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Preface

Time and Petri nets — do they not contradict each other? While time deter-
mines the occurrences of events in a system, classic Petri nets consider their
causal relationships and represent events as a concurrent system. At first,
these two appear to be at odds with each other, but taking a closer look
at how time and causality are intertwined, one realizes that time actually
enriches Petri nets. There are many possible ways in which time and Petri
nets interact, this book takes a deeper look at three time-dependent Petri
nets: Time Petri nets, Timed Petri nets, and Petri nets with time-windows.

The aim of this book is to introduce different algorithms that can be used to
analyze these three time-dependent Petri nets, as well as the principal meth-
ods for analyzing nets in general. To give the reader a general understanding
of Petri nets and their origins, we will first take a look at classic Petri nets
and their fundamental properties. Once the basis has been laid, we will take
a dive into time-dependent Petri nets, which are an extension of classic Petri
nets.

There are many different possibilities to associate time to classic Petri nets.
For the three time-dependent Petri nets this book focuses on, time is asso-
ciated to transitions or to places. For the first nets that we will take a look
at, Time Petri nets, enabled transitions may fire only during specified time
intervals. The transitions must fire the latest at the end of their intervals if
they are still enabled then. At any given moment only one transition may
fire. This firing does not take time. For the second class of nets, Timed Petri
nets, a maximal set of just-enabled transitions fires, and the firing of each
transition takes a specific amount of time. The third class of nets, Petri nets
with time-windows, portrays time as a minimum and maximum retention for
tokens on places. In these nets tokens can be used for firing only during their
minimum and maximum retention. At the end of the maximum retention
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time for a token its time is reset to zero if it was not used for firing. The
next period of its retention time on this place then restarts. This repetition
can continue indefinitely.

The pivotal contribution of this book is the introduction of algorithms that
allow the analysis of the different kinds of time-dependent Petri nets. For
each class of time-dependent nets, we will consider different algorithms that
have specifically been invented for the analysis. For Time Petri nets, we
provide an algorithm which proves the behavioral equivalence of a net where
time is designed once with real and once with natural numbers. One can
also say that the dense semantics of Time Petri nets can be replaced with
discrete semantics. The added value of this approach is that at this point
we can reduce the state space of a Time Petri net and consider its integer-
states exclusively. The result then allows for a qualitative and quantitative
analysis.

As a new approach for Timed Petri nets, we introduce two time-dependent
state equations. These provide a sufficient condition for the non-reachability
of states. We also define a local transformation for these nets into Time Petri
nets. Eventually we show possible variations of them.

Last but not least, we prove that Petri nets with time-windows have the
ability to realize every transition sequence fired in the net omitting time
restrictions. Despite the first experience that time has no influence on the
behavior of such nets, we verify that the time can change the liveness behavior
of Petri nets with time-windows.

Finally, we choose these three classes of time-dependent Petri nets to show
that time alone does not change the power of a Petri net. In fact, time can or
cannot be used to force firing. For Time Petri nets and Timed Petri nets we
can say that they are Turing-powerful, and thus more powerful than classic
Petri nets. The reason for this is that there is a compulsion to fire at some
point in time. For Time Petri nets this is at the latest point of an interval,
and for Timed Petri nets this is immediately after enabling. In contrast to
these two nets, Petri nets with time-windows have no compulsion to fire.
Their expressiveness power is less than that of Turing-machines.

This book is based on a script I have been using for my advanced lecture on
Time and Petri nets. To read and understand it, you do not need advanced
mathematical knowledge, except for the section on quantitative evaluation
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of Time Petri Nets, where some insight into operational research and graph
theory will be useful.

This book would not have been possible without the help and support of
many people. Special thanks go to Jan-Thierry Wegener, Matthias Werner
and Jorg Bachmann for the countless hours they spent discussing Time and
Petri nets with me. I would like to thank Maria Tammik for her devotion and
the time she invested in proofreading the English version of this book and
giving valuable suggestions as to how to improve the content. For drawing
all the graphics in the English version, I thank Eva Sandig and Phillipp
Schoppmann. Finally, my heartfelt gratitude goes to Monika Heiner, my
students and my colleagues for encouraging me to write this book.

Berlin, July 2013 Louchka Popova-Zeugmann
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Chapter 1

Introduction

Und {iberall hingen, lagen und standen Uhren.

Da gab es auch Weltzeituhren in Kugelform,

welche die Zeit fiir jeden Zeitpunkt der Erde anzeigten.
[

“Vielleicht”, meinte Momo,

“braucht man dazu eben so eine Uhr.”

Meister Hora schiittelte lachelnd den Kopf.

“Die Uhr allein wiirde niemand niitzen.

Man mu$ sie auch lesen kénnen.”

Michael Ende, Momo

Clocks were standing or hanging wherever Momo looked

— not only conventional clocks but spherical timepieces
showing what time it was anywhere in the world

]

“Perhaps one needs a watch like yours to recognize them by”
said Momo.

Professor Hora smiled and shook his head.

“No, my child, the watch by itself would be no use for anyone.
You have to know how to read it as well.”!

Michael Ende, Momo

The objective of this book is to bring into accordance the two obviously com-
pletely contrary concepts of time and Petri nets. Introduced by C. A. Petri

'Trans. J. Maxwell Brownjohn (Doubleday & Company Inc., New York, and Penguin
Books Ltd., 1984).

L. Popova-Zeugmann, Time and Petri Nets, DOI 10.1007/978-3-642-41115-1_1, 1
© Springer-Verlag Berlin Heidelberg 2013



2 CHAPTER 1. INTRODUCTION

in [Pet62], Petri nets can be used to study concurrency in the sense of causal
independence, but they do not directly deal with time; time is involved only
implicitly through the causal relationships. However, the explicit indication
of time is indispensable for a great variety of real problems. Even qualita-
tive studies of strongly time-dependent systems are very inexact if time is
included only implicitly through causality. The question arises, whether one
should at all try to describe and analyze such systems using Petri nets and
whether it is even possible.

The first publications in which time and Petri nets are connected, were al-
ready published a good ten years after the introduction of Petri nets. As
expected, time attributes were first assigned to transitions (cf. [Mer74],
[Ram74], [MF76] etc.). After occasional studies in the 1970s and some articles
in the 1980s (cf. [BM83], [Sta87], [PZ89] etc.) an avalanche of new time-
dependent extensions of the classic Petri net followed in the 1990s. Times in
the form of durations or intervals were assigned to places, tokens, and input
and output arcs. Furthermore, various different firing rules were defined:
earliest possible or latest possible firing, firing single transitions or firing in
maximal-step mode, firing with certain probabilities, etc. These extensions
arose from practical considerations. With some of these newly developed
Petri nets, the originally central idea of concurrency can be found merely as
simultaneity, but their practical significance is immense.

Classic Petri nets, i.e., Petri nets without any explicit indication of time, are
excellent means for the depiction, simulation and analysis of systems of the
most diverse origin. In the description of systems by means of classic Petri
nets, events are mostly modeled as transitions. The pre- and postconditions
of the events are represented by places and are considered as fulfilled if those
places contain any tokens. Directed arcs connect all places which are precon-
ditions of an event with the transition which models this event. Directed arcs
analogously connect every transition with all places which represent postcon-
ditions for the event modeled by the transition. It is possible to refine these
models as and when required by adding time to different elements of the net.

In a classic Petri net, any possible situation is expressed by the assignment of
tokens to places, i.e., by a marking. Obviously this is a discrete description,
whereas a situation in a time-dependent Petri net is a snapshot of a marking
at a particular point of time. This means that in Petri nets with continuous
time, the situation depends on a discrete parameter (the marking) as well as
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a continuous one (time). Therefore time-dependent Petri nets are a hybrid
means of describing a system.

When defining a time-dependent Petri net the following generally need to be
fixed:

e the type of time extension: time interval or duration.
e the manner of time modeling: continuous or discrete.

e the specific type of elements of the net to which the time extension is
assigned: places, transitions or arcs.

e the firing rule.

When defining a firing rule, there are time-independent characteristics that
need to be determined, such as:

e solution of conflicts.

e concurrency of a transition with itself (also called auto-concurrency or
self-concurrency).

as well as the following specifications:

e firing mode: whether the transitions fire in single firing mode or in sets
(steps).

e at what time the transitions fire: compulsive firing immediately after
being enabled, compulsive firing at the latest possible moment after
being enabled, without compulsion to fire, or according to a random
distribution.

The monograph [Sta95] describes these fundamental construction principles
and introduces basic classes of time-dependent Petri nets. According to these
modeling specifications we systematize the basic classes of time-dependent
Petri nets in the chronological order of their emergence.

The seminal studies of Merlin ([Mer74] in January) and Ramchandani ([Ram?74]
in February) about the combination of time and Petri nets appeared almost



4 CHAPTER 1. INTRODUCTION

simultaneously. Merlin uses Petri nets to study the formal analysis and syn-
thesis of recoverability of communication protocols. He extends Petri nets to
overcome certain practical restrictions by introducing time in the following
way: An interval [a,, b;] is assigned to every transition ¢. The firing rule is
modified in relation to time: An enabled transition ¢ cannot fire immediately
after being enabled. At least a; time units must pass before ¢ may fire and
it must fire no later than b; time units after being enabled, except if it be-
comes disabled in the meantime. The times a; and b; are considered relative
to the latest enabling of ¢. Firing itself takes no time. Merlin called these
time-dependent nets Time Petri nets.

Timed Petri nets were introduced by Ramchandani to model speeds of oper-
ations or of parts of processes. He assigns to every transition ¢ a duration d;.
In a Timed Petri net if a transition ¢ is enabled, it has to fire immediately.
Thereby a maximum number of (just) enabled transitions is always fired, i.e.,
they are fired according to the mazimal-step rule. The firing of a transition
t lasts d; time units and cannot be interrupted.

Petri nets with indication of time in the places were introduced by Sifakis
[Sif77]. He assigns a minimum retention time d,, to every place p. If a token
reaches place p at time 7, it must remain there for at least d; time units,
before a transition is allowed to fire using this token. The transitions in
these nets fire according to the maximal-step rule.

Finally, Petri nets with time-dependent arcs were introduced at the beginning
of the 1980s in [Wal82]. A period of time 7} is associated with each arc k.
A transition ¢ can fire in such a net if the number of tokens on every input
place p of t is at least as great as the multiplicity of the arc (¢,¢). These
tokens must remain on p for 7, time units before they are used for firing.
Then, 7,4 time units after the firing of transition ¢ to each post-place ¢ of
t, the number of tokens corresponding to the multiplicity of the arc (¢,q) is

added.

In the course of the last two decades all kinds of variations and combinations
of the time-dependent Petri nets specified above have arisen. Some of them
can be translated into each other. The introduction of each new class is
nevertheless justified if it is a natural means of specifying practical systems.
A study about the expressive power of Time Petri nets and their extensions
as well as a comparison to timed automata is done in [BCH"13].
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In addition to Petri nets with deterministic time extensions, time-dependent
Petri nets in which firing occurs according to a random distribution over
time have been examined, see [MBC196], [BK02] etc. These nets are called
stochastic Petri nets. An essential difference between stochastic and non-
stochastic Petri nets is the relationship between the state spaces of the time-
dependent Petri net and that of the underlying timeless Petri net: A stochas-
tic Petri net has the same state space as the underlying Petri net. The state
space of a deterministic time-dependent Petri net on the other hand in gen-
eral comprises only part of the state space of the underlying timeless Petri
net. This alone leads to different analysis algorithms. For the analysis of
deterministic Petri nets, for example, it is essential to try to determine the
state space.

In this book we will look at the first three classes of Petri nets with time
extensions mentioned above, Time Petri nets, Timed Petri nets and Petri
nets with retention time in the places. We will introduce new methods of
analysis for these types of nets. Petri nets with time-dependent arcs can
be reduced to these three classes. An important aspect of the analysis is
the description of the state space. We can consider a complete, reduced, or
parametric state space. Fundamental properties such as boundedness and
liveness are defined anew, under consideration of the time specification, and
methods of analysis are introduced. The behavior of time-dependent and
timeless nets is compared and algorithms for qualitative and quantitative
analysis are presented. Applications of these nets are mentioned together
with their use in specification and analysis.

This book is structured as follows: In Chapter 2 classic Petri nets without
time are introduced. In the subsequent chapters Time Petri nets and Timed
Petri nets as well as Petri nets with time-dependent places (Petri nets with
time windows) are studied.
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Notation

In this book the set of all natural numbers is denoted by N whereas NT stands
for the set of all natural numbers excluding 0. Q7 stands for the non-negative
rational numbers and Ry for the set of non-negative real numbers.

N" denotes the n-ary Cartesian product over the set of natural numbers N.

Let u and v be vectors of dimension n. Then wu is less than or equal to v
(u < w) if every component of u is less than or equal to the corresponding
component of v. The sum u + v of the two vectors u and v is also a vec-
tor of dimension n, whose components are the sums of the corresponding
components of u and v. The difference u — v is defined analogously.

Let A be a finite set. Then A* is the set of all finite words (sequences) over
A. € is the empty word. ((w) denotes the length of the word w. A" stands
for the set A* \ {e}. The number of elements of A is denoted by |A].

For an arbitrary function f: A — B the set A is called the domain and B
the codomain of f.

An n-ary function f is called arithmetical or number-theoretical if its domain
is the set N and its codomain is the set N .

Furthermore WP is defined as the set of all functions with domain D and
codomain W.

Finally, the real number r rounded down is written as |r| and r rounded up
as [r].



Chapter 2

The Classic Petri Net

In this chapter the basic principles of classic Petri net theory are introduced
and basic properties are explained. With the latter, the emphasis will not
be on a complete listing but on the systematization of qualities as static or
dynamic and qualitative or quantitative.

2.1 Definitions

Definition 2.1 (unmarked Petri net) An unmarked Petrinet is a 4-tuple
(P,T,F,V) such that

1. P and T are finite sets with PNT =0 and PUT # (.
2. F is a relation of arity 2 with F C (P X T) U (T X P).

3. V.:F— NT.

The elements of P are called places and the elements of T are called transi-
tions. The elements of F' are called arcs and F' is called the flow relation of
N. The function V is the multiplicity (weight) of the arcs.

This definition covers the static aspects of a Petri net. An unmarked Petri net
is therefore a 2-colored, weighted, directed, finite graph. The vertices of one
color represent the places and the vertices of the other color the transitions.

L. Popova-Zeugmann, Time and Petri Nets, DOI 10.1007/978-3-642-41115-1_2, 7
© Springer-Verlag Berlin Heidelberg 2013
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In Petri net theory, the places are graphically represented by circles and the
transitions by rectangles or bars.

Definition 2.2 (Petri net) A marked Petri net is a 5-tuple N = (P, T, F,
V,myg) (short: Petri net) such that

1. (P,T,F,V) is an unmarked Petri net.

2. my: P — N is the initial marking'.

Thus, a Petri net has an initial marking which assigns a natural number to
each place. This marking is graphically represented by the corresponding
number of tokens (points) on the places, so mg(p)-tokens are drawn in the
circle representing the place p. Any distribution of tokens on the places is a
marking:

Definition 2.3 (marking) Let P be the set of places of a Petri net N'. A
marking in N is a total function m : P — N.

Example 2.4

Figure 2.1: N is a Petri net with the initial marking my = (1,0, 0,0)

IThe function my is a total one.
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The initial marking of a Petri net can generally change into a successor mark-
ing according to certain rules and this can itself transform in turn into suc-
cessor markings. The rules describing the possible changes from one marking
to the next one are called firing rules, the occurring change itself is called a
firing. Throughout such firings, the distribution of tokens over the places of
a Petri net can change and thereby the whole view of the net changes. In
other words: The Petri net also has a dynamic aspect which is defined by
the firing rules.

Before we define the firing rules for classic Petri nets, some basic static notions
need to be explained: Let N be an arbitrary Petri net with a set of places P,
a set of transitions T" and a flow relation F'. All places which are connected to
a transition by an arc form the set of pre-places and post-places of a specific
transition. A pre-place of a certain transition is a place which is directly
connected with the considered transition through an arc directed from the
place to the transition. If the arc points in the opposite direction, that place
is a post-place of the transition. The set of pre-places of the transition ¢
is denoted by *t == {p | p € PA (p,t) € F}. Theset t* :={p | p €
P A (t,p) € F} is the set of post-places of t. Analogously, for every place p
the set *p :={t |t € T A (t,p) € F} denotes the set of pre-transitions of p
and the set p* :={t |t € T A (p,t) € F'} denotes the set of post-transitions
of p.

The dynamic aspect of a Petri net is defined by the firing rules. The firing
rules reflect causal relations within a permanently changing system: The
events of the real system are modeled by transitions of the Petri net. The
causes or preconditions of an event are represented by the pre-places of the
transition modeling the event. The post-places of the transition describe the
post-conditions of the event, which of course in turn can be preconditions
of other events. Whenever a pre-place is marked, the respective condition
is considered to be fulfilled. In the real system an event can take place
provided that all preconditions of the event are fulfilled. In the Petri net the
occurrence of the event is represented by firing of the respective transition.
After an event has taken place, its preconditions (in general) are not fulfilled
any more. The corresponding pre-places are therefore no longer marked.
Instead the post-conditions of the event are fulfilled and in the Petri net the
post-places of the transition are marked. This atomic process in the real
system provides the basic idea for the firing rule in the Petri net. In classic
Petri nets this basic idea is carried out with the multiplicity V' = 1 (these are
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the so-called ordinary Petri nets) and each place holds at most one token, i.e.,
for each reachable marking m (cf. Def. 2.10) it holds that m : P — {0,1}
(these are the so called I-safe Petri nets). Ordinary, 1-safe Petri nets are
also called condition/event nets.

If not all multiplicities of arcs of a Petri net are 1, the firing rule is extended
consistently. The preconditions of an event are fulfilled if, for each place,
the number of tokens it holds is no smaller than the multiplicity of the arc
from this place to the respective transition. After an event has taken place,
every post-place of the transition obtains the number of tokens equivalent to
the multiplicity of the arc from the transition to the respective post-place. A
transition ¢ can therefore fire if the Petri net is in a marking m, which assigns
at least as many tokens as t needs in each pre-place of ¢. All preconditions
can be regarded as fulfilled. This minimum number of necessary tokens on
the places is defined by the marking ¢~

oVt ,if (pt)eF
t(p)'{op i (g,t)gF'

Analogously the marking ¢+ describes the number of tokens which are added
to each place upon firing of ¢:

o\ | V(t,p) it (t,p)eF
t(m_{o U e

The difference in tokens on the places after firing of transitions ¢ is represented
by the marking At :
At :=tt—t.

Furthermore, let us consider the Petri net N = (P, T, F,V,my) with T =
{t1,--- ,t,} and P = {p1,--- ,pm}. The matrix Cyy = (¢;;) with m rows and
n columns and

cij = At;(pi)

is called the incidence matriz of N.

Example 2.5 We consider again the Petri net Ny introduced in Ezample
2.4. Its incidence matriz Cyy, 1s:
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1 -1 -1 1\ P

-1 1 0 0 | R
0 1 0 -2 | pn-
0 0 1 -1 /) P

Aty Aty Atz Aty
We can now formally introduce the notions enabled and firing:

Definition 2.6 (enabled) Let N = (P, T, F,V,mg) be a Petri net and let
m be a marking in N'. A transition t € T is enabled in m if it holds that:
t— <m.

Definition 2.7 (firing) Let N = (P, T, F,V,mg) be a Petri net and let m
be a marking in N'. A transition t € Tcan fire in m (notation: m —f>), if
t is enabled in m. After the firing of t the Petri net is in the marking m’
(notation: m —— m') with

m =m + At.

This firing rule defines the firing of a single transition, i.e., it is a mono-firing
rule. It is also possible to define a rule firing a set (step) of transitions. This
firing rule, also called a step firing rule, is usually used in time-dependent
Petri nets, see Chapter 4. We will always use the mono-firing rule unless
stated otherwise.

We denote the change of a Petri net from marking m into marking m’ by

firing of transition ¢ by m —'s m/. The relation —» which is defined by the
firing rule is called the firing relation.

A further basic term in Petri Net theory is the notion of a reachable marking.
In order to introduce it, we first define firing sequences:

Definition 2.8 (firing sequence) Let N = (P,T,F,V,mqy) be a Petri net,
let m be a marking in N and let o =ty ---t, be a sequence of transitions. o
fires from m to m’ in N (short: m —=+ m') if it holds that:

Basic 0 =¢

m =m
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Step g = tl s tnthrl

There is a marking m” in N, with

titn " y bt /
m-——m and m'" —— m'.

o 1is called a firing sequence from m in N if there is a marking m’ such
that o fires from m to m/'.

A firing sequence o from mq in N is usually simply called a firing sequence.

Example 2.9 Let us consider example 2.4 again. The transitions sequence
o1 =ty titotitsty is a firing sequence from myg in the Petri net Ni. In contrast,
the transition sequence oo = tstytsty is not a firing sequence from myq in the
same net. However, oy is a firing sequence from m = (1,0,4,0) in M.

We write m — m/ if there exists a firing sequence o such that m —=» m/.
This means that the relation — is the reflexive-transitive closure of the
firing relation —.

Furthermore, for o =t - - - t,, the following is true:
m' :TrLJrZAtZ-. (1)
i=1
This equation can equivalently be rewritten in the form:
m'=m+Y m- Al 2)
teo

where 7, is the number of appearances of the transition ¢ in the sequence o.
Finally, we obtain the equality

m'=m+ Cy -7, (3)

where C) is the incidence-matrix of N and 7, € NT the vector with

o (t) = m ifteco
A1 0 otherwise.

The |T'|-dimensional vector 7, is called the Parikh vector of o. The equality
(3) is called the state equation of o inm (in N).
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Definition 2.10 (reachable marking) A marking m is called reachable
from the marking m* in a Petri net N, if there is a firing sequence o from
m* tom in N. If m* = mg we call m reachable in N.

Finally, Ry(m) := {m/ | m — m’} is the notation for the set of all markings
m’ which are reachable from the marking m in A.

2.2 State Space

For any Petri Net A the set R(mg) contains all markings reachable in the
net. This set is of particular interest because it gives us information about
all the events that can occur in a system modeled by the considered net. The
set tells us which of the markings of the net are reachable and thereby also
which pre-conditions of events may potentially be fulfilled.

Definition 2.11 (state space) Let N' = (P,T,F,V,mg) be a Petri net.
The set Ry := Ra(mo) is called the state space of N

The state space can be finite or infinite. The fact that the set Ry is decidable
(cf. inter alia [PWO03]) is crucial for the analysis of Petri nets as the state
space holds information about the reachability /non-reachability of markings
in NV and thus about the occurrence/non-occurrence of events.

Definition 2.12 (boundedness) A Petri net N is said to be bounded if
the set Ry of all its reachable markings is finite.

Boundedness can also be introduced using the notion of bounded place. A
place in a Petri net is bounded if there is a natural number such that the
number of tokens on this place never exceeds this number. A net is then
bounded if all its places are bounded. These definitions of boundedness are
equivalent.

We now consider again the reflexive-transitive closure of the firing relation.
This relation generally fulfills none of the common properties of relations
like symmetry, asymmetry, anti-symmetry, connexity etc. The graph of the
relation is called the reachability graph of the Petri net. It is formally defined
as follows:
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Definition 2.13 (reachability graph) Let N = (P, T, F,V,mq) be a Petri
net. The reachability graph of N is the graph RG with

1. the set Ry as set of vertices and

2. (m,m') € Ry X Ry is an edge in RGy if there is a transition t € T
such that m —— m/.

Such a reachability graph of a Petri net is a partial deterministic automaton
which can be finite or infinite (also compare Fig.2.2). The bounded Petri nets
are furthermore exactly those Petri nets whose reachability graphs are finite.
In the case of boundedness the Petri net is therefore well analyzable with the
help of its reachability graph. Determining whether a certain property holds
in an unbounded Petri net however is a lot more challenging.

Example 2.14 Let us again consider the Petri net N given in Ezample
2.4. Its reachability graph RGy, is infinite. A part of the reachability graph
is presented in Fig.2.2.

When a Petri net is unbounded its reachability graph is infinite. In this case
we can consider the so-called coverability graph of the net, which is always
finite, to prove the existence or absence of properties. The trade-off for the
finiteness of the coverability graph is loss of information.

The vertices of the coverability graph are the so-called generalized markings
of the Petri net. A generalized marking in a Petri net is a (total) function
which assigns to each place a natural number or the value w. A place has the
value w in a generalized marking when the place is unbounded. We extend
the rules of addition, subtraction, and multiplication and the relation < for
the set NU {w} as follows:

For each n € N:

w if n>0
wEtn=d+n4+w=w, n-wWw=w-n= . , W >n.
0 ifn=0
We say that a (generalized) marking m covers another (generalized) marking
m/ in a Petri net N (short: m’ < m), if m’ < m and there is at least one
place p in N with m(p) # m’(p). Therefore, m’ < m implies that either
m' < m orm =m.
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ty

Figure 2.2: Part of the reachability graph RG,

Definition 2.15 (coverability graph) Let N = (P, T, F,V,mq) be a Petri
net. The edge-labeled digraph CGy = (W, E,T) is said to be a coverability
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graph of N if the set of vertices W, the set of edges E and the set of labels
T are defined using the following algorithm 2:

begin R :={mo}; ancestor_marking(mg) =+, W :=0; E :=0;
while R # () do
choose m from R; R:=R-—{m}; W:=WU{m}
enabled_set:={t |t~ < m};
for t eenabled_set do
m' = m + At;
m* = m;
while (m* # %) and (m* £ m’) do
m* := ancestor_marking(m*);
end;
if m* # *x then
m' =m'+ (m' —m*) - w;
end;
E:=FEUJU{(m,t,m')};
if m" € WU R then
R:=RU{m'}; ancestormarking(m') :=m;
end;
end;
end;

end.

The coverability graph is not unique for a given Petri net. The notion “cov-
erability graph” was first defined by Karp and Miller (see [KM69]). Later,
in [Fin93], Finkel introduced an algorithm which computes a minimal cov-
erability graph of a Petri net. This graph is unique and has the minimum
number of vertices.

2Adapted from [Sta90]
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Example 2.16 Using Definition 2.15 we obtain for the Petri net N con-
sidered in Example 2.4 the coverability graph CGy,, represented in Fig. 2.3:

i

Figure 2.3: A coverability graph CGy;, of the Petri net A}

2.3 PN-Computability

The expressive power of Petri nets is less than that of Turing machines (TM).
This means that there are algorithms which cannot be described by any clas-
sic Petri net: Not every Turing-computable function can also be computed
by a Petri net.

A number-theoretical n-ary function f : N* — Nis called Turing-computable
if there is a Turing machine M, which given an n-tuple (z1,-- - ,z,) as input
stops if and only if that n-tuple belongs to the domain of the function and
in this case also returns the value f(z). For more on Turing-computability
compare [HMUO02].

We now need to clarify what a PN-computable function is. Regardless of
how we define that notion, we first have to ensure that there is a unique
presentation for every natural number in a Petri net. The infinity of the set
of all natural numbers prevents it from being modeled by places, transitions
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or arcs. But the set of reachable markings in a Petri net can in general
be infinite. Moreover, transitions might fire infinitely often and places can
change their number of tokens infinitely often, even if the places themselves
are bounded.

In order for a place to change its number of tokens infinitely often, at least
one transition in the net needs to fire infinitely often. The reverse is also true
and therefore the two properties are equivalent.

It can furthermore be shown that the number of firings in an arbitrary Petri
net is equal to the number of reachable markings in another Petri net derived
from the first one as follows:

Let N = (P,T,F,V,mg) be an arbitrary Petri net. Using N we construct
the Petri net N/ = (P, T, F', V', m{) where:

P :=PU{p}withp¢P, T :=T, F :=FU{{tp)|teT} and

N Viu) if u# (t,p* L mg if p#£p*
ORI A RS S S

for allpe P and for all t € T".

The net A is a copy of the net N with one additional place p* such that
every time a transition in the copy of A fires, the number of tokens in p*
increases by 1. Thus the place p* in A/’ is unbounded if and only if there is
at least one transition ¢ in the net A/ which fires infinitely often.

It is thereby clearly possible to represent natural numbers — and therefore
also n-tuples of natural numbers — by markings in a Petri net.

Next we define the notion of PN-computability:
Definition 2.17 (PN-computable) An n-ary function f : N* — N is

called Petri-net-computable (PN-computable) if there is an initial Petri net®
Ny = (Py, Ty, Fy, Vi, ml) such that for each n-tuple x = (xy,--- ,x,) € N

3An initial Petri net is an arbitrary Petri net which is fixed for a function f. The
extension of the initial marking mg of Ny to initial markings mg’z modeling the arguments
x = (z1,+- ,T,) generates the Petri nets N'¥. The marking m{; is better understood after
reading the similar definition for Time Petri nets, Definition 3.15, as well as Examples
3.17 and 3.18.
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and for the Petri net J\/'}” = (Pf,Tf7Ff,Vf,m£"z), where the marking m{™
models the n-tuple (xq,--- ,x,), it holds that:

Case 1 If the tuple (xq,--- ,x,) belongs to the domain of f then the Petri net
./\/f stops (cannot fire anymore) and the last-reached marking mf (@ -=n)
uniquely represents the number f(xq,--- ).

Case 2 If the tuple (x1,--- ,2,) does not belong to the domain of f then the
Petri net /\/f never stops, i.e., for each marking m with m{™ “m
there exists at least one transition t which is enabled in m.

Evidently, every PN-computable function is also Turing-computable.

We assume now that every Turing-computable function is also PN-computable.
Let f be an arbitrary, n-ary, Turing-computable function. According to
the assumption f is PN-computable, too. Let M, be a Turing machine
which computes f and N} a Petri net which computes f. Furthermore, let
(1, -+ ,x,) be an n-tuple of natural numbers. Then it holds that:

My started on (xy,-- -, %) stops
if and only if
N started in (x4, -, z,) stops. (4)

As detailed before, we can define the Petri net N for every Petri net . The
construction of the respective Petri net N} for Ny ensures that for any Ny
the following holds:

N started in (z1,- -, x,) stops
if and only if
the place p* in N} is bounded. (5)

We can determine whether the place p* is bounded in N ¢ by means of the
coverability graph of N} . Taking into account (4) and (5) it is consequently
decidable for an arbitrary Turing-computable function f whether the Turing
machine M, started with an arbitrary n-tuple (z1, - - , z,,) stops or not. This
contradicts, however, the undecidability of the halting problem for Turing
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machines (cf. among others [HMU02]). Therefore the assumption that every
Turing-computable function is also PN-computable is disproved.

Thus we have proved the property:

Theorem 2.18 The class of all marked Petri nets (as defined in Definition
2.2 and using the mono-firing rule) is not Turing-complete.

2.4 Basic Properties

The potential of Petri nets for modeling results from their graphical repre-
sentability and makes them applicable in a wide variety of areas. Many kinds
of systems can be represented easily but nevertheless clearly and formally us-
ing Petri nets. Furthermore, the nature of Petri nets allows modeling of a
system at each stage of abstraction and refinement of the model where nec-
essary. Therefore modeling with Petri nets is a hierarchical procedure as well
as a modular one. Without analyzing methods for Petri nets however their
use as a modeling instrument is very limited. We want on the one hand to
ascertain the presence of certain properties in a Petri net in order to evaluate
its “quality” as a model of a real system, on the other hand an analysis of
the model might detect properties of the real system previously overlooked.

Some properties of Petri nets can be determined very easily, these in general
being properties which result from the structure of the Petri net itself. We
call such properties static. In contrast to this, we describe properties which
result from firing and which characterize permanent changes in the net as
dynamic properties. These dynamic properties are usually more difficult to
identify and sometimes impossible to analyze.

