
Chapter 2

The Classic Petri Net

In this chapter the basic principles of classic Petri net theory are introduced
and basic properties are explained. With the latter, the emphasis will not
be on a complete listing but on the systematization of qualities as static or
dynamic and qualitative or quantitative.

2.1 Definitions

Definition 2.1 (unmarked Petri net) An unmarked Petri net is a 4-tuple
(P, T, F, V ) such that

1. P and T are finite sets with P ∩ T = ∅ and P ∪ T �= ∅.
2. F is a relation of arity 2 with F ⊆ (P × T

) ∪ (T × P
)
.

3. V : F −→ N+.

The elements of P are called places and the elements of T are called transi-
tions. The elements of F are called arcs and F is called the flow relation of
N . The function V is the multiplicity (weight) of the arcs.

This definition covers the static aspects of a Petri net. An unmarked Petri net
is therefore a 2-colored, weighted, directed, finite graph. The vertices of one
color represent the places and the vertices of the other color the transitions.
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8 CHAPTER 2. THE CLASSIC PETRI NET

In Petri net theory, the places are graphically represented by circles and the
transitions by rectangles or bars.

Definition 2.2 (Petri net) A marked Petri net is a 5-tuple N = (P, T, F,
V,m0) (short: Petri net) such that

1. (P, T, F, V ) is an unmarked Petri net.

2. m0 : P −→ N is the initial marking1.

Thus, a Petri net has an initial marking which assigns a natural number to
each place. This marking is graphically represented by the corresponding
number of tokens (points) on the places, so m0(p)-tokens are drawn in the
circle representing the place p. Any distribution of tokens on the places is a
marking:

Definition 2.3 (marking) Let P be the set of places of a Petri net N . A
marking in N is a total function m : P −→ N.

Example 2.4

p2

t1 t2 t3 t4

p3

p1

p4

2

Figure 2.1: N1 is a Petri net with the initial marking m0 = (1, 0, 0, 0)

1The function m0 is a total one.
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The initial marking of a Petri net can generally change into a successor mark-
ing according to certain rules and this can itself transform in turn into suc-
cessor markings. The rules describing the possible changes from one marking
to the next one are called firing rules, the occurring change itself is called a
firing. Throughout such firings, the distribution of tokens over the places of
a Petri net can change and thereby the whole view of the net changes. In
other words: The Petri net also has a dynamic aspect which is defined by
the firing rules.

Before we define the firing rules for classic Petri nets, some basic static notions
need to be explained: Let N be an arbitrary Petri net with a set of places P ,
a set of transitions T and a flow relation F . All places which are connected to
a transition by an arc form the set of pre-places and post-places of a specific
transition. A pre-place of a certain transition is a place which is directly
connected with the considered transition through an arc directed from the
place to the transition. If the arc points in the opposite direction, that place
is a post-place of the transition. The set of pre-places of the transition t
is denoted by •t := {p | p ∈ P ∧ (p, t) ∈ F}. The set t• := {p | p ∈
P ∧ (t, p) ∈ F} is the set of post-places of t. Analogously, for every place p
the set •p := {t | t ∈ T ∧ (t, p) ∈ F} denotes the set of pre-transitions of p
and the set p• := {t | t ∈ T ∧ (p, t) ∈ F} denotes the set of post-transitions
of p.

The dynamic aspect of a Petri net is defined by the firing rules. The firing
rules reflect causal relations within a permanently changing system: The
events of the real system are modeled by transitions of the Petri net. The
causes or preconditions of an event are represented by the pre-places of the
transition modeling the event. The post-places of the transition describe the
post-conditions of the event, which of course in turn can be preconditions
of other events. Whenever a pre-place is marked, the respective condition
is considered to be fulfilled. In the real system an event can take place
provided that all preconditions of the event are fulfilled. In the Petri net the
occurrence of the event is represented by firing of the respective transition.
After an event has taken place, its preconditions (in general) are not fulfilled
any more. The corresponding pre-places are therefore no longer marked.
Instead the post-conditions of the event are fulfilled and in the Petri net the
post-places of the transition are marked. This atomic process in the real
system provides the basic idea for the firing rule in the Petri net. In classic
Petri nets this basic idea is carried out with the multiplicity V ≡ 1 (these are
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the so-called ordinary Petri nets) and each place holds at most one token, i.e.,
for each reachable marking m (cf. Def. 2.10) it holds that m : P −→ {0, 1}
(these are the so called 1-safe Petri nets). Ordinary, 1-safe Petri nets are
also called condition/event nets.

