developments, mainly concentrating on the cases of binary
classification and least squares regression. The principal areas that he discusses are
the universal consistency and the learning rates of SVMs and related methods.

Another very popular subject of research is boosting, or creating highly accurate
prediction rules by combining a large number of relatively weak rules. In Chap. 5,
Robert Schapire, one of the founders of the field, reviews several approaches that
have been proposed for explaining and understanding the effectiveness of AdaBoost,
the most widely used boosting algorithm. He carefully discusses the underlying
assumptions, strengths, and weaknesses of various explanations.

At an intuitive level, Karl Popper’s notion of falsifiability of scientific theories
is clearly related to the notion of overfitting in statistical learning theory. However,
at a technical level the situation is subtle. In Chap. 6, Yevgeny Seldin and Bernhard
Scholkopf explore the relationship between these notions. Formally, they compare
different definitions of dimension of a function class, namely Popper dimension,
VC dimension, and exclusion dimension.

In Chap.7, Silvia Villa, Lorenzo Rosasco, and Tomaso Poggio tackle a key
question of statistical learning theory: which function spaces are learnable? They
review both older results, based on the notion of complexity, and more recent results,
based on the notion of stability.

Loss functions are used, explicitly or implicitly, in all machine learning prob-
lems. The three canonical loss functions are 0-1 loss, squared loss, and log loss
(corresponding to Vladimir Vapnik’s three main learning problems). In Chap. 8§,
Robert Williamson summarises recent developments in the theory of loss functions.
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In particular, he argues that there are many other interesting classes of loss functions
and discusses computational and statistical implications of the choice of the loss
function.

In Chap.9, Jason Weston reviews several well-known learning algorithms
and discusses their strengths and limitations from the practical point of view.
In particular, he covers linear models, embedding models, nearest neighbours,
neural networks, and SVMs and other kernel methods, paying special attention to
their performance on real-world large-scale datasets.

In Chap. 10, David McAllester and Takintayo Akinbiyi review the basics of PAC-
Bayesian theory, an approach to machine learning that blends Bayesian learning
and the VC-style uniform convergence approach. They discuss the fundamental
equations of the theory with an emphasis on Catoni’s basic inequality and Catoni’s
localisation methods.

In Chap. 11, Vladimir Vovk presents the method of Kernel Ridge Regression
(KRR) as a simple special case of Support Vector Regression. The original moti-
vation for KRR was Bayesian, but looking at it as a special case of SVR motivates
looking for non-Bayesian performance guarantees for KRR. The chapter discusses
two very different kinds of such guarantees.

Multi-task learning is a recent development in machine learning that aims at
solving a set of learning problems at the same time. Chapter 12 by Christian
Widmer, Marius Kloft, and Gunnar Ritsch focuses on an approach to multi-task
learning based on the assumption that closely related tasks yield similar parameters
in the learning model. The chapter gives an overview of the area of multi-task
learning, presents an example of a successful application in computational biology,
and gives practical guidelines for assessing how promising multi-task learning is for
a given dataset.

Semi-supervised learning is a class of machine learning techniques that make use
of both labelled and unlabelled data for training. In Chap. 13, Bernhard Schoélkopf,
Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij
connect the problem of semi-supervised learning with causal inference. They show
that semi-supervised learning can help in an anticausal setting, but not in a causal
setting. These results are validated by experiments on public datasets.

In Chap. 14, Luc Devroye, Paola Ferrario, Laszl6 Gyorfi, and Harro Walk are
concerned with estimating the minimum mean squared error in the problem of
regression. They propose a non-recursive estimator and a recursive estimator, prove
their strong universal consistency, and bound the rate of convergence of the non-
recursive estimator under mild conditions.

Chapter 15 by Ran Gilad-Bachrach and Chris Burges addresses the problem of
hypothesis selection, i.e., selecting the best hypothesis from a given hypothesis
class. The authors adopt the PAC-Bayesian framework, which is reviewed in
Chap. 10, and limit themselves to the binary classification setting. They propose a
depth function for classifiers to measure their proximity to the Bayesian optimal
classifier and show that deeper classifiers have stronger generalisation bounds.
The deepest classifier, which they call the median hypothesis, is, therefore, a good
hypothesis to select.
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In the framework of online learning, labels are predicted successively, each being
revealed before the next one is predicted, and many online learning algorithms
combine computational efficiency, lack of distributional assumptions, and strong
theoretical guarantees. In Chap. 16, Nicolo Cesa-Bianchi and Ohad Shamir propose
an efficient online learning algorithm adapted to transductive settings and present its
applications to collaborative filtering and to linking batch learning and transductive
online learning.

In Chap. 17, Eric Gautier and Alexandre Tsybakov propose a new estimation
method in a high-dimensional linear regression model under the scenario of sparsity,
i.e., assuming that only few coefficients are non-zero. Their method, which they
call self-tuned Dantzig estimator, is based on linear programming, which makes it
computationally efficient. They obtain upper bounds for estimation and prediction
errors under weak assumptions on the model and the distribution of the errors; it
turns out that their method achieves the same rate as that achieved in a much more
restrictive situation.

Regularization is often used in machine learning to prevent overfitting, and an
important class of regularizers are those inducing sparsity. In Chap. 18, Andreas
Argyriou, Luca Baldassarre, Charles Micchelli, and Massimiliano Pontil discuss
a general class of such regularizers: compositions of a non-differentiable convex
function with a linear function. They propose a general approach to solving such
regularization problems and apply it to SVMs.

The structural risk minimization principle, first proposed by Vladimir Vapnik
and then studied by Vapnik and Chervonenkis in the 1970s, has been developed
into penalized empirical risk minimization with more general complexity penalties.
In Chap. 19, Vladimir Koltchinskii discusses the penalized empirical risk minimiza-
tion in problems of estimation of large matrices of a relatively small rank with
nuclear norm used as a complexity penalty. In particular, he proves sharp low-rank
oracle inequalities for such problems.

Chapter 20 by Andreas Christmann and Robert Hable is another chapter devoted
to SVMs; the authors, however, understand SVMs in a broad sense, allowing general
convex loss functions and general kernels. They consider the problem of approxi-
mating the finite sample distributions of SVMs predictions. Such approximations
allow various kinds of statistical inferences based on SVMs, such as prediction
intervals. The main result of the chapter says that bootstrap approximations are
consistent under mild assumptions.

Chapter 21 by John Snyder, Sebastian Mika, Kieron Burke, and Klaus-Robert
Miiller is devoted to kernel-based methods. They start from a brief review of
kernel-based methods in general and of kernel PCA in particular. The main novel
contribution of the chapter is in showing how kernel-based methods can be used for
property optimization. In conclusion, the authors apply their techniques to problems
in quantum chemistry and physics.

In Chap. 22, Mark Stevens, Samy Bengio, and Yoram Singer consider problems
in which we need to rank a small number of positive examples over a vast
number of negative examples. An appropriate loss function for such problems is
the “domination loss”, whose definition the authors extend and generalize. They
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describe and analyze several efficient algorithms for learning a ranking function
using the domination loss. The effectiveness of these algorithms is demonstrated in
experiments on benchmark datasets.

In Chap.23, Masashi Sugiyama studies the problem of approximating the
divergence between two probability distributions given samples drawn from them.
The naive approach of first estimating the probability distributions is inefficient
(and violates Vladimir Vapnik’s general principle), and the author is interested in
direct approximations for four divergence measures: Kullback—Leibler divergence,
Pearson divergence, relative Pearson divergence, and L2-distance. He discusses
recent advances in this direction and their applications in machine learning.



Chapter 4
Some Remarks on the Statistical Analysis

of SVMs and Related Methods

Ingo Steinwart

Abstract Since their invention by Vladimir Vapnik and his co-workers in the early
1990s, support vector machines (SVMs) have attracted a lot of research activities
from various communities. While at the beginning this research mostly focused on
generalization bounds, the last decade witnessed a shift towards consistency, oracle
inequalities, and learning rates. We discuss some of these developments in view of
binary classification and least squares regression.

4.1 Introduction

Given a data set D := ((x1,)1),...,(Xy, yy)) sampled from some unknown
distribution P on X X Y, the goal of supervised statistical learning is to find an
fp : X = R whose L-risk

Rep(fo)i= [ Lxy fo() dPx.y)
XXY

is small. Here, L : X x Y xR — [0,00) is a loss describing our learning goal.

Probably the two best-known examples of such losses are the binary classification

loss and the least squares loss. However, other choices, e.g., for quantile regression,

weighted classification, and classification with reject option, are important, too.

To formalize the concept of “learning”, we also need the Bayes risk

Rip = inf(Rep(f) | f: X >R} .

If this infimum is attained we denote a function that achieves R} p by f/*p.
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Now, a learning method £ assigns to every finite data set D a function fp. Such
an L learns in the sense of L-risk consistency for P if

Tim. P”(D € (X x Y)Y :Rop(fp) <Rfp+ e) =1 4.1)
for all ¢ > 0. Moreover, L is called universally L-risk consistent if it is L-risk
consistent for all distributions P on X x Y.

Recall that the first results on universally consistent learning methods were
shown by Stone [33] in a seminal paper. Since then, various learning methods have
been shown to be universally consistent. We refer to the books [11] and [15] for
binary classification and least squares regression, respectively.

Clearly, consistency does not specify the speed of convergence in (4.1).
To address this we fix a sequence (g,) C (0, 1] converging to 0. Then, we say
that £ learns with rate (g,,) if there exists a family (c;):e(o,1) such that for all n > 1
and all T € (0, 1], we have

P”(D € (X xY)" : Rpp(fp) <Rf p +ct8n) >1-7t.

In addition, we say that £ learns with expected rate (&,) if Ep~ps R p(fp) < &n.
Here, a,, < b, means that there exists a constant ¢ > 0 with a,, < c¢b, foralln > 1.
Analogously, we sometimes write a, ~ b, if a, < b, and b, < a,.

Unlike consistency, learning rates usually require assumptions on P by the no-
free-lunch theorem of Devroye; see [10] and [11, Theorem 7.2]. In Sect. 4.4 we will
discuss such assumptions and the resulting rates for SVMs.

To recall the definition of SVMs and related methods, we fix a reproducing kernel
Hilbert space (RKHS) H, aloss L that is convex in its third argument, and a A > 0.
Then, the optimization problem

foa € argmin & [/ +Reo(f). 42)

where R p(f) is the empirical risk of f, that is

Rep(f) = %ZL(xisYivf(xi))s

i=1

has a unique solution fp; € H; see [28, Lemma 5.1 and Theorem 5.2].

Let us briefly make some historical remarks: In 1992 V. Vapnik and co-workers
[6] presented the first SVM, namely the hard-margin SVM, which combined the
generalized portrait algorithm from [37] with a kernel embedding inspired by [1].
A few years later, C. Cortes and V. Vapnik [8] proposed the first soft-margin SVMs,
which are instances of (4.2) for which L is the (squared) hinge loss. Almost at
the same time, the e-insensitive loss for regression was proposed in [12, 36, 38].
However, approaches of the form (4.2) are actually significantly older. In 1971,
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for example, G. Kimeldorf and G. Wahba [16] showed a form of the representer
theorem for the Sobolev space case H = W™ ([0,1]?) with m > d/2 and the
least squares loss L. Until the end of the 1980s a substantial amount of further
research dealt with this and similar cases; see e.g., [24, 39]. Inspired by this work,
[23] presented an approach called regularization network to the learning community
in 1990, which basically considers (4.2) for the least squares loss.

Ideally, a learning method is automatic, i.e., no parameters need to be set by the
user. In the SVM case, this means that A and possible kernel parameters such as the
width y > 0 of the Gaussian kernel

ky(x, x') := exp(—y " 2||x — X'||), x,x' e RY,

are set automatically. In practice, such parameters are usually determined
by cross-validation. Let us briefly describe a simplified version of this;
see [28, Definition 6.28]. To this end, we split D into two (almost) equally sized
parts Dy and D,. In addition, let A be a finite set of candidates for A and, if
necessary, I' be a finite set of candidates for the kernel parameter. Then, for all
combinations (A,y) € A x I', the optimization (4.2) is solved for the data set
Dy, and the resulting clipped SVM solution—see (4.4)—is validated on D>, i.e.,
its empirical D,-error is computed. Finally, the SVM solution with the smallest
Ds-error is taken as the decision function fp.

In the following, we try to give a brief survey on what is known about consistency
and learning rates for SVMs. To this end, we first recall some key concepts related
to their analysis in Sect.4.2. We then consider consistency and learning rates in
Sects. 4.3 and 4.4, respectively. Due to limited space, these discussions are restricted
to binary classification and least squares regression. However, most of the results
we discuss are actually derived from generic oracle inequalities and thus they
can be naturally extended to other losses. Here, differences usually only occur if
assumptions on P are made to guarantee, e.g., variance bounds or approximation
properties. For an example we refer to quantile regression with the pinball loss in
[13,29].

4.2 Mathematical Prerequisites

In the following, let (X, .4) be a measurable space, Y C R be a closed subset, and
P be a distribution on X x ¥ whose marginal distribution on X is denoted by Pyx.
In addition, we always assume that H is a separable reproducing kernel Hilbert
space (RKHS) of a bounded measurable kernel k on X with ||k|ec < 1. Finally, if
not stated otherwise, L denotes a loss that satisfies Ry _p(0) < oco.

The goal of this section is to recall some concepts that describe interactions
between P, L, and H, which are relevant for the analysis of SVMs.
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Let us begin by recalling that the “inclusion” operator I : H — L,(Pyx) that
mapsan f € H toits equivalence L,(Px)-class [ f]~ is a Hilbert-Schmidt operator;
see [28, Theorem 4.27]. Moreover, the usual integral operator 7; : L,(Px) —
L>(Pyx) with respect to k is well defined and given by Ty = I; o I, where I}
denotes the adjoint operator of I;. In particular, T} is self-adjoint, positive and
nuclear—see again [28, Theorem 4.27]—and thus, the classical spectral theorem can
be applied. This yields an at most countable family (u;);e; C (0, 00) of non-zero
eigenvalues (with geometric multiplicities) of T}, which, in the case of infinite 7,
converges to 0. As usual, we assume without loss of generality that / C N and
n1 > pa = --- > 0. Some of the results we will review later make explicit
assumptions on the decay of the eigenvalues, while other results make assumptions
on the behavior of covering numbers or entropy numbers. Since the latter two are
essentially the same concepts, let us only recall the latter. To this end, we first
consider a compact metric space (M, d). Then, for n > 1, the nth entropy number
of an A C M is defined by

en(A,d) :=infde >0:3¢,...,t, € M suchthat 4 C UB(ti,e)}

i=1

where B(t, ¢) denotes the closed ball with centre ¢ and radius . Moreover, if £ and
F are Banach spaces and T : E — F is a bounded linear operator, then the nth
(dyadic) entropy number of T is defined by e,,(T) := €,—1(TBg, |- ||r), where Bg
denotes the closed unit ball of E. In the Hilbert space case, eigenvalue and entropy
number decays are closely related. For example, [32, Theorem 15] shows that

wi(Te) < i~ Vr — ei(ly : H— Ly(Py)) <i~'/?. (4.3)

Moreover, the latter is implied by e;(id : H — {£oo(X)) < i~'/?7. Assumptions
on the eigenvalue or entropy number decay are used to estimate the stochastic error
of (4.2). To derive consistency and learning rates, however, we also need to bound
the approximation error. For example, for consistency, we obviously need zero
approximation error, that is RZ!P!H = RZ!P, where RZ!P!H ‘= infreng R p(f)
denotes the smallest possible L-risk in H. If H is universal (cf. [26] and [22]),
that is, X is a compact metric space and H is dense in C(X), this equality
can be guaranteed; see [28, Corollary 5.29]. For specific losses, however, weaker
assumptions on H are sufficient. For example, if L is the least squares loss, the
equality R » ; = R p holds if and only if H is dense in L»(Px). For many
Lipschitz continuous losses including the hinge loss, the e-insensitive loss, and the
pinball loss, an analogous characterization holds in terms of L;(Py)-denseness;
see [28, Corollary 5.37]. Finally, recall that for fixed y > 0, the RKHS H,
of the Gaussian kernel k, is dense in L,(Py) for all p e [I,00); see [28,
Theorem 4.63]. Once we have fixed an H with R} p, ; = Rj p, we need to
consider the approximation error function (AEF)
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AG) = int A1y +Rip()=Rip. 220,

It can be shown that lim) .o A(A) = 0; see [28, Lemma 5.15]. In general, the speed
of convergence cannot be faster than O(A), and this rate is achieved if and only
if there exists an f € H with Ry p(f) = R p; see [28, Corollary 5.18]. For
the least squares loss, the behavior of the AEF can be described by interpolation
spaces [E, F]g, of the real method; see [4,5]. Namely, [25] shows that f*, €
[L2(Px), H]poo if and only if A(A) € O(AP). Here we note that the latter
condition is often imposed to derive learning rates. Other authors, however, assume
fi'p € ran Tk’g/2 = [L»(Px),[H]~]p2, where ran Tk’g/2 denotes the image of the
B/2-fractional power of Ty, and the equality of this image to the interpolation
space has been recently shown in [31, Theorem 4.6]. To compare these conditions
we note that, we always have the continuous embeddings [L>(v), [H]~]g—c.00 —
[Lo(v), [H]~]g2 = [L2(v), [H]~]p 00 forall € > 0.

Finally, one often knows in advance that it suffices to look for decision functions
of the form fp : X — [-M, M] for some M > 0. In particular, this is the case if
the loss is clippable at M, thatis, forall x € X,y € Y, and ¢ € R, we have

L(x,y,7T) < L(x,y,1), 4.4)

where 7 := max{—M, min{M, t}}. Note that for convex L this is satisfied if and
only if L(x,y,-) : R — [0, 00) has a global minimum that is contained in [-M, M ]
for all (x,y) € X x Y; see [28, Lemma 2.23]. The latter is satisfied for many
commonly used losses, and for such losses it is beneficial to clip the SVM decision
function.

4.3 Universal Consistency

In this section we discuss several results concerning the universal consistency
of learning methods of the form (4.2) for binary classification and least squares
regression. Due to space constraints we restrict our considerations to a priori
chosen parameters. However, Theorems 4.1 and 4.2 below and the results discussed
for regression can also be formulated for data splitting approaches; cf. [28,
Theorems 7.24 and 8.26].

4.3.1 Binary Classification

Let us first note that the binary classification loss, which defines the actual learning
goal, is not even continuous, and hence cannot be used in the SVM optimization
problem (4.2). This issue is resolved by using a surrogate loss L such as the
(squared) hinge loss or the least squares loss. For these losses, the first consistency
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results can be found in [27] and [40]. To recall these results, we assume that X C R¢
is compact and H is universal. Then [27] establishes universal classification
consistency if (a) we use the hinge loss, (b) we have & (X,d;) < i~V for
some « > 0, where dj is the kernel metric in the sense of [28, Eq.(4.20)],
and (c) we use a sequence of regularization parameters (4,) with A, — 0 and
nAY — oo. In addition, for the Gaussian kernel k, with fixed but arbitrary width
y we can choose @ := d. By completely different methods, [40] shows universal
classification consistency for a variety of losses including the (squared) hinge loss
and the least squares loss if A, — 0 and nA, — oo. A key idea in both articles
is to compare the excess L-risk Ry p(f) — Ry p of arbitrary f to the excess
classification risk of f. Namely, in [27] an asymptotic relationship is shown, while
[40] goes one step further by establishing inequalities between these excess risks.
This idea was picked up in [2], which showed for convex margin-based losses, i.e.,
for losses L of the form L(y,?) = ¢(yt), that we have an asymptotic relationship
or an inequality between these excess risks if and only if ¢ is differentiable at 0 with
¢'(0) < 0. For such losses we have the following consistency result:

Theorem 4.1. Let L be as above and ¢(t) € O(t?) for some ¢ > 1 andt — oo.
Moreover, let H be dense in L,(Py) and (A,) C (0,00) with A, — 0. Then
the clipped SVM is classification-consistent for P if one of these conditions is
satisfied:

1. nd,/Inn — oo andn)kz/z — 00.

2. nkz/z — 00 and nAl — oo for some p € (0, 1) with u; (Ty) < i~'/7.

If X is compact and H is universal, then all assumptions involving q can be
dropped.

Proof. The first assertion follows from [28, Lemma 5.15 and Theorem 5.31]
together with a simple generalization of [28, Theorem 7.22]. The second result
can be shown analogously by employing [28, Theorem 7.23] together with [28,
Corollary 7.31] and (4.3). Now assume that X is compact and H is universal.
We fix an ¢ € (0,2] and pick an f : X — R with R, p(f) < R} p + &
Since L is clippable, say at M, we may assume that f maps into [-M, M]. By
[3, Theorem 29.14] we then finda g € C(X) with || ' — gllz,(py) < &. Again, we
can assume that || g|lcc < M. Since H is universal, there also exists an i, € H with
|he — gllz < €. Here we note that we can additionally assume that the resulting
function & > ||A,|| is decreasing. Our construction yields | /;||cc < 2 + M and
|/ —hell,py) < 2¢. Since L is locally Lipschitz—see [28, Lemma 2.25]—we find
Rrp(he)—Rr p(f) <2creby[28, Lemma 2.19], where ¢ > 1 is a constant only
depending on L. This gives Ry p(h;) —R] p < 3cre.For A € (0, 1] we now define
g, := 2inf{e € (0,1] : ||h||3, < A7"/2}. We then obtain ||k, |co <2+ M and

Mlhely + Rep(he) =Ry p < AY% +3cpen — 0 A — 0.

Choosing fy := h,, in (the proofs) of [28, Theorems 7.22 and 7.23] gives the
assertions. ]
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The result above yields universal classification consistency, if, e.g., X = R4 and
H = H, with fixed kernel width y. For Gaussian kernels, it is, however, common
practice to vary y with the sample size, too. The following result covers this case:

Theorem 4.2. Let L be convex, clippable, and margin-based with ¢’(0) < 0.
Furthermore, let (A,) C (0,1] and y, C (0,1] satisfy )Lnyn_d — 0. Then
the clipped SVM is universally classification-consistent if one of the following
conditions holds:

1. X =R, ¢(t) € O(t?) for some q > 1 andt — oo, nA,/Inn — oo and
nkz/z — 00.
2. X Cc R? is compact and AL y,fln — 00 for some ¢ > 0.

Proof. Using |id : H; — H,| < y~%/*—see [28, Proposition 4.46]—it is easy to
check that the AEFs A, and A, of the Gaussian RKHSs H, and H, satisfy 4, (1) <
A1(Ay~%). Then the first assertion follows as for Theorem 4.1. The second assertion
can be shown using the arguments for compact X in the proof of Theorem 4.1.

4.3.2 Least Squares Regression

We already noted in the introduction that least squares regression methods of
the form (4.2) had already been around when SVMs were proposed. Despite
their earlier appearance, the first' universal consistency result in our sense seems
to be shown relatively late by [17]. Under the moment condition R, p(0) =
E(xy~py> < oo, the authors obtain consistency for H = W"([0, 119) if
An — 0, nA, — oo, and the decision functions fp,, are clipped at Inn.
In [15, Theorem 20.4] the condition nd, — oo was relaxed to nA}/(Inn)” —
oo with p = d/(2m), and it seems plausible that their proof allows us to
remove the logarithmic factor at least partially if ¥ is bounded and a more
aggressive clipping is applied. In any case, for bounded Y the general theory
tells us that the logarithmic factors can be removed. Indeed, for bounded Y,
it is easy to check that the conditions ensuring consistency in Theorems 4.1
and 4.2 also ensure consistency for least squares regression if we set g = 2.
In the case of Theorem 4.1, for example, we obtain consistency for generic H
if A, — 0 and nA,/Inn — oo, and the latter can be replaced by nA?! —
oo for some p € (0,1) if X is compact, H is universal, and w;(7;) =
i~'/P. Note that this covers the case H = W™ ([0,1]¢) for p := d/(2m) by
the well-known estimate e; (I : W™([0,1]9) — £oo([0,1]%)) < i~4; see,
e.g., [14, p. 118].

'In [15] the authors actually give some credit to the 1987 paper [35] for the case d = 1.
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4.4 Learning Rates

In this section we discuss some known learning rates for SVMs for binary
classification and least squares regression.

4.4.1 Binary Classification

Probably the earliest established learning rates for SVMs with (squared) hinge loss
can be found in [26]. To formulate this result we define n(x) := P(Y = 1|x),
x € X,aswell as X_ := {n < 1/2} and X4+ := {n > 1/2}. We say that P
has zero noise if |27 — 1| = 1 holds Py —almost surely, and has strictly separated
classes if d(X_, X4+) > 0 for a version of 1 and a metric d on X. Now assume
that (X, d) is compact, H is universal and A, = n~!. Then [26] shows that P" (D :
Rep(f)p,, =0)=1—e""foralln > ng, where L is the classification loss and
¢ and ny depend on P and H.

In [19] exponentially fast expected rates under similar but weaker conditions
were shown. There the authors assume that (X, d) is compact, n has a Lipschitz
continuous version and that P has Tsybakov’s noise exponent ¢ = 00; see below.
Note that together these assumptions imply that P has strictly separated classes. For
universal kernels and the logistic loss for classification, they then show that there are
constants ¢y, ¢z > 0 with Ep~pn R p(f)p; — Rip < exp(—cind,) if Ay < 2
and nk,11+p — oo. Here, p € (0,1) is a constant such that sup, e;({y : H —
Ly(v)) <ci —1/@p) forall i > 1, where the supremum is taken over all distributions
vonX.

For both results discussed so far, it seems fair to say that (a) the assumptions
on P are very strong and that (b) similar rates can also be achieved without much
effort for classical histogram rules. In the case of the hinge loss and Gaussian kernels
with varying widths, more realistic assumptions on P have been proposed in [30],
which, to some extent, generalize the assumptions above. To briefly describe them,
we define the distance to the decision boundary by A(x) := d(x, X;)if x € X_,
A(x) := d(x,X-) if x € X4, and A(x) = 0 otherwise. Then P is said to have
margin noise exponent 8 € (0,00] if Ep, 1ia-3|27 — 1| < (ct)? for a constant
¢ > landallz > 0. A detailed discussion of this assumption can be found in [28,
Sect. 8.2], so we only mention that j is large if there is not much mass and/or a lot
of noise in the area {A < ¢} around the decision boundary. In addition, we need
Tsybakov’s noise condition [34] that bounds the total amount of noise by Px (|12n —
1| < t) < (ct)? for constants ¢ > 0 and ¢ € [0,00], and all ¢ > 0. Then [28,
Theorem 8.26] shows that the data splitting approach with polynomially growing

-1 —1/d ~ S (s R
n~'-nets A, and n -nets I, of (0, 1] learns with rate n~ #4+2+dq+D™"" for all
& > 0. Note that depending on B and ¢ the exponent in the rate varies between 0
and 1; in particular, rates up to n~" are possible in all dimensions d provided that 8
and g are large enough.
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Finally, let us briefly discuss some rates for generic H and the hinge loss (the
least squares case will be considered at the end of our discussions on least squares
regression). To this end, we assume that P satisfies Tsybakov’s noise condition
for some ¢ € [0,00], as well as u;(Tx) < i~"/? and A(X) € O(AP) for some
p € (0,1) and B € (0,1]. Then we usually have to expect § < 1, since for
B = 1 the Bayes decision function, which is a step function, must be contained
in H, and for commonly used H this is impossible. In addition, Tsybakov’s
noise condition gives a variance bound, which in turn can be used, e.g., in [28,

—min{22 ___Bath
Theorem 7.24]. The resulting learning rate is n min{ 511 B@FI=pFr@F D for the data
splitting approach if (A,) is a sequence of polynomially growing n~2-nets of (0, 1].

4.4.2 Least Squares Regression

Similarly to the case of consistency, the first learning rates were established for
the space H = W ([0, 1]¢). Indeed, based on some techniques from empirical
processes pioneered by S. van de Geer, [18] showed expected rates of the form

(In n)zn_zxzﬁ for a structural risk minimization procedure to choose the parameters
m and A. Here s > d/2 describes the unknown smoothness of the regression
function in the sense of f;*, € W*([0, 1]¢). The procedure is thus adaptive to the
unknown smoothness s, and in addition, no assumptions except supp Py C [0, 1]¢
are necessary. Let us now turn to the generic case. Here, beginning with [9], various
investigations have been made, so we only focus on the ones that established (nearly)
optimal rates. To the best of our knowledge, the first result in this direction was
established in [7] under the assumptions j; (Tx) ~ i ~'/”? and fip €ran T#/2 for
some p € (0,1) and B € [1,2]. Note that 8 > 1 implies that foP € H. Then,
modulo some logarithmic factor in the case § = 1, the authors establish the rate

B
n=F (4.5)

and they also show that this rate is optimal. Especially remarkable is the fact that
the authors are able to deal with values 8 > 1, since for such values the classical
approach that splits the analysis into a stochastic part and the AEF fails due to the
fact that the AEF does not converge faster than linearly. To avoid this issue, the
authors split quite differently with the help of spectral methods.

From a practical point of view, however, the case B < 1 is the more realistic
one. For this case, the first essentially optimal rate was proved in [21] for a variant
of (4.2) in which the exponent 2 in the regularization term is replaced by the
smaller exponent 2p/(1 + p), where p € (0, 1) is chosen such that u; (T;) =<
i~Y/P. Provided that the eigenvectors of T} are uniformly bounded and fip €
[L2(Px), H]poo for some B € (0,1], [21] then establishes (4.5) modulo some
logarithmic factors. A closer look at this assumption on the eigenvectors shows that
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itis solely used to establish the interpolation inequality || f [loo < c|l.f[I% || f ||1L;(p )
for all f € H, where ¢ > 0 is some constant. Interestingly, this inequality is
equivalent to the continuous embedding [L2(Px), H]p1 — Leo(Px). Now, [32]
shows that by combining the interpolation inequality with [28, Theorem 7.23] the
original algorithm (4.2) also learns with rate (4.5) and the additional logarithmic
factors are superfluous. Moreover, if the eigenvalue assumption is two-sided, i.e.,
wi(Ty) ~ i~/ then (4.5) is also optimal for all B € (p, 1].

In the Sobolev space case H = W™ ([0,1]?) and f;*, € W*([0,1]¢) for some
m > d/2 and s € (0,m], these generic results imply the above-mentioned rates

n_z\zﬁ if Py is (essentially) the uniform distribution; see [32]. Moreover, [13] has
recently shown that up to some arbitrarily small & > 0 in the exponent, the rates
can also be achieved by Gaussian RKHSs H, if y varies with the sample size. Note
that the latter seems to be somewhat necessary, since for fixed y and f;*, & C*,
the AEF can only have logarithmic decay; see [25]. Finally, the rates of [13,32] can
also be achieved by the data splitting approach.

Let us finally return to binary classification with the least squares loss. To this
end, we assume n € [L,(Py), H]g.co and that Tsybakov’s noise assumption is
satisfied for some ¢ € [0, 0o]. Note that the latter implies a stronger calibration
inequality between the excess least squares and the excess classification risk; see

[2] and [28, Theorem 8.29]. Considering [32], we then obtain the rate n_%,
which at first glance seems to be fine, since for large B and g the exponent reaches 1.
However, it may be the case that large values for § and g exclude each other.
To illustrate this (see [20] for a similar observation), let us consider the Sobolev case

n € W*([0,1]¢) in which the rates in [32] become n_ﬁ;{ﬁ“. To get rates close
to n~!, we need large s, say s > 1 + d/2. Then n € C'! by Sobolev’s embedding
theorem, which in turn excludes ¢ > 1 by some geometric considerations, and
hence rates arbitrarily close to n~! are impossible. Finally, the same observation
can be made for [13].
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Chapter 5
Explaining AdaBoost

Robert E. Schapire

Abstract Boosting is an approach to machine learning based on the idea of
creating a highly accurate prediction rule by combining many relatively weak and
inaccurate rules. The AdaBoost algorithm of Freund and Schapire was the first
practical boosting algorithm, and remains one of the most widely used and studied,
with applications in numerous fields. This chapter aims to review some of the
many perspectives and analyses of AdaBoost that have been applied to explain
or understand it as a learning method, with comparisons of both the strengths and
weaknesses of the various approaches.

5.1 Introduction

Boosting is an approach to machine learning based on the idea of creating a highly
accurate prediction rule by combining many relatively weak and inaccurate rules.
The AdaBoost algorithm of Freund and Schapire [10] was the first practical boosting
algorithm, and remains one of the most widely used and studied, with applications
in numerous fields. Over the years, a great variety of attempts have been made to
“explain” AdaBoost as a learning algorithm, that is, to understand why it works,
how it works, and when it works (or fails). It is by understanding the nature of
learning at its foundation—both generally and with regard to particular algorithms
and phenomena—that the field is able to move forward. Indeed, this has been the
lesson of Vapnik’s lifework.

This chapter aims to review some of the numerous perspectives and analyses of
AdaBoost that have been applied to explain or understand it as a learning method,
with comparisons of both the strengths and weaknesses of the various approaches.
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Given: (z1,Y1), .-, (Tm,Ym) where z, € X, y;, € {—1,+1}.
Initialize: D1(i) = 1/m fori=1,...,m.

Fort=1,...,T:

e Train weak learner using distribution Dy.

e Get weak hypothesis hy : X — {—1,+1}.

e Aim: select hy with low weighted error:

€r = Priwp, [he(zi) # yi] -

1—
%111( et).
€¢

Update, fort =1,...,m:

e Choose oy =

Dy (i) exp(—oyihe(x4))
Zt

Dy (i) =

where Z; is a normalization factor (chosen so that D11 will be a distribution).

Output the final hypothesis:

T
H(x) = sign <Z athy (m)) .

t=1

Fig. 5.1 The boosting algorithm AdaBoost

For brevity, the presentation is at a high level with few technical details. A much
more in-depth exposition of most of the topics of this chapter, including more
complete references to the relevant literature, can be found in the recent book by
Schapire and Freund [30].

Pseudocode for AdaBoost is shown in Fig.5.1. Here we are given m labeled
training examples (x1, 1), ..., (Xm, Ym), where the x;’s are in some domain X
and the labels y; € {—1,+1}. On each round ¢t = 1,...,T, a distribution D, is
computed as in the figure over the m training examples, and a given weak learner or
weak learning algorithm is applied to find a weak hypothesis h, : X — {—1,+1},
where the aim of the weak learner is to find a weak hypothesis with low weighted
error €, relative to D,. The final or combined hypothesis H computes the sign of a
weighted combination of weak hypotheses

T
F(x) = a/h(x). (5.1)

t=1

This is equivalent to saying that H is computed as a weighted majority vote of the
weak hypotheses /&, where each hypothesis is assigned weight «,. (In this chapter,
we use the terms “hypothesis” and “classifier” interchangeably.)
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5.2 Direct Application of VC Theory

We begin by considering how the general theory of Vapnik and Chervonenkis can
be applied directly to AdaBoost.

Intuitively, for a learned classifier to be effective and accurate in its predictions,
it should meet three conditions: (1) it should have been trained on “enough” training
examples; (2) it should provide a good fit to those training examples (usually
meaning that it should have low training error); and (3) it should be “simple.” This
last condition, our expectation that simpler rules are better, is often referred to as
Occam’s razor.

In formalizing these conditions, Vapnik and Chervonenkis [34,35] established a
foundation for understanding the fundamental nature of learning, laying the ground-
work for the design of effective and principled learning algorithms. Specifically,
they derived upper bounds on the generalization error of a classifier that could be
stated in terms of the three conditions above, and along the way provided workable
definitions (such as the VC-dimension) of the slippery and mysterious notion of
simplicity.

To understand AdaBoost, the very general and encompassing VC theory is the
most sensible starting point. All analyses of learning methods depend in some
way on assumptions, since otherwise, learning is quite impossible. From the very
beginning, much of the work studying boosting has been based on the assumption
that each of the weak hypotheses has accuracy just a little bit better than random
guessing; for two-class problems, this means they should each have error below
1/2, that is, each ¢, should be at most 1/2 — y for some y > 0. This assumption,
called the weak learning condition, is intrinsic to the mathematical definition of a
boosting algorithm, which, given this assumption and sufficient data, can provably
produce a final hypothesis with arbitrarily small generalization error.

Given the weak learning condition, it is possible to prove that the training error of
AdaBoost’s final hypothesis decreases to zero very rapidly; in fact, in just O(logm)
rounds (ignoring all other parameters of the problem), the final hypothesis will
perfectly fit the training set [10]. Furthermore, we can measure the complexity
(that is, lack of simplicity) of the final hypothesis using the VC-dimension, which
can be computed using combinatorial arguments [2, 10]. Having analyzed both the
complexity and training fit of the final hypothesis, one can immediately apply the
VC theory to obtain a bound on its generalization error.

Such an analysis predicts the kind of behavior depicted on the left of Fig.5.2,
which shows the error (both training and test) of the final hypothesis as a function
of the number of rounds of boosting. As noted above, we expect training error to
drop very quickly, but at the same time, the VC-dimension of the final hypothesis is
increasing roughly linearly with the number of rounds 7'. Thus, with improved fit to
the training set, the test error drops at first, but then rises again as a result of the final
hypothesis becoming overly complex. This is classic overfitting behavior. Indeed,
overfitting can happen with AdaBoost as seen on the right side of the figure, which
shows training and test errors on an actual benchmark dataset. However, as we will
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Fig. 5.2 Left: A plot of the theoretical training and test percent errors for AdaBoost, as predicted
by the arguments of Sect.5.2. Right: The training and test percent error rates obtained using
boosting on the Cleveland heart-disease benchmark dataset. (Reprinted from [30] with permission
of MIT Press)

see shortly, AdaBoost often does not overfit, apparently in direct contradiction of
what is predicted by VC theory.

Summarizing this first approach to understanding AdaBoost, a direct application
of VC theory shows that AdaBoost can work if provided with enough data and
simple weak classifiers which satisfy the weak learning condition, and if run for
enough but not too many rounds. The theory captures the cases in which AdaBoost
does overfit, but also predicts (incorrectly) that AdaBoost will always overfit.

As in all of the approaches to be discussed in this chapter, the numerical bounds
on generalization error that can be obtained using this technique are horrendously
loose.

5.3 The Margins Explanation

Another actual typical run on a different benchmark dataset is shown on the left
of Fig.5.3. In this case, boosting was used in combination with the decision-tree
learning algorithm C4.5 [26] as the weak learner. A single decision tree produced
by C4.5 on this dataset has a test error rate of 13.8 %. In this example, boosting very
quickly drives down the training error; in fact, after only five rounds, the training
error is zero so that all training examples are correctly classified. (Note that there is
no reason why AdaBoost cannot proceed beyond this point.)

The test performance of boosting on this dataset is extremely good, far better than
that of a single decision tree. And surprisingly, unlike in the earlier example, the test
error on this dataset never increases, even after 1,000 trees have been combined,
by which point, the combined classifier involves more than two million decision
nodes. Even after the training error hits zero, the test error continues to drop, from
8.4 % on round 5 down to 3.1 % on round 1,000. This pronounced lack of overfitting
seems to flatly contradict the intuition and theory discussed in Sect. 5.2 which says
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Fig. 5.3 Left: The training and test percent error rates obtained using boosting on an OCR dataset
with C4.5 as the weak learner. The rop and bottom curves are test and training error, respectively.
The top horizontal line shows the test error rate using just C4.5. The bottom line shows the final
test error rate of AdaBoost after 1,000 rounds. Right: The margin distribution graph for this same
case showing the cumulative distribution of margins of the training instances after 5, 100 and 1,000
iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves, respectively.
(Both figures are reprinted from [32] with permission of the Institute of Mathematical Statistics)

that simpler is better. Surely, a combination of five trees is much simpler than a
combination of 1,000 trees (about 200 times simpler, in terms of raw size), and both
perform equally well on the training set (perfectly, in fact). So how can it be that
the far larger and more complex combined classifier performs so much better on the
test set?

Such resistance to overfitting is typical of boosting, although, as we saw earlier,
boosting certainly can overfit. This resistance is one of the properties that make it
such an attractive learning algorithm. But how can we understand this behavior?

The margins explanation of Schapire et al. [32] was proposed as a way out
of this seeming paradox. Briefly, the main idea is the following. The description
above of AdaBoost’s performance on the training set only took into account the
training error, which is zero already after only five rounds. However, training error
only tells part of the story in that it only reports the number of examples that are
correctly or incorrectly classified. Instead, to understand AdaBoost, we also need
to consider how confident are the predictions made by the algorithm. According to
this explanation, although the training error—that is, whether or not the predictions
are correct—is not changing after round 5, the confidence in those predictions is
increasing dramatically with additional rounds of boosting. And it is this increase in
confidence which accounts for the better generalization performance.

To measure confidence, we use a quantity called the margin. Recall that the
combined classifier H is simply a weighted majority vote—that is, the result of a
small-scale “election”—of the predictions of the weak classifiers. In a real-world
election, confidence in the outcome is measured by the margin of victory, the
difference between the fraction of votes received by the winner and the fraction
of votes received by the loser. In the same way, we can define margin in our setting
as the difference between the weighted fraction of the weak classifiers predicting
the correct label and the weighted fraction predicting the incorrect label. When this
vote is very close, so that the predicted label H(x) is based on a narrow majority,



42 R.E. Schapire

the margin will be small in magnitude and, intuitively, we will have little confidence
in the prediction. On the other hand, when the prediction H (x) is based on a clear
and substantial majority of the weak classifiers, the margin will be correspondingly
large, lending greater confidence in the predicted label. Thus, the magnitude of
the margin is a reasonable measure of confidence. Furthermore, the margin will
be positive if and only if the overall prediction H(x) is correct.

We can visualize the effect AdaBoost has on the margins of the training examples
by plotting their distribution. In particular, we can create a plot showing, for each
0 € [—1, +1], the fraction of training examples with margin at most 8. For such a
cumulative distribution curve, the bulk of the distribution lies where the curve rises
the most steeply. Fig. 5.3, on the right, shows such a margin distribution graph for
the same dataset as above, showing the margin distribution after 5, 100 and 1,000
rounds of boosting. Whereas nothing at all is happening to the training error, these
curves expose dramatic changes happening to the margin distribution. For instance,
after five rounds, although the training error is zero (so that no example has negative
margin), a rather substantial fraction of the training examples (7.7 %) has margin
below 0.5. By round 100, all of these examples have been swept to the right so that
not a single example has margin below 0.5, and nearly all have margin above 0.6.

Thus, this example is indicative of the powerful effect AdaBoost has on the
margins, aggressively pushing up those examples with small or negative margin.
Moreover, comparing the two sides of Fig. 5.3, we see that this overall increase in
the margins appears to be correlated with better performance on the test set.

AdaBoost can be analyzed theoretically along exactly these lines. It is possible
to prove first a bound on the generalization error of AdaBoost—or any other voting
method—that depends only on the margins of the training examples, and not on the
number of rounds of boosting. Such a bound predicts that AdaBoost will not overfit
regardless of how long it is run, provided that large margins can be achieved (and
provided, of course, that the weak classifiers are not too complex relative to the size
of the training set).

The second part of such an analysis is to prove that, as observed empirically in
Fig. 5.3, AdaBoost generally tends to increase the margins of all training examples,
and moreover, the higher the accuracy of the weak hypotheses, the larger will be the
margins.

All this suggests that perhaps a more effective learning algorithm could be
designed by explicitly attempting to maximize the margins. This was attempted by
Breiman [4] (among others) who created an algorithm called arc-gv for maximizing
the smallest margin of any training example. Although this algorithm did indeed
produce larger margins, its test performance turned out to be slightly worse than
that of AdaBoost, apparently contradicting the margins theory. In a follow-up
study, Reyzin and Schapire [28] suggested two possible explanations. First, more
aggressive margin maximization seems to produce more complex weak hypotheses,
which tends to raise the potential for overfitting, confounding the experiments. And
second, in some cases, arc-gv produces a higher minimum margin, but a distribution
of margins that is lower overall.
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In summary, according to the margins explanation, AdaBoost will succeed
without overfitting if the weak-hypothesis accuracies are substantially better than
random (since this will lead to large margins), and if provided with enough data
relative to the complexity of the weak hypotheses. This is really the only known
theory that explains the cases in which overfitting is not observed. On the other
hand, attempted extensions of AdaBoost based on direct maximization of margins
have not been entirely successful, though work in this area is ongoing (see, for
instance, [22, 36]).

5.4 Loss Minimization

Many, perhaps even most, learning and statistical methods that are in common use
can be viewed as procedures for minimizing a loss function (also called a cost or
objective function) that in some way measures how well a model fits the observed
data. A classic example is least squares regression in which a sum of squared errors
is minimized. AdaBoost, though not originally designed for this purpose, also turns
out to minimize a particular loss function. Viewing the algorithm in this light can
be helpful for a number of reasons. First, such an understanding can help to clarify
the goal of the algorithm and can be useful in proving convergence properties. And
second, by decoupling the algorithm from its objective, we may be able to derive
better or faster algorithms for the same objective, or alternatively, we might be able
to generalize AdaBoost for new challenges.

AdaBoost can be understood as a procedure for greedily minimizing what has
come to be called the exponential loss, namely,

1 m
- Z exp(—y; F(x;))

i=1

where F(x) is as given in Eq. (5.1). In other words, it can be shown that the choices
of o; and h; on each round happen to be the same as would be chosen so as to cause
the greatest decrease in this loss. This connection was first observed by Breiman [4]
and later expanded upon by others [7,12,23,25,27,31].

Why does this loss make sense? Intuitively, minimizing exponential loss strongly
favors the choice of a function F' for which the sign of F(x;) is likely to agree with
the correct label y;; since the final hypothesis H is computed as the sign of F, this
is exactly the behavior we seek in attempting to minimize the number of mistaken
classifications. Another argument that is sometimes made is that the real goal of
minimizing classification errors requires the optimization of an objective that is not
continuous, differentiable or easily minimized, but which can be approximated by a
smooth and convex “surrogate” objective function such as the exponential loss. The
exponential loss is also related to the loss used for logistic regression [12].
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As a procedure for minimizing this loss, AdaBoost can be viewed as a form
of coordinate descent (in which each step is made greedily along one of the
coordinate directions), as noted by Breiman [4]. Alternatively, AdaBoost can be
viewed as a form of functional gradient descent, as observed by Mason et al. [23]
and Friedman [11]. This understanding has led to the immediate generalization of
boosting to a wide range of other learning problems and loss functions, such as
regression.

From this perspective, it might seem tempting to conclude that AdaBoost’s
effectiveness as a learning algorithm is derived from the choice of loss function that
it apparently aims to minimize, in other words, that AdaBoost works only because
it minimizes exponential loss. If this were true, then it would follow plausibly that
a still better algorithm could be designed using more powerful and sophisticated
approaches to optimization than AdaBoost’s comparatively meek approach.

However, it is critical to keep in mind that minimization of exponential loss
by itself is not sufficient to guarantee low generalization error. On the contrary, it
is very much possible to minimize the exponential loss (using a procedure other
than AdaBoost), while suffering quite substantial generalization error (relative,
say, to AdaBoost). To demonstrate this point, consider the following experiment
from Schapire and Freund [30], which is similar in spirit to the work of Mease
and Wyner [24, 37]. Data for this experiment was generated synthetically with
each instance x a 10,000-dimensional {—1, 41}-valued vector, that is, a point in
{—1, +1}1999_ Each of the 1,000 training and 10,000 test examples were generated
uniformly at random from this space. The label y associated with an instance x
was defined to be the majority vote of three designated coordinates of x. The weak
hypotheses used were associated with coordinates so that each was of the form
h(x) = x; for all x, and for some coordinate j. (The negatives of these were also
included.)

Three different algorithms were tested. The first was ordinary AdaBoost using
an exhaustive weak learner that, on each round, finds the minimum weighted error
weak hypothesis. We refer to this as exhaustive AdaBoost. The second algorithm
was gradient descent on the exponential loss function (which can be written in
a parametric form so that ordinary gradient descent can be applied). The third
algorithm was actually the same as AdaBoost except that the weak learner does
not actively search for the best weak hypothesis, but rather selects one uniformly
at random from the space of possible weak hypotheses; we refer to this method as
random AdaBoost.

All three algorithms are guaranteed to minimize the exponential loss, but that
does not mean that they will necessarily perform the same on actual data in terms
of classification accuracy. It is true that the exponential loss is convex, and therefore
can have no local minima. But it is possible, and even typical, for the minimum
either to be non-unique, or to not exist at all at any finite setting of the parameters.
Therefore, different algorithms for the same (convex) loss can yield very different
hypotheses.

The results of these experiments are shown in Table 5.1. Regarding speed
(measured by number of rounds), the table shows that gradient descent is extremely
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Table 5.1 Results of the experiment described in Sect.5.4. The numbers in brackets show the
number of rounds required for each algorithm to reach specified values of the exponential loss.
The unbracketed numbers show the percent test error achieved by each algorithm at the point in its
run at which the exponential loss first dropped below the specified values. All results are averaged
over ten random repetitions of the experiment. (Reprinted from [30] with permission of MIT Press)

% Test error  [# rounds]

Exp. loss Exhaustive AdaBoost Gradient descent Random AdaBoost

10710 0.0 [94] 40.7 [5] 44.0 [24,464]
10720 0.0 [190] 40.8 [9] 41.6 [47,534]
10740 0.0 [382] 40.8 [21] 40.9 [94,479]
10100 0.0 [956] 40.8 [70] 40.3 [234,654]

fast at minimizing exponential loss, while random AdaBoost is unbearably slow,
though eventually effective. Exhaustive AdaBoost is somewhere in between. As
for accuracy, the table shows that both gradient descent and random AdaBoost
performed very poorly on this data, with test errors never dropping significantly
below 40 %. In contrast, exhaustive AdaBoost quickly achieved and maintained
perfect test accuracy after the third round.

Of course, this artificial example is not meant to show that exhaustive AdaBoost
is always a better algorithm than the other two methods. Rather, the point is that
AdaBoost’s strong performance as a classification algorithm cannot be credited—at
least not exclusively—to its effect on the exponential loss. If this were the case,
then any algorithm achieving equally low exponential loss should have equally
low generalization error. But this is far from what we see in this example, where
exhaustive AdaBoost’s very low exponential loss is matched by the competitors,
but their test errors are not even close. Clearly, some other factor beyond its
exponential loss must be at work to explain exhaustive AdaBoost’s comparatively
strong performance.

So to summarize, minimization of exponential loss is a fundamental property
of AdaBoost, and one that opens the door for a range of practical generalizations
of the algorithm. However, it is important to keep in mind that this perspective
is rather limited in terms of what it can tell us about AdaBoost’s accuracy as a
learning algorithm. The example above demonstrates that any understanding of
AdaBoost’s generalization capabilities must in some way take into account the
particular dynamics of the algorithm—mnot just the objective function, but what
procedure is actually being used to minimize it.

5.5 Regularization

Without question, AdaBoost minimizes exponential loss. And yet, as was just seen,
other algorithms for minimizing this same loss can perform far worse. If the choice
of loss function cannot explain how AdaBoost avoids the poor performance of these
other algorithms, then how does it do it?
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In general, when minimizing a loss function, it has become quite popular and
standard to regularize, that is, to modify or constrain the optimization problem
in a way that attempts to avoid overfitting by limiting complexity or encouraging
smoothness. In our context, we have seen that AdaBoost constructs a linear
combination F' of weak hypotheses (as in Eq. (5.1)), and does so in a way that
minimizes exponential loss over all such linear combinations. To regularize, we
might instead choose our objective to be the minimization of this same loss, but
subject to the constraint that the weak-hypothesis weights appearing in F, when
viewed collectively as a vector, have £;-norm bounded by some preset parameter
B > 0. There are many other ways of regularizing (for instance, using a different
norm), but this particular form based on the £;-norm, sometimes called the “lasso,”
has the especially favorable property that it seems to encourage sparsity, that is, a
solution with relatively few nonzero weights [33].

AdaBoost certainly does not explicitly regularize—there is nothing about the
algorithm that overtly limits the weights on the weak hypotheses. Nevertheless, is it
possible that it is somehow applying some kind of implicit form of regularization?
In fact, it turns out that a simple variant of AdaBoost, when stopped after any
number of rounds, can often be viewed as providing an approximate solution to
£,-regularized minimization of exponential loss. To see this, consider an experiment
in which we compute the solution to this regularized optimization problem for all
possible values of the preset bound B. As B varies, these weight vectors trace out a
path or trajectory, which can be plotted in the unrealistic but illustrative case where
the space of possible weak hypotheses is very small. This is shown on the left of
Fig.5.4 on benchmark data using just six possible weak hypotheses. Each curve
corresponds to one of the six weak hypotheses and plots its weight at the regularized
solution as a function of B. Thus, the figure depicts the entire trajectory.

For comparison, consider a variant of AdaBoost in which ¢, rather than being set
as in Fig. 5.1, is chosen on each round to be equal to a fixed small constant o > 0.
As above, we can plot the trajectory of the weights on the weak hypotheses which
define the combined classifier as a function of the number of iterations 7', multiplied
by the constant @ so that the resulting scale «7 is equal to the cumulative sum of
weight updates after 7 iterations. This is shown, for the same dataset, on the right
of Fig. 5.4 (using o« = 107°).

Remarkably, the two plots are practically indistinguishable. This shows that, at
least in this case, a variant of AdaBoost, when run for 7 rounds, computes essen-
tially the same solution vectors as when using £;-regularization with B set to o7 .
Thus, early stopping—that is, halting boosting after a limited number of rounds—is
in this sense apparently equivalent to regularization. This correspondence was first
observed by Hastie et al. [13], and explored further by Rosset et al. [29]. Later, Zhao
and Yu [40] showed theoretically that the correspondence will hold generally under
certain but not all conditions.

All this suggests a plausible explanation for how AdaBoost works: Regular-
ization is a general technique that protects against overfitting by constraining,
smoothing, and/or promoting sparsity. As just discussed, AdaBoost with early



5 Explaining AdaBoost 47

individual classifier weights
individual classifier weights

B ol

Fig. 5.4 The trajectories of the weight vectors computed on a benchmark dataset using only
six possible weak hypotheses. Trajectories are plotted for £;-regularized exponential loss as the
parameter B varies (left), and for a variant of AdaBoost in which o, = & = 107° on every round
(right). Each figure includes one curve for each of the six weak hypotheses, showing its associated
weight as a function of the total weight added. (Reprinted from [30] with permission of MIT Press)

stopping is related to £;-regularization. Therefore, AdaBoost avoids overfitting
through implicit regularization.