Among the static properties there are such features as the existence of static
conflicts, deadlocks, traps, etc., or whether a net is a marked graph, a state
machine, a free-choice net, an extended-free-choice net, an asymmetric-choice
net, a homogeneous one, etc. All of these properties are decidable indepen-
dently of the state space of the considered Petri nets. Some of them are
relevant for our studies and will be defined below, although they are not the
main subject of our analysis.

The notions free-choice net, extended-free-choice net, asymmetric-choice net
and marked graph were originally defined for ordinary Petri nets and are still
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mainly used in that context. For arbitrary multiplicity these notions were
first introduced in [Sta90]. In this book, we use more recent and more general
definitions. Therefore the classes defined here, like free-choice nets, extended-
free-choice nets, asymmetric-choice nets and marked graphs for homogeneous
Petri nets, are supersets of the corresponding classes of ordinary nets.

Definition 2.19 Let N = (P, T, F,V,mg) be a Petri net.

1.

Two transitions t and t' from T are in a static conflict, if they have
at least one common pre-place, i.e., *t N *t' # ().

Two transitionst andt’ from T are in a dynamic conflict in the mark-
ing m if they are in a static conflict and by firing one of the transitions
in marking m the other one may become disabled, i.e., *t N *t' # () and
tm<mandt'” <mbutt” +t~ £m.

N is a marked graph if N is an ordinary Petri net and if each place
p has ezxactly one pre-transition and one post-transition, i.e., V(f) =1
for each f € F and |*p| =|p°| = 1.

N is a free-choice net (FC net) if each shared place is the only pre-
place of its post-transitions, i.e., if t,t" € p® then *t = {p} = *t'.

N is an extended-free-choice net (EFC net) if the post-transitions
of each shared place have the same pre-places, i.e., if t,t' € p*® then
.t — .t/.

N is an asymmetric-choice net (AC net) if it holds that if two
places have at least one common post-transition then the set of all
post-transitions of one of the places is a subset of the set of all post-
transitions of the other one. Formally: For each two places p and p’ it
holds: If p* N p'* # O then p* C p'® orp'® C p°.

N is homogeneous if all output arcs of a place have the same mul-
tiplicity, i.e., for each place p € P it is true that if t,t' € p°, then
Vip,t) = Vi(p,t).

Example 2.20 Let us consider the Petri net Ny from Example 2.4 . The
transitions ty and t3 are in a static conflict. Ny is a FC net and therefore
also an EFC net and an ES net. It is homogeneous.
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We refrain from defining further static properties and refer to the common
literature on classic Petri nets, such as [Mur89] or [Sta90].

Liveness, boundedness, reachability, the existence of invariants, etc. are the
basic properties of a Petri net and are dynamic properties. They provide
information about the behavior of the examined Petri net.

The notion of liveness was established by Petri, Genrich and Lautenbach
at the GMD, Bonn at the beginning of the 1960s and developed further
in cooperation with Commoner, Even, Holt, Pnueli and Hack at MIT. It

was initially examined in special classes of Petri nets such as marked graphs
(cf. [Gen68], [CHEPT1]) and AC-nets (cf. [Hac72], [Com73]). The four
levels of liveness introduced by Lautenbach in his PhD thesis [Lau73] in 1973
constituted an important advance and form the basis of liveness studies up
to the present day.

Definition 2.21 Let N = (P, T, F,V,mq) be a Petri net, m be an arbitrary
marking in N and t a transition in T.

1. t is called live in m in N if for each marking m’ € Ry(m) there exists
a marking m" € Ry (m') such that m" <.

2. t is called dead in m in N if for each marking m’ € Rp/(m) it holds
that t— £ m/'.

m is called live in N if each transition t € T 1is live in m.
m s called dead in N if each transition t € T is dead in m.
t is called live / dead in N if t is live / dead in my.

N is called live / dead if mg is live / dead in N

N S v S

N is called blocking-free! if at least one transition is enabled in each
reachable marking m € Ryr(my).

As is obvious from the definition, a transition ¢ is live in the marking m if it
is not dead in any successor marking of m. If a marking is dead, no transition
can fire from that marking. The marking therefore constitutes a leaf in the

4Some authors call this property deadlock-free.
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reachability graph of the net. Furthermore we observe that a Petri net which
is not dead does not have to be blocking-free (deadlock-free). The reason for
this being that a Petri net which fires only finitely often and then stops is
not dead. A blocking-free Petri net obviously is not dead. Every live Petri
net is blocking-free, the reverse however does not hold. A Petri net which is

not dead need not be live and a Petri net which is not live is not necessarily
dead.

We can summarize as follows:

— —
N— dead N- not blocking-free N- not live
— —
and
N-live N- blocking-free N-not dead.
<7L <7L

Whether a Petri net is live, dead or blocking-free can be decided by means
of its reachability graph. The coverability graph of a Petri net however is of
no use in deciding liveness and blocking-freedom but does still contain the
information of whether the net is dead (cf. [PWO03]). There are a number of
algorithms which decide these properties more effectively on restricted classes
of nets.

Finally we remark that the notion of ¢ being live in a marking m introduced
in Definition 2.21 is equivalent to the 4-liveness defined by Lautenbach in
[Lau73]. The notion of ¢ being dead in a marking m is equivalent to the
O-liveness also defined in [Lau73]. In other words, ¢ is dead in m according
to Definition 2.21 if and only if ¢ is not 1-live in m. This analogously applies
to the liveness of a marking and to the liveness of a Petri net. Finally, at
least one transition in a Petri net is 3-live as defined by Lautenbach if the
Petri net is blocking-free. The converse does not hold.

We already introduced the notions of boundedness and reachable markings
with Definitions 2.12 and 2.10.

Example 2.22 Let us consider the Petri net Ny from Example 2.4 again.

e The place P is unbounded.

o N, is unbounded.
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o N is not live.
o N is not dead.
o N is not blocking-free.

With the last two definitions in this chapter we will now introduce two (dual)
notions of invariants in Petri nets:

Definition 2.23 (T-invariant) Let Cy be the incidence matriz of the Petri
net N.

1. Each non-trivial solution x € N'T! of the homogeneous equality
Cy-x=0
is called a transitions-invariant (short: T-invariant) of N.

2. A Parikh vector of a firing sequence which is also a T-invariant is called
a feasible T-invariant.

It is not difficult to see that if a Parikh vector 7, is a T-invariant the marking
is not changed by the firing of the sequence ¢. This follows from the state
equality for o:

m - m’'
iff
m =m+Cy - 7o =m
ie.,

m =m.

The path representing the sequence o in the reachability graph is obviously
a cycle.

Example 2.24 Let us consider the Petri net Ny shown in Example 2.4. The
integer solutions of the homogeneous equality system
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Z
T3

C. - _
N1 T3

OO OO

Ty
are 11 =mx9=2-k, wyg=x4=%k for ke N.

Furthermore, we note that the transition sequence o = taotytotytsty is a firing
sequence starting in mg and its Parikh vector m, is a solution of the equality

(6).
We can see in Fxample 2.14 that the path o is a cycle in the reachability
graph RG .

Definition 2.25 (P-invariant) Let Cy be the incidence matriz of the Petri
net N'. Each non-trivial solution y € NI¥I of the homogeneous equality

yT-CNZO

is called a place-invariant (short: P-invariant) of N.

We can view a P-invariant as an equation of weights for the places that
always holds:

Let y = (y1,--- ,yp|) be a P-invariant in a Petri net N . Tt is true for each
reachable marking m in A/ that :

m=mgy+ Cy - Ty

and therefore

y"om=y" mo+y" - Cy -7,

and thus subsequently

Pl |P]

Zyl m(p;) = const. = Zyz mo(pi)-

Example 2.26 The homogeneous system of equations
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T

21 .cyv,=0inN
Ys

has the solutions
=Y =ys =35 for se€ N andys;=0.
Therefore, the following equality holds for each marking m € Ry, :

s-m(Py) +s-m(P2) +0-m(Ps)+s-m(Py) =
s-mo(Pr) +s-mo(P2) +0-mg(Ps) + s - mo(Py)

All the properties introduced here are qualitative properties, even though
some of them might also be considered as quantitative properties. The ques-
tion of boundedness of a place for instance is equivalent to the question of
the maximum number of tokens on the place, which deals with quantities.
We will consider quantitative properties that do not have direct qualitative
equivalents for the time-dependent Petri nets presented in the following chap-
ters.

2.5 Bibliographical Notes

With his thesis “Kommunikation mit Automaten”> [Pet62] Petri established
a theory of communication in arbitrarily large, non-globally defined systems.
The starting point of his considerations is the opinion that the notion state
in the sense of one global state is unsuitable for the description of causal
relationships. The reason for this is that the use of a notion of global state

5“Communication with Automata”. Published English translation in: Technical Re-
port RADC-TR~65-377, Vol.1, January 1966, Suppl. 1, Griffiss Air Force Base, New York.
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presupposes an explicit or implicit time scale implying simultaneity of in-
dependent events about whose independence we do not necessarily want to
make any presumptions. Petri uses the notions condition and event for the
description of causal relations and thereby defines action nets (or A-nets).
Further works by him, as well as Genrich [Gen68], Lautenbach [Lau73], Holt
et al. [CHEPT71], Commoner [Com73], Hack [Hac72], etc. form the founda-
tion of net theory. This net theory is today known as the theory of Petri
nets. The graphic representation of these nets as well as their name “Petri
nets” goes back to A. Holt. Innumerable introductory articles and books on
the theory of Petri nets have been published since then. Among the first ones
and still standard references in the field are the articles by Peterson [Pet77]
and Murata [Mur89] as well as the books by Starke [Sta80] and Peterson
[Pet81].

The latest book publications include a book by Reisig [Reil3] in which the
author presents a thorough introduction to the essentials of Petri nets.

Mayr set another milestone for Petri net theory with his Ph.D. Thesis (cf.
[May80]). Among other things he proved the decidability of the reachability
of an arbitrary marking in a Petri net.

Algorithms deciding properties for different restricted classes of Petri nets
can be found in [Esp98]. Priese and Wimmel give an almost complete intro-
duction to the theory of Petri nets with their book [PWO03].
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2.6 Exercises

Exercise 2.1

Let N7 = (P, T, F,V,my) be the following Petri net:

Figure 2.4: The Petri net NV,

(a) Give the incidence matrix Cyy.

(b) Give the Parikh vectors of the two transition sequences oy = t3tytslstats
and o9 = t1t3t4t§t2t1. Compute the markings m; which are reached
after the firing of the transition sequences o;,7 = 1,2, in the Petri net
N starting at mgy by means of its state equations. What can you say
about the reachability of m; and my in N;?

(c) Compute the P- and T-invariants for the Petri net N if it has any.
Give a feasible T-invariant if there is one.

(d) Compute the reachability graph of Nj. Is N live?

Exercise 2.2

Let Ny = (P, T, F,V,my) be the following Petri net:
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Figure 2.5: The Petri net Na

(a) Show by means of the state equation that the empty marking (0, 0,0, 0)
is not reachable in Nj.

(b) Compute the coverability graph of 5. Is My bounded?
Exercise 2.3

(a) Is it always possible to show the non-reachability of an arbitrary mark-
ing in a Petri net using the state equation? Give a proof of your answer.

(b) Is the liveness of an unbounded Petri net decidable from its coverability
graph?

Exercise 2.4

Let PN be the set of all unmarked Petri nets and let M be the set of all
(finite) matrices over the natural numbers.

(a) Is the following mapping ® bijective:
O : PN — M, where ®(N) := Cy?
Justify your answer.

(b) If @ is not bijective in general then give, if possible, a subset of PN such
that the mapping ® is bijective on this subset. Justify your answer.
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Exercise 2.5

An arbitrary Petri net property « is called monotone if it holds that: For
any Petri net N' = (P, T, F,V,mg) with the property a, « holds for all Petri
nets Ny := (P, T, F,V,mk) with m{(p) := k - mo(p) for all p € P.

Is liveness a monotone property? Give a proof.



Chapter 3

Time Petri Nets

In this chapter we study Time Petri nets: After the introduction of this kind
of time-dependent Petri net, we will discuss variations of the rules defining
the possible state changes. We then show how to reduce the state space
of an arbitrary Time Petri net to a discrete one and use this to study the
dynamic behavior of these time-dependent Petri nets under both qualitative
and quantitative aspects.

3.1 Basic Notions

Time Petri nets (TPN) are classic Petri nets where each transition ¢ is asso-
ciated with a time interval [a;, b]. When ¢ becomes enabled, it cannot fire
before a, time units have elapsed, and it has to fire no later than b; time units
after being enabled, unless it has meanwhile become disabled by the firing
of another transition. Here a; and b; are relative to the point in time when ¢
last became enabled. The time a; is the earliest possible firing time for ¢ and
is called earliest firing time of ¢ (short: eft(t)), and b; is the latest possible
firing time for ¢ and is called latest firing time of t (short: 1ft(t)). The firing
of a transition itself does not take up any time. The interval bounds are
non-negative rational numbers or co in the case of b; but the time interval
itself is given in real numbers. In the following, we see (cf. [Pop91], too) that
without loss of generality we can require the interval bounds to be natural

L. Popova-Zeugmann, Time and Petri Nets, DOI 10.1007/978-3-642-41115-1_3, 31
© Springer-Verlag Berlin Heidelberg 2013
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numbers. Thus, we consider as interval bounds a; and b; of a transition ¢
non-negative integers including zero such that a; < b, or by = co.

Definition 3.1 (Time Petri net) A Time Petri net (TPN) is a 6-tuple
Z=(P,T,F,V,mg,I) such that

1. the 5-tuple S(Z) = (P, T, F,V,mq) is a Petri net,
2. 1:T — Qf x(QfU{oo}) and for eacht € T, with 1(t) = (I1(t), L2(t))
it holds that I,(t) < I(t).

Example 3.2

[0.1]

Figure 3.1: The Time Petri net 2

The classic (timeless) Petri net S(Z) is called the skeleton of Z. T is the
interval function of Z, I1(t) and I1(t) the earliest firing time of t and the
latest firing time of t (short: eft(t) and [ft(t)), respectively.

We achieve integer interval bounds by scaling down the time unit. Let us,
for instance, consider Fig. 3.2. The interval bounds a and b have values
1.5 and 3.0 in the red scale, so a is not an integer. The values of the same
bounds in the green scale on the other hand are 3.0 and 6.0, that is, both are
non-negative integers. One red time unit is twice as long as one green time
unit so the red time unit has been scaled down by a factor of two in order to
conform to the green time unit.
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1 “red” time unit

—— 1 “green” time unit

l l ( l ) l
I T I 1 T 7 T I T
h(t) =0 a b

Figure 3.2: Two time scales: The green one is a scaling down of the red one
(1 red time unit = 2 green time units).

The smallest suitable factor to scale down the time unit for a given Time Petri
net is the lowest common multiple (LCM) of the denominators of all interval
bounds in the considered net (co excluded). We compute the values of the
interval bounds w.r.t. the new time unit by multiplying the old values by
this factor. Using the LCM method, we obviously obtain as new values only
non-negative integers or co. Thus, as of now and without loss of generality,
we consider the set N x (NU {oco}) as codomain for the interval function I.
In other words, we use only non-negative integers or co as interval bounds.

Adding time to a Petri net changes the meaning of a marking for the net: a
marking no longer describes the full current situation in the time-dependent
net. In addition to the number of tokens on each place, i.e., the marking, we
now also need to take into account for each enabled transition the amount of
time that has passed since its last enabling. We therefore consider a further
marking associating with each enabled transition this time and the symbol
# with each disabled transition. This marking is a vector of dimension equal
to the number of transitions. Thus, the first marking describes the situation
of the places and the second one the situation of the transitions. We call
them the place-marking (short: p-marking) and transition-marking (short: t-
marking), respectively. A p-marking and a t-marking together fully describe
the situation in a Time Petri net. Such a pair (p-marking , t-marking), called
a state, is one of the basic notions in the theory of time-dependent Petri nets.
The definition is as follows:

Definition 3.3 (p-marking) Let P be the set of all places in a Time Petri
net Z. A p-marking in Z is a (total) function m : P — N.
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It is obvious that any p-marking in a Time Petri net Z is also a marking in
its skeleton, the classic Petri net S(Z2).

Definition 3.4 (t-marking) Let T be the set of all transitions in a Time
Petri net Z. Any (total) function h: T — RS U{t} is a t-marking in Z.

Definition 3.5 (state) Let Z = (P,T,F,V,m,,I) be a Time Petri net, m
a p-marking and h a t-marking in Z. A state in Z is a pair z := (m, h) such
that

LYt((teTANt™ £m) — h(t)=1).
2.Vt ((teT At <m) — (h(t) € RT A h(t) <Ift(t))).

Evidently, not every pair (m,h) of a p-marking m and a t-marking h is a
state in a Time Petri net. The p-marking and the ¢-marking also need to be
suitable for each other. This is the case if for each ¢ the time A(t) is a number
(and not £) if and only if ¢ is enabled in m. Additionally, we consider the
time h(t) of each transition ¢ only until the latest possible firing time for ¢.
This is obviously not a loss of generality.

0 if

The state z, 1= (Mo, ho) With hy(t) = { . i: is called the

< myg
i if £ mg
initial state of the Time Petri net Z = (P, T, F,V,mq, I).

We could of course use other suitable t-markings for the initial state. We will
see later on that any vector of rational numbers which is a suitable t-marking
for the p-marking m, can be used as hg. Such initial states are necessary for
modeling and analyzing biochemical systems.

Up until now, we have introduced the static aspects of a Time Petri net. As
with classic Petri nets the dynamic aspect is determined by the firing rule(s).
The current situation of a Time Petri net may change due to changes in
the current p-marking or the ¢-marking. As for markings in classic Petri
nets a change of the p-marking occurs by firing of transitions. Such a firing
generally not only changes the current p-marking but also the t-marking.
The t-marking however also changes with the elapsing of time even without
any transitions firing.
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Before we give the definition of firing rules for Time Petri nets we introduce
the notion of a transition being ready to fire. Where we before only needed
to know which transitions were enabled we now distinguish between enabled
transitions that have already reached their earliest firing time and enabled
transitions for which this is not the case.

In the next three definitions we consider an arbitrary Time Petri net Z =
(P, T,F,V,mg,I).

Definition 3.6 (ready to fire) A transition t in Z is ready to fire in the
state z = (m, h) if

1. t is enabled in the marking m in the Petri net S(Z), i.e., t— < m, and

2. h(t) > eft(t).
1st rule for state change:

Definition 3.7 (firing) Let ¢ be a transition and z = (m, h) be a state in

Z. Then t can fire in z if t is ready to fire in z (notation: z L>) After the
firing of t the net Z changes from z into the state 2’ = (m’,h') (notation:

25 2') with
1. m' :==m+ At,

i if t—Lm

R(t) if t—<m At-<mA
tNt=0At#t ):

0 otherwise

2Vt (teT — K(t) =

We denote the change from the state z into the state 2z’ by firing of the
transition £ by z e
Thus, with the firing rule the following has been determined:

e If after the firing of one of two enabled transitions with at least one

common pre-place the second transition is still enabled, its clock is reset
to zero.
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The rule can, of course, be changed so that in situations such as above
we let the transitions stay enabled without resetting their clocks.

A further possibility to define the firing rule is to allow self-concurrency,
i.e., a transition is enabled severalfold in a state if its pre-places hold
enough tokens.

e The firing itself takes no time. At first glance this seems to be a restric-
tion but actually it is not. As a matter of fact, we could additionally
assign a certain time to each transition but this form of time-dependent
Petri nets can be simulated by our Time Petri nets. This will be dis-
cussed in the next chapter.

2nd rule for state change:

Definition 3.8 (elapsing of time) Let 7 be a non-negative real number
and z = (m,h) a state in Z. Then the elapsing of time 7 starting at z
is possible (notation: z —), if

VE((t€TARE) £18) — h(t) +7 < Lft(t) ).

After T time has elapsed Z changes from z into the state 2/ = (m/,h') (no-
tation: z — 2') with

1. m' :=m,

2. Vt(teT—>h’(t)::{

This second rule for state change implies that time always passes at equal
pace for all enabled transitions. However this does not mean that time always
has to pass equally quickly.

Informally, every Time Petri net can be understood as a classic Petri net
where each transition has a clock. For a disabled transition the clock stops,
but as soon as the transition is enabled its clock starts measuring the time
so that for every enabled transition its clock shows the time elapsed since
the transition last became enabled. Considering a state z = (m, h) we can
interpret h(t) as the clock of t. When h(t) has the value £ we say that the
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clock of ¢ has stopped. Any clock of a transition ¢ with h(t) € Ry is a running
clock and shows the time of ¢ in state z.

At the end of this section we note that classic Petri nets can be understood
as Time Petri nets where each transition ¢ is assigned the interval [0, oc].
The lower bound eft(t) = 0 allows ¢ to fire as soon as enabled and the upper
bound [ft(t) = oo indicates that firing of ¢ is not enforced at any point of
time.

3.2 State Space

In the following we will introduce some notations enabling us to define the
basic notions of a reachable state and the state space of a Time Petri net
analogously to and consistently with the respective notions for classic Petri
nets.

Let Z = (P, T, F.V,m,, I) be an arbitrary Time Petri net and let o = ¢, - - - ¢,
be a transition sequence in 7. Whether o is a firing sequence depends not
only on the enabling of the transitions. Every transition ¢t must also have been
enabled long enough (be “old enough”), it must have been last enabled for at
least e ft(t) time units. This in turn means a certain amount of time in general
must have passed between the firing of two transitions. Let 7 = 797y ... 7,
with 7; € ]R(J{ be a sequence of times. Then the sequence o(7) = 1oty - - £, Ty,
is called a run of o.

Definition 3.9 (feasible run) Let Z = (P,T,F,V,m,,I) be a Time Petri
net, z = (m,h) a state in Z and o(1) = Tot1Tity - t, 7 a Tun of 0. o(T)

fires from z into 2, (short: z S 2'), if

Basis: Forn=0, ie., 0 =¢

zZ =z

Step: Forn —n+1, i.e., 0 =Tty tnTulni1Tnel

There are states z* and z** in Z for which it holds:

Tot1 71 tnTn o L

tnt1
z—z2" and ¥ —— 2" and " —— 7.
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The run o(7) is called feasible from the state z in Z, if there is a state z’
such that o(T) can fire from z into 2.

The run o(1) is called feasible in Z, if o(T) is a feasible run from zy in Z.

It follows immediately from the definition that for any feasible run o(7) in a
Time Petri net Z the sequence o is a firing sequence in the skeleton S(Z) of
Z.

Definition 3.10 (firing sequence) A transition sequence o is a firing tran-
sition sequence in the Time Petri net Z if there is a feasible run o(7) in Z.

Definition 3.11 (reachable state) A state z is called reachable in the Time
Petri net Z if there exists a firing sequence o in Z with zy — z.

Definition 3.12 (state space) The set RSz of all reachable states in a
Time Peri net Z s called the state space of Z.

Definition 3.13 (reachable p-marking) A p-marking m is called reach-
able in a Time Petri net Z if there is a reachable state z in Z with z = (m, h).

We use the notation Rz for the set of all p-markings reachable in Z. A Time
Petri net Z is bounded if Rz is finite.

Adding explicit time to Petri nets (in this way) in general restricts the be-
havior possible in a Time Petri net compared to its skeleton. The set of all
reachable p-markings in the time-dependent net is therefore a subset of the
state space of its skeleton, i.e., Rz C Rg(z). This is a consequence of forcing
any transition that is still enabled at the end of its time interval to fire.

In the case of all transitions being associated with the interval [0, o] the set
of all reachable p-markings of the Time Petri net is equal to the state space
of its skeleton, i.e., Rz = Rg(z). We will see later that whereas this is a
sufficient condition for the equality of these sets it is not a necessary one.

3.3 TPN-Computability

We saw in Chapter 2 that classical Petri nets do not have the same com-
putational power as Turing machines, i.e., that there exist algorithms which
cannot be simulated (modeled) using classic Petri nets.
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Adding time to classic Petri nets and modifying the firing rule we have in-
troduced Time Petri nets. We will show in this section that Time Petri nets
have the same computational power as Turing machines. We will prove this
by verifying that each number-theoretical function which is computable by a
counter machine it is also computable by a Time Petri net. Because counter
machines (with at least two counters) have the same computational power as
Turing machines (cf. [HMUOQ2]), the equivalence of the computational power
of Time Petri nets and Turing machines follows.

Informally, a counter machine is a restricted multistack machine which can
store a finite number of natural numbers, and can add or subtract (if the
counter is not already zero) one to or from any of these counters. For more
on multistack machines, see [HMU02].

We now formally introduce the counter machine. This definition can also
be found in [Sta80]. A counter machine consists of finitely many counters
K = {K;, ---,K;} and a program. Each counter can store one natural
number!. The program is a finite uniquely numbered list of commands. The
available commands are: start, halt, INC and DEC, the so-called zero-test.
For a labeled command we use the notation assignment. In each program the
command start appears exactly once? and halt at least once. The notation
and mode of operation of the four commands is described in Table 3.1.

Notation mode of operation
of the command | of the command

0 : start : 1 start the program; go to command No. [;
[ : halt stop the program;

l:INC(@) : r K; = K; +1; go to command No. r;

l: DEC(i) : r: s|if K; =0 then go to command No. r;

else K; := K; — 1; go to command No. s ;

Table 3.1: The four possible commands of a counter machine with their
meaning

"We often identify the number stored in a counter with the counter, i.e., we say “the
number K;” instead of “the number stored in K;”.

2Without loss of generality we assume that the command start occures exactly once
during any execution of a program.
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The first number in each assignment is its unique label in the program. Each
of the four commands can be simulated by a (small) Time Petri net. Starke
shows in [Sta80] that the first three commands can be simulated by classic
Petri nets. Thus, for the fourth one (DEC) this is not possible. We follow
this general approach, adapt it to Time Petri nets, and complete it through a
simulation of the command DEC' by a Time Petri net: Each number [ of an
assignment is modeled by a place p; such that a place holds a token whenever
the corresponding assignment is being executed. Furthermore, each counter
K; is modeled by a place w;. During the whole computation process (program
execution) it will always hold that m(w;) = K; for the p-marking m in the
net corresponding to the current step in the computation.

We model the commands through Time Petri nets as indicated in Table 3.2.

The intervals in the second and third models have been chosen arbitrarily.
We can use any valid interval in these nets.

In the model of the fourth command (DEC) it is important to prioritize tran-
sition ¢, using intervals. We ensure that any conflict between the transitions
t; and to is decided in favor of ¢y by letting [ft(t2) < eft(ty).

Definition 3.14 (CM-computable) Ann-ary number-theoretical function
f is called counter-machine-computable (short: CM-computable) if there is a

counter machine with k counters {Ky,--- , Ky} where k > n and for each
n-tuple (x1,- -+ ,x,) € M™ it holds that for the counter machine started with
the values

Jox if1<i<n
Ki_{o ifn<i<k’

i the counters:

Case 1 if(x1,--- ,x,) belongs to the domain of the function f the machine must
reach a command ‘halt’ after a finite number of steps, i.e., the compu-
tation must terminate, and on termination the number f(z1,--- ;)
is stored in the first counter K;

and
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Notation of the Model of the command as
command a Time Petri net

0: start : 1 @P/

Py
[ : halt
 —((),]]
Py
l:INC(i):r 1 [0.1] w;

l:DEC(i):r:s

Table 3.2: Translation of the four possible commands of a counter machine
into Time Peri nets (modules)

Case 2 if (z1,--- ,x,) does not belong to the domain of the function f the
machine never reaches a command ‘halt’, i.e., the computation does
not terminate.
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TPN-computability is defined similarly to PN-computability:

Definition 3.15 (TPN-computable) An n-ary function f is called Time-
Petri-net-computable (TPN-computable) if there is an initial Time Petri net
Zp = (Pf,Tf,Ff,Vf,If,mg) such that for every n-tuple x = (z1,--- ,x,) €
N" and for the Time Petri net Z§ = (Pf.,Tf,Ff,Vf,If,m{;’z), where the p-
marking m}™ models the n-tuple (x1,--- ,x,),% it holds that:

Case 1 If the tuple (x1, - ,x,) belongs to the domain of f then the Time
Petrinet Z§ stops (cannot fire anymore) and the last-reached p-marking

mJ@omn) yuniquely models the number flay, - ay).

Case 2 If the tuple (x1,--- ,x,) does not belong to the domain of f then the
Time Petri net Z§ never stops, i.e., for each state z with 2 =z
there exist at least one non-negative real number T and a transition t
such that z — —L5.

It is evident that every CM-computable function is also TPN-computable,
and vice versa. We refrain from proving this formally. The idea is now to
let a Time Petri net simulate the program of a counter machine. In this
net no transition is ready to fire unless at least one place p; is marked. In
each reachable p-marking exactly one place p; is marked but in the marking
reached after firing a transition corresponding to a command [ : halt, no
place p; is marked anymore.

Thus, we can summarize:

Proposition 3.16 Let f be an n-ary number-theoretical function. Then it
holds that: f is Turing-computable if and only if f is TPN-computable.

This follows immediately from the above argument and the equivalence of
Turing machines and counter machines.

In the next two Examples 3.17 and 3.18 we consider one total function and a
partial one in order to illustrate the representation of an arbitrary number-
theoretical function with a Time Petri net. To this end we translate the
program of a counter machine which computes the respective function into
a Time Petri net as indicated in Table 3.2.

3The p-marking mg’” takes into account the initial p-marking mg .
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Example 3.17 Let us first consider the addition of two natural numbers,
which is a 2-ary total function. The initial Time Petri net Z; is constructed
using the program of the counter machine which computes the function. For
the p-marking mg it holds that:

mg(p) =1, mg(p2) = mg(ps) = 0= mj(wr) = mg (ws).

flxr, 22) = z1 + 29

Program of the Time Petri net
counter machine model

0:start: 1
1:DEC(2):3:2
2:INC(1):1

3 : halt

Consider the pair x = (z1,22) = (2,3). The Time Petri net 2}2’3) which
computes the function f for the argument (2,3) is obtained from the initial
Time Petri net Zy by adding tokens to some places in the initial p-marking

mp. e mnitia. -marking my 1S exrienae omy”’ as Jjouows:
I The initial p-marking mi is extended to m}® as foll

m @ (p) =ml(p) fori=1,2,3, mi®(w) =2, md®¥ (w,) = 3.

In the net 2}2’3) only the transition sequence totstotstotstity can fire. Af-
ter that no transition is enabled any more, i.e., the net stops in the state
z = (m, h) with m(w;) = mgo(w1) + mo(wy). Thus the place wy contains five
tokens, which is equal to the value f(2,3).
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Example 3.18 As a further example, let us consider the subtraction of two
natural numbers, which is a 2-ary partial function. It is formally defined as
follows:

(1, 22) = T — To if 11 > @y
g\*1, T2 undefined  otherwise

We deduce the initial Time Petri net Z, from the counter machine program
computing the function g as before:

9(95175U2) =T — T2

0:start:1
1:DEC(2):3:2
2:DEC(1):2:1
3 : halt

[0 17 \2712.3]

As before, a Time Petrinet Z7 for an arbitrary pair v = (x1,x2) of arguments
for g is obtained from the initial net Z, by adding tokens to the initial p-
marking m§. We now consider the pair (2,3). It is obvious that the function
g is undefined for those arguments. Lel us consider the initial p-marking
m&®¥ arising from mg:

m& @ (p) = md(p) fori=1,2,3, mP®(w) =2, m@® (w,) = 3.
It is easy to see that for an arbitrary pair x = (x1,22) the Time Petri net Z]

stops if and only if mo(wy) > mo(ws). In particular, the net Zg(2’3) never stops
— first the transition sequence totytotyts fires and after that the transition ts
can fire infinitely often.
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3.4 State Space Reduction

The state space of a Petri net, timeless or time-dependent, contains total
knowledge of its behavior. Explicit knowledge of the state space in general is
indispensable for studying the dynamic properties of a net but as the state
space of an arbitrary net is usually infinite we will show in this section how
to reduce the state space without affecting the properties of the net.