If not all multiplicities of arcs of a Petri net are 1, the firing rule is extended
consistently. The preconditions of an event are fulfilled if, for each place,
the number of tokens it holds is no smaller than the multiplicity of the arc
from this place to the respective transition. After an event has taken place,
every post-place of the transition obtains the number of tokens equivalent to
the multiplicity of the arc from the transition to the respective post-place. A
transition t can therefore fire if the Petri net is in a marking m, which assigns
at least as many tokens as t needs in each pre-place of t. All preconditions
can be regarded as fulfilled. This minimum number of necessary tokens on
the places is defined by the marking t−:

t−(p) :=
{

V (p, t) , if (p, t) ∈ F
0 , if (p, t) �∈ F

.

Analogously the marking t+ describes the number of tokens which are added
to each place upon firing of t:

t+(p) =

{
V (t, p) if (t, p) ∈ F
0 if (t, p) �∈ F

.

The difference in tokens on the places after firing of transitions t is represented
by the marking Δt :

Δt := t+ − t−.

Furthermore, let us consider the Petri net N = (P, T, F, V,m0) with T =
{t1, · · · , tn} and P = {p1, · · · , pm}. The matrix CN = (cij) with m rows and
n columns and

cij := Δtj(pi)

is called the incidence matrix of N .

Example 2.5 We consider again the Petri net N1 introduced in Example
2.4. Its incidence matrix CN1 is:
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CN1 =

⎛⎜⎜⎝
1 −1 −1 1

−1 1 0 0
0 1 0 −2
0 0 1 −1

⎞⎟⎟⎠
P1

P2

P3

P4

.

Δt1 Δt2 Δt3 Δt4

We can now formally introduce the notions enabled and firing:

Definition 2.6 (enabled) Let N = (P, T, F, V,m0) be a Petri net and let
m be a marking in N . A transition t ∈ T is enabled in m if it holds that:
t− ≤ m.

Definition 2.7 (firing) Let N = (P, T, F, V,m0) be a Petri net and let m

be a marking in N . A transition t ∈ T can fire in m (notation: m
t−→), if

t is enabled in m. After the firing of t the Petri net is in the marking m′

(notation: m
t−→ m′) with

m′ := m+Δt.

This firing rule defines the firing of a single transition, i.e., it is a mono-firing
rule. It is also possible to define a rule firing a set (step) of transitions. This
firing rule, also called a step firing rule, is usually used in time-dependent
Petri nets, see Chapter 4. We will always use the mono-firing rule unless
stated otherwise.

We denote the change of a Petri net from marking m into marking m′ by
firing of transition t by m

t−→ m′. The relation −→ which is defined by the
firing rule is called the firing relation.

A further basic term in Petri Net theory is the notion of a reachable marking.
In order to introduce it, we first define firing sequences:

Definition 2.8 (firing sequence) Let N = (P, T, F, V,m0) be a Petri net,
let m be a marking in N and let σ = t1 · · · tn be a sequence of transitions. σ
fires from m to m′ in N (short: m

σ−→ m′) if it holds that:

Basic σ = ε

m′ := m
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Step σ = t1 · · · tntn+1

There is a marking m′′ in N , with

m
t1···tn−−−−−→ m′′ and m′′ tn+1−−→ m′.

σ is called a firing sequence from m in N if there is a marking m′ such
that σ fires from m to m′.

A firing sequence σ from m0 in N is usually simply called a firing sequence.

Example 2.9 Let us consider example 2.4 again. The transitions sequence
σ1 = t2 t1t2t1t3t4 is a firing sequence from m0 in the Petri net N1. In contrast,
the transition sequence σ2 = t3t4t3t4 is not a firing sequence from m0 in the
same net. However, σ2 is a firing sequence from m = (1, 0, 4, 0) in N1.

We write m
∗−→ m′ if there exists a firing sequence σ such that m

σ−→ m′.
This means that the relation

∗−→ is the reflexive-transitive closure of the
firing relation −→.