However, there are important deficiencies in this argument. First of all, strictly
speaking, it does not apply to AdaBoost, but only to a variant of AdaBoost in
which the weights on each round are set to a small fixed constant. And second, this
argument only makes sense if we stop AdaBoost after a relatively small number of
rounds since it is through early stopping, according to this view, that regularization
is actually applied.

What happens if AdaBoost is run for a large number of rounds, as in the
cases described in Sect.5.3 where overfitting was apparently absent? According
to this view, making the number of rounds T large corresponds to choosing a
regularization parameter B that is also large. Thus, when 7T is very large, the
purported regularization must be extremely weak, and in the limit must become
so vanishingly weak as to apparently have no constraining influence at all on the
optimization problem that it is meant to constrain. When this happens, how can it
be having any effect at all?

In fact, Rosset et al. [29] proved that if the regularization is relaxed to the
limit so that B — oo, then the resulting (anemically regularized) solutions turn
out asymptotically to maximize the margins of the training examples. This means
that we can prove something about how well such solutions will perform on new
data, but only as a result of their margin-maximizing properties and by applying the
margins theory. It is not the regularization that is explaining good performance here
since it has been weakened to the point of essentially disappearing altogether.

So to summarize, we have seen a perspective in which boosting with early
stopping can be related to £;-regularization. However, this view does not apply to
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AdaBoost, but only to a variant. And furthermore, for a large number of rounds,
we can only explain good performance, according to this view, by again appealing
to the margins theory rather than as a direct result of implicit regularization.

5.6 Inherently Unpredictable Data

As discussed in Sect. 5.3, the margins theory shows that, if given “enough” data,
and if the weak learning condition holds, then the generalization error can be made
arbitrarily close to zero so that the resulting classifier is essentially perfect. This
obviously seems like a good thing. But it should also make us suspicious since,
even under the most ideal circumstances, it is usually impossible on real data to
get perfect accuracy due to intrinsic noise or uncertainty. In other words, the Bayes
error, the minimum possible error of any classifier, is usually strictly positive.

So on the one hand, the margins theory tells us that, with enough data, it should be
possible to train a perfectly accurate classifier, but on the other hand, the data itself
usually makes this impossible. In practice, this is not necessarily a contradiction,
even when the weak learning assumption holds. This is because the weak-hypothesis
space typically is not fixed, but grows in complexity with the size of the training
set; for instance, this happens “automatically” when using decision trees as weak
hypotheses since the generated trees will usually be bigger if trained with more
data. Nevertheless, it would certainly be desirable to have a theory that more directly
handles the case in which the Bayes error is nonzero.

Indeed, it has been proved that AdaBoost’s combined classifier has an error rate
that converges to the Bayes optimal provided that the algorithm is given enough
data, that it is run for enough but not too many rounds, and that the weak hypotheses
come from a class of functions that is “sufficiently rich.” In this sense, the algorithm
is said to be universally consistent, a property that was proved by Bartlett and
Traskin [1] following the work of many others [3,5, 14,19,21,38,39].

This means that AdaBoost can (theoretically) learn optimally even in noisy
settings. Furthermore, this theory does not depend on the weak learning condition.
However, the theory does not explain why AdaBoost can often work even when run
for a very large number of rounds since, like all explanations other than the margins
theory, it depends on the algorithm being stopped after a finite and relatively small
number of rounds. Furthermore, the assumption of sufficient richness among the
weak hypotheses can also be problematic.

Regarding this last point, Long and Servedio [18] presented an example of a
learning problem which shows just how far off a universally consistent algorithm
like AdaBoost can be from optimal when this assumption does not hold, even when
the noise affecting the data is seemingly very mild. In this example, each data
point has its label inverted with quite low probability, say 1%. The Bayes optimal
classifier has an error rate that is also just 1%, and is obtainable by a classifier of
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the same form as that used by AdaBoost. Nevertheless, AdaBoost, in this case, will
provably produce a classifier whose error exceeds 50 %, in other words, at least as
bad as random guessing. In fact, this result holds even if the learning algorithm is
provided with unlimited training data. And it is really not a result about AdaBoost
at all—it is about algorithms based on loss minimization. The same result applies to
any method that minimizes exponential loss, as well as most other commonly used
convex losses. It also holds even if regularization is applied. For instance, it can be
shown that the same result applies to support vector machines, logistic regression,
linear regression, lasso, ridge regression, and many more methods.

So this example shows that such consistency results can fail badly if the weak
classifiers are not rich enough. It also shows that AdaBoost (and most other loss-
based methods) can be very susceptible to noise, even with regularization, at least on
artificially constructed datasets. This susceptibility to noise has also been observed
in practice, for instance, by Dietterich [6] and Maclin and Opitz [20].

How then should we handle noise and outliers? Certainly, these must be a
problem on “real-world” datasets, and yet, AdaBoost often works well anyway. So
one approach is simply not to worry about it. Theoretically, various approaches to
handling noise in boosting have also been proposed, often using techniques based
on “branching programs” [15-17].

Yet another approach is based on an entirely different boosting algorithm called
boost-by-majority, due to Freund [8]. In a certain sense, this algorithm turns out
to be exactly optimally efficient as a boosting algorithm. Furthermore, it does not
appear to minimize any convex loss function. Like AdaBoost, the algorithm on each
round puts more weight on the harder examples. However, unlike AdaBoost, it has a
very interesting behavior in which it can “give up” on the very hard examples. This
property might make the algorithm more robust to noise by its eventually ignoring
outliers and noise-corrupted examples rather than “spinning its wheels” on them as
AdaBoost does. Unfortunately, unlike AdaBoost, the boost-by-majority algorithm
is not adaptive in the sense that it requires prior knowledge about the number of
rounds and the degree to which the weak learning assumption holds. Nevertheless,
Freund [9] proposed making it adaptive by passing to a kind of limit in which time
is moving continuously rather than in discrete steps.

The resulting algorithm, called BrownBoost, is somewhat more challenging to
implement, but preliminary experiments suggest that it might be more resistant to
noise and outliers. See Table 5.2.

Summarizing, we have seen that, under appropriate conditions, AdaBoost prov-
ably converges in its accuracy to the best possible, even in the presence of noise and
even without the weak learning condition. On the other hand, AdaBoost’s perfor-
mance can be very poor when the weak hypotheses are insufficiently expressive.
Noise can be a real problem for AdaBoost, and various approaches have been
proposed for handling it, including a form of boosting which operates in continuous
time.
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Table 5.2 The results of running AdaBoost and BrownBoost on the “letter” and ‘“satimage”
benchmark datasets. After being converted to binary by combining the classes into two arbitrary
groups, each dataset was split randomly into training and test sets, and corrupted for training with
artificial noise at the given rates. The entries of the table show percent error on uncorrupted
test examples. All results are averaged over 50 random repetitions of the experiment. (These
experiments were conducted by Evan Ettinger, Sunsern Cheamanunkul and Yoav Freund, and were
reported in [30])

Dataset Noise (%) AdaBoost BrownBoost
Letter 0 3.7 4.2

10 10.8 7.0

20 15.7 10.5
Satimage 0 4.9 5.2

10 12.1 6.2

20 21.3 7.4

5.7 Conclusions

This chapter has attempted to bring together several different approaches that have
been proposed for understanding AdaBoost. These approaches are reflective of
broader trends within machine learning, including the rise of methods based on
margin maximization, loss minimization, and regularization. As we have seen, these
different approaches are based on varying assumptions, and attempt to capture
different aspects of AdaBoost’s behavior. As such, one can argue as to which of
these is most realistic or explanatory, a perspective that is likely to depend on
individual taste and experience. Furthermore, direct experimental comparison of
the different approaches is especially difficult due to the looseness of the various
bounds and theoretical predictions when applied to actual data.

For the most part, the different perspectives that have been presented do not
subsume one another, each having something to say about AdaBoost that is perhaps
not captured by the others. But taken together, they form a rich and expansive theory
for understanding this one algorithm. Perhaps someday a single overriding theory
will emerge that encompasses all of them.

Acknowledgements Support for this research was generously provided by NSF under Award
#1016029.
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Chapter 6

On the Relations and Differences Between
Popper Dimension, Exclusion Dimension
and VC-Dimension

Yevgeny Seldin and Bernhard Scholkopf

Abstract A high-level relation between Karl Popper’s ideas on “falsifiability of
scientific theories” and the notion of “overfitting” in statistical learning theory
can be easily traced. However, it was pointed out that at the level of technical
details the two concepts are significantly different. One possible explanation that
we suggest is that the process of falsification is an active process, whereas statistical
learning theory is mainly concerned with supervised learning, which is a passive
process of learning from examples arriving from a stationary distribution. We show
that concepts that are closer (although still distant) to Karl Popper’s definitions of
falsifiability can be found in the domain of learning using membership queries, and
derive relations between Popper’s dimension, exclusion dimension, and the VC-
dimension.

6.1 Introduction

There is a clear relation between Karl Popper’s notion of unfalsifiability of a
scientific theory [4] and the notion of overfitting in statistical learning theory [8—10].
However, when we go down to Karl Popper’s definition of complexity of a scientific
theory and to the definition of complexity of a function class in statistical learning
theory, the VC-dimension, we find significant dissimilarities [2, 6]. Corfield et al.
showed that Karl Popper’s definition of complexity of a function class would not
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work in supervised learning and wondered whether he failed to provide an accurate
definition or was concerned with a different setting.

We argue that the process of falsification of a scientific theory is fundamentally
different from the process of learning in supervised learning and, therefore, the
parallels and applications to Popper’s dimension are to be sought in other fields,
probably in learning using membership queries. In supervised learning we are
passively learning from examples generated from a stationary distribution and we
evaluate the hypothesis on the same distribution. In most guarantees provided
by statistical learning theory it is assumed that the test environment is similar
to the training environment. In the process of falsification of a scientific theory
we deliberately look for a test environment where the hypothesis will fail. The
test (or falsification) environment is very likely to be different from the training
environment. In this sense the process is more similar to learning using membership
queries.

Below we compare Popper’s dimension and VC dimension with exclusion
dimension [1], used in learning a finite concept class over a finite domain using
membership queries.

6.2 Setting

For the sake of comparison of the dimensions we consider a class of functions F
from an arbitrary domain X to ) = {0, 1}. The VC-dimension [7] of F is defined as
“the maximal number of points that can be shattered by F”, whereas a set of points is
said to be shattered by JF if “all possible labellings of the points can be implemented
by F” [5]. The Popper dimension of F [2] is defined as “the minimal number of
points in X that cannot be shattered by . (Such sets of points can potentially
falsify F.) Finally, the exclusion dimension of F is defined as “‘the maximum over
g € F of the minimal size of any specifying set for g with respect to F”, where a
specifying set is “a set S, such that at most one concept f € F agrees with g on
S [1]. The exclusion dimension can be seen as the minimal number of examples
(minus 1) that are required in order to prove that g & F in the worst case (over g).

In the next section we translate the definitions of the three dimensions into logical
quantifiers and in the section after that bring some examples that help us figure out
relations between the dimensions.

6.3 Definitions with Logical Quantifiers

Below we define the dimensions using logical quantifiers. The colon symbol “:” is
used as an abbreviation of “such that”.

VC-dimension:

VC(F) =max{n : Ix1,....x, 3 V{y1,...,yu}3f € F: Vi, f(x;) = yi}
6.1)
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Popper dimension:

PD(F) =min{n : H{x, ..., x}H{y1, ..., yu}: V€ FAi: f(x;) # yi} (6.2)
Exclusion dimension:

XD(F) = (m;}(min{n ;XL xe Ve Fi f(xg) # g(xi)}) -1
g

(6.3)
6.4 Relations
It is easy to observe the following relations between the dimensions:
Lemma 6.1. For any function class F:
PD(F) < VC(F)+1 6.4)
PD(F) < XD(F) + 1. (6.5)
Proof. Follows from the definitions of the dimensions (6.1)—(6.3). ]

Next we use examples inspired by the analysis of the teaching dimension by
Goldman and Kearns [3] in order to show that no bounds in the other direction can
be obtained, that bounds (6.4) and (6.5) are tight in certain situations, and that the
relation between the exclusion and VC dimensions can be arbitrary.

Lemma 6.2. For any n > 2 there exists a function class F for which XD(F) =
|[FIl—1=n—-1, VC(F) =1, and PD(F) = 2.

Proof. Consider the function class F in Fig. 6.1. Each f; € F equals 0 on x; and 1
elsewhere. Clearly, VC(F) = 1 and PD(F) = 2. For calculation of the exclusion
dimension consider a function g which equals 1 everywhere. In order to prove that
g ¢ F we have to reveal the value of g for all x;; hence XD(F) =n—1 = |F|—1.

0

Lemma 6.3. For any n > 0 there exists a function class F for which PD(F) = 2
and XD(F) = VC(F) = log, |F| = n.

Proof. Consider the function class F in Fig.6.2. The functions in F implement
all possible labellings of xi,...,x,, whereas for each f; € F we have that
Ji(xp4j) = 1fori = j and O otherwise. It is easy to see that VC(F) = n =
log, |F| and PD(F) = 2 (because we cannot implement a function f such that
f(xn+1) = f(xn42) = 1). For the same class XD(F) = n = VC(F). The “hard”
example g that proves this bound is g(x,+;) = 0forall 1 < j < 2", and g(x;) is
arbitrary for 1 < j < n.Indeed, in order to prove that g ¢ F we have to reveal the
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Fig. 6.1 A function class F T Ty Ty ... Ty
for which XD(F) = |F| —1, fil- + + ... +
VC(F) = 1,and PD(F) =2 fol+ = + .+

fal+ + — ...+

ful+ + + .0 -

Fig. 6.2 A function class F T, Ty Ty ...

Ty Tp41l Tpn42 Tnt3 Tntd Tp42"
for which PD(F) = 2 and fil- - = . = + Z _ - . -
XD(F) =VC(F) =log, |FI  fo |+ - - ... - - + - - -

fal- + - ... = = - + - .. =
fal+ + - .0 = - - - + ... -
far |+ + + + - - - - +
Fig. 6.3 A function class F T, Ty T Tz z z z z n
3 - n *n4+l*n42*n43nt4--- n+2
for which PD(F) = 2, T e
XD(.7:)=1,and f2 + - = ... = — + _ _ —
VC(F) = log, Z! fa |-+ - - - - 4+ - . -
fao |+ + -0 = = - - + .. =
for |+ + + + - - - - +
ferpr |- = = - - - - - -
forqo |+ - — - - - - - -
fangs|— + - - - - - - -
forga|+ + - - - - - - -
forngon |+ + + ...+ - - - - .. -
values of g for all xy, ..., x, and then to check that the corresponding “check bit”
N Xy415 ..., Xpgon 18 “off”. O

Lemma 6.4. For any n > 0 there exists a function class F for which PD(F) = 2
and XD(F) = 1, and VC(F) = log, Z! = n.

Proof. Consider the function class F in Fig. 6.3. It is the same as the function class
in Fig.6.2, but augmented with the “hard” examples considered in the proof of
Lemma 6.3, i.e., in addition to the functions that F included in the previous lemma,

JF further includes functions that provide arbitrary classification of xi, ..., x, and
are equal to O for x,41,...,X,421. As previously, VC(F) = n = log, @ and

PD(F) = 2. However, this time XD(F) = 1 = PD(F) — 1. This is because
in this example g ¢ F either has to be 1 on two samples x,4; and x4, for
1 < ji, j» < 2" (and then we can prove that g ¢ F by revealing its value at x,, ;,
and x,4j,), or g is 1 for some x,; for 1 < j < 2", but there is some x; for
1 <i < nsuchthat g(x;) # f;(x;) (and then once again by revealing the value of
g at x,+; and x; we prove that g ¢ F). O
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6.5 Discussion

We have shown that both VC and exclusion dimension bound Popper dimension
from above; however, the relation between the exclusion dimension and the VC
dimension can be arbitrary.

Popper dimension can be regarded as the minimal number of examples required
to falsify F in the best case (when the simplest nature phenomenon that is not
explained by F is most distant from all f € F), whereas exclusion dimension can
be regarded as the minimal number of examples required to falsify F in the worst
case (when the simplest nature phenomenon not explained by F is very similar to
some f € F).

Acknowledgements We would like to thank Vladimir Vovk for his careful reading of and
comments on this manuscript.
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Chapter 7
On Learnability, Complexity and Stability

Silvia Villa, Lorenzo Rosasco, and Tomaso Poggio

Abstract We consider the fundamental question of learnability of a hypothesis
class in the supervised learning setting and in the general learning setting introduced
by Vladimir Vapnik. We survey classic results characterizing learnability in terms
of suitable notions of complexity, as well as more recent results that establish the
connection between learnability and stability of a learning algorithm.

7.1 Introduction

A key question in statistical learning is which hypothesis (function) spaces are
learnable. Roughly speaking, a hypothesis space is learnable if there is a consistent
learning algorithm, i.e., one returning an optimal solution as the sample size goes to
infinity. Classic results for supervised learning characterize learnability of a function
class in terms of its complexity (combinatorial dimension) [1-3,9, 16, 17]. Indeed,
minimization of the empirical risk on a function class having finite complexity
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can be shown to be consistent. A key aspect in this approach is the connection
with empirical process theory results showing that finite combinatorial dimensions
characterize function classes for which a uniform law of large numbers holds,
namely uniform Glivenko—Cantelli classes [7].

More recently, the concept of stability has emerged as an alternative and effective
method to design consistent learning algorithms [4]. Stability refers broadly to
continuity properties of a learning algorithm to its input and it is known to play
a crucial role in regularization theory [8]. Surprisingly, for certain classes of loss
functions, a suitable notion of stability of ERM can be shown to characterize
learnability of a function class [10-12].

In this chapter, after recalling some basic concepts (Sect.7.2), we review
results characterizing learnability in terms of complexity and stability in supervised
learning (Sect.7.3) and in the so called general learning (Sect.7.4). We conclude
with some remarks and open questions.

7.2 Supervised Learning, Consistency and Learnability

In this section, we introduce basic concepts in Statistical Learning Theory (SLT).
First, we describe the supervised learning setting, and then define the notions of
consistency of a learning algorithm and learnability of a hypothesis class.

Consider a probability space (Z, p), where Z = X x ), with X a measurable
space and ) a closed subset of R. A loss function is a measurable map £ : Rx ) —
[0, +00). We are interested in the problem of minimizing the expected risk,

e, S0 = [ .oy, a.n

where F C Y7 is the set of measurable functions from X to ) (endowed with
the product topology and the corresponding Borel o-algebra). The probability
distribution p is assumed to be fixed but known only through a training set, i.e., a set
of pairs z, = ((x1, y1),--.,(Xn, yn)) € Z" sampled identically and independently
according to p. Roughly speaking, the problem of supervised learning is that of
approximatively solving Problem (7.1) given a training set z,,.

Example 7.1 (Regression and Classification). In (bounded) regression, ) is a
bounded interval in R, while in binary classification }) = {0, 1}. Examples of
loss functions are the square loss £(t,y) = (¢ — y)* in regression and the
misclassification loss £(t,y) = Iy, in classification. See [16] for a more
exhaustive list of loss functions.

In the next section, the notion of approximation considered in SLT is defined
rigorously. We first introduce the concepts of hypothesis space and learning
algorithm.

Definition 7.1. A hypothesis space is a set of functions H C F. We say that H is
universal if infz £, = infy &,, for all distributions p on Z.



7 On Learnability, Complexity and Stability 61

Definition 7.2. A learning algorithm A on 'H is a map,
A: U Z" > ™H, Z, — Azn = A(Z,,),
neN

such that, for all n > 1, Az« is measurable with respect to the completion of the
product o-algebra on Z".

Empirical Risk Minimization (ERM) is arguably the most popular example of a
learning algorithm in SLT.

Example 7.2. Given a training set z, the empirical risk &,, : 7 — R is defined as

Ealf) == S UFG). ).

i=1
Given a hypothesis space H, ERM on H is defined by minimization of the empirical
risk on H.
We add one remark.

Remark 7.1 (ERM and Asymptotic ERM). In general some care is needed while
defining ERM since a (measurable) minimizer might not be ensured to exist. When
Y = {0,1} and ¢ is the misclassification loss function, it is easy to see that
a minimizer exists (possibly non-unique). In this case measurability is studied,
for example, as in Lemma 6.17 of [15]. When considering more general loss
functions or regression problems one might need to consider learning algorithms
defined by suitable (measurable) almost-minimizers of the empirical risk (see, e.g.,
Definition 7.10).

7.2.1 Consistency and Learnability

Aside from computational considerations, the following definition formalizes in
what sense a learning algorithm approximatively solves Problem (7.1).

Definition 7.3. We say that a learning algorithm A on H is uniformly consistent' if

Ve > 0, n_lil}rloo s;;)p P" ({20 : Ex(A,,) — i%fgp > €}) =0,

and universally uniformly consistent if H is universal.

The next definition shifts the focus from a learning algorithm on H, to H itself.

IConsistency can be defined with respect to other convergence notions for random variables. If the
loss function is bounded, convergence in probability is equivalent to convergence in expectation.
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Definition 7.4. We say that a space H is uniformly learnable if there exists a
uniformly consistent learning algorithm on H. If H is also universal we say that
it is universally uniformly learnable.

Note that, in the above definition, the term “uniform” refers to the distribution for
which consistency holds, whereas “universal” refers to the possibility of solving
Problem (7.1) without a bias due to the choice of H. The requirement of uniform
learnability implies the existence of a learning rate for A [15] or equivalently a
bound on the sample complexity [2]. The following classical result, sometimes
called the “no free lunch” theorem, shows that uniform universal learnability of
a hypothesis space is too much to hope for.

Theorem 7.1. Let Y = {0, 1}, and X be such that there exists a measure |L on
X having an atom-free distribution. Let £ be the misclassification loss. If 'H is
universal, then 'H is not uniformly learnable.

The proof of the above result is based on Theorem 7.1 in [6], which shows
that for each learning algorithm A on H and any fixed n, there exists a
measure p on X x ) such that the expected value of £,(A4,,) — infy &,
is greater than 1/4. A general form of the no free lunch theorem, beyond
classification, is given in [15] (see Corollary 6.8). In particular, this result
shows that the no free lunch theorem holds for convex loss functions as soon
as there are two probability distributions pi, p» such that infy &, # infy &,
(assuming that minimizers exist). Roughly speaking, if there exist two learning
problems with distinct solutions, then H cannot be universally uniformly
learnable (this latter condition becomes more involved when the loss is not
convex).

The no free lunch theorem shows that universal uniform consistency is too strong
of a requirement. Restrictions on either the class of considered distributions p or the
hypothesis spaces/algorithms are needed to define a meaningful problem. In the
following, we will follow the latter approach, where assumptions on H (or A), but
not [...] on the class of distributions [...] p, are made.

7.3 Learnability of a Hypothesis Space

In this section we study uniform learnability by putting appropriate restrictions
on the hypothesis space H. We are interested in conditions which are not only
sufficient but also necessary. We discuss two series of results. The first is classical
and characterizes learnability of a hypothesis space in terms of suitable complexity
measures. The second, more recent, is based on the stability (in a suitable sense) of
ERM on H.
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7.3.1 Complexity and Learnability

Classically, assumptions on H are imposed in the form of restrictions on its “size”
defined in terms of suitable notions of combinatorial dimensions (complexity).
The following definition of complexity for a class of binary-valued functions has
been introduced in [17].

Definition 7.5. Assume ) = {0, 1}. We say that H shatters S € X if for each
E C S there exists fg € H such that fz(x) = 0if x € E, and fr(x) = 1is
x € §'\ E. The VC-dimension of 'H is defined as

VC(H) = max{d € N : 3§ = {xy,... x4} shattered by H}.

The VC-dimension turns out to be related to a special class of functions, called
uniform Glivenko—Cantelli, for which a uniform form of the law of large numbers
holds [7].

Definition 7.6. We say that H is a uniform Glivenko—Cantelli (uGC) class if it has
the following property:

Ve > 0, lim supp”({z,, : ‘;161%|5p(f)—€zn(f)‘ > e}) =0.

n—+00 P

The following theorem completely characterizes learnability in classification.

Theorem 7.2. Let YV = {0,1} and { be the misclassification loss. Then the
following conditions are equivalent:

1. 'H is uniformly learnable,

2. ERM on 'H is uniformly consistent,
3. 'His a uGC-class,

4. The VC -dimension of 'H is finite.

The proof of the above result can be found, for example, in [2] (see Theorems 4.9,
4.10 and 5.2). The characterization of uGC classes in terms of combinatorial
dimensions is a central theme in empirical process theory [7]. The results on binary-
valued functions are essentially due to Vapnik and Chervonenkis [17]. The proof
that uGC of H implies its learnability is straightforward. The key step in the
above proof is showing that learnability is sufficient for a finite VC-dimension, i.e.,
VC(H) < oo. The proof of this last step crucially depends on the considered loss
function.

A similar result holds for bounded regression with the square [1,2] and absolute
loss functions [3,9]. In these cases, a new notion of complexity needs to be defined
since the VC-dimension of real-valued function classes is not defined. Here, we
recall the definition of the y-fat shattering dimension of a class of functions H
originally introduced in [9].
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Definition 7.7. Let H be a set of functions from X to R and y > 0. Consider
S = {x1,...,x4} C X. Then S is y-shattered by 'H if there are real numbers
ri,...,rq such that for each E C S there is a function fz € H satisfying

fE(xX)<ri—y VxeS\E
feE(x)>ri+y VxekE.

We say that (ry, ..., rq) witnesses the shattering. The y-fat shattering dimension of
H is

faty (y) = max{d : 35 = {x;,...,x4} € X s.t. S is y-shattered by H}.

As mentioned above, an analog of Theorem 7.2 can be proved for bounded
regression with the square and absolute losses if condition 4 is replaced by
faty(y) < +oo for all y > 0. We end noting that it is an open problem to
generalize the above results for loss functions other than the square and the absolute
loss functions.

7.3.2 Stability and Learnability

In this section we show that learnability of a hypothesis space H is equivalent to the
stability (in a suitable sense) of ERM on H. It is useful to introduce the following
notation. For a given loss function £, let L : FxZ — [0, o0) be defined as L( f,z) =
L(f(x),y), for f € Fandz = (x,y) € Z. Moreover, let Z/, be the training z, with
the ith point removed. With the above notation, the relevant notion of stability is
given by the following definition.

Definition 7.8. A learning algorithm A on H is uniformly C V,,, stable if there exist
sequences (B, 6, )nen such that 8, — 0, §, — 0 and

sup p"{|L(Ag;» %) = L(Ag,. z)| < Bn} 21 =8y,
P

foralli € {1,...,n}.

Before illustrating the implications of the above definition to learnability we first
make a few comments and historical remarks. We note that, in a broad sense,
stability refers to a quantification of the continuity of a map with respect to its
input. The key role of stability in learning has long been advocated on the basis
of the interpretation of supervised learning as an ill-posed inverse problems [11].
Indeed, the concept of stability is central in the theory of regularization of ill-
posed problems [8]. The first quantitative connection between the performance of
a symmetric learning algorithm? and a notion of stability is derived in the seminal

2We say that a learning algorithm A is symmetric if it does not depend on the order of the points
inz,.
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paper [4]. Here a notion of stability, called uniform stability, is shown to be sufficient
for consistency. If we let z." be the training z, with the ith point replaced by u,
uniform stability is defined as

LA, ) — L(A4,.2)] < B (1.2)

forallz, € 2", u,z € Z" andi € {1,...,n}. A thorough investigation of weaker
notions of stability is given in [10]. Here, many different notions of stability are
shown to be sufficient for consistency (and learnability) and the question is raised
of whether stability (of ERM on H) can be shown to be necessary for learnability
of H. In particular, a definition of C'V stability for ERM is shown to be necessary
and sufficient for learnability in a Probably Approximate Correct (PAC) setting,
that is when Y = {0, 1} and for some h* € H, y = h*(x), for all x € X.
Finally, Definition 7.8 of uniform CV),, stability is given and studied in [11].
When compared to uniform stability, we see that: (1) the “replace one” training
set z" is considered instead of the “leave one out” training set z',; (2) the error is
evaluated on the point z; which is left out, rather than on any possible z € Z; finally,
(3) the condition is assumed to hold for a fraction 1 — §,, of training sets (which
becomes increasingly larger as n increases) rather than uniformly for any training
setz, € Z".
The importance of C V), stability is made clear by the following result.

Theorem 7.3. Let Y = {0, 1} and £ be the misclassification loss function. Then the
following conditions are equivalent,

1. 'H is uniformly learnable,
2. ERM on 'H is CV),, stable.

The proof of the above result is given in [11] and is based on essentially two steps.
The first is proving that C V},, stability of ERM on H implies that ERM is uniformly
consistent. The second is showing that if  is a uGC class then ERM on H is C V,,
stable. Theorem 7.3 then follows from Theorem 7.2 (since uniform consistency of
ERM on H and H being uGC are equivalent).

Both steps in the above proof can be generalized to regression as long as the
loss function is assumed to be bounded. The latter assumption holds, for example,
if the loss function satisfies a suitable Lipschitz condition and ) is compact (so that
‘H is a set of uniformly bounded functions). However, generalizing Theorem 7.3
beyond classification requires the generalization of Theorem 7.2. For the square and
absolute loss functions and Y compact, the characterization of learnability in terms
of a y-fat shattering dimension can be used. It is an open problem whether there is
a more direct way to show that learnability is sufficient for stability, independently
of Theorem 7.2. Another open problem is how to extend the above results to more
general classes of loss functions. We will see a partial answer to this question in
Sect. 7.4.
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7.4 Learnability in the General Learning Setting

In the previous sections we focused our attention on supervised learning. Here we
ask whether the results we discussed extend to the so-called general learning [16].

Let (Z, p) be a probability space and F a measurable space. A loss function is a
map L : F x Z — [0,00), such that L(f,-) is measurable for all f € F. We are
interested in the problem of minimizing the expected risk,

e &0 = [ L),

when p is fixed but known only through a training set, z, = (z1,...,z,) € 2",
sampled identically and independently according to p. Definition 7.2 of a learning
algorithm on H applies as is to this setting and ERM on H is defined by the
minimization of the empirical risk

Ealf) = Y L(f2)

i=1

While general learning is close to supervised learning, there are important
differences. The data space Z has no natural decomposition, and in general F
is not a space of functions. Indeed, F and Z are related only via the loss function
L. For our discussion it is important to note that the distinction between F and the
hypothesis space H becomes blurred. In supervised learning F is the largest set of
functions for which Problem (7.1) is well defined (measurable functions in V).
The choice of a hypothesis space corresponds intuitively to a more “manageable”
function space. In general, learning the choice of F is more arbitrary, and as a
consequence the definition of universal hypothesis space is less clear. The setting
is too general for an analogue of the no free lunch theorem to hold. Given these
premises, in what follows we will simply identify 7 = ‘H and consider the question
of learnability, noting that the definition of uniform learnability extends naturally
to general learning. We present two sets of ideas. The first, due to Vapnik, focuses
on a more restrictive notion of consistency of ERM. The second investigates the
characterization of uniform learnability in terms of stability.

7.4.1 Vapnik’s Approach and Non-trivial Consistency

The extension of the classical results characterizing learnability in terms of
complexity measure is tricky. Since H is not a function space, the definitions of
VC or V, dimensions do not make sense. A possibility is to consider the class
LoH = {z € Z + L(fz) forsome f € H} and the corresponding VC
dimension (if L is binary-valued) or V,, dimension (if L is real-valued). Classical
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results about the equivalence between the uGC property and finite complexity apply
to the class L o H. Moreover, uniform learnability can be easily proved if L o H is
a uGC class. On the contrary, the reverse implication does not hold in the general
learning setting. A counterexample is given in [16] (Sect.3.1), showing that it is
possible to design hypothesis classes with infinite VC (or V) dimension, which
are uniformly learnable with ERM. The construction is as follows. Consider an
arbitrary set H and a loss L for which the class L o H has infinite VC (or V)
dimension. Define a new space H:=HU {h} by addmg to H an element h such
that L(h,z) < L(h,z) forallz € Z and h € H.3 The space L o H has infinite
VC, or V,, dimension and is trivially learnable by ERM, which is constant and
coincides with / for each probability measure p. The previous counterexample
proves that learnability, and in particular learnability via ERM, does not imply finite
VC or V, dimension. To avoid these cases of “trivial consistency” and to restore
the equivalence between learnability and finite dimension, the following stronger
notion of consistency for ERM has been introduced by Vapnik [16].

Definition 7.9. ERM on H is strictly uniformly consistent if and only if

Ve >0, lim supp"(inf&, (f) —inf&,(f) >¢€) =0,
n—o00 P He He

where He ={f € H : £,(f) = c}.

The following result characterizes strictly uniform consistency in terms of the uGC
property of the class L o H (see Theorem 3.1 and its corollary in [16]).

Theorem 7.4. Let B > 0 and assume L(f,z) < B forall f € Handz € Z. Then
the following conditions are equivalent,

1. ERM on 'H is strictly consistent,
2. L o 'H is a uniform one-sided Glivenko—Cantelli class.

The definition of a one-sided Glivenko—Cantelli class simply corresponds to
omitting the absolute value in Definition 7.6.

7.4.2 Stability and Learnability for General Learning

In this section we discuss ideas from [ 14] extending the stability approach to general
learning. The following definitions are relevant.

Definition 7.10. A uniform Asymptotic ERM (AERM) algorithm A on H is a
learning algorithm such that

3Note that this construction is not possible in classification or in regression with the square loss.
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Ve >0, lim supp"({z, : &,(Az) —infé&,, > €}) =0.
n—o00 H

Definition 7.11. A learning algorithm A on H is uniformly replace one (RO) stable
if there exists a sequence 8, — 0 such that

1 n
; Z IL(AZf«,’u’Z) - L(Az,,’z)| f IBI’L

i=1
forallz, € 2", u,z€ Z"andi € {1,...,n}.

Note that the above definition is close to that of uniform stability (7.2), although the
latter turns out to be a stronger condition. The importance of the above definitions
is made clear by the following result.

Theorem 7.5. Let B > 0 and assume L(f,z) < B forall f € Handz € Z. Then
the following conditions are equivalent:

1. 'H is uniformly learnable,
2. There exists an AERM on 'H which is uniform RO stable.

As mentioned in Remark 7.1, Theorem 7.3 holds not only for exact minimizers of
the empirical risk, but also for AERMs. In this view, there is a subtle difference
between Theorem 7.3 and Theorem 7.5. In supervised learning, Theorem 7.3 shows
that uniform learnability implies that every ERM (AERM) is stable, while in general
learning, Theorem 7.5 shows that uniform learnability implies the existence of a
stable AERM (whose construction is not explicit).

The proof of the above result is given in Theorem 7 in [14]. The hard part of
the proof is showing that learnability implies existence of an RO stable AERM.
This part of the proof is split into two steps showing that: (1) if there is a
uniformly consistent algorithm A, then there exists a uniformly consistent AERM
A’ (Lemma 20 and Theorem 10); (2) every uniformly consistent AERM is also RO
stable (Theorem 9). Note that the results in [14] are given in terms of expectation
and with some quantification of how different convergence rates are related. Here
we give results in terms of probability to be consistent with the rest of the chapter
and state only asymptotic results to simplify the presentation.

7.5 Discussion

In this chapter we reviewed several results concerning the learnability of a
hypothesis space. Extensions of these ideas can be found in [5] (and references
therein) for multi-category classification, and in [13] for sequential prediction. It
would be interesting to devise constructive proofs in general learning suggesting
how stable learning algorithms can be designed. Moreover, it would be interesting
to study universal consistency and learnability in the case of samples from non-
stationary processes.
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Chapter 8
Loss Functions

Robert C. Williamson

Abstract Vapnik described the “three main learning problems” of pattern
recognition, regression estimation and density estimation. These are defined in
terms of the loss functions used to evaluate performance (0-1 loss, squared loss, and
log loss, respectively). But there are many other loss functions one could use. In
this chapter I will summarise some recent work by me and colleagues studying the
theoretical aspects of loss functions. The results elucidate the richness of the set of
loss functions and explain some of the implications of their choice.

8.1 Introduction

If one wishes to give a clear definition of a problem, a good starting point is to
define what one means by a solution to the problem. Vapnik’s “three main learning
problems” [24] are so defined via the loss functions used to measure the quality
of their solutions. If y is an observed value and y is one’s estimate, then pattern
recognition is defined via the 0-1 loss

Lo—1(y.Y) = [y = J]

where [p] = 1if p is true and 0 if p is false. Regression is defined in terms of the
squared loss

(3. 9) = (v = 3)°
and probability estimation via the log loss

bog(p) = —In(p).
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In this chapter I primarily focus on problems where the data (x;, y;) is drawn from
X x [n] where [n] := {1,...,n}. In this case it is convenient to write the loss as
a vector-valued map {:[n] — R’ (for pattern recognition or “classification”) or
£: A" — R’ (for probability estimation), where A" is the n-dimensional simplex.
Thus the log loss is £iog(p) = (—In(p1), ..., —In(p,))’, where the prime denotes
transpose and p € A" is one’s estimate of the probability (that is, p; is an estimate
of the probability that the random variable Y takes on value i € [n]).

These three canonical loss functions that are central to Vapnik’s work raise the
obvious question of what other loss functions one might choose, and what the
implications of those choices are. That is the subject of this chapter, which provides
an informal overview of some recent results I have (jointly) obtained. While I focus
on my own recent work, taking loss functions seriously has been a research topic for
some time [3,4,8,9]. Even within the Bayesian framework where it is often claimed
one is only interested in “gaining information” from an experiment, ultimately
loss functions arise because in the end one will do something with the results of
the “information” so obtained [6, 15]. Furthermore, when one acknowledges the
impracticality of exact computation of Bayesian inference, loss functions do matter
even for Bayesians [12].

Formal and precise statements of the various results can be found in the papers to
which I refer, along with detailed historical references. The emphasis of this chapter
is the broader picture and intuition and some technical conditions are omitted in the
statement of some results.

The rest of this chapter is organised as follows. Section 8.2 introduces the notion
of a proper loss for probability estimation and shows two key representations
in terms of Bregman divergences induced by the Bayes risk associated with
the loss and a Choquet representation of all possible proper losses in terms of
weighted combinations of elementary proper losses (0-1 loss is one of these
elementary losses). Section 8.3 introduces the notion of an f-divergence between
two distributions and shows the 1:1 correspondence between f-divergences and
binary proper losses and explains some of the implications. Section 8.4 shows how
the representations of proper losses make it much simpler to understand surrogate
regret bounds (which is a measure of how much one loses from not following
Vapnik’s advice of solving the problem directly). Section 8.5 extends the results
of Sects.8.2 and 8.3 (which are for n = 2) to a general n and explains how
one can thus define a natural f-divergence between several distributions jointly.
Section 8.6 studies the parameterisation of losses, and in particular looks at the role
of “link functions” and explains when a loss can be written as the composition of
a proper loss and a link function, and also explains the convexity of proper losses
in terms of the corresponding Bayes risk. Section 8.7 summarises the implications
of the choice of loss on the rate of convergence obtainable in two distinct learning
settings: worst case online sequence prediction and the traditional statistical batch
setting as studied by Vapnik. The chapter concludes (Sect. 8.8) with some remarks
on Vladimir Vapnik’s impact on the machine learning community in general, and
on my scientific work over 20 years in particular and offers a suggestion for a good
way forward for the community to effectively build upon his legacy.
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8.2 Proper Losses and Their Representations

Consider the problem of class probability estimation where one receives an iid
sample {(x;, ;) 7., of points from X x [n]. The goal is to estimate, for a given x,
the probability p; = Pr(Y = 1|X = x), where (X, Y') are random variables drawn
from the same distribution as the sample. Given a loss function £: A" — R'| the
conditional risk is defined via

L:A" x A" 3 (p.q) — L(p.q) =Ey~pty(p) = p' - £(g) = Y _ pili(q) € R.

i=1

A natural requirement to impose upon £ for this problem is that it be proper,
which means that L(p, p) < L(p,q) for all p,q € A". (It is strictly proper if
the inequality is strict when p # ¢.) The conditional Bayes risk L: A" > p —
inf,ean L(p, q) and is always concave. If £ is proper, L(p) = L(p, p) = p’ - £(p).
The full risk L(g) = ExEy xfy(g(X)). Examples of proper losses include 0—1
loss, squared loss, and log loss.

There are many proper losses. A very convenient way to parameterise them
arises from an integral representation. The cost-sensitive misclassification loss £,
is a generalisation of 0-1 loss and is defined for ¢ € (0, 1) via

te(q) = (c[g > c].(1 —0)]g = <)

Aloss £: A> — R™ is proper if and only if forall g € [0, 1] and y € {1,2}

1
0,(q) = /0 Cey (@IW(c)de, @1

where the weight function w: [0, 1] — Ry is given by w(c) = —L"”(c). The weight
function allows a much easier interpretation of the effect of the different choices

of proper losses [4, 18]. Examples of weight functions are wy/1(c) = 28(c — 1/2),

quuare(c) =1,and Wlog(c) = ﬁ

8.3 Divergences and the Bridge to Proper Losses

An f-divergence [5] is a measure of the closeness of two distributions on some
space X and is defined for a convex function f: Ry — R (with f(1) = 0) via

dP
I,(P.Q) = /X s (@) do.

Examples of f-divergences include Variational, Kullback—Leibler, and Hellinger.
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The statistical information [6] AL(zw, P, Q) for a binary decision problem () =
{1, 2}) with class conditional probability distributions P(x) = Pr(X = x|Y = 2)
and Q(x) = Pr(X = x|Y = 1) and prior probability 7 = Pr(Y = 2) is given by
the difference between the prior and posterior Bayes risk (the difference between
the best attainable risk when using only 7 and the distribution on X and the risk
obtainable when using the conditional distributions P and Q).

A key result of [18] is that for any 7 € (0,1) and any convex f (satisfying
f(1) = 0), there exists a proper loss £ with associated statistical information AL
such that for all distributions P, Q, I(P, Q) = AL(x, P, Q); and conversely,
given a proper loss £, there exists an f such that the same equivalence holds.
Thus, in a precise sense, the problem of measuring the divergence between two
distributions P and Q is the same as solving the prediction problem relative to
some proper loss when P and Q are interpreted as the respective class-conditional
distributions. There is also an integral representation for f-divergences [14], and
the “weight function” there can be directly related to the weight function for the
corresponding proper losses [18].

A Bregman divergence is defined in terms of a convex function ¢ as

By(p.q) = ¢(p)—p(q) — (p —q) - Dp(q)

where D¢ (q) is the derivative of ¢ at g. It is also well known that the conditional
Bayes risk L for a proper loss satisfies L(p,q) = L(g) — (g — p)L'(q).
Consequently the regret L(p,q) — L(p) = B_p(p,q), the Bregman divergence
between p and g induced by the convex function —L. Thus there is an intimate
relationship between Bayes risks, f-divergences, and Bregman divergences.

8.4 Surrogate Losses

Working with £, is computationally difficult, so one often uses a convex surrogate.
The question then naturally arises: what additional loss is incurred in doing so? One
way of answering this question theoretically is via a “surrogate regret bound” [1].
It turns out that by starting with proper losses, and exploiting the representations
presented above, one can derive surrogate regret bounds very simply.

Suppose that for some fixed ¢ € (0, 1) we know the regret B, of predicting with
q when the true distribution is p is B.(p,q) = «. Then the regret B(p, g) for any
proper loss £ satisfies

B(pv Q) = maX(W(Cv O{)v ‘W(Cv —O{)) (82)

where ¥ (¢, o) = L(c) — L(c —a) + aL’(c). Furthermore (8.2) is tight. The above
bound can be inverted to obtain the usual results in the literature; see [16, 18] for
details.



8 Loss Functions 75
8.5 Extension to Multiclass Losses and Divergences

Most of the above results extend to the multiclass setting (n > 2), although there
are some differences [25,26]. The advantage of the representation of £ in terms of L
becomes greater when n > 2, as can be seen by observing in this case £: A" — R’}
whereas L: A" — R™, a considerable simplification. Technically, in the binary case
we worked with a projection of AZ onto [0, 1]. When n > 2 we similarly project
peAtinto p € A" via p; = pi,i = 1,...,n— 1. The induced set A" then has an
open interior and one can thus differentiate.

Multiclass proper losses still have a Choquet integral representation analogous
to (8.1) since the set of proper losses is convex. However, in stark contrast to the
case where n = 2, the set of primitive losses becomes much larger when n > 2
(they are dense in the set of all proper losses!); see [26] for details.

Strictly proper losses are quasi-convex, in the sense that if £ is strictly proper,
then for all p € A", g — L(p,q) = p’ - {£(q) is quasi-convex. Two proper
losses £!, 0% A" — R% have the same conditional Bayes risk L if and only if
£' = £2 almost everywhere. If L is differentiable then £' = ¢2. The proper loss £ is
continuous at p in the interior of A” if and only if L is differentiable at p.

The bridge between proper losses and f-divergences also holds when n > 2,
but in this case the appropriate definition of Is(Pp)) = I;(P,..., P,) is not
clear in the literature. It turns out [7] that an exact analogue of the binary result
holds; for every proper loss £: A" — R, there exists a convex f such that the
induced statistical information for a multiclass experiment with class conditional
distributions Py, ..., P, equals the f divergence I, (P},)), and conversely. This
multidistribution divergence (which is better understood intuitively as a joint
similarity, rather than a joint “distance”) satisfies the same properties as traditional
(binary) f-divergences. Furthermore, all of these properties are easy to prove by
utilising the bridge to loss functions and Bayes risks, and then appealing to the
Blackwell-Sherman-Stein theorem.

8.6 Parameterisations, Links and Convexity

There are two key factors one needs to take into account in choosing a loss function:
the statistical and computational effects. The statistical effect is controlled by
the Bayes risk L (this assertion is justified more fully in the next section). The
computational effect is (to a first approximation) controlled by the convexity of the
loss. In this section I will outline how these two factors can be controlled quite
independently using the proper composite representation. Details are in [17] (binary
case) and [26] (multiclass case).

We have already seen that proper losses £: A" — R’ are characterised by their
Bayes risk. Proper losses are a suitable choice when the predictors are probabilities.
Oftentimes (e.g., use of linear predictors) the predictor v may live in some other
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A is parametrised by a concave Bayes risk A: A™ — R

Fig. 8.1 The idea of a proper composite loss

set V, such as R”. In this case it can make sense to use a proper composite loss
£:V — R, defined via £(v) = A(¥ ' (v)), where ¥: A" — V) is an invertible link
function and A: A" — R} is a proper loss (Fig. 8.1). Since the link preserves quasi-
convexity, if £ has a strictly proper composite representation then £ is quasi-convex.

Suppose £ is continuous and has a proper composite representation { = A o
¥ ~! = 1o ¢! Then the proper loss is unique (A = u almost everywhere). If £ is
additionally invertible then the link functions are also unique.

Given a loss £, the existence of a proper composite representation for £ is
governed by the geometry of the image £()). The precise statement is a little subtle,
but roughly speaking the existence is controlled by the “A”-convexity” of £()),
which means that £()) should “look convex” from the perspective of supporting
hyperplanes with the normal vector in A”; see [26, Sect. 5.2] for details.

A prediction v € V is admissible if there is no prediction v; better than v in the
sense that £(v;) < {£(v) and for some i € [n], {;(v1) < {;(v). If &:V — R is
continuous, invertible and has a strictly proper composite representation, then for
all v € V, v is admissible.

All continuous strictly proper losses (and strictly proper composite losses) are
quasi-convex, but they are not necessarily convex. The quasi-convexity means that
if £ is continuous and has a proper composite representation, then it is minimax,
meaning that

max min L(p,v) = min max L(p, v).
pEA vEV (p.v) VeV peAn (p,v)

Note that £ need not be convex for the above to hold. The convexity of a proper
(or proper composite) loss is readily checked, however, in terms of the Hessian of L
and the gradient of v (see [26, Sect. 6.4]). Furthermore, if A: A" — R’} is a proper
loss which is not convex, then one can canonically construct a convex composite
proper loss with the same Bayes risk A by composing A with its canonical link
Vi(p) := —DL(p), where p = (p1....,pa1) (it is necessary to use this
reparameterisation of the simplex to allow the derivative D to be well defined).

In aggregate, these results on proper composite losses justify the separation of
concerns mentioned at the beginning of this section: the statistical properties are
controlled by the proper loss A (since it controls the Bayes risk); the geometric
properties (convexity) of the composite loss are controlled by the link .
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8.7 Effect of Losses on Statistical Convergence

Much of the theoretical literature which analyses the convergence of learning
algorithms only looks at loss functions in a crude way. For example, a common
trick is to bound the complexity of the class of functions induced by a loss
function in terms of the complexity of the hypothesis class by assuming a Lipschitz
property of the loss function. Unsurprisingly, such results offer little insight into
the consequences of choosing particular loss functions. However, in one setting
(the online worst case mixture of experts setting [27]) there is a result that shows
the effect of the choice of loss (see [23] and references therein for the detailed
background). Roughly speaking, in this setting the learner’s task is to aggregate
expert predictions such that the aggregated predictor has a cumulative loss not much
worse than the cumulative loss of the best expert (which is not known to the learner).
There is a very precise result which bounds the additional loss that the learner can
incur in terms of the number of experts and a parameter 8, called the mixability
constant of the loss. This parameter depends only on the loss, but until recently its
value was only known in certain special cases.

By exploiting the structure of proper losses (and in particular their characterisa-
tion in terms of their corresponding Bayes risk), it is possible to determine an exact
general formula for B, when £ is continuous, smooth and strictly proper:

Be = min s (HL(P) ™+ HLi(5))
pEA!

where H denotes the Hessian, A« the maximum eigenvalue and Llog is the Bayes
risk for log loss [23]. If £ is suitably smooth [26, Sect.6.1] then mixability of £
implies £ has a (strictly) proper composite representation.

Furthermore, it turns out that there is a generalisation of the notion of mixability
(called stochastic mixability) [22] that in a special case reduces to mixability of £,
but applies in general to the standard statistical learning theory setting; stochastic
mixability depends upon £, F and P* where F is the hypothesis space and P* is
the underlying distribution of the data. Analogously to the ordinary mixability result
which characterises when fast learning can occur in the online mixture of experts
setting, under some conditions, stochastic mixability of (£, F, P*) also seems to
control when learning with fast rates is possible. (I say “seems to” because the theory
of stochastic mixability is still incomplete, although there are certainly cases where
it can be applied and does indeed guarantee fast learning, including in the special
case where F is convex and £ is squared loss [13].)

Thus we see that by taking a detour to simply understand loss functions better,
one can obtain new understanding about one of the key problems in learning
to which Vapnik made a major contribution—the bounding of the generalisation
performance of a learning algorithm when presented with a finite amount of data.
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8.8 Conclusion

Loss functions are central to the definition of machine learning problems. As I hope
the above summary shows, there is a lot more to loss functions than one normally
sees in the theoretical analysis of learning problems. The results are schematised in
Fig.8.2.

Vladimir Vapnik is renowned for two central contributions: (1) his “fundamental
theorem of pattern recognition” [24] (which characterises the difficulty of pattern
recognition problems in terms of a central complexity parameter of the class of
hypotheses used), and (2) the support vector machine, which vastly expanded the
scope of practical machine learning by combining a well-posed and mathematically
sound optimisation problem as the basis of learning algorithms, and the use of
kernels, which allowed the application of these machines to very diverse data
types. More generally he has influenced an entire generation of machine learning
researchers in terms of how they go about doing their own research. In my case I
can see the clear influence through

Characterisations.  The characterisation of the learnability of real-valued functions
corrupted by additive noise in terms of the finiteness of the fat-shattering
dimension [2] is analogous to the above-mentioned fundamental theorem.

Inductive principles.  Vapnik formulated the notion of an inductive principle (how
to translate the end goal of learning, such as minimizing expected risk) into an
empirically implementable scheme. Thinking of such principles more abstractly
was one of the main motivations for the notion of “luckiness” [10, 21].

Practical algorithms and their analysis. The SVM has had widespread impact.
Making it easier to tune its regularisation parameter [19], generalising the core
idea to novelty detection [20] and the online setting [11], and analysing the
influence of the choice of kernel on the generalisation performance [29] were
all clearly motivated by Vapnik’s original contributions.

What of the future? I believe that the problem-centric approach one sees in
Vapnik’s work will prevail in the long term. Many techniques come and go. But the
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core problems will remain. Thus I am convinced that a fruitful way forward is
to develop relations between different problems [28], akin to some of those I
sketched in this chapter. This is hardly a new idea in mathematics (consider the
viewpoint of functional analysis). But there is a long way yet to go in doing this for
machine learning. Success in doing so will help turn machine learning into a mature
engineering discipline.
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Chapter 9
Statistical Learning Theory in Practice

Jason Weston

Abstract In this chapter we discuss the practical application of statistical learning
theory: the design of learning algorithms and their use on real datasets. We
review some of the most well-known methods and discuss their advantages and
disadvantages. Particular emphasis is put on methods that scale well at training and
testing time so that they can be used in real-life systems; we discuss their application
on large-scale image and text classification tasks. Our goal is to understand what we
have done right so far with the models that we have currently built, and what we are
missing — that we thus have yet to invent.

9.1 Introduction

In the statistical learning framework, learning means estimating a function

y=f(x)

where the estimate is constructed given only £ examples of the mapping performed
by the unknown function (called the training set)

(XI’J’I)a---a(xLYZ)‘ (91)

A learning machine must choose from a given set of functions { f(x, «),x € A} the
one which best approximates the unknown dependency, where A are the parameters
that define the class of functions. Given this fixed class, the best choice of function
is the one that provides the minimum value of the risk
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where L(y, f(x,a)) is the value of the loss function, a measure of difference
between the estimate f(x, «) and the actual value y given by the unknown function
at a point x. In reality, however, the joint distribution function F(x, y) is unknown
and we do not have the value of y for each point x, but only the training set
pairs (9.1). We can instead approximate function (9.3) by considering the so-called
empirical risk function:

14
Ranp(@) = 3 2 L0 £, @), ©.3)

i=1

Empirical Risk Minimization involves finding the function that minimizes (9.3), i.e.,
minimizing the training error. However, the minimum of (9.3) does not necessarily
approximate well the minimum of (9.2) when £ is small. In the case of pattern
recognition, Vapnik showed the following bound holds with probability 1 — 5 [25]:

21 1) —log(2)

R(@) < Remp(a) + \/ hlog (5 ; 9.4)

where £ is the VC dimension of the set of functions parameterized by « — a measure
of the capacity of the set of functions for modelling data. The VC dimension of a set
of functions is the maximum number of points that can be separated in all possible
ways by that set (see [25]). If the capacity of the set of functions is large, the function
that minimizes R, will yield a very small training error, the first term in the bound.
However, the second term of the bound will be large — this matches the intuition that
overfitting may be occurring because the set of functions is so powerful that it could
fit any small dataset.