We first give a parametric description of the state space of Time Petri nets
and then reduce it. We will subsequently prove necessary and sufficient
conditions under which an infinite state space can be reduced to a finite
one. The reduced state space will be well suited for model checking. It will
furthermore permit quantitative analysis of a net, which is otherwise only
partly possible.

The reduced state space will also enable us to define the reachability graph of
a Time Petri net, which we examine in the next section. Eventually, we will
present some efficient, graph-theoretical algorithms for the analysis of finite
reachability graphs.

Let us now consider an arbitrary Time Petri net Z = (P, T, F,V, my, ).
Furthermore let ¢ = ¢;-- -1, be a firing sequence in Z and let there be at
least one feasible run o(7) = Tot171 - - - Tu—1tn Ty Of 0 in Z, i.e., there is a state
z* in Z with

o(7) -

2o — 2" = (m*,h") and m* =mg+ ZAtiA
i=1

It is obvious that the p-marking m* does not depend on 7, meaning that after
the firing of any feasible run of o (starting in the same state) the reached
p-marking is the same; it depends only on ¢. This, however, is not true for
the t-marking which depends on ¢ as well as on 7.

Now, instead of considering infinitely many feasible runs of o we study a
single parametric run o(x) = xot121 -+ Tp_1tpx, of o. Instead of a fixed
number 7; we use the variable x; to denote the time elapsing between the
firing of the ¢-th and the i+ 1-th transition in ¢ and look at the requirements
for values f(z;) of &; (i = 1,--- ,n) that make the run o(5(x)) a feasible one.
Thus, for the state z,, with

20 ﬂ Ze = (mcrahcr)7
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it holds that m, = m*.

The conditions for the values 5(z;) result from the time intervals associated
with the transitions and are united into the set B,. The state z, together
with the set B, forms the parametric state (z,, B,). Such a parametric state
also represents the set of all states which can be reached by firing a feasible
run of o. These states are obtained by combining ¢ with all possible solutions
x of B,. Each such solution yields a feasible run of . We denote the set of
all states by {z, | B,}, i.e.,

{20 | Bo} = {zs(8()) | B(x) is a solution of B,}.

We will now recursively define the parametric state and the parametric run
of a transition sequence.

Definition 3.19 (parametric state and parametric run)

Let Z = (P, T, F,V,mq, I) be a Time Petrinet and let 0 =t - - -1, be a firing
sequence in Z. Then, the parametric run (o(x), B,) of o in Z with o(z) =
Tot1Z1 -+ Ty_1tpx, and the parametric state (z,,B,) in Z are recursively
defined as follows:

Basis: 0 =¢, ,i.c., o(x)=x.
Then z, = (mgy, hy) and B, are defined as follows:

1. mg :=my,

owe if T <me
2 ho(t) = { f otherwise ’

3. By i={0< hy(t) <Ift(t) | t€T At <my}

Step: Assume that z, and B, are already defined for the sequence o =ty -- - t,,.

Foro= t;---t, ths1 = wt,41 we set
——

=w

1. my = my + Aty
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i if t7 £ m,
ho(t) + 1 if 7 <mg A t7 <y A

tapr Nt =0 At #tp ’
Tl otherwise

2. hy(t) :=

3. B, := By, U {eft(tni) < hp(tnr) } U {0 < ho(t) <Uft(t) |
teT At <m, }.

So the t-marking h, is a vector with a sum of variables as each of its com-
ponents. At most ¢(o) + 1 variables can appear in h,.

The initial set of conditions B, consists of only two inequalities and the
number of inequalities in each successive set of conditions increases by twice
the number of enabled transitions in the respective p-marking plus 1. In the
worst case this results in 2 |T'| +1 inequalities, of which however many might
be redundant.

For a transition sequence o of length ¢(0) = n the number of variables in B,
is n+ 1. The number of inequalities in B, on the one hand is no greater than
(2:]T)4+1)-n+2-|T|. There are, however, at least (2-(|T'| —1)) +n redundant
inequalities in B,,. Taking into account Remark 3.23 it is not difficult to see
that the number of inequalities is also no greater than (n + 1) - (n + 2).
Thus, we can summarize that the number of inequalities in B, is at most
min{2- (n-|T|+1),(n+1)- (n+2)}.

The upper bound (n + 1) - (n + 2) can be lowered to (n 4+ 1) - (% +2). The
proof of this is left to the reader, cf. also Exercise 3.3.

For long transition sequences this representation can become rather large.
We actually only use it to verify that the reduction given below fulfills the
requirements. In applications of Time Petri nets as well as in their analysis
we do not need parametric states as long as the reduced state space is finite.
This is mostly the case for real technical systems and metabolic networks
etc. In case of an infinite reduced state space parametric states are used to
study some quantitative properties of the net.

We note that in Definition 3.19 instead of requiring ¢ to be a firing sequence
we could allow it to be an arbitrary transition sequence. If o is not a firing
sequence, then it holds that {z, | By} = 0.
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The set L, of all solutions for  := (o, ,zyc)) satisfying the inequalities
in B, is a polyhedron. The t-marking is a vector of linear functions, say
ho(t) = fi(z), x € L, and fi(z) is linear.

In the next example we will calculate some parametric states. We use K, as
a shorthand for {z, | B, }.

Example 3.20 (parametric states) Let us consider the Time Petri net
Z.

P P3

Figure 3.3: The Time Petri net 2,

It is easy to see that

Ko ={((0,1,1), (w0, 8,8, m0) ) [ {0 < wo < 3}}

me he Be

After firing the sequence o = ty the net Z5 is in a state belonging to K, = Ky,.

Ky, ={((1,1,0), (o + 21,8, 21,8) ) [ {2 <20 < 3,20+ 21 <5,0 <y <4}
——

mi, hiy B,

The set of conditions By, is the union of the three sets
B,
{eft(ts) < ho(ty)} = {2 < 0} and
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{0 < ho(t) SIfU) | £~ <mp} = {0+ a1 <5,0 <y <4},

By repeatedly firing the transitions t3 and ty we obtain the parametric states
Zt4t3 and Zt4t3t4 and Kt4t3 (lnd Kt4t3t4 N

2<x9<3, xo+m <5,
Kt4t3 = {((07 17 1>a ($0+I1+Z‘2,ﬁ,ﬁ,x2>) | { 2 S T S 47 Zo + T+ T2 S 57 } }7
0 S ) S 3

2<29<3,
2<mr <4,
2 <y <3,

Kt4t3t4 = {((1,1,0),(x0+x1 +£E2+(L'3,ﬁ,$3,ﬁ)) | { 0<uz3 <4, }}
To+ 1 <5,
o+ 11 + 29 §5,
$0+$1+l‘2+$3§5

As mentioned above, parametric states can also be seen as representing sets
of reachable states. They can be regarded as dividing the state space into
overlapping classes of states. We now define by induction the notion of a
state class which is also a set of states reachable by firing.

Definition 3.21 (state class)
Let Z = (P, T,F,V,m,,I) be a TPN and o a feasible transition sequence.

The state class C, of o is defined as follows:

Basis: C. :={z | 3I7(t € R A 29 — 2)}

Step: If C, is already defined then C,; is derived from C, by firing t
(denoted by C, N Cyt) as follows:

Cot ={2|F2T2IT(21 € C, AT ER A 2y LN z — 2)}.
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So the state class C. is the set of all states in Z reachable from the initial state
by elapsing of time but without firing transitions. For transition sequences
o # ¢ the class C, contains all states that are reachable by firing any feasible
runs of o.

The next corollary directly follows from Definitions 2.11, 3.19 and 3.21:

Corollary 3.22 For every Time Petri net Z and for every firing sequence
o it holds that:

(i) RSz = C,, i.e., the state space of Z is the union of all state classes.
(ii) {z5 | B,} = Cy .

The corollary also holds for every transition sequence in Z. As noted before,
the set {z, | B,} = C, is empty for any transition sequence which is not a
firing sequence in Z.

Let (z,, B,) be a parametric state. We want to examine the structure of
the inequalities in the set of conditions B, and the structure of the linear
functions (sums) h,(t). Each set of conditions is also a system of linear
inequalities where all coefficients of variables are 0 or 1. For the sake of
simplicity, we will say that a variable appears in an inequality or a sum, if
its coefficient is 1.

Remark 3.23 Let Z be a Time Petri net, o a firing sequence in Z and
(24, By) with z, = (Mg, hy) a parametric state reached after firing o. Fur-
thermore let £(0) =n and x = (xg, -+ ,x,). Then it holds that:

(i) If t is enabled in m, then the variable x, appears in hy(t).

(11) If t is enabled in m, and h,(t) = z; + --- + x; with ¢ < j then every
variable xy, with i < k < j appears in the sum h,(t).

(i11) If the transitions t, and ty are enabled in m, then either each variable
appearing in h,(t1) also appears in h,(t3) or vice versa.

() If g(z) < ris an inequality in B, and the variables x; and x; with i < j
appear in g(x) then every variable xy with i < k < j also appears in
g(x).
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Proof:
(i) The claim follows immediately from Definition 3.19.
(#) This property can easily be proved by induction on j — i.
So, according to (i) h,(t) has the form:
ho(t) = Tp-k+ Tp—(k-1) +F Tn—(k—k)
= Tpk+ Tp—(k—1) +t
for some k € {0,1,--- ,n}.
(#ii) Now, for transitions ¢; and ¢, enabled in m, (i) and (ii) lead to:
ho(t1) = Tp_k+ Tn_(oo1) + - + Tn—(h—i)
Tk + Tp_(k—1) + -+ + 2, and

ho(ta) = Tpg+4 Tp_go1) + -+ Tp_q
= Tp+ LTp—(1-1) + -+ T

If k£ <1 then all variables appearing in h,(t;) also appear in h,(ts). If I <k
then all variables appearing in h,(t2) also appear in h, ().

(iv) Induction on n gives that for each inequality g(x) < r in B, there exist
subsequences o7 and o2 of ¢ with 0 = oy09 such that g(z) = h,,(¢) for
some transition ¢ € T. Thereafter, taking into account (i), claim (iv) follows
immediately.

The following Theorem 3.26 states a fundamental property of Time Petri
nets, namely that each p-marking reached with an arbitrary feasible run is
also reachable with a feasible run where the values of all elapsed times are
natural numbers (integers). For such a run all intermediate states reached
during the execution of the run are also “integer-states”, i.e., the clock of
each enabled transition in each intermediate state shows a natural number.
These states play a crucial role in our reduction and the analysis of the state
space. We will show that they carry most of the net properties: dynamic as
well as static and qualitative as well as quantitative.

Definition 3.24 (integer-state) In a Time Petri net a state z = (m,h)
is called an integer-state if for every transition t enabled in m it holds that
h(t) € N.
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Definition 3.25 (integer-run) In a Time Petri net a run o(7) with o =
ty---t, and T =719 -+ Ty 1S called an integer-run if for every i =0,--- n it
holds that 1; € N.

The notation RISz stands for the set of all reachable integer-states in Z.

Before we go on we declare the following notations: Let X be a set of vari-
ables and let # be an assignment of those variables to non-negative real

numbers, ie., 3 : X — Rf. Let z = (zy1,-+,1,) be a vector of variables
from X. Then 5(z) stands for the vector of the non-negative real numbers
(B(x1),- -+, f(xy)). Furthermore, we denote the value of the linear function

g(x) = x;, +- - - +x;, under the assignment 8 by [g(z)]s. Finally, s(c) stands
for the variable part of an inequality ¢. Hence, the inequality ¢ : g(z) < k is
satisfied by 8 if [s(c)]s < k.

Theorem 3.26 (Main theorem) Let Z = (P, T,F,V,mg,I) be a Time
Petri net, o a transition sequence of length n, with zy — (25, By), %4 =

(Mg, ho), L(o) =n and X, := {xg, 21, ...,2,}. Furthermore let o(f(x)) with

B X, — R{ be a feasible run of o. Then there exists an assignment

5% : Xy — N for which the following holds:

(1) o(B*(x)) is also a feasible run of o in Z,
(2) for each transition t enabled in mgy it holds that [ho(t)]s- < [he()] 5

(3) the total duration of the run o(8*(x)) is at most the total duration of
the run o(B(z)), i.e., [> :ck.]]ﬂ* <[> Ikﬂ3~
k=0 k=0

(1) tells us that the feasible run o(5*(z)) will be an integer-run. (2) states
that after firing the run o(8*(x)) the clock of each enabled transition shows
a time that is at most the time shown after firing the run o(3(z)). Finally,
(3) says that by firing o(3*()) the final p-marking will not be reached any

later than by firing the original run o(f(z)).
In the proof of (2) we will additionally show that

0 < [he(®)]5 = [ho(D)]p- < 1.
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This means that if a state is reachable in a Time Petri net then the corre-
sponding “rounded-down” state is reachable as well.

The assignment 5* described in the theorem is not uniquely determined, but
the construction given here will define a unique assignment 5*. Also we can
always easily find an assignment 5* such that

n n

0< [[Za:k]]B— [[Z$k]]6* < 1.

k=0 k=0

Therefore we can add the redundant inequality 0 < xg+ 1+ ...+, to B,.
This ensures that the total duration of the run o(5*(z)) is the rounded-down
total duration of the original run o(f(z)). Note that this does not mean that
the value of each elapsed time between two successive firings in 5*(z;) is the
rounded-down value of the respective time in B (z;) — for some ¢ it might hold
that 8*(z;) = [B(z;)]. We recommend considering Exercise 3.4 at this point.

Idea of the proof:

In n + 1 steps the non-negative integer values 5*(zo), 8*(z1), ..., 8*(x,) will
explicitly be constructed from the values 3(z0), B(z1), ..., B(x,). In each
step we will define a new intermediate assignment from the previous one by
rounding down or up exactly one value j3(z;).

We first assign a natural number to the variable z,,, then to ,,1, etc. In the
last step the value () is rounded.

The algorithm starts (in the second step of the recursive definition) by round-
ing down S(z,). Thereafter, depending on the inequalities in B, the algo-
rithm continues rounding the other values down or up.

Definition 3.27 (Construction of 5*) Let X, := {wo,21,...,2,} be the
set of all variables appearing in B,. We define by induction a finite sequence
of assignments B; : Xy — Ry :

Basis: [y : X, — R} with fo(z) == f(z) for all z € X,,.

Step: Assume that §;_1 is already defined. In the construction of [;
we use the following function:

{ﬂil(ﬂﬁ) & # Tni-n)

Gile) = |Bici(z)|  otherwise
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We now define 3; : X, — R{ by

Bi-a(x) if & # Tpip1
1Bici(x)] if x=2n i1 A

Ve(e € By — [[s(c)]g] — 1 < [5(c)]5.) '
[Bi_1(z)] otherwise

Bi(x) :=

The construction defines the first assignment 5, to be the original assign-
ment ,@’, i.e., in the 0-th step it sets 5y := B The assignment () is then
obtained from fy by rounding down the value Sy(z,). fs is obtained from f;
by rounding the value f1(x,_1). In general, assignment £; is obtained from
Bi—1 by rounding the value f;_(2,—(—1)). For each i the value of z,_;_1
is rounded down only if for all inequalities ¢ in B, the value of the variable
part of the inequality under the assignment J; , i.e., the value [s(c)]g, is
larger than |[s(c)]s ] — 1. Otherwise the algorithm sets Bi_1(7n_-1)) =
[Bi1(®n—(i—1))]. Hence, for every assignment j3; and each inequality ¢ in
B, it holds that the value [s(c)]g, lies within the interval (|[s(c)]g,] —
1, [[s()]p, ] +1). Fig. 3.4 illustrates for an arbitrary inequality ¢ in B,
the position of the five numbers that are of relevance here.

LIs(9)s0) 1 1@, [[s(e)]so 1 +1
T T © T T

LLs(c)]go ) [[s(c)]so 1

Figure 3.4: Position of the real number [s(c)] s, and the integers | [s(c)]g,]—1,

LIs()s], ls(e)]a] and [s(c)]ge] + 1.

We can summarize that for all i with 0 <7 < n+ 1 and all variables x;, with
0 <k <n-—(i—1) it holds that

Bi(xr) = Bici(xr) = ... = Bolw) (1)

and for all such ¢ and variables zy withn >k >n — (i — 1)

@(Ik) = /3i+1(1’k) = ... = 5n+1(93k)- (2)
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Furthermore, if 8y(,—(i—1)) is already an integer, then the algorithm leaves
the value for z,,_(;_1) unaltered in all the assignments, since for any integer
k, k= k] =TkK].

Obviously the values B,,41(20), Bnt1(21), - - -, Bot1(2,) are all integers. Thus,
we can define 8* as follow:

B*(x;) == Buy1(z;) forall j =0,1,...,n.

The following table gives an idea of how §* is successively constructed from B.
In every new assignment (; the value of only one variable is changed and this
process handles all variables in reverse order. Therefore the rounded value
of each variable first appears on the diagonal of the table. This is indicated
by printing the corresponding value in bold. This diagonal separates the
table into the upper left-hand half with values that are still arbitrary reals
indicated by r (the different variables in one row of course generally do not
have the same value) and the bottom right-hand half with natural numbers
indicated by k. Whereas all values in one row might be different, the column
associated with a variable x; contains at most two different values, and only
one if 3(x;) is already a natural number.

g 5(‘7"0) ﬁ(‘xl) e B<x7l*i) ﬁ(‘rn—(i—l)) e ﬁ(xnfl) ﬁ(xn)
Fefo | r  r v P
B r T r r r k
62 r T r r k k
5; r r r k k k
B* = B k k k k k k

Figure 3.5: The successive construction of the assignment 5* from /.

The three assertions about the assignments 8;, ¢ = 0,...,n + 1 in the next
lemma are proved by induction on i. They are then used in turn in the proof
of Theorem 3.26.
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Lemma 3.28 For alli € {0,1,...,n+ 1} it holds that:

(a) Ve(c € By = [s(c)ls € (LIs()s] =1, [Is(c)g] +1)),
(b) Vt(t € TAt™ <mg = [he(t)]s < [ho(t)]s0),

@ [Zods < [Z ol

Proof:

Induction on 1.
Basis: 1 =0
For ¢ = 0, all three assertions are trivially true.

Step: We assume that the assertions (a), (b) and (¢) hold for 1,. .., 4, and now
prove them for i + 1.

If i(xn—;) € N, then f;41 = f; and thus all assertions follow immediately
from the induction hypothesis.

Therefore, we assume that 3;(z,—;) is not an integer. According to the defi-
nition of 8;1; there are only two possible values that £;41(x,_;) can take:

Case 1: Pit1(Tni) = [Bi(®n—i)]
Hence, it holds that:

Biy1(x) < Bi(z) for all z € X,. (3)

For (a): Let b be any inequality in B,. If 2;,_; does not appear in s(b),
then [s(0)]s,,., = [s(b)]s,, and assertion (a) follows from the induction
hypothesis. Hence, assume that x,_; appears in s(b).

Since fiy1(x) < Bi(z) for each x € X, it is evident that

[s(O)s., < [5(0)]s:- (4)
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By the induction hypothesis, [s(b)]s < [[s(b)]s, |+ 1 . so the previous
inequality (4) becomes

[s(O)pir < TTs(0)] 501 + 1. (5)

As Biv1(x,_;) has been set to | 5;(x,—;) |, the corresponding criterion in
the definition of ;14

Ve(e € By = [[s(c)]g] =1 < [s(c)]pir)
is fulfilled. Since Bi11 = Bit1, it follows for the inequality b that:

L[s®)s) =1 < [s(0)] 51 (6)

and because b has been chosen arbitrarily, the inequalities (5) and (6)
together complete the induction step for assertion (a) in this case.

For (b): Tt follows from the inequality (3) that for each transition ¢

enabled in m,
[he(®)]s1 < [ho(t)] 5

and because we know from the induction hypothesis that
[7e ()]s < [ho(B)]5

assertion (b) is proved in this case.

For (c): The inequality (3) and the induction hypothesis

[[kzn: ﬂﬁz <[ Z :Uk]]ﬂ instantaneously yield [[Z xk]] < [[kf:—()xk]] .
i.e., (¢) holds. -

Case 2: Biy1(zn-i) = [Bi(rn_i)]

i.e., B, contains an inequality ¢ such that
[s@]pr < LI5(O)]a] — 1 (7)

and x,,_; thus appears in ¢.

It also holds in this case that:

62(I) S ﬂﬂ,l(x) for all z € XU. (8)
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For (a):
Let b be any inequality in B,. Then it holds that:

[[s®)]s] —1 < [s(b)]s ind. hypothesis
< [s(0)]sia because of (8) (9)

On the other hand, it is true for the formula ¢ that:

[s(®)]s.. [s(@)]s, — Bi(zn—i) + Bit1(zn—i)
= [s@]s — Bi(xn-i) + [Bi(wn-i)]
= [s@]s — Bilwn—i) + [Bi(zn-i)] + 1
= [s(O)]pu, +1
< ([s(&)]s) because of (7)
[s@lss < LIs(D)]s0] (10)
and therefore  [s(0)]g,, < [s(8)]a, - (11)

Because of (9) and (10) assertion (a) holds for the formula ¢.

We still need to determine that for every b in B,
s < [Is®)]go] + 1. (12)

So let us suppose that there is at least one inequality bin B, that does
not satisfy (12), i.e.,

[5(0)]6.01 = [[s(D)]a0] + L. (13)
This in particular implies
[s(0)]5.0: = [5(0)]s + 1. (14)

Let jz and kz be the minimal and maximal variable indices appearing
in s(¢), respectively. Based on Remark 3.23(iv) it is clear that
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8(5) =Tj, T Tjop1 T oo F T F Tpi1) T oo T (15)

Similarly, let j; and kj; be the minimal and maximal variable indices

appearing in s(b), respectively. Then s(b) has the form:

s(b) = Tj + T+t T+ T o) T (16)

Hence, it holds for the indices n — i, k;z and k, that:
n—1<ks and n—1<k;,
fe, n—ka:<i+1 and n—k;<i+1 (17)

The kind of values of the variables - reals or integers - under the as-
signments [y and ;.1 are:

Bivi(zs) o Biri(@n—ir) Bivi(@n—i) -+ Binalzr)  (18)
Bit1 = Do Biv1i  # Do
T T T T
real real integer real

According to the definition of 5* the assignment 3;,; changes the value
of the variable z,,_; and for every r with —1 < r < n—1 the assignment
Bn—r changes the value of x,;.

Hence, according to (15), we may rewrite (11) as

Biv1(xs.) — Bo(ws,))+

(Bit1(z;
(514-1(%'54-1) - 50(%'54-1)) +...+ (19)
(Bir1(Tn—i) = Bo(Tn—i)) + (Bir1(Tn-is1) = Bo(Tn—iy1)) + ...+
(Biv1(zx,) — Polzr,)) < 0.

and according to (18), this may be rewritten as
(Bis1(zn—i) = Bo(zn-i)) + (Bis1(Tn—ir1) = Bo(Tn—it1)) + ...+ (20)

(BiJrl('rka) - 60(37165)) <0.
Similarly, (14) and (16) yield
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(Bis1(wn—i) = Bo(xn-i)) + (Bis1(@n—is1) — Bo(Tn—iy1)) + ...+

(Biva(zr;) — Bolzy;)) > 1. (21)

We now consider the relationship between the two maximal indices k;
and k;. There are three possibilities:

Case 2.1: ks = k;
Then

L < [s@]ss — [s®)]s,  because of (14)
= [s(0)].. — [5(0)] because of (20) and (21)
< 0 because of (11)

which is clearly a contradiction.

Case 2.2: ks < k;
In this case the two terms s(¢) and s(b) have the form:

S@) =xj 4 ATt e T
s() =+ Axuit o ap o Fay.

b

We now consider the type of values of the variables appearing in

s(b) under the assignments Sy, Bn—x, and f;11. Because of (1) and
(2) it holds that:

s(b) =
Bo=Prn—kg BoF#Bn—ks

+ o Tpie1 T+ Ty Tpay1 + - +$kg .(22)

.T}jz.)

ﬁz‘+1 = 5n—k5 BiJrl 7é ﬁnfka 5i+1 = 5n—k5
1 1 T Tt 1

real real integer real  integer integer

Because of (22), £y and [,_x, agree on all variables with indices
at most kz. Hence, the inequality (20) leads to
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(Biv1(@n—i) = Bars(Tn—i))+
(Bir1(@Tn—it1) = Bors(Tn—ig1)) + ...+ (23)
(Biv1(xr,) = Bo—ie(@r,)) < 0.

Thus, (22) and (23) yield

[[S(ZN))]]BHl - [[S(b)ﬂﬂn—ké <0. (24)
But (13) and (24) then yield

[s(®). s, = [Ts(B)]s] +1
which contradicts the induction hypothesis for n — kz, because
n—ks<i+1(cf. (17)).

Case 2.3: ks > kj
Then, s(¢) and s(b) have the form:

~—
I

Tjot o ATt b o g
Ij5+... +In—z+ . o +Ik§

@
2
S O
=
I

Analogously to Case 2.2 this leads to the following type of values
of the variables in s(¢) under the assignments 5y, 3, and B,

Bo=bn—r; Bo#Bn—r;
T+ o+ Tyl Tpit+ o+ Th; Thy+1 + o Ty .(25)
/8i+1 = ﬂn—k{) /6i+1 % ﬁn—kl; /8i+1 = /Bn—kl;
T T T T T T

real real integer real  integer integer

According to (25), By and 3, agree on all variables with indices
at most kj. Therefore inequality (21) leads to
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(Bit1(@n—i) — Bo—y(Tn—s))+
(Biv1(Tn—iv1) = Bok; (Tnig1)) + ...+ (26)
(Biv1(wr;) = Bai; (1)) > 1.

Hence, (26) together with (15) shows that

[s(@1s.0 — [s(D)]5,, = 1. (27)
But (10) and (27) then yield

[5(O)]s,-, < LIs(@)]s] —1

which contradicts the induction hypothesis for n — k;, because
n—ky <i+1(cf (17)).

So assumption (13) has led to contradictions in all three sub-cases.
Therefore the following inequality must hold for all b in B,:

[s(0)]gis < Ts(0)] g1 + 1 (28)

Thus, (9) and (28) prove assertion (a) in this case.

For (b):

Let ¢ be a transition which is enabled after the firing of ¢. If z,_; does

not appear in he(t), then [he()]s,., = [ho(t)]s,, and [ho ()]s, < [ho(t)]s
follows from the induction hypothesis. Therefore, assume that x,_; does
appear in h,(t).

According to Remark 3.23.(¢) (applied to h,), the variable x, appears in
every component of h, which is not . Together with Remark 3.23.(i4), this
implies that there is an index j; such that

he(t) = x5, + Tjp1 + .+ Tpoi + Tp(i1) + ... + T (29)

Because of (22), f;+1 and f3,_y, agree on all variables with indices smaller
than n — ¢ and on all variables with indices greater than k.

Hence, (23) together with (29) shows that

[7o(D]s:0 = [ho ()] 5, <0 (30)
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Using the induction hypothesis for n — k;z, (30) yields

[[hg (t)]]ﬁzﬂ < [[h(, (t)ﬂﬁo :

Since ¢ was chosen arbitrarily, the assertion (b) is also proved in this case.
For (¢):

Again, because of (22), 8,11 and (,_j, agree on all variables with indices
smaller than n — ¢, and on all variables with indices greater than kz it follows
from (23) that

n

[[Z_:Ik]]ﬁlﬂ < [[Zxk]]ﬁn,ké' (31)

k=0
And by the induction hypothesis for n — k;

n

[[kixkﬂ Bt < [[Z xk]] 5o

k=0

which, together with the inequality (31), proves the third assertion (¢):

[[gjxk]]m < ﬂjixkﬂﬁo-

With this Lemma 3.28 is proved. a

Proof of Theorem 3.26:

With * := 3,11 assertion (2) of Theorem 3.26 is the same as (b) of Lemma
3.28 and (3) of Theorem 3.26 is the same as (¢) of Lemma 3.28.

So in order to prove item (1) of Theorem 3.26 we now show that the values
B*(x0), ... ... , B*(x,,) satisfy all inequalities in B,.

Thus, let ¢ be an arbitrary inequality in B,. Since 8*(x;), ¢ = 0,...,n are
integers it is clear that [s(c)] s« is also an integer. Assertion (a) from Lemma
3.28 implies that

[s(e)]s- € (LIs(@)]g] =1, T[s(e)]g] +1).



64 CHAPTER 3. TIME PETRI NETS

But the only integers in the interval (|[s(c)]g,] — 1, [[s(c)]g ] + 1) are
L[s(e)g, ] and [[s(¢)]g,]- This means that

[s(e)]s- = LIs(go] or [5(c)]- = [5(c)] o ]- (32)

The inequality ¢ has the form s(¢) < k or k < s(c) for some integer k (more
precisely: According to the definition of By, k is 0 or eft(t) or [ ft(t) for some
transition ¢ in the considered Time Petri net).

We now first consider the case that ¢ has the form s(c) < k. Since the first
assignment [ defines a feasible run, all inequalities in B, are satisfied by the
values ((x;), x; for all i = 0,--- ,n. It follows that

[[S(C)]]ﬁo <k,

which implies

JECIEY

I
> 0
o
—_

Thus, (32) leads to

[s()]s <F,

which means that the natural numbers 5*(zo), . . ., 5*(z,) fulfill the inequality
c.

If ¢ has the form k& < s(c¢) we can similarly prove that the natural numbers
B*(x0), ..., [ (x,) fulfill c.

Since ¢ was chosen arbitrarily, S* satisfies all conditions in B,, so the state-
ment (1) and hence Theorem 3.26 is proved. O

In the following example we demonstrate how a feasible run with only integer
times elapsing between firings is constructed from an arbitrary feasible run.
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Example 3.29 Consider the Time Petri net Z3

Figure 3.6: The Time Petri net Z;

and the transition sequence o = titstytots. The run

0.7 t1 0.0 t3 0.4 ta 1.2 to 0.5 t3 1.4
o(T) = zg —o b = By 20 Ty A By O B S 2

is feasible in Z3. The elapsed times are 7 = (0.7, 0.0, 0.4, 1.2, 0.5, 1.4).

For the transition sequence o the parametric run o(x) has the form o(x) =
(o, t1, 1, t3, Ta, ty, T3, ta, g, t3, T5) and we obtain the parametric state (z,, B,)
with 2z, = (Mg, hy) with

me = (172a27 17 1)a

T4+ T5
Ts
Is
hy = and
Is
To+ 21+ 22+ 23+ T4+ 25

i
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0 <z, T < 2, To+ 21+ 22 <5,
0 <y, T9 < 2, Tg + 13 < 5,
B — 0 < @y, x3 < 2, To + o1+ 22 + 23 < 5,
7 1< a3, xy < 2, ZTo+ 1+ T2 + 3 + 14 < 5,
0 < @y, x5 < 2, ZTo+ X+ 2o+ w3+ 34+ 25 <5,
0< x5, ro+x1 <5, 1y+a5<2

Omitting all redundant inequalities from B, (18 inequalities) we obtain a
smaller system of inequalities (11 inequalities) with the same solution set.
Thus, instead of B, we consider the following system without redundant in-
equalities:

0 <o, w<2

0<z, w<2

0< 2y, w3<2

1<2x3, o+a1+ 22+ 23+ 24+ 25 <5,
0<my, my+uz5<2,

0< x5

We obtain the first assignment B for the variables xo, x1, T2, T3,T4,T5 from

7, d.e., B(xo) = 0.7, B(z1) = 0.0, B(z2) = 0.4, B(x3) = 1.2, B(z4) = 0.5,
B(xs) = 1.4. In seven steps we now recursively compute the values B*(x;) =
Be(x:) from the values Bo(x:) = B(x;). Here it depends on the intervals
(1Is()]g) =1, [[s(c)]g1+1) for all c € B,* whether the value of a variable

is rounded up or down.