Furthermore, for σ = t1 · · · tn the following is true:

m′ = m+
n∑

i=1

Δti. (1)

This equation can equivalently be rewritten in the form:

m′ = m+
∑
t∈σ

πt ·Δt, (2)

where πt is the number of appearances of the transition t in the sequence σ.
Finally, we obtain the equality

m′ = m+ CN · πσ (3)

where CN is the incidence-matrix of N and πσ ∈ NT the vector with

πσ(t) =

{
πt if t ∈ σ
0 otherwise.

The |T |-dimensional vector πσ is called the Parikh vector of σ. The equality
(3) is called the state equation of σ in m (in N ).
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Definition 2.10 (reachable marking) A marking m is called reachable
from the marking m∗ in a Petri net N , if there is a firing sequence σ from
m∗ to m in N . If m∗ = m0 we call m reachable in N .

Finally, RN (m) := {m′ | m ∗−→ m′} is the notation for the set of all markings
m′ which are reachable from the marking m in N .

2.2 State Space

For any Petri Net N the set RN (m0) contains all markings reachable in the
net. This set is of particular interest because it gives us information about
all the events that can occur in a system modeled by the considered net. The
set tells us which of the markings of the net are reachable and thereby also
which pre-conditions of events may potentially be fulfilled.

Definition 2.11 (state space) Let N = (P, T, F, V,m0) be a Petri net.
The set RN := RN (m0) is called the state space of N .

The state space can be finite or infinite. The fact that the set RN is decidable
(cf. inter alia [PW03]) is crucial for the analysis of Petri nets as the state
space holds information about the reachability/non-reachability of markings
in N and thus about the occurrence/non-occurrence of events.

Definition 2.12 (boundedness) A Petri net N is said to be bounded if
the set RN of all its reachable markings is finite.

Boundedness can also be introduced using the notion of bounded place. A
place in a Petri net is bounded if there is a natural number such that the
number of tokens on this place never exceeds this number. A net is then
bounded if all its places are bounded. These definitions of boundedness are
equivalent.

We now consider again the reflexive-transitive closure of the firing relation.
This relation generally fulfills none of the common properties of relations
like symmetry, asymmetry, anti-symmetry, connexity etc. The graph of the
relation is called the reachability graph of the Petri net. It is formally defined
as follows:
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Definition 2.13 (reachability graph) Let N = (P, T, F, V,m0) be a Petri
net. The reachability graph of N is the graph RGN with

1. the set RN as set of vertices and

2. (m,m′) ∈ RN × RN is an edge in RGN if there is a transition t ∈ T

such that m
t−→ m′.

Such a reachability graph of a Petri net is a partial deterministic automaton
which can be finite or infinite (also compare Fig.2.2). The bounded Petri nets
are furthermore exactly those Petri nets whose reachability graphs are finite.
In the case of boundedness the Petri net is therefore well analyzable with the
help of its reachability graph. Determining whether a certain property holds
in an unbounded Petri net however is a lot more challenging.

Example 2.14 Let us again consider the Petri net N1 given in Example
2.4. Its reachability graph RGN1 is infinite. A part of the reachability graph
is presented in Fig.2.2.

When a Petri net is unbounded its reachability graph is infinite. In this case
we can consider the so-called coverability graph of the net, which is always
finite, to prove the existence or absence of properties. The trade-off for the
finiteness of the coverability graph is loss of information.

The vertices of the coverability graph are the so-called generalized markings
of the Petri net. A generalized marking in a Petri net is a (total) function
which assigns to each place a natural number or the value ω. A place has the
value ω in a generalized marking when the place is unbounded. We extend
the rules of addition, subtraction, and multiplication and the relation ≤ for
the set N ∪ {ω} as follows:

For each n ∈ N:

ω ± n = ±n+ ω = ω, n · ω = ω · n =

{
ω if n > 0
0 if n = 0

, ω > n.