To minimize over both terms, the capacity of the set of functions would have to
be a parameter in the optimization problem rather than just chosen a priori. Vapnik
thus suggested the Structural Risk Minimization (SRM) principle that does just that.
He proposed first defining a structure

SicSc---CS 9.5)

on the set of functions S = {f(x,®),« € A} whose VC-dimensions satisfy z; <
hy <...h, <...,i.e., they increase in expressive power. One can then choose the
S) that minimizes the bound (9.4), i.e., one can control the trade-off between the
degree of fit to the data and the complexity of the set of functions used.

In typical real-life machine learning problems today, practitioners do follow a
similar procedure to SRM, except they usually use a validation set instead of a bound
to control this trade-off. The structure might be controlled more or less directly
(e.g., the size of a neural network) or slightly less directly (e.g., via a regularization
hyperparameter).
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9.2 Practical Issues with the Classical Approach

The description given in the previous section is at the heart of Vapnik’s work
[25] and seems like a clear solution to machine learning problems. So, practically
speaking, why are all our problems not yet solved?

Well, firstly, a word of encouragement. Machine learning approaches are in
use today all over the world, and are making users happy, and making profits for
companies. For example, their use is ubiquitous on the Internet, from searching to
recommending to serving ads. Vapnik’s practical inventions such as large margin
methods and kernel machines, or methods directly influenced by them, are in
evidence in many applications. However, machine learning is not considered solved.
For example there are more papers per year on this topic than ever before.! We
believe two key reasons researchers continue to search for better methods lie in the
details of the described procedure:

1. Which classes of functions in the structure (9.5) to choose is not clear, and there
are many possibilities to explore.

2. After choosing S it is still not easy, computationally, to minimize (9.3). More-
over, different solutions can be tailored depending on the choice of § in issue 1.

Choosing a family of functions to optimize is a key ingredient which can make
large differences to performance. For example, decision tree models (where the
capacity can be controlled by their depth) or neural network models (where capacity
can be controlled by the number of neurons) are quite different models. Perhaps
more importantly, prior knowledge about the problem can also be encoded into the
family, e.g., using convolutional nets for images [19] or by preprocessing the data
in a certain way (where we view this as part of f(x,«)). In general, if you have
more knowledge that you can encode accurately, then you will need less data, but
if you have less knowledge you will need more data. However there is a trade-off
between the cost of feature/model engineering vs. labelling and learning from more
data both in money and time. This trade-off differs based on the task.

The other problem, issue 2, lies in the inconspicuous looking min in Eq.9.3 —
finding the function from the set of functions that gives the best empirical error is in
fact very tricky indeed, depending on the family of functions. This leads to choosing
families of functions that might not be the best for generalization, but are the best
for generalization given the constraints of optimization. It also leads to looking for
surrogate functions to approximate Eq. 9.3. For example, one can replace the loss
function of interest with the hinge loss in order to provide gradients, which may
make the problem convex, depending on the model. This procedure was pioneered
in support vector machines [9]. Note that this makes the objective a surrogate of a
surrogate as we were already replacing (9.2) with (9.3). Perhaps more importantly,

!For example, the number of submissions to ICML jumped from last year by about 50 % to around
900 submissions, see http://hunch.net/?p=2289.
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this issue also leads to researchers developing a vast set of optimization algorithms,
e.g., all the manifestations of gradient-based learning, greedy construction, and so
on. If the loss is made approximate it sometimes becomes possible to make the
optimization almost exact (e.g., convex optimization for SVMs on small datasets).
Vice-versa, to make the loss more exact, the optimization problems get harder
and the algorithm to optimize might be more approximate; for example, trying to
optimize precision@k for ranking is trickier than optimizing the average rank with
pairwise linear constraints (see, e.g., [27,30]).

Much of the work in the field of machine learning can be divided into dealing
with these two key issues. Issue (1) accounts for all the varying general machine
learning models like SVMs, decision trees, neural networks, and nearest neighbours,
as well as modifications in particular application fields, e.g., different kernels
for different types of data in SVMs, different feature representations, and so on.
Additionally, all the methods that propose particular regularizers might fall into this
area as well, because they restrict the function family in some way, e.g., if the norms
of the weights are constrained by some constant. Issue (2) accounts for all the work
that proposes modified loss functions (hinge loss, logistic loss,. . .) and optimization
algorithms (serial or parallel, coordinate, stochastic or batch descent, greedy,...).
Many works specialize in improving some class of data, e.g., sparse or dense, low-
or high-dimensional, binary or continuous, and so on.

Of course, there is much work that does not fit into these two issues, for example,
taking advantage of additional data (e.g., semi-supervised learning), and tasks that
do not fit directly into the above framework, e.g., clustering. However, even these
approaches are often used as tools to solve issues 1 or 2, e.g., clustering is used
to make optimization more tractable or define a different family of functions.
Therefore, we believe a large body of work comes under these two topics.

In the remainder of this chapter we will discuss some of the most well-known
existing machine learning approaches, and discuss their pros and cons with respect
to modern large-scale learning tasks. Finally, we will conclude by discussing their
practical use on some real-world tasks. We will focus on image- and text-based
classification. Our goal is to understand what is really hard about these problems
and what is missing in our current approaches, and to try to understand where we
should go next.

9.3 A Short Review of Existing Learning Models

9.3.1 Linear Models

Let us start with linear models. A linear model usually requires a layer of
preprocessing (for example, various normalization schemes, or a bag-of-words or
bag-of-visual-terms transformation) followed by the model:
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Je(x) =we - P(x) (9.6)

where @(-) performs the preprocessing.

The good points about such a model are that training time is linear in the number
of examples and features, as shown in [5], where the authors train linear (and
nonlinear) SVMs in the primal. Testing time is also linear. Some work has aimed at
making testing time sublinear in the number of classes, as for a large number, e.g.,
a million classes, this can be far too slow; see, e.g., [22].

Linear Models
Advantages:

* Training and testing time is linear.
» Simple to understand and code.
* Engineers can encode knowledge via features in a straightforward fashion.

Disadvantages:

» The capacity is fixed so performance will saturate as training sizes increase.
* The models can take too much memory for large-scale tasks.
* Performance highly depends on user-specified feature design.

Even such simple models also can get too big in memory. For example, with
100,000 classes and 10,000 features this is around 8 GB; see, e.g., [27]. As we would
like to model much more than linear relationships, and as we might want to handle
much more than 100,000 classes, this is a serious problem. Further, perhaps more
crucially, performance highly depends on the user-specified feature space @(-) and
the learner cannot do much to fix this modelling choice if the human engineer has
got it drastically wrong. One can also see this as a blessing, if the human is adept
at engineering features for linear models. Finally, an additional issue is that the
capacity of such models is fixed — as the training set size increases the performance
boost will eventually saturate.

9.3.2 Embedding Models

Embedding models aim to fix some of the problems of linear models by employing
a smaller factorized model:

fox) = @)U V.. 9.7)

where @(x) € RP, U isan N x D matrix and V is an N x C matrix, where C is
the number of classes and N is the embedding dimension, a hyperparameter that is

set by the user. These types of models have been used to good effect in a wide range
of applications [1,23,27,28].
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Embedding Models
Advantages:

» Similar properties to linear models, but take much less memory.

* Hard to overfit. Share weights between classes (multi-tasks).

* The above two points mean they can use larger feature spaces than linear
models.

Disadvantages:

* These models can underfit — the capacity is small and saturates like linear
models.

* The training is not parallelizable unlike in one-vs-rest linear models.

* The performance still depends strongly on the original feature design.

The main advantage of these models over linear models is that they take much
less memory, e.g., 77MB vs. 8 GB on the same 10,000 feature, 100,000 class
problem, by utilizing an embedding dimension of N = 100. The factorized model
projects the problem into a lower-dimensional subspace which all the classes share.
This simultaneously means that there is more memory available to increase the
number of features in @(---) and that overfitting from this increase is less likely
to occur as the capacity is lower, and is shared between all classes; e.g., consider
the case where there are very few examples for some classes. The disadvantage is
that underfitting may occur from the low dimensionality of the embedding space
and hence there is an inability to memorize certain feature-class pair relationships
due to the low rank of the matrix U T V. We have explored some solutions to this
problem in [2] and [29].

9.3.3 Nearest Neighbour

Nearest neighbour, the other extreme, does not suffer from memorization problems
as it memorizes all the examples, and then makes a local decision based on the labels
of the k nearest neighbours (k-NN).

Nearest Neighbour
Advantages:

* The capacity grows as the training set grows, so it can capture more dependen-
cies.
* There is no training time cost.

Disadvantages:

* Testing time is too slow (linear in the number of examples).

» Storage costs are prohibitive (storing the entire dataset).

* There is a potential inability to generalize due to the local nature of the
decision.




9 Statistical Learning Theory in Practice 87

As the decision is local in the given feature space, training examples are
never used to generalize across the space (indeed, there is really no “learning”
step at all). Nevertheless, it still often works remarkably well compared to other
methods, and is usually a strong baseline if there are enough computing resources
to run it. Because of this, much research has been done in trying to fix its
shortcomings. In order to improve its speed and lower its memory consumption,
many approximate nearest neighbour methods have been proposed, e.g., via hashing
[15]. Unfortunately, generalization can suffer from these approximations. In order
to improve generalization several things can be done. Firstly, one can consider
nearest neighbours on subsets of features rather than the entire example vector @(x),
making the classifier much less local [3]. Secondly, some aspects of the model can
be parameterized, and those parameters can be learnt. For example, one can perform
a metric learning step to learn a feature representation and then compute the nearest
neighbours in the learnt space [26].

9.3.4 SVMs and Kernel Methods

Support vector machines have been a very successful class of models, well
supported by theory, that incorporate a number of beneficial practical qualities: the
learning of a large margin classifier gives good generalization in the chosen space,
and the use of kernels allows the user to efficiently encode high-dimensional spaces
(that possibly also encode prior knowledge about the task at hand). These properties
were borrowed by many other methods, for example, the linear and embedding
methods described earlier can both be trained in a large margin fashion, and many
methods have been “kernelized” since the introduction of SVMs. SVMs (and many
other kernel methods) take the form:

fe(x) = ZO‘C”' K(x;,x)

where K(x,x") = ®(x) - &(x’) is the kernel function. ®(-) does not have
to be explicitly represented, unlike in Egs. (9.6) and (9.7), meaning that higher-
dimensional spaces, such as polynomials of high degree, can be represented without
taking too much memory. However, similarly to nearest neighbour, the model grows
as the number of training examples grows (although o can be sparse). If one uses
RBF kernels, one can think of SVMs as mixing some of the advantages of linear
models and nearest neighbour, as the training points local to the input x will dictate
the class prediction, but a weighting for each is learnt with the vector «.
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SVMs and Kernel Methods
Advantages:

» Capacity grows with training set size, and does not saturate.
* Nonlinearities via kernels give superior performance to linear models.
* Weights are learnt for each example, giving superior performance to k-NN.

Disadvantages:

* Memory grows with training set size and is infeasible for large datasets.
* Testing time is also slow, due to the summing of kernel functions.

There has been lots of work on speeding up SVMs for large datasets; see, e.g.,
[4]. Learning the kernel has also become an active topic in order to minimize the
dependence on the human engineer.

9.3.5 Neural Networks

Neural Networks are a very wide family of models that technically can encompass
all the models described so far, and more. The classical setup, however, is to use
several layers of matrix transformations (embedding models can be thought of as
one such layer) followed by nonlinearity via a sigmoid function.

Neural Networks
Advantages:

* Capacity fixed, so you know how fast it will be and how much memory it takes.
» Layers give efficient nonlinearities in terms of memory and speed.

Disadvantages:

* The training time can be slow.
* The difficulty of optimization (nonconvexity) means that capacity can be
wasted.

As in other methods, much work has gone into speeding up training, most
recently via parallelism [11,24]. Note that despite their seemingly large capacity we
believe that, as with the deficiencies of embedding models, neural networks can still
fail to “memorize” important dependencies, even when the networks are very large.
For example, when combining an n-gram model (that memorizes all n-grams) with
a very large neural network language model, the performance of the combination
is better than that of either one alone.” Researchers also point out that due to the

2Results described by Jeff Dean in his talk “Scaling Deep Learning” at the workshop on
Representation Learning, ICML 2012.
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difficulty of optimizing the multi-layer network, inherent capacity in the family of
functions is actually wasted (the optimizer does not find those weights) [10].

9.3.6 Further Methods

Of course, there are more machine learning methods than can possibly be mentioned
here. As hinted in the descriptions above, many of the standard approaches have
been modified and extended in various ways. And then, there are many other
quite different methods besides. A few notable ones are decision trees, random
forests and boosting models (see [13] for a more thorough list). Finally, it has been
observed across many datasets that one can obtain improved performance by simply
combining more than one classifier, i.e., using an ensemble. However, this does not
always negate the disadvantages of those methods; for example, the ensemble is
only likely to take more memory and be slower still.

9.4 Practical Challenges on Real Datasets

To truly understand what is hard about solving machine learning tasks it is probably
best to discuss the attributes of some real datasets. Here, we will focus on image and
document annotation. These are almost noise-free tasks in that they can be posed as
problems which non-expert humans are extremely good at, so we can collect a huge
amount of noise-free data; for example, ImageNet [12] contains millions of images
labeled by humans using Mechanical Turk. Even without explicitly employing and
paying human labellers, there are many techniques to implicitly collect labels, e.g.,
via clicks on web applications and search engines [18]; however, in that case the
supervised signal may be significantly more noisy. Finally, there is an even larger
amount of semi-labeled or completely unlabeled data. (We note that Vapnik’s work
on transduction and transductive SVMs [17, 25] had a strong influence on the
creation of the field of semi-supervised learning [6].)

It is only relatively recently that the scale of these datasets reached the current
dataset sizes; for example, in the field of image annotation it was common to use
datasets with only thousands of examples or less, e.g., [14]. However, now it is
commonplace to have very large datasets, especially in industrial applications. This
is why we focused so much on the scalability of algorithms in Sect. 9.3. This recent
change in scale should mean that the families of functions, and the optimization
algorithms for choosing the best function, should be significantly different today
from what they were 10 years ago. This is because on the one hand we should be
using higher-capacity models as they are less likely to overfit with the increased
data, but on the other we need to utilize optimization procedures that actually work
on such large-scale datasets, with millions or even billions of examples. There is also
every indication that datasets will get bigger still in the coming years. However, even
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with the training set sizes we have today, if we have an appropriate high-capacity
model that is able to scale at training time, should we not be able to do very well
(e.g., human-level performance)? It seems currently that is not the case, so the
question is, why?

Text and image tasks do not actually appear to have the same properties at first
glance. Assuming layers of processing, which every known method does to some
degree (e.g., preprocessing followed by learning or multiple layers of learning),
the first layer of image processing — transforming a matrix of pixels into features
that are more correlated to semantic classes — seems harder than the first layer
of processing for text tasks, where words are already discretized and are already
strongly discriminative features. For example, a common processing step for images
is, via colour and edge histograms followed by clustering, to transform image
patches into a dictionary of “visual words” (see, e.g., [20]). This makes image tasks
look like text tasks to a machine learning algorithm, and similar approaches can
then be used on both. However, the features are much weaker for the image task;
for example, compare identifying whether the concept of a sheep is in an image or
in a sentence — the image patches are noisy and rarely as clearly discriminative as
word features such as the word “sheep” or its synonyms. This is to be expected as
language was designed by humans to be processed easily (by their own biological
brains), whereas how nature looks is mostly not designed by humans (although
we do design visual objects to be specifically easy for machines to read, such as
barcodes). Note that when humans design image annotation tasks for computers,
humans can be incredibly bad at the task itself (barcodes). This highlights the
difference between the skills of computers and humans.

Where text and image tasks seem more similar is at the next level of processing.
The way words combine and interact within a sentence is complex; for example,
linguists often represent a sentence as a parse tree. Beyond syntactic structure,
understanding the higher-order semantics of a sentence requires a great deal of
world knowledge, as for example understanding even such seemingly simple
sentences as “John flew the kite. He cursed when the string broke.” Similarly, the
combinations of “visual words” in an image are also complex, e.g., the parts that
make up an object and then how all those objects interact within a scene. Here again,
knowledge of the world can also be leveraged, for example, knowing that a kite is
often attached to a string when annotating an image with a kite flying scene. Note
that although text tasks are somehow “easier” due to the strong features mentioned,
we have much higher expectations on their performance and how much semantics
the computer can extract from the input.

Overall, we believe that to perform very well on these tasks it is required to
have a model that has a large “memory” (number of parameters) in order to store
all the variations (image patch variability, phrase variability, object or word pair
relationships, world knowledge, etc.) and the ability to generalize from memories
(to capture the “gestalt”’), which may require the ability to chain inference rules in
order to come to a final conclusion (cause and effect within a sentence or an image).
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In general we believe the models we are using today are too small and unable to
perform such inferences.

The problem is that these modelling objectives introduce scalability issues —
either from the cost of optimization or the size in memory, and we believe most
models fall short of trying to model such complex phenomena. Likely, the functions
needed to actually capture all the semantics are exceedingly complex; and while
today somewhat complex models that incorporate structured outputs, e.g., for
parsing [7], and layers of processing for tagging [8] are employed, they still are often
relatively unsophisticated compared to what we could envisage. Just to mention
one research direction, still in its infancy, the authors of [21] proposed a method
for question answering that learns to predict a program given an input sentence
(question) that can then be run to predict the answer. This gives a hint at the kind
of complex family of functions that we could be more earnestly investigating to
solve these problems, although researchers differ over whether these systems should
contain symbolic elements or be entirely subsymbolic.

Perhaps unfortunately, most of the academic field is currently not trying to go
in either of those directions. Much of current research aims at small improvements
and tweaks on particular subtasks, which can still make a difference in practice to a
particular product. For example, in web search retrieval many tweaks can be made,
e.g., controlling the diversity of the results, engineering the various bag-of-words
and n-gram features, optimizing precision at k, etc. But none of those things gets us
closer to a learning machine that can really understand a sentence or document; this
would require a much more ambitious model. On many text tasks, however, such
as retrieval, the performance is already acceptable, which we believe can inhibit
progress, as people are happy with the status quo.

For image tasks, the performance of our models is far worse, we believe mainly
because the first layers of processing need to be improved, as described previously.
Perhaps this relatively poor performance can at least stimulate further research.
However, in that task too it is disappointing how far bag-of-visual-words type
models (perhaps combined with a pyramid matching algorithm [16]) can take you,
despite not modeling many aspects of the problem — e.g., relations between patches
or objects are poorly captured (typically, segmentation is not used); there is no
shape detection, no understanding of 3D, no constraints governing the world; and
we typically choose simple models with fast learning times (we are very impatient
compared to human baby learning or evolution). Presumably, learning systems
capable of modelling all those things are what you need to get to human-level
performance.

In the short-term, however, we believe some improvements over current solutions
could be gained from designing methods that keep the advantages of the methods
described in Sect. 9.3 while avoiding their deficiencies. In particular, finding more
optimal ways of blending “memorization” and generalization could be an important
direction, the challenge being to maintain scalability as well.



92 J. Weston
References
1. Bai, B., Weston, J., Grangier, D., Collobert, R., Sadamasa, K., Qi, Y., Cortes, C., Mohri, M.:

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Polynomial semantic indexing. In: Advances in Neural Information Processing Systems (NIPS
2009), Vancouver (2009)

. Bai, B., Weston, J., Grangier, D., Collobert, R., Sadamasa, K., Qi, Y., Chapelle, O.,

Weinberger, K.: Learning to rank with (a lot of) word features. Inf. Retr. 13(3), 291-314 (2010)

. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classifica-

tion. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1-8.
IEEE (2008)

. Bottou, L., Chapelle, O., DeCoste, D., Weston, J.: Large-Scale Kernel Machines. MIT,

Cambridge (2007)

. Chapelle, O.: Training a support vector machine in the primal. Neural Comput. 19(5), 1155-

1178 (2007)

. Chapelle, O., Scholkopf, B., Zien, A., et al.: Semi-Supervised Learning, vol. 2. MIT,

Cambridge (2006)

. Collins, M.: Discriminative training methods for hidden Markov models: theory and experi-

ments with perceptron algorithms. In: Proceedings of the ACL-02 Conference on Empirical
Methods in Natural Language Processing, vol. 10, Philadelphia, pp. 1-8. Association for
Computational Linguistics (2002)

. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language

processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493-2537 (2011)

. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297 (1995)
10.
11.

Dauphin, Y., Bengio, Y.: Big neural networks waste capacity. CoRR abs/1301.3583 (2013)
Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q., Mao, M., Senior, A., Tucker, P,
Yang, K., et al.: Large scale distributed deep networks. In: Advances in Neural Information
Processing Systems 25, pp. 1232-1240 (2012)

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale
Hierarchical Image Database. In: IEEE Conference on Computer Vision Pattern Recognition
(CVPR), Miami (2009)

Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification and Scene Analysis, 2nd edn. Wiley,
New York (1995)

Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training
examples: an incremental Bayesian approach tested on 101 object categories. Comput. Vis.
Image Underst. 106(1), 59-70 (2007)

Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via hashing.
In: Proceedings of the International Conference on Very Large Data Bases, Edinburgh, pp. 518—
529 (1999)

Grauman, K., Darrell, T.: The pyramid match kernel: discriminative classification with sets
of image features. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005,
Beijing, vol. 2, pp. 1458-1465. IEEE (2005)

Joachims, T.: Transductive inference for text classification using support vector machines.
In: Proceedings of the 1999 International Conference on Machine Learning, Bled, pp. 200—
209. Morgan Kaufmann (1999)

Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the
8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Edmonton, pp. 133-142. ACM (2002)

LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: The
Handbook of Brain Theory and Neural Networks, vol. 3361. MIT (1995)

Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using
three-dimensional textons. Int. J. Comput. Vis. 43(1), 29-44 (2001)

Liang, P., Jordan, M.I,, Klein, D.: Learning dependency-based compositional semantics.
Comput. Linguist. 39, 389446 (2013)



22.

23.

24.

25

217.

28.

29.
30.

Statistical Learning Theory in Practice 93

Makadia, A., Weston, J., Yee, H.: Label partitioning for sublinear ranking. In: International
Conference on Machine Learning, ICML, Atlanta (2013)

Melvin, 1., Weston, J., Noble, W.S., Leslie, C.: Detecting remote evolutionary relationships
among proteins by large-scale semantic embedding. PLoS Comput. Biol. 7(1), €1001047
(2011)

Raina, R., Madhavan, A., Ng, A.Y.: Large-scale deep unsupervised learning using graphics
processors. In: Proceedings of the 26th Annual International Conference on Machine Learning,
Montreal, vol. 382, pp. 873-880. ACM (2009)

. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)
26.

Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. In: NIPS, Citeseer, Vancouver (2006)

Weston, J., Bengio, S., Usunier, N.: WSABIE: Scaling up to large vocabulary image annotation.
In: International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, pp. 2764-2770
(2011)

Weston, J., Bengio, S., Hamel, P.: Multi-tasking with joint semantic spaces for large-scale
music annotation and retrieval. J. New Music Res. 40.4, 337-348 (2011)

Weston, J., Weiss, R., Yee, H.: Affinity weighted embedding. arXiv:1301.4171 (2013, preprint)
Yue, Y., Finley, T., Radlinski, F., Joachims, T.: A support vector method for optimizing
average precision. In: Proceedings of the 30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, Amsterdam, pp. 271-278. ACM (2007)



Chapter 10
PAC-Bayesian Theory

David McAllester and Takintayo Akinbiyi

Abstract The PAC-Bayesian framework is a frequentist approach to machine
learning which encodes learner bias as a “prior probability” over hypotheses. This
chapter reviews basic PAC-Bayesian theory, including Catoni’s basic inequality and
Catoni’s localization theorem.

10.1 Introduction

Vladimir Vapnik pioneered the mathematics of uniform convergence of statistical
estimators [15]. Based on the theory of uniform convergence, Vapnik introduced
the support vector machine (SVM), which revolutionized the practice of machine
learning [1]. The uniform convergence view of learning represents a departure
from the Bayesian view. The Bayesian approach models learning bias as a prior
probability and models learning as Bayesian conditioning. The uniform convergence
approach models learning bias as an a priori commitment to a hypotheses class with
uniform convergence properties—a class with finite Vapnik—Chervonenkis (VC)
dimension.

PAC-Bayesian theory blends Bayesian and uniform convergence approaches.
The acronym PAC comes from Leslie Valiant’s introduction of the phrase “probably
approximately correct” (PAC) to describe the kind of statement made in a uniform
convergence theorem [14]. One can interpret the acronym PAC as describing a broad
class of inequalities that hold with high probability (with high confidence) under
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weak assumptions. The PAC-Bayesian theorem replaces the finite VC dimension
class with a “prior probability” on a single hypotheses class which may be of infinite
VC dimension.

10.2 Basic PAC-Bayesian Theorems

Let H be a set of hypotheses, let O be a set of observations and let L be a loss
function such that for # € H and 0 € O we have L(h,0) € [0,1]. Let D be a
probability distribution (measure) on O and let P be a distribution (measure) on H.
Here we think of D as a data distribution occurring in nature and P as a learning
bias expressing the learner’s preference for some hypotheses over others. There is
no assumed relationship between D and P.

Now let Q be a variable ranging over distributions on the hypothesis space H.
For o € O we define the loss L(Q,0) to be Es~p [L(h,0)]. We have that
L(Q,0) is the loss of a stochastic process that selects the hypothesis /& according
to distribution Q. Now let S be a sequence of N observations drawn IID from the
observation distribution D. We define L(Q, S) to be ﬁ Y oes L(Q.0) and define
L(Q? D) to be E(}~D [L(Qv 0)]

The first version of the PAC-Bayesian theorem appeared in [9] and states that for
8 € (0, 1) we have that, with probability at least 1 — & over the draw of the sample
S, the following holds simultaneously for all distributions Q where D(Q, P) =

En~o [%] is the Kullback-Leibler divergence from Q to P:

N
L(Q,D)EL(Q,S)+\/D(Q’P)Hnb’ +2. (10.1)

2N -1

The bound (10.1) has been improved by various authors [2,3,5,8,12]. Each improve-
ment gives some bound B(L(Q, S),D(Q, P), N, §) such that with probability 1 —§
over the draw of S we have, simultaneously for all Q,

L(Q.D) = B(L(Q.5).D(Q. P),N. ).

Any version of the PAC-Bayesian theorem defines a learning algorithm where one
draws a sample S and then constructs Q*(S)—the distribution minimizing the
bound B(L(Q, S),D(Q, P), N, ). The theorem provides a guarantee on general-
ization loss—the loss of the process that draws (test time) observations from D and
draws hypotheses from the learned distribution Q*(.S). All versions of the theorem
yield learning algorithms of the same form. In all cases we can consider minimizing
D(Q, P) subject to the constraint that L(Q, S) is held constant. An application of
the KKT conditions (or Lagrangian duality) then shows that the optimal posterior
has the form
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0% (S)(h) = Qp(S)(h) = ﬁP(h)e_N’sL(h’s’ (10.2)

Zﬁ(S) =Ej~p [e—NﬁL(h,S)] .

Here B is an unknown parameter of the optimal posterior Qg(S). We argue at the
end of Sect. 10.4 that B can be taken to be £2(1) independent of N.

The PAC-Bayesian theorem can also be used to justify algorithms similar to
support vector machines [10, 11, 13]. For this, one takes P to be a unit variance
isotropic Gaussian distribution centred at the origin and takes Q,, to be a unit
variance isotropic Gaussian centred at weight vector w. In this case we have
D(Q.,, P) = (1/2)||w]||?. For the case of classification error we have that L(Q,,, S)
equals the average profit loss on the training data of the margin of the linear classifier
defined by w.

The most commonly referenced version of the PAC-Bayesian theorem is due to
Seeger [12] as refined by Maurer [8]. It states that with probability at least 1 — §
over the draw of the sample the following holds simultaneously for all O, where for
real numbers p,q € [0, 1] we have that D(q, p) = qln% +(1—gq) lni_;;’) is the
Kullback-Leibler divergence from a binomial distribution with bias ¢ to a binomial
distribution with bias p:

(10.3)

24N
|-

DIL(Q.5). L(0. D) < (D(Q, Py 422N

A version of (10.1) can be derived from (10.3) using D(q, p) > 2(q — p)*. It is
also possible to solve (10.3) exactly for the implicit upper bound on L(Q, D). This
can be done with the following equality, which appears implicitly in Hoeffding’s
paper introducing the exponential moment method [4] and which can be verified by
a straightforward optimization over y:

inf (1—p)e ™ + pe?'™0 = inf e (1—p+ pe’) = e P@»
Y Y
D(q. p) =sup yq —In(l —p + pe’). (10.4)
¥
After some calculation we get that for ¢ < p we have that D(g, p) < ¢ holds if and
only if we have

] —evq—c 1 — e—(ng+o)
p<inf —— —inf —°—— (10.5)
y<0 1 —e? >0 1—e™

For n € (0,2) the bound (10.5) can be simplified by taking the first-order
Taylor expansion of the exponential in the numerator and the second-order Taylor
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expansion of the exponential in the denominator. We then get that D(gq, p) < ¢
implies

. + . 1
< inf i T < - inf | (g + Ac). (10.6)
n€(0.2) n — 57;2 12\ 1 — 5%

One can alternatively derive (10.6) from D(gq, p) < c¢ by using D(q, p) >

(p — q)*/2p for ¢ < p, which yields p < g + +/2pc, and then using +/2pc
infy.o (p/A + 2Ac)/2. Inequalities (10.3) and (10.6) together yield the following:

) (L(Q,S) + % (D(Q, P)+1In 2\?)) . (10.7)

Formula (10.7) is perhaps the most insightful form of the PAC-Bayesian theorem.
Here A can be interpreted as defining the trade-off between the complexity term
D(Q, P) and the empirical loss term L(Q, S). For (10.7) there is no point in taking
A to be very large—restricting A to be less than 50 results in at most a 1 % weakening
of the bound. Hence we can take A to be O(1) independent of N. The difference
between (10.3) and (10.7) corresponds to the difference between (10.5) and (10.6).
For ¢ < 1/4 we have that (10.5) is never more than 2.3 times tighter than (10.6).

A fundamental departure point for the proof of (10.3) is the following, which
holds for a single fixed & € H:

Eg [eNPE0S)-LG-DN] < 2N (10.8)

A>1/2

L(Q,D) < inf (

1
=5

A proof of (10.8) can be found in Maurer [8]. A special case of (10.8) is the
statement that for a biased coin with bias p, and for p the fraction of heads in

N flips, we have E [eND(ﬁ'P)] < 24/N. The inequality (10.8) is intuitively a

consequence of the well-known concentration inequality in Hoeffding [4] that for

g < p wehave P[p < q] < e NP@P) and for ¢ > p we have P[p > ¢q] <
e—NDl.p).

To derive (10.3) from (10.8) we first note that (10.8) implies
Ejp [Es [eND(L(h,S),L(h,D))]] <2VN

Es [Ep~p [eNPLES-LBDN] < 2/N. (10.9)

Applying Markov’s inequality to (10.9) we get that with probability at least 1 — §
over the draw of S we have

Ejp [eND(L(h,S),L(h,P))] < 2\/N
—_— 8 .
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Next we observe the following shift of measure lemma:

Ei~o [f(h)] = Ej~g [Ine/™]

_ L@ s %}
=Ej~o [ln Q(h)e +In P

Me.f(h)
o(h)
=D(Q, P) + InEjp [e/P].

<InE;-¢ |: i| +D(Q, P)

Setting f(h) = ND(L(h, S), L(h, D)) now gives

Eio [D(L(h,S). L(h, D))] < % (D(Q, P)+In Zéﬁ) :

Finally, (10.3) follows from convexity properties of the divergence function.

10.3 Catoni’s Basic Inequality

Inequality (10.10) corresponds to Lemma 1.1.1 in [2]. Catoni calls this the basic
inequality. We first define D, (¢, p) by

Dy(q,p) =yq—In(1 — p + pe’).

From (10.4) we then have D(q, p) = sup, D,(q, p). Now consider a random
variable x with x € [0, 1] and with mean . Let ji be the mean of N independent
draws of x. Catoni’s basic observation is that for any y we have

E [eNDyW-W] <1 (10.10)

To see this, note that E eNVﬁ] = (E[e”]". For x € [0,1] we note that
the convexity of the exponential function implies e’* < 1 — x + xe?. This
gives E [eN Yﬁ] < (1 — u + pe”)V. Dividing by the right-hand side gives

E [eN(Vﬁ_ln(l_“Jr’“y))] < 1. The following is a special case of (10.10).

Es [eNDy(L(h,S),L(h,D))] <1. (10.11)

It is useful to compare (10.11) and (10.8). The discrepancy between (10.11) and
(10.8) is consistent with sup, E [eNDV(f"“)] <E [supy eNDV(ﬁ’“)].
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Repeating the derivation of the PAC-Bayesian theorem starting from (10.11)
rather than (10.8) we get that for any y (selected before drawing the sample) we
have that, with probability at least 1 — & over the draw of S, the following holds
simultaneously for all Q:

D,(L(Q,S),L(Q,D)) < % (D(Q, P) +1n é) ) (10.12)

For A = —1/y > 1/2 (with A selected before the draw of the sample) we get

s

L(0,D) < (1 ! : ) (L(Q,S)+ % (D(Q,P) +lné)). (10.13)

One should compare (10.12) and (10.13) with (10.3) and (10.7).

10.4 Catoni’s Localization Theorem

Here we describe Catoni’s simplest and perhaps most important localization
theorem, Corollary 1.3.2 in [2], which corresponds to (10.17) below.

Various authors have observed that it is possible to optimize the prior as a
function of the observation distribution D and a fixed learning algorithm A [2,6,7].
We assume the learning algorithm A takes as input a sample S of observations and
returns a “posterior distribution” Q 4(S). The PAC-Bayesian theorem then provides
a generalization guarantee as a function of L(Q 4(S),S) and D(Q a(S), P).
This theorem holds for any P that does not depend on the random variable S.
In particular we can now optimize P as a function of D and A. The following
calculation, which first appears in [6], shows that O 4(h) = Es [Q 4(S)(h)] is the
prior minimizing Eg [D(Q 4(S), P)]:

P* = argmin, Eg [D(Q 4(S), P)]

1
= argminP Eh~Q,4 |:11’1 %} + Es, h~0Q A(S) [ln Q_A(S)(h)]

= argmin, D(Q 4, P) = Q. (10.14)

Catoni observes that Eg [D(Q 4(8), 0 A)] equals the mutual information between
S and h under the joint distribution defined by S ~ DY and h ~ Q 4(S).

In light of (10.2) we consider the learning algorithm with parameter B that
maps a sample S to the distribution Q4(S) defined by (10.2). For this algorithm
(with B fixed) we can then apply (10.14) and replace the prior P with Q g =
Es [Q4(S)]. Catoni approximates Qg with Q4(h) = (1/Zp) P (h)e=VPL"-D) with
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4 g = Epp [e‘NﬂL(h*D )]. To analyze this situation we first observe that for any
fixed sample S the shift of measure lemma yields

D, (L(Q4(S). $). L(Q4(S). D))
< = (D(4(S). Bp) +InE,_g, [NPrL051100N]).

Rather than apply a Markov inequality to (10.11) we can simply take the expectation
with respect to the draw of S and note that, after an application of Jensen’s inequality
and a reversal of expectations, (10.11) implies that the last term vanishes. This gives

D, (Bs [L(04(5).5)] . Bs [L(Q4(5). D)) = 1 Es [P(Q4(5). O]

Taking A = —1/y > 1/2 we get

A ..

Bs [L(05(5). D)] = 11 (Bs[LQ4(5).5)] + 4 E5 [P(0(5). G] ).
21

(10.15)

Catoni then analyzes Eg [D(Q,g (), Q,g)] as follows:

. h
Es [D(Qp(S). 0p)] = Es. h~04(s) |:1n M}

Op(h)
= Es. i~0y(5) [NB(L(h, D) = L(h.S)) —In Z4(S) + In Z]

From convexity properties of the log partition function we have
Es [ln Zg (S)] = Eg [ln E,-p [E_NﬂL(h’S)]]
> InE)p [e—Nﬂ Es[L(h,sn]

= InEj_p [e—Nﬂ L(h,D)]

=In Zﬂ
We now have
Es [D(Qp(S). Op)] < NB Es. n~gy(s) [L(h, D) — L(h, S)]. (10.16)

Let L abbreviate Eg [L(ng(S), S)] and L p abbreviate Eg [L(Qﬂ(S), D)]. From
(10.15) and (10.16) we get
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Lp

- )L
2% P

1
(- s o=t

Setting A = 1/28 we get the following for 8 € (0, 1/2):

IA

L (Ls+AB(Lp—Ls))
22

(1=2B) Ls

IA

Eg [L(Q,g(S), D)] < Eg [L(Qﬁ(S), S)] . (10.17)

1-28

As B get larger (as the temperature gets colder) the distribution Qg(S) becomes
more closely fit to the training sample S and Eg [L(Q 8(S5), S )] gets smaller. But
the leading factor 1/(1 —28) prevents 8 from getting too large. There is no point in
making B very small—restricting B to be larger than 1/200 results in at most a 1 %
weakening of the bound. Hence we can take § to £2(1) independent of N.

10.5 Discussion

PAC-Bayesian theory is a frequentist approach to machine learning which bases
learner bias on a prior probability. Here we have discussed the fundamental
equations with an emphasis on Catoni’s localization methods. Although localization
was introduced almost immediately into PAC-Bayesian theory, and is intuitively
important, it has been difficult to unambiguously demonstrate its value either
theoretically or empirically. It seems that more theoretical work in this direction
is warranted.
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Chapter 11
Kernel Ridge Regression

Vladimir Vovk

Abstract This chapter discusses the method of Kernel Ridge Regression, which is
a very simple special case of Support Vector Regression. The main formula of the
method is identical to a formula in Bayesian statistics, but Kernel Ridge Regression
has performance guarantees that have nothing to do with Bayesian assumptions.
I will discuss two kinds of such performance guarantees: those not requiring any
assumptions whatsoever, and those depending on the assumption of randomness.

11.1 Introduction

This chapter is based on my talk at the Empirical Inference Symposium (see
p- x). It describes some developments influenced by Vladimir Vapnik, which are
related to, but much less well known than, the Support Vector Machine. The
Support Vector Machine is a powerful combination of the idea of generalized
portrait (1962; see Chap. 3) and the kernel methods, and from the very beginning
the performance guarantees for it were non-Bayesian, depending only on the
assumption of randomness: the data are generated independently from the same
probability distribution. An example of such a performance guarantee is (3.2);
numerous other examples are given in Vapnik [15]. Kernel Ridge Regression (KRR)
is a special case of Support Vector Regression, which has been known in Bayesian
statistics for a long time. However, the advent of the Support Vector Machine
encouraged non-Bayesian analyses of KRR, and this chapter presents two examples
of such analyses. The first example is in the tradition of prediction with expert advice
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[3] and involves no statistical assumptions whatsoever. The second example belongs
to the area of conformal prediction [17] and only depends on the assumption of
randomness.

11.2 Kernel Ridge Regression

It appears that the term “Kernel Ridge Regression” was coined in 2000 by
Cristianini and Shawe-Taylor [5] to refer to a simplified version of Support Vector
Regression; this was an adaptation of the earlier “ridge regression in dual variables”
[12]. Take the usual Support Vector Regression in primal variables

T
minimize Iw|> + C Z ((ét)k + (gr/)k)
=1

subject to w-x,+b)—y; <e+&, t=1,...,T,

yvi—w-x,+b)<e+§, t=1,...T,
£.6>0, t=1,...,T,

where (x;, y;) € R" x R are the training examples, w is the weight vector, b is the
bias term, &, é{ are the slack variables, and 7 is the size of the training set; ¢, C > 0
and k € {1, 2} are the parameters. Simplify the problem by ignoring the bias term
b (it can be partially recovered by adding a dummy attribute 1 to all x,), setting
€ := 0, and setting k := 2. The optimization problem becomes

T
minimize alwl* + Z (e —w-x;)?

t=1

(where a := 1/C), the usual Ridge Regression problem. And Vapnik’s usual
method ([15], Sect. 11.3.2) then gives the prediction

F=w-x=Y'(K+al) 'k (11.1)

for the label of a new object x, where Y is the vector of labels (with components
Y' := y,), K is the Gram matrix K, := X;-X;, and k is the vector with components
k' := x; - x. The kernel trick replaces x; by F(x;), and so K by the kernel matrix
K;; := K(xs,x;) and k by the vector k' := K(x;,x), where K is the kernel
K(x,x") := F(x)- F(x).

This simple observation was made in [12], where this simplified SVR method
was called “ridge regression in dual variables”. There is no doubt that this
calculation has been done earlier as well, but the result does not appear useful.
First, compared to the “full” SVM, there is no sparsity of examples (and there is
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no sparsity in attributes, as in the case of the Lasso). Having an explicit formula
is an advantage, but the formula is not new: mathematically, the formula for KRR
coincides with one of the formulas in kriging [4], an old method in geostatistics for
predicting values of a Gaussian random field; this formula had been widely used in
Bayesian statistics.

However, there is a philosophical and practical difference:

e In kriging, the kernel is estimated from the results of observations and in
Bayesian statistics it is supposed to reflect the statistician’s beliefs;

* In KRR, as in Support Vector Regression in general, the kernel is not supposed
to reflect any knowledge or beliefs about reality, and the usual approach is
pragmatic: one consults standard libraries of kernels and uses whatever works.

In the remaining sections of this chapter we will explore KRR in the SVM style,
without making Bayesian assumptions. The practical side of this non-Bayesian
aspect of KRR is that it often gives good results on real-world data, despite the
Bayesian assumptions being manifestly wrong. We will, however, concentrate on
its theoretical side: non-Bayesian performance guarantees for KRR.

An important special case of KRR is (ordinary) Ridge Regression (RR): it is a
special case (as far as the output is concerned) of KRR for K as the dot product.
However, in the case of RR the usual representation of the prediction is

F=w-x=xX'X +a)'X'Y (11.2)

rather than (11.1), where X is the matrix whose rows are x{ R x’T; there are many
ways to show that (11.2) and (11.1) indeed coincide when KC is the dot product.

Under a standard Bayesian assumption (which we do not state explicitly in
general; see, e.g., [17], Sect. 10.3), the conditional distribution of the label y of a
new example (x, y) given x,...,xr,x and yi, ..., yr is

2 2
N (Y/(K ral 'k o? + T K, x) — Tk (K + aI)_lk) , (11.3)
a a

where K and k are as before (the postulated probability distribution generating
the examples depends on K and a, and we parameterize a normal probability
distribution N(u,0?) by its mean u and standard deviation o). The mean of
the distribution (11.3) is the KRR prediction, but now we have not only a point
prediction but also an estimate of its accuracy.

When K is the dot product, (11.3) can be rewritten as

N (x'(X'X +al)™'X'Y,0’x'(X'X + al)"'x + 0?). (11.4)
In this case the Bayesian assumption can be stated as follows: xi, x», ... are fixed

vectors in R” (alternatively, we can make our analysis conditional on their values)
and
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ye=0-x+E&, (11.5)

where 0 ~ N(0, (6%/a)l) and & ~ N(0, 0?) are all independent.
Equations (11.3) and (11.4) give exhaustive information about the next observa-
tion; the Bayesian assumption, however, is rarely satisfied.

11.3 Kernel Ridge Regression Without Probability

It turns out that KRR has interesting performance guarantees even if we do not make
any stochastic assumptions whatsoever. Due to lack of space no proofs will be given;
they can be found in the technical report [21].

In this section we consider the following perfect-information protocol of on-line
regression:

Protocol 1 On-line regression protocol

forr :=1,2,... do
Reality announces x;, € X
Learner predicts y; € R
Reality announces y, € R
end for

First we consider the case where the space X from which the objects x; are drawn
is a Euclidean space, X := R”", and our goal is to compete with linear functions;
in this case ordinary Ridge Regression is a suitable strategy for Learner. Then we
move on to the case of an arbitrary X and replace RR by KRR.

11.3.1 Ordinary Ridge Regression

In this section, X = R”". The RR strategy for Learner is given by the formula
Vo= blf_lAt__llxt, where by, by, ... is the sequence of vectors and Ay, Ay, ... is
the sequence of matrices defined by

T T
br = Zy,x,, Ar :=al + Zx,xt/
t=1 =1

(cf. (11.2)), where a > 0 is a parameter. The incremental update of the matrix
A7! can be done effectively by the Sherman-Morrison formula. The following
performance guarantee is proved in [21], Sect. 2.



11 Kernel Ridge Regression 109

Theorem 11.1. The Ridge Regression strategy for Learner with parameter a > 0
satisfies, at any step T,

/\

T
Z = min (Z(y, —6'x)’ +a||e||2) (11.6)

The part x] A !, x, in the denominator of (11.6) is usually close to 0 for large 7.
Theorem 11 1 has been adapted to the Bayesian setting by Zhdanov and
Kalnishkan [20], who also notice that it can be extracted from [1] (by summing
their (4.21) in an exact rather than an estimated form).
Theorem 11.1 and its kernel version (Theorem 11.2 below) imply surprisingly
many well-known inequalities.

Corollary 11.1. Assume |y;| < 'y for all t, clip the predictions of the Ridge
Regression strategy to [—y.y), and denote them by 3?. Then

Z(y, $1)? < min (Z(yt—ext)%auenz)

t=1

T
1
+ 4y*Indet (1 + - Zx,x,’) . (11.7)

t=1

The bound (11.7) is exactly the bound obtained in [16] (Theorem 4) for the
algorithm merging linear experts with predictions clipped to [—y, y], which does not
have a closed-form description and so is less interesting than clipped RR. The bound
for the strategy called the AAR in [16] has yZin place of 4y? ([16], Theorem 1). (The
AAR is very similar to RR: its predictions are b/_, A, 'x, rather than b/_, A;”!, x;;
it is called the Vovk—Azoury—Warmuth algorithm in [3].) The regret term in (11.7)
has the logarithmic order in 7 if ||x;||cc < X for all ¢, because

1 & TX?
Indet (I+—thx;) <nh (1+—) (11.8)
a a

t=1

(the determinant of a positive definite matrix is bounded by the product of its
diagonal elements; see [2], Chap. 2, Theorem 7). From Theorem 11.1 we can also
deduce Theorem 11.7 in [3], which is somewhat similar to Corollary 11.1. That
theorem implies (11.7) when RR’s predictions happen to be in [—y,y] without
clipping (but this is not what Corollary 11.1 asserts).

RR is not as good as the AAR in the setting where sup,|y;| <y and the goal is
to obtain bounds of the form (11.7) (since the AAR is to some degree optimized for
this setting), but is still very good; and we can achieve an interesting equality (rather
than inequality) for it.
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The upper bound (11.7) does not hold for the RR strategy if the coefficient
4 is replaced by any number less than ﬁ /A 2.164, as can be seen from an
example given in Theorem 3 [16], where the left-hand side of (11.7) is 4T + o(T),
the minimum on the right-hand side is at most 7, y = 1, and the logarithm is
2T In2 + O(1). It is also known that there is no strategy achieving (11.7) with the
coefficient less than 1 instead of 4, even in the case where ||x; ||, < X for all z: see
Theorem 2 in [16].

There is also an upper bound on the cumulative square loss of the RR strategy
without a logarithmic part and without assuming that the labels are bounded.

Corollary 11.2. If ||x:|l2 < Z for all t then the Ridge Regression strategy for

Learner with parameter a > 0 satisfies, at any step T,

T 72 T
A N2 . Y 2
,§:1(yt_yt) =< (1+_a )gelﬁé}l (,§=1(yt_9)Ct) +alf| )

This bound is better than the bound in Corollary 3.1 of [8], which has an additional
regret term of the logarithmic order in time.

Asymptotic properties of the RR strategy can be further studied using Corol-
lary A.1 of Kumon et al. [9]. Kumon et al.’s result states that when ||x;|2 < 1 for
all 7, then x] A7 x, — 0 as t — oo. Itis clear that we can replace ||x;||» < 1 for all
t by sup, ||x;||2 < oo. This gives the following corollary, which can be summarized
as follows. If there exists a very good expert (asymptotically), then RR also predicts
very well. If there is no such very good expert, RR performs asymptotically as well
as the best regularized expert.

Corollary 11.3. Leta > 0 and y, be the predictions output by the Ridge Regression
strategy with parameter a. Suppose sup, || x|, < co. Then

o0 o0
(EI@ eR": Z(y’ —0'x,)? < oo) = Z(yz -9 <o

t=1 t=1

and

(V@ eR": Z(yt —0'x,)? = oo)

r=1
— lim Z[T=l(yf —ft)z

=1
770 mingers (11 (00— 0302 + al9]?)
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11.3.2 Kernel Ridge Regression

In this section, X is an arbitrary set. Let 7 be the RKHS with kernel K of functions
on X. The KRR strategy for Learner with parameter ¢ > 0 is defined by the
formula (11.1) applied to the past examples.

The following version of Theorem 11.1 for KRR can be derived from Theo-
rem 11.1 itself (see [21], Sect. 6, for details).

Theorem 11.2. The KRR strategy with parameter a > 0 for Learner satisfies, at
any step T,

T .
Z (v — Yt)z
=1+ iK(xf,xf) - alkt/(Kt—l +al)~ 'k,

T
= JI‘nelg (Z(J’t - f(x))* + allfllfr) .
=1

The denominator on the left-hand side tends to 1 under some regularity conditions:
Lemma 11.1 ([20], Lemma 2). Let K be a continuous kernel on a compact metric
space. Then

K(x, x0) —k{(Ki—1 + al) 'k, > 0ast — oo.

Again, we can derive several interesting corollaries from Theorem 11.2.

Corollary 11.4. Assume |y,| <y forall t and let §} be the predictions of the KRR
strategy clipped to [y, y|. Then

T T
> =9 < ‘}2}% (Z(yf — f(x)) + alIfIIfr)
t=1 ) t=1
+ 4y? In det (1 + 21(7) . (11.9)

But now we have a problem: in general, the In det term is not small compared to 7.
However, we still have the analogue of Corollary 11.3 (for a detailed derivation, see
[20D).

Corollary 11.5 ([20], Corollary 4). Let X be a compact metric space and K be a
continuous kernel on X. Then

(Elf €F Y (= flx)? < oo) =Y (=) <oo

t=1 t=1
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and

(Vf €FiYy (n—fx) = oo)
t=1
T A
— lim T2f=1(y’ — = 1.
"= minger (S0 00— fO0)P +all £ 1)

To obtain a non-asymptotic result of this kind under the assumption sup, |y;| <y,
let us first assume that the number of steps 7 is known in advance. We will need
the notation ¢ := /sup,cx K(x, x). Bounding the logarithm of the determinant

in (11.9) we have
1 cx
Indet({/ + K7 | <Tln{1+ —=
a a

(cf. (11.8)). Since we know the number T of steps in advance, we can choose a
specific value for a; let a := c++/T. This gives us an upper bound with the regret
term of the order O(+/T) for any f € F:

T T
DG == = ) +er(If 15 + 4DVT.
=1 t=1

If we do not know the number of steps in advance, it is possible to achieve a similar
bound using a mixture of KRR over the parameter a with a suitable prior over a:

T T
Y= <D = f(x)) + 8ymax (cx || f |17, y8T/>H) VT +2
t=1

t=1

+ 6y’ InT + %[ %+ O (11.10)

for any arbitrarily small § > 0, where the constant implicit in O(y?) depends only
on §. (No proof of this result has been published.) The inequality (11.10) still looks
asymptotic in that it contains an O term; however, it is easy to obtain an explicit
(but slightly messier) non-asymptotic inequality.

In particular, (11.10) shows that if C is a universal kernel [14] on a topological
space X, KRR is competitive with all continuous functions on X: for any continuous
f:X—>R,

T T
lim sup — (Z(y, =D - f(xf))z) <0 (11.11)
t=1 t=1

1
T—o00 T
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(assuming |y;| < y for all ¢). For example, (11.11) holds for X a compact set in
R”", I an RBF kernel, and f : X — R any continuous function (see Example 1
in [14]). For continuous universal kernels on compact spaces, (11.11) also follows
from Corollary 11.5.

11.4 Kernel Ridge Regression in Conformal Prediction

Suppose we would like to have prediction intervals rather than point predictions,
and we would like them to have guaranteed coverage probabilities. It is clear that
to achieve this we need a stochastic assumption; it turns out that the randomness
assumption is often sufficient to obtain informative prediction intervals. In general,
our algorithms will output prediction sets (usually intervals, but not always); to
obtain prediction intervals we will apply convex closure (which can only improve
coverage probability).

The special case of conformal prediction discussed in this section works as
follows. Suppose we have an “underlying algorithm” (such as KRR) producing
point predictions in R. Let (x, y1), ..., (xr, yr) be a training set and x74| be a
new object. To find the prediction set for yr at a significance level € € (0, 1):

» For each possible label z € R:

- Set yr41 =17

— Foreacht € {1,..., T +1} compute the nonconformity score ot; := |y, — 7|,
where Y7 is the point prediction for the label of x, computed by the underlying
algorithm from the extended training set (x1, y1), ..., (X741, Y7+1);

— Compute the p-value

1 T+1
p(@) = T—+1 Z; l{afza‘}H}’
1=

where 1¢, is the indicator function;

¢ Output the prediction set {z € R | p(z) > €}, where € is the given significance
level.

This set predictor is the conformal predictor based on the given underlying
algorithm. Conformal predictors have a guaranteed coverage probability:

Theorem 11.3. The probability that the prediction set output by a conformal
predictor is an error (i.e., fails to include yr41) does not exceed the significance
level e.

Moreover, in the on-line prediction protocol (Protocol 1, in which Reality out-
puts (x;, y;) independently from the same probability distribution), the long-run
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frequency of errors also does not exceed € almost surely. For a proof, see [17]
(Theorem 8.1).