For instance, for the inequality ¢ = xo+x1+x9+x3+ 24+ 25 < 5 the interval
(LIs(]so) =1, [Is(c)]g | + 1) is (3,6), for ¢ = x4 + x5 < 2 the interval is
(0,3), and for ¢ = xy < 2 the interval is (—1,2) which is also the interval for
the inequality ¢ = 0 < xg.

Note that the assignments p; for 1 < i < n+1 might not define solutions
for the whole set of inequalities B,. Only 5 and 5* are guaranteed to define
solutions for B, .

4As mentioned above, it is sufficient to consider only the system of non-redundant
inequalities in B,.
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In the next table I the recursive construction of integer values for xq, x1, Ts, T3,
x4, x5 according to Theorem 3.26 is shown. Since h,(ls) = hy(t3) = hy(ts)
only hy(t2) of the three is shown in the table.

I i) T T I3 Tq Iy ha(tl) ha(tg) ha(lf5)

B = By | 07 00 04 12 05 14 1.9 1.4 4.2
54 0.7 00 04 12 05 1 1.5 1.0 3.8

Ba 0.7 00 04 12 O 1 1.0 3.3

B3 0.7 00 04 1 0 1 3.1

o 0.7 00 1 1 0 1 3.7

Bs 0.7 0 1 1 0 1 3.7

6% = P 1 0 1 1 0 1 4.0

Thus, we obtain the feasible run (1) in Z3 with
* 1 t1 0 t3 1 tg 1 to 0 t3 1
o) =2 — — — — — — — 5 — — — 2.
Furthermore, it holds that z = (m, h) := (m,, 8*(hy)), i.e., h=(1,1,1,1,4,4).

We now state one of the most important properties of Time Petri
nets which follows from Theorem 3.26:

Remark 3.30 Let m* be an arbitrary reachable p-marking in a Time Petri
net Z. Then, m* is reachable in Z with a feasible integer-run. The state
z = (m, h) with m = m*, reached after firing this run, is an integer-state.

Corollary 3.31 Let z = (m,h) be an arbitrary reachable state in a Time

Petri net Z. Then the state z := (m, |h]) is also reachable in Z.

Proof: It follows immediately from Theorem 3.26 together with Lemma
3.28.(a) that z := (m, | h]) is a reachable state in Z. O

The next theorem is a counterpart to Theorem 3.26:
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Theorem 3.32 Let Z = (P,T,F,V,mg,I) be a Time Petri net, o a tran-
sition sequence of length n with 2o — (25, By), %6 = (Mg, ho), and X, =
{x0,21,...,2,}. Furthermore let o(f(x)) with 3 : X, — R be a feasible
run of o. Then, there exists an assignment 3* : X, — N for the variables
such that:

(1) o(B*(x)) is also a feasible run of o in Z,
(2) for each transition t enabled in m, it holds that [hy(t)]s > [ho(t)] 5,

(3) the total duration of the run o(5*(x)) is no smaller than the total du-
ration of the run o(3(x)), i.c., [> xkﬂﬁ* > Ikﬂ3~
k=0 k=0

The construction of the assignment §* is “dual” to the construction of 5* for
Theorem 3.26°: We define the assignment 3; by rounding up and continue
to round up unless the value of an inequality ¢ in B, would thereby become
larger than [[s(c)], | + 1, in which case we round down. To prove Theorem
3.32 we would state a lemma which is a counterpart to Lemma 3.28. However
we abstain from a proof here because it is similar to the proof of Theorem

3.26.

Example 3.33 Let us again consider the Time Petri net Z3, the transition
sequence o and the feasible run o(T) from Example 3.29.

In the following table the recursive construction of integer values for xq, x1, Ta,

X3, %4, 25 in o(x) = xolixitzratsxstoxytszs according to T heorem 3.32 is
shown.
[I Zo T To T3 Ty Is ho(tl) hg(tz) hg(t{))
B = P 07 00 04 1.2 05 14 1.9 1.4 4.2
51 07 00 04 12 05 2 2.5 2.0 4.8
B 07 00 04 12 O 2 2.0 4.3
03 0.7 00 04 2 0 2 5.1
B4 0.7 00 1 2 0 2 5.7
05 07 O 1 2 0 2 5.7
5 = [Bg 0 0 1 2 0 2 5.0

Scf. Exercise 3.5
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We obtain the feasible run o(13) in Z5:
* 0 t1 0 i3 1 ta 2 to 0 t3 2 _
o) =2) — — — — — — — — — — — Z
for the integer-state Z = (M, h) = (m,, 8*(h)) with h = (2,2,2,2,5,1).
The next corollary now follows immediately:

Corollary 3.34 Let z = (m,h) be an arbitrary reachable state in a Time
Petri net Z. Then the state Z := (m, [h])is also reachable in Z .

Combining Corollaries 3.31 and 3.34 we obtain a necessary condition for the
reachability of a state in a Time Petri net:

Remark 3.35 (A necessary reachability condition)
Let z be an arbitrary reachable state in a Time Petri net Z. Then, the states
z and Z are also reachable in Z.

In other words, if at least one of the integer-states z or Z is not reachable in
Z then z is not reachable in Z either.

But, as we will see in the next example, this condition is not sufficient.

Example 3.36 Let us consider the Time Petri net Z4 in Fig. 3.7 and the
state z* = (m*, h*) with m* = (0,1,1,0,1,0) and h* = (f,1.2,1.5,4,4,0.3).

The states |z*| = (m*,(%,1,1,4,£,0)) and [2*] = (m*, (8,2,2,4,8,1)) are
respectively reachable in Z4 through

Oty 1tg
20 — [27]

and 0t 141
20— [27].

The state z* on the other hand is not reachable in Z, because the transitions
ty and tz are always enabled together and therefore the time since their last
enabling is always the same, i.e., as long as they are both enabled their clocks
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N

> Ps

P

Ps

: ls
[0,5]

[0,0]

Figure 3.7: The Time Petri net Z,

always show the same time.

We give another easy example with the next small Time Petri net Z44 in
Fig. 3.8.

P

[0,1] 1) s [0,1]

{

Figure 3.8: The Time Petri net Z,4

(0,0)) and z = ((1),(1,1)) are

It is clear that the integer-states z; = ((1),
1),(0.2,0.3)) is not reachable in Z44.

reachable in Z44 and the state z* = ((
Note that |z*| = z; and [2*] = 2.

We can now easily prove the next property which together with Theorems
3.26 and 3.32 is of fundamental importance for the analysis of Time Petri

nets.
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In the following we will call a Time Petri net finite, if for every transition ¢
in the net [f¢(¢) is a natural number (and not oo).

Theorem 3.37 Let Z be a finite Time Petri net. Then the set RISz of all
reachable integer-states in Z is finite if and only if the set Rz of all reachable
p-markings in Z is finite.

Proof:

(=)

Let the set RISz be finite. According to Theorem 3.26 there exists a reach-
able integer-state Z = (m, h) € RISz for each reachable p-marking m in Z.
It is clear that for two different p-markings m, and my there are also two
different integer-states Z; und Z, i.e., the set RISz has at least as many ele-
ments as Rz. Because we assumed that RISz is finite it follows immediately
that Rz is finite, too.

(=)

Let the set Rz of all reachable p-markings in Z be finite. Let m’ be an
arbitrary p-marking in Rz. Because Z is finite, the set

Hy = { (h(t)) € (NU{t})™|
(h(t) € ([0, Ift(t)]NN) ,if 7 <m') A
(h(t) =t ,ift~ Zm') }

of all integer-t-markings in Z suitable for m/ is finite, too, because for each
transition t € T the set [0, [ft(t)] NN is finite. Hence, the set

HR,, :={ (h(t)) e (NU{t})"' |32 (2= (m',h) A zreachable in Z)}
which is a subset of H,, is finite as well. Therefore the set
Zyy i={z=m',N)| W € HR,y}
is also finite. Furthermore, because of Theorem 3.26 it holds that:

RISz = U o

meRz

Thus, RISz is a finite union of finite sets and therefore is finite itself. a
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3.5 Reachability Graphs for Finite
Time Petri Nets

In general, the state space of a Time Petri net can be infinite. Every state is
a pair of two tuples, the p-marking with only natural numbers as components
and the t-marking with its arbitrary non-negative real number components.
In the previous section we have proved that in order to decide the reachability
of a p-marking it is sufficient to take into account only integer-states. This
does not mean that reachability in Time Petri nets is decidable. But it
tells us that the integer-states contain sufficient information for studying
this problem which is central in the analysis of any kind of Petri net. In this
section we define reachability graphs of finite Time Petri nets. As the integer-
states carry all necessary information about reachability we will define the
vertices of such a graph to be the integer-states of the Petri net and there
will be a directed edge from such a vertex z; to the vertex zy if the state z;
can change into zy by firing a single transition or by elapsing of time in the
net. The edge from z; to 25 is labeled with the transition being fired or the
natural number denoting the amount of elapsed time, respectively.

It is clear that such a graph is infinite for any net where at least one transition
t has no latest firing time, i.e., [ft(t) = co. However, assuming the latest
firing time of every transition in the considered net is a natural number we
can conclude with Proposition 3.37 that the graph is finite if and only if
the set of all p-markings reachable in the considered net is finite. We will
consistently generalize the notion reachability graph to arbitrary Time Petri
nets in the next section.

We will furthermore see that the integer-states provide sufficient information
for studying not only reachability in a Time Petri net but also liveness,
reversibility, and more or less all qualitative properties. They also enable
us to answer some quantitative questions, for example about the earliest or
latest possible time for reaching a certain p-marking or state. We will discuss
such quantitative problems later in this chapter.

In the following definition we recursively define the reachability graph of a
Time Petri net.

Definition 3.38 (reachability graph) Let Z = (P,T,F,V,mq, 1) be a fi-
nite Time Petri net. The reachability graph of Z2 RGz = (W, E, T U {1})
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is the directed graph with edge labels with set of vertices W, set of edges E
and edge labels from T U {1} defined by the following algorithm.:

Basis: W :={z}, E:=0.
Step: For each z € W:

(1) For eacht € T such thatt is ready to fire in z compute the z' such
that » — Z';
W.=Wu{};
E:=FuU{(zt )}

(2) If = Lys feasible in Z, then compute the 2’ such that z L 2

W .=Wu{};
E:=FuU{(z1,2)}.

Referring to Theorem 3.26 and Remark 3.30 it is easily verified that:

W = RISz.

In the following we want to reduce the reachability graph defined above. The
idea is to “fuse together” consecutive edges representing the elapse of single
time units with the transition firing after these elapses into one edge labeled
with the transition and the sum of these elapses.

Let us consider the (part of a) run
t1 1 1 1 to
— Z T Zi4l — T Zign — Zit+(n+1),

and the path in the reachability graph representing it, cf. Fig. 3.9. We are
interested in paths beginning and ending with edges labeled with transitions
of which all internal edges are labeled with 1. The vertices on the path might
of course also have other input and output edges in addition to the ones on
the path.

We will replace such a path by a shorter path similar to the one corresponding
to the following run:

t1 n,ta
7 Zi—7 Zit(n+1)-
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Note that the vertices z;; for j € {1,...,n} are omitted only if they become
isolated® when all edges of the path except for the input edge of z; are ignored.

K

Figure 3.9: Part of a path in the (unreduced) reachability graph

We “fuse” edges and vertices along the path into a new edge with a new
label and consider this to be a reduction because the reduced graph generally
contains fewer vertices than the original one and often also considerably fewer
edges. There are nonetheless cases where the reduction increases the number
of edges.

RGO EHGR

Figure 3.10: Idea for the reduction of the reachability graph of a Time Petri
net: Replacing the path from Fig. 3.9

In the above example we would for instance introduce an edge from z; to
Zit(nt+1) and label it with n, Zo.

If however a state z;1y (for some k with 1 < k < n) has another predecessor
in the graph RGz, apart from z;,5_1, or another successor state z,, apart
from z;4 k11, their edges are then labeled by transitions (cf. Fig. 3.11) and

6A vertex is isolated if it has neither input nor output edges.
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Figure 3.11: Part of a path in the (unreduced) reachability graph with
branching vertex

we need to reduce the paths from 2,y to z;4(n+1) and from z; to z, (via Zitk)
respectively (cf. Fig. 3.12).

Figure 3.12: The idea for reduction of the reachability graph of a Time Petri
net with branching vertex

The reduced reachability graph will be obtained by repeatedly applying this
procedure to all such paths.

The reduced reachability graph can also easily be constructed directly. An
algorithm constructing the graph is given in Definition 3.39.

Definition 3.39 (reduced reachability graph) Let Z = (P,T,F,V,mq, I)
with T = {t1, -+ ,t,} be a finite Time Petri net. The reduced reachability
graph of Z, denoted by Rg’;du, is the directed labeled graph whose set of ver-
tices W, set of edges E and edge labels from L C N x T are defined by the
following algorithm:
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begin R := {z};
while R # 0 do
Choose z=(m,h) from R; R := R —{z};
if {teT |t <m}#0 then

Let k:=min{lft(t) —h(t)| t~ <m};

for time =0 to s do

end;

end;

?

end;

)

end.

for i=1 to n do

time t

Let 2’ be such that z—— — 2/;
E := EU{(z, [time,t],2)};
if 2/ ¢ W then R:= RU{z'} end;

CHAPTER 3. TIME PETRI NETS

W.=Wwu{z}

if t; ready to fire in (m,h + time) then

In the following example we compute the reachability graph of the finite
Time Petri net Z5 and afterwards reduce it as described in Definition 3.39.
For the sake of simplicity we label edges with ¢ instead of 0, ¢.

Example 3.40

Let us consider the Time Petri net Zs, given in Fig. 3.14. The reachability
graph RG z, is computed according to Definition 3.38. The states z, ..., 27

are the following:

mo = (].,O, 1,0)
my = (0,1,1,0)
ms = (0,1,0,1)
hO = (0’07ﬁ)

zZ1 = (TTLh hl) 5
29 = (M1, hay) 26 =
z3 = (ma, hs)

24 = (m27 h4)

e =

Zy =

(mm h5)
(mlv hﬁ)
(ml’ h7)
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pr ¥ t P2 70,11 )
Py

1 > :

[0,1]
P3
A

Figure 3.13: The Time Petri net Z;

Figure 3.14: The reachability graph RGz,

The reduced reachability graph RQTZP‘:“ s as follows:

1,1 3,14,
t 2,t
] ij ’ 2 - 23
k L
’3

redu

Figure 3.15: The reduced reachability graph RG'Z

From now on we will not need to deal with the complete reachability graph
of a finite Time Petri net Z and therefore we let RGz denote the reduced
reachability graph of Z for the rest of the book.
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3.6 Reachability Graphs for Infinite
Time Petri Nets

In this section we consistently extend the notion of reachability graphs to
arbitrary Time Petri nets. The set of integer-states of an infinite Time Petri
net can clearly be infinite even if the set of reachable p-markings of the net
is finite. We will nevertheless show that for any Time Petri net there exists a
finite set of reachable states, carrying all necessary information about the net
properties (as for finite nets), if and only if the set of reachable p-markings
in the net is finite. We will eventually see that if the net is finite this set
of states is exactly the set of all reachable integer-states. This proves the
consistency with the definition of integer-states for finite Time Petri nets.

We first modify Definition 3.8, which introduced the state change by elapsing
time. For transitions with a finite [ f¢ nothing changes. For every transition
t with [ft(t) = oo we only consider the time until eft(t). When ¢ reaches
eft(t) we stop its clock h(t) until ¢ becomes disabled. We will prove that a
p-marking in a Time Petri net is reachable using the modified definition if
and only if it is reachable according to the original rule.

Definition 3.41 (modified state change) Let 7 be a non-negative real
number and z = (m, h) a state in the Time Petri net Z. It is possible for
time T to elapse in the state z in Z if

Vi (te T AA(t) # 1 — h(t)+7 < Lft(t)).

The elapsing of time T will change z into the state 2’ = (m/, h') with

1. m' :=m,

§ if t7 £m’
eft(t) if t—<m A
2. w( teT — H(t) = Lft(t) = 00 A )

eft(t) < h(t)+7
h(t)+ 71  otherwise

Recall that Rz denotes the set of all p-markings in a Time Petri net Z
that are reachable according to Definitions 3.7 (firing) and 3.8 (elapsing of
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time). We will write R for the set of all p-markings in Z that are reachable
according to Definitions 3.7 and 3.41 (modified state change).

Theorem 3.42 Let Z be a Time Petri net. Then it holds for every p-
marking m in Z that:

m € Rz if and only if m € R.

Proof:
(=)
Let m € Rz. Then there exists a firing sequence o = ¢ .. .t, and a run o (1)
of o which is feasible according to Definitions 3.7 and 3.8 (original definitions
of state change) with 7 = 7971 ... 7,1 and

0 1 n t2 T2 Tn—1 _1

¢
20— 2y —> 2 = 2 ol S S

n—1

ny 2t (33)

and z, = (m, k).

In order to prove the assertion it suffices to show that there is a run o(6)
feasible according to Definitions 3.7 and 3.41 (modified state change) with
0 :90...97,,1 and
0o % 11 x« 01 sk D2 « 02 *k On—y *k tn *
20— 2 — 2 — S S 2 S 2, (34)
where it holds that z; = (m,h’). We will actually prove the following
stronger claim and thereby the necessity direction:

Claim 3.43 For each feasible run o(7) satisfying (33) there exists a feasible
run o(0) satisfying (34) such that:

(1) anl = Tp—1,
(2) m;, =my,

eft(t) if h,(t) #4 A
Lft(t) = 00 A
eft(t) < h,(t)
h(t)  otherwise

(3) for allt € T it holds: h¥(t) =
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with 2, = (m!, hl) and 2% = (m%, ht).
This is proved by induction on the length ¢(o) of o:

Basis: ((c) =0
Then o = ¢ and 2, = 2 = 2z = z{ = z;. Thus the claim holds.
Step: We assume the claim be true for any firing sequence o = 1 .. .1,

of length n and will prove that it then also holds for the firing sequence
g = t]_ .. .tntn+]_‘

So, let o(7) with 7 = 75...7, be a run in Z feasible according to the
original rule. Let w :=¢;...t, and kK := 7y...7,—1. Then, ¢ and 7
have the form ¢ = wt,+1, 7 = k7, and it holds that the following state
changes in Z are feasible according to the original rule:

w("; /I Tn i tnt1
20 Zp T 2y —)Zn_H.

By induction hypothesis, there also exists a run
A
20 M zn

which is feasible in Z according to the modified rule and for which the
claim holds. We still have to prove that the run

[2 tnt1 .
* n *% * o
s A with 0, = 7,

n

is feasible according to the modified rule and that the claim also holds
for 2, and 2z,

Let us consider the following two state changes in more detail:

2 T and (35)
o e (36)

*

By the induction hypothesis it holds that m] = m. Therefore in
the states z], and z; the same transitions are enabled. Furthermore,
for each transition ¢ enabled in m],, (35) together with Definition 3.8
yields
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RE(E) + 7 < LSFE(T).

Hence, starting in 2% time 7,, can also elapse according to the modified
rule. We therefore set

On =T (37)

and consider the state z* with

It now holds that:

ml = m)  because of Def. 3.8
= m,  because of ind. hypothesis
m,*  because of Def. 3.41 (38)

In order to determine the ¢-marking h}, ; we first compute the preceding
t-marking h*. Let ¢ be an arbitrary transition in 7. We consider all
possibilities for ¢:

Case 1: t~ £m'*.
Because of (38), this is true if and only if t= £ m/.
Hence, h*(t) =t if and only if A (t) = t.

Case 2: t~ <m}*.
Case 2.1: Ift(t) = oc.

Case 2.1.1: hll(t) < eft(t).
Then, because of

hiy(t) = by, (8) + 7o,
it is also true that
ho(t) < eft(t)
which together with the induction hypothesis leads to

ha(t) = Do, (1) (39)
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Case 2.1.2:

Case 2.1.2.1:

Case 2.1.2.2:

Case 2.2:

CHAPTER 3. TIME PETRI NETS

But (39) and (37) then yield

REE)+ 60, = h(t)+T7,

< eft(t). (40)

Thus, because of Definition 3.41 it holds that:

ha (t)

= () + 6,
= h()+ 7
= h'(1).

Hi(t) > eft(t).

H(t) < eft(t).

because of (40)
because of ind. hypo. and (37)

By induction hypothesis it follows that:

RE(t) = Rl (t).

Hence, it follows that
hi(t) + 6, = hl,(t) + 7, > eft(t).
Therefore, the modified rule in Definition 3.41 yields:

HL(8) > eft(h)

B () = eft(t).

Then, by induction hypothesis it holds that:

hy(t) = eft(t)

and therefore the modified rule leads to

Lft(t) < oo.

(1) = eft(t).

Then, Definition 3.41 yields

ha (2)

Ri(t) + 6,
nl () + 7
R (t).

because of ind. hypo. and (37)
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Thus, the proof by cases for h}* is complete and the relationship between A*
and h! is as follows:

efult) it WD) £ 1 A

e Ift(t) = 0o A

o () = eft(t) < h(1)
hl(t)  otherwise

(41)

We now consider again the state change (36). It holds by Definition 3.7 that
o < ml] and (42)
By (tns1) = eft(t) (43)
It follows from (42) together with (38) that

— Hk
tn+1 S mn

and from (43) and (41) that
eft(tni1) < hy'(tnt).

Thus, the transition ¢,,; is ready to fire in the state 2", i.e., there is a state
25 = (mj 1, hyyy) in Z reachable with

t
sk nt+l oy
n Zn+1'

It now holds for the p-markings m;,, and m;,, that

my = my -+ At by Definition 3.7
= ml+ Aty because of (36)
= mp,. (44)

We have thereby proved statement (2) of the claim.

For the t-marking hy , and an arbitrary transition ¢ € 7" it holds that

Case 1: t~ £m},,.

Because of (44) it follows that

by (t) =8 = hy o (2).
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Case 2: t~ <m, ;.

Case 2.1: t~ Zm; or (17 <m A*tN* b, #0)
In this case (38) leads to
t=gml or (t7<ml ANt #0),
and therefore it is true that
h;kwl(t) =0= h;wrl (t)
Case 2.2: (t’ <mE A CtN g = @)
Then, because of Definition 3.7 it holds that:
hy o (t) = hy(t) and

n

Hosa () = ().

Hence, because of (41) statement (3) of the claim follows and the proof of
the claim is compete.

(=)

Let m € R;. Then there is a transition sequence ¢ and a run o(6) of o
feasible according to the modified rule, such as in (34). It now suffices to
show that there is also a run o(7) of o feasible according to the original rule,
such as in (33). We now state the claim which is “dual” to Claim 3.43 and
can be proved similarly exchanging *-notations for "-notations and ~-notations
for *-notations.

Claim 3.44 For each feasible run o(0) satisfying (34) there exists a feasible
run o(T) satisfying (33) such that

(1) Tn—1 = gn—ly
(2) my, =my,

ho(8) = eft(t) i hy(t) # 4 A
Lft(t) = 0o A
eft(t) = h(1)
R, (t) = hi(t)  otherwise

(3) for allt € T it holds:

with z,, = (m!,, k) and z& = (m* k).

n’ n
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Claim 3.44 immediately yields the sufficiency direction for Theorem 3.42. O

The following corollary is a direct consequence of theorem 3.42.
Corollary 3.45 For any Time Petri net Z it holds that Rz = R’;.

Definition 3.46 (essential-state) An integer-state z = (m, h) in a Time
Petri net Z is called essential-state when Z is defined with the modified firing
rule.

It is obvious that for an arbitrary essential-state z = (m,h) and for each
transition ¢ with [ft(t) = oo in a Time Petri net Z the clock h(t) has at
most the value eft(t).

Similar to the set RISz of all integer-states reachable in a Time Petri net
Z according to the original rule, we consider the set REISz of all integer-
states reachable according to the modified rule, and call these states reachable
essential-states.

Definition 3.47 (reachable essential-states) Let Z be an arbitrary Time
Petri net. The set REISz of all reachable essential-states in Z is defined as
follows:

REISz :={z] 2 S z, z s an essential-state and

o(7) is a run feasible in Z, according to

Definitions 3.7 and 3.41 }.

We call the states in REISz essential because they carry enough information
to decide almost all net properties of interest, such as reachability of p-
markings, liveness, reversibility etc.

It is obvious that for every finite Time Petri net Z it holds that REISz =
RISz. We will see in the next example that in an infinite Time Petri net
neither of these sets is necessarily contained in the other.
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Example 3.48

Let us consider the Time Petri net Z:

P

t [3,5] t [2,00]

Figure 3.16: The infinite Time Petri net Z

It holds that:

s (o (D (2 (3 (D ()
(0, (ﬁ))} and

rerse =10, (o (D (e o G (G
o

Clearly, neither REISz C RISz nor REISz O RISz.

Furthermore, Theorems 3.26 and 3.32 can also be proved using the modified
rule (Definition 3.41 instead of Definition 3.8) for elapsing time. This means
that every reachable p-marking in Z can be reached with a feasible run where
all elapsing times are non-negative integers and all states reached during the
run are essential-states.

Moreover, for the set REISz the following generalization of Theorem 3.37
holds:

Theorem 3.49 Let Z be an arbitrary Time Petri net. Then, REISz is
finite if and only if the set Rz is finite.

Proof:

(=)
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Let REISz be finite. Hence, the set R of all p-markings reachable in Z
according to the modified rule is also finite. This together with Corollary
3.45 shows that Rz is finite.

(=)
Let Rz be finite. Because of Corollary 3.45 the set R’ is also finite.

Let m € R;. The set of all possible integer-states suitable for m (reachable
as well as not reachable according to the modified rule) is obviously finite.

={z|z=(m,h) A
VE((teT At £m) — h(t)= )
Vi((teTnt™ <m)— (h(t

)eN
((Ift(t) <oo — 0 < h(t) <If ())v
(Ift(t) =00 — 0 < h(t) < eft(t)))))}
But since
REISz C U A
meR/;
it follows that REISz is also finite. |

Based on the modified rule for state change from Definition 3.41 we can now
consistently extend the definition of a reachability graph to arbitrary Time
Petri nets. To reduce the resulting reachability graph we adapt the algorithm
from Definition 3.39.

Definition 3.50 (reachability graph for arbitrary Time Petri nets)
Let Z = (P,T,F,V,mq, 1) be an arbitrary (finite or infinite) Time Petri net
with T = {t1,--- ,t,}. The (reduced) reachability graph RG¥" .= (W, E, L)
of Z is the directed graph with edge labels whose set of vertices W, set of edges
E and edge labels from L C N x T are defined by the following algorithm:

begin R:={z}; W:=0; FE:=0;
while R # 0 do
Choose z=(m,h) from R; R:=R-—{z}; W :=WU{z};
if {teT |t <m}+#0 then
if{teT|t- <mAIft(t)# oo} #0
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then Let k:=min{lft(t) — h(t)| t- <m}
else Let r :=max{eft(t) —h(t)| t~ <m}

end;

for time =0 to xk do

for i=1 to n do

if ¢; ready to fire in (m,h + time) then

time t

Let 2 be such that z—= — 2/;
E = EU{(z,[time,t;],2')};
if 2/ ¢ W then R := RU{z'} end;

end;

K

end;

)
end;
end;

end;

)

end.

Example 3.51 We consider the infinite Time Petri net Z¢, obtained from

the finite Time Petri net 25 from Example 3.40 by changing the interval of
transition ty to [2,00]:

Figure 3.17: The Time Petri net Zg
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The reachability graph RG z, computed using Definition 3.38, Definition 3.41
and Definition 3.7 is represented in Fig. 3.18. The states zy,z1 and z3 are

Lt
t 2,1,
z; > Z3
1,13
&

Figure 3.18: The reachability graph RG z,

the same as in example 3.40.

20 = ((1v07 L O)’ ((07 0, ﬂ))7 21 = ((O L1, O)’ (ﬁ7 0, h))v 23 = ((07 L0, 1)7 (ﬁ7 ﬁ70))

3.7 Qualitative Properties

In this section we introduce reachability and liveness in Time Petri nets and
study these basic properties in detail. As already mentioned, they are essen-
tial for a comprehensive analysis of a net. The definitions of the properties
should of course be consistent with those for classic Petri nets, meaning that
for a Time Petri net where every transition is assigned the time interval [0, 0o]
the respective notions should agree.

3.7.1 Reachability

In Section 3.2 we introduced reachability of states and p-markings. In Section
3.3 we showed that Time Petri nets and counter machines and thus, Time
Petri nets and Turing machines have the same computational power. To
prove this we modeled natural numbers with p-markings and saw that de-
ciding reachability of p-markings in Time Petri nets is as hard as the halting
problem for Turing machines and therefore not decidable.

Questions about the reachability of a p-marking are actually of great practi-
cal relevance because the p-markings model possible situations in a system.
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Another question that can be important for a time-dependent system is un-
der which circumstances of time a situation can occur. We will study such
quantitative questions in the next section.

It is generally not decidable for a p-marking in an arbitrary Time Petri net
whether it is reachable. Requiring additional conditions of the considered
nets can however make answering the question possible.

In the following we systematize results about the reachability of p-markings
and states in Time Petri nets, considering different kinds of states and dif-
ferent classes of nets. Let Z be an arbitrary Time Petri net and S(Z) its
skeleton. We will call a state z = (m, h) a rational-state if for every transition
t in Z it holds that if h(t) # # then h(t) € Q. As already mentioned, the
set of all reachable p-markings in Z is a subset of the reachable markings in
its skeleton S(Z).

Proposition 3.52 Let the skeleton S(Z) of the Time Petri net Z be bounded.
Then it holds that:

1. The reachability of any p-marking m* in Z is decidable.

2. The reachability of any rational-state z* in Z is decidable.

Proof:
For 1.

Let S(Z) be bounded and let m* be an arbitrary p-marking in Z. Then,
Rg(z) is finite. Hence, by Proposition 3.37 it follows that the set of all
reachable essential-states REISz is also finite. But because of Remark 3.307
there exists for each reachable p-marking m in Z a reachable essential-state
whose p-marking is m. Thus, in order to decide whether m* is reachable in
Z we can simply check whether the finite set REISz contains a state whose
p-marking is m*.

For 2.

Let S(Z) be bounded and let z* = (m*, h*) be an arbitrary rational-state.
Let h*(t) :% with ry, ¢ € N for all ¢t € T with h*(t) # #. We define X as

"Remark 3.30 was proved using the original rule for state change. It is easy to see that
the remark also holds using the modified rule for state change.
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follows:
Ai=LCM{q |teT N h'(t) #t}.

We now scale down the measuring unit for time in Z by the factor A, i.e., we
multiply all interval bounds in the net by A\. Hence, h*(¢) in the new measur-
ing unit is A times larger than in the original measuring unit and therefore
after the transformation h*(¢t) € N for all ¢ € T with h*(t) # f. Thus, the
state z* is an integer-state (essential) with respect to the new measuring unit.
As Rg(z) is finite and 2" is an integer-state the decidability of z* follows by
Proposition 3.37. a

We will call a state z = (m, h) in Z a proper real-state if there is at least one
transition ¢ in Z such that h(t) € Ry \ Q4. The reachability of such states
is in general not decidable without additional information. Remark 3.35 and
Corollary 3.34 give us the following sufficient condition for non-reachability
of an arbitrary state:

Proposition 3.53 For any state z in the Time Petri net Z it holds that if
z or Z is not reachable in Z then z is not reachable in Z either.

Under additional restrictions for the Time Petri net, the reachability of
proper real-states can be decidable. In order to discuss some such classes
of nets we first prove the following property for every Time Petri net.