We say that a (generalized) marking m covers another (generalized) marking
m′ in a Petri net N (short: m′ ≺ m), if m′ ≤ m and there is at least one
place p in N with m(p) �= m′(p). Therefore, m′ ≤ m implies that either
m′ ≺ m or m′ = m.
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1,0,0,0

1,0,1,0

0,1,1,0

0,1,2,0

1,0,2,0 0,0,2,1

0,0,0,1

0,0,1,1

0,1,3,0

1,0,3,0

0,1,4,0

0,0,3,1

t2

t1

t3

t2

t1

t2

t2

t1

t3

t3

t3

t4

t4

Figure 2.2: Part of the reachability graph RGN1

Definition 2.15 (coverability graph) Let N = (P, T, F, V,m0) be a Petri
net. The edge-labeled digraph CGN := (W,E, T ) is said to be a coverability



16 CHAPTER 2. THE CLASSIC PETRI NET

graph of N if the set of vertices W , the set of edges E and the set of labels
T are defined using the following algorithm 2:

begin R := {m0}; ancestor marking(m0) := ∗; W := ∅; E := ∅;
while R �= ∅ do

choose m from R; R := R− {m}; W := W ∪ {m};
enabled set:={t | t− ≤ m};
for t ∈enabled set do

m′ := m+Δt;

m∗ := m;

while (m∗ �= ∗) and (m∗ �≤ m′) do

m∗ := ancestor marking(m∗);

end;

if m∗ �= ∗ then

m′ := m′ + (m′ −m∗) · ω;
end;

E := E ∪ {(m, t,m′)};
if m′ �∈ W ∪R then

R := R ∪ {m′}; ancestor marking(m′) := m;

end;

end;

end;

end.

The coverability graph is not unique for a given Petri net. The notion “cov-
erability graph” was first defined by Karp and Miller (see [KM69]). Later,
in [Fin93], Finkel introduced an algorithm which computes a minimal cov-
erability graph of a Petri net. This graph is unique and has the minimum
number of vertices.

2Adapted from [Sta90]
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Example 2.16 Using Definition 2.15 we obtain for the Petri net N1 con-
sidered in Example 2.4 the coverability graph CGN1, represented in Fig. 2.3:

1,0,0,0

1,0,ω,0

0,1,1,0

0,1,ω,0

0,0,0,1

0,0,ω,1

t2

t1

t3

t3

t2 t4t1

Figure 2.3: A coverability graph CGN1 of the Petri net N1

2.3 PN-Computability

The expressive power of Petri nets is less than that of Turing machines (TM).
This means that there are algorithms which cannot be described by any clas-
sic Petri net: Not every Turing-computable function can also be computed
by a Petri net.

A number-theoretical n-ary function f : Nn −→ N is called Turing-computable
if there is a Turing machine Mf which given an n-tuple (x1, · · · , xn) as input
stops if and only if that n-tuple belongs to the domain of the function and
in this case also returns the value f(x). For more on Turing-computability
compare [HMU02].

We now need to clarify what a PN-computable function is. Regardless of
how we define that notion, we first have to ensure that there is a unique
presentation for every natural number in a Petri net. The infinity of the set
of all natural numbers prevents it from being modeled by places, transitions
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or arcs. But the set of reachable markings in a Petri net can in general
be infinite. Moreover, transitions might fire infinitely often and places can
change their number of tokens infinitely often, even if the places themselves
are bounded.

In order for a place to change its number of tokens infinitely often, at least
one transition in the net needs to fire infinitely often. The reverse is also true
and therefore the two properties are equivalent.

It can furthermore be shown that the number of firings in an arbitrary Petri
net is equal to the number of reachable markings in another Petri net derived
from the first one as follows:

Let N = (P, T, F, V,m0) be an arbitrary Petri net. Using N we construct
the Petri net N ′ = (P ′, T ′, F ′, V ′,m′

0) where:

P ′ := P ∪ {p∗} with p∗ �∈ P , T ′ := T , F ′ := F ∪ {(t, p∗) | t ∈ T} and

V ′(u) :=
{

V (u) if u �= (t, p∗)
1 if u = (t, p∗)

, m′
o(p) :=

{
m0(p) if p �= p∗

0 if p = p∗

for all p ∈ P ′ and for all t ∈ T ′.

The net N ′ is a copy of the net N with one additional place p∗ such that
every time a transition in the copy of N fires, the number of tokens in p∗

increases by 1. Thus the place p∗ in N ′ is unbounded if and only if there is
at least one transition t in the net N which fires infinitely often.

It is thereby clearly possible to represent natural numbers – and therefore
also n-tuples of natural numbers – by markings in a Petri net.