The property of conformal predictors asserted by Theorem 11.3 is their validity.
Validity being achieved automatically, the remaining desiderata for conformal
predictors are their “efficiency” (we want the prediction sets to be small, in a suitable
sense) and “conditional validity” (we might want to have prespecified coverage
probabilities conditional on the training set or some property of the new example).

The idea of conformal prediction is inspired by the Support Vector Machine
(and the notation « for nonconformity scores is adapted from Vapnik’s Lagrange
multipliers). The immediate precursor of conformal predictors was described in the
paper [7] co-authored by Vapnik, which is based on the idea that a small number of
support vectors warrants a high level of confidence in the SVM’s prediction. This
idea was present in Vapnik and Chervonenkis’s thinking in the 1960s: see, e.g., (3.2)
and [15], Theorem 10.5. The method was further developed in [17]; see [13] for a
tutorial.

In the case where the conformal predictor is built on top of RR or KRR, there
is no need to go over all potential labels z € R. The set prediction for the example
(X741, yr+1) can be computed in time O(T log T') (in the case of RR) or O(T?) (in
the case of KRR). This involves only solving linear equations and sorting; the simple
resulting algorithm is called the Ridge Regression Confidence Machine (RRCM)
in [11] and [17]. There is an R package implementing the RRCM (in the case of
RR), PredictiveRegression, available from CRAN.

The Bayes predictions (11.3) and (11.4) can be easily converted into prediction
intervals. But they are valid only under the postulated probability model, whereas
the prediction intervals output by the RRCM are valid under the randomness
assumption (as is common in machine learning). This is illustrated by Fig. 11.1,
which is a version of Wasserman’s Fig. 1 in [19]. We consider the simplest case,
where x;, = 1 for all ¢; therefore, the examples (x;, ;) can be identified with their
labels y, € R, which we will call observations. The chosen significance level is
20 % and the kernel K is the dot product. In the top plot, the four observations are
generated from N(1, 1); in the middle plot, from N (10, 1); and in the bottom plot,
from N (100, 1). The blue lines are the prediction intervals computed by the RRCM
with @ = 1 and the red lines are the Bayes prediction intervals computed as the
shortest intervals containing 80 % of the mass (11.4) witha = lando = 1.

All observations are generated from N (6, 1) for various constants 6. When 6 = 1
(and so the Bayesian assumption (11.5) can be regarded as satisfied), the Bayes
prediction intervals are on average only slightly shorter than the RRCM’s (the Bayes
prediction interval happens to be wider in Fig. 11.1; for a random seed of the random
number generator, the Bayes prediction intervals are shorter in about 54 % of cases).
But as 6 grows, the RRCM’s prediction intervals also grow (in order to cover the
observations), whereas the width of the Bayes prediction intervals remains constant.
When 8 = 100 (and so (11.5) is clearly violated), the Bayes prediction intervals give
very misleading results.
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N (1, 1)
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Fig. 11.1 In the top plot, the four observations (shown as short vertical lines) are generated from
N(1, 1); in the middle plot, from N (10, 1); and in the bottom plot, from N (100, 1). The blue lines
are prediction intervals computed by a conformal predictor, and the red lines are Bayes prediction
intervals

In parametric statistics, it is widely believed that the choice of the prior does not
matter much: the data will eventually swamp the prior. However, even in parametric
statistics the model (such as N (6, 1)) itself may be wrong.

In nonparametric statistics, the situation is much worse:

the prior can swamp the data, no matter how much data you have

(Diaconis and Freedman [6], Sect. 4). In this case, using Bayes prediction intervals
becomes particularly problematic. The RRCM can be interpreted as an example of
renormalized Bayes, as discussed in [18] and later papers.

As mentioned earlier, the RRCM is valid under the assumption of randomness;
no further assumptions are required. However, conditional validity and, especially,
efficiency do require extra assumptions. For example, [10] uses standard statistical
assumptions used in density estimation to demonstrate the conditional validity and
efficiency of a purpose-built conformal predictor. It remains an open problem to
establish whether similar results hold for the RRCM.
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Chapter 12
Multi-task Learning for Computational Biology:
Overview and Outlook

Christian Widmer, Marius Kloft, and Gunnar Riitsch

Abstract We present an overview of the field of regularization-based multi-task
learning, which is a relatively recent offshoot of statistical machine learning. We dis-
cuss the foundations as well as some of the recent advances of the field, including
strategies for learning or refining the measure of task relatedness. We present an
example from the application domain of Computational Biology, where multi-
task learning has been successfully applied, and give some practical guidelines for
assessing a priori, for a given dataset, whether or not multi-task learning is likely to
pay off.
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12.1 Introduction

A series of seminal papers has greatly changed the way we view the field of
machine learning. In their 1971 paper On the Uniform Convergence of Relative
Frequencies of Events to Their Probabilities [23], Vapnik and Chervonenkis laid
out the foundations of statistical learning theory, which led to the development of
support vector machines (SVMs) in the 1990s [6,9]. Subsequently, with the coming
of the information age, machine learning — and computer science in general — has
diverged into multiple fascinating and manifold branches, many of which can be
traced back to these classical papers, for example, preference learning, multiple
kernel learning, structured output learning, and transfer learning, to name just a
few subfields. Meanwhile, established machine learning methods such as SVMs
have matured to a degree that, nowadays, they are frequently employed out-of-the-
box in science and technology, for their favorable generalization performance while
maintaining computational feasibility. In this chapter, we present an overview of
one of the recent branches of machine learning, that is, multi-task learning (MTL)
[7,8], and discuss interesting applications in the domain of Computational Biology.

In science — and in biology in particular — supervised learning methods are
often used to model complex mechanisms in order to describe and ultimately
understand them. These models have to be rich enough to capture the considerable
complexity of these mechanisms, which requires an enormous amount of training
data. We frequently observe that the prediction accuracy does not saturate even
when employing millions of training data points, which indicates that using even
much more data could still help accuracy (cf., e.g., [21]). But how can we obtain
this massive amount of training data?

Especially in the biomedical domain, obtaining additional labelled training
examples can be either very costly or — e.g., due to technological limitations —
even impossible. Multi-task learning overcomes this requirement by incorporating
information from several related tasks in order to increase the accuracy of the
target task at hand. For example, in genetics, we have a good understanding of how
close two organisms are in terms of their evolutionary relationship; this information
is summarized in the tree of life. Because basic genetic mechanisms tend to be
relatively well conserved throughout evolution, we can benefit from combining
data from several species for the detection of, for example, splice sites or promoter
regions.

The relevance of MTL to Computational Biology goes beyond the setting where
we view organisms as tasks; we may also view different tasks corresponding to
different related protein variants [13], cell lines, pathways [19], tissues, genes [17],
technology platforms such as microarrays, experimental conditions, individuals, and
tumour subtypes, to name just a few. In this chapter, we provide an overview of
selected MTL approaches that have been successfully applied in Computational
Biology. In this respect, our presentation is based on [24], but goes beyond it
by covering also some very recent developments that are not yet systematically
investigated in biology.
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12.2 Multi-task Learning

In this section we describe the problem setting of multi-task learning. We also
present particular instances of multi-task learning machines, focusing on formu-
lations that are appealing for Computational Biology. For a detailed overview, see
the survey of [18].

12.2.1 Relation to Transfer Learning

Transfer learning very generally refers to learning methods that transfer information
from one or multiple source tasks to a target task with the aim of improving the
prediction accuracy of the target task. Multi-task learning is a specific branch of
transfer learning that is characterized by simultaneously learning the prediction
models of all given tasks. Typically this is achieved by optimizing a joint learning
criterion with respect to the various prediction functions. There exist several general
strategies for multi-task learning [18]:

1. Instance-based transfer, where data points from different domains are incorpo-
rated into the learning problem, typically in combination with some form of
re-weighting

2. Feature representation transfer, where the instances from the various domains
are mapped to a joint feature representation

3. Parameter transfer, a form of parametric learning paradigm assuming that
closely related tasks should also yield similar parameters in the learning model.

The main focus of this chapter is on parameter transfer, where the parameters
of similar tasks are often coupled by a regularizer. This approach is often called
regularization-based multi-task learning.

12.2.2 Regularization-Based Multi-task Learning

From a historical perspective, regularization-based MTL has its foundation in
regularized risk minimization [23] and supervised learning methods such as the
Support Vector Machine (SVM) [6, 9] or Logistic Regression. In regularized risk
minimization, we aim at computing a model ® minimizing an objective J (&)
consisting of a loss term that captures the error with respect to the training data
(X, Y) and a regularizer that penalizes model complexity:

J(©) = L(O|X,Y) + R(O).
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This formulation can easily be generalized to the MTL setting, where we are
interested in obtaining several models parameterized by ©,..., ®r, where T is
the number of tasks. The above formulation can be extended by introducing an
additional regularization term Ryt that penalizes the discrepancy between the
individual models:

T T
J(O1.....0r) = Y L(G/]X.Y) + Y R(O,) + Rur(O1.....0Or).
t=1 =1

A highly relevant and active line of research in this context is finding a good
regularizer RyrL. A proven approach to this end is to introduce a parameter matrix
O in the regularizer, giving rise to

T T
J(©1,....0r,0) =) L(O|X,Y)+ ) R(®)+ Rur(O), ..., 607|Q).

t=1 =1

Learning Q from the data is often referred to as learning the task similarities.

12.2.2.1 Common Approaches

In the following, we denote the training examples by (x;, y;),i = 1,...,n, each of
which is associated with a task (i) € {1,...,T}. We denote the set of indices
of training points of the rth task by I, := {i € {1,...,n} : t(i) = ¢} and
their number by n, := #I,. One of the first works on regularization-based MTL
is by Evgeniou and Pontil [11], where at optimization time all parameter vectors are
“pulled” towards their average w = % ZLI wi,

min an,n +Z||w,—w|| +cZe Xi W)+ b))

..... im

Here £ denotes the hinge loss £(z, y) = max{l — yz,0}. Note that all tasks
are treated equally in the above formulation; however, often we are given the a
priori information that some tasks are more closely related than others. To penalize
the differences between the parameter vectors accordingly, the above setting was
extended by Evgeniou et al. [12],

an,n + 5 ZZAwllws wil|* +CZE XiWei) + b, yi).

s=1t=1 i=1
(12.1)
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where the graph adjacency matrix A = (Ay,), captures the task similarities. We can
rewrite the above formulation using the graph Laplacian L = (L),

1 T T T n
min 3 Z ||w,||2 + ZZLX,WSTW, +C ZK ((x,',wf(i)) + b,)’i),
=1

W1
YT s=11=1 i=1

where L = D — A, where Ds; = &5, ) Asx. Finally, it can be shown that this
gives rise to the following multi-task kernel to be used in the corresponding dual:

K((x,5),(z1) = H} - Kp(x,2),

where the Kp is a kernel defined on examples and H* = (H.) denotes the
pseudo-inverse of H := I 4 L, where [ is the identity matrix. A closely related
formulation was successfully used in the context of Computational Biology by Jacob
and Vert [14], where a kernel on tasks Kr is used instead of the pseudo-inverse,
giving rise to

K((x,s).(z,t)) = Kr(s.t) - Kp(x,2). (12.2)

Note that the corresponding joint feature space between task ¢ and feature vector x
can be written as a tensor product ¢ (¢, x) = ¢r(t) - ¢pp(x) [14]. A “frustratingly
easy” special case of (12.2) is studied in [10] in the context of Domain Adaptation,
where ¢7(t) = (1, 1,0) was used as the source task descriptor and ¢ (¢) = (1,0, 1)
was used for the target task, corresponding to K7 (s, t) = (1 + &5,)-

12.2.3 Learning Task Similarities

The above exposition assumes that we are a priori given a task similarity measure;
but how can we access the relatedness of tasks? Although we are often provided
with external information on task relatedness (e.g., an evolutionary history of
organisms), the given task similarity measure is not necessarily informative of how
tightly tasks should be coupled in the MTL algorithm in order to achieve better
predictive performance; therefore we are in need of strategies to automatically learn
or adjust the degree of coupling between tasks. In the following, we discuss several
approaches to this problem — including our own method, Multi-task Multiple Kernel
Learning (MT-MKL) [26].

12.2.3.1 A Simple Approach

Very recently, Blanchard et al. [5] presented a simple method to very generally
compute a task similarity matrix A from the data at hand only. Their approach is
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based on the concept of Hilbert space embedding of probability distributions [22]
and consists of two steps: first, computing an average similarity of the examples of
a pair of tasks,

1

ngn

Asr =

Z k(xi,x;),

Uiel.jel

and then applying a non-linear transformation such as

a).

The authors show that under a hierarchical frequentisti.i.d. setup this method enjoys
favorable theoretical guarantees such as consistency when V¢ = 1,...,T : n; —
ocand T — oo.

We would like to remark at this point that the parameter d may be selected by
cross-validation. Generally, we may choose non-linear transformations of the form
Ay =11 - exp(/fu /A2) and select the parameters A1, A, per cross-validation.

AA‘t = (1 +A

12.2.3.2 Multi-task Relationship Learning (MTRL)

The authors in [2,27] propose a convex method of jointly learning a task similarity
measure along with the individual parameter vectors. Their method extends the
graph-regularized MTL formulation given in (12.1).

1 —1 T ) ) ‘
min w(WRTWT) + C Y ((xiwei) + b yi) .

i=1

st. tr(2)=1,2 >0

In [27] this formulation is solved by alternatingly optimizing the objective with
respect to W and £2, where in each optimization step, £2 is updated according to

Q=W /u(wTw).
The above approach is especially appealing when only little a priori information
about the task similarities is present. An advantage over the method described in

the previous section is that the task similarities and the weights w, are learned
simultaneously so that interactions can be captured well.

12.2.3.3 Multi-task Multiple Kernel Learning (MT-MKL)

In the following section, we present our own approach, MT-MKL. The formulation
given below is an extension of the ideas presented in [26]. An in-depth presentation,
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including a theoretical and empirical analysis as well as details on our large-scale
implementation, will be made in a forthcoming journal publication.

Problem 12.1 (Primal MTL problem). Solve

1 , M
0: II0||p<1W 2 Z_: CZ,-zl ( Z_: Wine(i)» Pm (i) ))

where W = (W) i<m<ms Wi = W1, ..., wpr) and

Wallp,,

T
Wallg, =t WnQuW,)) = | D" Gt Wins: W)

s,t=1

|

In the above problem, we assume being given a number M of external task similarity
measures (,, and kernel feature maps ¢,,, each being associated with a weight 6,,,.
As in multiple kernel learning [15, 16], we automatically learn these weights, which
allows us to fine-tune the given task similarities. In contrast to MTRL, our method
is in need of some external information (which is often a reasonable assumption),
but has in turn fewer free parameters to be learnt. Furthermore, the above method
lets us associate different feature maps ¢,, with different task similarity measures
O, which gives flexibility in encoding prior information.

12.2.3.4 Hierarchical MT-MKL

There are many ways in which the set of 0,, may be chosen. One valid strategy
is to define a set of task groups, where information is shared within each group.
In the setting of hierarchical task relations (e.g., the evolutionary history between
different organisms), these groups come naturally from the inner node of our tree.
Tasks corresponds to leaf nodes, or taxa, in this context, whereas each inner nodes
defines a task group (see Fig. 12.1). Let G, =: {/|/ is descendant of m} be the set
of leaves below the sub-tree rooted at node m. Then, we can give the following
definition for the hierarchically constructed task adjacency matrix:

Ay(s.1) = 1 ifseGyuandt € Gy,
0 else.

As an example, consider the kernel defined by a hierarchical decomposition
according to Fig. 12.1. We seek a non-sparse weighting of the task sets defined by
the hierarchy and will therefore use £,-norm MKL [15].
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Fig. 12.1 Example of a hierarchical decomposition. According to a simple binary tree, it is shown
that each node defines a subset of tasks (a block in the corresponding adjacency matrix on the leff).
Here, the decomposition is shown for only one path: the subset defined by the root node contains
all tasks, the subset defined by the left inner node contains #; and ¢, and the subset defined by the
leftmost leaf only contains ;. Accordingly, each of the remaining nodes defines a subset S; that
contains all descendant tasks

12.2.4 When Does MTL Pay Off?

In this section, we give some practical guidelines about when it is promising to
use MTL algorithms. First, the tasks should be neither too similar nor too different
[25]. If the tasks are too different, one will not be able to transfer information, and
may even end up with negative transfer [18]. On the other hand, if tasks are almost
identical, it might suffice to pool the training examples and train a single combined
classifier. Another integral factor that needs to be considered is whether the problem
is easy or hard with respect to the available training data. In this context, the problem
can be considered easy if the performance of a classifier saturates as a function of
the available training data. In that case using more out-of-domain information will
not improve classification performance.

In order to investigate the problem difficulty in the sense defined above, we can
compute a learning curve (e.g., auROC as a function of the number of training
examples). If the curve saturates when n is large, this indicates that multi-task
learning will not considerably help performance, as model performance is most
likely limited only by label noise. The same methodology can be employed to
empirically measure the similarity between two tasks: we can compute saturation
curves for various pairs of tasks, gaining us a useful measure of whether or not
transferring information between two tasks may be beneficial.

12.3 Application in Computational Biology

In this section, we give a brief example for an application in Computational Biology,
where we have successfully employed Multitask Learning. The recognition of splice
sites is an important problem in genome biology. By now it is fairly well understood
and there exist experimentally confirmed labels for a broad range of organisms.
In previous work, we have investigated how well information can be transferred
between source and target organisms in different evolutionary distances (i.e. one-to-
many) and training set sizes [20]. We identified TL algorithms that are particularly
well suited for this task. In a follow-up project we investigated how our results
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Fig. 12.2 Results of the RNA splicing experiment (Figure taken from [25])

generalize to the MTL scenario (i.e. many-to-many) and showed that exploiting
prior information about task similarity provided by taxonomy can be very valuable
[25]. An example of how MTL can improve performance compared to baseline
methods individual (i.e., learn a classifier for each task independently) and union
(i.e., pool examples from all tasks and obtain a global classifier) is given in Fig. 12.2.

The figure shows results for 6 out of 15 organisms for the baseline methods
individual and union and the multitask learning algorithm described in Sect. 12.2.2.
The mean performance is shown in the last column. For each task, we obtained
10,000 training examples and an additional test set of 5,000 examples. We normal-
ized the data sets such that there are 100 negative examples per positive example.
We report the area under the precision recall curve (auPRC), which is an appropriate
measure for unbalanced classification problems (i.e., detection problems). For an
elaborate discussion of our experiments with splice-site prediction, please consider
the original publications [20,25].

12.4 Conclusion

We have presented a brief overview of regularization-based multi-task learning
methods and their application in the field of Computational Biology. Especially
in the context of biomedical data, where generating training labels can be very
expensive, multi-task learning can be viewed as an appealing means to obtain
more cost-effective predictors. Accessing — or even learning — the similarity or
relatedness of tasks is of central importance when applying multi-task learning
methods, especially when we have prior knowledge of the hierarchical task
structure, e.g., in the form of a taxonomy. To this end, we have discussed several
approaches such as multi-task multiple kernel learning to exploit task relationships
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in multi-task learning. We have reviewed some basic insights obtained from our
experiments on MTL over the past few years and give some practical guidelines for
assessing, for a given dataset, whether or not multi-task learning is likely to improve
performance over more straightforward baseline approaches. Lastly, we would like
to mention that multi-task learning enjoys deep theoretical foundations. This has
not been a focus of this chapter, though, but we refer the interested reader to,
e.g., [1,3,4]. A common approach in MTL theory is to phrase multi-task learning
within a hierarchical frequentist i.i.d. setup. This approach is taken, e.g., in Ando
and Zhang [1] and Baxter [3], who extend the classical statistical learning theory of
Vapnik and Chervonenkis [23] to multiple tasks.
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Chapter 13
Semi-supervised Learning in Causal
and Anticausal Settings

Bernhard Scholkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa,
Kun Zhang, and Joris Mooij

Abstract We consider the problem of learning in the case where an underlying
causal model can be inferred. Causal knowledge may facilitate some approaches
for a given problem, and rule out others. We formulate the hypothesis that semi-
supervised learning can help in an anti-causal setting, but not in a causal setting,
and corroborate it with empirical results.

13.1 Introduction

Es gibt keinen gefiihrlicheren Irrtum, als die Folge mit der Ursache zu verwechseln: ich
heifle ihn die eigentliche Verderbnis der Vernunft.!

Friedrich Nietzsche, Gétzen-Dammerung

It has been argued that statistical dependencies are always due to underlying
causal structures [12]. Machine learning has been very successful in exploiting these
dependencies [19]. However, could it also benefit from knowledge of the underlying
causal structures? We assay this in the simplest possible setting, where the causal
structure only consists of cause and effect, with a focus on the case of semi-
supervised learning. This follows the work presented at the Festschrift symposium,

'There is no more dangerous mistake than confusing cause and effect: I call it the actual corruption
of reason.
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and it draws heavily from a conference paper published since then [13]. The latter
provides less detail on the experiments for the case of semi-supervised learning,
but it discusses the cases of covariate shift and transfer learning; see also [18].
Pearl and Bareinboim [11] introduce a variable S that labels different domains
or datasets and explains how the way in which § is causally linked to variables of
interest is relevant for transferring causal or statistical statements across domains. Its
authors’ notion of transportability employs conditional independencies to express
invariance of mechanisms. The paper [13] discusses a type of invariance where the
function in a structural equation remains the same, but the distribution of the noise
changes across datasets. Finally, note that the issue is also related to the distinction
between generative and discriminative learning; see, for instance, [15].

13.2 Causal Inference

We briefly summarize some aspects of causal graphical models as pioneered by
Pearl [10] and Spirtes et al. [17]. These are usually thought of as joint probability
distributions over a set of variables Xi,..., X,, along with a directed acyclic
graph with vertices X; and arrows indicating direct causal influences. The causal
Markov condition, linking causal semantics to statistics, states that each vertex
X; is independent of its non-descendants in the graph, given its parents. Here,
independence is usually meant in a statistical sense, although alternative views have
been developed, e.g., using algorithmic independence [7]. Given observations from
a joint distribution, this allows us to test conditional independence statements and
thus infer (subject to a genericity assumption referred to as faithfulness) what causal
models are consistent with an observed distribution. This will typically not lead us
to a unique causal model though, and in the case of graphs with only two variables,
there are no conditional independence statements to test and we cannot do anything.

An alternative approach, referred to as a functional causal model (a.k.a. struc-
tural causal model or nonlinear structural equation model), starts with a set of
jointly independent noise variables, one per vertex, and each vertex computes a
deterministic function of its noise variable and its parents. These functions describe
not only relations between observations, but also how the system behaves under
interventions: by changing the input of some of the functions, one can compute the
effect of serting some variables to specific values. One can prove that a functional
causal model entails a joint distribution which along with the graph satisfies the
causal Markov condition [10]. Vice versa, each causal graphical model can be
expressed as a functional causal model.

Notation. We consider the causal structure shown in Fig. 13.1, with two observ-
ables, modelled by random variables. The variable C stands for the cause and E
for the effect. We denote their distributions by P(C) and P(E) (overloading the
notation P), and their domains by calligraphic symbols C and €. The variable X
will always be the input and Y the output (or prediction), but input and output
can be either cause or effect—more below. For simplicity, we assume that their
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Ne Ny

Fig. 13.1 A functional causal model, where C is the cause variable, ¢ a deterministic mechanism,
and E the effect. N¢ is a noise variable influencing C (w.l.o.g., we identify this with C), and Ng
influences E via E = ¢(C, Ng). We assume that N¢c and Ng are independent

distributions have a joint density with respect to some product measure. In some
places, we will use conditional densities, always implicitly assuming that they exist.
The following assumptions are used throughout the chapter.

Causal sufficiency. We assume that there are two independent noise variables
N¢ and Ng, modelled as random variables with distributions P(N¢) and P(Ng),
respectively. The function ¢ and the noise Ng then jointly determine P(E|C) via
E = ¢(C, Ng). We think of P(E|C) as the mechanism transforming cause C into
effect E.2

Independence of mechanism and input. We finally assume that the mechanism is
“independent” of the distribution of the cause (i.e., independent of P(C) = P(N¢);
cf. Fig. 13.1), in the sense that P(E|C) contains no information about P(C), and
vice versa; in particular, if P(E|C) changes at some point in time, there is no reason
to believe that P(C) changes at the same time.’

This assumption has been used by Janzing and Scholkopf [7], inspired by
Lemeire and Dirkx [8]. It is plausible if we are dealing with a mechanism of nature
that does not care what we feed into it. For instance, in the problem of predicting
splicing patterns from genomic sequences, the basic splicing mechanism may be
assumed to be evolutionarily stable and thus independent of the species [14], even
though the genomic sequences and their statistical properties differ. Intuitively, if we
learn a causal model of splicing, we can hope to be robust with respect to changes
to the input statistics.

The independence assumption introduces an asymmetry between cause and
effect, since it is violated in the backward direction, i.e., P(E) and P(C|E)
are dependent because both inherit properties from P(E|C) and P(C) [3,7].
Intuitively, the mechanism has left a trace that is visible in the effect’s distribution.
We expect that this kind of information, which is not used by traditional approaches,
may also be useful in inferring larger causal graphs.

Richness of functional causal models. It turns out that the two-variable functional
causal model is so rich that the causal direction cannot be inferred. To understand

2Note that we will use the term “mechanism” both for the function ¢ and for the conditional
P(E|C), but not for P(C|E).

3This “independence” condition is closely related to the concept of exogeneity in economics [10].
Given two variables C and E, we say C is exogenous if P(E|C) remains invariant to changes in
the process that generates C.
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the richness of the class intuitively, consider the simple case where the noise Ng
can take only a finite number of values, say {1, ..., v}. This noise could affect ¢,
for instance, as follows: there is a set of functions {¢,:n = 1,...,v}, and the
noise randomly switches one of them on at any point, i.e., ¢(c,n) = @,(c). The
functions ¢, could implement arbitrarily different mechanisms, and it would thus
be hard to identify ¢ from empirical data sampled from such a complex model.
In view of this, it is surprising that conditional independence alone does allow
us to perform causal inference of practical significance, as implemented by the
PC and FCI algorithms [10, 17]. However, additional assumptions that prevent the
noise switching construction can significantly facilitate the task of inferring causal
graphs from data. Intuitively, such assumptions need to control the sensitivity of the
mechanism ¢ to the change in the noise N, and thus the complexity of P(E|C).

Additive noise models. One such assumption is referred to as anm, standing for
additive noise model [6]. This model assumes ¢(C, Ng) = ¢(C) + Ng for some
function ¢, so

E=¢(C)+ Ng,

and then that ¢ and Ng can be inferred in the generic case, provided that Ng has
0 mean (see also [20], including the post-nonlinear case £ = ¥ (¢(C) + Ng)).
Apart from some exceptions, such as the case where ¢ is linear and C and N are
Gaussian, a given joint distribution of two real-valued random variables X and Y
can be fit by an aNM model in at most one direction (which we then consider the
causal one). In practice, an ANM model can be fit by regressing the hypothesized
effect on the hypothesized cause while enforcing that the residual noise variable is
independent of the cause [9]. If this is impossible, the model is incorrect (e.g., cause
and effect are interchanged, the noise is not additive, or there are confounders; in
the latter two cases the method cannot find the causal direction).

Let us assume we have correctly identified the causal direction. What does
this have to do with machine learning? Perhaps somewhat surprisingly, learning
problems need not always predict effect from cause; rather often, things are reverse.
It turns out that the direction of the prediction has consequences on which tasks are
easy and which tasks are hard.

13.3 Semi-supervised Learning

Let us first consider the case where we are trying to estimate a function f : X — Y
or a conditional distribution P(Y |X) in the causal direction, i.e., where X is the
cause and Y the effect. Intuitively, this situation of causal prediction should be
the ‘easy’ case since there exists a functional mechanism ¢ which f should try to
mimic.

In semi-supervised learning (SSL), we are given training points sampled from
P(X,Y) and an additional set of inputs sampled from P (X). Our goal is to estimate
P(Y|X), or properties thereof (e.g., its expectation).
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Fig. 13.2 Causal prediction:
Predicting effect Y from

cause X ®
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Fig. 13.3 Anticausal
prediction: Predicting cause
Y from effect X 0]
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However, by independence of the mechanism, P(X) contains no information
about P(Y|X). A more accurate estimate of P(X), as may be possible by the
addition of the test inputs, does thus not influence an estimate of P(Y |X), and SSL
is pointless for the scenario in Fig. 13.2. In [13] we argue that while SSL is hard,
covariate shift adaptation is easy in this case. Below, it will be the other way round.

We now turn to the opposite direction, where we consider the effect as input and
we try to predict the value of the cause variable that led to it. This situation, which we
refer to as anticausal prediction, may seem unnatural, but it is actually ubiquitous in
machine learning. Consider, for instance, the task of predicting the class label of a
handwritten digit from its image. The causal structure is as follows: a person intends
to write the digit 7, say, and this intention causes a motor pattern producing an image
of the digit 7—in that sense the class label Y causes the image X (Fig. 13.3).*

As above, we are given training points sampled from P (X, Y) and an additional
set of inputs sampled from P (X), and our goal is to estimate P(Y |X), or properties
thereof (e.g., its expectation).

Now that we are in the setting of anticausal prediction, P(X) and P(Y |X) are
dependent [3,7] and thus contain information about each other. The additional inputs
hence may allow a more accurate estimate of P(Y|X).>

Known assumptions for SSL, as discussed by Chapelle et al. [2], can indeed be
viewed as linking properties of P (X) to properties of P(Y|X):

* The cluster assumption stipulates that points lying in the same cluster of P(X)
have the same Y;

* The low density separation assumption states that the decision boundary of a
classifier (i.e., the point where P (Y | X) crosses 0.5) should lie in a region where
P(X) is small;

“Note that anticausal prediction has also been called inverse inference, as opposed to direct
inference from cause to effects [4]. However, these terms have been used rather broadly, and may
also refer to inference relating hypotheses and consequences [4], or inference from population to
sample (direct) vs. the other way round (inverse) [16].

SNote that a weak form of SSL could roughly work as follows: after learning a generative model

for P(X,Y) from the first part of the sample, we can use the additional samples from P(X) to
double-check whether our model generates the right distribution for P (X).
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e The semi-supervised smoothness assumption says that the estimated function
(which we may think of as the expectation of P(Y|X)) should be smooth in
regions where P(X) is large.

Note also that some SSL algorithms assume a model for P(X|Y) (e.g., a mixture of
Gaussians) and learn it on both labelled and unlabelled data [21].

In conclusion, we expect that under the assumption of independence of mecha-
nism and input, SSL is impossible in the causal direction, but it may be helpful in
the anticausal one. Let’s look at empirical results, drawing from a number of earlier
benchmark studies.

13.4 Empirical Results

We compare the performance of SSL algorithms with that of base classifiers using
only labelled data. For many datasets, X is vector-valued. We assign each dataset to
one of three categories:

1. Anticausal/confounded: (a) datasets in which at least one predictor X; is an effect
of the target Y to be predicted (Anticausal) (includes also cyclic causal relations
between X; and Y) and (b) datasets in which at least one predictor X; has an
unobserved common cause with the target Y to be predicted (Confounded). In
both (a) and (b), the mechanism P (Y |X;) can be dependent on P (X;). For these
datasets, additional data from P (X) may thus improve prediction.

2. Causal: datasets in which some features are causes of the target, and there is no
predictor which (a) is an effect of the target or (b) has a common cause with the
target. If our assumption on independence of cause and mechanism holds, then
SSL should be futile on these datasets.

3. Unclear: datasets which were difficult to categorize into one of the aforemen-
tioned categories. Some of the reasons for that are incomplete documentation
and lack of domain knowledge.

In practice, we count a dataset as causal when we believe that the dependence
between X and Y is mainly due to X causing Y, although additional confounding
effects may be possible.

Semi-supervised classification. We first analyze the results in the benchmark
chapter of a book on SSL (Tables 21.11 and 21.13 of [2]) for the case of 100 labelled
training points. The chapter compares 11 SSL methods to the base classifiers 1-NN
and SVM. In Table 13.1, we give details on our subjective categorization of the eight
datasets used in the chapter.

In view of our hypothesis, it is encouraging to see (Fig. 13.4) that SSL does not
significantly improve the accuracy in the one causal dataset, but it helps in most of
the anticausal/confounded datasets. However, it is difficult to draw conclusions from
this small collection of datasets; moreover, three additional issues may confound
things: (1) the experiments were carried out in a transductive setting. Inductive
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Table 13.1 Categorization of eight benchmark datasets as anticausal/confounded, Causal or
Unclear

Category Dataset Reason of categorization
Anticausal/confounded g241c The class causes the 241 features
g241d The class (binary) and the features are
confounded by a variable with four states
Digitl The positive or negative angle and the

features are confounded by the variable of
continuous angle.
USPS The class and the features are confounded by
the 10-state variable of all digits
COIL The 6-state class and the features are
confounded by the 24-state variable of all
objects
Causal SecStr The amino acid is the cause of the secondary
structure
Unclear BCI, Text Unclear which is the cause and which the
effect
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Fig. 13.4 Accuracy of base classifiers (star shape) and different SSL methods on eight benchmark
datasets

methods use unlabelled data to arrive at a classifier which is subsequently applied
to an unknown test set; in contrast, transductive methods use the test inputs to make
predictions. This could potentially allow performance improvements independent
of whether a dataset is causal or anticausal; (2) the SSL methods used cover a
broad range, and are not extensions of the base classifiers; (3) moreover, the results
on the SecStr dataset are based on a different set of methods than the rest of the
benchmarks.
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Table 13.2 Categorization of 26 UCI datasets as anticausal/confounded, Causal or Unclear

Q
&
=3
@
uQ

Dataset

Reason of categorization

Anticausal/confounded

Causal

Unclear

breast-w

diabetes

hepatitis

iris
labor

letter
mushroom

segment
sonar
vehicle
vote

vowel
waveform-5000

balance-scale
kr-vs-kp

splice

breast-cancer,
colic,
colic.ORIG,
credit-a,
credit-g,

heart-c, heart-h,

heart-statlog,
ionosphere,
sick

The class of the tumour (benign or malignant) causes some of
the features of the tumour (e.g., thickness, size, shape, etc.)

Whether or not a person has diabetes affects some of the
features (e.g., glucose concentration, blood pressure), but
also has an effect of some others (e.g., age, number of times
pregnant)

The class (die or survive) and many of the features (e.g.,
fatigue, anorexia, liver big) are confounded by the presence
or absence of hepatitis. Some of the features, however, may
also cause death

The size of the plant is an effect of the category it belongs to

Cyclic causal relationships: good or bad labour relations can
cause or be caused by many features (e.g., wage increase,
number of working hours per week, number of paid vacation
days, employer’s help during employee’s long term
disability). Moreover, the features and the class may be
confounded by elements of the character of the employer
and the employee (e.g., ability to cooperate)

The class (letter) is a cause of the produced image of the letter

The attributes of the mushroom (shape, size) and the class
(edible or poisonous) are confounded by the taxonomy of the
mushroom (23 species)

The class of the image is the cause of the features of the image

The class (Mine or Rock) causes the sonar signals

The class of the vehicle causes the features of its silhouette

This dataset may contain causal, anticausal, confounded and
cyclic causal relations. E.g., having handicapped infants or
being part of religious groups in school can cause one’s vote;
being Democrat or Republican can causally influence
whether one supports Nicaraguan contras; and immigration
may have a cyclic causal relation with the class. Crime and
the class may be confounded, e.g., by the environment in
which one grew up

The class (vowel) causes the features

The class of the wave causes its attributes

The features (weight and distance) cause the class

The board-description causally influences whether white will
win

The DNA sequence causes the splice sites

In some of the datasets, it is unclear whether the class label
may have been generated or defined based on the features
(e.g., ionoshpere, credit, sick)
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Fig. 13.5 Plot of the relative decrease of error when using self-training, for six base classifiers on
26 UCI datasets. Here, relative decrease is defined as (error(base) — error(self-train))/error(base).
Self-training, a method for SSL, overall does not help for the causal datasets, but it does help for
several of the anticausal/confounded datasets

We next consider 26 UCI datasets and six different base classifiers. The original
results are from Tables III and IV in [5], and are presently re-analyzed in terms of
the above dataset categories. The comprehensive results of [5] allow us the luxury
of (1) considering only self-training, which is an extension of supervised learning to
unlabelled data in the sense that if the set of unlabelled data is empty, we recover the
results of the base method (in this case, self-training would stop at the first iteration).
This lets us compare an SSL method to its corresponding base algorithm. Moreover,
(2) we included only the inductive methods considered by Guo et al. [5], and not the
transductive ones (cf. our discussion above).

Table 13.2 describes our subjective categorization of the 26 UCI datasets into
anticausal/confounded, Causal, or Unclear.

In Fig. 13.5, we observe that SSL does not significantly decrease the error rate
in the three causal datasets, but it does increase the performance in several of the
anticausal/confounded datasets. This is again consistent with our hypothesis that if
mechanism and input are independent, SSL will not help for causal datasets.

Semi-supervised regression (SSR). Classification problems are often inherently
asymmetric in that the inputs are continuous and the outputs categorical. It is
reassuring that we obtain similar results in the case of regression. To this end,
we consider the co-regularized least squares regression (co-RLSR) algorithm,
compared to regular RLSR on 32 real-world datasets by Brefeld et al. [1] (two
of which are identical, so 31 datasets are considered). We categorized them into
causal, anticausal/confounded, unclear, as in Table 13.3, prior to the subsequent
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Table 13.3 Categorization of 31 UCI datasets as anticausal/confounded, Causal or Unclear

Categ.  Dataset Target variable Reason of categorization
3 breastTumor  Tumour size Causing predictors such as inv-nodes and
3 deg-malig
g cholesterol Cholesterol Causing predictors such as resting blood
S pressure and fasting blood sugar
3 cleveland Presence of heart Causing predictors such as chest pain type,
§ disease in the resting blood pressure, and fasting blood
-2 patient sugar
< lowbwt Birth weight Causing the predictor indicating low birth
weight
pbc Histologic stage of Causing predictors such as Serum bilirubin,
disease Prothrombin time, and Albumin
pollution Age-adjusted mortality ~ Causing the predictor number of 1960
rate per 100,000 SMSA population aged 65 or older
wisconsin Time to recur of breast Causing predictors such as perimeter,
cancer smoothness, and concavity
= autoMpg City-cycle fuel Caused by predictors such as horsepower
§ consumption in and weight
O miles per gallon
cpu cpu relative Caused by predictors such as machine
performance cycle time, maximum main memory, and
cache memory
fishcatch Fish weight Caused by predictors such as fish length
and fish width
housing Housing values in Caused by predictors such as pupil-teacher
suburbs of Boston ratio and nitric oxides concentration
machine_cpu  cpu relative See remark on “cpu”
performance
meta Normalized prediction Caused by predictors such as number of
error examples, number of attributes, and
entropy of classes
pwLinear Value of piecewise Caused by all ten involved predictors
linear function
sensory Wine quality Caused by predictors such as trellis
servo Rise time of a Caused by predictors such as gain settings
servomechanism and choices of mechanical linkages
§ auto93 (target: midrange price of cars); bodyfat (target: percentage of body fat);
E autoHorse (target: price of cars); autoPrice (target: price of cars);
S

baskball (target: points scored per minute);

cloud (target: period rainfalls in the east target); echoMonths

(target: number of months patient survived); fruitfly (target: longevity of mail fruitflies);
pharynx (target: patient survival); pyrim (quantitative structure activity relationships);
sleep (target: total sleep in hours per day); stock (target: price of one particular stock);
strike (target: strike volume); triazines (target: activity); veteran (survival in days)
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analysis. Note that the categorization of Tables 13.2 and 13.3 is subjective and was
made independently. That is the reason why the heart-c dataset (which coincides
with the Cleveland dataset) was categorized as Unclear in Table 13.2 and as
anticausal/confounded in Table 13.3. Nevertheless, this does not create any conflict
with our claims.

We deemed seven of the datasets anticausal, i.e., the target variable can be
considered as the cause of (some of) the predictors; Fig. 13.6 shows that SSR
reduces the root mean square errors (RMSEs) in all these cases. Nine of the
remaining datasets can be considered causal, and Fig. 13.7 shows that there is
usually little performance improvement for those. Like [1], we used the Wilcoxon
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signed rank test to assess whether SSR outperforms supervised regression in the
anticausal and causal cases. The null hypothesis is that the distribution of the
difference between the RMSE produced by SSR and that by supervised regression
is symmetric around O (i.e., that SSR does not help). On the anticausal datasets, the
p-value is 0.0156, while it is 0.6523 on the causal datasets. Therefore, we reject
the null hypothesis in the anticausal case at a 5 % significance level, but not in the
causal case.

13.5 Conclusion

If one is interested in predicting one variable from another one, it helps to know the
causal structure underlying the variables. In particular, this leads to the hypothesis
that under an independence assumption for causal mechanism and input, semi-
supervised learning works better in anticausal or confounded problems than in
causal problems, which is consistent with our analysis on empirical data.
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Chapter 14
Strong Universal Consistent Estimate
of the Minimum Mean Squared Error

Luc Devroye, Paola G. Ferrario, Laszlé Gyorfi, and Harro Walk

Abstract Consider the regression problem with a response variable Y and a feature
vector X. For the regression function m(x) = E{Y | X = x}, we introduce new and
simple estimators of the minimum mean squared error L* = E{(Y —m(X))?}, and
prove their strong consistencies. We bound the rate of convergence, too.

14.1 Introduction

Let the label Y be a real-valued random variable and let the feature vector X =
(X1,...,X4) be a d-dimensional random vector. The regression function m is
defined by

m(x) = E{Y | X = x}.
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The minimum mean squared error, called also variance of the residual Y — m(X), is
denoted by

L* = E{(Y ~m(X))’} = minE{(Y — f(X))"}.

The regression function m and the minimum mean squared error L* cannot be
calculated when the distribution of (X, Y') is unknown. Assume, however, that we
observe data D, = {(X,Y1),...,(X,, Y,)} consisting of independent and identi-
cally distributed copies of (X, Y). D, can be used to produce an estimate of L*.

For nonparametric estimates of the minimum mean squared error L* = E{(Y —

and Stadtmiiller [12], Neumann [14], Stadtmiiller and Tsybakov [15], and Miiller,
Schick and Wefelmeyer [13] and the literature cited there.

Devroye et al. [3] proved that without any tail and smoothness condition, L*
cannot be estimated with a guaranteed rate of convergence. They introduced a
modified nearest neighbour cross-validation estimate

. 1 & )
Ly=-3 (i=Yj@) nz2,

i=1

where Y ;) is the label of the modified first nearest neighbour of X; from among
X, X1, Xi 415 - - - Xpp. If Y and X are bounded, and m is Lipschitz continuous

m(x) —m(z)| < Cllx—z], (14.1)
then for d > 3, they proved that
E{|L, — L*|} < cin™V? 4+ e;n /4, (14.2)

Liitidinen et al. [9,11] introduced another estimate of the minimum mean squared
error L* by the first and second nearest neighbour cross-validation

n

1
Ly=—3 (Y =Ypi)(Yi = Yo, n=3,

i=1

where Y, ;1 and Y, ; » are the labels of the first and second nearest neighbours X, ; |
and X, ; » of X; from among X, ...,X;_j, and X; 4, ..., X,, resp. (In the sequel,
assume that for calculating the first and second nearest neighbours, ties occur with
probability 0. When X has a density, the case of ties among nearest neighbour
distances occurs with probability 0.) If ¥ and X are bounded and m is Lipschitz
continuous, then for d > 2, they proved the rate of convergence of order in the
inequality (14.2).
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In this chapter we introduce a non-recursive and a recursive estimator of
the minimum mean squared error L*, and prove their distribution-free strong
consistencies. Under some mild conditions on the regression function m and on
the distribution of (X, Y), we bound the rate of convergence of the non-recursive
estimate.

14.2 Strong Universal Consistency

One can derive a new and simple estimator of L*, considering the definition
L* = E{(Y —m(X))’} = E{Y?} - E{m(X)*}.

Obviously, E{Y?} can be estimated by 1 >"_ ¥, while we estimate the term

i

E{m(X)?} by 1 3" ¥;Y, ;1. Thus we estimate L* by
L = lzn:Y,Z_lZn:yY .
T i=1 Lo i=1 e
Theorem 14.1. Assume that ties occur with probability 0. If |Y | is bounded then

L,—L* as.

IfE{Y?} < oo then
L,:= ! Y Ly —» L* as
= k2=1 8.

Proof. This theorem says that, for bounded [Y|, the estimate L, is strongly
consistent, while the estimate L, is strongly universally consistent. The theorem is
an easy consequence of Ferrario and Walk [6] (Theorems 2.1 and 2.5), who proved
that, for bounded Y,

L,— L* (14.3)

a.s., and moreover, under the only condition E{Y?} < oo,

1 .
n
k=1
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a.s. We simply use the decomposition

U R 1 o
Ly=Ly=—3 Yi¥irt =3 YoiiYuia

i=1 i=1

Then, as in the proof of Theorem 2.1 in Ferrario and Walk [6], on the basis of (21)-
(25) in [9], one can show that, for bounded Y,

> ViYaia — BUm(X)') (14.5)

i=1
a.s. and
1 n
=Y YairYuiz > E{m(X)*} (14.6)
n
i=1

a.s. Similarly, as in the proof of Theorem 2.5 in [6], for E{¥ 2} < oo, one can show
that

k

1 <1

_ — Y Yy, L* 14.7
. kz fin —> (14.7)
k=1 i=1

a.s. and

11 &

=Y =Y YiiiYeia—> L (14.8)

nk=1ki=l ' '

a.s. Now the statements of the theorem follow from (14.3), (14.5), and (14.6), and
from (14.4), (14.7) and (14.8), respectively. O

Next we consider a recursive estimate

1 « 1 &
L;::;ZYiz_;ZYiYi,i,la n>2,

i=1 i=1

where Y ;1 := 0. It is really recursive since

1 1
Ll/‘l = (1 ) Ll/l—l + ;(Ynz - YnYn,n,l)'

o
Theorem 14.2. Assume that ties occur with probability 0. IFE{Y?} < oo then

L, —L* as.
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Proof. We have to show that
1 )
- E YiYiin —> Eim(X)"} as. (14.9)
n
i=1

For a > 0, introduce the truncation function

a ifz>a;
T.(z) =43z ifl|z] <a;
—a if z < —a.

As in to the proof of Theorem 2.5 in Ferrario and Walk [6], one can check that in
order to show (14.9), it suffices to prove that

1 n
=2 T DT 5 (Yiin) — Efm(X)?}
i=1

a.s. Let F;_; be the o-algebra generated by (X, Y1), ..., (X;=1, Yi—1). Introduce
the decomposition

1 n
=2 TrODT 5 (Yiin) = Iy + Jy,
i=1
where
1 n
In= =3 (T 5T (Vi) = BAT (00T i (Yiin) | Fir})
i=1
and
1 n
= EE{Tﬁ(mTﬁ(ml) | Fict}.
i=
I, is an average of martingale differences such that the a.s. convergence
I, -0 (14.10)

can be derived from the Chow [1] theorem if

i Var{Tﬁ(Yn)Tﬁ(Ynnl)} < 00

n2

(14.11)

n=1
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We have that

Var{T ;;(Y)T /i (Yon)} < E{T (Y (T s (Yan1))*}

- E{(T 5(Y)"} + EUT (Yo 1))}
< 5 :

Because of E{Y} < oo,

EE{(THY))Y S E{T(YY) & E{T.(Y)
>, ML) 5 Bty ROl <o

n? n? n?
n=1 n=1 n=1

Recall now the following useful lemma.

Lemma 14.1. (Gyorfi et al. [7], Corollary 6.1) Under the assumption that ties
occur with probability 0,

n

ZI{X is the first NN of X; in {X1. ... Xi_1.X. Xi41..... X, }} =74

i=1

a.s., where 1 denotes the indicator and y; < oo depends only on d.

Lemma 14.1 implies that

E{(T /5 (Yon1)*)

n—1
=E {Z(TW(YJ))4I{X]~ is the first NN of X,, in {X{, ..., X,—1}} }

=1

= (- DE { (T D)L i the first NN of X, in {X). ... ,Xn_l}}}

= (- DE { (T L is the first NN of X, in {Xo. ... Xn}}}
n—1

_ 4
=E {(Tﬁ(yﬂ)) 21X, is the first NN of X in {Xl,...,xj_l,le,...,Xn}}}
j=1

< E{(T 56 va .-

Therefore

IA

OV E{(T s (Yun)y X yaB{T,2 (Y} 2\ E{T,(Y})}
Z fnz Z < n2 = Ya Z —I’lz 1 < 00,
n=1

n=1 n=1
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and so (14.11) is verified, which implies (14.10). Concerning the term J,, the
derivations below are based on the fact that the ordinary 1-NN regression estimate
is not universally consistent; however, it is strongly Cesaro convergent in the weak
topology, and for noiseless observations (¥; = m(X;)) it is strongly convergent in
L,. Introduce the notation

m;(x) = E{T ;(Y) | X =x}.

Let X;_;1(x) denote the 1-NN (first nearest neighbour) of x from among
{X1,...,X;—1} and Y;_1 1 (x) denote the corresponding label (x € RY, | > 2); then

Yicin (X)) = Yisn and Xi—p1(Xi) = X1
The representation
1 n
= X [ T @)
i=1

holds, where Yy 1(x) := 0. It remains to show that
J, = E{m(X)?} as. (14.12)

Before proving (14.12) we use two lemmas. Let p denote the distribution of X.

Lemma 14.2. IfE{Y?} < oo then

/ | m(Xe11 () = m(x) P u(dx) = 0 as.

Proof. The proof is in the spirit of the proof of Theorem 4.1 and Problems 4.5
and 6.3 in Gyorfi et al. [7]. |

The following lemma is a reformulation of a classic deterministic Tauberian theorem
of Landau [8] in summability theory. For a proof and further references, see
Lemma 1 in Walk [16].

Lemma 14.3. If the sequence a,, n = 1,2,... of real numbers is bounded from
below and satisfies

— < X,
n3

X_; (Zi=lai)

then

%iai — 0.
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Proof of (14.12). Tt suffices to show
1 n
J¥ = ;Z/ mX)T ;(Yi1.1(x)pu(dx) > E{fm(X)*} a.s. (14.13)
i=1 7R

In fact, we notice that for each o > 0

[ 1m0 =m0 17V 00) | (a0

11

<5 /R im0 =m0 P () + s /R T ().