Proposition 3.54 Let Z be a Time Petri net and m* a p-marking reachable
in S(Z) by firing the sequence o. Furthermore let z* be a state with p-marking
m*. Then it is decidable whether there is a feasible run o(T) in Z such that:

20 ﬂz*

Proof:

Let us consider the parametric state (z(7 = (Mg, hy), Ba) in Z. Clearly, if B,
has at least one solution it holds that m, = m*. We consider the system of
linear inequalities

B,
{ he(t) = h*(t) for every t € T.
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If the system is solvable (in the field of non-negative real numbers), then each
solution gives us a feasible run of ¢ such that after firing this run the state
z* is reached. If the system is not solvable, then there is no feasible run of o
with the desired property. The solvability of a system of linear inequalities is,
of course, decidable in polynomial time (c.f. [PS98], [GLS93]), and therefore
the reachability of a state is decidable if its p-marking is reachable. O

Let us again consider an arbitrary bounded Time Petri net. The reachability
graph of such a net is, according to Theorem 3.37, a finite, directed, weighted
graph. Let z* = (m*, h*) be a proper real-state. If there is no reachable
integer-state with the p-marking m*, then z* is not reachable. But if there is
such a reachable integer-state z,,« then there also is a path from zy to z,,+ in
the reachability graph. Each path in the reachability graph corresponds to
a feasible run of some firing sequence ¢. According to Proposition 3.54 we
can decide for any given finite firing sequence whether there is a feasible run
of o by which the state z* is reached. Note that it is still undecidable for an
arbitrary state in a bounded Time Petri net whether there exists a run by
which this state is reachable.

Let us now consider unbounded Time Petri nets. The skeletons of such nets
are clearly also unbounded and the inclusion Rz C Rg(z) holds. Thus, when
a p-marking is not reachable in the skeleton (and this is decidable) this p-
marking can not be reached in Z either. As shown in Section 3.3, it is in
general not decidable whether a p-marking is reachable in an arbitrary Time
Petri net, but we have also mentioned that with additional restrictions on the
net this question can be answered. We will consider two restricted classes of
Time Petri nets for which time does not affect the reachability of p-markings.
Since the reachability of markings in a timeless net is decidable, c.f. [PWO03],
the reachability of p-markings, as well, is decidable for these classes.

We will now consider first “speeded” and then “lazy” Time Petri nets. A
speeded net is a Time Petri net such that eft(t) = 0 for each transition ¢ in
the net and a lazy net is a Time Petri net with [ ft(t) = oo for each transition
t in the net.

Proposition 3.55 (speeded nets and reachability) Let Z = (P, T, F,V,
mo, ) be a Time Petri net. If every transition in T is ready to fire immedi-
ately after being enabled then the set of all reachable p-markings in Z is the
same as the set of all reachable markings in its skeleton. Formally:



3.7. QUALITATIVE PROPERTIES 93
(Vt(teT —eft(t)=0) — Rz = Rg(z)). (45)

Proof: In order to show the equality between the sets Rz and Rgz) we
prove the inclusions Rz C Rgz) and Rgz) C Rz.

(Rz C Rg(z)):

This inclusion holds for all Time Petri nets.

(Rs(z) € Rz):

Let m € Rg(z). Then there is a firing sequence ¢ in the skeleton S(Z) of Z
with

mo L} m.
Now we consider the run o(7) of ¢ in the net Z with 7 = 797y ... 7y and
7; = 0 for all ,0 < i < {(0). Because of the premise in (45), this run is
feasible in Z . The full proof can be done by induction on ¢(o). O

Proposition 3.56 (lazy nets and reachability) Let Z = (P, T, F,V,my,
I) be a Petri net. If no transition in T is ever forced to fire then the set of
p-markings reachable in Z is the same as the set of markings reachable in its
skeleton. Formally:

(Vt(teT — Ift(t) =00) — Rz = Ry(z)). (46)

Proof: In order to show the equality between Rz and Rg(z) we again prove
the inclusion Rg(zy € Rz, as Rz C Rg(z) holds for all Time Petri nets.

(Rs(z) € Rz):

Let m € Rg(z). Then there is a firing sequence ¢ in the skeleton S(Z) of Z
with
mo L} m.

It is easy to see that, because of the premise of (46), the run

T0 ;b Tn—1 ¢ tn
ZO—>ZO—>ZI...—>Z — Zn

n—1

with z; = (my, ;) and 2] = (m}, h}), where m,, = m and 7; := max{eft(t) |

1) "7

teT}foralli=0,...,n—1is feasible in Z. The full proof can be done by
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induction on ¢(o). |

In unbounded Time Petri nets the reachability of p-markings and of rational-
states is semi-decidable. Propositions 3.53 and 3.54 hold for all Time Petri
nets and give sufficient conditions for the non-reachability of arbitrary states.

3.7.2 Liveness

In this section we will consistently extend the notion of liveness, which we
have defined for timeless Petri nets, to Time Petri nets. There is not as direct
a relationship between the liveness of a Time Petri net and the liveness of its
skeleton as for reachability. For example it is possible that a transition which
is enabled in the skeleton can never become enabled in the Time Petri net, or
if enabled in the time-dependent net the transition still might never become
ready to fire. In some special cases there is however a close relationship
between the liveness of the two nets.

With the next definition we introduce the property of liveness for arbitrary
Time Petri nets.

Definition 3.57 (liveness) Let Z = (P, T, F,V,my,I) be a Time Petri net,
z a reachable state in Z andt € T. Then

1. t is live in the state z in Z if for every state 2’ € RSz(z) there exists
a state 2" € RSz(2') such that: 2" <.

2.t is dead in z in Z if for all states 2 € RSz(z) transition t is not
ready to fire in z'.

3. zis live in Z if all transitions t € T are live in z.

4. z is dead in Z if all transitions t € T are dead in z.

5. tis live/dead in Z if t is live/dead in zp.

6. Z is live/dead if zg is live/dead in Z.

7. Z is blocking-free if there is no reachable state in Z such that all tran-

sitions are dead in this state.
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The following example illustrates that information about liveness in the skele-
ton of a Time Petri net in general does not tell us anything about liveness
in the time-dependent net, nor the other way around.

Example 3.58 Let us consider the Time Petri nets Zs and Zg shown in
Fig. 3.19 and Fig. 3.20:

o
O

P2

[0.1]

.

Figure 3.19: The Time Petri net Z5;  Figure 3.20: The Time Petri net Z;4

The transition ty is live in zy in Z5 but ty is not live in mg in S(Z5).
e ty is not live in zy in Zg (it is even dead) but ty is live in mg in S(Zg).
o iy is live in Z5 bul ty is not live in S(Z5).

o ty is not live in Zg (it is even dead), but to is live in S(Zg).

e 2, is live in Z5 bult m, is not live in S(Z5).

e 2, is not live in Zg but m, is live in S(Zg).

o Z5 is live but S(Z5) is not live.

o Zg is not live but S(Zg) is live.

For some restricted classes of Time Petri nets the time has no effect on
liveness at all. For such classes the time-dependent net is live if its skeleton
is live. For speeded and lazy nets the time-dependent net, moreover, is live
if and only if its skeleton is live. With Propositions 3.55 and 3.56 we have
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shown that the set of reachable p-markings of a speeded or lazy Time Petri
net is the same as the set of reachable markings of its skeleton. Hence, in
such a net a transition is enabled if and only if it is enabled in the skeleton.
However this does not mean that all enabled transitions can become ready
to fire in the time-dependent net.

Proposition 3.59 (speeded nets and liveness) Let Z = (P, T, F,V,mq,
I) be a Time Petri net. If every transition in T is ready to fire immedi-
ately after its enabling then Z is live if and only if its skeleton S(Z) is live.
Formally:

(Vt(teT —eft(t)=0) — (Z is live «— S(Z) is live) ).

Proof:

Let Z be a speeded Time Petri net, i.e., for each transition ¢ € T it holds that
eft(t) = 0. We will prove the two directions of the proposition separately:
(=)

We will first show that if Z is live then S(Z) is live, too.

Let Z be live. Let t € T and m’ € Rg(z). By Proposition 3.55 it holds that:

Rg(z) = Rz. Hence, m’ is a reachable p-marking in Z, and therefore there
exits a state 2’ = (m/, ') € RSz. But, because Z is live there exists a state

2 = (m",h") € RSz(2) with 2 —5 | i.e., t is enabled in m”.

Let us examine the p-marking m” more closely: Because z” is reachable in
Z from 2’ it holds by definition that m” is reachable in Z from m/, i.e.,
m” € Rz(m'). Furthermore, according to Proposition 3.55 it holds that
Rg(zy = Rz and hence, it immediately follows that m” € Rgz)(m’). We

. . . t
know that ¢ is enabled in m”, i.e., m” —.

We have shown that there is for each transition ¢ and each reachable marking
m’ in S(Z) a further marking m” reachable from m’ in which ¢ is enabled.
Therefore, by Definition 2.21 the classic Petri net S(Z) is live, too.

(=)
We now prove that if S(Z) is live then Z is live, too.
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Let S(Z) be live. Let t € T and 2/ = (m/,h') € RSz. Because 2’ is
reachable in Z the p-marking m’ is by Definition 3.13 reachable in Z, i.e.,
m’ € Rz. Because of Proposition 3.55 it then holds that the p-marking m’
is also reachable in the skeleton of Z, i.e., m" € Rgz). Now, because of the
liveness of the skeleton and by Definition 2.21 (liveness in timeless nets) it
is always possible to reach a further marking m” from the marking m’ such
that ¢ is enabled in m”, i.e.,

Im” (m" € Rgzy(m') A m” LN )
or in other words, there is a firing sequence o with
m - m" (47)

Let us consider the run o(7) in Z with 7 := 797 ... 7y»y)—1 and 7, := 0 for
i =0,...,0(c) — 1. By assumption the net Z is a speeded one, i.e., all
transitions in Z can fire immediately after their enabling. Hence, the run
o(7) is a feasible one, i.e.,

2 ﬂ is feasible in Z.

Thus, from 2’ a state z” = (m”, h”) will be reached in Z, i.e., 2/ ﬂ Z" and
therefore 2” € RSz(2').

Because t is enabled in m” and Z is a speeded net t is ready to fire in 2”.
Consequently and by Definition 3.57 the Time Petri net Z is live, too. O

Proposition 3.60 (lazy nets and liveness) Let Z = (P, T, F,V, mq, I) be
a Time Petri net. If no transition in T is ever forced to fire then Z is live if
and only if its skeleton S(Z) is live.

Formally:

(VE(teT — Ift(t) =o00) — (Z is live «— S(Z) is live) ).

Idea of the proof:

Let Z be a lazy net. Again and similar to proposition 3.59, we will prove the
two directions of the proposition separately.
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(=)
Let us assume that Z is live and show that S(Z) is live, too.

By Proposition 3.56 it holds for every lazy Time Petri net that the set of all
its reachable p-markings is the same as the set of all markings reachable in
its skeleton. Similarly as in the proof of Proposition 3.59 we conclude that
each firing sequence in the lazy Time Petri net. is also a firing sequence in
the skeleton. Therefore S(Z) is live.

(=)
Assuming that S(Z) is live we will show that Z is also live.

This direction of the proof is also similar to the respective direction of the
proof of Proposition 3.59. For every firing sequence o in the skeleton the
run o(7) with 7; := max{eft(t) |t € T} for all i = 1,...,£(0) is a feasible
one. The time elapsing between two firings ensures that in every reachable
p-marking in Z all enabled transitions become ready to fire before one of
them fires. O

With the next theorem we will prove for a further class of Time Petri nets
that they are live if their skeleton is live. Thus, we present a third subset
of Time Petri nets which is time-invariant with respect to liveness. Please
note that all additional constraints for this subset are statical, and therefore
decidable. It should also be noted that unlike for speeded and lazy nets
Rz = Rg(z) does not necessarily hold for every net Z in the class of Time
Petri nets introduced in the next theorem. We will later give an example of
a net Z from this class for which Rz # Rg(z) (cf. Remark 3.62).

The following two notations will be used in the theorem. Let Z = (P, T, F,V,
mo, I) be a Time Petri net and p a place in Z. Then

Min(p) .= max{eft(t) | teT N tep®}
and

Maz(p) :=min{lft(t) | teT AN tep®}.

Theorem 3.61 Let Z = (P, T,F,V,mg,I) be a Time Petri net such that
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(a) S(Z) is an EFC net?

(b) S(Z) is homogeneous,

(c) for each place p € P it holds that Min(p) < Maz(p) and
(d) for each transition t € T it holds that [ft(t) > 0.

Then if S(Z2) is live, Z is live, too.

Proof:

Let the skeleton S(Z) of the Time Petri net Z be live. Furthermore let
Z=(m' )€ RSz and t* € T.

In order to prove that Z is also live it is sufficient to show that there is a
state 2” € Rz(2') such that firing of 2 —— is feasible in Z.

It is clear that m/ is reachable in the skeleton of Z because 2’ is reachable in
Z,ie.,m' € Rgz). Then, because of the liveness of S(Z) there is a marking
m” € Rs(z) (m’) with

m" 5 in S(2),

which means that there is a firing sequence o from m’ to m” in S(Z), so
m' -2 m” 5 in S(2).

Let ¢ = tity...t,. We will show by induction on n that the transition
sequence o, possibly modified, is also a firing sequence in Z. After firing of
(the possibly modified) o in Z the transition ¢* can fire in Z.

The idea is the following: For any two consecutive firing transitions ¢; and
t;11 in o there are two possibilities in Z. Either the transitions can also
fire consecutively in Z (time can of course, elapse in between the firings), or
after the firing of ¢; in Z there are enabled transitions other than ¢;;; that
are forced to fire by their time restrictions before ¢;,1 becomes ready to fire.
This is the case if an enabled transition reaches its latest firing time before
t; 11 reaches its earliest firing time. Such transitions prevent the aging of ¢;.
However we will show that there are only finitely many such transitions and
that their firing does not disable ;1.

8In this book the notion of EFC net is defined for more general nets than usual, cf.
definition 2.19.
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n =20, ie, m =m" and thus
m' =m" - in §(2). (48)

It holds for 2/ =: z” that 2" € RSz(Z'). The state z” was chosen such
that * is enabled in z”. If it is old enough to fire, i.e., h”(t*) > eft(t*)
then we have proved the claim for the basis, but if £* has not yet reached
its eft in 2", i.e.,

R (1) < eft(t), (49)

then starting in z” time has to pass in Z in order for ¢* to grow old
and reach its eft(t*). There might be other enabled transitions than ¢*
that must fire before t* reaches its eft. We will show that firing such
transitions does not affect the enabling of ¢* and that after finitely
many state changes (by firing or by elapsing of time) a state in which
t* is ready to fire will be reached.

Let
7 =max{7| 2" — feasible in Z}
Clearly, this can be rewritten as
o =min{lftlt) —h"@t)|teT A t"<m"}

and thus, 77 can be directly computed.

Assuming that 2" z%l) in Z with zil) = (m(ll)7 hgl)) it holds that

mgl) =m" (50)
(1)
1 >

and therefore t* is also enabled in z;’, and

V() = W'(t*) + 1.

Case 1: 7 > eft(t*) — h'(t%).

Then

h(ll) (t*)

Y

h/l(t*) + eft(t*) o h/l(t*)
eft(t").
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Case 2:

Hence, t* is ready to fire in z

Win 2, de.,

zgl) X5 is feasible in Z.

Thus, t* can fire in this case.

7 < eft(t*) — b (t*).
Then, it holds that:

W)

A

R'(#) + eft(t?) — b (t")
= eft(t). (51)

Let MY = {t|teT A t=<miV A BP0 =1ft(t)}, ie., MDY
is the set of all enabled transitions in z%” which have reached their
Iftin z?) and therefore have to fire.

We now consider the common pre-places of all transitions in M 1<1)
and the transition t*, i.e., we consider the set of places 'Ml(l) net*.

Case 2.1: *MY N et =

Let fﬁ” € Ml(l). Then, fﬁ” is enabled in zgl) and has reached
its [ ft in zil). Hence, £§1) can fire in 251). Let us assume then,

that
m &
27— 2y .

Then because 'Ml(l) N *t* = (), the number of tokens on all
pre-places of t* does not decrease, i.e.,

Vp(p € *t* — mgl)(p) < m(Ql)(p))7 so because of (50)
p(p € " — mi(p) < mi (p)).

Therefore, it holds that
v <mi,

i.e., t* is enabled in zél). For the t-marking hgl) it then holds
that:
h ) = h (1),
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because the firing of a transition does not take time. Thus, t*
is not ready to fire in zél).

We now again consider the enabled transitions that have reached
their [ft in the state zél) and the set MQ(I) of all such transi-
tions.

M = (e <m8) A V() = 11t(1)}
It is possible that there are other transitions enabled in zél)
than in z; () but, by condition (d), the newly enabled transi-

tions have not yet reached their [ ft in zél). Hence, it holds
that

Ml(l) D M;l) because £§” € Ml(l) and £§” ¢ Mz(l)‘

Therefore there must be another transition fgl) from Mz(l)
which can fire.

Assume that we have already defined M,ED with t,(;) € Mlgl)
and

25() (1) t() (1) t(> (1) t( 1)

"L ()
< ? ’z AR ? Zpi1

-z

Then we define M, 15 41 as follows:
1 _ 1 1
M= {1t <mlly A L) = L)
It is easy to see that the following sequence of inclusions holds:
MM oMo oMM oMY ol (52)

This sequence is obviously finite because 17" D Mfl) and T is
finite, i.e., thereis a ky € N, by < [({t| t~ <m"})| — 1 and
M,Sll # 0, but M,ii) = 0. Let 61 := fgl)fél) .. .f,(cllll. So, it
holds that

(1) L)

kl

It is evident that there is no transition which has reached its
lft in z,(cl) Hence, from the state z( ) state change through
elapsing time is possible, say z<1) LTS z§2). We repeat this
approach and obtain the followmg feasible run in Z:
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// T1 (1) 61 (1)

o, ) o @

2y P 20 2 (53)
If 7 +...+7 > eft(t*) — h"(t*) then ¢* is ready to fire in

(T and thus the assertion is proved for the basis in

the state z,
this case .
Thus, we now assume that 7 +...+ 7. < eft(t*) — h"(t*) and

define
Ty 1= max{T | z(r) s feasible in Z }.
Similarly as for 7 it also holds that
T = min{ Lft(E) — b (8) [ 47 < m) }. (54)
Thereby we obtain the sequence
TUy T2y ooy Thy o o - (55)

such that for every natural number % it holds that

k
Z 7 < eft(t") — h"(t"). (56)

The sequence (55) with the property (56) is finite, because:

e Each 7; is the dlfference of the [ ft of a transition enabled
in the state z,i and the time showed by its clock in this
state, i.e., 7, = lft( ) — h,(;j)( ) for some t € T.

e Some of the times 7; might be smaller than 1. This de-
pends on when (in which state) a transition was newly
enabled which determines the value 7;, cf. also (54). Any
7; which is determined by a transition which was already
enabled in z” can be smaller than 1. There are finitely
many of these transitions and therefore there are only
finitely many such 7.

e Because of condition (d) and because the bounds of all
time intervals are natural numbers, all transitions which
are newly enabled in a state reached after z” and which
have reached their [ ft are older than 1.
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Now, we recursively define a sequence of indices:

Basis:  Let i; be the smallest index such that

T, = Lft(t) — hﬁfﬂ(ﬂ)

for a transition £; € 7', not enabled in z”. Hence, it holds

that: _
i1
ZT]' Z 1.
j=1

Step: Let iy be defined already. Then, we let 7.1 be the smallest

Case 2.2:

index with
o i) < ixpl and

o Tiy, = Lft(th) — h,gii:llj)(f,\ﬂ), where £y, was last
)

enabled in a state reached in (53) after the state z{").
Hence, it holds that:

Ixt1

Z TjZl.

J=ix+1

After at most [eft(t*) — h”(t*)] such indices the inequality
(56) is no longer fulfilled. Consequently, after finitely many
state changes a state is reached where t* is enabled and has
achieved its e ft. Hence, t* is ready to fire in that state.

Thus, the assertion has been proved for the basis in this case.

MY Nt £ 0.

This means that there is a transition  which has reached its
Iftin Z%l) and has at least one common pre-place with t*. We
will show that this is not possible.

Because f € Ml(l)7 it holds that:

Lft(d) = h{V(d). (57)
and

R} (58)
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Together with condition (a) this yields that
°t =t

Furthermore, because of condition (b) it holds that £ is enabled
if and only if t* is enabled. Therefore it follows that

W) = hiV (). (59)
Now, condition (¢) and (57) lead to
eft(t*) < Min(p) < Max(p) < Ift(1)
for every p € *t* = *f. Together with (59) this leads to
o) > eft(r),
which is a contradiction to (51) (which holds in Case 2).

Thus, we have proved for the induction basis that t* can fire.

As induction hypothesis we assume that the assertion is true for ¢(o) <
n, i.e., if in S(Z) the transition ¢* can fire after the firing of a transition
sequence o started in m’, with £(o) at most n, then the transition ¢*
can also fire in Z after the firing of a sequence mod(c), derived from o
started in 2’.

The induction claim is that if
m -Zsm” S with o=t .. tates

is feasible in S(Z), then there is a firing sequence mod(o) in Z, derived
from o, such that after firing mod(o) the transition ¢* is ready to fire,
ie.,

, mod(a) 4« . . .
z ——— —— s feasible in Z.

We denote the sequence ts . . . t,t,11 by ¢ and the sequence ts . . . t,t, 11"
by & for the rest of this proof.

Thus, now it suffices to prove that
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, mod(t1) _ .
2 ——— Z=(m,h)can firein Z

where

mod (&) t*

m —— in S(Z) with £(mod(5)) < n. (60)

The induction claim will consequently follow by the induction hypoth-
esis and thus the theorem will be proved.

Let us now consider the state 2. If h'(t1) > eft(t1), then ¢; can fire
in 2/ in Z, i.e,, mod(t;) = t; and mod(c) = &. Then, (60) is obviously
true and therefore in this case the theorem holds. Thus, we consider
the case that

B(ty) < eft(ty). (61)
Let
0, :=max{0| 2 - feasible in Z }.
Then, it holds that:
Oy =min{lft(t) - M) |teT ANt <m'}

and therefore 0; can easily be computed.

Let 2/ -4 zﬁ” in Z with 29) = (m§”,ﬁ§”). Obviously, ¢; is also en-

abled in 2§1> because mﬁ” =m.

Case 1: 0; > eft(t1) — W' (t1).

Then, it follows that
PV (t) = B () + 6, > eft(ty)

and hence ¢, is ready to fire in 2", Evidently, (60) is fulfilled with
Z:= 29), mod(t;) = t; and mod(c) = &. Thereby, the assertion

of the theorem is proved for this case.



3.7. QUALITATIVE PROPERTIES 107

Case 2: 0 <eft(ty) — N (t1).
We define the set Nl(l) (similar to M1(1>)

N ={t|teT nt <ml® A V@) =111t}

. ey . 1 =
and consider all common pre-places of transitions in Nl( ) and &

Case 2.1:

‘N oG £ 0.
Let fl(l) :=t; where j :=min{r [t, €5 A ‘Nl(l) Nt #0},
ie.,
e Y has achieved its Lft in ",
° {1(1) =t" or {1(1) belongs to the sequence &,
° {1(1) is the transition with the smallest index in &, with
these properties.
It is clear, that *t; N *t; = ), because otherwise ¢; would

(1)
1

have already reached its eft in Z;’ in contradiction to the

assumption of Case 2.
Without loss of generality let tl(1> # t* because otherwise the
claim already holds. Let

7 (1)
A0 sy z
By the choice of j it holds that
iV N =0 forall #, in & withl<l<j  (62)

Now let ¢, be in & with s > j.

Case 2.1.1: 1" N *t, =,

Because of (62) and the assumption for this case, it holds
that when fl(l) fires then the number of tokens in the pre-
places of all transitions in

tl( o \ 1?1(1) ) = t1t2 . tjflt]uﬁl . tn+1 = mod(&)

does not decrease. Thus, we have that
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B (1) mod(&)

F(1)
) h — % s feasible in S(Z).

o
Hereby, the number of transitions preventing the aging of
t1 is decreased by 1. Furthermore, it holds for the length of
mod (&) that ¢(mod(5)) = (o) — 1 = n. Thus, the induc-
tion hypothesis can be applied to z := z( ) and mod().
Consequently, the induction claim follows and thereby the
assertion of the theorem is proved for this case, as well.

Case 2.1.2: " N *t, #0.

Case 2.2:

This means that each transition t;,s > j becomes dis-
abled (at least momentarily) after the firing of fl(l) =t;.
Nevertheless, all these transitions become enabled again
at the latest after the firing of ¢;_1, because it holds that

titita...tj—1

) —— m; in S(Z)

and

5 (1) tita...tj_1t;

——  m; in S(2).
Therefore it immediately follows for the sequence mod(5) :=
(6 \ ") that
(1) mod(5) . . .

——— 5 s feasible in S(Z)
and ¢(mod(5)) = n. Thus, the induction hypothesis can
be applied to z := z( ) and mod(5) and once again the
induction claim follows and thereby the claim of the the-
orem is proved for this case.

N s =0
Let 1?1(1) 1(1). Hence, h(l)( ) = Lft(t (1)) and tl( ) is ready
to fire in zg ). Let

~(1) —> zé ) be feasible in Z.

By the assumption for this case the number of tokens in the
pre-places of & does not decrease after firing of 1?1(1), ie.,
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Vp(pe*s — m'(p)=mi"(p) <@l (p)). (63)

~(1
Moreover, t; and tl( ) have no common pre-places, because

otherwise ¢; would have reached its [ f¢ in 2;1) which is a con-

tradiction to the assumption for Case 2. Therefore it holds
that

Vp(pett — m/(p) =mi’(p) <mP(p)).  (64)

Similarly to the induction basis we define Nj(l) where fj(l) €
N but iV ¢ NV, Then it holds that

e e 0
01 ~(1) t (1)t S
P AT e SNy A A TN zM

and Nr(ll) = (), i.e., from the state 25? state change through
elapsing time is possible. Moreover, for all j with 1 < j <ry
it always holds that:

¥ (p€ (U *5) — m'(p) < mf"(p) < mi(p). (65)
We can now define 65, the amount of time to elapse:
0y := max{0 | Zﬁ) 5 feasible in Z }.

Again, similarly as in the induction basis, we obtain the se-

quence
o By 5D A 5 By 5@) 2y s By (66)
with o
5y = EOE0 70,
In each state Zf)J = 1,2,... each transition f]@ for j =

1,...,r; has reached its [ ft and prevents the aging of ¢;. After
the firing of all the transitions EJ@J =1,...,7; the elapsing
of time 6, is possible and t; can age.

Similarly as in the induction basis, a run such as in (66) is
always finite, i.e., there is a natural number s such that
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PR 2(1) L ~1(B,-1 2 ~(2) 2 2 ( )
50 By Z0FD 4,y

(67)

i.e., (67) is a feasible run in Z.

If during the firing of (67) a transition f]@ belonging to &
fires, then we need to consider the run (67) only up to the
state change

t
50 i 0,

This is because the inductlon hypothesis can be applied to

2=z and mod(5) :=t, (5 \t;) with t; =1,

analogously to Case 2.1. Therefore

mod(t,) =71 ... &i,lt}(i) .. fj(i)A

If during the firing of (67) none of the transitions f]@ for
i =1,...,8, 7 = 1,...,1 belongm% to & fires, then the
tran81t10n tl can fire in the state 2z, Thus, the induction
hypothesis can now be applied to 2 := le+1) and mod(6) = 4.
Therefore, mod(t;) = &1 ..., and this concludes the induc-
tive step and the proof of the theorem. O

Remark 3.62 In a Time Petri net for which the conditions of Theorem 3.61
hold, the set of all reachable p-markings in Z can be a proper subset of the
set of markings reachable in the skeleton of Z, i.e., Rz C Rg(z).

Proof:

For an arbitrary Time Petri net Z it holds that Rz C Rgz). We now consider
the Time Petri net Z; in Fig. 3.21 with Rz, # Rg(z,).

Obviously, Z7 is a Time Petri net satisfying the conditions of Theorem 3.61.
It is easy to see that (0,0,1,1,0) € Rg(z) but (0,0,1,1,0) € Rz. a



3.7. QUALITATIVE PROPERTIES 111

19

(o)

[1.1]

Py t) V23 p3 i3 Ps

Figure 3.21: The Time Petri net 25

In Figs. 3.22, 3.23, 3.24 and 3.25 we now consider four Time Petri nets Z;
of which each contradicts the assumption that Theorem 3.61 might still hold
if we omit condition ¢ € {a,b, ¢, d} respectively.

3 P2 Py P2

L]
i [L1] 1 [L1] 73 [1,2] [ f e [ 1,1] ) [,1] 13 0,1] iy [1,1]
—L I [L1] 2
O— SO
p t5 sTILT

PN

P3 Py

Figure 3.22: Z(, Figure 3.23: Z)

Pq

P2

Figure 3.24: 2, Figure 3.25: Z(g)
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It is easy to see that the skeletons of the Time Petri nets Z,y, Z(), Z() and
Z gy are live, but the nets themselves are not. Moreover, the net S(Z,) in
addition to not being an EFC net is also not an AC net. Actually, it can
be proved that Theorem 3.61 still holds if we require S(Z) to be an AC net
instead of an EFC net (cf. [BPZ10] and in [Bacll] or try proving this as an
exercise). The proof of Theorem 3.61 however cannot be generalized to AC
nets because we cannot draw conclusion (59) for AC nets.

We presume that using statical properties it is hardly possible to define a
larger class of Time Petri nets for which Theorem 3.61 holds than the class of
AC nets with properties (b), (¢) and (d) from the theorem. We can however
introduce a dynamic extension. To this end, we define Behaviorally Free
Choice nets (BFC nets) which were first introduced by E. Best in [Bes87].

Definition 3.63 (BFC net) A Petri net N = (P,T,F,V,mg) is a BFC
net if for all transitions t; and ty from T with at least one common pre-place
and for every reachable marking m in N it holds that: t, is enabled in m if
and only if ty is enabled in m.

It is easy to see that every EFC net is also a BFC net. The following example
shows that the converse does not hold.

Example 3.64 In the Petri net S(Zsg) it holds that: *t; = {p1,pa}, *ta =
{pa2,ps} , i.e., S(Zg) is not a EFC net.

Figure 3.26: The Time Petri net Zg
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Only the transitions t; und ty have a common pre-place in S(Zs), namely,
*t1 N *ty = {p2} and in any reachable marking either both transitions are
enabled or both are disabled.

So the set of all BFC nets is obviously a proper superset of the set of all
EFC nets. But the EFC property is a statical property and therefore decid-
able whereas the BFC property is a dynamic property. It is in general not
decidable for an unbounded Petri net whether it is a BFC net or not.

Theorem 3.65 Let Z = (P,T,F,V,mg,I) be a Time Petri net such that

(a) S(Z) is a BFC-net,

(b) S(Z) is homogeneous,

(c) for each place p € P it holds that: Min(p) < Max(p),
(d) for each transition t € T it holds that: [ft(t) > 0,

(e) Vi1Vt (*t1 N *te £ 0 —> V3 ViVj ((i,7 € {1,2} Ni # J A *t; N *t3 #
0) — ;N *ts #£0)).

Then if S(Z) is live, Z is live, too.

Remark 3.66 Clearly, the Time Petri net Zg fulfills all conditions of The-
orem 3.65. Therefore and by 3.6/, the set of nets defined in Theorem 3.65 is
a proper superset of the set of nets defined in Theorem 3.61.

Proof of Theorem 3.65:
We prove the theorem in two steps:

In Step 1 we construct a new Petri net A derived from S(Z). The new net
will be an EFC-net which is live if and only if S(Z) is live. Afterwards, a
second Time Petri net Z’ with S(2') = N is considered. The net 2’ will
comply with the conditions of Theorem 3.61. Hence, Z’ will be live if A is
live, i.e., if S(Z) is live then A and Z’ are live, too.

In Step 2 the proof will be concluded by showing that Z is live if and only if
Z' is live.
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S5(2) < live ()= N
. Claim 3.67
! =
=
S 2T
. o
I 2
v live
Z < Z!
Claim 3.68

Figure 3.27: Structure of the proof of Theorem 3.65

Step 1:

Let Z = (P,T,F,V,mg,I) be a Time Petri net satisfying conditions (a), (),
(¢), (d) and (e). Its skeleton S(Z) is the Petri net (P, T, F,V,my).