Next we define the notion of PN-computability:

Definition 2.17 (PN-computable) An n-ary function f : Nn −→ N is
called Petri-net-computable (PN-computable) if there is an initial Petri net 3

Nf = (Pf , Tf , Ff , Vf ,m
f
0) such that for each n-tuple x = (x1, · · · , xn) ∈ Nn

3An initial Petri net is an arbitrary Petri net which is fixed for a function f . The
extension of the initial marking mf

0 of Nf to initial markings mf,x
0 modeling the arguments

x = (x1, · · · , xn) generates the Petri nets N x
f . The marking mf

0 is better understood after
reading the similar definition for Time Petri nets, Definition 3.15, as well as Examples
3.17 and 3.18.
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and for the Petri net N x
f = (Pf , Tf , Ff , Vf ,m

f,x
0 ), where the marking mf,x

0

models the n-tuple (x1, · · · , xn), it holds that:

Case 1 If the tuple (x1, · · · , xn) belongs to the domain of f then the Petri net
N x

f stops (cannot fire anymore) and the last-reached marking mf(x1,··· ,xn)

uniquely represents the number f(x1, · · · , xn).

Case 2 If the tuple (x1, · · · , xn) does not belong to the domain of f then the

Petri net N x
f never stops, i.e., for each marking m with mf,x

0
∗−→ m

there exists at least one transition t which is enabled in m.

Evidently, every PN-computable function is also Turing-computable.

We assume now that every Turing-computable function is also PN-computable.
Let f be an arbitrary, n-ary, Turing-computable function. According to
the assumption f is PN-computable, too. Let Mf be a Turing machine
which computes f and Nf a Petri net which computes f . Furthermore, let
(x1, · · · , xn) be an n-tuple of natural numbers. Then it holds that:

Mf started on (x1, · · · , xn) stops

if and only if

Nf started in (x1, · · · , xn) stops. (4)

As detailed before, we can define the Petri net N ′ for every Petri net N . The
construction of the respective Petri net N ′

f for Nf ensures that for any Nf

the following holds:

Nf started in (x1, · · · , xn) stops

if and only if

the place p∗ in N ′
f is bounded. (5)

We can determine whether the place p∗ is bounded in N ′
f by means of the

coverability graph of N ′
f . Taking into account (4) and (5) it is consequently

decidable for an arbitrary Turing-computable function f whether the Turing
machine Mf started with an arbitrary n-tuple (x1, · · · , xn) stops or not. This
contradicts, however, the undecidability of the halting problem for Turing
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machines (cf. among others [HMU02]). Therefore the assumption that every
Turing-computable function is also PN-computable is disproved.

Thus we have proved the property:

Theorem 2.18 The class of all marked Petri nets (as defined in Definition
2.2 and using the mono-firing rule) is not Turing-complete.

2.4 Basic Properties

The potential of Petri nets for modeling results from their graphical repre-
sentability and makes them applicable in a wide variety of areas. Many kinds
of systems can be represented easily but nevertheless clearly and formally us-
ing Petri nets. Furthermore, the nature of Petri nets allows modeling of a
system at each stage of abstraction and refinement of the model where nec-
essary. Therefore modeling with Petri nets is a hierarchical procedure as well
as a modular one. Without analyzing methods for Petri nets however their
use as a modeling instrument is very limited. We want on the one hand to
ascertain the presence of certain properties in a Petri net in order to evaluate
its “quality” as a model of a real system, on the other hand an analysis of
the model might detect properties of the real system previously overlooked.

Some properties of Petri nets can be determined very easily, these in general
being properties which result from the structure of the Petri net itself. We
call such properties static. In contrast to this, we describe properties which
result from firing and which characterize permanent changes in the net as
dynamic properties. These dynamic properties are usually more difficult to
identify and sometimes impossible to analyze.

Among the static properties there are such features as the existence of static
conflicts, deadlocks, traps, etc., or whether a net is a marked graph, a state
machine, a free-choice net, an extended-free-choice net, an asymmetric-choice
net, a homogeneous one, etc. All of these properties are decidable indepen-
dently of the state space of the considered Petri nets. Some of them are
relevant for our studies and will be defined below, although they are not the
main subject of our analysis.