If we can show
imsun 1S [ Tvs 02 2
lim sup Z T;(Yic11(x))u(dx) < cE{Y*} a.s., (14.14)
n
i=1

for some constant ¢, then this together with [, | m;(x) — m(x) |> u(dx) — 0
implies

hmsup%é [ 1m0 = m) | 7Y 90) | ) = JacBAYY as

But ¢ — 0 yields that left-hand side equals O a.s. This, together with (14.13),
implies (14.12). Therefore, to complete the proof it remains to show (14.14)
and (14.13). In the first part we show (14.14). Set r(x) := E{Y?|]X = x},
ri(x) := E{T;(Y?)|X = x}. In order to get (14.14) it is enough to show

1 n
3 [0 =X @) k@0 >0 as. (1415)
i=1
where 71 (Xo,1(x)) := 0, and
1 n
lim sup—Z/ri (Xi—1.1(X)u(dx) < cE{Y?} a.s.
i
The latter follows from

lim sup/rn(Xn_l,l(x)),u(dx) < lim/ r(X,—1.1(X)u(dx) = E{r(X)} = E{Y?}

a.s. (where the first equality holds by Lemma 14.2), which further yields that the
sequence
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/ (T (Va1 (02) — o (K1 (X)) (),

n = 1,2,..., is a.s. bounded from below. In order to get (14.15) and there-
fore (14.14) by Lemma 14.3, it suffices to show

o E{[X1) [ (TXim1®)) = 1 (Xim1 (00) @)}
> 3 <oco.  (14.16)
n=1

We now show (14.16). Set forit 4; ; := {x; Xi—11(x) = Xj} . We note

> [ (@) = 5K 00) (@
i=1

n i—1
= Z/Rd Zl{xi,l,l(x)=x,~}ﬂ(dx) (Ti(sz) - "i(Xj))
i=1 /R 2

) (T.orD) = r(x))

|
N

i=1j=1
n—1 n

=3 | 3w (nop -nexp) |
j=1 \i=j+1

where the (n—1) summands in brackets are orthogonal, because E{T; (Y jz)—r,- X)) |
Xi,....X,—1, Y/} = Oforalli andall j* # j (j, j" € {l,...,n—1}). Thus (14.16)
is equivalent to

o] 1 n—1 n 2
Y2 EN Y wap (T -nx)) | <o
n=1" j=1 i=j+1
Let the cones Cy, ..., C,, have top 0 and angle %, which cover R?, and let B; ;i be

thesubsetof C;; :=X; +C; (j =1,...,i —1; [ =1,...,y4) consisting of all x
that are closer to X; than the I-NN of X; in {Xy, ..., X;_1, X 41,.... Xi—1}NC;;.
For j <i — 1, a covering result of Devroye et al. [2], and also of pp. 489 and 490
in Gyorfi et al. [7], holds as follows:

Yd
(A ) < ZM(B:'JJ)-

=1
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It suffices to show, foreach [ € {1,...,v4},
2
9] 1 n—1 n
YD E ( 3 w(Bisa) (Ti(Y]?)—ri(xj))) <oco.  (14.17)
i=j+1

We have that

2
E{( > (B (Tf(Yfz)_rf(X-f))) }

i=j+1

=E{ 3 E{M(Bi,i,l)M(Bi',j,z)(ﬂ(sz)—ri(Xj))(ﬂ'(Y,-Z)—ri'(X/'))|X/'}}

=E{ 3 E{M(B,-,,-,I)MBf/,_f,z)|X/-}E{(T,(Yf)—r,-(x,-))(n/(Y,?)—rﬂ(xj))|x,~}}

iil=j+1

< / Z \/E{M(Bi.j.1)2|xj = X}\/E{M(Bi/.j.1)2|xj = x}

ii'=j+1

VE{(T:(Y2)2X = x}VE{(T(Y2)?|X = x}u(dx)

2
= / ( > VBB =x}/E{<n(Y2))2|X=x}) p(dx).
i=j+1

According to [2] and pp. 489 and 490 in [7], one has that P{u(B; ;) > ,/p} equals
the probability that a Binom(i — 2, ,/p)-distributed random variable takes the value

0,ie., (1—/p) (0 < p < 1). Thus,

2
E{( Y u(Bij) (Ti(sz)_”(Xf))) }

i=j+1

2
n 1
> \/ /0 P{M(Bi,,»,z)>ﬁ|xj=x}dpJE{<T,-(Y2))2|X=x}) p(dx)

i=j+1

IA
—

2
n 1
> (1= VP 2dp\JE{T (V)X = x} | u(dx)
0
i=j+1

Il
—

2
3 ﬁ\/lz{(mﬂ)wx:x}) ()

i=j+1
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2
<s ( ) ll\/E{(Tn(YZ))Hx:x}) (dx)
i=j+1
2
n
<s(n%) [E{@mo2yx =xju@

2
—3 (m ﬁ.) E{(Tn(Yz))Z}.
J
Thus the left-hand side of (14.17) is bounded by

— 1 E{(T, ( Yz) }<

8 Z - Z (ln —) E{(T,,(Y?))?} < 8 Constz

2
. -1 n
(because of E{Y?} < o00), our having used the fact that %Zj‘:l <ln 7) —

fol (In %)2 dt = fol (Int)?dt < oco. Thus (14.17), and therefore (14.14) is proved. In
the second part, it remains to show (14.13). In order to get it, according to the proof
of Lemma 23.3 in Gyorfi et al. [7] it suffices to show

limsup%Z/ | mX)T /;(Yi-11(x)) | n(dx) < c*E{Y?} as. (14.18)
i=1

for some constant ¢* and to show (14.13) for bounded Y. We prove first (14.18).
Notice that

[ 1mT s (Ve 0) L@ = 5 [ mPiatan + 5 [ 70 (Ve 0)? (e,

From [ m(x)’u(dx) < E{Y?} and from (14.14) we obtain (14.18), with ¢* =
% + %c. By boundedness of Y, from some index on we have that T ;(Y) = Y.
Therefore, and because of Lemma 14.2, it suffices to show

2 [0 (a0 =X ) ) =0 s
i=1

where m(Xg,1(x)) := 0. By boundedness, because of Lemma 14.3 it is enough to
show

Z E{[Z, 1 fRd m(x) (Yz Li(x) — m(Xz 1 I(X)))ﬂ(dx)]z}

n3

(14.19)

n=1
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Noticing

/R () (139 — (X1 (9)) (@)

i—1

- / m(x>21{x, L=x ) (V= m(X,)

=1
i—1
= Z/A mx)u(dx) (Y; —m(X;)).
j=l i,j

we obtain, with suitable constants ¢’ and ¢”, that the left-hand side of (14.19) equals

2

> L 5 [, moomian) (v = mes)

n=1 l 1j=1

o0 1 n—1 2
:Z;E Z m)u(dx) | (¥Y; —mX;))

f— =1 \i=j+174ij

o] 1 n—1 2
-y Ly Z/ mEu(dx) (Y, —m(X,))

! i=j+17 40

[e9) 1 n—1 n 2
< CIZF E Z w(Ai ;)
n=1 j=1 i=j+1
00 1 n—1 n 2
" .
<c Z ; Z (11’1 7) < 00;

n=1 j=1

the latter is as in the proof of (14.14). Thus (14.13) is proved for bounded Y.
Therefore (14.12) and thus the assertion have been verified. |

14.3 Rate of Convergence

Next we bound the rate of convergence:

Theorem 14.3. Assume that Y and X are bounded (|Y| < L, |X|| < K) and m is
Lipschitz continuous and ties occur with probability 0. In addition, suppose that
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(i) W has a Lipschitz continuous density f,
(ii) For any X from the support of p and 0 <r < 2K,

M(SX,I‘) 2 )/rd7
with y > 0.
Then for d > 2, we have that
E{|Z,, —L*} < Cln_l/2 + Czn_z/d.

Proof. Apply the decomposition

E{|Z’n _L*I} = E{|Z’n _E{in}” + IE{Z‘n} - L*| = V Var(in) + IE{Z‘n} - L*|

For the variance term Var(L,), introduce the notation

1 n
Ry=—==% Yi¥yir.

i=1
For bounded Y (|Y| < L), we show that

2(1 + 2y0)2L*
Var(R,) < 20 H2va) LT (14.20)
n

from which we get that

- 1 <&
Var(L,) = Var (; Z Y,-2 + Rn)

i=1
2L% N 4(1 4 2y4)*L*
n n ’

1 n
< 2Var (; > Y,?) +2Var (R,) <

i=1

and thus,

\/Var(i,n) < %

In the same way as in Liitidinen et al. [9], we show (14.20) using the Efron—Stein
inequality [5]. Replacement of (X;, Y;) by (X}, Y) for fixed j € {1,...,n} (where
X, 7),....X,.Y,), (X}, Y)),.... (X, Y,) are independent and identically dis-
tributed) leads to the estimator
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1
Rij=- YY)+ Y YY)
i#j

According to the Efron—Stein inequality we have that
Var(R,) < 2 YU BA(R, - Ry = BIR, — Ry
n) = ) s n n,i - B n n,l1 .

Evaluate the difference R, — R, ;:

1
Ry—Ryy=— YY1+ ) V¥ |- | VY, + > vy,
i#1 " i1
1
= (V1 Yo11 =YY, ) ; Yi(Yoin =Y, ).

One can check that |Y1Y, 1 — Y|Y, ul = 2L2. Introduce the following nota-
tions. Let n[i] be the index of the first nearest neighbour of X; from the set
{X1,Xo,..., X, }\{X;}. Similarly, let n[{] be the index of the first nearest neighbour
of X; from the set {X/, X, ..., X, } \ {X;}. For fixed i # 1, notice

Waia =Y, #0) C {nli] = U [i] = 13,

Thus
|ZYi(Yn,i,l n,1)|<LZ|Ynzl ntll
i#l i#l
<21? (Z Ljj=1+ 1n’[i]=l) < 2L (v +va) = 4L%ya
i#1 i#1

a.s., where in the last step we applied Lemma 14.1. Summarizing these bounds we
get that

2(1 4 2y4)*L*

1 1 2
Var(R,) < % (—2L2 + —4L2yd) =
n n n

a.s., and the proof of (14.20) is complete. For the bias term E{L,} — L*, notice that

E{L,} - L* = E{m(X)m(X,1.1)} — E{m(X))*}.
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Because of
MM 1) ~ (K1) = (K102~ m X)) — 3 K1) —m (X)),
the Lipschitz condition (14.1) implies that
IEGm (X (X, .00} — Efm(X))2)]
< S IBUm(X,1.)7) — Bm (X0} + 3B (X,,1.0) — m(X))')
< UM, 10~ )% + S B0~ X P

where C is the Lipschitz constant in (14.1). For d > 3, Lemma 6.4 in Gyorfi
et al. [7], and for d > 2, Theorem 3.2 in Liitidinen et al. [11] say that

E{|X,.1.1 — X1 [*} < esn™/.
Therefore
[E{m(X)m(Xu1.1)} — E{m(X1)?*}| < %|E{m(Xn,1,1)2} —E{m(X))?}| + can™,
and so we have to prove that
E{m (X110} — Eim(X)?*}| < can™ "2 + csn™?/4. (14.21)

In order to show (14.21), let’s calculate the density f, of (X1, X,,.1.1) with respect to
M x . We have that

P{Xl € A,X,,ql’l € B}

=) P{X;€A.X; € B.X, 11 =X}
i=2
= (n — 1)P {Xl S A,Xz S B7Xn,1,1 = Xz}
=m-DE{P{X, €4,X;eBX,1 =Xy |X,Xp}}
= (n— DE{P{N_{IXi = Xi || = X = Xo I} | X1, X0} Kix, ea.x0¢58} }

n—2
= (1= DE{(1 = 1(Sx,1xx)"~ Iixieaxoen | -
Therefore

frix) = (11— 1) (1= w(Se o))
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It implies that
E{m(X))’} = E{m(X1)> f, (X1, Xa)}
and
E{m(X,11)*} = Eim(X2)’ £,(X1,X0)} = E{m(X1) £,,(X2, X))}

Thus,

E{m(X,.1.1)*} — E{m(X,)*} = E{m(X0)*(f, (X2, X1) — £, (X1, X))},
and interchanging X, and X, we get that

E{m(X,1.1)*} — Eim(X1)*} = —E{m(X2)*(f, X2, X1) = (X1, X2))},

and so

E{m(X,11)*} —E{m(X))*} = %E{(m(xl)2 —m(X2)H) (f, (X2, X1) — £, (X1, X2))}.
(14.22)

m satisfies the Lipschitz condition (14.1). Therefore
im(x)* —m(2)*| < |m(x) = m(@)|(jmXx)| + |m(2)|) < 2LC||x -z,
and so (14.22) implies that
[E{m(X,.1.1)*} = E{m(X1)?}| < LCE{IX; = Xo| - | £, (X2, X1) = £ (X1, X)),
Forany 0 < a < b < 1, we have the inequality
0<(l—a)"—(1—=b)"<nb—a)(l—a)".
Therefore
[E{m(X,.11)*} — E{m(X1)*}]
< LCHZE{HXl = Xo | - | (Sx1x=xa 1) — #(SXs. %=X |

(e DS —x) 4 DSy —x)) }

If ¢4 := Vol(Sy,1) then condition (i) implies that

|1 (Sx, 1% =% 1) — (8% 1% —x )| < call X1 — Xa||? max | f(x) — f(z)]
Ix—zl|<2[1X; =Xz ||
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< ol X; — Xo |91

Because of condition (ii), both e~ "= 2#Gxiixi—x2) and e~ =2HSxax1—X21) are
upper bounded by e~ =YIXi=X2l" Therefore

—n— X, |4
[Bm(X,.1.1)% = Bim (X1 < cion’E {[X) =X |20 brixi—Xel?}

Note that the random variable R := || X; — X;|| has a density on [0, 2K] bounded
above by ¢;7?~!. Therefore

IA

2K
|E{m(Xn,1,1)2} —E{m(X1)2}| clznZ/ pd2o=nyrd pd=1,
0

IA

o0
clzn_z/d/ P12 de=rr gy
0
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Chapter 15
The Median Hypothesis

Ran Gilad-Bachrach and Chris J.C. Burges

Abstract The classification task uses observations and prior knowledge to select a
hypothesis that will predict class assignments well. In this work we ask the question:
what is the best hypothesis to select from a given hypothesis class? To address
this question we adopt a PAC-Bayesian approach. According to this viewpoint,
the observations and prior knowledge are combined to form a belief probability
over the hypothesis class. Therefore, we focus on the next part of the learning
process, in which one has to choose the hypothesis to be used given the belief.
We call this problem the hypothesis selection problem. Based on recent findings
in PAC-Bayesian analysis, we suggest that a good hypothesis has to be close to
the Bayesian optimal hypothesis. We define a measure of “depth” for hypotheses to
measure their proximity to the Bayesian optimal hypothesis and we show that deeper
hypotheses have stronger generalization bounds. Therefore, we propose algorithms
to find the deepest hypothesis. Following the definitions of depth in multivariate
statistics, we refer to the deepest hypothesis as the median hypothesis. We show
that similarly to the univariate and multivariate medians, the median hypothesis
has good stability properties in terms of the breakdown point. Moreover, we show
that the Tukey median is a special case of the median hypothesis. Therefore, the
algorithms proposed here also provide a polynomial time approximation for the
Tukey median. This algorithm makes the mildest assumptions compared to other
efficient approximation algorithms for the Tukey median.
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15.1 Introduction

According to the PAC-Bayesian point of view, learning can be split into three
phases. First, a prior belief is introduced. Then, observations are used to transform
the prior belief into a posterior belief. Finally, a hypothesis is selected. In this
study, we concentrate on the last step. This allows us to propose methods that are
independent of the first two phases. For example, the observations used to form
the posterior belief can be supervised, unsupervised, semi-supervised, or something
entirely different. The most commonly used method for selecting a hypothesis is
to select the maximum a posteriori (MAP) hypothesis. For example, many learning
algorithms use the following evaluation function (energy function):

E(f)=Y_1(fG).y)+r(f) (15.1)

i=1

where [ is a convex loss function, {(x;, y;)};—, are the observations and r is a

convex regularization term. This can be viewed as a prior P over the hypothesis
. . l —_ . . . .

class with density p (f) = 7€ (/) and a posterior belief Q with density

q(f) = Zlqe_E[f I. The common practice is then to select the hypothesis that
minimizes the evaluation function, i.e., the MAP hypothesis. However, this choice
has two significant drawbacks. First, since it considers only the maximal point, it
misses much of the information encoded in the posterior belief. As a result it is
straightforward to construct pathological examples: in [14] we give an example
where the MAP classifier solution disagrees with the Bayes optimal hypothesis
on every point, and where the Bayes optimal hypothesis' in fact minimizes the
posterior probability. Second, the MAP framework is sensitive to perturbations in
the posterior belief. That is, if we think of the MAP hypothesis as a statistic of the
posterior, it has a low breakdown point [17]: in fact, its breakdown point is 0 [14].
This motivates us to study the problem of selecting the best hypothesis, given
the posterior belief. The goal is to select a hypothesis that will generalize well.
Two well-known methods for achieving this are the Bayes optimal hypothesis, and
the Gibbs hypothesis, which selects a random classifier according to the posterior
belief. However, the Gibbs hypothesis is non-deterministic, and in most cases the
Bayes optimal hypothesis is not a member of the hypothesis class; these drawbacks
are often shared by other hypothesis selection methods. This restricts the usability
of these approaches. For example, in some cases, due to practical constraints, only
a hypothesis from a given class can be used. Furthermore stochasticity in the
predictive model can lead to adverse results in terms of consistency of the model
and the ability to debug it. Therefore, in this work we limit the discussion to the
following question: given a hypothesis class F and a posterior belief O, how can one

IThe Bayes optimal hypothesis is also known as the Bayes optimal classifier. It performs a
weighted majority vote on each prediction according to the posterior.
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select a hypothesis f* € F that will generalize well? We further limit the discussion
to the binary classification setting.”

To answer this question we extend the notions of depth and the multivariate
median, which are commonly used in multivariate statistics [21], to the classification
setting. The depth function measures the centrality of a point in a sample or a
distribution. For example, if Q is a probability measure over R¢, the Tukey depth
for a point x € R, also known as the half-space depth [26], is defined as

D (x|Q) = inf O(H) . (15.2)
Hs.t. xeH and H is halfspace

That is, the depth of a point x is the minimal measure of a half-space that
contains it.> The Tukey depth also has a minimum entropy interpretation: each
hyperplane containing x defines a Bernoulli distribution by splitting the distribution
Q in two. Choose that hyperplane whose Bernoulli distribution has minimum
entropy. The Tukey depth is then the probability mass on the side of that hyperplane
with the lowest mass.

The depth function is thus a measure of centrality. The median is then simply
defined as the deepest point. It is easy to verify that in the univariate case, the Tukey
median is indeed the standard median. In this work we extend Tukey’s definition
beyond half-spaces and define depth for any hypothesis class. We show that the
generalization error of a hypothesis is inversely proportional to its depth. Hence,
the median hypothesis has the best generalization guaranty. We present algorithms
for approximating the depth and the median. Since the Tukey depth is a special
case of the hypothesis depth, our algorithms provide polynomial approximations to
the Tukey depth and Tukey median as well. We analyze the stability of the median
hypothesis and also discuss the case where a convex evaluation function E( f) (see
Eq. (15.1)) is used to form the posterior belief. We show that in this special case, the
average hypothesis has a depth of at least !/¢, independent of the dimension. Hence,
it enjoys good generalization bounds.

After first introducing the notion of hypothesis depth, we address the issues of
approximating depth and of approximating the median. Since we show that the
Tukey median is a special case of the median hypothesis (see Sect. 15.3.1), the
algorithms presented in Sect. 15.4 can be used to measure the Tukey depth and find
the Tukey median efficiently. While some polynomial time algorithms for these
problems do exist (see Sect. 15.2), they require restrictive assumptions that our
algorithms avoid.

Regarding notation: we denote the sample space by X', with instances x € X,
measure i, and a sample S = {xi,...,x,}. We let F denote a function class
with functions f € F, f : X + =I, measures P, Q, Q' and a sample

2Due to space constraints we omit proofs, all of which can be found in [14].

3Note that we can restrict the half-spaces in (15.2) to those half-spaces for which x lies on the
boundary.
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T = {fi,.... fu}. Do (f |x) is the depth of function f on the instance x with
respect to measure Q, and D‘;’“ (f) is the §-insensitive depth of f with respect to

QO and u. Dy (f | x) is the empirical depth of f on the instance x with respect to
the sample 7', and DAg (f) is the empirical depth of f with respect to the samples
T and S. v is a probability measure over X x {£1} and S is a sample {(x;, y;)}/—,
from (X x {£1})". Finally, the test error of f is R, (f) = Prx )~y [f (X) # ¥]
and the empirical error of f is Rs (f) = Pr(x y)~s [f (x) # y].

15.2 Relation to Previous Work

In this section we survey the literature as it relates to our work.

Depth for functional data: Fraiman and Muniz [10] introduces an extension of
univariate depth to function spaces. For a real function f, the depth of f is defined
tobe E, [D (f (x))] where D (-) is the univariate depth function. If we choose the
rank function such that the rank of a value is the probability that a function will
assign this value, we arrive at a similar definition to the one we propose. Whereas
in [10] the depth is an average over all x’s, we instead take the infimum, which
plays a key role in the analysis. Lopez-Pintado and Romo [22] also studies depth
for functions. The definition of depth used therein is closer in spirit to the simplicial
depth in the multivariate case [20]. As a consequence it is defined only for the case
where the measure over the function space is an empirical measure over a finite set
of functions. Zuo [27] studies a projection-based depth. The functional depth we
present in this work can in fact be derived from this quantity [14].

Classification depth: Ghosh and Chaudhuri [13] uses depth for classification pur-
poses. Given samples from the different classes, authors create depth functions for
each of the classes, and at inference time, the algorithm associates an instance x with
the class in which x is deepest. Ghosh and Chaudhuri [13] proves generalization
bounds for elliptic class distributions. Cuevas et al. [8] uses a similar approach and
compares the performance of different depth functions empirically. Jornsten [19]
uses a similar approach with an L;-based depth function. Billor et al. [2] proposes
another variant of this technique.

Ghosh [12] introduces two variants of depth functions to be used for learning
linear classifiers. Authors show that as the sample size goes to infinity, the maximal
depth classifier is the optimal linear classifier. However, since maximizing this
quantity is known to be hard, the authors suggest using the logistic function as a
surrogate to the indicator function. These methods are therefore very close (and in
some cases identical) to logistic regression.

Gilad-Bachrach [15] uses the Tukey depth to analyze the generalization perfor-
mance of the Bayes Point Machine [18]. Our work uses depth in a similar fashion,
although the approach in [15] is limited to the linear classification case, and its
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analysis is restricted to the realizable case where there exists a classifier which
correctly classifies the entire data set. We do not make these assumptions.

Regression depth: Rousseeuw and Hubert [25] introduces the notion of regression
depth. Its authors discuss linear regression but their definition can be extended to
general function classes in the following way: Let 7 = { f : X — R} be a function
class and let S = {(x;, y;)}/—, be a sample such that x; € X and y; € R. We say
that the function f € F has depth O (“non-fit” in [25]) if there exists g € F that
is strictly better than f on every point in S. That is, for every point (x;, y;), either
f(xi) < g(x;) < yior f(x;) > g(x;) = y;. We say that a function f € F has
a depth d if d is the minimal number of points that should be removed from S to
make f a non-fit. For example, if f is a perfect match, that is, Vi, f (x;) = i,
then f will become a non-fit only if all the points in S are removed, and hence
f has a depth n which is the largest value possible. Christmann [5] then applies
the regression depth to the classification task, using the logit function to convert the
classification task to a regression problem. Its authors show that in this setting the
regression depth is closely related to logistic regression and to the well-known risk
minimization technique.

Methods for computing the Tukey median: We propose algorithms for comput-
ing the hypothesis depth and for approximating the median hypothesis. Since the
Tukey depth is a special case of the hypothesis depth, here we survey the literature
on computing the Tukey median. Chan [4] presents a randomized algorithm that
can find the Tukey median for a sample of n points with expected computational
complexity of O (nlogn) when the data is in R? and O (n“~!) when the data is
in RY for d > 2. Its authors conjecture that these results are optimal for finding
the exact median. Massé [23] analyzes the asymptotic behavior of the empirical
Tukey depth, which is the Tukey depth function when it is applied to an empirical
measure. Massé [23] shows that the empirical depth converges uniformly to the true
depth with probability 1, and that the empirical median converges to the true median
at a rate that scales as 1//z. Cuesta-Albertos and Nieto-Reyes [7] proposes picking
k random directions and computing the univariate depth of each candidate point for
each direction. Its authors define the random Tukey depth for a given point to be
the minimum univariate depth of the point with respect to the k random directions,
and they search for the number of directions needed to obtain a good empirical
approximation of the depth.

Note that the empirical depth of [23] and the random Tukey depth of [7] are
different quantities. In the case of empirical depth, when evaluating the depth of a
point x, one considers every possible hyperplane and evaluates the measure of the
corresponding half-space using only a sample. For the random depth, one evaluates
only k different hyperplanes, but for each hyperplane it is assumed that the true
probability of the half-space is computable. Therefore, each of these approaches
solves one of the problems involved in computing the Tukey depth, and in order
to solve both problems simultaneously, an additional approximation is needed.
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The solution we present addresses both issues and proves the convergence of the
outcome to the Tukey depth, as well as giving the rate of convergence.

Since finding the deepest point is hard, some studies focus on just finding a deep
point. Clarkson et al. [6] present an algorithm for finding a point with depth £2 (1/42)
in polynomial time. However when the distribution is log-concave, it is known that
there exists a point with depth !/, independent of the dimension [3], and for any
distribution there is a point with a depth of at least !/a+1.

15.3 The Hypothesis Depth: Definitions and Properties

In this study, unlike Tukey, who used the depth function on the instance space,
we view the depth function as operating on the space of classification functions.
Moreover, the definition here extends beyond the linear case to any function class.
The depth function measures the agreement of the function f with the weighted
majority vote on x. A deep function is a function that will always have a large
agreement with its prediction over the class F.

Definition 15.1. Let F be a function class and let Q be a probability measure over
F. The depth of f on the instance x € X" with respect to Q is defined as

Do (flx)= Pr [g(x)=f )] .
g~Q
The depth of f with respect to Q is defined as
Do (f) = inf Do (f %)= inf Pr[g(x) =1 ()] .

The Tukey depth is a special case of this definition, as discussed in Sect. 15.3.1.
The depth Dy (f) is defined as the infimum over all points x € X. We relax this
by defining the §-insensitive depth:

Definition 15.2. Let F be a function class and let Q be a probability measure
over F. Let u be a probability measure over X and let § > 0. The §-insensitive
depth of f with respect to Q and p is defined as

8, .
DQ“(f)z sup inf Do (f|x) .
X'SX u(x) <8 XEX\X

Thus instead of requiring that the function f always have a large agreement in the
class F, the §-insensitive depth makes this requirement on all but a set of instances
with probability mass &.

With these definitions in hand, we next provide generalization bounds for deep
hypotheses. The first theorem shows that the error of a deep function is close to the
error of the Gibbs classifier.
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Theorem 15.1 (Deep vs. Gibbs). Let Q be a measure on F. Let v be a measure
on X x {x1} with the marginal u on X. For every f € F the following holds:

1
Ri(f) = 5 Eeo (R (@]
and

Rv (f) g"'Q [Rv (g)] + 5 .

1
DY (f)

Note that the term Eg~¢ [R, (g)] is the expected error of the Gibbs classifier.*
Thus we see that the generalization error of a deep hypothesis cannot be large,
provided that the expected error of the Gibbs classifier is not large.

Theorem 15.1 bounds the ratio of the generalization error of the Gibbs classifier
to the generalization error of a given classifier as a function of the depth of that
classifier. For example, consider the Bayes optimal classifier. By definition, the
depth of this classifier is at least 1/2; thus Theorem 15.1 recovers the well-known
result that the generalization error of the Bayes optimal classifier is at most twice as
large as the generalization error of the Gibbs classifier.

Next, we combine Theorem 15.1 with PAC-Bayesian bounds [24] to bound the
difference between the training error and the test error. We use the version of the
PAC-Bayesian bounds in Theorem 3.1 of [11].

Theorem 15.2 (Generalization Bounds). Let v be a probability measure on X x
{x1}, let P be a probability measure of F and let §,k > 0. With a probability
greater than 1 — § over the sample S sampled from v'™:

YO, Vf R, (f) =

1 1 1
5o (o ks @+ | KL@IlP) +105] )

Furthermore, for every §' > 0, the following holds with a probability greater
than 1 — § over the sample S sampled from v'™:

VO. V[ R (f) =
1

(1—e™) D" (f)

(KEgNQ [Rs (g)] + % [KL(QHP) +1n %D +4&

where | is the marginal of v on X.

“4Note that this is not necessarily the same as the expected error of the Bayes optimal hypothesis.
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Theorem 15.2 shows that if a deep function exists, then it is expected to
generalize well, provided that the PAC-Bayes bound for Q is sufficiently smaller
than the depth of f. This justifies our pursuit to find the deepest function, that is,
the median. However, the question remains: are there any deep functions? We next
show that for linear classifiers, indeed there are.

15.3.1 Depth for Linear Classifiers

We wish to show that deep functions exist for linear classifiers and that the Tukey
depth is a special case of the hypothesis depth. To that end we use a variant of linear
classifiers called linear threshold functions. In this setting 7 = R? and ¥ = RY xR
such that f € F operates on x = (x,,xp) € X by f (x) = sign(f - x, — xp).

Theorem 15.3. Let X = RY x R and F be the class of linear threshold functions
over X. Let Q be a probability measure over F with density function q (f) such
thatq (f) = % exp (—E (f)) where E (f) is a convex function. Then there exists
a function f* € F such that Do (f*) > l/e. Moreover, f* = Ero[f].

As noted above, many learning algorithms use convex energy functions of the
form presented in (15.1). Hence, in all these cases, the median has a depth of at least
1/e. This leads to the following conclusion:

Conclusion 1. In the setting of Theorem 15.3, let f* = Ero|[f] Let v be a
probability measure on X x {x1}, let P be a probability measure of F and let
8,k > 0. With a probability greater than 1 — § over the sample S sampled from v'™:

e

Ru(f*)fm

(KEM [Rs (2)] + % [KL(QIIP) I éD

We now show that the Tukey depth is a special case of the hypothesis depth.
Again, we will use the class of linear threshold functions. Since 7 = R? we can
treat f € JF both as a function and as a point. Therefore, a probability measure Q
over F is also considered as a probability measure over R?. The following theorem
shows that for any f € F, the Tukey depth of f and the hypothesis depth of f are
the same.

Theorem 15.4. If F is the class of threshold functions then for every f € F:

Do (f) = Tukey depthy, (f).

15.3.2 Breakdown Point

We now discuss another important property of the hypothesis selection: the break-
down point. Any solution to the hypothesis selection problem may be viewed as a
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statistic of the posterior Q. An important property of any such statistic is its stability
[17], as quantified by its breakdown point:

Definition 15.3. Let Est be a function that maps probability measures to F. For
two probability measures Q and Q' let § (Q, Q') be the total variation distance:
5(0,0) = sup{|Q (A) — Q' (A)| : Ais measurable}. For every function f €
F let d (Est, Q, f) be the distance to the closest Q' such that Est(Q’) =
f:dEst,Q, f) = inf{§(Q,Q) : Est(Q’) = f}. The breakdown Est at Q
is defined to be the distance to the furthest function: breakdown (Est, 0) =
suprer d (Est, O, f).

This definition may be interpreted as follows: if s = breakdown (Est, Q) then
for every f € F, we can force the estimator Est to use f as its estimate by
changing Q by at most s in terms of total variation distance. Therefore, the larger the
breakdown point of an estimator, the more stable it is with respect to perturbations
in Q. The following theorem lower bounds the stability of the median estimator as
a function of its depth.

Theorem 15.5. Let Q be a posterior over F. Let

X' ={xeXstVha, LeF, filx)=f(x)} and
p=___inf O{f: f(x)=y}.

xeX\X/,yexl

. . . d—
If d is the depth of the median for Q then breakdown (median, Q) > Tp

15.4 Measuring Depth

So far, we have motivated the use of depth as a criterion for selecting a hypothesis.
However, finding the deepest function, even in the case of linear functions, can be
hard. In this section we focus on algorithms that measure the depth of functions.
The main results are an efficient algorithm for approximating the depth uniformly
over the entire function class, and an algorithm for approximating the median.

The depth estimation algorithm (Algorithm 1) takes as inputs two samples. One
sample, S = {xi,...,x,}, is a sample of points from the domain X’. The other
sample, 7' = { f1,..., fu}, is a sample of functions from F. Given a function f for
which we would like to compute the depth, the algorithm first estimates its depth on
the points x1, ..., x, and then uses the minimal value as an estimate of the global
depth. The depth on a point x; is estimated by counting the fraction of the functions
fis..., fa that make the same prediction as f on the point x;. Since samples are
used to estimate depth, we call the value returned by this algorithm, DA‘Tq (f), the
empirical depth of f.

Despite its simplicity, the depth estimation algorithm can provide good estimates
of the true depth, which in fact are uniformly good over all the functions f € F,
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Algorithm 1 Depth estimation algorithm
Inputs:

e Asample S = {x1,..., X, such that x; € X
o Asample T ={f1,..., Ja} such that f; € F
e A function f

Output:
. DA; (f) — an approximation for the depth of f
Algorithm:

1. Fori =1,...,ucompute D7 (f |x) =13, 17 cr=rx)
2. Return D3 (f) = min; D (f | x;)

as the following theorem shows. This will be an essential building block when we
seek to find the median in Sect. 15.4.1.

Theorem 15.6 (Uniform convergence of depth). Ler Q be a probability measure
on F and let |t be a probability measure on X. Let €,8 > 0. For every f € F let
the function fs be such that fs(x) = 1if Do (f |x) < D‘;’“ (f)and f5(x) = —1
otherwise. Let Fs = {fs} jer - Assume Fs has a finite VC dimension d < oo
and define ¢ (d, k) = Z;jzo (If) ifd <k, ¢(d, k) = 2~ otherwise. If S and T
are chosen at random from u* and Q" respectively such that u > 8/s, then with
probability

1 —uexp (—2n€*) — ¢ (d, 2u) 2"
the following holds:

VfeF. Do(f)—e<Dy(f)—e<Di(f) <D (f)+e

where lﬁ; (f) is the empirical depth computed by the depth measure algorithm.

Theorem 15.6 shows that the estimated depth converges uniformly to the true
depth. However, since we are interested in deep hypotheses, it is suffices that the
estimate is accurate for these hypotheses, as long as “shallow” hypotheses are
distinguishable from deep ones. This is the motivation for our next theorem:

Theorem 15.7. Let Q be a probability measure on F and let | be a probability
measure on X. Let €,8 > 0. Assume F has a finite VC dimension d < oo and
define ¢ (d, k) as before. Let D = sup;er Do (f). If S and T are chosen at
random from pu* and Q" respectively such that u > 8/s then with probability 1 —
uexp (—2)162) — ¢ (d, 2u) 2" the following hold:
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1. ForeveryfsuchthatD‘;“(f) <DwehavethatDAg(f)§Dg”(f)—f—e
2. ForeveryfwehavethatDAg(f) > D%“(f)—e >Do(f)—c¢

where DA‘Tg (f) is the empirical depth computed by the depth measure algorithm.

15.4.1 Finding the Median

We have seen that if the samples S and 7" are large enough, then with high proba-
bility the estimated depth is accurate uniformly for all functions f € F. We now
use these findings to present an algorithm which approximates the median. Recall
that the median f maximizes the depth, that is, f = argmaxscr Do (f).
As an approximation, we will present an algorithm which finds a function f that
maximizes the empirical depth, that is, f = argmax ser DA‘Tq f).

The intuition behind the algorithm is simple. Let S = {x;}/_,. A function
that has large empirical depth will agree with the majority vote on these points.
However, such a function may not exist. If we are forced to find a hypothesis
that does not agree with the majority on some instances, the empirical depth
will be higher if these points are such that the majority vote on them wins by a
small margin. Therefore, we take a sample T = { f/'}j'=1 of functions and use
them to compute the majority vote on every x; and the fraction ¢g; of functions
which disagree with the majority vote. A viable strategy will first try to find a
function that agrees with the majority votes on all the points in S. If such a
function does not exist, we remove the point for which ¢; is the largest and try
to find a function that agrees with the majority vote on the remaining points.
This process continues until a consistent function’ is found. This function is
the maximizer of DAg (f). In the Median Approximation algorithm, this process
is accelerated by using binary search. Assuming that the consistency algorithm
requires O (1) when working on a sample of size u, the linear search described
above requires O (nu + ulog (u) + u“*') operations, while using binary search
reduces the complexity to O (nu + ulog (1) + u log (u)).

The Median Approximation (MA) algorithm is presented in Algorithm 2. One of
the key advantages of the MA algorithm is that it uses a consistency oracle instead of
an oracle that minimizes the empirical error. Minimizing the empirical error is hard
in many cases, and even hard to approximate [1]. In contrast, the MA algorithm
requires only access to an oracle that is capable of finding a consistent hypothesis
if one exists. For example, in the case of a linear classifier, finding a consistent
hypothesis can be achieved in polynomial time by linear programming while finding
a hypothesis which approximates the one with minimal empirical error is NP-hard.
The following theorem lists key properties of the MA algorithm.

3 A function is defined to be consistent with a labelled sample if it labels correctly all the instances
in the sample.
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Algorithm 2 Median Approximation (MA)
Inputs:

e Asample S = {x1,...,x,} € X*andasample T = {fi,..., f,} € F".
* A learning algorithm A that given a sample returns a function consistent with it if such a
function exists.

QOutputs:

* A function f € F and its depth estimation DA“TQ )

Details:

1. Foreachi = 1,...,u compute p,v+ = ﬁ |{] i) = 1}| and ¢; = min {p[", 1 —p["}.
2. Sort xi,..., x,suchthatg; > g, > ...>q,

3. Foreachi =1,..., ulety; = 1if p,-+ > 0.5; otherwise, let y; = —1

4. Use binary search to find i *, the smallest i for which A can find a consistent function f with

the sample S = {(xy, Vi) Y=
5. If i* = 1 return f and depth D=1- q1, else return f and depth b= qi*—1

Theorem 15.8 (The MA Theorem). The MA algorithm (Algorithm 2) has the
following properties:

1. The algorithm will always terminate and return a function f € F and an
empirical depth D.

2. If f and D are the outputs of the MA algorithm then D= lﬁ; (f).

If f is the function returned by the MA algorithm then f = argmax rer DA‘T9 f).

4. Let€,8 > 0. If the sample S is taken from (" such that u > 8/s, and the sample
T is taken from Q", then with probability at least

w

1 — uexp (—2ne*) — ¢ (d,2u) 21702
the f returned by the MA algorithm is such that
DYH (£) > sup D% (g) — 2¢ > sup D -2
0 > sup Dy~ (g) —2€ = sup Do (g) — 2¢
geF gEF
where d is the minimum between the VC dimension of F and the VC dimension
of the class Fs defined in Theorem 15.6.
15.4.2 Implementation Issues

The MA algorithm requires access to three oracles that provide: (1) a sample of
unlabelled instances x, . .., x, from p, (2) a sample of hypotheses f1, ..., f, from
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the belief distribution Q, and (3) a learning algorithm 4 that returns a hypothesis
consistent with the sample of instances (if such a hypothesis exists).

The first requirement is usually trivial. In a sense, the MA algorithm converts
the consistency algorithm A to a semi-supervised learning algorithm by using this
sample. The third requirement is not too restrictive. Many learning algorithms would
be much simpler if they required a hypothesis which is consistent with the entire
sample as opposed to a hypothesis which minimizes the number of mistakes (see, for
example, [1]). The second requirement, that is, sampling hypotheses, is challenging.

Sampling hypotheses is hard even in very restrictive cases. For example, even if
0 is uniform over a convex body, sampling from it is challenging but theoretically
possible [9]. A closer look at the MA algorithm and the depth estimation algorithm
reveals that they use the sample of functions in order to estimate the marginal
QY =1|X =x] = Prg~p[g (x) = 1]. In some cases, it is possible to directly
estimate this value. For example, many learning algorithms output a real value such
that the sign of the output is the predicted label and the amplitude is the margin.
Using a sigmoid function, this can be viewed as an estimate of Q [Y = 1|X = x].
This can be used directly in the above algorithms. Moreover, the results of
Theorems 15.6 and 15.8 apply with € = 0. Note that the algorithm that is used
for computing the probabilities might be infeasible for run-time applications but
can still be used in the process of finding the median.

Another option is to sample from a distribution Q' that approximates Q [16].
The way to use a sample from Q/ is to reweigh the functions when computing
Dr (f ] x). Note that computing Dr (f | x) such that it is close to Do (f | x) is
sufficient for estimating the depth using the depth measure algorithm (Algorithm 1)
and for finding the approximated median using the MA algorithm (Algorithm 2).
Therefore, in this section we will focus only on computing the empirical conditional
depth Dr (f | x). The following definition provides the estimate for Do (f | x)
given a sample T sampled from Q:

Definition 15.4. Given a sample 7" and the relative density function j—QQ/, we define

ZdQ(f)

d 1 X X
Q(f) dQ(f)f,()f()

To see the intuition behind this definition, recall that
Do (f1x)= Pr [g(x)]
g~0

and

. 1
Dr(flx)=— D 1 pw=re
j



174 R. Gilad-Bachrach and C.J.C. Burges

where T = {f] };’.=1. If T is sampled from Q" we have that

. 1
Ergn [DT (f |x)] - Z E[lfm=rw]
j

SRS 0 = S @] = Do (f |0
J

Therefore, we will show that DAT! ;LQQ/ (f) is an unbiased estimate of Do (f | x)

and that it is concentrated around its expected value.

Theorem 15.9. Let Q and Q' be probability measures over F. Then:

1. Forevery f, Er~gn |:DAT’:QQ/ (f)i| = Do (f |x).

2. Ifj—QQ, is bounded such that j_QQ/ < ¢ then
P > <2 2n€
r € exp| — .
T~ g P\ ==

15.5 Discussion

D, ao (f)= Do (f|x)
'dQ/

We studied the problem of selecting the best hypothesis, given a posterior belief over
the hypothesis class. We defined a depth function for classifiers and showed that the
generalization of a classifier is tied to its depth, which suggested that the deepest
classifier, the median, is a good hypothesis to select. We analyzed the breakdown
properties of the median and showed that it is related to the depth as well. We
discussed the algorithmic aspects of our proposed solution and presented efficient
algorithms for uniformly measuring the depth and for finding the median. Since
the Tukey depth is a special case of the depth presented here, it follows that the
Tukey depth and the Tukey median can be approximated in polynomial time by our
algorithms.

Our discussion was limited to the binary classification case. It will be interesting
to see if this work can be extended to other scenarios, for example, regression, multi-
class classification, and ranking.
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Chapter 16
Efficient Transductive Online Learning
via Randomized Rounding

Nicolo Cesa-Bianchi and Ohad Shamir

Abstract Most traditional online learning algorithms are based on variants of
mirror descent or follow-the-leader. In this chapter, we present an online algorithm
based on a completely different approach, tailored for transductive settings, which
combines “random playout” and randomized rounding of loss subgradients. As an
application of our approach, we present the first computationally efficient online
algorithm for collaborative filtering with trace-norm constrained matrices. As a sec-
ond application, we solve an open question linking batch learning and transductive
online learning.

16.1 Introduction

Online learning algorithms, which have received much attention in recent years,
enjoy an attractive combination of computational efficiency, lack of distributional
assumptions, and strong theoretical guarantees. Informally speaking, online learning
is framed as a sequential game between a learner, who provides predictions,
and an all-powerful adversary, who chooses the outcomes on which the learner’s
predictions are tested. The learner’s goal is to attain low regret—that is, low excess
loss—with respect to a comparison class of experts or predictors (see Sect. 16.2 for
a more precise statement). Using standard online-to-batch techniques (e.g. [10]),
one can convert online learning methods into simple and effective batch learning
algorithms in a stochastic setting, where training and test examples are sampled
from a distribution.
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In this work, we focus on transductive online learning, where the predictions of
the experts/predictors can all be computed in advance. For example, consider the
case where a sequence of unlabelled instances {x,} are given, and the learner needs
to predict the corresponding labels {y,} which are sequentially chosen and revealed
by the adversary. Thus, for a given fixed predictor s, we can compute its predictions
{h(x,)} beforehand. This is a natural online analogue of the transductive learning
framework introduced by Vapnik in a statistical batch setting [27], where the test
instances on which one needs to predict are known in advance.

Despite the effectiveness of online learning methods, it is probably fair to say
that, at their core, most of them are based on the same small set of fundamental
techniques, in particular mirror descent and regularized follow-the-leader (see, for
instance, [14, 23]). In this work we revisit, and significantly extend, an algorithm
which uses a completely different approach. This algorithm, known as the Minimax
Forecaster, was introduced in [9, 11] for the setting of prediction with static experts.
The Forecaster computes minimax predictions in the case of a fixed horizon, binary
outcomes, and absolute loss. Although the original version is computationally
expensive, it can easily be made efficient through randomization.

We extend the analysis of [9] to the case of non-binary outcomes, unknown
horizons, and arbitrary convex and Lipschitz loss functions. The new algorithm
is based on a combination of “random playout” and randomized rounding, which
assigns random binary labels to future unseen instances, in a way depending on
the loss subgradients. Our resulting Randomized Rounding (R?) Forecaster has a
parameter trading off regret performance for computational complexity, and runs in
polynomial time. The idea of “random playout”, in the context of online learning,
has also been used in [1, 16], but we apply this idea in a different way.

Interestingly, our work, which focuses on online learning, has close links to
methods and concepts from statistical learning, and thus can be seen as bridging
the two fields. For example, the R? Forecaster uses empirical risk minimization—a
standard statistical learning method—as a subroutine. Moreover, the regret of the R?
Forecaster is determined by the Rademacher complexity of the comparison class,
which is a measure of the generalization performance of the class in a statistical
setting. The connection between online learnability and Rademacher complexity has
also been explored in [2, 19]. Recently, [20] provided a significant generalization of
these ideas, implying new algorithms and extending in a sense the work presented
here.

As an application of our results, we describe how the R? Forecaster can
be used to design the first efficient online learning algorithm for collaborative
filtering with trace-norm constrained matrices. While this is a well-known setting,
a straightforward application of standard online learning approaches, such as mirror
descent, appear to give only trivial performance guarantees. Moreover, our regret
bound matches the best known sample complexity bound in the batch distribution-
free setting [24].

As a different application, we consider general reductions between batch learning
and transductive online learning. The relationship between these two settings was
analyzed in [16], in the context of binary prediction with respect to classes of
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bounded VC dimension. Their main result was that efficient learning in a statistical
setting implies efficient learning in the transductive online setting, but at an inferior
rate of T3/* (where T is the number of rounds). The main open question posed by
that chapter is whether a better rate can be obtained. Using the R? Forecaster, we
improve on those results, and provide an efficient algorithm with the optimal /T
rate, for a wide class of losses. This shows that efficient batch learning not only
implies efficient transductive online learning (the main thesis of [16]), but also that
the same rates can be obtained, and for possibly non-binary prediction problems as
well.

We emphasize that the R? Forecaster requires computing many empirical risk
minimizers (ERMs) at each round, which might be prohibitive in practice. Thus,
while it does run in polynomial time whenever an ERM can be efficiently computed,
we make no claim that it is a practical algorithm. Nevertheless, it seems to be a
useful tool in showing that efficient online learnability is possible in various settings,
often working in cases where more standard techniques appear to fail. Moreover,
we hope the techniques we employ might prove useful in deriving practical online
algorithms in other contexts.

16.2 The Minimax Forecaster

We start by formally introducing our online learning setting, known as prediction
with expert advice (see [8]). The game is played between a forecaster and an
adversary, and is specified by an outcome space ), a prediction space P, a
nonnegative loss function £ : P x ) — R, which measures the discrepancy between
the forecaster’s prediction and the outcome, and an expert class F. Here we focus
on classes F of static experts, whose prediction at each round ¢ does not depend
on the outcomes in previous rounds. Therefore, we think of each f € F simply as
a sequence f = (fi, f2,...) where each f; € P. Ateachstept = 1,2,... of the
game, the forecaster outputs a prediction p; € P and simultaneously the adversary
reveals an outcome y; € ). The forecaster’s goal is to predict the outcome sequence
almost as well as the best expert in the class F, irrespective of the outcome sequence
y = (1, »2,...). The performance of a forecasting strategy A is measured by the
worst-case regret

T T
Vr(4,F) = sup (Z C(pr.yo) = inf > (. yr))

yeVT \; =i =1

viewed as a function of the horizon (number of rounds) 7.

Consider now the special case where the horizon T is fixed and known in
advance, the outcome space is Y = {—1,+1}, the prediction space is P =
[—1, +1], and the loss is the absolute loss £(p, y) = |p — y|. To simplify notation,
let L(f,y) = ZIT=1 | f — y¢|. We will denote the regret in this special case as
VIbS(A, F).
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The Minimax Forecaster—which is based on work presented in [9] and [11]
(see also [8] for an exposition)—is derived by an explicit analysis of the minimax
regret infy V;bS(A, F), where the infimum is over all forecasters A producing at
round ¢ a prediction p; as a function of py, yi,... p;—1, yi—1. For general online
learning problems, the analysis of this quantity is intractable. However, for the
specific setting we focus on (absolute loss and binary outcomes), one can get both an
explicit expression for the minimax regret, as well as an explicit algorithm, provided
infge r ZLI £( f, yr) can be efficiently computed for any sequence yi, ..., yr. This
procedure is akin to performing empirical risk minimization (ERM) in statistical
learning. A full development of the analysis is out of scope of this chapter, but is
outlined in section “Appendix: Derivation of the Minimax Forecaster”. In a nutshell,
the idea is to begin by calculating the optimal prediction in the last round 7', and then
work backwards, calculating the optimal prediction at round 7' — 1, T — 2, and so
on. Remarkably, the value of inf4 V%bS(A, F) is exactly the Rademacher complexity
Rr(F) of the class F, which is known to play a crucial role in controlling the
sample complexity in statistical learning [4]. In this chapter, we define it as:

T
Rr(F)=E|sup) o f; (16.1)

feF i,
where o1, ...,0r are i.i.d. Rademacher random variables, taking values —1, +1
with equal probability. When Rr(F) = o(T), we get a minimax regret

inf4 Vi (A, F) = o(T) which implies a vanishing per-round regret.

In terms of an explicit algorithm, the optimal prediction p, at round ¢ is given by
a complicated-looking recursive expression, involving exponentially many terms.
Indeed, for general online learning problems, this is the most one seems able to
hope for. However, an apparently little-known fact is that when one deals with a
class F of fixed binary sequences as discussed above, then one can write the optimal
prediction p, in a much simpler way. Letting Y;,..., Y7 be ii.d. Rademacher
random variables, the optimal prediction at round ¢ can be written as

pr = E[infL(fayl"'Yt—l D) Y41---Y7)
feF

—inf L(f, y1---yi—11 Yr+1"'YT):|. (16.2)
feF

In words, the prediction is simply the expected difference between the minimal
cumulative loss over F, when the adversary plays —1 at round ¢ and random values
afterwards, and the minimal cumulative loss over F, when the adversary plays +1
at round ¢, and the same random values afterwards. Again, we refer the reader to
section “Appendix: Derivation of the Minimax Forecaster” for how this is derived.
We call this optimal strategy (for absolute loss and binary outcomes) the Minimax
Forecaster (MF); see Algorithm 3. The relevant guarantee for MF is summarized in
the following theorem.
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Algorithm 3 Minimax Forecaster (MF)
fort =1toT do
Predict p, as defined in (16.2)
Receive outcome y; and suffer loss | p; — ;|
end for

Algorithm 4 Minimax Forecaster with efficient implementation (MF*)

fort =1toT do
Fori =t +1,...,T,letY; be a Rademacher random variable
Let

pri= fien]f__L (f,y1 i1 (D Y ...YT)

—fienjt;L(f,yl...y,,l1Y,+1...YT)

Predict p;, receive outcome y, and suffer loss | p; — y;|
end for

Theorem 16.1. For any class F C [—1,+1]7 of static experts, the regret of the
Minimax Forecaster (Algorithm 3) satisfies Vi (MF, F) = Ry (F).

The Minimax Forecaster described above is not computationally efficient, as the
computation of p; requires averaging over exponentially many ERMs. However, by
a martingale argument, it is not hard to show that it is in fact sufficient to compute
only two ERMs per round.

Theorem 16.2. For any class F C [—1,+1]7 of static experts, the regret of the
randomized forecasting strategy MF* (Algorithm 4) satisfies

VIS (MF*¥, F) < Rr(F) + /2T In(1/96)

with probability at least 1 — §. Moreover, if the predictions p = (p1,..., pr) are
computed reusing the random values Y1, ..., Yt computed at the first iteration of
the algorithm, rather than by drawing fresh values at each iteration, then it holds
that

E |:L(p,y) —fienjer(f, y)i| <Rp(F)  forally e {—1,+1}T.

Proof sketch. To prove the second statement, note that \E[p,] — yt| = E[| Pt — Wt |]
for any fixed y; € {—1,+1} and p; bounded in [—1, +1], and use Theorem 16.1.
To prove the first statement, note that |p, — y;| — |Ep[ [p:] — y,| fort =1,...,T
is a martingale difference sequence with respect to pi, ..., pr, and apply Azuma’s
inequality. O
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The second statement in the theorem bounds the regret only in expectation and is
thus weaker than the first one. On the other hand, it might have algorithmic benefits.
Indeed, if we reuse the same values for Yy,..., Yr, then the computation of the
infima over f in MF* are with respect to an outcome sequence which changes only
at one point in each round. Depending on the specific learning problem, it might
be easier to re-compute the infimum after changing a single point in the outcome
sequence, as opposed to computing the infimum over a different outcome sequence
in each round.

16.3 The R? Forecaster

The Minimax Forecaster presented above is very specific to the absolute loss
L(f,y) = |f — y| and for binary outcomes )V = {—1, 41}, which limits its
applicability. We note that, extending the forecaster to other losses or different
outcome spaces is not trivial: indeed, the recursive unwinding of the minimax
regret term, leading to an explicit expression and an explicit algorithm, does not
work as is for other cases. Nevertheless, we will now show how one can deal
with general (convex, Lipschitz) loss functions and outcomes belonging to any real
interval [—b, b].

The algorithm we propose essentially uses the Minimax Forecaster as a
subroutine, by feeding it with a carefully chosen sequence of binary values z,
and using predictions f; which are scaled to lie in the interval [—1, +1]. The values
of z; are based on a randomized rounding of values in [—1, +1], which depend in
turn on the loss subgradient. Thus, we denote the algorithm as the Randomized
Rounding (R?) Forecaster.

To describe the algorithm, we introduce some notation. For any scalar f €
[~b, b], define f = f/b to be the scaled versions of f in the range [—1, +1].
For vectors f, define f = (1/b)f. Also, we let 9 »(p:, y;) denote any subgradient
of the loss function £ with respect to the prediction p;. As before, we define
LEy) = ZLI | i — y¢|. The pseudocode of the R?> Forecaster is presented as
Algorithm 5 below, and its regret guarantee is summarized in Theorem 16.3.

Theorem 16.3. Suppose £ is convex and p-Lipschitz in its first argument. For any
F C [=b,b]", with probability at least 1 — § the regret of the R?> Forecaster
(Algorithm 5) satisfies

Vr(R*, F) < pRr(F) + pb (\/%Jr 2) 2T In (%)

Proof. Let Y(t) denote the set of Bernoulli random variables chosen at round ¢. Let
E,, denote expectation with respect to z;, conditioned on z;, Y(1),...,z—1, Y (t —1)
as well as Y (¢). Let Ey(,) denote the expectation with respect to the random drawing
of Y(¢), conditioned on z;, Y (1),...,z—1, Y(t — 1).
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Algorithm 5 The R? Forecaster
Input: Upper bound b on |f;|,|y;| for all 1 =
suppd,e[_b’bﬂap@(p, y)|; precision parameter n >
fort =1toT do

1,...,T and f € F; upper bound p on

L
T

p =0

for j =1tonT do
Fori =1¢,..., T, let Y; be a Rademacher random variable
Draw

A= inf L (f,z] ez (=) Yo ...YT)
—inf L (Faami 1Y)

Let p, := p, + ULTA
end for
Predict p,
Receive outcome y; and suffer loss £(p;, y;)
Letr, := %(1 - %3P,Z(p,,y,)) €[0,1]
Let z; := 1 with probability r,, and z, := —1 with probability 1 — r,
end for

We will need two simple observations. First, by convexity of the loss function,

we have that for any p;, f;, yi, €(pi, i) —£(fi, y) < (pi— f1) 0, €(ps, ¥1). Second,
by definition of 7, and z;, we have that for any fixed p,, f;,

pib(p, ~ 8 pe ) = 3 (= f)(1 =21

= %r,(ft—p;)-l-%(l—rt)(pt_ft)

= r,(f,—ﬁt)-i-(l—rt)(l;t—ft)

= ((1-@)—(1—]5))+(1—rt)((ﬁz+1)—(ﬁ+1))
|

The last transition uses the fact that p;, ﬁ € [-1, +1]. By these two observations,
we have

= E, [|ﬁr—Zr|— Ji—u

T T
Y Wi y) = (S 30)) < Y (i = £) p L(prs 1)

t=1 t=1

T
=pb Y B, 15 —al-
t=1

fi—z

] . (163)
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Now, note that | p, — z;| — | fi — z| —Ezt[|ﬁ, -zl =fi —zt|] fort =1,...,Tisa
martingale difference sequence: for any values of z;, Y(1),...,z—1, Y (t — 1), Y(?)
(which fixes p;), the conditional expectation of this expression over z; is 0. Using
Azuma’s inequality, we can upper bound (16.3) with probability at least 1 — §/2 by

T
b 3" (15—l =1/ — ul) + pb /BT In(2/8). (16.4)
=1

The next step is to relate (16.4) to pb Z,T=1(|EY(;)[13;] — Z;| —|fi - z). It might
be tempting to appeal to Azuma’s inequality again. Unfortunately, there is no
martingale difference sequence here, since z; is itself a random variable whose
distribution is influenced by Y(¢). Thus, we need to turn to coarser methods.
Equation (16.4) can be upper bounded by

T T
b Y ([Evalpd—z|=1fi=zl)+pb Y | = Evo) (Al +pbvET 2/3).
=1

=1
(16.5)

Recall that p, is an average over n7T i.i.d. random variables, with expectation
Eyq)[p:]. By Hoeffding’s inequality, this implies that for any t = 1,...,T,
with probability at least 1 — §/27 over the choice of Y(¢), |p; — Ey(,)[ﬁt” <

\/2In(2T/§) / (nT). By a union bound, it follows that with probability at least
1 — §/2 over the choice of Y(1),...,Y(T),

T
Z |Pe — By [pd] < v/ —2T1n(7]2T/5) .
t=1

Combining this with (16.5), we get that with probability at least 1 — §,

T
PbZ(HEY(r)[ﬁt] —u|—Ifi —zt ,/ZTIH(ZT/‘S) V8T n(2/5) .
t=1

(16.6)

Finally, by definition of p; = p,/b, we have that Ey([p;] equals
Ey(t) |:flél]f__L (E', 21 e Z—1 (_1) Y;.H R YT)

—fiéajﬁ_L(?,zl...z,_l1Y,+1...YT)]
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This is exactly the Minimax Forecaster’s prediction at round 7, with respect to the
sequence of outcomes z, ...,z € {—1,+1}, and the class 7 := {f : f € F} C
[—1,1]7. Therefore, using Theorem 16.1, we can upper bound (16.6) by

pbRr(F) +pb‘/%’7ﬂw/8) + pb/8T In(2/5) .