The new Petri net N := (P, T, F', V', mg) derived from S(Z) is defined by

F'=FU{(p,t),(t,p) | pIq(p.g eP AP Ng#DAtEG Ntgp®)}
and

V(f) iffeFr
VIE) = V) IEFER A (f= )V f = () A
f=(p,t) for some t € T.

The Petri net N is obviously an EFC net. Furthermore, it follows from Claim
3.67, given below, that the nets S(Z) and N are either both live or both not
live.

To illustrate how N is derived from S(Z) we give an example. The Petri net
N, derived from the skeleton S(Zs) is the skeleton of the Time Petri net Z}
shown in Figure 3.28.

Claim 3.67 For the Petri nets S(Z) and N, and for every transition se-
quence o € T™ it holds that
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V2 P> P3

Figure 3.28: The Time Petri net 2} derived from Zg by adding the dashed
arcs as defined in the construction of N in Step 1

mo —m' in S(Z) if and only if my —=> m' in N.
The proof can easily be done by induction on the length of o. v/

We now denote the Time Petri net (P, T, F', V', mg,I) by Z'.
Step 2:

The following claim states that the Time Petri nets Z and Z’ are either both
live or both not live.

Claim 3.68 For the Time Petri nets Z and Z', and for any transition se-
quence o € T, it holds that:

20— 2 in Z if and only if 2 — 2 in Z'.

Proof:
(=)

Let ¢ =t ...t, such that 2y — 2’ in Z. We have to show that zy — 2’ is
feasible in Z’, too. We prove this claim by induction on ¢(o):
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o) =0,ie,0=¢
The claim follows immediately because by construction of Z’ it holds
that mo € Rz and my € Rz, and therefore also zp = 2.
Induction hypothesis:  The claim holds for any transition sequence
o € T* of length (o) =n, so

t1...tn

if 290 —— 2’ is feasible in Z,
(68)

t1...tn . 3 .
then zy —— 2’ is feasible in Z’, too.

Induction claim: The claim holds for all 0 € T* of length £(0) = n+1.

t1..tntnt1

If zg ——— 2’ is feasible in Z, (69)
bt
then 2z I s feasible in Z' too. (70)

Let us assume that (69) holds. We consider the sequence t; ...%¢, in Z.
It holds that:

t1...tn
If 20— 2, is feasible in Z, (71)

and by the induction hypothesis for the transition sequence t; ...t, it
also holds that

totn
20— z, is feasible in Z'. (72)

Because of (69), (71) and (72) it follows that t,.; is enabled in the
state z, (in Z’). Because of (69) and (71) it also follows that there is
a non-negative rational number 7,1 with

Tntl o, tntl .
Zy — 2 —— Z41 In 2. (73)

Hence, it holds that:
By, () = hy(t) + Topr <min{ift(t) [t e T ANt~ <m,} in Z. (74)
Therefore and by (73), it follows that in Z:

eft(tnir) < hy(tnsr). (75)
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Because of conditions (a) and (b) and the construction of the Time Petri
net Z’, the inequality (74) is also true in Z’. Hence, the inequality (75)
also holds in Z’, i.e., the state z/, is also reachable in Z’. Moreover, the
transition t,,y; is also ready to fire in Z’

We have therefore proved the first direction of the claim. The second
direction follows similarly. vV

It follows from Claim 3.68 and Definition 3.57 that Z is live if and only if
Z' is live and together with Claim 3.67 this completes the proof of Theorem
3.65. O

In addition to the conditions of Theorem 3.61, Theorem 3.65 requires condi-
tion (e) for the skeleton. This is necessary to ensure that two enabled tran-
sitions in the Time Petri net with a common pre-place also become ready
to fire. We can omit condition (e) if we define Behaviourly Free Choice
nets more strictly in Definition 3.63 replacing “enabled” by “newly enabled”
which is defined as follows:

Definition 3.69 (newly enabled) Let N be a Petri net and t,t transitions

i N. Let my and msy be markings in N with m, LN ma. The transition t
is called newly enabled in mo if it is true that t— < my and

1. t— L my or

2.t <myandt™ £ my —1.

3.7.3 T-invariants

We want to consider the computation of T-invariants in Time Petri nets.
A feasible T-invariant in a Time Petri net is the Parikh vector of a firing
sequence o, such that after firing some run of o the net is in the same state
as before the firing. The reason for this is pragmatic: Models of biochemical
networks can be represented as Time Petri nets. The existence of a T-
invariant in a Time Petri net ensures the existence of a so called steady state
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in the real system, i.e., the biochemical system can be stabilized in a cycle
of some processes (cf. [PZHKO05]).

Lemma 3.70 Let Z be a Time Petri net and o a firing sequence in S(Z)
with the Parikh vector my = x such that x is a T-invariant in S(Z). If the
system of inequalities B, is solvable in R, then x is also a feasible T-invariant
n Z .

This lemma follows immediately from Problem 1 in the next section. The
essential point is the fact that feasible T-invariants can also be computed for
unbounded Time Petri nets or without knowing the state space of the net (cf.
solution of Problem 1). This is particularly important in the area of metabolic
networks, because most of the Time Petri net models of biochemical networks
are unbounded.

3.8 Quantitative Evaluation

Quantitative evaluation is a fundamental part of the analysis of time-dependent
systems. It provides information about the behavior of the system over time.
Moreover, quantitative evaluation can be used to verify the model of a con-
sidered system. In [PZ11] we show how to use quantitative evaluation of
Time Petri nets in order to verify that a net is a suitable model for a specific
biochemical network. Time is of course not the only means of verification
but it is an important one.

In this section we will consider problems such as computing minimum and
maximum lengths of time of feasible runs, minimum and maximum distances
of time from one state or place-marking to another and deciding whether a
feasible run of a given length of time exists.

We first introduce some notions that are fundamental in quantitative evalu-
ation:

Definition 3.71 (length of a run) Let Z = (P,T,F,V,mg,I) be a Time
Petri net and o(7) a feasible run of the firing sequence o in Z. The length
of time é(U(T)) of o(7) is the sum of all times elapsing over the course of
the firing of (1), formally:
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K(J(T)) = Z Ti, for n="L(c) and T =TTy ... Tp.
i=0

Definition 3.72 (minimum run) Let Z be a Time Petri net and o a firing
sequence in Z. The feasible run o(7*) of o has minimum length of time
(short: o(1*) is a minimum run of o), if there is no feasible run of o with
length of time shorter than £(o(T*)).

For a minimum run o(7*) of ¢ it obviously holds that

((o(r)) =min{{(o(7)) | o(7) is a feasible run of 0 in Z}.

The notion of maximum run can be defined similarly, if the set of all lengths
of feasible runs of ¢ has an upper bound. Clearly, even though a run is
a finite sequence consisting of transitions and elapses of time the set of all
feasible runs of ¢ might be infinite and therefore the set of their lengths can
be infinite and possibly unbounded. In such a case no maximum run of o
exists.

Definition 3.73 (maximum run) Let Z be a Time Petri net and o a fir-
ing sequence in Z. The feasible run o(7*) of o has maximum length of time
(short: o(T*) is a mazimum run of o), if the set

{¢(o(7)) | o(7) is a feasible run of o in Z}
has an upper bound and

l(o(T")) = Slip{f(d(’r)) | o(7) is a feasible run of ¢ in Z}.

Obviously for an arbitrary firing sequence, the minimum as well as the max-
imum run, if they exist, are in general not uniquely determined.

Definition 3.74 (minimum distance of time between states) Let Z be
a Time Petri net and z, and 2z reachable states in Z with zo € RSz(21). The

minimum distance of time dyin(21,22) from zy to zy is the minimum length

of time of any minimum run from z, to zo, formally:
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in(21,22) :=min{ L(o(7)) | o is a transition sequence in Z,
o

o(T) is a minimum run of o and

ZlﬂZz in Z}

The notion of maximum distance of time between states is defined differently
because for a run starting in z; which can get caught in a cycle’ and never
reach z; we want to define the maximum distance of time to be infinite.

Definition 3.75 (maximum distance of time between states) Let Z
be a Time Petri net and z; and zy reachable states in Z with z9 € RSz(21).
The mazimum distance of time duyax (21, 22) from 21 to z3 is defined as follows:

0 if starting in z1 a cycle or a dead state
can be reached before reaching zs
dmax(zh ZQ) = o) .
max ». 7 otherwise.
% =0
275,

The symbol oo is used here in order to emphasize that there is a run starting
in 2z; and never reaching zo because of reaching either a cycle or a dead state.
It is also possible that a cycle is reached when all runs from z; to z» consists
only of edges weighted with zero. In that case the length of every such run
is also zero but dyax(21, 22) = 00.

Before we continue it should be noted that the maximum distance of time
between states is not equivalent to the longest-path-length between vertices,
which is the maximum length of any simple path in a given graph, cf.
[CLRSO01]. Actually there even exists a linear time algorithm computing the
maximum distance of time between states, whereas the longest-path-length
problem is NP-hard.

Let my and msy be p-markings with m; € Rz and my € Rz(my). We will use
the following two sets for the next definitions:

M, :={z|z€ RSz N 3h(z=(m,h))}.

My:={z|3z" (2" € My A z€ RSz(2") A 3h(z = (ma,h))) }.

9A cycle is a finite sequence of successive states in a run such that the first and the last
state are the same.
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Definition 3.76 (minimum distance of time between p-markings) Let
Z be a Time Petri net and my and msy reachable p-markings in Z with
my € Rz(mq). The minimum distance of time dym(my, me) between my
and my is defined as follows:

Aiin (M1, M) := min{ dyin (21, 22) | 21 € M1 A 25 € My }.

Definition 3.77 (maximum distance of time between p-markings) Let
Z be a Time Petri net and my and msy reachable p-markings in Z with
my € Rz(mi). The mazimum distance of time dpax(ma, mo) between my
and my is defined as follows:

Amax (M1, m2) = max{ dmax(21,22) | 21 € My A 20 € My }.

Remark 3.78 In every Time Petri net Z and for p-markings my, mo and
states z1, zo in Z it holds that:

1. For every firing sequence the length of any minimum run and of any
mazximum Tun, if it exists, is a natural number.

2. dmin<zl7 2’2)7 dmm(ml, m2) e N and
dmax(mla m2)7 dmax(zla ZQ) € (N U {OO} )

Therefore it holds that for every firing sequence there is a minimum run in
which all elapsing times are natural numbers. If a mazximum run ezists then
similarly there is a mazimum run in which oll elapsing times are natural
numbers.

Proof:
for 1:

Let o0 =ty...1, be a firing sequence in Z and o(7*) with 7* = 7j7{ ... 7} a
minimum run of o. Let us consider the length [(o(7*)) of o(77).

Assuming that
((a(m)) €N, (76)

there is at least one 77, 0 < j < n with 77 ¢ N. Then, according to Theorem
3.26 there exists a further feasible run o(7**) of ¢ such that for all0 < j <n
it holds that 77" € N, i.e.,
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l(o(r)) € (77)

("
Hence, because of Theorem 3.26(3) it also holds that

J(T**)) =

n n

ZTZ** <ZT

o~

Thus, (76) and (77) yield
U(o(m™) < l(a(r7)),

which contradicts the minimality of o(7*). Hence, ¢(o(7*)) € N.

The corresponding assertion for the length ¢(o(7*)) of a maximum run o(7)
of o can be proved similarly using Theorem 3.32.

For 2:

Both claims follow similarly to 1. from Theorem 3.26 and Theorem 3.32,
respectively. O

If we discover an undesirable behavior during the analysis of a Time Petri
net which models a system, then we would also like to find out whether and
how it is possible to improve the system by changing the time restrictions,
first in the model and then in the system. Results allowing us to leave the
structure of the system unchanged and avoid the undesirable behavior by
changing time restrictions are of course of great practical importance.

3.8.1 Unbounded Time Petri Nets

We now restrict our attention to unbounded Time Petri nets, i.e., nets whose
state spaces are infinite. We can hardly use reachability graphs for solving
modeling problems in these nets.

In the following we consider several problems for which we present algorith-
mic solutions. These problems originate from different applications and are
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used to analyze and to verify specific systems. We will solve the following
five problems using systems of linear inequalities or linear programs. All
coefficients in these systems of inequalities will be natural numbers but the
solutions may be rational or real. The solvability of linear systems of in-
equalities and of linear programs in R can be decided in polynomial time,
e.g., with the Khachiyan-algorithm (cf. [GLS93] or [PS98]). The solvability
in Q of the problems considered here is also decidable in polynomial time (cf.
result of Tardos (1986) for rational polyhedrons in [GLS93]).

For the following five problems we assume all considered transition sequences
to be firing sequences in the skeletons of the respective Time Petri nets.

Problem 1

Input: e A Time Petri net Z,
e a transition sequence o,

e an arbitrary run o(7*) of o.

Output: (1) Is o is a firing sequence in Z?
(2) If so, compute a feasible run o(7) of o.

(3) Is o(7*) a feasible run in Z7

Solution:
We formulate the parametric run o(z) of o and the parametric state (z,, By ).

For (1) It is easy to see that o is a firing sequence in Z if and only if the
system of linear inequalities B, is solvable. To answer the question, it is
sufficient to find a solution with real values.

For (2) Every real-valued solution of the system B, determines a feasible
run of o.

For (3) o(7*) is a feasible run of o if and only if 7* is a solution of B,. O
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In practical applications of Time Petri nets, as for instance in the area of
modeling and analysis of metabolic networks, one needs to allow arbitrary
values for the t-marking hg of the initial state zy so that the initial value of
the clock of a transition enabled in z; can be a rational number. We will
generalize Definition 3.19 to allow for such arbitrary natural numbers or
as the initial values of hg. In cases where rational initial times would be
necessary we scale down the time unit in order to obtain natural numbers for
the clocks of all enabled transitions in the initial state. Thus, without loss
of generality, the following definitions generalize Definition 3.19:

Definition 3.79

otherwise

hot) = { ig o2 m

where all cf) are natural numbers.

It is easy to see that the parametric state z. should now be defined as follows:

Definition 3.80 z. = (my, h.) with
_ ¢t ift™ £ mo
he(t) := { ch+xo  otherwise

Problem 2

Input: e A Time Petri net Z with an only partiallydefined
interval function I,

e a transition sequence o.

Output: (1) Can I be extended to a total function such that o is
a firing sequence in the resulting net?

(2) If so, compute a feasible run o(7) of o.

Solution:
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Let us consider eft(t) and [ft(t) of every transition ¢ in Z: If eft(t) is not
defined then we associate a variable a; with ¢, and similarly if [f#(¢) is not
defined we associate a variable b, with t. Now we can formulate (z,, B,) and
consider the system of linear inequalities B,: The variables in this system
are the z; from the parametric run o(z) as well as all added a; and b,. We
are looking for a rational solution of the system. As already mentioned, this
can be done in time polynomial in £(o).

For (1) The system of inequalities B, has a solution if and only if the interval
function I can be extended to a total function (as described above) such that
o is a firing sequence.

For (2) Each solution computed in (1) obviously gives us a feasible run o(7)
of o in Z. O

Problem 3

Input: e A Time Petri net Z,

e a firing sequence o.

Output: (1) A minimum run of o.

(2) A maximum run of o, if it exists.

Solution:
Let us again consider the system of linear inequalities B, and the parametric
run o(z):
For (1) Each solution of the linear program

(o)

min { Zajl | By }
i=0

gives us a minimum run of o.

For (2) Similarly, Each solution of the linear program
(o)

max { Zmz | B, }
=0
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gives us a maximum run of o, if there is one. If there is no solution, we know
that the set of restrictions B, of the linear program has no upper bound and
therefore there is no maximum run for o.

Both linear programs are solvable in time polynomial in ¢(o)(cf. [PS98]).
O

Problem 4

Input: e A Time Petri net Z with an only partially defined
interval function I,

e a transition sequence o,

e anumber A € R].

Output: (1) Is it possible to extend I to a total function such that
o is a firing sequence in Z with a feasible run o(7)
such that ((o(7)) < A?

(2) Isit possible to extend I to a total function such that
o is a firing sequence in Z with a feasible run o(7)
such that ¢(o(7)) > A?

Solution:

We first extend [ in the same way as for Problem 2 and formulate B,.

For (1) We solve in Q the system of linear inequalities B! consisting of all
inequalities of B, and the linear inequality ¢ (a(r)) < A. The variables of
the system are o, ..., Zyq), and all added a;, and b.

For (2) The approach is similar to that in (1), but we now consider the
linear inequality (o (7)) > A together with B,. O

Problem 5
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Input: e A Time Petri net Z with an only partially defined
interval function I,

e atransition sequence o, = oty, where o is a transition
sequence and t; a transition in Z,

e a transition sequence oy = otg, where o is a transi-
tion in Z with ¢; # ts.

Output: Is it possible to extend I to a total function such that
o1 is a firing sequence in Z but oy is not?

Solution:

First we again extend I as in the solution of Problem 2 and formulate B,.
Afterwards we formulate the parametric states z,, = (01(z), B1) and z,, =
(02(y), B2). In order to solve Problem 5 we now have to decide whether the
following proper inequality is solvable

{(o1) {o2)

maX{in|Bl} <min{Zyi|BQ}. (78)

(P1) (P2)

We are looking for a solution such that the values of all variables a,,, btj are
rational numbers but xo, ..., Zys,) and yo, ..., Yo, can take arbitrary real
values.

In order to solve (78) we first consider the linear programs (P;) and (P).
The linear program (P;) can be rewritten in the following form:

a=max{a" x| A -z <b}
and (P,) in the form
B =min{c" -y | B-y>d}.

We now consider the systems of linear inequalities (U;) and (Uz), defined as
follows:
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A-x<b B-y>d
()¢ A" -u>a (Uy) ¢ B"-v<e
at -z —0b"-u>0 d"-v—c"-y>0

Using the dual theory for linear programs it is easy to see that a point z* is
optimal for (Py) if and only if (z*,u*) is a solution of U; and a point y* is
optimal for (P) if and only if (y*,v*) is a solution of Us. Now, we define the
linear program (P) as follows:

(P) y=max{c"-y—a -z | U,Us}.

The variables in (P) are x,y,u,v as well as all variables a; and b, added in
order to make the interval function total.

The inequality (78) is solvable if and only if the linear program (P) is solv-
able and v > 0. In this case, an optimal point of (P) determines a possible
total definition for I, so we have solved Problem 5 in time polynomial in
6(0'1)4—6(0'2). O

Problem 5 answers the question of whether certain time intervals can prevent
branching of a firing sequence in a Time Petri net even though the branching
is possible in the skeleton. This question can be answered immediately if the
transitions ¢; and t, have at least one common pre-place. In this case we
would define eft(t2) and [ft(t;) such that eft(t2) > 1ft(t1) if possible (if at
least one of them is not yet fixed in the beginning). Otherwise, as mentioned
above, the solution is more complicated.

3.8.2 Bounded Time Petri Nets

In this section we consider bounded Time Petri nets. For such nets we can
solve problems which require knowledge about the whole state space of the
net.

Before we consider the next four problems we introduce some new notions:

Let Z = (P,T,F,V,mg,I) be an arbitrary Time Petri net. Let RGz = (W,
E, TU(NxT)) be the reachability graph of Z. This graph is an edge-labeled
digraph with labels from the set TU (N x T)), i.e., each edge k € E is assigned
an edge-label k; = n,t or k;, = t (for n = 0). Using this labeling we now
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define a weight-function w : £ — N as follows:

w(k) := { 0 iRy =t for each k € E.

Thus, for each Time Petri net Z we obtain the weighted digraph RG%Z =
(W, E,w) from its reachability graph RGz = (W, E,TU (N x T)) .

We will use the graph RG% := (W, E,w) to compute the minimum and
maximum distance of time from one state to another or from a p-marking to
a second one.

The graph algorithms we use all run in time linear or polynomial in the size
of RG% and thus, also in the size of the reachability graph RGz.

The basic notions from graph theory as well as basic graph algorithms which
are not introduced here can be found in “Introduction to Algorithms” by
Cormen, Leiserson, Rivest, and Stein (cf. [CLRS01]).

Problem 6

Input: e A Time Petri net Z,

e integer-states z; and zo, reachable in Z.

Output: (1) Is there is a firing sequence from 2; to zy?

(2) If 25 € RSz(z1), compute the minimum distance of
time from z; to 2, as well as a minimum run from z;
to 29 realizing this minimum distance.

Solution:

Let us consider the states z; and z9. Because both states are reachable and
integer-states they are vertices in the reachability graph RGz and therefore
also in the graph RGY.

Part (1) of the problem is solved by answering whether there exists a path
from z; to 2z in RG%.
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Because of Remark 3.78, part (2) is solved by computing a shortest path in
the weighted digraph RG%.

Therefore because all weights are natural numbers both parts of the problem
can be solved using, e.g., the Dijkstra algorithm. The algorithm either finds
a path from z; to z5 or determines that there is none in polynomial time (cf.
shortest-path algorithm in [CLRS01]). The minimum distance of time from

z1 10 2o is now the sum of all weights along the found shortest path. O
Problem 7
Input: e A Time Petri net Z,

e p-markings my and ms, reachable in Z.

Output: (1) Is my € Rz(my)?

(2) If my € Rz(my), compute the minimum distance of
time from m; to mq as well as a minimum run real-
izing this.

Solution:

Similarly as in the solution of the previous problem we consider the graph
RG%. Furthermore we define the following sets of vertices M; and Mo:

M;:={z|z=(myh) N z€ RISz} fori=12.

The questions (1) and (2) now obviously ask about the existence of a shortest
path from some element of M; to an element of M in the graph RGY. This
problem can also be solved in time polynomial in the size of the graph (cf.
all-pairs shortest paths algorithm in [CLRS01]). Thereby we obtain the values
dij for Z,] = ].7 ceey IRISZ| with

4 — Awin(2i, 2;)  if 20 € RSz(%)
7] oo otherwise

Clearly, the value dpyin(m1,msg) is now the minimum of a finite set of values

d

ij-
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dmin(ml,mg) = mln{d” | Zi € M1 A Zj € M2 } O
Problem 8
Input: e A Time Petri netZ,
e integer-states z; and z,, reachable in Z.
Output: (1) Is there a firing sequence from z; to z?
(2) If z0 € RSz(z1), compute the maximum distance of
time from z; to 25 as well as a maximum run realizing
this.
Solution:

We again consider RG% = (W, E,w) (cf. p. 129). Using this graph we define
the graph Gz := (W', E', w’) with

W' =W,
E = E\{(29,2) | (20,2) € E},
w’ = —Widef(E)-

The graph Gz is obtained from RG% by deleting all output edges of zo and
negating all weights w(k), i.e., w'(k) := —w(k). Thus, Gz is also a weighted
digraph. Deleting all output edges of 2z, ensures that any path containing
this vertex ends once the vertex is reached (cf. Definition 3.75).

The weights are negated in order to use a shortest-path algorithm in Gz to
find a longest!® path from z; to 2, in RG%. For finding such a path however,
we can no longer use the Dijkstra algorithm because the weights are now
non-positive integers. Thus, we use the Bellman-Ford algorithm which is
slower than the Dijkstra algorithm but also solves the task in polynomial
time.

We present here another algorithm which computes the largest path in Gz =
(W', B’ wjges(ry) (in which all output edges of z; are deleted) in linear time
and therefore solves (2) as well as (1):

0For an arbitrary linear program max{ f(z) | € L} it always holds that: max { f(z) |
ze€l}=—min{—f(z)|zeLlL}
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Compute the strongly connected components of G. z.

For the component Q,, := (V,, E.,) containing z; check whether |V, | >
2. If yes then go to (6), if no then go to (3).

Compute the acyclic graph G5¢¢
of gg.

of the strongly connected components

Check in G39¢ whether it is possible starting in the vertex @., to reach
a vertex P := (Vp, Ep) such that |Vp| > 2.
If yes then go to (6), if no then go to (5).

Compute dmaX(Qll’ QZZ)' dmaX(zl» 22) = dmax(Qzl,QZZ)- STOP.
dmax(zla 22) = o0. STOP.

This algorithm obviously runs in linear time. O

Problem 9

Input: e A Time Petri net Z,

e p-markings my and ms, which are reachable in Z.

Output: (1) Is mg € Rz(mq)?

(2) If my € Rz(mq), compute the maximum distance
of time from m; to my as well as a maximum run
realizing this.

Solution:

Similarly as for Problem 7 we consider the sets of vertices M;, i = 1,2. An
algorithm computing the all-pairs shortest path in the weighted digraph Gz
obviously gives us a solution to the problem. O

Finally, we note that the minimum and maximum distance of time from an
integer-state to a p-marking and from a p-marking to an integer-state can
also be computed. It is obvious that these four problems can be solved in
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polynomial or linear time. Computing the minimum and maximum distance
of time from an integer-state to a p-marking is equivalent to the single-source
shortest path problem. The single-destination shortest path problem solves the
task of finding the minimum and maximum distance of time from a p-marking
to an integer-state. Both algorithms run in polynomial time, cf. [CLRS01].

3.9 Bibliographical Notes

Time Petri nets were first introduced by Merlin in [Mer74] and the first
algorithm for the analysis of these nets was presented by Berthomieu and
Menasche in [BM83] and extensively studied by Berthomieu and Diaz in
[BDI1]. A slight variation of this algorithm can be found in some articles by
Berthelot and Boucheneb, as, for instance, in [BB94] and [BB93].

The method presented by Berthomieu and Menasche is based on the defini-
tion of reachability graphs whose vertices are state classes. The reachability
graph as well as the notion of a state class are defined differently than in
this book. Every edge of the graph represents the firing of a transition. The
elapses of times are not explicitly shown in the graph. A class as defined by
Berthomieu and Menasche is a pair consisting of a marking (in the sense of
place-markings) and a domain reflecting the time situation in the net. The
domain associates a variable with each enabled transition in the considered
marking. The values of these variables represent possible points in time for
the firing of this transition. Thus, a set of possible points in time (interval)
for firing is defined for each enabled transition. All the sets in the consid-
ered marking together define the domain of the class. A domain is defined
by linear inequalities, i.e. a domain is a system of linear inequalities. An
advantage of this definition of state classes over the definition presented here
is that the number of variables in a certain class is exactly the same as the
number of enabled transitions in the marking of the class. A disadvantage is
the possibly large number of inequalities defining the class. Hence, in order
to compute a vertex in the reachability graph introduced by Berthomieu and
Menasche, one always has to compute the bounds for the variables in order
to formulate the system of inequalities.

The algorithm reducing the state space of an arbitrary Time Petri net to the
set of all reachable integer-states or all reachable essential-states presented in
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this book is based on the the notion of parametric states. An earlier version
of this reduction was done for finite Time Petri nets in [Pop91] (in German
in [PZ89]) using an imaginary global clock. It should be noted that the set
of time conditions B, in the notion of a parametric state (z,, B,) can be
formulated as a set of formulas of first-order logic (or even of Presburger
arithmetic) (cf. [PZS99] and [PZ07]).

A series of examples comparing the size of the two kinds of reachability graphs
(“state-class”-reachability graphs and “essential-state”-reachability graphs)
is given in [Pil09] (see also Appendix). For nets with high concurrency the
“essential-state”-reachability graph tends to be smaller than the respective
“state-class”-reachability graph.

A disadvantage of the “state-class”-reachability graph compared to the “essen-
tial-state”-reachability graph is the fact that time is not explicitly represented
and hence, a quantitative analysis using these graphs is hardly possible. How-
ever, [BFSV04] presents an algorithm which computes the minimum and
maximum lengths of time for a given firing sequence in the Time Petri net.
The solution to Problem 3 is a stronger result than this, since Problem 3
allows firing as well as non-firing sequences as input.

Furthermore, a transformation of a Time Petri net into a timed automaton
(cf. [AD94]) was presented by Cassez and Roux in [CR04]. The transfor-
mation is rather costly because a timed automaton is associated with each
transition. For some quite strongly restricted classes of Time Petri nets an
easier transformation was found in [Pen00] and [PP06]. The goal of such
transformations is use algorithms developed for timed automata in the anal-
ysis of Time Petri nets. The obvious downsides to this approach are the size
of the resulting timed automaton and the difficult transfer of information
back into the net after the analysis of the automaton. Therefore, algorithms
and tools developed specifically for Time Petri nets are of great practical
importance.
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3.10 Exercises

Exercise 3.1

Let the number-theoretical function f(x1,x5) be defined as follows

f(x IL’)_ 2'.7,‘1—372 1f2]’121‘2
L2771 undefined  otherwise

Give a counter machine and the corresponding Time Petri net computing f.
Exercise 3.2

Let us consider the Time Petri net Zj:

Iy

Give the parametric state (z,, B,) for o = tstst;.
Exercise 3.3

Let Z = (P,T,F,V,mg,I) be a Petri net. Furthermore let (z,, B,) be a
parametric state and o = t; ---t,, a transition sequence in Z. The number
of variables appearing in B, is at most n+ 1. Show that the number of non-
redundant inequalities in B, is at most min{2- (n-|T|+1), (n+1)- (% +2)}.
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Exercise 3.4

Give a feasible run o(3) in a Time Petri net Z such that

1< [[Zxk [[Zlk

where * and B are defined as in the proof of Theorem 3.26.

Exercise 3.5

Consider Theorem 3.32: Give a recursive definition of the assignment 5*.
Exercise 3.6

Give a proof for the following generalization of Theorem 3.61: Let Z =
(P, T, F,V,mq,I) be a Time Petri net with

S(Z) is an AC-net!

(a)
(b) S(Z) is homogeneous,

(¢) for each place p € P it holds that: Min(p) < Mazx(p), and

(d) for each transition ¢ € T it holds that: [ ft(t) > 0.

Then if S(Z) is live Z is live, too.

Hint: A solution to this exercise can be found in [Bacll] and in [BPZ10].

Exercise 3.7

Show that the Petri net N := (P, T,F’, V', mg), obtained from S(Z) =
(P, T, F,V,mg) after Step 1 in the proof of Theorem 3.65 is an EFC net.

Exercise 3.8

1n this book AC nets are defined for arbitrary Petri nets, cf. Definition 2.19.
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Give a Time Petri net Z satisfying the conditions (a), (b), (¢) and (d) of
Theorem 3.65 but not condition (e), such that the net Z’ (defined in Step 1
in the proof of Theorem 3.65) does not comply with all conditions of Theorem
3.61.

Remark: With this exercise the necessity of assumption (e) for the proof of
Theorem 3.65 is shown.

Exercise 3.9

The firing of a transition in a Time Petri net is defined using the notion of
“static conflict”, cf. Definition 3.7, i.e., if two transitions with a common
pre-place are enabled and one of them fires, then if the second transition is
still enabled, its clock is reset to zero in the state after the firing.

(a) Give a definition using the notion of “dynamic conflict”, i.e., if two
transitions with a common pre-place are enabled and one of the transi-
tions fires, then if the second transition is still enabled, its clock is not
reset but continues measuring time.

(b) Do Theorems 3.26 and 3.32 hold if transitions fire according to this
new definition?



Chapter 4

Timed Petri Nets

In this chapter we consider a further important class of time-dependent Petri
nets, the Timed Petri nets. In any real system every event takes some amount
of time, no matter how small. In Timed Petri nets this fact is incorporated
by associating a duration with each transition. To model a real system with
a Timed Petri net the duration of a transition is set to the duration of the
event or process modeled by this transition. Therefore, in most studies on
Timed Petri nets, durations of length zero are not considered, but allowing
time durations of certain events to be zero can be very useful for practical
reasons. If, for instance, we want to model events of which one has a very
small time duration compared with the others, then it might be convenient
to set the small duration to zero, in order to avoid using huge values for the
durations of the other events. Later on, this simplifies the analysis of the
net.