The notions free-choice net, extended-free-choice net, asymmetric-choice net
and marked graph were originally defined for ordinary Petri nets and are still
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mainly used in that context. For arbitrary multiplicity these notions were
first introduced in [Sta90]. In this book, we use more recent and more general
definitions. Therefore the classes defined here, like free-choice nets, extended-
free-choice nets, asymmetric-choice nets and marked graphs for homogeneous
Petri nets, are supersets of the corresponding classes of ordinary nets.

Definition 2.19 Let N = (P, T, F, V,m0) be a Petri net.

1. Two transitions t and t′ from T are in a static conflict, if they have
at least one common pre-place, i.e., •t ∩ •t′ �= ∅.

2. Two transitions t and t′ from T are in a dynamic conflict in the mark-
ing m if they are in a static conflict and by firing one of the transitions
in marking m the other one may become disabled, i.e., •t ∩ •t′ �= ∅ and
t− ≤ m and t′− ≤ m but t− + t′− �≤ m.

3. N is a marked graph if N is an ordinary Petri net and if each place
p has exactly one pre-transition and one post-transition, i.e., V (f) = 1
for each f ∈ F and | •p | = | p• | = 1.

4. N is a free-choice net (FC net) if each shared place is the only pre-
place of its post-transitions, i.e., if t, t′ ∈ p• then •t = {p} = •t′.

5. N is an extended-free-choice net (EFC net) if the post-transitions
of each shared place have the same pre-places, i.e., if t, t′ ∈ p• then
•t = •t′.

6. N is an asymmetric-choice net (AC net) if it holds that if two
places have at least one common post-transition then the set of all
post-transitions of one of the places is a subset of the set of all post-
transitions of the other one. Formally: For each two places p and p′ it
holds: If p• ∩ p′• �= ∅ then p• ⊆ p′ • or p′ • ⊆ p•.

7. N is homogeneous if all output arcs of a place have the same mul-
tiplicity, i.e., for each place p ∈ P it is true that if t, t′ ∈ p•, then
V (p, t) = V (p, t′).

Example 2.20 Let us consider the Petri net N1 from Example 2.4 . The
transitions t2 and t3 are in a static conflict. N1 is a FC net and therefore
also an EFC net and an ES net. It is homogeneous.

2.4. BASIC PROPER IEST
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We refrain from defining further static properties and refer to the common
literature on classic Petri nets, such as [Mur89] or [Sta90].

Liveness, boundedness, reachability, the existence of invariants, etc. are the
basic properties of a Petri net and are dynamic properties. They provide
information about the behavior of the examined Petri net.

The notion of liveness was established by Petri, Genrich and Lautenbach
at the GMD, Bonn at the beginning of the 1960s and developed further
in cooperation with Commoner, Even, Holt, Pnueli and Hack at MIT. It
was initially examined in special classes of Petri nets such as marked graphs
(cf. [Gen68], [CHEP71]) and AC-nets (cf. [Hac72], [Com73]). The four
levels of liveness introduced by Lautenbach in his PhD thesis [Lau73] in 1973
constituted an important advance and form the basis of liveness studies up
to the present day.

Definition 2.21 Let N = (P, T, F, V,m0) be a Petri net, m be an arbitrary
marking in N and t a transition in T .

1. t is called live in m in N if for each marking m′ ∈ RN (m) there exists

a marking m′′ ∈ RN (m′) such that m′′ t→.

2. t is called dead in m in N if for each marking m′ ∈ RN (m) it holds
that t− �≤ m′.

3. m is called live in N if each transition t ∈ T is live in m.

4. m is called dead in N if each transition t ∈ T is dead in m.

5. t is called live / dead in N if t is live / dead in m0.

6. N is called live / dead if m0 is live / dead in N .

7. N is called blocking-free4 if at least one transition is enabled in each
reachable marking m ∈ RN (m0).

As is obvious from the definition, a transition t is live in the marking m if it
is not dead in any successor marking of m. If a marking is dead, no transition
can fire from that marking. The marking therefore constitutes a leaf in the

4Some authors call this property deadlock-free.
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reachability graph of the net. Furthermore we observe that a Petri net which
is not dead does not have to be blocking-free (deadlock-free). The reason for
this being that a Petri net which fires only finitely often and then stops is
not dead. A blocking-free Petri net obviously is not dead. Every live Petri
net is blocking-free, the reverse however does not hold. A Petri net which is
not dead need not be live and a Petri net which is not live is not necessarily
dead.