By definition of F and the Rademacher complexity, it is straightforward to verify
that Rr(F) = %RT (F). Using that to rewrite the bound, and slightly simplifying
for readability, the result stated in the theorem follows. O

The computed prediction p; is an empirical approximation to

bEYt+1~,~~~sYT I:t!en]f-‘L (i 21 .-.2t—1 0 Yt+1 e YT)

_ infL(f',zl---zt_l 1Yt+l"'YT):|
feF

by repeatedly drawing independent values of Y;1,...,Yr and averaging. The
accuracy of the approximation is reflected in the precision parameter n. A larger
value of n improves the regret bound, but also increases the runtime of the algorithm.
Thus, 1 provides a trade-off between the computational complexity of the algorithm
and its regret guarantee. We note that even when 7 is taken to be a constant fraction,
the resulting algorithm still runs in polynomial time O(7%c), where c is the time to
compute a single ERM. In subsequent results pertaining to this Forecaster, we will
assume that 7 is taken to be a constant fraction.

The R? forecaster, as presented so far, assumes that the horizon T is known in
advance. We now turn to describe how it can be readily extended to the case where it
is unknown. The standard generic method to achieve this is known as the “doubling”
trick (see [8]), and is based on guessing the value of 7" (initially 7 = 1), and running
the algorithm with this guess. If the game did not end after 7' rounds, the guess is
doubled and the algorithm is restarted with this new value. If the actual horizon T
equals 2° + 2! 4+ 2% + ... + 2" for some integer r, then it is easy to show that our
algorithm enjoys the same regret bound as before, plus a moderate multiplicative
factor.! The only case we need to worry about is when 7 is not of this form, i.e.,
that the game ends in the middle of the algorithm’s run. In that case, it is enough to
ensure that the algorithm’s regret bound, designed for horizon 7', also bounds the
regret after a smaller number + < T of rounds. This can be shown to hold quite
generically, given a very mild assumption on the loss function:

!'Specifically, we divide the rounds into r consecutive epochs, such that epoch i consists of 2/
rounds, and use Theorem 16.3 with confidence §' = §/ 2i+1 and a union bound, to get a regret
bound of O(Ryi (F) + /(i + log(1/8)) 27) over any epoch i . In the typical case where Ry (F) =
O(«/T), summing over i = 1,...,r where r = log,(T + 1) — 1 yields a total regret bound of
order O(+/Tog(T/8)T). Up to log factors, this is the same bound as if T were known in advance.
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Lemma 16.1. Consider a (possibly randomized) forecaster A for a class F whose
regret after T steps satisfies Vr (A, F) < G with probability at least 1 — § > %
Furthermore, suppose the loss function is such that

inf sup inf (Z(p y)—4(p'.y)) =0.
peP yeyp

Then

nllax Vi(A,F) <G with probability at least 1 — 6.

Note that for the assumption on the loss to hold, a simple sufficient condition is that
=Yand{(p,y) = L(y,y) forall p,y € P.

Proof. The proof assumes that the infimum and supremum of certain functions over
Y, F are attainable. If not, the proof can be easily adapted by finding attainable
values which are e-close to the infimum or supremum, and then taking ¢ — 0.

For the purpose of contradiction, suppose there exists a strategy for the adversary
and a round r < T such that at the end of round r, the forecaster suffers a regret
G’ > G with probability larger than §. Consider the following modified strategy for
the adversary: the adversary plays according to the aforementioned strategy until
round r. It then computes

fr= argmmZZ(f,, i)

FeF 1=

At all subsequentrounds ¢t =r + 1,r 4+ 2,..., T, the adversary chooses

= argmax inf (E(p y) =" ).
yey P€

By the assumption on the loss function,

Cpe ) = LT 50 = o (. y7) = £Cf70)

= sup inf (E(p y)—L(f*,y) =0.
yey ?

Thus, the regret over all T’ rounds, with respect to f*, is

r T
D ey = €5 y0) + D (Cpe v = L)
t=1 t=r+1

= > Epyo) = inf > E(fi )
=1 =1
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which is at least G’ with probability larger than §. On the other hand, we know that
the learner’s regret is at most G with probability at least 1 — §. Thus we have a
contradiction and the proof is concluded. O

We end this section with a remark that plays an important role in what follows.

Remark 16.1. The predictions of our forecasting strategies do not depend on the
ordering of the predictions of the experts in F. In other words, all the results
proven so far also hold in a setting where the elements of F are functions f :
{1,...,T} — P, and the adversary has control on the permutation 7y, ..., 7wy of
{1,..., T} that is used to define the prediction f(m;) of expert f at time ¢.> Also,
Theorem 16.1 implies that the value of V%bs (F) remains unchanged irrespective of
the permutation chosen by the adversary.

16.4 Application 1: Transductive Online Learning

The first application we consider is a rather straightforward one, in the context
of transductive online learning [5]. In this model, we have an arbitrary sequence
of labelled examples (xi, y1),..., (x7, yr), where only the set {x;,...,xr} of
unlabelled instances is known to the learner in advance. At each round ¢, the
learner must provide a prediction p, for the label of y;. The true label y, is then
revealed, and the learner incurs a loss £(p;, y;). The learner’s goal is to minimize
the transductive online regret Y"1 _, (€(py, yi) —inf rex £(f(x,), y.)) with respect to
a fixed class of predictors F of the form {x — f(x)}.

The work [16] considers the binary classification case with 0—1 loss. Their main
result is that if a class F of binary functions has bounded VC dimension d, and there
exists an efficient algorithm to perform empirical risk minimization, then one can
construct an efficient randomized algorithm for transductive online learning, whose
regret is at most O(T**,/d In(T')) in expectation. The significance of this result
is that efficient batch learning (via empirical risk minimization) implies efficient
learning in the transductive online setting. This is an important result, as online
learning can be computationally harder than batch learning—see, e.g., [7] for an
example in the context of Boolean learning.

A major open question posed by Kakade and Kalai [16] was whether one can
achieve the optimal rate OdT), matching the rate of a batch learning algorithm
in the statistical setting. Using the R? Forecaster, we can easily achieve the above
result, as well as similar results in a strictly more general setting. This shows that
efficient batch learning not only implies efficient transductive online learning (the
main thesis of [16]), but also that the same rates can be obtained, and for possibly
non-binary prediction problems as well.

2Formally, at each step ¢: (1) the adversary chooses and reveals the next element 7, of the
permutation; (2) the forecaster chooses p, € P and simultaneously the adversary chooses y, € ).
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Theorem 16.4. Suppose we have a computationally efficient algorithm for
empirical risk minimization (with respect to the 01 loss) over a class F of {0, 1}-
valued functions with VC dimension d. Then, in the transductive online model, the
efficient randomized forecaster MF* achieves an expected regret of O(~/dT) with
respect to the 01 loss.

Moreover, for an arbitrary class F of [—b, bl-valued functions with Rademacher
complexity Ry (F), and any convex p-Lipschitz loss function, if there exists a
computationally efficient algorithm for empirical risk minimization, then the R?
Forecaster is computationally efficient and achieves, in the transductive online
model, a regret of pR7(F) + O(pb+/T In(T/$8)) with probability at least 1 — 6.

Proof. Since the set {xj,...,xr} of unlabelled examples is known, we reduce
the online transductive model to prediction with expert advice in the setting of
Remark 16.1. This is done by mapping each function f € F to a function
f:A{l,....,T} - Pbyt — f(x;), which is equivalent to an expert in the setting
of Remark 16.1. When F maps to {0, 1}, and we care about the 01 loss, we can
use the forecaster MF* to compute randomized predictions and apply Theorem 16.2
to bound the expected transductive online regret with R (F). For a class with
VC dimension d, Ry (F) < O(VdT) for some constant ¢ > 0, using Dudley’s
chaining method [12], and this concludes the proof of the first part of the theorem.
The second part is an immediate corollary of Theorem 16.3. O

We close this section by contrasting our results for online transductive learning with
those of [6] for standard online learning. If F contains {0, 1}-valued functions,
then the optimal regret bound for online learning is of order ~/d’T, where d’ is
the Littlestone dimension of F. Since the Littlestone dimension of a class is never
smaller than its VC dimension, we conclude that online learning is a harder setting
than online transductive learning.

16.5 Application 2: Online Collaborative Filtering

We now turn to discuss the application of our results in the context of collaborative
filtering with trace-norm constrained matrices, presenting the first computationally
efficient online algorithm for this problem.

In collaborative filtering, the learning problem is to predict entries of an unknown
m x n matrix based on a subset of its observed entries. A common approach is
norm regularization, where we seek a low-norm matrix which matches the observed
entries as best as possible. The norm is often taken to be the trace-norm [3,21,26],
although other norms have also been considered, such as the max-norm [18] and the
weighted trace-norm [13, 22].

Previous theoretical treatments of this problem assumed a stochastic setting,
where the observed entries are picked according to some underlying distribution
(e.g., [24,25]). However, even when the guarantees are distribution-free, assuming
a fixed distribution fails to capture important aspects of collaborative filtering in
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practice, such as non-stationarity [17]. Thus, an online adversarial setting, where
no distributional assumptions whatsoever are required, seems to be particularly well
suited to this problem domain.

In an online setting, at each round ¢ the adversary reveals an index pair (i;, j;) and
secretly chooses a value y, for the corresponding matrix entry. After that, the learner
selects a prediction p, for that entry. Then y, is revealed and the learner suffers a
loss £(p;, y;). Hence, the goal of a learner is to minimize the regret with respect to a
fixed class W of prediction matrices, 3/_, €(py, yr) — infwew 3 ory €(Wi, j,, v1)-
Following reality, we will assume that the adversary picks a different entry in each
round. When the learner’s performance is measured by the regret after all 7 = mn
entries have been predicted, the online collaborative filtering setting reduces to
prediction with expert advice, as discussed in Remark 16.1.

As mentioned previously, WV is often taken to be a convex class of matrices with
bounded trace-norm. Many convex learning problems, such as linear and kernel-
based predictors, as well as matrix-based predictors, can be learned efficiently
both in a stochastic and an online setting, using mirror descent or regularized
follow-the-leader methods. However, for reasonable choices of W, a straightforward
application of these techniques leads to algorithms with trivial bounds. In particular,
in the case of WV consisting of m x n matrices with trace-norm at most r, standard
online regret bounds would scale as (’)(r JT ) Since for this norm one typically

has r = (’)(\/ﬁ), we get a per-round regret guarantee of O(y/mn/T). This is a
trivial bound, since it becomes “meaningful” (smaller than a constant) only after
all 7 = mn entries have been predicted. In this section, we show how to obtain a
computationally efficient algorithm for this problem, using the R? Forecaster. We
note that following our work, other efficient algorithms were proposed in [15,20].
Consider first the transductive online setting, where the set of indices to be
predicted is known in advance, and the adversary may only choose the order and
values of the entries. It is readily seen that the R?> Forecaster can be applied in
this setting, using any convex class W of fixed matrices with bounded entries to
compete against, and any convex Lipschitz loss function. To do so, we let {if, jk }]f=1

be the set of entries, and run the R? Forecaster with respect to F = {t
W, : W € W}, which corresponds to a class of experts as discussed in
Remark 16.1.

What is perhaps more surprising is that the R? Forecaster can also be applied
in a non-transductive setting, where the indices to be predicted are not known in
advance. Moreover, the Forecaster doesn’t need to know the horizon 7 in advance.
The key idea is to utilize the non-asymptotic nature of the learning problem—
namely, that the game is played over a finite m X n matrix, so the time horizon
is necessarily bounded.

The algorithm we propose is very simple: we apply the R? Forecaster as if we
are in a setting with time horizon T = mn, which is played over all entries of the
m x n matrix. By Remark 16.1, the R? Forecaster does not need to know the order
in which these m x n entries are going to be revealed. Whenever VV is convex and £
is a convex function, we can find an ERM in polynomial time by solving a convex
problem. Hence, we can implement the R?> Forecaster efficiently.
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Using Lemma 16.1, the following theorem exemplifies how we can obtain a
regret guarantee for our algorithm, in the case of WV consisting of the convex set
of matrices with bounded trace-norm and bounded entries. For the sake of clarity,
we will consider n X n square matrices.

Theorem 16.5. Let { be a loss function which satisfies the conditions of
Lemma 16.1. Also, let W consist of n X n matrices with trace-norm at most
r = O(n) and entries at most b = O(1); suppose we apply the R* Forecaster
over time horizon n? and all entries of the matrix. Then with probability at least
1 =38, after T rounds, the algorithm achieves an average per-round regret of at most

o (n3/2 + ny/In(n/$)

T ) uniformly over T =1,..., n2.

Proof. In our setting, where the adversary chooses a different entry at each round,
[24, Theorem 6] implies that for the class W' of all matrices with trace-norm at
most r = O(n), it holds that Ry (W')/T < O(n*?/T). Therefore, R,2(W') <
O(n3?). Since W < W', we get by definition of the Rademacher complexity
that R,2(W) = O(n’/?) as well. By Theorem 16.3, the regret after n> rounds is
On3? + n/In(n/8)) with probability at least 1 — §. Applying Lemma 16.1, we

get that the cumulative regret at the end of any round 7 = 1,...,n> is at most
On*? +n/In(n/8§)), as required. O

This bound becomes non-trivial after 73/2 entries are revealed, which is still a
vanishingly small portion of all n? entries. While the regret might seem unusual
compared to standard regret bounds (which usually have rates of 1/+/T for general
losses), it is a natural outcome of the non-asymptotic nature of our setting, where T
can never be larger than n?. In fact, this is the same rate one would obtain in a batch
setting, where the entries are drawn from an arbitrary distribution.

As mentioned in the introduction, other online learning algorithms for this
problem have been published since this work appeared [15, 20], using other
techniques and assumptions.

Appendix: Derivation of the Minimax Forecaster

In this appendix, we outline how the Minimax Forecaster is derived, as well as its
associated guarantees. This outline closely follows the exposition in [8, Chap. 8], to
which we refer the reader for some of the technical derivations.

First, we note that the Minimax Forecaster as presented in [8] actually refers to
a slightly different setup than ours, where the outcome space is ) = {0, 1} and the
prediction space is P = [0, 1], rather than Y = {—1,+1} and P = [—1, +1]. We
will first derive the forecaster for the first setting, and then show how to convert it to
the second setting.



16 Efficient Transductive Online Learning via Randomized Rounding 191

Our goal is to find a predictor which minimizes the worst-case regret,

ma L(p,y) — inf L(f,
max (Lo - Ly

where p = (p1, ..., pr) is the prediction sequence.

For convenience, in the following we sometimes use the notation y’ to denote
a vector in {0, 1}. The idea of the derivation is to work backwards, starting with
computing the optimal prediction at the last round 7', then deriving the optimal
prediction at round 7" — 1, and so on. In the last round 7, the first 7 — 1 outcomes
y”~! have been revealed, and we want to find the optimal prediction pr. Since our
goal is to minimize the worst-case regret with respect to the absolute loss, we just
need to compute pr, which minimizes

L™y Y+ max{pr —inf L(f.y"7'0), (1 - pr) — inf L(f, YT_ll)} :
feF feF
In our setting, it is not hard to show that
: =1y _ =11y <
|inf L(£,y'™10) — inf L(£,y""'D| < 1

(see [8, Lemma 8.1]). Using this, we can compute the optimal pr to be

1
pr=3(4r¢" " D= 4r" 0 +1) 167)

where A7 (y7) = —infrer L(£,y7).
Having determined pr, we can continue to the previous prediction pr—;. This is
equivalent to minimizing

L2y + maX{PT—l + Ar—1(y"720), (1 — pr—1) + AT—l(yT_zl)}
where
Ar—i(y' ™" =

: o T—1 _ o T—1
pggl]maX%pr flgji_L(f,y 0), (1-pr) flgji_L(f,y 1)}- (16.8)

Note that, by plugging in the value of pr from (16.7), we also get the following
equivalent formulation for A7—;(y” ~):

Ara (7 = 5 (460 + ArT 1),
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Again, it is possible to show that the optimal value of pr_; is

1 _ -
pri = 5 (A7) = Ar(y 0 + 1)),

Repeating this procedure, one can show that at any round ¢, the minimax optimal
prediction is

— 1 t—1 t—1
D = E(At(y H—A4,G570) + 1) (16.9)

where A, is defined recursively as A7(y") = —infger L(f,y7) and, for all ¢,

Aoy ) = %(At(yf‘IO) + AT+ 1). (16.10)

At first glance, computing p, from (16.9) might seem tricky, since it requires
computing A,(y"), whose recursive expansion in (16.10) involves exponentially
many terms. Luckily, the recursive expansion has a simple structure, and it is not
hard to show that

T—1 1 . _
Ay = 5 5T Z (flen;L(f,y’YT ’f))
vl (16.11)

_ T—1t : ty T—t
= 5 Hpreayr)]

where Y7~ is a sequence of T — ¢ i.i.d. Bernoulli random variables, which take
values in {0, 1} with equal probability. Plugging this into the formula for the
minimax prediction in (16.9), we get that?

_1 : t—lny T—t . =11y T—t
Pt—E(E[fléljf__L(f,y Y™ —inf LEY YT | +1). (16.12)

This prediction rule constitutes the Minimax Forecaster as presented in [8].

After deriving the algorithm, we turn to analyze its regret performance. To do
so, we just need to note that Ay equals the worst-case regret—see the recursive
definition (16.8). Using the alternative explicit definition in (16.11), we get that the
worst-case regret equals

3This fact appears in an implicit form in [9]; see also [8, Exercise 8.4].
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where o; are i.i.d. Rademacher random variables (taking values of —1 and 41 with
equal probability). Recalling the definition of Rademacher complexity, (16.1), we
get that the regret is bounded by the Rademacher complexity of the shifted class,
which is obtained from F by taking every f € F and replacing every coordinate f;
by f; —1/2.

Finally, it remains to show how to convert the forecaster and analysis above to
the setting discussed in this chapter, where the outcomes are in {—1, +1} rather
than {0, 1} and the predictions are in [—1, +1] rather than [0, 1]. To do so, consider
a learning problem in this new setting, with some class F. For any vector y, define
y to be the shifted vector (y + 1)/2, where 1 = (1, ..., 1) is the all-1s vector. Also,
define F to be the shifted class F = {(f + 1)/2 : f e F}. Itis easily seen that
L(f,y) = 2L(f,y) for any f,y. As a result, if we look at the prediction p, given by
our forecaster in (16.2), then p; = (p, + 1)/2 is the minimax optimal prediction
given by (16.12) with respect to the class F and the outcomes §7. So our analysis
above applies, and we get that

max (L(p,y)—infL(f,y)) = max 2(L(ﬁ,y)—infL(iy))
ye{—1,+1}7 feF ye[0.1)7 feF

e (- 2)o] - efapn]

feF (=1 fer =1
which is exactly the Rademacher complexity of the class F.
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Chapter 17
Pivotal Estimation in High-Dimensional
Regression via Linear Programming

Eric Gautier and Alexandre B. Tsybakov

Abstract We propose a new method of estimation in high-dimensional linear
regression models. It allows for very weak distributional assumptions, including
heteroscedasticity, and does not require knowledge of the variance of random errors.
The method is based on linear programming only, so that its numerical implemen-
tation is faster than for previously known techniques using conic programs, and it
allows one to deal with higher-dimensional models. We provide upper bounds for
estimation and prediction errors of the proposed estimator, showing that it achieves
the same rate as in the more restrictive situation of fixed design and i.i.d. Gaussian
errors with known variance. Following Gautier and Tsybakov (High-dimensional
instrumental variables regression and confidence sets. ArXiv e-prints 1105.2454,
2011), we obtain the results under weaker sensitivity assumptions than the restricted
eigenvalue or assimilated conditions.

17.1 Introduction

In this chapter, we consider the linear regression model
yi:xiT,B*—i—ui, i=1,...,n,

where x; are random vectors of explanatory variables in R?, and u; € R is arandom
error. The aim is to estimate the vector $* € R? from n independent, not necessarily
identically distributed realizations (y;, xiT ),i =1,...,n. We are mainly interested
in high-dimensional models where p can be much larger than n under the sparsity
scenario, where only few components 8 of B* are non-zero (8™ is sparse).
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The most studied techniques for high-dimensional regression under the sparsity
scenario are the Lasso, the Dantzig selector (see, e.g., Candes and Tao [8], Bickel
et al. [6]; more references can be found in Biihlmann and van de Geer [7] and
Koltchinskii [14]), and aggregation by exponential weighting (see Dalalyan and
Tsybakov [10], Rigollet and Tsybakov [12, 16] and the references cited therein).
Most of the literature on high-dimensional regression assumes that the random
errors are Gaussian or subgaussian with known variance (or noise level). However,
quite recently several methods have been proposed which are independent of the
noise level (see, e.g., Stidler et al. [17], Antoniadis [1], Belloni et al. [3], Gautier and
Tsybakov [2], Sun and Zhang [12], Belloni et al. [18], Dalalyan [4,9]). Among these,
the methods of Belloni et al. [2], Belloni et al. [4], and Gautier and Tsybakov [12]
allow us to handle non-identically distributed errors u; and are pivotal, i.e., rely on
very weak distributional assumptions. In Gautier and Tsybakov [12], the regressors
x; can be correlated with the errors u;, and an estimator is suggested that makes
use of instrumental variables, called the STIV (Self-Tuned Instrumental Variables)
estimator. In a particular instance, the STIV estimator can be applied in classical
linear regression models where all regressors are uncorrelated with the errors. This
yields a pivotal extension of the Dantzig selector based on conic programming.
Gautier and Tsybakov [12] also present a method to obtain finite sample confidence
sets that are robust to non-Gaussian and heteroscedastic errors.

Another important issue is to relax the assumptions on the model under which
the validity of the Lasso type methods is proved, such as the restricted eigenvalue
condition of Bickel et al. [6] and its various analogues. Belloni et al. [2] obtain
fast rates for prediction for the Square-root Lasso under a relaxed version of the
restricted eigenvalue condition. In the context of known noise variance, Ye and
Zhang [19] introduce cone invertibility factors instead of restricted eigenvalues. For
pivotal estimation, an approach based on the sensitivities and sparsity certificates is
introduced in Gautier and Tsybakov [12]; see more details below. Finally, note that
aggregation by exponential weighting [10, 15, 16] does not require any condition
on the model, but its numerical realization is based on MCMC algorithms in high
dimensions whose convergence rates are hard to assess theoretically.

In this chapter, we introduce a new pivotal estimator, called the Self-tuned
Dantzig estimator. It is defined as a linear program, so from the numerical point
of view it is simpler than the previously known pivotal estimators based on conic
programming. We obtain upper bounds on its estimation and prediction errors under
weak assumptions on the model and on the distribution of the errors, showing that
it achieves the same rate as in the more restrictive situation of fixed design and
i.i.d. Gaussian errors with known variance. The model assumptions are based on
the sensitivity analysis from Gautier and Tsybakov [12]. Distributional assumptions
allow for dependence between x; and u;. When x;’s are independent from ;’s, it is
enough to assume, for example, that the errors #; are symmetric and have a finite
second moment.
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17.2 Notation

WesetY = (yi,....y,)" and U = (uy,...,u,)7, and we denote by X the matrix
of dimension n x p with rows x,-T, i =1,...,n. Wedenote by D the p x p diagonal
normalizing matrix with diagonal entries dy; > 0, k = 1,..., p. Typical examples
are: dy, = 1 or

n —1/2
1 —1
du =~ _and d :( i)
k (n xkl) and dy l_g}axn | x|

= /7

where x;; is the kth component of x;. For a vector 8 € R?, let J(B) = {k €
{l,...,p} : Bx # 0} be its support, i.e., the set of indices corresponding to its
non-zero components ;. We denote by |J| the cardinality of a set J < {1,..., p}
and by J¢ its complement: J¢ = {1,..., p} \ J. The £, norm of a vector A is
denoted by |A],, 1 < p < 00. For A = (Ay,...A,)T € R? and a set of indices

J C{1,...,p}, we consider A, £ (Algesy, ... Aplipery)’, where 1 is the
indicator function. For a € R, we set a4 £ max(0,a), a;! £ (ay)~l.

17.3 The Estimator

We say that a pair (8, 0) € R? x R satisfies the Self-tuned Dantzig constraint if it
belongs to the set

D2)(B.o)BeR?, 0>0, '%DXT(Y—X,B)‘ far}

for some r > 0 (specified below).
Definition 17.1. We call the Self-tuned Dantzig estimator any solution (,3, 6) of the

following minimization problem:

min_(|D7'B|, + co)., (17.1)
(B,o)eD

for some positive constant c.

Finding the Self-tuned Dantzig estimator is a linear program. The term co is
included in the criterion to prevent us from choosing o arbitrarily large. The choice
of the constant ¢ will be discussed later.
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17.4 Sensitivity Characteristics
The sensitivity characteristics are defined by the action of the matrix

aloor

¥, = -DX" XD
n
on the so-called cone of dominant coordinates
CVE(AER: |Ajly <(1+7y)A
;= S Al < IAIY,

for some y > 0. It is straightforward that for § € C;y),

1Al < @+ PIAN < Q+ITITVAyl,, Y1 <g <oo. (17.2)

We now recall some definitions from Gautier and Tsybakov [12]. For g € [1, oo],
we define the £, sensitivity as the following random variable:

A .
DA inf |WAl.
aec?: 1Al =1

Given a subset Jo C {l,...,p} and ¢ € [I,00], we define the £, — Jo block
sensitivity as

A .
kB inf (A,

AeCY: |Agylg=1

By convention, we set K(Vé ; = 00. Also, recall that the restricted eigenvalue of

Bickel et al. [6] is defined by

» A o AT, A
KRg.J = in - |2
A€RP\{0}: AeC J12

and a closely related quantity is

‘W) A inf |7 |AT @, Al

2
AeRP\{0}): AeCY [As]]

The next result establishes a relation between restricted eigenvalues and sensitivi-
ties. It follows directly from the Cauchy-Schwarz inequality and (17.2).

Proposition 17.1.

W < < @I, < @+ P Ik).
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The following proposition gives a useful lower bound on the sensitivity.

Proposition 17.2. If|J| <,

1
) : : A (y)
K > — min min v, A = Kk,"7(S). 17.3
10 2501 semt Bl 1Al = 10 (173
Proof. We have
) :
K = inf v, A
LLT T A jaghi=1, |A,f\lsl+y| nAlos
> inf ¥y Al oo
At [Aloo>1, [Al=2+y
! inf |, Al (by h ity)
= - in omogenei
S At Bzt 18y e Y senely
1 v, A
== inf A oo—l rAlog
S A |Aloo=1, |AL <@24+y)s |A|oo
1
> — inf ¥, Al (by homogeneity)
S A |Aloo=1, |A1 =2+V)s]|Aloo
1 1, 4]
= - in
S A |Alo=1, [Ah =4y P
1 . .
= — min inf VAl - O

§ k=l...p { A Ax=1, |Al|<Q+y)s
Note that the random variable KYO) (s) depends only on the observed data. It is not
difficult to see that it can be obtained by solving p linear programs. For more details
and further results on the sensitivity characteristics, see Gautier and Tsybakov [12].

17.5 Bounds on the Estimation and Prediction Errors

In this section, we use the notation A £ D_l(,é —pB).Let0 < @ < 1 be a given
constant. We choose the tuning parameter r in the definition of D as follows:

. 2log(4p/a)
= ,/—n .

Theorem 17.1. Let, foralli = 1,...,n,andk = 1,..., p, the random variables
Xyu; be symmetric. Let Q* > 0 be a constant such that



200 E. Gautier and A.B. Tsybakov

( max_ i Zxklul *) <a/2. (17.4)

Assume that |J(B*)| <s, and set in (17.1)

c= (2”(+1)r (17.5)
Ky’ ()

where y is a positive number. Then, with probability at least 1 — «, for any y > 0
and any B such that (B, &) is a solution of the minimization problem (17.1) with ¢

defined in (17.5), we have the following bounds on the £, estimation error and on
the prediction error:

Al < (J/+2)(2J/+1)«/_ 17.6)
' y)(s) ’ '
2 )%
AT, A < <(” +2)(2(’;)+ DY )rz. 17.7)
0 (5)

Proof. Set
O(p) £ max “‘Zxkl(y, —x!'B)%,

and define the event

gz{%
|

DX'U

fr\/Q(ﬁ*)}
<ryOB*), k= 1,...,p§ .

oo

n
dik
— E Xkilli
n 4

i=1

Then

{ , lxklul «/_ }
V i= 1(-xk1uz

and the union bound yields

P(g‘)<ZP<\/% f) (17.8)
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We now use the following result on deviations of self-normalized sums due to
Efron [11].

Lemma 17.1. If n,...,n, are independent symmetric random variables, then

2

1 n
7 2ui=11i t
Mzt SZexp(_nT)’Vt>O‘

;% Z?:l 771‘2

P

For each of the probabilities on the right-hand side of (17.8), we apply Lemma 17.1
with 7; = xju;. This and the definition of r yield P(G°) < «/2. Thus, the event G
holds with probability at least 1 — /2. On the event G we have

Al =

%DXT(Y - Xﬁ)' + ‘%DXT(Y — XB%)

(o]

1
<ré+ '—DXTU (17.9)
n

o0

<r(o+own)

<20+ (6 - Vo) |
Inequality (17.9) holds because (,3 ,0) belongs to the set D by definition. Notice
that, on the event G, (,3* v Q (,3*)) belongs to the set D. On the other hand, (,3, 6)
minimizes the criterion |D_1 B \1 + co on the same set D. Thus, on the event G,

‘D_IB‘I +¢6 < DB + ¢y O(B%). (17.10)

This implies, again on the event G,

'W"A'wf’{zvéw*wé > (eatsi|-fahf) - > W@

keJ(B*) keJ(p*)¢

<r (2006 + 2 asg), ) (17.11)

where B}, ,3k are the kth components of 8*, ,3 . Similarly, (17.10) implies that, on
the event G,
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Aspey] = D ‘dk_kllék‘

keJ(B*)c

2> (‘dk_klﬁﬂ—‘dk_kl,ék‘)-i-c(\/é(ﬁ*)_(AT)
keJ(B*)
. /_Q(ﬂ*). (17.12)

We now distinguish between the following two cases.

Case 1: ¢4/ Q(,B*) <y |Aj(ﬁ*)|1. In this case (17.12) implies

<|Aspn|, +

|Aspere|, < (L+p)|Asepn),

Thus, A € C).,)

on the event G. By definition of Ki?/;(ﬁ*)’](ﬂ*) and (17.3),
4 YAl _ %Al
|Asn, = ) =g
Ky g%y, 08%) Ky’ (5)

This and (17.11) yield

|Aspn], <

Case 2: ¢4/ Q(,B * - Then, obviously,

<<\ /OB
Combining the two cases we obtain, on the event G,

—1
~ 2r r c
| = Q(f*) max (y)( ) ( (y)(s))+ S (17.13)

CK'o

2«@@%(1 . )*
)],

(V)( ) CK?;))

AVI)

In this argument, ¢ > 0 and y > 0 were arbitrary. The value of ¢ given in (17.5)
is the minimizer of the right-hand side of (17.13). Plugging it in (17.13) we find
that, with probability at least 1 — o/2,

), < P HERCrEDr [5 60

(}’)( )

where we have used (17.12). Now, by (17.4), Q(8*) < O* with probability at
least 1 — /2. Thus, we get that (17.6) holds with probability at least 1 —«. Next,
using (17.11) we obtain that, on the same event of probability at least 1 — «,
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Qy+1)r —
[V Al = T\/ 0.

Combining this inequality with (17.6) yields (17.7). O
Discussion of Theorem 17.1.

1. In view of Proposition 17.1, Ki?’;(ﬂ*“(ﬂ*) > 2+ y)_zlcl(é)ﬂﬁ*)/s. Also, it is

easy to see from Proposition 17.2 that K:?g (s) is of the order 1/s when ¥, is the
identity matrix and p >> s (this is preserved for ¥, that are small perturbations
of the identity). Thus, the bounds (17.6) and (17.7) take the form

1 1
A, 56<s\/ Og”), A%AsC(ﬂ),
n n

for some constant C, and we recover the usual rates for the £, estimation and for
the prediction error respectively; cf. Bickel et al. [6].

2. Theorem 17.1 does not assume that the xy; are independent from the u;. The only
assumption is the symmetry of xi;u;. However, if the xy; are independent from
u;, then by conditioning on x;; in the bound for P(G), it is enough to assume the
symmetry of the u;. Furthermore, while we have chosen the symmetry since it
makes the conditions of Theorem 17.1 simple and transparent, it is not essential
for our argument to be applied. The only point in the proof where we use the
symmetry is the bound for the probability of deviations of self-normalized sums
P(G). This probability can be bounded in many other ways without the symmetry
assumption; cf., e.g., Gautier and Tsybakov [12]. It is enough to have E[x;u;] =
0 and a control, uniformly in k, of the ratio

(Z:’:l E[x%u?]) 1/2
(ZLI E[|xkiui |2+5]) 1/(2+98)

for some § > 0, cf. [13] or [5].

3. The quantity Q* is not present in the definition of the estimator and is needed
only to assess the rate of convergence. It is not hard to find Q* in various
situations. The simplest case is when dj;, = 1 and the random variables x;; and
u; are bounded uniformly in k, i by a constant L. Then we can take Q* = L*.
If only x;; are bounded uniformly in k by L, condition (17.4) holds when
P(LY0_ u? > Q*/L?) < /2, and then for Q* to be bounded it is enough to
assume that the #; have a finite second moment. The same remark applies when
dy = (max;=1._» |xk,-|)_1, with an advantage that in this case we guarantee that
Q* is bounded under no assumption on xy;.

4. The bounds in Theorem 17.1 depend on y > 0 that can be optimized. Indeed, the

functions of y on the right-hand sides of (17.6) and (17.7) are data-driven and
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can be minimized on a grid of values of y. Thus, we obtain an optimal (random)
value y = p, for which (17.6) and (17.7) remain valid, since these results hold
for any y > 0.
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Abstract During the past few years there has been an explosion of interest in
learning methods based on sparsity regularization. In this chapter, we discuss a
general class of such methods, in which the regularizer can be expressed as the
composition of a convex function w with a linear function. This setting includes
several methods such as the Group Lasso, the Fused Lasso, multi-task learning and
many more. We present a general approach for solving regularization problems of
this kind, under the assumption that the proximity operator of the function w is
available. Furthermore, we comment on the application of this approach to support
vector machines, a technique pioneered by the groundbreaking work of Vladimir
Vapnik.
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18.1 Introduction

In this chapter, we address supervised learning methods which are based on the
optimization problem

min { f(x) + (o)} (18.1)

where the function f measures the fit of a vector x (linear predictor) to available
training data and g is a penalty term or regularizer which encourages certain types of
solutions. Specifically, we let f(x) = E(y,Ax), where E : R* x R’ — [0, 00) is an
error function, y € R is a vector of measurements and 4 € R*4 is a matrix whose
rows are the input vectors. This class of regularization methods arise in machine
learning, signal processing and statistics and have a wide range of applications.

Different choices of the error function and the penalty function correspond to
specific techniques. In this chapter, we are interested in solving problem (18.1)
when f is a strongly smooth convex function (such as the square error E(y,Ax) =
|y — Ax||3) and the penalty function g is obtained as the composition of a “simple”
function with a linear transformation B, that is,

g(x) = o(Bx) , (18.2)

where B is a prescribed m x d matrix and w is a nondifferentiable convex function
on R?. The class of regularizers (18.2) includes a variety of methods, depending on
the choice of the function @ and of matrix B. Our motivation for studying this class
of penalty functions arises from sparsity-inducing regularization methods which
consider  to be either the £; norm or a mixed £;-£, norm. When B is the identity
matrix and p = 2, the latter case corresponds to the well-known Group Lasso
method [36], for which well-studied optimization techniques are available. Other
choices of the matrix B give rise to different kinds of Group Lasso with overlapping
groups [15, 38], which have proved to be effective in modelling structured sparse
regression problems. Further examples can be obtained by considering composition
with the £; norm; for example, this includes the Fused Lasso penalty function [31]
and the graph prediction problem of Herbster and Lever [13].

A common approach to solving many optimization problems of the general
form (18.1) is via proximal-gradient methods. These are first-order iterative
methods, whose computational cost per iteration is comparable to gradient descent.
In some problems in which g has a simple expression, proximal-gradient methods
can be combined with acceleration techniques [22,25, 32] to yield significant gains
in the number of iterations required to reach a certain approximation accuracy
of the minimal value. The essential step of proximal-gradient methods requires
the computation of the proximity operator of function g; see Definition 18.1
below. In certain cases of practical importance, this operator admits a closed form,
which makes proximal-gradient methods appealing to use. However, in the general
case (18.2) the proximity operator may not be easily computable.
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We describe a general technique to compute the proximity operator of the
composite regularizer (18.2) from the solution of a fixed-point problem, which
depends on the proximity operator of the function @ and the matrix B. This problem
can be solved by a simple and efficient iterative scheme when the proximity operator
of w has a closed form or can be computed in a finite number of steps. When f is
a strongly smooth function, the above result can be used together with Nesterov’s
accelerated method [22,25] to provide an efficient first-order method for solving the
optimization problem (18.1).

The chapter is organized as follows. In Sect. 18.2, we review the notion of prox-
imity operator, discuss useful facts from fixed point theory and present a convergent
algorithm for the solution of problem (18.1) when f is a quadratic function followed
by an algorithm to solve the associated optimization problem (18.1). In Sect. 18.3,
we discuss some examples of composite functions of the form (18.2), which are
valuable in applications. In Sect. 18.4 we apply our observations to support vector
machines and obtain new algorithms for the solution of this problem. Finally,
Sect. 18.5 contains concluding remarks.

18.2 Fixed Point Algorithms Based on Proximity Operators

In this section, we present an optimization approach which uses fixed point
algorithms for nonsmooth problems of the form (18.1) under the assumption (18.2).
We first recall some notation and then move on to present an approach to compute
the proximity operator for composite regularizers.

18.2.1 Notation and Problem Formulation

We denote by (-, -) the Euclidean inner product on R and let | - ||, be the induced
norm. If v : R — R, for every x € R? we denote by v(x) the vector (v(x;))?_,.

For every p > 1, we define the £, norm of x as || x|, = (Z;Ll |x,<|P)§.

As the basic building block of our method, we consider the optimization
problem (18.1) in the special case when f is a quadratic function and the
regularization term g is obtained by the composition of a convex function with a
linear function. That is, we consider the problem

1
min EyTQy—xTy +w(By):y e R | (18.3)

where x is a given vector in R? and Q a positive definite d x d matrix. The
development of a convergent method for the solution of this problem requires the
well-known concepts of proximity operator and the subdifferential of a convex
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function. Let us now review some of the salient features of these important notions
which are needed for the analysis of problem (18.3).
The proximity operator on a Hilbert space was introduced by Moreau in [20].

Definition 18.1. Let w be a real-valued convex function on R?. The proximity
operator of o is defined, for every x € R, by

1
prox, (x) := argmin §||y —x||% +w(y):yeRIY . (18.4)

The proximity operator is well defined, because the above minimum exists and is
unique.

Recall that the subdifferential of  at x is defined as dw(x) = {u:u € R, (y —
x,u) + o(x) < w(y), Yy € RY}. The subdifferential is a nonempty compact and
convex set. Moreover, if w is differentiable at x then its subdifferential at x consists
only of the gradient of w at x.

The relationship between the proximity operator and the subdifferential of w is
essential for algorithmic development for the solution of (18.3); see [2,9, 19, 21].
Generally the proximity operator is difficult to compute since it is expressed
as the minimum of a convex optimization problem. However, there are some
rare circumstances in which it can be obtained explicitly; for example, when
w(x) is a multiple of the £; norm of x, the proximity operator relates to soft
thresholding, and moreover a related formula allows for the explicit identification of
the proximity operator for the £, norm; see, for example, [2,9, 19]. Our optimization
problem (18.3) can be reduced to that of the identification of the proximity operator
for the composition function wo B. Although the prox of w may be readily available,
it may still be a computational challenge to obtain the prox of w o B. We consider
this essential issue in the next section.

18.2.2 Computation of a Generalized Proximity Operator
with a Fixed Point Method

In this section we consider circumstances in which the proximity operator of @ can
be explicitly computed in a finite number of steps and seek an algorithm for the
solution of the optimization problem (18.3).

As we shall see, the method proposed here applies for any positive definite
matrix Q. This will allow us in a future publication to provide a second-order
method for solving (18.1). For the moment, we are content with focusing on (18.3)
by providing a technique for the evaluation of prox,, .

First, we observe that the minimizer y of (18.3) exists and is unigue. Indeed, this
vector is characterised by the set inclusion

0y c€x—BTdw(BY) .
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Algorithm 6 Proximal-gradient & fixed point algorithm.
X| < 0
fort=1,2,... do
Compute x4 < ProXgop (x, — %Vf(x,))
by the Picard process.
end for

To make use of this observation, we introduce the affine transformation A
R” — R™, defined, for fixed x € R, A > 0, at z € R” by

Az:= (I —ABQ 'B")z + BQO 'x,
and the nonlinear operator H : R™ — R"™,
H = (1 —prox%) oA4. (18.5)

The next theorem from [2] is a natural extension of an observation in [19], which
only applies to the case Q = 1.

Theorem 18.1. Ifw is a convex function on R, B € R4, x € R?, X is a positive
number, the operator H is defined as in (18.5), and y is the minimizer of (18.3) then

y=0""(x~1Bv)

if and only if v € R™ is a fixed point of H.

This theorem provides us with a practical tool to solve problem (18.3) numeri-
cally by using the Picard iteration relative to the nonlinear mapping H. Under an
additional hypothesis on the matrix BQ™! BT, the mapping H is non-expansive;
see [2]. Therefore, Opial’s Theorem [37] allows us to conclude that the Picard
iterate converges to the solution of (18.3); see [2, 19] for a discussion of this issue.
Furthermore, under additional hypotheses the mapping H is a contraction. In that
case, the Picard iterate converges linearly.

We may extend the range of applicability of our observations and provide a fixed
point proximal-gradient method for solving problem (18.1) when the regularizer
has the form (18.2) and the error f is a strongly smooth convex function, that is,
the gradient of f, denoted by V £, is Lipschitz continuous with constant L. So far,
the convergence of this extension has yet to be analyzed. The idea behind proximal-
gradient methods—see [9, 25, 32] and references therein—is to update the current
estimate of the solution x, using the proximity operator of g and the gradient of f.
This is equivalent to replacing f with its linear approximation around a point which
is a function of the previous iterates of the algorithm. The simplest instance of this
iterative algorithm is given in Algorithm 1-6. Extensions to acceleration schemes
are described in [2].
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18.2.3 Connection to the Forward-Backward Algorithm

In this section, we consider the special case Q = [ and interpret the Picard iteration
of H in terms of a forward-backward algorithm in the dual; for a discussion of the
forward-backward algorithm, see for example [9]
The Picard iteration is defined as
Vi1 < (I —proxe ) (( — ABBT)v, + Bx). (18.6)
We first recall the Moreau decomposition—see, for example, [9] and references
therein—which relates the proximity operators of a lower semicontinuous convex
function ¢ : R”™ — R U {+o00} and its conjugate,
I = prox, + prox,« . (18.7)
Using Eq. (18.7), the iterative step (18.6) becomes
Vi1 < PrOX gy (vi — (ABB"v; — Bx))

which is a forward-backward method. We can further simplify this iteration by
introducing the vector z; := Av, and obtaining the iterative algorithm

1
41 < A prox(%)* (XZr - (BBTZt - Bx)) .
Using the readily verified formulas

1
T prox;, oAl = prox

%gol]
and

(5) = oo

(see, for example, [4]), we obtain the equivalent forward-backward iteration
Zr+1 < Prox,,«(zz — (ABB'z; — ABx)) .

This method is a forward-backward method of the type considered in [8, Algo-
rithm 10.3] and solves the minimization problem

1
min §||BTz—x||2 +w'(z):zeR"
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This minimization problem in turn can be viewed as the dual of the primal problem
R d
min §||u|| —{(x,u) + w(Bu) :u e R (18.8)

by using Fenchel’s duality theorem; see, for example, [4]. Moreover, the primal and
dual solutions are related through the conditions —B"Z = &t — x and Z € dw(Bi1),
the first of which implies that x — AB 9 equals the solution of the proximity
problem (18.8), that is, equals prox,.z(x).

18.3 Examples of Composite Functions

In this section, we provide some examples of penalty functions which have appeared
in the literature that fall within the class of linear composite functions (18.2).

We define for every d € N, x € R? and J C {1,...,d}, the restriction of the
vector x to the index set J as x; = (x; : i € J). Our first example considers the
Group Lasso penalty function, which is defined as

k
weL(x) = Y [x,]l2. (18.9)
(=1

where the Jy are prescribed subsets of {1, ..., d} (also called the “groups”) such that
U]lf=1 Je ={1,...,d}. The standard Group Lasso penalty—see, for example, [36]—
corresponds to the case where the collection of groups {J; : 1 < £ < k} forms a
partition of the index set {1, ..., d}, that is, the groups do not overlap. In this case,
the optimization problem (18.4) for ® = wgL decomposes as the sum of separate
problems, and the proximity operator is readily obtained by using the proximity
operator of the £,-norm to each group separately. In many cases of interest, however,
the groups overlap and the proximity operator cannot be easily computed.

Note that the function (18.9) is of the form (18.2). We let d; = |J¢|, m =
le=l d; and define, for every z € R™, w(z) = Z]Z:l lze|l2, where, for every £ =

I,....,k weletzy = (z : Z‘j;ll di <i < Zledj). Moreover, we choose
BT =[B],...,B/], where By is a dy x d matrix defined as
1if j = Joli
(Bl)ij — J Z[]

0 otherwise

where for every J C {1,...,d} andi € {1,...,|J|}, we denote by J[i] the i-th
largest integer in J .

The second example concerns the Fused Lasso [31], which considers the penalty
function x — g(x) = Z;j;ll |x; — xi41]. This function falls into the class (18.2).
Indeed, if we choose w to be the £; norm and B the first-order divided difference
matrix
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we get back g. The intuition behind the Fused Lasso is that it favors vectors which
do not vary much across contiguous components. Further extensions of this case
may be obtained by choosing B to be the incidence matrix of a graph, leading to the
penalty Z’ZI ek |x; —x|. This is a setting which is relevant, for example, in online
learning over graphs [13, 14].

The next example considers composition with orthogonally invariant (OI) norms.
Specifically, we choose a symmetric gauge function #, that is, a norm s which
is both absolute and invariant under permutations [35], and define the function
 : R" — [0, 00) at X by the formula w(X) = h(o (X)), where o(X) € [0, c0)”
and r = min(d,n) is the vector formed by the singular values of matrix X
in non-increasing order. An example of OI-norm is the Schatten p-norm, which
corresponds to the case where w is the £,-norm. The next proposition provides a
formula for the proximity operator of an OI-norm. A proof can be found in [2].

Proposition 18.1. With the above notation, it holds that
Prox,,q, (X) = Udiag (prox, (a(X))) V'’

where X = Udiag(o(X))V " and U and V are the matrices formed by the left and
right singular vectors of X, respectively.

We can compose an OI-norm with a linear transformation B, this time between
two spaces of matrices, obtaining yet another subclass of penalty functions of
the form (18.2). This setting is relevant in the context of multi-task learning.
For example, in [1] % is chosen to be the frace or nuclear norm and a specific
linear transformation which models task relatedness is considered. Specifically, the
regulariser is given by g(X) = |lo (X(I — 1eeT))|,, where e € R? is the vector
all of whose components are equal to 1.

18.4 Application to Support Vector Machines

In this section, we turn our attention to the important topic of support vector
machines (SVMs), which are widely used in data analysis. SVMs were pioneered by
the fundamental work of Vapnik [5, 10,33] and inspired one of us to begin research
in machine learning [11,26,27]. For that we are all very grateful to Vladimir Vapnik
for his fundamental contributions to machine learning.

First, we recall the SVM primal and dual optimization problems; see [33]. To
simplify the presentation we only consider the linear version of SVMs. A similar
treatment using feature map representations is straightforward and so will not be
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discussed here, although this in an important extension of practical value. Moreover,
we only consider SVMs for classification, but our approach can be applied to SVM
regression and other variants of SVMs which have appeared in the literature.

The optimization problem of concern here is given by

m
1
min{C Y V(yw'x;) + E||w||2 cweR? (18.10)

i=1

where V(z) = max(0,1 — z), z € R, is the hinge loss and C is a positive
parameter balancing empirical error against margin maximization. We let x; € R?,
i €{l,...,m}, be the input data and y; € {—1, +1} be the class labels.

Problem (18.10) can be viewed as a proximity operator computation of
the form (18.3), with Q = I, x = 0, w(z) = CY /L, V(z) and B =
[V1X1...YmXm]". The proximity operator of the hinge loss is separable across
the coordinates and simple to compute. In fact, for any ¢ € R and i > 0, it is given
by the formula

prox,., () = min(¢ + . max(¢, 1)),

Hence, we can solve problem (18.10) by the Picard iteration, namely
Vig1 (1 — prox%) ((I — ABB)v,) (18.11)

with A satisfying 0 < A < which ensures that the nonlinear mapping

Amax (2333 ’
is strictly nonexpansive. Note that v, € R™ and that this iterative scheme maybe
interpreted as acting on the SVM dual; see Sect. 18.2.3. In fact, there is a simple
relation to the support vector coefficients given by the equation v = _Tla.
Consequently, this algorithmic approach is well suited when the sample size m
is small compared to the dimensionality d. An estimate of the primal solution, if
required, can be obtained by using the formulaw = —AB Tv.

Recall that the dual problem of (18.10) is given [33]
1
min §||BTa||2 —1Ta: ael0,C]"} . (18.12)

This problem can be seen as the computation of a generalized proximity operator
of the type (18.3). To explain what we have in mind we use the notation © as
the element-wise product between matrices of the same size (Schur product) and
introduce the kernel matrix K = [x1, ..., X, " [x1,..., Xn].

Using this terminology, we conclude that problem (18.12) is of the form (18.3)
with 0 = K ® yy", x = 1 (the vector of all 1s), B = I and @ = wc¢, where
wc(a) =0ifa € [0, C]" and w(a) = +o0 otherwise. Furthermore, the proximity
operator for w is given by the projection on the set [0, C]™, that is, prox,,.(«) =
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min(C, max(0, «)). These observations yield the Picard iteration
vip1 < (I —prox,. ) (I —MK" oy o + (K oyHl)  (18.13)

with 0 < A < 2 Ay (K). This iterative scheme requires that the kernel matrix K be
invertible, which is frequently the case, for example, in the case of Gaussian kernels.
Another requirement is that either K~! be precomputed or a linear system involving
K be solved at every iteration, which limits the scalability of this scheme to very
large samples. In contrast, the iteration (18.11) can always be applied, even when K
is not invertible. In fact, when K, and equivalently BB, is invertible, both iterative
methods (18.11), (18.13) converge linearly at a rate which depends on the condition
number of K; see [2, 19].

Recall that algorithm (18.11) is equivalent to a forward-backward method in
the dual; see Sect. 18.2.3. Thus, an accelerated variant akin to Nesterov’s optimal
method and FISTA [3] could also be used. However, in the case of an invertible
kernel matrix, both versions converge linearly [25], and hence it is not clear
whether there is any practical advantage from the Nesterov update. Furthermore,
algorithm (18.13) could also be modified in a similar way.

On the other hand, if m > d, we would directly attempt to solve the primal
problem. In this case, the Nesterov smoothing method can be employed, [24]. An
advantage of such a method is that it only stores O(d) variables, even though it
needs O(md) computations per iteration. The method described above, based on the
Picard iteration, requires min(O (md), O(m?)) cost per iteration and stores O(m)
variables.

Let us finally remark that iterative methods similar to (18.11) or (18.13) can be
applied to ¢, regularization problems other than SVMs, provided that the proximity
operator of the corresponding loss function is available. Common choices for the
loss function, other than the hinge loss, are the logistic and square loss functions
leading to logistic regression and least squares regression, respectively. In particular,
in these two cases, the primal objective (18.10) is both smooth and strongly convex
and hence a linearly convergent gradient descent or accelerated gradient descent
method can be used [23], regardless of the conditioning of the kernel matrix.