Through the way in which time is attributed to transitions and because the
maximal-step rule is used for firing it is exactly determined when events
take place and the concurrency of the timeless skeleton of such a net is lost.
Timed Petri nets are however a very useful means of modeling because of their
simplicity and clearness but also because these nets and their analysis and
verification have already been thoroughly studied. They are also well suited
for combination with other types of Petri nets so that various extensions of
Timed Petri nets such as Interval-Timed Petri nets (cf. [PZP12]) and Timed
Petri nets with priorities (cf. [WPZR04], [RPZWO02]) have been developed

as intuitive modeling tools for a wide variety of real systems.

L. Popova-Zeugmann, Time and Petri Nets, DOI 10.1007/978-3-642-41115-1_4, 139
© Springer-Verlag Berlin Heidelberg 2013
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In the following we introduce Timed Petri nets, in which zero durations are
allowed, and also reachability graphs for this class of nets, and show their
computational equivalence to Turing machines. After that we explore the
possibility of a local transformation of Timed Petri nets into Time Petri
nets. We finally define time-dependent state equations for Timed Petri nets
consistently with the respective notion for classic Petri nets and show a suf-
ficient condition for non-reachability of place-markings.

4.1 Definitions

Timed Petri nets are classical Petri nets in which a time duration d; is asso-
ciated with each transition ¢. The firing of the transition ¢ now takes exactly
d; time units. Transitions are fired according to the maximal-step firing rule,
i.e., in each marking a maximal set of enabled transitions fires at once, im-
mediately after their enabling. The time durations are generally rational
numbers.

Definition 4.1 (Timed Petri net) A Timed Petri net is a 6-tuple D =
(P,T,F,V,my, D) such that

1. S(D) = (P,T,F,V,my) is a Petri net and
2.D:T— Q.

The function D is called the duration function of the net D. Fig. 4.1 shows
a Timed Petri net. In the graphical representation of a Timed Petri net the
time duration of each transition is written next to the transition in angle
brackets.

We call the classic (timeless) Petri net S(D) the skeleton of D. Similarly as
for Time Petri nets, it is easy to see that without loss of generality we can
represent any rational time durations in a specific net by natural numbers.

Therefore, as of now, we assume the domain of every duration function to be
N.

Again similarly as for Time Petri nets, the (place-)markings alone cannot
describe the behavior of a Timed Petri net. A state needs to contain a place-
marking as well as a transition-marking and these two markings together
fully describe the situation in a Timed Petri net.
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Example 4.2

Figure 4.1: The Timed Petri net D,

Definition 4.3 (state) A state in the Timed Petrinet D = (P, T, F,V,mg, D)
is a pair z = (m,u) such that

1. m is a marking in S(D) and

2. u:T — R withVt (€T At™ <m) — u(t) < D(t)).

We call m a place-marking (short: p-marking) and w a transition-marking
(short: t-marking) of D. We understand u(t) to be the clock of transition t.
The transition clocks in Timed Petri nets work differently from the transition
clocks in Time Petri nets: They count down the remaining time until their
transition has finished firing. Therefore, as the initial state of a Timed Petri
net D = (P, T, F,V,mg, D) in which no transition is in the process of firing
we define the state zq := (mog, ug) with ug(t) := 0 for all t € T..

In order to define the firing mode we formally introduce the notion of a
maximal step:

Definition 4.4 (maximal step) Let z = (m,u) be a state in the Timed
Petri net D = (P, T, F,V,mg, D). Then M C T is a mazimal step in z, if

(1) Vt(t € M — u(t) =0),
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(2) >t <m,

teM

B)VIH((teT AtgM AN <mAut)=0) — (Xt +i) £m).

teM

The first two conditions in Definition 4.4 define the notion of a step. A step is
a set of transitions. The first condition ensures that none of these transitions
is in the process of firing and the second condition states that not only is
every transition in M enabled in m but the pre-places of the transitions in M
hold enough tokens for all transitions in M to fire at once. In some books this
property is called collective enabledness. The third condition disallows the
existence of a proper superset of M which fulfills the previous two conditions.

It is easy to see that the notion of a maximal step can also be defined time-
independently by omitting condition (1) and omitting u(f) = 0 in condition
(3). Thus, we can use maximal-step firing mode in timeless Petri nets, too,
even if this is unusual. Timeless Petri nets firing in maximal-step mode
have more expressive power than our classic timeless Petri nets and are even
Turing equivalent. This can be proved by showing the equivalence between
this kind of nets and counter machines. We have introduced counter machines
in Section 3.3. The first three commands start, stop and INC can obviously be
simulated by Petri nets firing in maximal steps because in our simulation of
these commands by classic Petri nets there was always exactly one transition
enabled (cf. p.41 and p.41, respectively). We still need to prove that the
fourth command [ : DEC(i) : r : s (cf. p.39), the so-called zero-test, can also
be simulated by such a timeless net.

The command DEC is simulated by the Petri net presented in Fig. 4.2.
Assuming that the place w; is empty, only the sequence of maximal steps
oy = M} M} M; with

‘]\411 = {t5}7M21 = {t4}7M51 = {t5}

can fire in Ny. After that, the place p, contains a token and the place p, is
empty. Otherwise, assuming that the place w; is marked, only the sequence
of maximal steps oo = MZMZ M3 with

M} = {ts}, M3 = {t1,ta}, M = {ta}
can fire in M. After that, the place ps contains a token and the place p, is

empty. Thus, N5 simulates the command [ : DEC(7) : r : s and the Turing
equivalence of timeless Petri nets firing in maximal-step mode follows.
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P P3

O

Figure 4.2: Simulation of the command [ : DEC(7) : r : s by a timeless Petri
net firing in maximal-step mode

We will now define the rules for state change in Timed Petri nets: one rule
determining when an enabled transition starts to fire and one for the elapsing
of time. As already mentioned, similarly to Time Petri nets, we can interpret
u(t) as a clock associated with the transition ¢, here however, as a timer,
counting down the time until ¢ has finished firing. In every state z = (m,u)
the clock wu(t) shows whether the transition is in the process of firing (is
active) or is not active. Whenever a transition ¢ is not in the process of
firing it holds that w(¢) = 0. This does not mean that ¢ is disabled in m.
When a transition starts to fire then its clock u(t) is set to D(¢). With time
elapsing the value of u(t) is decremented. Hence, the clock w(t) shows the
time remaining in z until ¢ reaches the end of its current firing. There is an
ambiguity when a transition ¢ has duration zero, i.e., D(t) = 0. In this case
the value of the clock may indicate that the transition ¢ starts to fire in the
state z = (m, u), that it ends its firing, or that it is disabled in m. This is no
problem since the enabledness of any transition in a state can be determined
using the place-marking.
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We define Timed Petri nets in such a way that a firing process once started
cannot be interrupted or stopped until it has ended.

1st rule for state change:

Definition 4.5 (firing) Let z; = (my,u1) be a state in the Timed Petri
net D = (P,T,F,V,my,D) and M C T. Then M can fire in z, (notation:

21 ﬁ)) if M is a mazimal step in z1. After the firing of M the net D changes
into the state zp = (ma, uz) (notation: z M, 29) with:
(1) meo = M1 — Zt7+ Z t+,

teM teM,
D(t)=0

0= {000 S

2nd rule for state change:

Definition 4.6 (elapsing of time) Let z; = (my,u1) be a state in the
Timed Petri net D = (P,T,F,V,mg,D). Then, the elapsing of one time
unit is possible in D (notation: z %), if

VE((teT Aui(t)=0) — t~ £my).

After the elapsing of one time unit the Timed Petri net D is in the state

29 = (Mo, ug) (notation: z LN 29 ) with:

(1) my:=my+ > tF,
{eT,
uyp (=1

@ u= {3070 L

The conditions in Definition 4.6 ensure that firing of transitions is prioritized
over the elapsing of time and that a maximal set of enabled transitions in
the step immediately start to fire.
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The state change by elapsing time can also be defined for arbitrary 7 € R{
instead of one time unit. Such a definition does not change the behavior of
the net, because the “relevant states”, i.e., states in which the place-marking
changes, are always integer-states. This is obvious because when a transition
starts to fire, its clock is set to a natural number and thus the amount of
time units after which the firing ends is also a natural number.

The notions of reachable states, dead states, dead p-markings, boundedness,
liveness, etc. for Timed Petri nets are defined as usual. Likewise similarly
to Time Petri nets, the notion of the reduced reachability graph RGp of a
Timed Petri net D is defined. However, we now “fuse together” input edges
labeled with maximal steps and output edges labeled with time — this results
from the fact that in Timed Petri nets, a step generally needs to fire before
time can elapse.

Example 4.7
In Fig. 4.3 part of the reachability graph RGp, of the Timed Petri net Dy is
shown. The states z; for i =0,...,11 are defined as follows:

20 = ((2,0,0,0),(0,0,0,0)) =z = ((0,1,1,0),(0,0,3,0)

zo = ((1,0,1,1), (0,0,0,0); 23 = §(0,0, 1,2),(0,0,0,0)

2= ((0,1,2,1),(0,0,0,0)) 25 = ((1,0,0,0),(3,0,0,0))

z = ((1,0,0,0),(0,0,2,0)) 2z = ((0,1,1,1),(0,0,0,0))

z = ((1,1,1,0),(0,0,0,0)) 2z = ((1,0,1,0),(0,0,2,0))

The state z3 is a dead state. The place ps is not bounded and therefore, the
reachability graph is infinite.
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},3

{tl,t3},3 ~dhbh3
£ AEN

Figure 4.3: A part of the reachability graph RGp, of the Timed Petri net
D,

4.2 Timed Petri Nets and Counter Machines

The considerations in the previous section immediately indicate that counter
machines can be simulated by Timed Petri nets and therefore that Timed
Petri nets are Turing equivalent. For the sake of completeness, we show how
the four commands of counter machines can be simulated by Timed Petri nets
(cf. p.39). As with Time Petri nets we model each number [ of an assignment
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by place p;. Such a place holds a token whenever the considered assignment
is being executed. Each counter K; is modeled by a place w;. For each step
in the computation (program execution) it will hold that m(w;) = K; for the
p-marking m corresponding to that computation step.

We model the commands by Timed Petri nets as indicated in Table 4.1 and
Table 4.2.

Notation Model of the command as
of the command a Timed Petri net

0: start : 1 @Pz

Py

l: halt

[ — < | >

Pi
L:INC@):r t <1> OW,-
O

Table 4.1: Translation of the four possible commands of a counter machine
into Timed Peri nets (modules)
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Notation Model of the command as
of the command a Timed Petri net

l:DEC(3):r:s

Table 4.2: Continuation of the translation of the four possible commands of
a counter machine into Timed Peri nets (modules)

The notion of Timed PN-computability can be introduced similarly to TPN-
computability and PN-computability. A number-theoretical function is then
Timed PN-computable if and only if it is TPN-computable.

4.3 Transformation of a Timed Petri net into
a Time Petri net

As mentioned in the previous section, Timed Petri nets and Time Petri nets
have the same expressive power. In the following we will present a local
transformation, which can transform most Timed Petri nets into Time Petri
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nets. This transformation is very useful especially for slightly modified Timed
Petri nets, where the duration of transitions is not defined exactly but varies
(cf. Section 4.5.2). The limitation on the transformation is that the codomain
of the duration function D is the set of all positive integers, i.e., the duration
zero is not allowed. The limitation results from the different firing modes of
the two kinds of time-dependent Petri nets.

Let D = (P, T,V,mg,d) be a Timed Petri net. We obtain the Time Petri net
Zp from the Timed Petri net D as follows:

We let Zp := (PU{A, B, |t € TH{tt™ |t € T} F*,V*, m§,I) and
F*, V* m{ and I are defined as indicated in Fig. 4.4. We refrain from giving
a more formal definition here.

Figure 4.4: The transformation of a transition in a Timed Petri net to a
Time Petri net

The sets of all reachable place-markings in D and in Zp can easily be derived
from each other. The same is true for the time relations in both nets.
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The following example shows how the transformation is applied to a Timed
Petri net including a transition with time duration zero. In this case the sets
of reachable p-markings differ.

Example 4.8
Py @ P
<O > e— <2> 1

. <>

<1> — 3

O

Figure 4.5: The Timed Petri net Figure 4.6: The Time Petri net
D, Zp,

In the Timed Petri net in Fig. 4.5 only the firing of the mazimal step {t,t2}
is possible. The transition t3 is dead. The p-marking m with m(Py) =
m(Py) = 0,m(P2) = m(P3) = 1 is not reachable in D. The transformed
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net is the Time Petri net Zp,, in which the p-marking m with m(P,) =
m(Py) = 0,m(Py) = m(P;) =1 is reachable and the transition t3 can fire.

It is obvious that these nets have different behavior. There are however
Timed Petri nets including transitions with time duration zero that have the
same behavior as their transformed Time Petri nets.

4.4 State Equations

For the analysis of bounded Timed Petri nets we generally use the reacha-
bility graph but when the reachability graph is very large or the net itself is
unbounded, we need other methods of analysis.

For classic Petri nets we introduced the notion of the state equation of a
firing sequence o, where m, C and 7, are given and m’ is computed:

m' =m+ Cy - 7. (1)

We can however also consider the two markings and the incidence matrix
as given and try to find a Parikh vector 7, such that the equation (1) holds.
In this case we obtain an equation (a system of equalities) whose variables
are the components of m,. If equation (1) is not solvable in N then it is
clear that the marking m’ is not reachable from m in the considered net, but
this is only a sufficient condition. Equation (1) might be solvable in N but
if none of the solutions is the Parikh vector of some firing sequence in the
net m’ is still not reachable from m. Furthermore, it is clear that the set
of all reachable p-markings in a Timed Petri net is a subset of the set of all
reachable markings of its skeleton. Therefore, applying the method of state
equations in order to check the reachability of a marking from another one
in the skeleton is not very useful.

In this section we will extend the notion of the state equation of a firing
sequence o for Timed Petri nets respecting the time. The extension is done
consistently. Thus, using time-dependent state equations we can exclude the
existence of undesirable situations in the system modeled by a Timed Petri
net.

For this reason we will classify all tokens in every place — we will distinguish
between immediately available tokens, tokens available after one time unit,
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tokens available after two time units, etc. We realize this by defining time-
extended place markings (short: time p-markings) as well as some auxiliary
notions: By M(k,l) we denote the set of all matrices over N with k rows
and [ columns. For a matrix A € M(k, 1) the notation A; stands for the i-th
column and A; for the j-th row in A. All the new notions are exemplified
using the Timed Petri net Dy, given in Fig. 4.7.

Py

tl <2> t3 <2> t2 <(0> t4 <2>

P P3

Figure 4.7: The Timed Petri net Ds

Definition 4.9 (time dimension) Let D = (P,T,F,V,m,, D) be a Timed
Petri net. The time dimension of D is the number dp := ntnaTx{D(t)} +1.
S

For the sake of simplicity we write d instead of dp whenever D is clear from
the context.

The time dimension of D3 is d = 3.

Subsequently, we will denote the duration D(t;) of a transition ¢ by dy.

Definition 4.10 (time-extended p-marking) LetD = (P,T,F,V,m,, D)
be a Timed Petri net and dp = d its time dimension. Then a time-extended
place-marking (short : time p-marking) in D is a matriz m € M(|P|,d).

The idea of a time-extended place-marking is the following: Rather than a
vector, this marking is a matrix, in which the first column specifies for each
place the number of tokens available in the current state. These are the
tokens that can be used for firing in this state. The second column contains
the number of tokens that will appear in the place after the elapsing of one
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time unit and similarly for all the columns of m. These are the tokens that
transitions which are currently firing will put on the places once they finish
firing. The time p-marking is thus a matrix which has a row for each place of
the net and d columns, that is, the matrix has enough columns to keep track
of all tokens that will be released by transitions currently in the process of
firing and the i-th column contains the tokens that will be released after ¢ — 1
time units.

The initial time p-marking is the matrix m© € M(|P],|T]) with m? = m
andmg» =0fori=1,...,|Pland j =2,...,d.

For the Timed Petri net D3 the initial time p-marking is
4 00
m®=10 00
000

So in addition to modeling the current moment a time state also contains
information about the future. Note however that the time state cannot fully
predict how many tokens will appear in the places, since additional transi-
tions with a shorter duration may fire and release tokens before the transi-
tions with the longest durations release their tokens (the latest releases of
tokens predicted by the marking) (cf. Definition 4.11). Furthermore, it can
easily be seen that the notion of a time p-marking is a consistent refinement
of the notion of a p-marking. The pair z = (m,u) of a time p-marking m
and a t-marking u is a time-extended state (short: time state). We can now
redefine the rules for time state change as well as the notion of a maximal
step for time states. We do this consistently with Definition 4.4 of maximal
steps and the firing rules for Timed Petri nets introduced in Definitions 4.5
and 4.6, replacing the p-marking m by m ;.

We note that m € M(|P|,d) for every time state z = (m, u).

Definition 4.11 (firing) Let D = (P, T, F,V,m,, D) be a Timed Petri net,
21 = (mW,uy) a time state in D and M C T. If M is a mazimal step in
mFll), then M can fire in z. After M fires, the net D is in the time state

2 = (m®uy) (notation: z My 2 ) defined by
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ml) — SVt + ¥ V(tp) i =1

@) tseM ‘f%’
m; ;o= 5
b m) + 3 Vit ) if §>1
tseM,
ds=j—1

and
qmw:{D@ if te M

ui(t)  otherwise

Definition 4.12 (elapsing of time) Let z; = (m"", uy) be a time state in
the Timed Petri net D. Then one time unit can elapse in D (notation:

1 .
21 _>)7 Zf

Vi((teT Au(t)=0) — t~ Zm).
After one time unit has elapsed, D is in the state z, = (m®), uy) (notation:
21— 2 ) defined by

1 1 . .
m) +mly  if j=1

mg? = m;lj)ﬂ if 2<j<d-1

0 if j=d

We now introduced the notion of a global step and a global reachable time
state (short: g-reachable). A global step is a sequence of maximal states
complying with certain conditions. The set of all g-reachable time states is
a subset of the set of reachable time states of a Timed Petri net.

Definition 4.13 (global step) Let z be a time state in the Timed Petri net
D. A global step in z is the multiset' & computed by the following procedure:

1. & :=0;
2. Let M be a mazimal step in z;

3. if M #0) then & :=& + M else stop.

4. Let z M, z1; Set z := z1; goto 2;

LA multiset over a set M denotes a function s from M to the natural numbers. & M (2)
is called the multiplicity of the element = in M.



4.4. STATE EQUATIONS 155

In D5 the multiset & = {1, 0, t2,t4} is a global step in zy. This multiset
contains three maximal steps. The set M; = {t1,t3} is a maximal step

in z5. Let 2 SN z1. Then My = {ts,t4} is a maximal step in z;. Let

z1 ELEN 29. Now M3 = () is a maximal step in 2. So we obtain the global step
& = M, + Ms.

After firing a maximal step it is generally still possible to fire another max-
imal step but after firing a global step it is only possible to let time elapse.
Therefore, the subsequences of maximal steps of a sequence that are followed
by the passing of single time units are global steps, so that the whole sequence
alternates between firing global steps and letting single time units pass. So
when writing a firing sequence 0 = 8,8, ... ®,, of global steps &;,i <i < n,
we know that it will result in one of the two sequences ®;1851...18,, or
6116,51...16,1.

Finally, let it be noted that there are Timed Petri nets in which the compu-
tation of a global step cannot be completed. The reason is that transitions
with duration zero can repeatedly be enabled and then are required to fire
infinitely often. To avoid this, one needs to ensure that the net contains no
cycles of places and transitions of duration zero. There are however Timed
Petri nets containing such cycles where it is not necessary to fire transitions
with duration zero infinitely often.

Definition 4.14 (global reachability) Let D be a Time Petri net. The
time state z* is globally reachable in D (short: g-reachable), if there is a
sequence 0 = 818, .. &y such that

*

L0 B1y 2(1) _y (1) B2 5(2) _y 5y x
1 1

The last change of state can be either the firing of a global step or the elapse
of one time unit.

We can analogously define g-reachable time p-markings.

In the Timed Petri net Dj the following time p-marking is reachable but not
g-reachable.

o OO
o NN O

1
m=1 0
1
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Any time state which is reachable but not g-reachable can be reached from
some g-reachable time state by firing maximal steps.

Definition 4.15 (time-extended incidence matrix) Let D = (P, T, F,
V,mq, D) be a Timed Petri net. The time-extended incidence matriz of D
is the matriz C € M(|P|,d - |T|), C = (CV, C? . . CcUTD) with C® ¢
M(|P|,d), k € {1,...,|T|} and submatrices C*) = (CE?) defined as follows:

V(te,pi) = V(pi,te) if de=0,7=1

Jw ) =Vt if dp >0,j=1
w V(tx, pi) if dp >0,0<j—1=d °
0 otherwise

Example 4.16 The time-extended incidence matrix of the Timed Petri net
Ds (Fig. 4.7) is

-2 00 -100 0 0 3 0 0 2
C= 0 01 0 00 =100 0 00
0 00 1 00 0 00 —-100

Definition 4.17 (bag matrix) Let D = (P,T,F, V,mqg, D) be a Timed
Petri net and let & be a global step in a reachable time state of D and
let the multiplicity ke (t;) of t; in & be denoted by ke,. The bag matriz of &
is the following Matrix G € M(d - |T|,d):

Ga)

G .
AT = . with G(S) =rg, - By.
.d

G

If the transition ¢, does not belong to the global step &, then the submatrix
G5 is obviously a zero matrix.

Example 4.18 Let us consider the global step & = {t1,ta,ta,t4} = {t1,t2}+
{ty,t4} in the time state 2 in Ds. The bag matriz G of & is as follows:
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with G(l) =

O O =
O = O
— O O
)
S
Il
o
[\
o

—
o

[an}
\V]
o

’ G(4) = ’ i‘e‘] G =

Q

=

|
o O O
o O O
o O O
o O =
o = O
—_— o O

100
10
0 01

Definition 4.19 (progress matrix) Let D be a Timed Petri net with time
dimension d. The progress matriz of D is the matriz R € M(d,d) with

)1 if i=7=1or(i=j+1)
"ii T 0 otherwise ’

100
Example 4.20 The progress matriz R of D3 is R=1 1 0 0
010

Definition 4.21 (Parikh matrix) Let D be a Timed Petri net and o =
B, ...8, a firing sequence in D. Furthermore let G be the bag matriz of

the global step &; for everyi =1,...,n. The Parikh matrix of o is the matriz
Ve M(d-|T|,d) with

T, = zn: G . R,

i=1
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Now we can finally introduce the notion of state equations for Timed Petri
nets.

Theorem 4.22 (state equations for Timed Petri nets) Let D be a Ti-
med Petri net with progress matriz R and the initial time state 29 = (m(©) w)

and let o = &, ..., be a firing sequence in D with z©® 2% 51 - FOREN

3 - Oy 50, Then it holds that:

™ =m®. Rt 0w, (2)
where 29 = (19 w;) and 29 = (mD ;) for every i € {1,...,n}.
The equality (2) is called the first state equation for the firing sequence o in
D.

For the proof of Theorem 4.22 we need the next two lemmas:

Lemma 4.23 Let D be a Timed Petri net, R its progress matriz, 21 =
(mW,uy) a reachable time state in D and 2V — 2@ with 2 = (M u).
Then it holds that:

m® =m® . R.

Proof:
Let us consider the matrix @ = mg}j) - R with Q = (¢;;) for 1 <14 <|P| and
1<y g( )d In order to prove the lemma it is now sufficient to show that
2
4ij = mi,j .
Case 1: j=1
d
Hence, it holds that: ¢;; = > mz(ls) Te1 = m§11) -1 +m£12) 1 = ml(?l)
' s=1 ’ ’ Def4.12 ©
Case 2: d>j>2
~ UG o) )
Hence, it holds that: ¢;; = ;mi’s e =My iy 1 perass Mid
Case 3: j=d
Hence, it holds that: ¢;; = > mils) re; =0= mfj). O
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Lemma 4.24 Let D be a Timed Petri net and V) = (m™ u;) a reachable

time state in D. Furthermore let 20 -5 2@ with 2@ = (m®,uy) and
& = {kg, “tiy, Kg, tiys.-., kg, -ti,}. Then it holds that:
i1 io iq q

m® =m® 4 C.G.
Proof:

We compute mg?j) .

Case 1: j=1
By Definitions 4.11 and 4.13 it follows that:

m£21> = mE 1) Z (V(pi7ts) : “Qs) + Z (V(ts,pi) : "@gs)

ts€g ds=j—1=0
ts€g
Hence, it is sufficient to show that
[T
Zci,lgl,l =- Z (V(pists) - wg,) + Z (V(ts, pi) - Kg.)-
=1 ts€g ds=j—1=0
ts€g
We consider the bag matrix G. The first column G ; of G is the vector
G1=(gM,¢?, ... ¢I™T where ¢ is a d-dimensional vector with
4 — (), gUyT _ W _ ) re, i j=1
g (g7, ! for k=1,...,|T| and g, { 0 otherwise

So, if t; € & then ¢g(®) is the d-dimensional vector (kg,,0,...,0)T and
otherwise ¢'®) is the d-dimensional zero vector.

Thus, it holds that:

d-|T) T a
Z Cit " 911 = Z Z C,(ﬁ) : gl(k)
=1 k=1 I1=1
7|
= Z I{gk by Def. 4.15, for j =1
= - Z platk /‘i}gk) + Z (V(t/wpz) : Hgk)'
treg d=0
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Case 2: j>2
4|7
We now have to show that > ¢;- g1, = > (V(ts,pi) . l‘igs).
=1 de=j—1
Let us consider the j-th column of the bag matrix G, which is the
vector G ;. It holds that:

T

and gl(k)_{l%k =

0 otherwise,
e, g® =(0,...,007 ift, ¢ &
d
and g*) = (0,...,/{6k,0,...,0)T if ty, € &.
1.
d

This yields

d|T| T
Z Cil " gl = Z (CE? . H@k) by Def. 4.15, for j > 2
=1 k=1
= Z (V(ﬁk,pz) : fiesk)~
dy=j—1
€0

Proof of Theorem 4.22:
We will do the proof by induction on n:

Basis: We have to show that for m© -2 m® it holds that

m®D =m@ . RO+ 0. v, =m@ 4+ C .U, with
1
\Ijo _ ZG(Z) . Rn—i _ G(l) . RO _ G(l)

i=1

Hence, we have to prove that m® = m© +C-GM. This is true because
of Lemma 4.24.
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Step: We consider the firing sequence ¢’ = 08, with

L0 9y 2(n) Ly 5(n) Ontd s(ntl)

We have to show that the following equation holds:

n+1
D) — @ Rr L ¢, and U, = Z G0 . prti—i
i=1
According to the induction hypothesis it holds that:
m™ =@ . grl o U, = m© . gl 4 . (Z GO . Rni) )

i=1

Furthermore, because of Lemma 4.23 and Lemma 4.24 it holds that
m™ =m™. R 4)

and
mtD — ;0 o gt (5)

Hence, (3), (4) and (5) immediately yield:

et — 5 L oLt — 50 LRy o vt

= |m®.-ptyC (Y GOR) )R+ C- G0V
® i=1

=m®.R"4C. (Z G<i>R”+1—i> +C-G"Y. R,
i=1

=RO

—
ot
=
—~
=z

i=1

n+1
=m®-R"+C- <Z G@R”Hi)
i=1

=mOR"+C .U,

_ m(O) R"+(C - (Z G(i)Rn-H—i + G(n-H) . R(n+1)—(n+1)>
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0O

Corollary 4.25 Let D be a Timed Petri net with progress matrix R and
initial time state 20 and let 0 = &, ..., be a firing sequence in D with

20 B s) Ly 5) B2 52) Ly Ly s) Then it holds that:
™ =m@ . R" 4 C -V, R. (6)

The equality (6) is called the second state equation for the firing sequence o
in D.

Let 0 = &,6,...8, be a firing sequence in the Timed Petri net D and
let 2V 25 23 If all global steps in o are empty, then we often write
20— 2@ or 2V — 2 (depending on the last state change).

Corollary 4.26 Let 2V — 2 for some 7 € N* in the Timed Petri net D.
Then it holds that:

Vj ((1 <j<IPh = ml) = Zm(2)> . (7)

i=1

Remark 4.27 Let 20 25 2@ with M a mazimal step in 2V in the Timed
Petri net D. Then it holds that
VE((t € (T\ M) A us(t) =0) — ml) =D i= #1~ (8)

teM

Remark 4.28 Let 20 25 2@ in the Timed Petri net D. Then it holds
that:

VE((t €T A uy(t) =0) — mP #17). (9)

Theorem 4.22; Corollary 4.26 and Remarks 4.27 and 4.28 give necessary
conditions for the reachability of time p-markings. Therefore, they can be
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used to prove non-reachability of specific time states. Such conditions are
important because the reachability of a time p-marking is in general not
decidable.

The following Example 4.29 illustrates the use of state equations in proving
non-reachability of p-markings:

Example 4.29 Using Theorem 4.22 and Corollary 4.26 we will show that

the time p-marking
. (10
"o

is not reachable in Dy (see Fig. 4.8).

P>

Figure 4.8: The Timed Petri net D,

Assuming m* is reachable in Dy, there exists a firing sequence o = 1H, ... &,
such that 20 25 2 and 2 = 2*. Then equality (2) or (6) holds for
m* = m\".

The time-extended incidence matriz C, the progress matriz R and R™,n > 1
of Dy are:

0 1 -1 0 10\ o (10
C‘<—1 0 0 1)’R_(1 o)’R_<1 0>'

Let x; be the number of appearances of the transition t; in &;. The bag matriz
G, of the global step ®; (1 < i <mn) is then as follows:
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28 0
0
zy 0
0 5

G —

Therefore, the Parikh matriz U, is:

4.+t 0
1 n—1 n
Ty + ..o+ 1y Ty
s+ +ah 0
1 n—1 n
R ol 7% Ty

v, =

Case 1: FEquality (2) holds for m*. Then it holds that

Ti+... 4} 0

C.v, — 0 1 -1 0} x%—l—...—l-‘rg_l x}
-1 0 0 1 Ty + ...+ ah 0
vi . Falt

This leads to

«_ (10N _(10) (10 a—pB—ay a2t
m‘(o 1)‘(1 o) (1 o)+<az’f+ﬁ zg>

i.e.,
0 0\ [(a-p—2ay af
(—1 1>_<—a—x?+ﬁ )’ (10)
with o == xt + ...+ 27 L and B=xb + ... +ab ! forn>2.
Now (10) yields

zy =0, (11)
a=0+ay, ay=1and —1=—a—2a] + 0.

Thus, it follows that

Ty # 73 (12)

in contradiction to &, = {t1,t3}. Therefore we have ruled out this case.
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Case 2: FEquality (6) holds for m*.
Then, it follows that:

e (LON_ (L0, (a=p-af a2\ (10
“\o1) {10 —a—zV 4B b 10)°

Hence

0 0\ [(a+a?—-3—a5 0

1 1) \—a—a ' +8+a5 0 )’
and therefore 1 = 0 which is obviously again a contradiction. Therefore,
this case cannot hold either.

Thus, we have shown that the assumption of m* being reachable in Dy in-
evitably leads to contradictions. Hence, m* is not reachable in Dy.

4.5 Variations of Timed Petri Nets

Petri nets are suitable for modeling systems on different levels of abstraction.
It is the desire of every user to describe a system adequately, exactly, and
in a natural way. This has led to the introduction of various extensions of
Timed Petri nets. But the more extensions are defined, the more difficult
and limited the analysis becomes. In the next two subsections we present
two useful extensions of Timed Petri nets.