We can summarize as follows:

N – dead
−→
�←− N – not blocking-free

−→
�←− N – not live

and
N – live

−→
�←− N – blocking-free

−→
�←− N – not dead.

Whether a Petri net is live, dead or blocking-free can be decided by means
of its reachability graph. The coverability graph of a Petri net however is of
no use in deciding liveness and blocking-freedom but does still contain the
information of whether the net is dead (cf. [PW03]). There are a number of
algorithms which decide these properties more effectively on restricted classes
of nets.

Finally we remark that the notion of t being live in a marking m introduced
in Definition 2.21 is equivalent to the 4-liveness defined by Lautenbach in
[Lau73]. The notion of t being dead in a marking m is equivalent to the
0-liveness also defined in [Lau73]. In other words, t is dead in m according
to Definition 2.21 if and only if t is not 1-live in m. This analogously applies
to the liveness of a marking and to the liveness of a Petri net. Finally, at
least one transition in a Petri net is 3-live as defined by Lautenbach if the
Petri net is blocking-free. The converse does not hold.

We already introduced the notions of boundedness and reachable markings
with Definitions 2.12 and 2.10.

Example 2.22 Let us consider the Petri net N1 from Example 2.4 again.

• The place P3 is unbounded.

• N1 is unbounded.

2.4. BASIC PROPER IEST
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• N1 is not live.

• N1 is not dead.

• N1 is not blocking-free.

With the last two definitions in this chapter we will now introduce two (dual)
notions of invariants in Petri nets:

Definition 2.23 (T-invariant) Let CN be the incidence matrix of the Petri
net N .

1. Each non-trivial solution x ∈ N|T | of the homogeneous equality

CN · x = 0

is called a transitions-invariant (short: T -invariant) of N .

2. A Parikh vector of a firing sequence which is also a T-invariant is called
a feasible T-invariant.

It is not difficult to see that if a Parikh vector πσ is a T -invariant the marking
is not changed by the firing of the sequence σ. This follows from the state
equality for σ:

m
σ−→ m′

iff

m′ = m+ CN · πσ = m

i.e.,

m′ = m.

The path representing the sequence σ in the reachability graph is obviously
a cycle.

Example 2.24 Let us consider the Petri net N1 shown in Example 2.4. The
integer solutions of the homogeneous equality system



25

CN1 ·

⎛⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ (6)

are x1 = x2 = 2 · k, x3 = x4 = k for k ∈ N.

Furthermore, we note that the transition sequence σ = t2t1t2t1t3t4 is a firing
sequence starting in m0 and its Parikh vector πσ is a solution of the equality
(6).

We can see in Example 2.14 that the path σ is a cycle in the reachability
graph RGN1.

Definition 2.25 (P-invariant) Let CN be the incidence matrix of the Petri
net N . Each non-trivial solution y ∈ N|P | of the homogeneous equality

yT · CN = 0

is called a place-invariant (short: P -invariant) of N .

We can view a P -invariant as an equation of weights for the places that
always holds:

Let y = (y1, · · · , y|P |) be a P -invariant in a Petri net N . It is true for each
reachable marking m in N that :

m = m0 + CN · πσ

and therefore

yT ·m = yT ·m0 + yT · CN · πσ

and thus subsequently

|P |∑
i=1

yi ·m(pi) = const. =

|P |∑
i=1

yi ·m0(pi).

Example 2.26 The homogeneous system of equations

2.4. BASIC PROPER IEST
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⎛⎜⎜⎝
y1
y2
y3
y4

⎞⎟⎟⎠
T

· CN1 = 0 in N

has the solutions

y1 = y2 = y4 = s for s ∈ N and y3 = 0.

Therefore, the following equality holds for each marking m ∈ RN1:

s ·m(P1) + s ·m(P2) + 0 ·m(P3) + s ·m(P4) =

s ·m0(P1) + s ·m0(P2) + 0 ·m0(P3) + s ·m0(P4)

i.e.,

m(P1) +m(P2) +m(P4) = 1.