18.5 Conclusion

We presented a general approach to solve a class of nonsmooth optimization
problems, whose objective function is given by the sum of a smooth term and
a nonsmooth term which is obtained by a linear function composition. The
prototypical example covered by this setting is a linear regression regularization
method, in which the smooth term is an error term and the nonsmooth term is a
regularizer which favors certain desired parameter vectors. An important feature
of our approach is that it can deal with a rich class of regularizers and, as shown
numerically in [2], is competitive with the state-of-the-art methods. Using these
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ideas, we also provided a fixed-point scheme to solve support vector machines.
Although numerical experiments have yet to be done, we believe this method is
simple enough to deserve attention by practitioners.

We believe that the method presented here should be thoroughly investigated both
in terms of convergence analysis, where ideas presented in [34] may be valuable, and
numerical performance with other methods, such as alternate direction of multipliers
(see, for example, [6]), block coordinate descent, alternate minimization and others.
Finally, there are several other machine learning problems where ideas presented
here apply. For example, in that regard we mention multiple kernel learning (see, for
example, [17,28-30] and references therein), some structured sparsity regularizers
[16, 18] and multi-task learning (see, for example, [1, 7, 12]). We leave these
tantalizing issues for future investigation.
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Chapter 19
Sharp Oracle Inequalities in Low Rank
Estimation

Vladimir Koltchinskii

Abstract This chapter deals with the problem of penalized empirical risk mini-
mization over a convex set of linear functionals on the space of Hermitian matrices
with convex loss and nuclear norm penalty. Such penalization is often used in low
rank matrix recovery in the cases when the target function can be well approximated
by a linear functional generated by a Hermitian matrix of relatively small rank
(comparing it with the size of the matrix). Our goal is to prove sharp low rank oracle
inequalities that involve the excess risk (the approximation error) with constant
equal to 1 and the random error term with correct dependence on the rank of the
oracle.

19.1 Main Result

About 40 years ago, Vapnik and Chervonenkis pioneered the “structural risk
minimization” method (see Vapnik [15] and references therein) that was later
developed into penalized empirical risk minimization with more general complexity
penalties. This method has become one of the most powerful estimation tools
in modern statistics and machine learning. In this paper, a version of penalized
empirical risk minimization in the problem of estimation of large matrices of
relatively small rank, where the nuclear norm is used as a complexity penalty, will
be discussed.

Let (X, Y) be a couple, where X is a random variable in the space H,,, of m x m
Hermitian matrices and Y is a random response variable with values in a Borel
subset T C R. Let P be the distribution of (X, Y) and let /T denote the marginal
distribution of X. The goal is to predict ¥ based on an observation of X. More
precisely, let £ : T x R > Ry be a measurable loss function. We will assume in
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what follows that, for all y € T, £(y;-) is convex. Given a measurable function
f +H,, — R (a “prediction rule”), denote (£ ® f)(x,y) := £(y; f(x)) and define
the risk of f as

P(le f)=ELY: f(X)).

Then, one can view the prediction problem as risk minimization: the goal is to
find a function fi : H,, — R that minimizes the risk P({ e f) over the class
of all measurable prediction rules f : H,, — R (provided that such a function
exists), or, more realistically, to find a reasonably good approximation of f,. To
this end, one wants to find a function f for which the excess risk £(f) :=
P(le f)—infem, ~r P(£eg)is small enough. Of course, the risk P({e f) depends
on the distribution P of (X, Y'), which is, most often, unknown. In such cases, the
problem has to be solved based on the training data (X, Y1), ..., (X,,Y,), which
consists of n independent copies of (X, Y'). We will be especially interested in the
problems in which matrices are large and the optimal prediction rule fx can be
well approximated by a linear function fs(-) := (S, ), where S € H,, is a low rank
Hermitian matrix, that is, when there exists a low rank matrix S (an oracle) such that
the excess risk £(fs) is small. Here, and in what follows, (-, -) denotes the Hilbert-
Schmidt (Frobenius) inner product in H,,. In such problems, we would like to find
an estimator S based on the training data (X1, Y1), ..., (X}, Y;;) such that the excess
risk £( f¢) of the estimator can be bounded from above by the excess risk £( fs) of
an arbitrary oracle S € H,, plus an error term that properly depends on the rank
of the oracle. The resulting bounds on the excess risk £( f¢) of the estimator S are
supposed to hold with a guaranteed high probability and they are often called “low
rank oracle inequalities.” We will consider below the rather traditional estimator S
based on penalized empirical risk minimization with a nuclear norm penalty:

A

§ .= argminSED[Pn(e.fS)+e||S||1], (19.1)

where D C H, is a closed convex set, 0 € D, P, is the empirical distribution based
on the training data (X, Y)), ..., (X,,Y,) and

Py(Le fs) =n" Y (Y fs (X))

=1

is the corresponding empirical risk with respect to the loss £, ||S|; := t(|S]) =
tr(\/ﬁ) is the nuclear norm of S and ¢ > 0 is the regularization parameter.
Clearly, optimization problem (19.1) is convex. In fact, it is a standard convex
relaxation of penalized empirical risk minimization with a penalty proportional to
the rank of S, denoted in what follows by rank(.S), which is not a computationally
tractable problem. Such convex relaxations have been extensively studied in the
recent years (see [3-6, 8, 10-13] and references therein).
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To state our main result (a sharp low rank oracle inequality for the estimator S ),
we first introduce some assumptions and notations. In what follows, assume that
for some constant a > 0, |(S, X}| < a a.s., S € D. It will be also assumed that
£ is a convex loss of quadratic type. More precisely, suppose that, for all y € T,
£(y,-) is a twice continuously differentiable convex function in [—a, a] with Q :=
sup,er £(y;0) < 400,

L(a) := sup sup [|€’(y;0)| + Z//(y;u)a] < 400

VET u€l—a,a)]
and

7(a) := inf inf ]6//(y;u) > 0.

VET u€l—a,a

Here £, £” denote the first and the second derivatives of the loss £(y, u) with respect
to u. Many important losses in regression and in large margin classification problems
are of quadratic type. In particular, if £(y;u) = (y — u)?, y,u € [—a, a] (regression
with quadratic loss and with bounded response), then L(a) = 4a and t(a) = 2.
Exponential loss £(y,u) = e ™", y € {—1,1}, u € [—a,a], often used in large
margin methods for binary classification, is also of quadratic type.

In what follows, || - || denotes the Hilbert—-Schmidt (Frobenius) norm of
Hermitian matrices (generated by the inner product (-,-)) and || - || denotes the
operator norm.

We will use certain characteristics of matrices S € D that are related to matrix
versions of the restricted isometry property (see, e.g., [8], Chap.9 and references
therein). Let S € ID be a matrix with spectral representation S = Z;‘:l Aj(p; ®
¢;), where r := rank(S), A; are non-zero eigenvalues of S (repeated with their
multiplicities) and ¢; € C™ are the corresponding orthonormal eigenvectors. In
what follows, we denote

sign(S) := Y sign(A;)(¢; ® ¢;). L :=supp(S) :=Ls.(d1..... ).
j=1

Let Py, Pj‘ be the following orthogonal projectors in the space (H,, (-, -)):
Pr(A):=A— P, LAP, 1, Pi(A):= P, AP, ., AcH,

(here Lt is the orthogonal complement of L). Clearly, we have A = P A +

Pj'A, A € H,,, providing a decomposition of a matrix A into a “low rank part”

PrA and a “high rank part” Pj-A. Given b > 0, define the following cone in the
space H,,

K(D: L:b) = {4 € Ls.D) : [PEA)1 < bIPLA |
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that consists of matrices A with a “dominant” low rank part. Let

BO@: L: 1) = inf{B > 0: [PL(A)lz < Bl fallaimy: A € KOs Lib)}.
This quantity is known to be bounded from above by a constant in the case when
the matrix form of the “distribution-dependent” restricted isometry condition holds

for r = rank(S) (see [8], Sect.9.1). In what follows, we will use the following
characteristic of oracle S:

B(S) == B (D; L MT), L := supp(S).
For arbitrary t > 0 and S € D, denote
1(S;e) =1 + 31og(B 10g2(||S||1 vavevQvav(L@) v 2))
where B > 0 is a constant. Let

1 n
=E|— e X;
|7 e,

)

where {¢; } are i.i.d. Rademacher random variables independent of {X}.

Theorem 19.1. There exist a numerical constant B > 0 in the definition of t(S; €)
and numerical constants C, D > 0 such that for all t > 0 and all

&> M (19.2)
> 2202, |
with probability at least 1 — e~
S
05) < [0+ (s PO mank$) A 2l h) + €@ 52|
(19.3)

where

C(a) = c( ‘(@) \/ L )a)

To control the size of expectation A involved in the threshold (19.2) on € one can
use exponential inequalities for sums of independent random matrices that go back
to [1]. Namely, the following upper bound easily follows from a noncommutative
Bernstein type inequality (see [14]) by integrating its exponential tail bounds:
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A< 4(0X v1og(2m) \/ Ux log\(/ZEm))’

where 0% := |EX?| and Uy := H X HL . This bound can be easily applied to

various specific sampling models used in low rank matrix recovery, such as sampling
from an orthonormal basis that includes, in particular, matrix completion (see, e.g.,
[8], Chap.9), leading to more concrete results.

The main feature of oracle inequality (19.3) is that it involves the approximation
error term E( fs) (the excess risk of the oracle S) with constant equal to 1. In
this sense, bound (19.3) is what is usually called a sharp oracle inequality. Most
low rank oracle inequalities for the nuclear norm penalization method proved in
the recent literature are not sharp in the sense that the oracle excess risk £( fs)
is involved in these bounds with a constant strictly larger than 1. Sharp oracle
inequalities are especially important in the cases when for all oracles in S € D
the approximation error is not particularly small. The first sharp oracle inequalities
for the nuclear norm penalization method were proved in [10]. This was done for a
“linearized version” of the least squares method with nuclear norm penalty. Under
the boundedness assumption |(S, X)| < a a.s., S € D for some a > 0 (the same
assumption is used in this chapter), the error bounds without an approximation error
term for the usual matrix Lasso (that is, the nuclear norm penalized least squares
method) were proved in [7]. Earlier, the same problem was studied in [11] under
additional assumptions on the so-called “spikiness” of the target matrices. In [9],
a sharp oracle inequality for the same method was proved in the case of the noisy
matrix completion problem with uniform design (in fact, this result was deduced
from more general oracle bounds for estimators of low rank smooth kernels on
graphs). In this chapter, we establish sharp oracle inequalities for a version of
the problem with more general losses of quadratic type and for general design
distributions. Note also that the main part of the random error term of bound (19.3)
(that is, the term % B*(S)rank(S)e* A 2¢||S|1) depends correctly on the rank of
the oracle. This follows from the minimax lower bounds proved in [10] (in fact, the
form of the random error term in (19.3) is the same as in that paper).

19.2 Proof of Theorem 19.1

Proof. We start with the following condition that is necessary for S to be a solution
of convex optimization problem (19.1): for some V € 9||S||1,

P, fo)(fs— fs)+e(V,§—8)<0,SeD

(see, e.g., [2], Chap. 2, Corollary 6; see also [8], pp. 198—199). This implies that, for
allS €D
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P o fo)(fs— fs)+e(V,8=S) < (P=P)(l o f)(fs— fs). (194)

Since both S, S € D, we have | fe(X)| <a,|fs(X)| < aas., and since £ is a loss
of quadratic type, it is easy to check that

1
P(l' e f)(fs—fs)=P(Le f5)—P(Le f5)+ ST@Ifs - fsliymy- (19.5)

If P(€e f5) < P(Le f5), the oracle inequality of the theorem holds trivially. So, we
assume in what follows that P(£ e f3) > P({ e fs). Inequalities (19.4) and (19.5)
imply that
1 A A
P(Le f3) + St@l fs=fs|Z,m + (V.8 = 5)
< P(le fs) + (P — P o f)(fs— fs). (19.6)

The following characterization of the subdifferential of the nuclear norm is well
known:

S| = {sign(S) + PH(M): M € H,, |IM|| < 1},

where L = supp(S) (see, e.g., [8], Appendix A.4). By the duality between the
operator and nuclear norms, there exists M € H,, with |M | < 1 such that

(PE(M), S = S) = (M, PH(S — ) = |PEES = )| = IPES |

Then, by the monotonicity of subdifferentials of convex functions, we have, for
V = sign(S) + P (M) € 3| S|, that

(sign($).$ = 8) + [PLS| = (V.§ - 8) < (V.§ - 5).

We now substitute the last bound in (19.6) to get

1 N
P(Le f3) + st@l fs = sl + el P S
< P(Leo fs) +e(sign(S), S — S) + (P — P)(€' ® fo)(fs — fs). (19.7)

The main part of the proof is a derivation of an upper bound on the empirical
process (P — P,)(t" @ f5)(fs — fs). Foragiven S € D and for §;, 8, > 0, denote

A61,8) ={AeD:A4-5 € KD; L;5),
I fa = fsllLam < 1. IPEAlL < 823,



19  Sharp Oracle Inequalities in Low Rank Estimation 223

A1,82.83) ;= {A eD: | fa— fsllLoam < 81,
IPEAlL < 82, [PL(A = S)|li < 83,

A@1.80) ;= {A €D || fa— fsllam < 81 14— S|i < 84},
and
oy (81,8) 1= sup{| (P, — P)(L' @ fa)(fa — f5)] : A € A1, 82)},
G (81,82, 82) 1= sup{| (P, — P)(' @ fa)(fa — f5)] : A € A(51. 6. 85)}.
G (81, 84) := sup{|(P, — P)(L' @ fa)(fa— fs)| : A € A1, 84)}.

Lemma 19.1. Suppose 0 < §, < 8:, k=1,2,3,4. Lett > 0 and

2
=1+ Zlog([logz(S:/S/:)] + 2) + log 3,

f
k=1
3
fi=t+ Zlog([]ogz(Slj/Sk_)] + 2) + log 3,
k=1
fi=t+ Z log<[log2(8,j'/3k_)] + 2) + log 3.
k=14

Then, with probability at least 1 — e™", for all §; €[5, 5;‘], k=123,

@ (81.82) < 2C, L(@)E| E|(v/rank(S)B(S)1 + &2)

+4L(a)s, \/; + 4L(a)a%, (19.8)

i i
@ (81.,82.83) < 2CL(@)E| E|(82 + 83) + 4L(a)d, \/; t4L@a_,

and

y i i
@ (81.84) < 2CL(@)E[ E (|84 + 4L(a)8, \/; +4Lla)a .

where Cy, C, > 0 are numerical constants.

Proof. We will prove in detail only the first bound (19.8). Talagrand’s concentration
inequality (in Bousquet’s form; see [8], p.25) implies that, for all §;,8, > 0, with
probability at least 1 — e~



224 V. Koltchinskii
t t

o (31, 02) < 2Ea,,(81,682) + 2L(a)d14/ — + 4L(a)a—,

n n

where we also used the bounds

[( o f4)(fa— fs)| <2L(a)a,
P o f)°(fa— fs)* < LX@) fa — fslT,am < LA (@)8;

that hold under the assumptions on the loss. The next step is to use standard
Rademacher symmetrization and contraction inequalities (see, e.g., [8], Sects. 2.1
and 2.2) to get

Ea, (81,82) < 16L(a)Esup{|R,(f1— fs)|: A € A(S1,82)}, (19.9)

where R,(f) := >_,&; f(X;), {¢;} being i.i.d. Rademacher random variables

=1
independent of {(X; ,ij)}, and where we also used a simple fact that the Lipschitz
constant of the function u — £'( fs +u)u is upper bounded by 4 L (a). We will bound
the expected sup-norm of the Rademacher process in the right-hand side of (19.9).
Observe that

Rn(fA - fS) = (E,A - S), g = n_l Zngj’
j=1
which implies
|Ry(fa— fs)l < {PLE, PL(A—S)| + {E,PE(A—S)|  (19.10)
< IPLEIPL(A— )2 + IENNPE Al
< 2/ 2tank(S) B E N fa = fs o + IENNPEAlLL

where we used the facts that A — S € K(ID; L; 5) and also that

rank(Pp E) < 2rank(S), |PLE|2 <2+/rank(PLE)||E .

Therefore,

Esup{|R,(fa — fs)| 1 A € A(81,62)}
< E||Z]|2v/2rank(S)B(S)8, + 82). (19.11)

It follows that with some numerical constant C; > 0 and with probability at least

—t
1—e™,
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o, (81,82) < CiL(@)E||E | (y/rank(S)B(S)d1 + 82)
+ 2L - + 4Ll
n n

We will make this bound uniform in §; € [8;,82’ ]. To this end, let 8]£ =
§f277,j = 0,...,[log,(8 /8;7)] + 1. By the union bound, with probability at
least 1 — Le™, forall jx =0,....[log,(§; /8] + 1.k = 1,2,

@, (87',80%) < C\L(@)E|| E|(v/rank(S)B(S)8!" + 6J)

- r
+2L(a)8]'y| — +4L(a)a—,
n n

which implies that, for all §; € [§;,8;], k = 1,2,

n(81.,82) < 2C,L(a)E| E|(v/rank(S)B(S)81+52)

+4L(a)é, \/z + 4L(a)a£.
n n

The proof of the second and the third bounds is similar. For instance, in the case
of the second bound, the only difference is that instead of (19.10) we use

IRy (f1— f)] < IENUPLA=)]1 + [PEA =),
which yields (instead of (19.11))
Esup{|R,(fa — fs)| : A € A(81,82,83)} <E[E|(S2 + 83).

This completes the proof of Lemma 19.1.

Note that

(P =P o f)(fs — f5) < anlll f5 — fslLam: IPES s 1PL(S = S)),
(19.12)

(P =P o f)(fs— f5) <l fs = fsllam: IS = SID).  (19.13)
and also, if S—Se K(D; L; b), then

(P =P o f)(fs = f5) < S5 = fsllLaam: IPES ). (19.14)
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Assume for a while that

I fe = fslliam € 67,671 IPESIH € 85,851 1P (S — ) € [65,87].
(19.15)

First, we substitute (19.13) in boundA(19.6) Aand use the upper bound on &, of
Lemma 19.1. Observe also that, since V' € 9|51,

(V.S =8) < ISl = 18]

Therefore, we get

1
P(Le f3) + 1@ fs = fslLum (19.16)
< Pe fs)+ (ISl = ISI) + &l f5 — fsllzam: IS — SI)

< P(Le fs) +&(ISIh = IS1) + 2GL@E|Z[IS - S|

{ {

+4L(a)ll f5 — fs Lo \/; + 4L(a)a;.
Assume that the constant D in the condition on ¢ satisfies D > 8C,. Then, we have
e > DL(a)An""? > 8C,L(a)E| E|. (19.17)

Using the bound

1 8L%(a) i

AL@I s = fsllaam 5 = gr@ISs = Sl + =575

=

we get from (19.16)

P(te fo) < P(Le f) +e(ISTi—1SI) (19.18)

L*(a)
t(a)

< P(Lo f5)+2¢]S]ls + (

+8||§—S||1+( +4L(a )a)

L*(a)
(a)

We will now substitute (19.12) in bound (19‘72 and use the upper bound on &,, of
Lemma 19.1. We will also bound (sign(S), S — S) as follows:

+4L(a )a):.

|(sign($), S — $)| =|(sign(S), Pr(S — $))|
< [Isign()HIIPLES = )1 < IPLS = S)[l.  (19.19)
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We get

1 A
Ple f3) +5t@llfs = fs 17,y + elPE(S = )i (19.20)

< Pe fs)+e|PL(S =l + @l fs = fslioam: IPES I 1PLS = S
< P(Le fs)+&|PL(S — )l + 2CL@E|E|(IPESIH + [PLS — S)I)

L@ f5 = fs \/; +4L(@ar

We still assume that D > 8C, and, thus, (19.17) holds. Using the bound

f 1 812 7
AL f5 = fsllLoam \/; < Zt(a)llfg = S5y + r(cg) n’
we get from (19.20)
1 A
P(e f5)+ 7@ S5 = fs 1y + el PES = S)l (19.21)

< P fs) +e[PL(S = )i+ ZUPES I+ IPL(S = )

8L%(a)
( (a)

+ 4L(a)a) i
n

If

i _
(SL @ , 4L<a>a)£ > ellPL(S = )l + Z(IPES I+ IPLS = S,
t(a) n 4

we conclude that

16L%(a)
7(a)

which suffices to prove the bound of the theorem. Otherwise, we use the assumption
that P(£ e fo) > P(L e fs) to get the following bound from (19.21):

P(tef) < P(lefs)+ ( . 8L(a)a)’%, (19.22)

~ ~ & ~ ~
e|PH(S = S| < 26| PL(S — )i + E(IIPLL(S =S+ IPL(S = H)-

This yields

1 4 5 A
SEIPEE =) = ZelPeS = ),
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and, hence, S-S e K(ID; L;5). This fact allows us to use the bound on ¢, of
Lemma 19.1. We can modify (19.19) as follows:

|(sign(S), S — S)| = |(sign(S), PL(S — $))|
< |Isign(S)[2[PL(S = $)l2 < vrank($)BS)|| fs — fs | 1acm);

and, instead of (19.20), we get

1 N
P(Le f3) + 5t @I fs = fslym + £IPE Sl (19.23)

< P(L e fs) + e/rank(S)B(S)I fs — fsllL,m) +
2C1 L(@)E|| E || (v/rank(S)BS)Il f5 = fslloam + IPES ) +

+4L(a)|l fs — fsllLoam \/g + 4L(a)a£-
If D > 2Cy, we have ¢ > 2C 1 L(a)E| & ||, and (19.23) implies that
P(Es f5) + 57 @I fs ~ fslbm
< P(te fs)+ 2—()ﬂ (S)rank(S)e” + f(a)llfs SsWLym +

B2 (S)rank(S)e* + éf(a)”fg — fsllZam +

2t(a)

24L%(a) 7 i
@) ; - (a)”fs fg||%2(n)+4L(a)a;.

Therefore, we have

P(le fs) = P(Le fs)

+ i132(S)rank(S)e2 + (24L2(a) + 4L(a)a) 5_. (19.24)
T(a) t(a) n

The bound of the theorem will follow from (19.18), (19.22) and (19.24) (provided
that conditions (19.15) hold).

We have to choose the numbers §,, 8 ]j' ,k = 1,2,3, 4, and establish the bound of
the Atheorern when conditions (19.15) do not hold. First note that, by the definition
of S,

P,(teS)+ ¢S] < P.(£e0) <O,
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implying that ||§ I < £ Next note that

P

IPESI = 1P, S Pl < 18T < 2

and

A A 2
1PL(S = )l <2018 ~ Sl = 22 + 2081,

Obviously, we also have
IS~ 81 = 2 4 s,

Finally, we have | fs — fsllo,qry < 2a (since $.8 € D and I fellLoo
a, |l fsllLe =< a).Due to these facts, we can take

Q 20

8?— = Za, 5;_ = ?, 5;_ = T

0
+ 2|81, 8 == - + IS,

and, with this choice, 8;’, k = 1,2,3,4, are upper bounds on the corresponding
norms in (19.15). We will also choose

L
57 = % 55 = ’(1“8)“ AGF/2).a
55 = % AT /2). 87 = % NG

It is not hard to see that
IvVivi<t(S;e)

for a proper choice of numerical constant B in the definition of 7(S;¢). When
conditions (19.15) do not hold (which means that at least one of the numbers &,
k =1,2,3,4,is not a lower bound on the corresponding norm), we still can use the
bounds

(P =Pl o f)(fs— fs)
<@y (|l fe — fsllLam VST IPES I v 855 I1PL(S — S)i v 65)

(P — P ® fo)(fs = f5) < Gl fs = fsllaam v 873 18 = STh v 87)

instead of (19.12) and (19.13), and, in the case when S—Se K(D; L;5), we can
use the bound
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(P — P o f)(fs — fs) < anlll fs = fslliaum VST IPES |1 v 67)

instead of bound (19.14). It is easy now to modify the proof of (19.16)—(19.24) to
show that in this case we still have

3

- (a)ﬂz(S)rank(S)ez /\25||S||1)

" C(Lz(a) \/ L(a)a) t(S; 6‘)’

7(a) n

which holds with probability at least 1 — e~ and implies the bound of the theorem.

P(Le f5) = Pt f5) + (
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Chapter 20
On the Consistency of the Bootstrap Approach

for Support Vector Machines and Related
Kernel-Based Methods

Andreas Christmann and Robert Hable

Abstract It is shown that bootstrap approximations of support vector machines
(SVMs) based on a general convex and smooth loss function and on a general kernel
are consistent. This result is useful for approximating the unknown finite sample
distribution of SVMs by the bootstrap approach.

20.1 Introduction

Support vector machines and related kernel-based methods can be considered as
a hot topic in machine learning because they have good statistical and numerical
properties under weak assumptions and have demonstrated their often good general-
ization properties in many applications; see, e.g., [10,14,15], and [12]. To the best of
our knowledge, the original SVM approach in [1] was derived from the generalized
portrait algorithm invented earlier in [16]. Throughout the chapter, the term SVM
will be used in the broad sense, i.e., for a general convex loss function and a general
kernel.

SVMs based on many standard kernels, as such the Gaussian RBF kernel,
are nonparametric methods. The finite sample distribution of many nonparametric
methods is unfortunately unknown because the distribution P from which the
data were generated is usually completely unknown and because there are often
only asymptotical results describing the consistency or the rate of convergence
of such methods known so far. Furthermore, there is in general no uniform rate
of convergence for such nonparametric methods due to the famous no-free-lunch
theorem; see [5] and [6]. Informally speaking, the no-free-lunch theorem states that,
for sufficiently malign distributions, the average risk of any statistical (classification)
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method may tend arbitrarily slowly to zero. These facts are true for SVMs. SVMs
are known to be universally consistent and fast rates of convergence are known for
broad subsets of all probability distributions. The asymptotic normality of SVMs
was shown recently by [8] under certain conditions.

Here, we apply a different approach to SVMs, namely Efron’s bootstrap. The
goal of this chapter is to show that bootstrap approximations of SVMs which are
based on a general convex and smooth loss function and a general smooth kernel are
consistent under mild assumptions; more precisely, convergence in outer probability
is shown. This result is useful for drawing statistical decisions based on SVMs, e.g.,
confidence intervals, tolerance intervals and so on.

We mention that both the sequence of SVMs and the sequence of their cor-
responding risks are qualitatively robust under mild assumptions; see [2]. Hence,
Efron’s bootstrap approach turns out to be quite successful for SVMs from several
points of view.

The rest of the chapter has the following structure. Section 20.2 gives a brief
introduction to SVMs. Section 20.3 gives our main result on the consistency of
bootstrap SVMs. The last section contains the proof of the main result and the tools
we need.

20.2 Support Vector Machines

Current statistical applications are characterized by a wealth of large and high-
dimensional data sets. In classification and in regression problems there is a variable
of main interest, often called “output values” or “response”, and a number of
potential explanatory variables, which are often called “input values”. These input
values are used to model the observed output values or to predict future output
values. The observations consist of n pairs (xi, y1), -.., (X, ¥»), which will be
assumed to be independent realizations of a random pair (X, Y). We are interested
in minimizing the risk or obtaining a function f : X — ) such that f(x) is a good
predictor for the response y if X = x is observed. The prediction should be made
in an automatic way. We refer to this process of determining a prediction method as
“statistical machine learning”; see, e.g., [3,10,11, 14, 15]. Here, by “good predictor”
we mean that / minimizes the expected loss, i.e., the risk,

Rep(f) =Ee[L(X.Y, f(X))],

where P denotes the unknown joint distribution of the random pair (X,Y) and
L:Xx)YxR — [0,+00) is a fixed loss function. As a simple example, the
least squares loss L(X.Y, f(X)) = (Y — f(X))? yields the optimal predictor
f(x) =Ep(Y|X = x), x € X. Because P is unknown, we can neither compute nor
minimize the risk R p( f) directly.

Support vector machines—see [1, 14—16]—provide a highly versatile framework
to perform statistical machine learning in a wide variety of setups. The minimization
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of regularized empirical risks over reproducing kernel Hilbert spaces was already
considered, e.g., by Poggio and Girosi [9]. Given a kernel kK : X x X — R we
consider predictors f € H, where H denotes the corresponding reproducing kernel
Hilbert space of functions from X to R. The space H includes, for example, all
functions of the form f(x) = Z;’Ll o k(x,x;) where the x; are arbitrary elements
inXand a; € R, 1 < j < m. To avoid overfitting, a support vector machine
frp. is defined as the solution of a regularized risk minimization problem. More
precisely,

fups = arg inf BpL (X.Y. f(X)) + ANS Ny (20.1)

where A € (0, 0co) is the regularization parameter. For a sample D = ((x1, y1), ...,
(xn, yn)) the corresponding estimated function is given by

R N
fip, = arg inf. ;;L(xi,yi,f(xi)) AN (202)

where D,, denotes the empirical distribution based on D (see (20.3) below). Note
that the optimization problem (20.2) corresponds to (20.1) when using D,, instead
of P.

Efficient algorithms to compute f; ‘= frp,. exist for a number of different
loss functions. However, there are often good reasons to consider other convex loss
functions, e.g., the hinge loss L(X,Y, f(X)) = max{l — Y - f(X), 0} for binary
classification purposes or the e-insensitive loss L(X,Y, f(X)) = max{0,|Y —
f(X)| — €} for regression purposes, where € > 0. As these loss functions are
not differentiable, the logistic loss functions L(X,Y, f(X)) = In(1 + exp(—Y -
f(X))) and L(X.Y, f(X)) = —In(4e? /X /(1 + e¥=/X))2) and Huber-type
loss functions are also used in practice. These loss functions can be considered as
smoothed versions of the previous two loss functions.

An important component of statistical analyses concerns quantifying and incor-
porating uncertainty (e.g., sampling variability) in the reported estimates. For
example, one may want to include confidence bounds along the individual predicted
values ﬁ (x;) obtained from (20.2). Unfortunately, the sampling distribution of the
estimated function f; is unknown. Recently, [8] derived the asymptotic distribution
of SVMs under some mild conditions. Asymptotic confidence intervals based on
those general results are always symmetric.

Here, we are interested in approximating the finite sample distribution of SVMs
by Efron’s bootstrap approach, because confidence intervals based on the bootstrap
approach can be asymmetric. The bootstrap [7] provides an alternative way to
estimate the sampling distribution of a wide variety of estimators. To fix ideas,
consider a functional S : M — W, where M is a set of probability measures
and YV denotes a metric space. Many estimators can be included in this framework.
Simple examples include the sample mean (with functional S(P) = [ Z dP) and
M-estimators (with functional defined implicitly as the solution to the equation
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Ep¥(Z, S(P)) = 0). Let B(Z) be the Borel o-algebra on Z = X x ) and denote
the set of all Borel probability measures on (Z, B(Z)) by M |(Z, B(Z)). Then, it
follows that (20.1) defines an operator

S M(Z,B(2)) > H, S(P) = frLpas

i.e. the support vector machine. Moreover, the estimator in (20.2) satisfies

Jro,2 = S(Dy)
where
1 n
Dy=—) 8uy 20.3
n ; (xi.yi) ( )
is the empirical distribution based on the sample D = ((x1, y1), ..., (Xn, y»)) and

8(x;.y;) denotes the Dirac measure at the point (x;, ;).
More generally, let Z; = (X;,Y;),i = 1,...,n, be independent and identically
distributed (i.i.d.) random variables with distribution P, and let

Su(Zy,....Z,) = S(B,)

be the corresponding estimator, where

1 n
Pn = ;ZSZI.

i=1

Denote the distribution of S(P,) by .£,(S;P) = ZA(S(P,)). If P was known to us,
we could estimate this sampling distribution by drawing a large number of random
samples from P and evaluating our estimator on them. The basic idea of Efron’s
bootstrap approach is to replace the unknown distribution P by an estimate P. Here
we will consider the natural non-parametric estimator given by the sample empirical
distribution IP,. In other words, we estimate the distribution of our estimator of
interest by its sampling distribution when the data are generated by [P,,. In symbols,
the bootstrap proposes using

L,(S:P) = Z,(S:P,).

Since this distribution is generally unknown, in practice one uses Monte Carlo
simulation to estimate it by repeatedly evaluating the estimator on samples drawn
from D,,. Note that drawing a sample from D,, means that n observations are drawn
with replacement from the original n observations (xi, y1), ..., (Xn, Yn)-
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20.3 Consistency of Bootstrap SVMs

In this section it will be shown under appropriate assumptions that the weak
consistency of bootstrap estimators carries over to the Hadamard-differentiable
SVM functional in the sense that the sequence of “conditional random laws”
(given (X1, Y1), (X2, Y2),...) of \/ﬁ(fLﬁwk — frp, ) is asymptotically consistent
in probability for estimating the laws of the random elements /n(fLp, 2 — fLp.2)-
In other words, if n is large, the “random distribution”

Lnfy s, — frea)

based on bootstrapping an SVM can be considered as a valid approximation of the
unknown finite sample distribution

LWn(fre,a— frea)).

Assumption 1. Let X C R? be closed and bounded and let )) C R be closed.
Assume that k : X x X — R is the restriction of an m-times continuously
differentiable kernel k : R? x R — R such that m > d/2 and k # 0. Let H
be the RKHS of k and let P be a probability distribution on (X x Y, B(X x }))). Let
L:XxY xR — [0,00) be a convex, P-square-integrable Nemitski loss function
of order p € [1, 00) such that the partial derivatives

9*L

JL
L'(x,y,t):= g(x,y,t) and L'(x,y,t) = ﬁ(x,y,t)

exist for every (x, y,t) € X x Y x R. Assume that the maps
(x,y,t) = L'(x,y,1) and  (x,y,t) — L"(x,y,1)

are continuous. Furthermore, assume that for every a € (0,00), there is a b, €
L,(P) and a constant b)) € [0, 00) such that, for every (x,y) € X x ),

sup |L'(x,y,t)] <bl(x,y) and sup |[L"(x,y,t)] <b). (20.4)

t€[—a,a] t€[—a,a]

The conditions on the kernel k in Assumption 1 are satisfied for many common
kernels, e.g., Gaussian RBF kernel, exponential kernel, polynomial kernel, and lin-
ear kernel, but also Wendland kernels k¢ based on certain univariate polynomials
pay of degree |d /2| + 3¢ 4+ 1 for £ € N such that £ > d /4; see [17].

The conditions on the loss function L in Assumption 1 are satisfied, e.g., for the
logistic loss for classification or for regression; however, the popular non-smooth
loss functions hinge, e-insensitive, and pinball are not covered. However, [8, Remark
3.5] described an analytical method to approximate such non-smooth loss functions
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up to an arbitrarily good precision € > 0 by a convex P-square integrable Nemitski
loss function of order p € [1, 00).

We can now state our result on the consistency of the bootstrap approach for
SVMs.

Theorem 20.1. Let Assumption 1 be satisfied. Let A € (0, 00). Then

sup |Esh(Vn(fyp, ;= fre,1) —ER(Sp(G))| = 0,
heBL, (H)

Evh(Vn(fyp 5= fre,n) —Euh(Va(fy, 5 5= fre,n), = 0.

converges in outer probability, where G is a tight Borel-measurable Gaussian
process, S}, is a continuous linear operator with

SHQ) = =K '(Eo(L/(X. Y. fLpa(X))P(X))).

where Q € M (X x Y) such that b € Ly(Q) and b), € L,(Q) for all a € (0, 00),

and
Kp:H — H, f2Af +Ep(L"(X.Y, fLpi(X))[(X)DP(X))

is a continuous linear operator which is invertible.

For details on Kp, S}Q, and G we refer to Lemma 20.1, Theorem 20.5, and
Lemma 20.2.

20.4 Proofs

20.4.1 Tools for the Proof of Theorem 20.1

We will need two general results on bootstrap methods proven in [13] and adopt
their notation; see [13, Chaps. 3.6 and 3.9]. Let P, be the empirical measure of an
ii.d. sample Zy, ... Z, from a probability distribution P. The empirical process is
the signed measure

G, = V/n(P, —P).
Given the sample values, let zZ Lsenns Z,, be an i.i.d.Asample from ]f”n The bootstrap
empirical distribution is the empirical measure P, = n~'>_ 4§ 5,» and the

bootstrap empirical process is

G, = VB, —P,) = % > (M= D3z,

i=1
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where M,; is the number of times that Z; is “redrawn” from the original sample
Zi,...Zyy M := (M, ..., My,) is stochastically independent of Z, ..., Z, and
multinomially distributed with parameters n and probabilities %, e % If outer
expectations are computed, stochastic independence is understood in terms of a
product probability space. Let Z;, Z,,... be the coordinate projections on the
first oo coordinates of the product space (Z°°, B(Z),P>) x (Z.C,Q) and let the
multinomial vectors M depend on the last factor only; see [13, p. 345f].

The following theorem shows (conditional) weak convergence for the empirical
bootstrap, where the symbol ~> denotes the weak convergence of finite measures.
We will need only the equivalence between (i) and (iii) from this theorem and list
part (i) only for the sake of completeness.

Theorem 20.2 ([13, Theorem 3.6.2, p. 347]). Let F be a class of measurable func-
tions with finite envelope function. DefineY, := n="23""_ (My,; — 1)(§z, — P).
The following statements are equivalent:

(i) F is Donsker and P*| f —P f|% < oo;

(ii) SupPjepr, |EM,Nh(§(,,) —Eh (G)| converges outer almost surely to zero and the

sequence By nh (§(,,)* —Eu, Nh(&'n)* converges almost surely to zero for every
he BL1 R
(iii) Sup,epy, |EMh(Gn) — Eh(G)| converges outer almost surely to zero and the

sequence EMh(@n)* — EMh(@n)* converges almost surely to zero for every
he BL1

Here the asterisks denote the measurable cover functions with respect to M, N, and
21,2, ... jointly.

Consider sequences of random elements P, = P,(Z,) and If",, = I@’n (Z,, M)
in a normed space D such that the sequence /n(P, — P) converges unconditionally
and the sequence +/n(P, — P,) converges conditionally on Z, in distribution to a
tight random element G. A precise formulation of the second assumption is

sup  |[Eyh(v/n(®, —P,)) —Eh(G)| — 0, (20.5)
heBL (D)
Enh(Vn(®, —P,))" —Enh(V/n(®, —P,)), =0, (20.6)

in outer probability, with & ranging over the bounded Lipschitz functions; see
[13, p. 378, Formula (3.9.9)]. The next theorem shows that under appropriate
assumptions, weak consistency of the bootstrap estimators carries over to any
Hadamard-differentiable functional in the sense that the sequence of “conditional
random laws” (given Z1, Z», . ..) of ;/n(¢(P,)—¢ (P,)) is asymptotically consistent
in probability for estimating the laws of the random elements /n(¢ (P,) — ¢(P));
see [13, p. 378].

Theorem 20.3 ([13, Theorem 3.9.11, p. 378]). (Delta method for bootstrap in
probability) Let D and I be normed spaces. Let ¢ : Dy C D — E be Hadamard-

differentiable at P tangentially to a subspace Dy. Let P, and P, be maps as indicated
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previously with values in Dy such that G, := /n(P, — P) »> G and that (20.5)-
(20.6) hold in outer probability, where G is separable and takes its values from 1.
Then

sup  |[Enh(v/n(¢(@y) — ¢(Bn))) — Eh(pp(G))| — 0,

heBL| (E)
Exh(vVn(¢(@,) — d(Po))* —Exh(Vn(p@,) — (Pn))), — 0,

holds in outer probability.

As was pointed out by van der Vaart and Wellner [13, p. 378], consistency
in probability appears to be sufficient for (many) statistical purposes and the
theorem above shows this is retained under Hadamard-differentiability at the single
distribution P.

We now list some results from [8], which will also be essential for the proof of
Theorem 20.1.

Theorem 20.4 ([8, Theorem 3.1]). Let Assumption 1 be satisfied. Then, for every
regularizing parameter Ay € (0, 00), there is a tight, Borel-measurable Gaussian
process H : 2 — H, o — H(w), such that

\/ﬁ(fLsDns)tD,, - fL,P,AO) w»H inH

for every Borel-measurable sequence of random regularization parameters Ap, with
Jn (AD,, — AO) — 0 in probability. The Gaussian process H is zero-mean; i.e.,
E(f, H)y = 0 forevery f € H.

Lemma 20.1 ([8, Lemma A.5]). Forevery F € By defined later in (20.8),

Kp:H—H, [f>2kf +/L//(x’y’fL,L(F),)»o(x))f(x)qj(x)dl(F)(xvy)

is a continuous linear operator which is invertible.

Theorem 20.5 ([8, Theorem A.8]). For every Fy € Bg which fulfils Fo(b) <
Ep(b) + Ao, the map S : Bs — H, F v fr), is Hadamard-differentiable in
Fy tangentially to the closed linear span By = cl(lin(Bys)). The derivative in Fy is
a continuous linear operator S}O : Bo — H such that

Sk (G) = —K;OI (Eio)(L'(X. Y. fLurya(X)P(X))), VG € lin(Bs).
Lemma 20.2 ([8, Lemma A.9]). For every data set D, = ((x1,)1),---,
(Xn, yn)) € (XxY)", let Fp, denote the element of £ (¢9) which corresponds to the

empirical measure P, := Pp, . That is, Fp,(g) = [gdP, = nU g(xi, i)
forevery g € 4. Then

ﬁ(IFD” - L_I(P)) w G inleo(9),
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where G : 2 — {x(9) is a tight Borel-measurable Gaussian process such that
G(w) € By forevery w € £2.

20.4.2 Proof of Theorem 20.1

The proof relies on the application of Theorem 20.3. Hence, we have to show the
following steps:

1. The empirical process G, = +/n(P, — P) weakly converges to a separable
Gaussian process G.

2. SVMs are based on a map ¢ which is Hadamard-differentiable at P tangentially
to some appropriate subspace.

3. The assumptions (20.5)—(20.6) of Theorem 20.3 are satisfied. For this purpose
we will use Theorem 20.2. Actually, we will show that part (i) of Theorem 20.2
is satisfied, which gives the equivalence to part (iii), from which we conclude
that (20.5)—(20.6) hold true. For the proof that part (i) of Theorem 20.2 is
satisfied, i.e., that a suitable set F is a P-Donsker class and that P*|| f —P f ||2f <
oo, we use several facts recently shown by Hable [8].

4. We put all parts together and apply Theorem 20.3.

Step 1. To apply Theorem 20.3, we first have to specify the considered spaces D,
E, Dg, Dy and the map ¢. As in [8] we use the following notations. Because L
is a P-square-integrable Nemitski loss function of order p € [1, 00), there is a
function b € L,(P) such that

|L(x,y,0)| <b(x,y)+|t|”, (x,y,t) e X x Y xR.

Let
co := /Ay 'Ep(b) + 1, (20.7)
Define
Y =4 U%hUY,
where

4 :={g: AxY—>R:Ize R suchthat g = [(—ooq}
is the set of all indicator functions /(—co 7,

dfoe H,3f € Hsuchthat || fo|; < co.

4, = XA XY — ,
. {g XY = Rl < L y) = L'y, folo) £ ¥ (x. )
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and
4 .= {b}.

Now let £ (%) be the set of all bounded functions F : ¢4 — R with norm || F'||ec =
SUp,ey | F(g)]. Define

A # 0 a finite measure on X' x ) such that
Bs = F:9 >R|F(g)=[gduvge9, (20.8)
b € Ly(n), b, € Ly(n) Va € (0,00)

and
By = cl(lin(BS))

as the closed linear span of By in £,(%). That is, By is a subset of £,,(%) whose
elements correspond to finite measures. Hence probability measures are covered as
special cases. The elements of Bgs can be interpreted as some kind of generalized
distribution functions, because 4, C ¥¢. The assumptions on L and P imply that
Y > R, g+ fgdP is a well-defined element of Bg. For every F' € Bg, let
t(F) denote the corresponding finite measure on (X x Y, B(X x })))) such that
F(g) = f gdup for all g € ¢. Note that the map ¢ is well defined, because by
definition of Bg, t(F) uniquely exists for every F' € Bg.

With these notations, we will apply Theorem 20.3 for

D :={x(¥), E := H (= RKHS of the kernel k),
D¢ = Bs, DO = B() = Cl(lin(Bs)),
Ao € (0, 00),
¢ =S, S:Bs— H, Fr— fir = fLurir =
arginf ey [ L(x.y, f(x))di(F)(x,y) + Ao | f 17 -

At first glance this definition of S seems to be somewhat technical. However,
this will allow us to use a functional delta method for bootstrap estimators of SVMs
with regularization parameter A = A € (0, 00).

Lemma 20.2 guarantees that the empirical process G, := /n(P, — P) weakly
converges to a tight Borel-measurable Gaussian process.

Since a o-compact set in a metric space is separable, separability of a random
variable is slightly weaker than tightness; see [13, p. 17]. Therefore, G in our
Theorem 20.1 is indeed separable.

Step 2. Theorem 20.5 showed that the map S indeed satisfies the necessary
Hadamard-differentiability at the point P := (= (F).

Step 3. We know that ¢ is a P-Donsker class; see Lemma 20.2. Hence, an
immediate consequence from [13, Theorem 3.6.1, p. 347] is that
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sup |Eyh(G,) — Eh(G)| (20.9)
heBL

converges in outer probability to 0 and G, is asymptotically measurable.

However, we will prove a somewhat stronger result, namely that ¢ is a P-Donsker
class and P*||g — Pg||é < 00, which is part (i) of Theorem 20.2, and then part (iii)
of Theorem 20.2 yields that the term in (20.9) converges even outer almost surely to
0 and the sequence

Eph(Gn)* — Eph(G)x

converges almost surely to O for every & € BL;.
Because ¢ is a P-Donsker class, it remains to show that P*|g — Pg||%, < oo.
Due to

P*|lg — Pgll := [ (sup|g —Ep(g)|)* dP*
g€¥

and ¥ = ¥4, U 9%, U 43, we obtain the inequality

P*|lg — Pg|3 < P* sup(g +2|g| - Plg| + (Plg])?)
gE

sugg +2P* sup(lgl Plgl) + sup(PIgI)2
g€

3
< Z(P* sup g> 4+ 2P* sup (|g| - P|g|) + sup (P[g]) )
— g€Y; gEY; 8€Y;

(20.10)

We will show that each of the three summands on the right-hand side of the last
inequality is finite. If g € %, then g equals the indicator function /(_ 4 for some
z € R?*! Hence, ||g|loo = 1 and the summand for j = 1 is finite. If g € %, then
g = b € L,(P) because L is by assumption a P-square-integrable Nemitski loss
function of order p € [1, 00). Hence the summand for j = 3 is finite, too. Let us
now consider the case where g € %,. By definition of %, for every g € %, there
exist f, fo € H suchthat | follz < co, | fllg < 1l,and g = L’ ./, where we use

the notation (L’ﬁ)f)(x y) = L'(x,y, fo(x)) f(x) for all (x, y) € X x Y. Using
[ flloo < llklloo | f 1l for every f € H, we obtain

Ifollg <co = lfollo < collklloo and [ fllg <1 = [ flloo < llklloo-
(20.11)

Define the constant a := c¢o||k||oo With ¢o given by (20.7). Hence, for all (x, y) €
X x),
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sup L/ (x.y, fo(x)|* < sup sup  |L'(x,y, 1)
fo€H; L foll g <co foeH: | folloo<a t€l—a+al
(20.4) ) ,
s Gy’ (012

SoeH; || folloo<a

Hence we get

P* sup g2
gE€ED

- [ sup 1L Ge v folo) f0)P dP* (x. )

g€l follp=collfllu<tg=L" f

< / swp LGy oGP sup L fORdP*(x.y)

JSoeH; | foll g <co feEH; | flly=<1

(20.12).(20.11) .
CRT / — / (B))2dP < oo,

because b, € L,(P) and ||k| o < oo by Assumption 1. With the same arguments
we obtain, for every g € %,

Plg < / sup |g| dP*
gE€ED

< / sp Ly o) sup | FG0]dP(x. y)

SoeH; |l follg<co feH | flly=<t

(20.12),(20.11) , "
S [ ) el dP )
< ||k||oo/b;dP<oo,
because b/, € L,(P) and ||k||cc < 0o by Assumption 1. Hence,

P* sup (gl Plgh = Ikl [ 2, aP [ sup lgla” < IkI([ 5, ap)’ < ox.

gE€ED gE€EYD

Therefore, the sum on the right-hand side in (20.10) is finite and thus the assumption
P*|lg — Pg||é < oo is satisfied. This yields by part (iii) of Theorem 20.2 that

SUPjepL, |E wh(G,) —Eh (G)| converges outer almost surely to 0 and the sequence

Enh(Gn)* —Enh(G,)s (20.13)
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converges almost surely to O for every & € BL,, where the asterisks denote the
measurable cover functions with respect to M and Z;, Z,, ... jointly.

Step 4. Due to Step 3, the assumption (20.5) of Theorem 20.3 is satisfied. We

now show that additionally (20.6) is satisfied, i.e., that the term in (20.13)
converges to 0 in outer probability. In general, one cannot conclude that almost
sure convergence implies convergence in outer probability; see [13, p. 52]. We
know that the term in (20.13) converges almost surely to O for every i € BL,,
where the asterisks denote the measurable cover functions with respect to M and
(X1, Y1), (X3, Y2),...jointly. Hence, for every h € BL, the cover functions to be
considered in (20.13) are measurable. Additionally, the multinomially distributed
random variable M is stochastically independent of (X1, Y1), ..., (X,, Y,) in the
bootstrap, where independence is understood in terms of a product probability
space; see [13, p. 346] for details. Therefore, an application of the Fubini—Tonelli
theorem, see—e.g., [4, p. 174—Theorem 2.4.10], yields that the inner integral
Evh(vn®, — P,))* — Eyh(y/n(®, — B,)), considered by Fubini-Tonelli
is measurable for every n € N and every h € BL,. Recall that almost sure
convergence of measurable functions implies convergence in probability that is
equivalent to convergence in outer probability for measurable functions. Hence
we have convergence in outer probability in (20.13). Therefore, all assumptions
of Theorem 20.3 are satisfied and the assertion of our theorem follows. |
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Chapter 21
Kernels, Pre-images and Optimization

John C. Snyder, Sebastian Mika, Kieron Burke, and Klaus-Robert Miiller

Abstract In the last decade, kernel-based learning has become a state-of-the-art
technology in Machine Learning. We briefly review kernel PCA (kPCA) and the
pre-image problem that occurs in kPCA. Subsequently, we discuss a novel direction
where kernel-based models are used for property optimization. For this purpose,
a stable estimation of the model’s gradient is essential and non-trivial to achieve.
The appropriate use of pre-image projections is key to successful gradient-based
optimization—as will be shown for toy and real-world problems from quantum
chemistry and physics.

21.1 Introduction

Since the seminal work of Vapnik and collaborators (see [4,7, 10,29, 43]), kernel
methods have become ubiquitous in the sciences and industry.

Kernel methods have enriched the spectrum of machine learning and statistical
methods with a vast new set of non-linear algorithms. Kernel PCA (kPCA)
has been established as a blueprint for “kernelizing” linear scalar product-based
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algorithms, given that a conditionally positive definite kernel is used [34]. The
so-called empirical kernel map [35] allows preprocessing of data by projecting it
onto the leading kPCA components; thus non-linear variants of algorithms can be
constructed via a non-linear transformation.

This chapter begins with a brief review of some concepts in kPCA and the
analysis of pre-images. A novel aspect we will discuss is the computation of
gradients of a kernel-based model that can be used for the purpose of optimization.
The computation of such gradients turns out to be rather tricky; as we will see, the
gradients can easily be dominated by noise in irrelevant directions, and thus need
to be stabilized. One way of doing so is to apply pre-image methods, which will
then allow us to present some interesting applications from the domain of quantum
chemistry—an area that was only very recently explored with kernel methods
[1,31,33,38,39].

In the following, we briefly review kernel methods (Sect.21.2), kPCA
(Sect.21.3), and the pre-image problem (Sect.21.4). Then, in Sect.21.5, we show
how to use gradient information that is derived from a kernel-based model. A
particular difficulty here is that gradient estimates, in many circumstances, are
prone to large amounts of noise. Pre-images hold the key to solving this issue and
achieving stable gradients, which enable optimization over the data manifold given
the kernel-based learning model. This section will also demonstrate optimization
with respect to model properties for (a) a toy example and (b) real-world problems
from quantum chemistry and physics. Finally we give a brief concluding discussion
in Sect. 21.6.

21.2 The Kernel Trick

With regard to the kernel idea behind support vector machines (SVMs) [4, 7, 10,
29, 43] of non-linearizing the linear classifier formulation, Scholkopf, Smola and
Miiller [34] were the first to realize that this trick can be applied to almost any linear
algorithm. The only prerequisite was that one be able to formulate the algorithm
in terms of the dot product between data points. The key was the re-discovery of a
long known mathematical fact: under certain conditions, k(x,x’) : R” x R" — R
is equivalent to the dot product in another space F (the feature space).' Thus, the
kernel function k(x, x’) can be interpreted as @(x) - @(x’), where @ : R" — F is
the map to the feature space.

The consequences were dramatic: it became possible to extend well-understood
linear models with a sound theoretical foundation to a much larger class of non-
linear models—seemingly for free. However, there are two prominent drawbacks:

'In general, x is not restricted to being in R and could be any object.
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e While most linear methods scale computationally with the number of input
dimensions m (i.e., O(m?)), most kernel methods scale with the number of
samples n (i.e., O(n*))—which for many applications is tremendously larger
than m. In particular, most kernel methods handle dense n x n matrices. In the
present era of “big data,” this rapidly becomes intractable. However, it is often
possible to devise clever algorithms or approximations to circumvent this issue
(e.g., for SVM, see [19,21,30]).

e The solution of such non-linear algorithms is usually expressed as a linear
combination of the kernel function f(x) = Z;':l a;k(x;,x), where n is the
number of training samples, «; are weights, and x; are the training samples.
This is equivalent to the dot product @(x) - ¥ in the feature space, where
v = Z;':l a; P(x;). This is not a problem if the application requires only f(x).
However, if one would like to interpret ¥ or map back to input space R”, one
needs the idea of pre-images (see Sect. 21.4).

As noted above, Scholkopf et al. [34] exemplified the “kernelization” procedure
for the popular PCA algorithm. Meanwhile, a plethora of other algorithms were
kernelized, ranging from Linear Discriminants [2, 22, 24], over nonlinear variants
of ICA [16] and One Class SVM [36], to Canonical Correlation Analysis [15],
Principal Manifolds [37], Relevance Vector Machines [41], and many more. In
addition, kernel methods have been devised to analyse other learning machines [26]
or trained kernel machines [6, 25]. The new formulation of these algorithms as a
linear technique in some kernel feature space provided extremely valuable insights,
both from a theoretical point of view as well as from an algorithmic point of view
(e.g., the strong connection between mathematical optimization and learning [5]).

21.3 Kernel PCA

Principal Component Analysis (PCA) [11] is an orthogonal basis transformation
which is found by diagonalizing the centred covariance matrix of a data set, {x; €
R™, j =1,...,n}, defined by C = X" X/n, where X = (x;,...,x,)" and the
samples are assumed to be centred, i.e., Z?: 1 X; = 0. The eigenvectors v; of C are
called the principal components (PCs), and the sample variance along v; is given by
the corresponding eigenvalue A;. Projecting onto the eigenvectors with the largest
eigenvalues (i.e., the first ¢ PCs) is optimal in the sense that minimal information is
lost. In many applications these directions contain the most interesting information.
For example, in data compression, one projects onto the PCs in order to retain as
much information as possible, and in de-noising one discards directions with small
variance (assuming that low variance is equivalent to noise).

As mentioned in Sect.21.2, kernel PCA (kPCA) is a non-linear generalization
of PCA using kernel functions [34]. To state the result, the principal components
are given by v; = >, a; ;®(x,), where the a; are the eigenvectors of the kernel

j
matrix K, given by K;; = k(x;,X;), sorted in order of decreasing corresponding
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eigenvalue. Hence kPCA amounts to computing the eigenvectors of the kernel
matrix K instead of the covariance matrix C. To project onto the PCs as in linear
PCA, we define a projection P; by

q
Py®(x) = Bivi. (21.1)

i=1

where the B; = v;-@(x) are the projections of @(x) onto the PCs. If ¢ is chosen such
that all PCs with non-zero eigenvalues are kept, we can perfectly reconstruct the data
(i.e., Py@(x;) = @(x;)). While the equivalent for linear PCA would often amount
to a lower-dimensional representation of the data (i.e., ¢ < m), this is less likely
for kPCA as the representation in the feature space is much higher dimensional
(i.e., ¢ < n but often ¢ > m). If some PCs with non-zero variance are thrown
away, kPCA fulfils the PCA property that P,®(x) will be the optimal least squares
approximation to @(x) when restricted to orthogonal projection—but this holds true
only in the feature space.

21.4 Pre-images

As already mentioned above, there are many applications for which one needs an
optimal reconstruction of P,®(x) in input space R”. Examples would be (lossy)
compression (e.g., of images) or de-noising. One straightforward approach to this
issue was proposed in Ref. [23]. The idea is to find an approximate pre-image X in
input space that will map closest to the projection P, ®(x) in the feature space:

X = argmin | ®(x) — P, P(x)||. (21.2)

x'€R”

It can be shown (see [23,35] for details) that this equation can be formulated entirely
in terms of the kernel k(x, x’) = @(x)-®(x'). The pre-image X can then be optimized
using standard gradient descent methods. For kernels of the form k(x,x") = f(||x—
x'||) (e.g., Gaussian kernels), [23,25] devise an iteration scheme to find X.

21.5 Pre-images for Gradient-Based Optimization

In many applications of machine learning, one would like to use the estimator to
optimize some property with respect to the data representation. For example, in
image compression, one wants to optimize the representation to reduce the size
without losing useful information. In neuroscience, one can optimize a stimulus to
increase response. For these types of optimization, the quality of the gradient of
the estimator is crucial. In certain circumstances, however, the gradient exhibits a
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high amount of “noise”. In the following, we explore a simple example that clearly
illustrates the origin of this noise and the problems that it creates in optimization.
We then describe how properties of kernel PCA and pre-images offer a solution.

21.5.1 Example: Shape Optimization

The perimeter of simple two-dimensional shapes, represented by single-valued
radius r as a function of angle 0, is given exactly by the integral

2
Plr] = /0 d6 \/r(0)2 + r'(8)2,

where r'(0) = dr/d. P[r] is called a functional of r(8). Now suppose we are not
given this formula, but only a set of examples {r;, P;} ;=1 , to learn from, where
r; € R™ are sufficiently dense histogram representations (e.g., 100 bins) of r(6) on
0 € [0,27x]. In particular, we are given noise-free examples of ellipses with axes a
and b:

r(0) = ab/V'b%cos? 0 + a?sin 0.

Given this data, we use kernel ridge regression (KRR) [17] to predict the perimeter
of new ellipses:

PML(r) = ZO{jk(l‘, I'j),
j=1

where «; are the weights and k is the kernel. We choose the Gaussian kernel
k(r,r’) = exp(—|r — r’|?>/(20?%)), where o is the length scale. Minimizing the
quadratic cost plus regularization Z'}=1(PML(rj) — P;)? + Aa” Ka yields

o= (K+AI)"'P,

where & = («y,... ,a,,)T, P=(P,..., Pn)T, K is the kernel matrix, and A is a
constant known as the noise level [17].

Figure 21.1 shows a sample dataset of 16 ellipses with (a,b) € {1, %‘, %, 2} x
{1, %, %, 2} (the model does not account for rotational symmetry, so we distinguish
between, e.g., (1,2) and (2, 1)). After cross-validation of hyperparameters, we
choose 0 = 13 and A = 107°. Contours of the perimeter values and the percentage
error of the model are given in Fig. 21.2 as a function of a and b. The model has less
than 0.1 % error within the interpolation region 1 < a,b < 2.

Now suppose we use our model PML to find the shape with area 49 = 97 /4

and minimum perimeter. Of course, the solution is a circle with radius r = 3/2
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Fig. 21.1 The dataset of 16 ellipses represented in Cartesian coordinates

a b
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2, KN
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0,
< 15 \ = 15¢
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1.0 1.0
1.0 1.5 2.0 1.0
a

Fig. 21.2 (a) Contour plot of the perimeter of the ellipse as a function of axes lengths a and b. (b)
Contour plot of the percentage error (PMt(r) — P[r])/P[r] X 100 % of the model

with perimeter 37r, which is well within the interpolation region of the model (but
not in the training set). This constrained optimization can be formulated in a variety
of ways (see, e.g., [40]). For example, the penalty method enforces the constraint
by regularizing deviations of the area from Ay, and solves a series of unconstrained
minimization problems, slowly increasing the penalty strength until convergence.
Define the penalty function

Fp(r) = PMH(r) + p(A(r) — Ao)°, (21.3)

where the area functional

2
Alr] = l d9r(9)2
2 Jo
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Fig. 21.3 (a) The gradient of the model and exact functional, fora = 1.2 and b = 1.3. (b) These
gradients projected onto the tangent space of the data manifold

can be approximated by a Riemann sum A(r) from our histogram representation of
r(0). Let r*(p) minimize F,(r). Then the solution to the optimization is given by

r* = lim r*(p).
p—>00

Standard unconstrained minimization methods can be applied to find a solution for
each p [40]. This requires the gradient of the model

VPM(r) = o (r; — 0k(r.r;)/0, (21.4)
j=1
while the exact functional derivative of P[r] is given by

SP[r] _ r(8)* +2r(6)r'(8)’ — r(6)
§r(0) (@2 +r(0)»)

(21.5)

Also, VA(r) = rAf, where A = 27/ m is the spacing between bins. Figure 21.3a
compares the gradient of the model with the exact functional derivative. The large
error in V PML is typical for all shapes within the interpolation region. In addition,
these errors are not a result of overfitting—no combination of hyperparameters
yields accurate gradients in this case. Increasing the number of training samples
does not improve the gradient either.

Figure 21.4a shows a sample optimization in which gradient descent is used to
minimize F,(r), for p = 5, starting from r with a = 2, b = 4/3. The shape
quickly deforms due to the noise in the gradient, leaving the region spanned by the
data. Each step in the gradient descent introduces more noise into the shape. One can
attempt to remedy this by applying the de-noising procedure described in Sect. 21.4
during the optimization:
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Fig. 21.4 (a) Minimization of Eq.21.3 for p = 1 using the bare gradient of the model. The shape
quickly develops spurious wiggles due to the noise in the gradient. The initial guess for the shape
was a = 2, b = 4/3. (b) The same minimization in (a) using denoising with a Gaussian kernel
with length scale ¢ = 18.1, keeping ¢ = 5PCs in kPCA, and applying the de-noising £ = 5
times each iteration

Modified Gradient Descent Algorithm

* Start from initial guess ry.
_ e VPM(ry)
1. Take a'step 41 = Ik —Fm, . : .
2. De-noise ry4; by replacing it with 4. Repeat this £ times (depending
on how much noise we introduced in the last step).

3. Repeat until ||rp4+; — rg|| < 8, where § is the desired accuracy.

where € is a constant.

The result is shown in Fig.21.4b, where the de-noising is performed with a
Gaussian kernel with length scale ¢/ = 18.1 and we keep ¢ = 5 principal
components. The minimization gives a decent approximate solution, based solely
on our learned model. This method gets us quickly close to the solution, but
convergence near the solution is sensitive to the choice of the parameters o’, ¢,
and £. In addition, we find that the optimal parameters depend on the initial guess of
the shape as well as on where the solution lies in input space. In the next section, we
discuss where this “noise” in the gradient comes from and how to remove it, leading
to a much better method for performing the optimization.

21.5.2 Origin of the “Noise”

The noise in the gradient of the model occurs generally when the data set is intrin-
sically low dimensional, embedded in a high-dimensional input space. Assuming
the data is generated by a smooth mapping v from an underlying parameter space
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©® C R? to input space R", we define the data manifold as the image M = y(©).
The noise in the gradient occurs when d < m. The reasoning is as follows:

* The gradient measures change in the target value in all directions in input space,
but all the given data lies on M.

* Regression is a method of interpolation, particularly with the Gaussian kernel.

* If we consider a point x € M and move in input space while confined to
M, the model is given information about how the target value changes (e.g.,
interpolation).

* If we move orthogonally to the tangent space of M at x, the model has no
information about the change in the target value. The “noise” comes from this
extrapolation.

e Thus, we should be able to remove the noise if we project the gradient of the
model onto the tangent space of M .

For our example, Fig. 21.3b compares the model gradient (Eq.21.4) with the exact
functional derivative (Eq.21.5) when both are projected onto the tangent space of
M ata = 1.2, b = 1.3. Clearly, the discrepancy is restricted to the orthogonal
complement of the tangent space.

Based on this analysis, we can understand how the de-noising optimization
worked in the previous section. At each step, the noise in gradient takes r far off
the data manifold, away from the data. The de-noising step effectively returns r
back onto M. However, a smarter way to perform the optimization would be to
de-noise the gradient of the model, by projecting it onto the tangent space of the
manifold at each step of the gradient descent. This would constrain the optimization
to lie within the data manifold, never leaving the interpolation region. In general,
however, one does not know the structure of the data manifold a-priori! One needs
an accurate method to approximate M, at least locally near a given point.

21.5.3 Optimization Constrained to the Data Manifold

Such methods of locally approximating or globally reconstructing the data manifold
fall under the general technique of nonlinear dimensionality reduction. This includes
kernel PCA (kPCA) [34], Laplacian eigenmaps [3], diffusion maps [9], local linear
embedding [32], Hessian local linear embedding [12], and local tangent space
alignment [44, 45]. These methods provide a coarse reconstruction of M, but the
local linear approximation breaks down when data sampling is too sparse, or M has
a high curvature.

In the denoising procedure (see Sects.21.3 and 21.4) a sample x € X is mapped
into feature space @(x) and projected onto the first g principal components, P, P (x)
(see Eq.21.1). Then, the approximate pre-image X is found (Eq.21.2). If x is far
from the data manifold, then its representation in the feature space will be poor. The
kernel PCA projection error



254 J.C. Snyder et al.

a b
1.0 102 0.10 -
0.5 0.05 10°
-3
w o)) (© © 10° W 0.00 © °
10"
-0.5 i -0.05 i
H10% i
-1.0 - -0.10 Y107
1.0 1.5 2.0 1.0 15 2.0
a a

Fig. 21.5 Log contour plots of (a) p,(rs1 5+ £z)? and (b) d,(r, 15+ £2)?, where z is a randomly
chosen direction of length 1. The qualitative features are the same for both (a) and (b), and are
independent of the choice of z. The length scale ¢’ in KPCA was 6.0, chosen as twice the median
over all nearest neighbour distances between training samples, and all principal components with
nonzero eigenvalues were used (g = 15)

pg(x) = [2(x) — P, o)
and the denoising magnitude
dg(x) = [Ix = X]|

provide useful information that can be used to characterized the data manifold. For
our toy example, these quantities are plotted in Fig. 21.5. The line £ = 0 corresponds
to the data manifold. Qualitatively, both quantities are small on M, and increase
quickly as one moves away from M . In particular, p§ is flat along the direction of
M , and highly convex in directions moving away from M . This information can be
used to find the tangent space of M at a point r as follows:

Nonlinear gradient denoising (NLGD)

1. Compute the Hessian of pg, H, evaluated at a point r which is known to
be on the data manifold M .

2. Compute the eigenvalues A1, ..., A,, and eigenvectors uy, .. ., u,, of H(r)
and order them in order of increasing eigenvalue magnitude.

3. The first d eigenvalues correspond to directions with small curvature. The
corresponding d eigenvectors form a basis for the tangent space Ty (r).
The remaining eigenvalues will be large and positive.

4. Finally, the projection onto the tangent is given by

d
Pr(r) = Zuju;r.
j=1
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Fig. 21.6 (a) The projection algorithm [40], where the gradient of the model is projected onto
the tangent space of the data manifold at each step. Because we move slightly off M, we require
a correction step. (b) The same minimization as in Fig. 21.4, using the NLGD projected gradient
descent algorithm, keeping all PCs in kPCA with 6’ = 6.0

This procedure can be used to approximate the tangent space of M based solely
on the data given. The denoising magnitude can be used likewise in place of the
kernel PCA projection error. In all cases we have observed so far, the two give
similar results, but pg is easier to compute.

Applying this to our optimization leads to a new algorithm (see Fig. 21.6a):

NLGD projected gradient descent algorithm

* Start from initial guess ry.
1. Compute the tangent space Ty (ry) of the data manifold M and the NLGD
projection Pr(xy).
2. Projection step. Take a stepr,, , = rp — < Pr(r, )M where € is
- Proj . Pl = Tk = & P79 pMC )T
a constant.
3. Correction step. Minimize pZ (r) starting from r;_ , within the orthogonal
complement of T, (ry). Let the solution be ry 4.
4. Repeat until ||rg4+; — rr| < 8, where § is the desired accuracy.

Applying this to our toy example yields the result in Fig.21.6b. The sensitivity
of the solution on the initial condition ro and the parameters o’ and ¢ is removed,
and convergence is well conditioned. In the next section, we describe some real
applications of this method in recent literature.

21.5.4 Applications in Density Functional Theory

Density functional theory (DFT) is now the most commonly used method for
electronic structure calculations in quantum chemistry and solid state physics [8].
DFT attempts to circumvent directly solving the Schrodinger equation by
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Fig. 21.7 The functional derivative of the kinetic energy functional of the ML model (MLA)
compared with the exact. This derivative suffers from the same “noise” we described in Sect. 21.5.2
(i.e., the large deviation between ML and the exact derivative). Using the NLGD technique, the
noise was removed by projecting the derivative onto the tangent space of the data manifold

approximating the energy as a functional of the electron density (instead of using
the traditional wave function) [18, 20]. Recently, machine learning was used for
the first time to directly approximate the kinetic energy density functional of one-
dimensional electrons confined to a box (a toy model commonly used to test new
approximations) [38]. The authors used kernel ridge regression with a Gaussian
kernel to predict the kinetic energy of new densities based on examples of electron
densities and their exact kinetic energies. The generalization error of the model was
extremely low, but in density functional theory, traditionally an energy functional
is useless unless its functional derivative is accurate as well (since ground-state
densities are found through a self-consistent minimization of the total energy) [13].

This situation is exactly as described in the toy problem. The inputs (electron
densities) are represented as high-dimensional (e.g., 500) vectors while the data
is generated from a parameter space of only a few dimensions. The noise in the
gradient the authors observed was due to this general phenomenon. To remedy the
noise, the authors’ solution was to project the gradient of the model on a local
linear PCA subspace using only a few principal components. Using this method,
they were able to perform accurate optimizations with the ML model, although the
final density was slightly sensitive to the initial guess.

In later work [39], the same authors moved on to a more difficult system: a one-
dimensional model of chemically bonded diatomics. Again, the gradient was found
to be noisy (see Fig.21.7), and the local linear PCA method of [38] was inaccurate
due to the high curvature of the data manifold. Instead, the authors applied the
NLGD projected gradient descent algorithm, achieving high accuracy, and were
able to compute highly accurate binding curves and molecular forces from a model
trained from a sparse sampling of data.
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21.6 Conclusion

This chapter has briefly reviewed kernel methods and discussed in particular kernel
PCA and the pre-image problem. When a kernel-based model has learned to
predict a certain property, say, the atomization energy of a certain compound,
then an interesting question is whether we can use the gradient of the model for
optimization of some related (e.g., chemical) property. We have shown that the
naive use of gradient information fails, due to noise that in many cases contaminates
the gradient. Adapting techniques from pre-image computation, we can define
projections that make the gradient of the ML model more meaningful, so that
it can be used for optimization. A simple toy example illustrates this nonlinear
gradient denoising (NLGD) procedure and shows its use for property optimization.
We briefly reviewed two real-world applications of NLGD stemming from the
domains of quantum chemistry and physics. Other future work will continue along
the successful path of applying kernel-based methods in quantum chemistry and
physics [1,31,33,38,39] with the aim of contributing to the quest for novel materials
and chemical compounds.

Many open challenges need to be resolved in kernel-based learning: all kernel
algorithms scale in the number of data points (not in the dimensionality of the data);
thus the application of kernel methods for large problems remains an important
challenge (see, e.g., [19, 21,30, 42]). There may be large “big data” problems that
are practically only amenable to neural networks (see [27,28]) or other learning
machines that allow for high-throughput streaming (see, e.g., [14]). However, a large
number of mid-scale applications in the sciences and technology will remain where
kernel methods will be able to contribute with highly accurate and robust predictive
models.
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Chapter 22
Efficient Learning of Sparse Ranking Functions

Mark Stevens, Samy Bengio, and Yoram Singer

Abstract Algorithms for learning to rank can be inefficient when they employ
risk functions that use structural information. We describe and analyze a learning
algorithm that efficiently learns a ranking function using a domination loss. This
loss is designed for problems in which we need to rank a small number of positive
examples over a vast number of negative examples. In that context, we propose
an efficient coordinate descent approach that scales linearly with the number
of examples. We then present an extension that incorporates regularization, thus
extending Vapnik’s notion of regularized empirical risk minimization to ranking
learning. We also discuss an extension to the case of multi-value feedback.
Experiments performed on several benchmark datasets and large-scale Google inter-
nal datasets demonstrate the effectiveness of the learning algorithm in constructing
compact models while retaining the empirical performance accuracy.

22.1 Introduction

The past decade’s proliferation of search engines and online advertisements has
underscored the need for accurate yet efficiently computable ranking functions.
Moreover, the emergence of personalized search and targeted advertisement further
emphasizes the need for efficient algorithms that can generate a plethora of ranking
functions which are used in tandem at serving time. The focus of this chapter is
the derivation of such an efficient learning algorithm that yields compact ranking
functions while achieving competitive accuracy. Before embarking on a description
of our approach we would like to make connections to existing methods that
influenced our line of research as well as briefly describe alternative methods for
learning to rank. Due to the space constraints and the voluminous amount of work

M. Stevens (<) - S. Bengio - Y. Singer
Google Research, 1600 Amphitheatre Parkway, 94043 Mountain View, CA, USA
e-mail: singer @google.com; stevensm@google.com; bengio@google.com

B. Scholkopf et al. (eds.), Empirical Inference, DOI 10.1007/978-3-642-41136-6_22, 261
© Springer-Verlag Berlin Heidelberg 2013


mailto:singer@google.com
mailto:stevensm@google.com
mailto:bengio@google.com

262 M. Stevens et al.

on this subject, we clearly cannot give a comprehensive overview. The home pages
of two recent workshops at NIPS’09, “Learning to Rank” and “Learning with
Orderings”, are good sources of information on different learning to rank methods
and analyses.

The roots of learning to rank go back to the early days of information
retrieval (IR), such as to those of the classical IR described by Gerard Salton [10].
One of the early papers to cast the ranking task as a learning problem is “Learning to
Order Things” [2]. While the learning algorithm presented in this paper was rather
naive as it encompassed the notion of near-perfect ranking “experts”, it laid some
of the foundations later used by more effective algorithms such as RankSVM [6],
RankBoost [4], and PAMIR [5]. These three algorithms, and many other algorithms,
reduced the ranking problem to preference learning over pairs. This reduction
enabled the usage of existing learning tools with matching generalization analysis
that stem from Vladimir Vapnik’s work [13—15]. However, the reduction to pairs
of instances may result in poor ranking accuracy when the ranking objective is
not closely related to the pairs’ preference objective. Moreover, the usage of
pairs of instances can impose computational burdens in large ranking tasks. The
deficiency of preference-based approaches sparked research that tackles non-linear
and often non-convex ranking loss functions; see, for instance, [1, 7, 16]. These
more recent approaches resulted in improved results. However, they are typically
computationally expensive, may converge to a local optimum [1], or are tailored for
a specific setting [7]. Moreover, most learning to rank algorithms do not include a
natural mechanism for controlling the compactness of the ranking function.

In this chapter we use a loss function called the domination loss [3]. To make
this loss applicable to different settings, we extend and generalize the loss by
incorporating the notion of margin [14, 15] over pairs of instances and enable
the usage of multi-valued feedback. We devise a simple yet effective coordinate
descent algorithm that is guaranteed to converge to the unique optimal solution;
see, for instance, [8, 12] for related convergence proofs. Although the domination
loss is expressed in terms of ordering relations over pairs, by using a bound
optimization technique we are able to decompose each coordinate descent step
so that the resulting update scales linearly with the number of instances that we
rank. Furthermore, we show how to incorporate an ¢; regularization term into the
objective and the descent process. This term promotes sparse ranking functions. We
present empirical results which demonstrate the effectiveness of our approach in
building compact ranking functions whose performance matches the state-of-the-art
results.

22.2 Problem Setting

We start by establishing the notation used throughout the chapter. Vectors are
denoted in bold face, e.g., X, and are assumed to be in column orientation. The
transpose of a vector is denoted by x'. The (vector) expectation of a set of vectors
{x;} with respect to a discrete distribution p is denoted by E,[x] = ) j PiXj-
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We observe a set of instances (e.g., images) where each instance is represented as a
vector in R”. The i th instance, denoted by X;, is associated with a quality feedback,
denoted 7; € R. We describe our derivation for a single query as the extension to
multiple queries is straightforward.

Given the feedback set for instances observed for a query, we wish to learn a
ranking function for that query, f : R* — R, that is consistent with the feedback
as often as possible. Concretely, we would like the function f to induce an ordering
such that 7; > 7; = f(x;) > f(x;). We use the domination loss as a surrogate
convex loss function to promote the ordering requirements. For an instance x; we
denote by D(i) the set of instances that should be ranked below it according to the
feedback, D(i) = {j |7 > t;}. The combinatorial domination loss is 1 if there
exists j € D(i) such that f(x;) > f(x;). That is, the requirement that the ith
instance dominates all the instances in D(i) is violated. To alleviate the intractability
problems that arise when using a combinatorial loss, we use the following convex
relaxation for a single instance,

Ip(x;; ) = log| 1+ Zef(x,/‘)—f(xi)‘FA(iJ)
JED(i)

Here, A(i, j) € R4 denotes a margin requirement between the ith and the jth
instances. This function enables us to express richer relaxation requirements, which
are often necessary in retrieval applications. For example, for the query dog we
would like an image with a single nicely captured dog to attain a large margin
over irrelevant images. In contrast, an image with multiple animals, including dogs,
should attain only a modest margin over the irrelevant images.

22.3 An Efficient Coordinate Descent Algorithm

In this section we focus on a special case in which 7; € {—1, +1}. That is, each
instance is either positive (good, relevant) or negative (bad, irrelevant). In the next
section we discuss generalizations. In this restricted case, the set {j s.t. 3i : x; €
D(i)} simply amounts to the set of negatively labelled instances and does not depend
on the index i. For brevity we drop the dependency on i and simply denote it by D.
We further simplify the learning setting and assume that A(Z, j) = 0. Again, we
discuss relaxations of this assumption in the next section. The ranking function f is
restricted to the class of linear functions, f(x) = w - x. In this base ranking setting

the empirical loss with respect to w distils to ), log (1 +> jeD eV (s —Xi)), For

brevity let us focus on a single domination loss term, £p(x;; w). Fixing the query ¢
and performing simple algebraic manipulations we get

= eVXi
KD(XﬂW) — log (X:JEL) — log Z ew-xj —W-X;,

eW'X,‘
jeD()
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where D(i) = D U {i} consists of all the negatively labelled instances and the ith
relevant instance.

There is no closed form solution for the optimum even when we restrict ourselves
to a single coordinate of w. We therefore use a bound optimization technique [9] by
constructing a quadratic upper bound on the domination loss. This technique was
used, for instance, in the context of boosting-style algorithms for regression. To
construct the upper bound we need to calculate the gradient and the Hessian of the
(simplified) domination loss. The gradient amounts to

_ WXy
> jepi) e VX

Vw p(xi1w) = S en @
jeD

-x; = Epx]—x; ,

where p; is the distribution induced by w whose rth componentis p, = e¥* /Z and
Z is a normalization constant Z = )" jep@ e - Using the above, the Hessian is

Hi(w) = Ep, [xx"] = Ep, [x] (e, [X])'

Recalling the mean value theorem, the loss at w 4+ § can now be written as
1
Cp(xi;w +8) = €p(xi;w) + Vyy -8 + —5T Hi(w+ ad)$§
1 2
= Lp(xi; W) + (ep;[x] —x;) - 8 + epl [(5 X) ] - 5(5 - e, [x])

where p; is the distribution induced at w + «§ for an unknown « € [0, 1]. We now
derive an update which minimizes the bound along a single coordinate, denoted r,
of w. Let e, denote the vector whose components are 0 except for the rth component,
which is 1; then,

Co(xi;w+ 8e,) = k(1) + 6 (Epg[p %] - %1, )
1 -
+ ESZ(E’D(Z)[pﬂ X}Z"] - fD(l)[ps Xr])

where Ep;)[p. x/] = Zjez-)(,) pjxjr. where k(i) is a constant that does not
depend on §. Since p; is not known we need to bound the loss further. Let B,
denote the maximum value of the square of the rth feature over the instances
retrieved, namely B, = max; er . We now can bound the multiplier of 82
by > iepi) Pix* N, < B.. Let m denote the number of relevant training elements
for the current query. The bound of the domination loss restricted to coordinate r

is L(w+de) <k+8),4p (Zjeﬁ(i) PiXjr— x,-,,) + 1B,8m. The last term
is a simple quadratic term in § and thus the optimal step * along coordinate r can

be trivially computed. Alas, our derivation of an efficient coordinate descent update
does not end here, as the term multiplying ¢ in the bound above depends on the pairs
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Fig. 22.1 Coordinate descent

. initialize: Z=m, Yi:p; =0, Vr: B, =max; x
algorithm for R
Kino-1 . ith th while not converged do
ranking-learning with the for r € {1 n} do

domination loss U = 0; iy = 0
for j € D do
P < pr + €pJ:L‘jr
end for
for each i ¢ D do
Vr < VUp + (Zxir — pr)/(Z + €P?)
end for
Or « vr/(MBr) 5 Wy < wy + 0y
for each j € D do
Z < Z—ePi 5 pj < pjt0rzyr ; Z 4 Z+ebi
end for
for each i ¢ D do
pi < pi + 0rTi r
end for
end for
end while

i ¢ Dand j € D(i). We now exploit the fact that the sole instance in D(i) which
depends on i is Xx; itself, and rewrite the gradient, v,, with respect to r,

U’+ZX’3’ :Z Z PjXjr = Z ijxj,r-i-]?ixi,r

i¢D i¢D jeD(i) i¢D \j€ED
Yy rrent t Dves
= +
wxl Jr WX:

2D i Z +e Z+e

1 WX YN Xir
(St (e - D

WeX; Z Jor WX

i¢DZ+e jeD ,¢pz+e

where Z = ) jeD e%*i . The latter expression can be computed in time linear in the
size (number of instances) of each query, and not the number of comparable pairs
in each query. Finally, to alleviate the dependency in the dimension of the instances,
due to the products w - X;, on each iteration, we introduce the variables p; = w - x;
and u, = ). jeD efi x; . Then, the change to the rth coordinate of w is,

1 Zir_ r
T sl
mer e Tt

To recap we provide the pseudo-code of the algorithm in Fig. 22.1.
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22.4 Extensions

In this section we describe a few generalizations and extensions of the base
coordinate descent algorithm described in the previous section. Concretely, we
show a generalization of the algorithm to multi-valued feedback, we describe the
addition of margin values over pairs of elements, and we define the incorporation of
regularization throughout the course of the algorithm.

We start with the extension to multi-valued feedback. In the more general case,
the feedback can take one of K predefined values. We can assume without loss
of generality that the feedback set is {1, ..., K}. We thus can divide the instances
retrieved for a query into k disjoint sets denoted by G(1),...,G(K). The set
G(K) consists of all the top-ranked instances and analogously G (1) contains all the
bottom-ranked elements. The set of instances dominated by any instance in G(r)
is denoted by D(r) = {j € G(I)|l < r}. The form of the bound for £p(x;; W)
with multi-valued feedback remains intact. When summing over all dominating x;,
however, we break down the summation by group k, yielding

L(w+8er)§/c+z Z Z pixjr—Xi, |6

k>1ieG(k) jeﬁ(,‘)

1 2
—i—EB,;m(k)S . (22,1

where m(k) is the number of elements in group k. The quadratic term can still
be bounded by m B, /2, where we redefine m to be the number of dominating
elements, ), _, m(k). Again, efficient computation requires decomposing the linear
multiplier. Using the same argument as earlier we get

2.0 2 pw

k>1ieG(k) jeﬁ(,‘)

_Z Z k+ eWXi Z ewx!le +Z Z k‘}‘l‘zlwlx, ’

k>1i€G(k) Jj€D(k) k>1i€G(k)
where Z; = ) jepi €. The gradient for the multi-valued feedback amounts to
_ Mk r — Zk-xi,r
22\ X prne e | =00 D
k>1ie€G(k)\ jeD(i) k>1ieG(k)

and prr, = Y epiy€"Vxj,. Note that Z and p can be constructed
recursively in linear time as follows: Z; = Zjec(k_l)ew'xf + Zi—; and
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Wkr = Zjec(k_l)ew"‘f Xjr + pk—1,. To recap, each generalized update of § is
computed as follows,

_ Z Z ZyXir LiXir — Pk
WX
By k>1i€Gk) Zite
Next we discuss the infusion of margin requirements, which amounts to using
the loss Y, log (1 + 2 jepi ew'("f_"i)JrA(i’/)). When A is of general form, the
problem is no longer decomposable and we were not able to devise an efficient
extension. However, when the margin requirement can be expressed as a sum of
two functions, A(i, j) = s(i) —s(j), it is possible to extend the efficient coordinate

descent procedure. Adding a separable margin, each term e“*/ is replaced with
e™%i+5()) Concretely, we obtain the following gradient:

ZjeD ew-Xj—s(j)Xj + ew~xi+s(i)xi

Vw ED(Xi; W) = Z o VX —5()) + ewxit+s(i)
J

—X; .

The rest of the derivation is identical to that for the zero-margin case, and yields

1 Z-xi,r — Mr
B, 2= Z § evn )
1

8:

where

Hr :Z ew"‘f_“(j)Xj,r and Z :Z eV NiTsU)
J€D(k) J€D(k)

We conclude this section by showing how to incorporate a regularization term
and perform feature selection. We use the £; norm of the weight vector w as the
means for regularizing the weights. We would like to note though that closed form
extensions can be derived for other £, norms, in particular the 6% norm. We focus on
the £; norm since it promotes sparse solutions. Adding an £, penalty to the quadratic
bound and performing a coordinate descent step on the penalized bound amounts to
the following (scalar) optimization problem:

b 52+A||w, +8, . (22.2)

msin g6+ —
where g, and B, are the expressions appearing in (22.1). To find the optimal
solution, denoted by 6*, of the above equation we need the following lemmas.
The proofs of the lemmas employ routine analysis tools. For brevity we omit the
subscript r in the following lemmas.

Lemma 22.1. If fw—g > 0; thenw+6* > Qand if Bw—g < Othenw+§* <O.
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Proof. Let us consider without loss of generality the case where fw — g > 0.
Suppose that w + §* < 0, then, (22.2) reduces to, 0 = g + $6* — A. Combining the
above equation with the bound on fw — g, and recalling that A > 0 and 8 > 0, we
obtain that S(w + §*) > A and thus w + §* > 0. We thus get a contradiction; hence
w + §* > 0. The symmetric case follows similarly. O

Lemma 22.2. The optimal solution §* equals —w if and only if |g — Bw| < A.

Proof. Without loss of generality, let us consider the case where fw—g > 0. We can
then use Lemma 22.1 to simplify (22.2). Substituting w+§ for ||w + §]||; and adding
the constraint w+48 > 0 we get §* = argming g8 + §52 +A(w+38) s.t. w48 > 0.If
the inequality constraint holds with a strict inequality, then §* = —(A+g)/8 > —w.
If, however, the minimum (A+g)/8 > w then the optimum must be at the constraint

boundary, namely §* = —w. Therefore, if A > fw — g > 0 then §* = —w, whereas
if Bw — g > A, then §* = —(A + g)/B. The symmetric case where g — Bw < 0
follows similarly. O

Equipped with the above lemmas, the update amounts to the following two-step
procedure. Given the current value of w, and g, we check the condition stated in
Lemma 22.2. If it is satisfied we set the new value of w, to 0. Otherwise, we set
0*=—(g+A1)/p if pw, — g, >0and6* = (—g + A1)/B if pw, —g, <0.

As we discuss in the experiments, the combination of the robust loss, the
coordinate descent procedure, and the sparsity inducing regularization often yields
compact models consisting of about 700 non-zero weights out of 10,000 features
for representing images, and even sparser models for documents.

22.5 Experiments

We evaluated and compared the algorithm and its extension on various datasets.
We first evaluated the algorithm on the Microsoft’s LETOR collection, whose are
of modest size. On these datasets we compared the algorithm to RankSVM [6],
AdaRank [16], and RankBoost [4]. These algorithms take different approaches to
the ranking problem. To compare all algorithms we used three evaluation criteria:
NDCGS, NDCG10, and Precision at 10. The results are provided in Table 22.1.
Note that RankSVM is not presented in the table, since there are published results
for RankSVM on only a subset of the datasets, on which its performance was
average. We tested our algorithm with and without margin requirements using
three-tier feedback. While the performance of our algorithm was often better
than that of AdaRank and RankBoost, the results were not conclusive and all
the versions we tested exhibited similar performance. We believe that the lack of
ability to discriminate between the algorithms is largely due to the modest size
of the LETOR collection and the tacit overfitting of the test sets due to repeated
experiments that have been conducted on the LETOR collection. We therefore
focused on experiments with larger datasets and compared our approach to a fast
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Table 22.1 Results for LETOR dataset. Average rank (lower is better) over eight datasets is shown

Domination rank AdaRank
Algorithm measure Multi-valued Base Margin NDCG MAP RankBoost
NDCG 10 3.62 3.38 2.75 4.12 3.62 3.38
Precision 10 3.25 3.12 2.38 4.00 4.38 3.12
NDCG 5 3.12 3.38 3.62 4.12 3.38 3.38

Table 22.2 Results for the large image dataset

Domination rank

Algorithm PAMIR Base-(> Base-{, Multi-valued Margin
Avg. precision 0.051 0.050 0.050 0.050 0.050
Precision @ 10 0.080 0.073 0.073 0.073 0.073
Domination error 0.964 0.964 0.963 0.964 0.964
All pairs error 0.234 0.213 0.237 0.235 0.236
% zero weights 3.4 1.4 94.3 93.4 93.2

online algorithm called PAMIR [5] which can handle large ranking problems. One
particular aspect that we tested is the ability of our algorithm to yield compact yet
accurate models.

Image Ranking Experiments. The first large ranking experiment we conducted
was an image ranking task. This image dataset consists of about 2.3 million training
images and 0.4 million test images. The dataset is a subset of Google’s image search
repository and is not publicly available. The evaluation included 1,000 different
queries and the results represent the average over these queries. The dataset is
similar to the Corel image dataset used in [5], albeit it is much larger. We used
the feature extraction scheme described in [5], which yielded a 10,000-dimension
vector representation for each image with an average density (non-zero features)
of 2 %. The results are given in Table 22.2. We used both 6% and ¢, regularization
in order to check the algorithm’s performance with compact models and handle the
extremely noisy labels. For each image in our dataset we have real-valued feedback
which is based on the number of times the image was selected by a user when
returned as a result for its associated query. As reported in Table 22.2 we used
the user feedback information in two ways: first to construct three-valued feedback
(relevant, somewhat relevant, and irrelevant), and second as the means to impose
margin constraints. We defined the margin to be the scaled difference between the
user counts of the two images. The scaling factor was chosen using cross-validation.
It is apparent from the table that all the variants attain comparable performance.
However, the £, version of the domination loss yielded vastly sparse models, which
renders the algorithm usable for very large ranking tasks. Disappointingly, despite
our careful design, neither the multi-valued feedback nor the margin requirements
resulted in improved performance on the image dataset.
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Table 22.3 Results for the

RCV1 collection PAMIR Domination rank

Avg. precision 0.705 0.670
Precision @ 10 0.915 0.918
Domination error 0.974 0.976
All pairs error 0.014 0.024
% zero weights 78.1 98.8

Document Ranking Experiments. The second large dataset we experimented
with is the Reuters RCV1 dataset. This dataset consists of roughly 800,000 news
articles spanning a 1-year period. Each document is associated with one or more
of 103 topics. Most documents are labelled with at least two topics and many with
three or more. We view each topic as a ranking task across the entire collection.
From each article, we extracted the raw text as input. We used unigram features
as performed in [11]. We randomly partitioned the dataset, placing half of the
documents in the training set and splitting the remainder evenly between a validation
set and a test set. Of the 103 topics in the dataset, two had too few topics to provide
meaningful results. We thus excluded these topics and reported results averaged over
the remaining 101 topics. For each of the 101 topics, we learned a ranking function
and used it to score all the test instances. The results were averaged across topics
and are provided in Table 22.3. Here again we see that the £, penalized PAMIR,
which is a pure dual algorithm, and the £; penalized coordinate descent algorithm
achieve similar performance with the exception of the number of misordered pairs,
which is closely related to the loss PAMIR employs. The main advantage again
is the sparsity of the resulting models. Our approach uses fewer than 2 % of the
original features whereas PAMIR uses a large portion. (PAMIR does not use all of
the features despite the £, regularization since some topics consist of a small number
of relevant documents.)

22.6 Conclusions

We derived in this chapter an efficient coordinate descent algorithm for the task
of learning to rank. Our construction is tightly based on the domination loss first
proposed in [3]. We described a convex relaxation of that loss with an associated
update that scales linearly with the number of training instances. We also derived
several extensions of the basic algorithm, including the ability to handle multiple
valued feedback, margin requirements over pairs of instances, and £, regularization.
Furthermore, the algorithm’s efficiency is retained for these extensions. Experiments
with several datasets show that by using {; regularization, the resulting ranking
models are trained considerably faster and yield significantly more compact models,
yet attain performance competitive with some of the state-of-the-art learning to rank
approaches.
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Chapter 23
Direct Approximation of Divergences Between
Probability Distributions

Masashi Sugiyama

Abstract Approximating a divergence between two probability distributions
from their samples is a fundamental challenge in the statistics, information
theory, and machine learning communities, because a divergence estimator can
be used for various purposes such as two-sample homogeneity testing, change-
point detection, and class-balance estimation. Furthermore, an approximator
of a divergence between the joint distribution and the product of marginals
can be used for independence testing, which has a wide range of applications
including feature selection and extraction, clustering, object matching, independent
component analysis, and causality learning. In this chapter, we review recent
advances in direct divergence approximation that follow the general inference
principle advocated by Vladimir Vapnik—one should not solve a more general
problem as an intermediate step. More specifically, direct divergence approximation
avoids separately estimating two probability distributions when approximating
a divergence. We cover direct approximators of the Kullback-Leibler (KL)
divergence, the Pearson (PE) divergence, the relative PE (tPE) divergence, and the
L?-distance. Despite the overwhelming popularity of the KL divergence, we argue
that the latter approximators are more useful in practice due to their computational
efficiency, high numerical stability, and superior robustness against outliers.

23.1 Introduction

Let us consider the problem of approximating a divergence D between two
probability distributions P and P’ on R from two sets of independent and
identically distributed samples X := {x;}/_, and X’ := {xﬁ,},'.’,;l following P
and P’.
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A divergence approximator can be used for various purposes such as two-sample
testing [12, 26], change detection in time-series [14], class-prior estimation under
class-balance change [7], salient object detection in images [49], and event detection
from movies [48] and Twitter [18]. Furthermore, an approximator of the divergence
between the joint distribution and the product of marginal distributions can be
used for solving a wide range of machine learning problems [22], including
independence testing [23], feature selection [10, 34], feature extraction [33, 46],
canonical dependency analysis [13], object matching [43], independent component
analysis [32], clustering [16, 28], and causality learning [42]. For this reason,
accurately approximating a divergence between two probability distributions from
their samples has been an important challenge in the statistics, information theory,
and machine learning communities.

A naive way to approximate the divergence from P to P’, denotedby D(P|P'),
is to first obtain estimators Py and P/ s of the distributions P and P’ sepa-
rately from their samples X' and X’, and then compute a plug-in approximator
D(ﬁX I }3/.’,(/). However, this naive approach violates Vapnik’s principle [39]:

If you possess a restricted amount of information for solving some problem, try to solve

the problem directly and never solve a more general problem as an intermediate step. It is

possible that the available information is sufficient for a direct solution but is insufficient
for solving a more general intermediate problem.

More specifically, if we know the distributions P and P’, we can immediately
know their divergence D(P| P’). However, knowing the divergence D(P| P’)
does not necessarily imply knowing the distributions P and P’, because different
pairs of distributions can yield the same divergence values. Thus, estimating the
distributions P and P’ is more general than estimating the divergence D(P| P’).
Following Vapnik’s principle, direct divergence approximators ﬁ(X ,X’) that do
not involve the estimation of distributions P and P’ have been developed recently
[11,19,24,31,47].

The purpose of this chapter is to give an overview of such direct divergence
approximators.

23.2 Divergence Measures

In this section, we introduce useful divergence measures.

Kullback-Leibler (KL) Divergence: The most popular divergence measure in
statistics and machine learning would be the KL divergence [17], defined as

p(x)
p'(x)

where p(x) and p’(x) are probability density functions of P and P’, respectively.

dx,

KL(pp) == / p(x) log
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Advantages of the KL divergence are that it is compatible with maximum
likelihood estimation, it is invariant under input metric change, its Riemannian
geometric structure is well studied [2], and it can be approximated accurately via
direct density-ratio estimation [19,24,29]. However, it is not symmetric, it does not
satisfy the triangle inequality, its approximation is computationally expensive due
to the log function, and it is sensitive to outliers and numerically unstable because
of the strong non-linearity of the log function and possible unboundedness of the
density-ratio function p/ p’ [4,47].

Pearson (PE) Divergence: The PE divergence [20] is a squared-loss variant of the
KL divergence defined as

2
PEI) = [ 7 (L 1) ax,

Because both the PE and KL divergences belong to the class of Ali-Silvey—Csiszar
divergences (which is also known as f-divergences) [1, 6], they share similar
theoretical properties such as invariance under input metric change. The quadratic
function the PE divergence adopts is compatible with least-squares estimation.

The PE divergence can also be accurately approximated via direct density-ratio
estimation in the same way as the KL divergence [11, 29], but its approximator
can be obtained analytically in a computationally much more efficient manner
than that of the KL divergence. Furthermore, the PE divergence tends to be more
robust against outliers than the KL divergence [30]. However, other weaknesses
of the KL divergence such as asymmetry, violation of the triangle inequality, and
possible unboundedness of the density-ratio function p/p’ remain unsolved in the
PE divergence.

Relative Pearson (rPE) Divergence: To overcome the possible unboundedness of
the density-ratio function p/p’, the rPE divergence was introduced recently [47],
which is defined as

2
{PE(p|lp) == PE(pllga) = / da(x) ( j((’;)) —1) dx.

where ¢, = ap + (1 —a)p’ for 0 < o < 1. When @ = 0, the rPE divergence is
reduced to the plain PE divergence. The quantity p/q, is called the relative density
ratio, which is always upper-bounded by 1/« for @ > 0. Thus, it can overcome
the unboundedness problem of the PE divergence, while the invariance under input
metric change is still maintained.

The rPE divergence is still compatible with least-squares estimation, and it can
be approximated in almost the same way as the PE divergence via direct relative
density-ratio estimation. Indeed, an rPE divergence approximator can still be
obtained analytically in an accurate and computationally efficient manner. However,
it still violates symmetry and the triangle inequality in the same way as the KL and
PE divergence, and the choice of « is not straightforward in practice.
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L2-Distance: The [2-distance is another standard distance measure between
probability distributions defined as

L) = [ (p0) - p'@) ax,

The L>-distance is a proper distance measure, and thus it is symmetric and satisfies
the triangle inequality. Furthermore, the density difference p(x) — p’(x) is always
bounded as long as each density is bounded. Therefore, the L2-distance is stable,
without the need of tuning any control parameter such as « in the rPE divergence.

The L>-distance is also compatible with least-squares estimation, and it can
be accurately and analytically approximated in a computationally efficient and
numerically stable manner via direct density-difference estimation [31]. However,
the L2-distance is not invariant under input metric change, which is a unique
property inherent in ratio-based divergences.

23.3 Direct Divergence Approximation

In this section, we review recent advances in direct divergence approximation.

KL Divergence Approximation [24]: The key idea is to estimate the density ratio
p/ p’ without estimating the densities p and p’. More specifically, a density ratio
approximator 7 is obtained by minimizing the empirical KL divergence from p to
r - p’ with respect to a density-ratio model r:

n/

. 1 . 1 :
7= arg?lln - Zlogr(xi) subject to r > 0 and — Z r(x;) =1

i=1 i’=1

For a linear-in-parameter density-ratio model defined by

n 2
llx — xi]
r(x) = ;ei exp (_T , (23.1)
the above optimization problem is convex and thus the global optimal solution can
be obtained easily, e.g., by a gradient-projection iteration. The Gaussian width o can
be tuned by cross-validation with respect to the objective function. Given the density
ratio estimator 7, a KL divergence estimator KL(X || X’) can be constructed as

- 1 & R
KL(X||X) = - > log#(x;).

i=1
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A MATLAB implementation of the above KL divergence approximator (called the
KL importance estimation procedure, KLIEP) is available from http://sugiyama-
www.cs.titech.ac.jp/~sugi/software/KLIEP/.

Variations of this procedure for various density ratio models have been
developed, including the log-linear model [38], the Gaussian mixture model [41],
and the mixture of probabilistic principal component analyzers [45]. Also, an
unconstrained variant, which corresponds to approximately maximizing the
Legendre—Fenchel lower bound of the KL divergence [15], was also proposed [19]:

n/

__ 1 « 1
KL (x| X)) := max | — Zlog r(x;) — - Z r(xi)+1

i=1 i'=1

PE Divergence Approximation [11]: The PE divergence can also be directly
approximated without estimating the densities p and p’ via direct estimation of
the density ratio p/ p’. More specifically, a density ratio approximator 7 is obtained
by minimizing the empirical p’-weighted squared difference between a density ratio
model r and the true density ratio p/p’:

| 2
F = argmin | — Z ri(x)) — = Zr(xi)
r T r

For the linear-in-parameter density-ratio model (23.1), possibly together with
£,-regularization [9], the density ratio estimator 7 can be obtained analytically, with
a closed-form leave-one-out cross-validation score [40]. Moreover, together with the
{-regularization [35], the coefficients {6; }7_, tend to be sparse and can be learned
in a computationally efficient way [36], further equipped with a regularization path
tracking algorithm [8].

A MATLAB implementation with the £,-regularizer (called unconstrained least-
squares importance fitting, uLSIF) is available from http://sugiyama-www.cs.titech.
ac.jp/~sugi/software/uLSIF/.

rPE Divergence Approximation [47]: The rPE divergence can be estimated in the
same way as the PE divergence as

n

n n’
N .| @ l -« 2
F = argmin | — E r2(x;) + - E ri(x)) — - E r(x;)
r i=1 i'=1 i=1

Thus, all the computational advantages of PE divergence approximation mentioned
above are inherited by rPE divergence approximation.

A MATLAB implementation of this algorithm (called relative uLSIF; RuLSIF)
is available from http://sugiyama-www.cs.titech.ac.jp/~yamada/RuLSIF.html.
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L*-Distance Approximation [31]: The key idea is to directly estimate the density
difference p — p’ without estimating each density. More specifically, a density
difference approximator f is obtained by minimizing the empirical squared differ-
ence between a density difference model f and the true density difference p — p’:

f= arg;nin /f(X)zdx— %Zf(xf)—ﬁif(x?’)

i=1 i’=1

In practice, the use of the Gaussian kernel model,

1w =Y ex ( x”) 29n+z/exp< ”x_x””z),

i=1

is advantageous because the first term f f(x)2dx in the objective function can be
computed analytically for this model. The above optimization problem is essentially
of the same form as least-squares density-ratio approximation for the PE divergence,
and therefore least-squares density-difference approximation can enjoy all the
computational properties of least-squares density-ratio approximation.

A MATLAB implementation of the above algorithm (called least-squares density
difference; LSDD) is available from http://sugiyama-www.cs.titech.ac.jp/~sugi/
software/LSDD/.

Convergence Issues: All the direct divergence approximators reviewed above
were proved to achieve the /n-consistency in the parametric case (suppose n’ = n)
[11,24,31,47], which is the optimal convergence rate. Furthermore, they were also
proved to achieve the minimax optimal convergence rate in the non-parametric
case [11, 19, 24, 31, 47]. Also, experimentally, direct divergence approximators
were shown to outperform the naive approaches based on density estimation
[11,24,31,47].

23.4 Usage of Divergence Estimators in Machine Learning

In this section, we show applications of divergence estimators in machine learning.

Change-Detection in Time-Series: The goal is to discover abrupt property
changes behind time-series data. Let y(¢) € R” be an m-dimensional time-series
sample at time ¢, and let Y (1) := [y(t) .yt + DT,....y(t +k—=1)T]T e Rk
be a subsequence of time series at time ¢ with length k. Instead of a single
point y(¢), the subsequence Y (¢) is treated as a sample here, because time-
dependent information can be naturally incorporated by this trick [14]. Let
V() ={Y(@),Y(t+1),...,Y(t +r—1)} be aset of r retrospective subsequence
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samples starting at time 7. Then a divergence between the probability distributions
of Y(t) and Y (¢ 4 r) may be used as the plausibility of change points (see Fig. 23.1).

The change-detection methods based on the rPE divergence [18] and the
L>-distance [31] were shown to be promising through experiments. In particular,
the method based on the rPE divergence was successfully applied to event detection
from movies [48] and Twitter [18].

Class-Prior Estimation Under Class-Balance Change: In real-world pattern
recognition tasks, changes in class balance are often observed between the training
and test phases. In such cases, naive classifier training produces significant estima-
tion bias because the class balance in the training dataset does not properly reflect
that of the test dataset. Here, let us consider a binary pattern recognition task of
classifying pattern x € R into class y € {+1,—1}. The goal is to learn the class
balance of a test dataset in a semi-supervised learning setup where unlabelled test
samples are provided in addition to labelled training samples [3]. The class balance
in the test set can be estimated by matching a mixture of class-wise training input
densities,

Gest(¥) 1= T Pyrain(x]y = +1) + (1 = 7) prain (x |y = —1),

to the test input density pret(x) under some divergence measure [7]. Here, & € [0, 1]
is a mixing coefficient to be learned to minimize the divergence (see Fig. 23.2).

The class-balance estimation methods based on the PE divergence [7] and the
L?-distance [31] were shown to be promising through experiments.

Salient Object Detection in an Image: The goal is to find salient objects in an
image. This can be achieved by computing a divergence between the probability
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Fig. 23.3 Object detection in

an image e____..-—‘psurrmmding (‘B)
prcntcr(m) __--"‘—

distributions of image features (such as brightness, edges, and colours) in the center
window and its surroundings [49]. This divergence computation is swept over the
entire image, possibly with changing scale (Fig.23.3).

The object detection method based on the rPE divergence was demonstrated to
be promising in experiments [49].

Measuring Statistical Independence: The goal is to measure how strongly two
random variables U and V are statistically dependent by using paired sam-
ples {(u;,v;)}]_, drawn independently from the joint distribution with density
pu.v(u,v). Let us consider a divergence between the joint density pyy and the
product of marginal densities py - py. This actually serves as a measure of statistical
independence, because U and V are independent if and only if the divergence is
zero (i.e., puv = pu * pv), and the dependence between U and V is stronger if the
divergence is larger.

Such a dependence measure can be approximated in the same way as ordinary
divergences by using the two datasets formed as X = {(u;,v;)}/_, and X" =
{ui,v))}] =1 The dependence measure based on the KL divergence is called
mutual information [21], which plays a central role in information theory [5]. On the
other hand, its PE divergence variant is called the squared-loss mutual information,
which was shown to be useful for solving various machine learning tasks [22] such
as independence testing [23], feature selection [10, 34], feature extraction [33, 46],
canonical dependency analysis [13], object matching [43], independent component
analysis [32], clustering [16,28], and causality learning [42]. An L2-distance variant
of the dependence measure is called quadratic mutual information [37].

23.5 Conclusions

In this chapter, we reviewed recent advances in direct divergence approximation.
Direct divergence approximators theoretically achieve optimal convergence
rates both in parametric and non-parametric cases and experimentally compare
favourably with their naive density estimation counterparts. However, direct
divergence approximators still suffer from the curse of dimensionality. A possible
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cure for this problem is to combine them with dimension reduction, with the hope
that two probability distributions share some commonality [25, 27, 44]. Further
investigating this line would be a promising future direction.
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