All the properties introduced here are qualitative properties, even though
some of them might also be considered as quantitative properties. The ques-
tion of boundedness of a place for instance is equivalent to the question of
the maximum number of tokens on the place, which deals with quantities.
We will consider quantitative properties that do not have direct qualitative
equivalents for the time-dependent Petri nets presented in the following chap-
ters.

2.5 Bibliographical Notes

With his thesis “Kommunikation mit Automaten”5 [Pet62] Petri established
a theory of communication in arbitrarily large, non-globally defined systems.
The starting point of his considerations is the opinion that the notion state
in the sense of one global state is unsuitable for the description of causal
relationships. The reason for this is that the use of a notion of global state

5“Communication with Automata”. Published English translation in: Technical Re-
port RADC-TR-65-377, Vol.1, January 1966, Suppl. 1, Griffiss Air Force Base, New York.
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presupposes an explicit or implicit time scale implying simultaneity of in-
dependent events about whose independence we do not necessarily want to
make any presumptions. Petri uses the notions condition and event for the
description of causal relations and thereby defines action nets (or A-nets).
Further works by him, as well as Genrich [Gen68], Lautenbach [Lau73], Holt
et al. [CHEP71], Commoner [Com73], Hack [Hac72], etc. form the founda-
tion of net theory. This net theory is today known as the theory of Petri
nets. The graphic representation of these nets as well as their name “Petri
nets” goes back to A. Holt. Innumerable introductory articles and books on
the theory of Petri nets have been published since then. Among the first ones
and still standard references in the field are the articles by Peterson [Pet77]
and Murata [Mur89] as well as the books by Starke [Sta80] and Peterson
[Pet81].

The latest book publications include a book by Reisig [Rei13] in which the
author presents a thorough introduction to the essentials of Petri nets.

Mayr set another milestone for Petri net theory with his Ph.D. Thesis (cf.
[May80]). Among other things he proved the decidability of the reachability
of an arbitrary marking in a Petri net.

Algorithms deciding properties for different restricted classes of Petri nets
can be found in [Esp98]. Priese and Wimmel give an almost complete intro-
duction to the theory of Petri nets with their book [PW03].
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2.6 Exercises

Exercise 2.1

Let N1 = (P, T, F, V,m0) be the following Petri net:

t3p1 

p2 t4

p4p3t1 t2

Figure 2.4: The Petri net N1

(a) Give the incidence matrix CN1 .

(b) Give the Parikh vectors of the two transition sequences σ1 = t3t4t3t4t2t3
and σ2 = t1t3t4t

3
3t2t1. Compute the markings mi which are reached

after the firing of the transition sequences σi, i = 1, 2, in the Petri net
N1 starting at m0 by means of its state equations. What can you say
about the reachability of m1 and m2 in N1?

(c) Compute the P - and T -invariants for the Petri net N1 if it has any.
Give a feasible T -invariant if there is one.

(d) Compute the reachability graph of N1. Is N1 live?

Exercise 2.2

Let N2 = (P, T, F, V,m0) be the following Petri net:
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t3p1 

p2 t4

p4t1 p3t2

Figure 2.5: The Petri net N2

(a) Show by means of the state equation that the empty marking (0, 0, 0, 0)
is not reachable in N2.

(b) Compute the coverability graph of N2. Is N2 bounded?

Exercise 2.3

(a) Is it always possible to show the non-reachability of an arbitrary mark-
ing in a Petri net using the state equation? Give a proof of your answer.

(b) Is the liveness of an unbounded Petri net decidable from its coverability
graph?

Exercise 2.4

Let PN be the set of all unmarked Petri nets and let M be the set of all
(finite) matrices over the natural numbers.

(a) Is the following mapping Φ bijective:

Φ : PN −→ M, where Φ(N ) := CN ?

Justify your answer.

(b) If Φ is not bijective in general then give, if possible, a subset of PN such
that the mapping Φ is bijective on this subset. Justify your answer.
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Exercise 2.5

An arbitrary Petri net property α is called monotone if it holds that: For
any Petri net N = (P, T, F, V,m0) with the property α, α holds for all Petri
nets Nk := (P, T, F, V,mk

0) with mk
0(p) := k ·m0(p) for all p ∈ P .

Is liveness a monotone property? Give a proof.
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