4.5.1 Timed Petri Nets with Priorities

One enrichment of the specification possibilities of Timed Petri Nets is the
addition of priorities. This extension became necessary in order to support
the specification of priority-based schedules as used in real-time systems. An
example of the use of a specification using Timed Petri Nets with priorities is
the verification of the architecture “Message Scheduled System” (MSS) that
targets control systems for automation and transportation. More on the
specification and the analysis of this architecture can be found in [RWPZ02]
and [Ric06].
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Definition 4.30 A Timed Petri net with priorities (P-Timed Petri net) is
a pair PD = (D, §) such that

1. D is a Timed Petri net with T' as its set of transitions and

2. &: T — N.
The function £ is called the priority function of PD. In the graphic represen-

tation of a P-Timed Petri net the value £(t) is given in curly brackets. The
value D(t) is given in angle brackets.

] <97 1‘2—<{21}>

Figure 4.9: The P-Timed Petri net PD;

All the notions defined for Timed Petri nets can be adapted to P-Timed
Petri nets. In deciding which transitions to use for a maximal step in a P-
Timed Petri net, transitions with higher priorities are always preferred over
transitions with lower priorities.

Definition 4.31 (prioritized maximal step) Let z = (m,u) be a time
state in the P-Timed Petri net PD with set of transitions T'. Then M C T
s a prioritized maximal-step in z, if

(1) Vt(te M —s u(t) =0),
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(2) >t <ma,

teM

B)VE(E<manut)=0AtgM) — S t—+i ZLmy),
teM,
£(0)2€(0)

(4) =3AM*((M* 2 M) A (M satisfies (1) - (4))).

We note that it is possible to obtain a prioritized maximal step containing a
transition with a lower priority than some enabled transition which does not
belong to the step: Consider the net PD, in Figure 4.10. The only prioritized
maximal step in the initial time state is M = {t1,t3}. Transition ¢ is not in
M and t3 is in M even though ¢, has higher priority than t5. The reason is
that ¢5 is in a (dynamic) conflict with transition ¢; which has higher priority
than tg.

<I> 9] <I> 153 <l> t3

Figure 4.10: The P-Timed Petri net PD,

The firing rule for P-Timed Petri nets is immediate firing in maximal step.
All formal definitions for P-Timed Petri nets can be found in [WPZR04].
They are similar to the definitions in Section 4.4. For P-Timed Petri nets we
can give an additional sufficient condition for non-reachability which makes
use of the priorities. Using this condition and the time-dependent state
equations for the net PD; we can for instance prove that the time p-marking

e (000
“\0o0o0

is not reachable in PD;. The approach is similar to the one in Example 4.29.

Finally, we note that reachability graphs for P-Timed Petri nets can be de-
fined without difficulty and hence graph-theoretical algorithms can be applied
in the analysis of these nets.
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4.5.2 Timed Petri Nets with Variable Durations

In the real world it is often difficult or even impossible to determine an exact
duration for any event but it might be possible to estimate lower and upper
bounds for the duration of the event. To model such circumstances with
time-dependent Petri nets, every transition is associated with an interval
determining the range of possible durations of this transition. Such nets are
called Timed Petri nets with variable durations.

Definition 4.32 (Timed Petri nets with variable durations) A Timed
Petri net with variable durations (short: U-Timed Petri net) is a pair UD =
(N, U) such that

1. N is a Petri net, T is its set of transitions and

2. U:T— Q' xQ" with U(t) = (ay, b;) implies a; < by for everyt € T.

The duration of the firing process of a transition is not fixed, it varies within
the interval associated with the transition by the function U. The firing mode
is immediate firing of maximal steps. A formal introduction of U-Timed Petri
nets and of state equations for these nets can be found in [PZP12]. Fig. 4.11
shows a U-Timed Petri net.

Figure 4.11: The U-Timed Petri net 4D,
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One way to analyze a U-Timed Petri net is to transform it into a Time Petri
net and then analyze the obtained net. The transformation is similar to the
transformation of Timed Petri nets into Time Petri nets in Section 4.3, cf.
Fig. 4.12.

o

Figure 4.12: The transformation of a transition in a U-Timed Petri net into
a Time Petri net

For U-Timed Petri nets containing transitions with zero as a lower or upper
bound there is no such straightforward transformation, but individual nets
can be transformed similarly to Timed Petri nets with zero durations, cf.
Fig. 4.5.

These nets are mostly used in the modeling and verification of the depend-
ability of technical systems (dependability engineering). We used them for
software verification in [HPZ97].
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4.6 Bibliographical Notes

Unlike in classical and Time Petri nets, in Timed Petri nets it is completely
determined when in time the transitions fire, so that no real concurrency
exists in these nets. Thus, every Timed Petri net has an implicit global
clock. But we still do not need a global clock for the analysis, it is sufficient
to consider time locally at each transition. The reason is that time passes
at the same speed for all firing transitions. This does not mean that time
always passes at equal speed.

Apart from Ramchandani who first introduced Timed Petri nets, Sifakis
in [Sif80] and Starke in [Sta90] have studied these nets. W. M. Zuberek
extensively studied Timed Petri nets and a wide area of their applications and
made huge theoretical and practical contributions in this area. An algebraic
method for the quantitative analysis of conflict-free Timed Petri nets (Timed
Petri nets whose skeletons are marked graphs) is given in [Wan98]. The
method, however, cannot be generalized to arbitrary Timed Petri nets.
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4.7 Exercises

Exercise 4.1

Let D = (P,T,V,mg, D) be a Timed Petri net and Zp the Time Petri net
obtained from D using the local transformation described in Section 4.3 (cf.
Fig. 4.4). For each p-marking m in D we let the set M,, C Rz, be defined
as follows:

)}

_ _ m(p 1fp epP
My, .= {m | ¥p (p€ P — i(p) := { 0 (()r)l otherwise

Show that if m is reachable in D, then at least one element m of M,, is a
reachable p-marking in Zp.

Remark: The set M, is nonempty and finite for every reachable p-marking
inD.

Exercise 4.2

Define the notions of “maximal step” and “global step” for U-Timed Petri
nets with the additional condition that the duration of any transition should
be a natural number. Is it possible to generalize these definitions so that
they allow rational durations?

Exercise 4.3

Give a definition of a time-dependent state equation for a sequence of global
steps and elapses of single time units in U-Timed Petri nets where the dura-
tions of all transitions are natural numbers.

Exercise 4.4

(a) Consider the following Timed Petri net:
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Give a timeless Petri net such that the two nets have isomorphic reach-
ability graphs.

(b) Let D = (P, T,V,mg, D) be an arbitrary Timed Petri net. Give a local
transformation which transforms D into a timeless Petri net N, such
that the reachability graphs of the two nets are isomorphic.

Hint: Note that Timed Petri nets are Turing equivalent but classic Petri
nets are not.



Chapter 5

Petri Nets with Time Windows
(Petri Nets with Retention Time on Places)

The last time extension of Petri nets introduced in this book are Petri nets
with retention time on places and we show ways to analyze them. They
were first devised as a formal specification technique for designing complex
automaton systems. Most important for this application are the possibili-
ties for system diagnostics, namely error detection, localization, evaluation,
recognition and reaction. It is important to minimize the total time needed
for the internal diagnostic process of the system; considering only the causal
relationships between events is therefore not sufficient.

In order to model event-driven systems in a natural way by Petri nets we
would like to be able to specify delays and safety distances of time between
events. That is why we extend classic Petri nets by retention times for tokens
on the places. The time assigned to a place can be interpreted in different
ways, as minimum or maximum delay, or a combination of both, as exact
retention time or periods of validity, etc.

We consider here a time extension where for each place an interval specifies
the minimum and maximum retention time for tokens reaching this place.
When a token arrives in a place, “its time” starts to run. If the token remains
on the place until after its maximum retention time has passed, we can either
define that it may not be used to fire a transition any more at all and simply
remains on this place or we can reset its time to zero. The minimum retention
time can then be viewed as a kind of preparation time required before the
token is ready for use and the token only stays ready for a limited amount of

L. Popova-Zeugmann, Time and Petri Nets, DOI 10.1007/978-3-642-41115-1_5, 173
© Springer-Verlag Berlin Heidelberg 2013
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time, namely until its maximum retention time has passed, then it needs to
be prepared again and can be used for firing when it has reached its minimum
retention time. This second version is the one we consider here.

The minimum and maximum retention time of each place can be understood
as a time window for each token on the place. The window is closed until
the considered token has reached the minimum retention time. Then the
window opens and the token can leave the place but only until the maximum
retention time is reached, when the window closes. Therefore these nets are
also sometimes called Petri nets with time windows.

5.1 Definitions

Definition 5.1 (Petri nets with retention time on places) A Petrinet
with retention time on places or with time windows (short: tw-Petri net), is

a pair P = (N, I) such that

1. N is a classic Petri net, P its set of places and

2. 1:P— Qf x (Qf U{oco}) with I(p) = (I,,u,) where l, < u, for all
peP.

The classic Petri net N is called the skeleton of P and is denoted by S(P).
Without loss of generality we consider the codomain of I to be NJ x (N§ U
{o0}). Fig. 5.1 illustrates a Petri net with retention time on places.

Tokens can obviously arrive on a place at different moments. Therefore each
token needs its own clock. This can be formally described in an unexpectedly
simple and elegant way by using words over the real numbers. Each token
in a place is represented by a (real) number (modulo! the upper bound of
the place) representing the time this token has spent on the place. Thus, a
place with three tokens is marked with a word consisting of three numbers.
Within one such word, the numbers will be ordered numerically, decreasing
from left to right. An unmarked place is marked with the empty word. Such
a marking will be called a time-marking.

The modulo notion will be slightly modified, cf. Definition 5.9
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Example 5.2

[0,1] [2,6]

Figure 5.1: Py is a Petri net with retention time on places

Definition 5.3 (time-marking) Let P be a tw-Petri net with set of places
P. A time-marking in P is a total function M : P — (Rar)*.

Definition 5.4 (integer time-marking) A time-marking M in a tw-Petri
net with a set of places P is an integer time-marking, if it holds that M :
P — N*.

Notation: We write my; := (((M(p1)), {(M(pz)), .., ¢(M(pp|))) to denote
the marking in S(P) corresponding to the time-marking M in a tw-Petri net

P.

Definition 5.5 (initial time-marking) Let P be a tw-Petri net and mg
the initial marking of S(P). The initial time-marking My of P is defined by

o e if m()(p) =0
Mo(p) = { 0m®)  otherwise 4

Note that it always holds that: mu, = my.

The initial time-marking My of P; (cf. Fig. 5.1) is My = (0,¢,¢,¢).
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As usual for time-dependent Petri nets, state change can occur through firing
of transitions or through elapsing of time. Tw-Petri nets fire in single firing
mode. Thus, we first define under which circumstances a transition is ready
to fire and then introduce state change through firing of transitions.

Definition 5.6 (ready to fire) Let P be a tw-Petri net with set of places
P, t a transition in P and M a time-marking in P with M (p) = ald} ... a?
for each place p € P. Then t is ready to fire in M, if

1. t7 < myy,

2.Vp(pe *t—ViGe{l,....t (p)} —1, < aé’ < up)).

Definition 5.7 (firing) Let P be a tw-Petri net, T its set of transitions and
M a time-marking in P. A transitiont € T can fire in M if t is ready to fire
in M (notation: M SN ). After the firing of t the time-marking M changes
into the time-marking M’ (notation: M L M ), defined as follows:

Let M(p) = alal ... ak where it holds that t~(p) = k and t*(p) = r (For any
letter o in an alphabet it holds that o =¢.) Then

oy g ak0Tif B <n
M(p)"{m if k=n "

Remark 5.8 Let M, LN My be an admissible state change in P. Then the

transition t is enabled in myy, in S(P) and myy, LN my, 15 an admissible
state change in S(P).

Before introducing state change through elapsing of time we define a modified
“modulo”? operation.

Definition 5.9 (modified modulo) Let a and b be natural numbers. We
define:

— [ amodb if amodb#0
amodb.{b if amodb=0 "

2a mod b := c for natural numbers @ and b # 0 with a =n-b+cand n € N,0 < ¢ < b.
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The modified modulo function only differs from the usual modulo definition
if a is a multiple of b. In that case the modified modulo function takes the
value b instead of zero. So for b = 0, where the usual modulo is undefined
the new function has the value zero.

Definition 5.10 (elapsing of time) Let P be a tw-Petri net and M a time-
marking in P. Furthermore, let T be a non-negative real number. The elaps-
ing of time T starting in M is always possible (notation: M —). After time
7 has elapsed the time-marking M of P changes into the time-marking M’
(notation: M = M' ), defined as follows:

Let M(p) = aiah...ak. Let the index i be such that 1 <1i <n and
u, < (af + 7)7@ u, but (a1 + T)T@ Up < Up.
Then it holds that M'(p) = bYbh ... 02 with
b?:—{(af+j+7);l—0\ﬂp ifi+j§7z .
(@i ;_p, +7) modu, otherwise
Example 5.11 Let P be a tw-Petri net and M a time-marking in P with
M(p) = 3.7 2.8 2.3 2 1.5 0.3 0.1 and I(p) = (2,6).

Then, for the time-marking M with M = M the following holds for the
place p:

(1) If m =4, then

M(p) =655 4.3 4.1 1.7 0.8 0.3.
(2) If o = 14, then

M(p) = 5.7 4.8 4.3 4 3.5 2.3 2.1.

(8) If 73 =17, then
Ml(p) =53 5.1 2.7 1.8 1.3 1 0.5.

The notions of firing sequences, runs and feasible runs in tw-Petri nets are
defined similarly to the respective notions for Time and Timed Petri nets.
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5.2 Reachability

In this section we study the reachability behavior of tw-Petri nets and com-
pare it with that of their skeletons.

Theorem 5.12 Let P be a tw-Petri net and S(P) = (P,T,F,V,mq) its
skeleton. Then a transition sequence o is a firing sequence in S(P) if and
only if o is a firing sequence in P.

Proof:
(=) Let 0 = tyls ... t, be a firing sequence in S(P). Then it holds that

¢ t tn .
my — my —> my... —>m, in S(P).

We will show the existence of a feasible run o(7) = Tt 71t27s . . . 71y, in P.

The idea of the proof is to use the ultimo rule, according to which after each
firing we let time elapse until the clock of every token reaches the upper
bound of the place the token is lying on. This property is called the ultimo
property for the related time-marking. At that point each enabled transition
is also ready to fire. The ultimo rule is realized by setting the time a between
the firing of two transitions to the LCM of all u, € N* (that is, all u, that
are not oo and not zero). This “waiting” time can also be chosen smaller, as
we will see in the proof.

The proof is formally done by induction on n:

Basis: n=1,1ie.,0=1.

Let 7o := LCM {u, | p € P AN up # 00 A u, #0 A My(p) # e} We
consider M/, with

My = M.
For M’ it holds that
€ if mo(p) =0
M}(p) :=
o(p) { up®® otherwise

i.e., My has the ultimo property and it holds that ma, = mo = mayy.
Hence, the transition ¢; is ready to fire in the time-marking M. Let
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Step:

M, 5 M.
Then

ugto(p)*ltf(l))l ot i mi(p) #0 )

Hence, the clock of each token on a place p € P is zero if the token has
arrived there after the last firing or u, otherwise. We will call this the
pre-ultimo property for the time-marking and will show that it holds
after every firing in the constructed run.

Finally, by Remark 5.8 it still holds that m; = myy,.

Mi(p) = { € it my(p) =0

Let o = tltz . tn—l tn

0
By induction hypothesis it holds that 6(7) = 7ot1TitaTe . .. Tyotn_1 is
already a feasible run in P, so we let

MO M Mnfl

with m,_; = my,_, such that the pre-ultimo property holds for M,, ;.
We will show that

Tn—1

My ™3 M 2 M,
is feasible in P and that every token in M, still has the ultimo property.
Let

Tp—1:=LCM {u, |[p€ P AN up#00 Au,#0 A M,_1(p) #¢c}.

According to Definition 5.10 it holds for every place p and the time-
marking M,,_, that M/ _,(p) € (u,)". In other words: M/_, has the
ultimo property. Therefore and by the induction hypothesis it follows
that ¢, is ready to fire in M), _,.

Hence,
O(T)Tn-1tn

is a feasible run of ¢ in P. Moreover, for the time-marking M, it holds
that m,, = myy,. Then, because of the pre-ultimo property for M,
and according to Definition 5.7 the time-marking M, also has the pre-
ultimo property.
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(=) This follows immediately from Remark 5.8. a

The “waiting time” 7; can possibly be reduced if there are places which in
the time-marking M; contain tokens but have no post-transitions in the net.
We can modify the algorithm from Theorem 5.12 not to take into account
the upper bounds of such places in the computation of 7;. The next example
illustrates this slightly modified algorithm.

Example 5.13 Let us consider the tw-Petri net Py and the transition se-
quence o = tytats in its skeleton S(Ps).

Ps
[0,5]
P> pP3 Py
O—1—0
[1,2] [3.3] L [1,8]

Figure 5.2: The tw-Petri net P,

We can easily see that o is a firing sequence in S(Pq). In order to see that o is
also a firing sequence in P we must give a feasible run o(T) in P, i.e., a o(T)
with My ﬂ in P. According to the modified algorithm the run starts with
To = 4, because in My only the place py contains a token and up, = 4. After
four time units have passed, t, fires. Now the places py and ps are marked
and they both have post-transitions. This results in 1 = LCM{2,3} = 6.
After then firing to, the places ps, psy and ps are marked. For computing 7o,
only pa and ps are relevant, because py has no post-transitions. Thus, we
obtain 75 = 10. Therefore we have found the run

4t 619 10 ¢35

which is a feasible run of o in Py. The algorithm in Theorem 5.12 would
have given us the feasible run o(7) =4 t; 6 t5 40 t3.
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The following proposition follows immediately from Theorem 5.12.

Proposition 5.14 Let P be a tw-Petri net and T its set of transitions.
Furthermore, let o(T) = Tot1TitaTo ... Ty1ln, with 7, € R for 0 < i <
n — 1 be a feasible run in P. Then there also exists a feasible run o(7*) =
TotaTitaTy . Th_yty, with 77 € N for 0 <i<n—11inP.

The state space Rp of a tw-Petri net P is the set of all reachable time-
markings in the net. It is clear that for an arbitrary marking m* in the
skeleton S(P) the set {M | M € Rp A may = m* } is generally infinite.

Let us consider the set Ryp| := {my; | M € Rp} of all markings my; in S(P)
where M is a reachable time-marking in P. Rjp| corresponds to the set of
time-markings in P when the age of the tokens is ignored.

Definition 5.15 (boundedness) A tw-Petri net P is bounded if the set
Ryp| is finite.

The next two assertions follow immediately from Theorem 5.12.

Corollary 5.16 Let P be a tw-Petri net and S(P) its skeleton. Then

(1) RS(P) = Rl’Pl and

(2) P is bounded if and only if S(P) is bounded.

Although the sets Rg(py and Ryp| are equal, the reachability behavior of the
tw-Petri net can be different from that of its skeleton. The reason for this
is that for a firing sequence in the skeleton, say ¢ = 0,09, there might be
some run of oy in P which leaves the tw-Petri net in a time-marking in which
transitions are enabled but none of them are ready to fire. It can happen
that in this last time-marking it is only possible for time to elapse but none
of the enabled transitions ever become ready to fire. Note that there is of
course always at least one feasible run of ¢ in P.
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Example 5.17 Let us consider the skeleton of the tw-Petri net P3 given in
Fig. 5.3. The transition sequence 0 = tyt; ts s a firing sequence in the
N~

a1 o2
Petri net S(Ps).

Py

2
[0,1]

15} ]

P

2
[2.3]

Figure 5.3: The tw-Petri net Ps

The run o1(1) = 1.5 t; 1.5 t1 is a feasible run in Ps, but after its firing only
time can elapse and ty can never become ready to fire even though it is always
enabled.

We note that the Petri net S(P3) is live.

In order to study this kind of a behavior we define the notion of a time-
deadlock. A transition is in a time-deadlock in a certain time-marking if it is
enabled but not ready to fire in the time-marking and no elapse of time can
change this. In other words: The time restrictions prevent the firing of the
transitions.

Definition 5.18 (time-deadlock) Let P be a tw-Petri net and M a time-
marking in P. The transition t is in a time-deadlock in M if it holds that:

1.t~ < my and

2. Vr(r e RE — M 55).
If a tw-Petri net is in a time-marking in which all enabled transitions are
in time-deadlocks it is obviously only possible for time to pass. This means

in any extension of this run no more transitions can fire, even though the
respective transition sequence can be continued in the skeleton.
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The following Example 5.19 shows that the usual discretization of the state
space based on all possible integer time elapses is generally not sufficient for
studying the behavior of a tw-Petri net. To see this we define the integer
reachability graph TR p of a tw-Petri net P, a labeled digraph whose vertices
are the reachable integer time-markings in P and whose edges are triples
(M,t,M") or (M,1, M") such that M L M or M L& M’ is feasible in P,
respectively. An edge (M,t, M') is labeled with ¢ and an edge (M, 1, M’)
with 1.

Example 5.19

Let us again consider the tw-Petri net Ps shown in Fig. 5.3.

Figure 5.4: The integer reachability graph ZRp, of the tw-Petri net Ps
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As we have already seen, after firing the run o1(7) = 1.5 ¢1 1.5 ¢; the only
enabled transition ty is in a time-deadlock. Hence, after reaching this time-
marking no firing is possible any more. The integer reachability graph ITRp,
on the other hand is strongly connected (cf. Fig. 5.4 ) and therefore every
feasible run of P represented here can be continued infinitely.

A further characteristic property of tw-Petri nets are possible “time-gaps” in
firing sequences. This means that the time continuum [0, oo] can be divided
into intervals [0, ag), [ag, a1], [a1, a2], [az, asl, [as, ad], ... such that it is possi-
ble to find a feasible run o(7%) of the transition sequence o with a length
U(o(1%) € [as,ai11] for any @ = 0,2,4,... but there is no feasible run with
time-length from [0, a] or from [a;, a;41] for any i = 1,3,5,.. ..

Such time-gaps are impossible in Time Petri nets, but there are tw-Petri
nets with time-gaps. The next proposition proves the absence of time-gaps
in Time Petri nets. We will then give an example of a tw-Petri net with
time-gaps.

Proposition 5.20 Let Z be a TPN and 0 = tity...t, an arbitrary transi-
tion sequence in Z. Furthermore, let 0(74) = 78 t1 79 to 78 ... T8 by T
and o(15) = TOB t 7'15 123 Tf o 7'571 t, 72 be two feasible runs of the transition
sequence o, with ((o(1,)) = o and {(o(13)) = B and o < B. Then for each
v € o, B] there exists a feasible run o(7,) = 75 t1 7 toa 75 ... 7| ty T with
l(o(ry)) = 1.

Idea of the proof. Let us consider the parametric run (o(z), By).

Then, the length of every run o(7) of the transition sequence o is given by
the linear function

flx) = Z x; such that z € R"™ and z satisfies B,.
=0

Let H, := {z € R"™! | z satisfies B, }. The length of o(7,) is then f(z) =«
for x = 7, and the length of o(73) is f(z) = § for x = 75. Obviously the
values o and  are real numbers between p = min{f(z) | * € H,} and
A =max{f(x) |z € H,}>

3If X exists. Otherwise o and 8 are not bounded from above.
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\\\\\\f(x): Py

Figure 5.5: Graphical illustration of H, for n =2

Because the polyhedron H, is convex and the points 7, and 75 belong to
H,, there is a point 7, which belongs to H, (to the segment defined by the
points 7, and 7g), and lies on some hyperplane parallel to the hyperplanes

f(z) = cand f(z) = 5 (cf. [GLS93]). This means that f(x) = v for z = 7,.0

In general, not all tw-Petri nets have time-gaps, but it is possible to find a
tw-Petri net P and a firing sequence o with two feasible runs in P whose
lengths are a and g such that no run of o with length v, o < v < f exists.
This of course is neither true for all @ and § nor for all firing sequences.

The next example verifies this fact.

Example 5.21 Let us consider the tw-PN P, given in Fig. 5.6 and the
transition sequence o1 = titats. The runs 3t13t23t3 and 511212313 are fea-
sible runs of oy with lengths 9 and 10. It is easy to see that there does not
exist a run of o1 whose length is, e.g., 9.5 or any other number strictly be-
tween 9 and 10. The lengths of all feasible runs of o1 belong to the intervals
[7,9], 10, 12], [13,15],. .. .
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P 4 p;

Py

[0.1]

Figure 5.6: The tw-Petri net Py

Considering the sequence oy = tytsty, it is obvious that the shortest time
length of a feasible run of oy is 4. Furthermore, it can easily be seen that for
each real number k > 4 a feasible run of o, with time length k exists.

5.3 Petri Nets with Retention Time Places
and Counter Machines

In Chapter 2 we showed that classic Petri nets are not Turing equivalent and
therefore it is generally not possible to simulate counter machines with such
nets. The reason is that classic Petri nets cannot simulate the zero-test, so
there is no way to check whether some place in a classic Petri net does not
contain any tokens. The explicit addition of time made Time and Timed
Petri nets more powerful. The real cause of this gain in power however is
not time itself, but the possibility to force transitions to fire at some point in
time, either at the end of an interval (Time Petri nets) or immediately after
their enabling (Timed Petri nets). The absence of any compulsion to fire in
tw-Petri nets is the reason why they, too, cannot simulate the zero-test. Let
us examine this claim in more detail:

We assume that the zero-test can be simulated with tw-Petri nets, so we can
check for a place p whether it is marked or not. There are thus two further
places Dimarked and Peppry, both of them empty in the initial marking and if
p is marked in M then p,erkeq Will be marked after a finite amount of time
and Pepmpry Will always stay unmarked and if p is empty in M then peppr, will
be marked after a finite amount of time and p,,qrkeq Will always stay empty.
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Case 1:

Case 2:

Moy(p) = e.

In the tw-Petri net P checking whether p is empty or not it then holds
for any feasible run o(7) in P with

My 22 M that
M(pmarked) =¢ and M(pempty) 7é £.

So let us consider an arbitrary run o(7). By Theorem 5.12 it follows
that the transition sequence o is also a firing sequence in the skeleton

S(P), ie.,

Mo = My, o, my;  in S(P) and

MM (parkea) = 0 A0d M1 (pynye,) 7 0

There are two reasons for p,,qrreq t0 stay empty in P.

It can be impossible to extend the run o(7) because of time-deadlocks
for all enabled transitions in the time-marking M. If pyrkeq 1S empty
because of time-deadlocks, then we consider the feasible run of o using
the ultimo-rule. During the firing of this run no enabled transition is
ever in a time-deadlock. Therefore after firing this feasible run both
places pmarked and Pempty would be marked. This is a contradiction to
the assumption that P can simulate the zero-test for p.

If however there is no feasible run in P without any time-deadlocks
leading to a time-marking such that parreq i marked then, because
of Theorem 5.12, there is no firing sequence in S(P) such that after
its firing the place piarkeq 18 marked and therefore the classic Petri net
S(P) can check whether p is empty.

My(p) # e

We can similarly conclude that S(P) is able to check whether p is
marked.

Thus our assumption lets us prove that the classic Petri net S(P) can simu-
late the zero-test which contradicts Theorem 2.18. Hence, the zero-test can
not be simulated by a tw-Petri net and we have shown the following:
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Theorem 5.22 tw-Petri nets are not Turing equivalent.

The computational power of tw-Petri nets is however no smaller than that
of classic Petri nets, because every classic Petri net can be simulated by a
tw-Petri net with the interval [0, oo] associated with each place.

5.4 Liveness

Liveness in tw-Petri nets can be introduced similarly as for Time Petri nets.
We know that every firing sequence of a tw-Petri net is also a firing sequence
in its skeleton and vice versa. This results in the same boundedness behavior
for a tw-Petri net and its skeleton. Surprisingly however, the liveness be-
havior of a tw-Petri net and that of its skeleton are not equivalent. This is
caused by the existence of time-deadlocks in some tw-Petri nets, meaning the
existence of reachable time-markings such that all enabled transitions are in
time-deadlocks.

Thus, we can assert the following:

Proposition 5.23 The skeleton of any live tw-Petri net is live, too.

Proof: The statement follows immediately from Theorem 5.12. O

There are however some structurally restricted classes of tw-Petri nets with
the same liveness behavior as their skeletons. For more on this cf. [WPZ09].

5.5 Bibliographical Notes

Petri nets in which time is explicitly associated with the places are used
less often than Time or Timed Petri nets. This probably results from the
fact that the systems that are developed using these nets can also easily be
modeled by other time-dependent nets, which are already well studied and
for which tools facilitating the analysis are available.

In [JR83] a time-dependent Petri net is introduced in which for each place
a time delay is specified. The transitions in the net fire immediately and
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according to the maximal-step rule. Only 1-safe nets are considered. A
general methodology for analyzing them is not presented. These nets were
introduced in order to design control systems and to compute time distances
between system states. For a subset of this class of time-dependent Petri
nets, the marked graphs, a state equation is given using minmax-algebra in
[Wan9s|.

Petri nets with explicit time specifications for places as presented here were
first introduced in [PZ93]. In [Lem95] two variants of these time-dependent
nets were introduced and thoroughly studied. In the first variant each place
has a minimum retention time and there is no compulsion to fire. In the
second variant a retention time and a time period of validity are associated
with each place and combined with a compulsion to fire. Reachability graphs
are used to analyze the qualitative and quantitative properties of such nets.
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5.6 Exercises
Exercise 5.1

(1) Are all feasible T-invariants of the skeleton of an arbitrary tw-Petri net
feasible T-invariants of the tw-Petri net? Justify your answer.

(2) Are all P-invariants of the skeleton of an arbitrary tw-Petri net also
P-invariants of the tw-Petri net? Justify your answer.

Exercise 5.2

Are time-gaps possible in Timed Petri nets? If so, give an example and if
not, a proof.

Exercise 5.3

Is there a (structurally) restricted subset of the set of all tw-Petri nets such
that the liveness behavior of such nets is fully represented by their integer
reachability graph even though the time elapses are modeled with ratio-
nal/real numbers? Justify your answer.



Appendix A

A.1 Appendix on Time Petri Nets

The Time Petri nets Z9 and Zq, as well as the results shown in Tables A.1,
A2, A3, A4 and A.5 were first represented in [Pil09]. In the next six tables,
the sizes of the reachability graphs, which is defined as the sum of the number
of vertices and the number of edges, are compared.

The reachability graphs, given below, were computed with the tools TINA
(cf. [Ber09]) and partly with INA (cf. [Sta97]) and Charlie (cf. [Heill]).

For every Time Petri net, TINA computes the reachability graph based on
state classes and the reachability graph based on essential states. The com-
putations are done according to the definition of dynamic conflict (cf. Defi-
nition 2.19). Nevertheless, we can use TINA for computations of reachability
graphs where the firing rule is defined based on the definition of static con-
flict. For this reason a place ¢; can be added to each shared place p; in a
Time Petri net. The place ¢; is marked with a token in the initial marking
and ¢; is a pre-place and post-place for each post-transition of p;. The mul-
tiplicity of every input-arc and output-arc of ¢; is 1. When the firing rule is
defined based on static conflict this modification of the net does not change
the number of vertices or the number of edges in either reachability graph,
but it ensures that every conflict in the net is a static conflict.

INA computes reachability graphs based on essential states where the firing
rule is defined based on the definition of static conflict. INA also computes
minimum and maximum distances.

L. Popova-Zeugmann, Time and Petri Nets, DOI 10.1007/978-3-642-41115-1, 191
© Springer-Verlag Berlin Heidelberg 2013
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Charlie computes reachability graphs based on essential states, according to
the definition of either dynamic or static conflict.

The next five tables compare for different initial place-markings the sizes of
the two reachability graphs of Zy, one based on essential states and the other
based on state classes.

i

!;3]‘\

Po P3

\(2:'
[2,5]

Iy [0, 6]
i3

!;6]‘\
P 12
\‘til
[1,2]

Figure A.1: The Time Petri net Zg
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number of essential-states algorithm state class algorithm

tokens number of | number of | total number of | number of | total

in pg vertices edges number vertices edges number
0 1 0 1 1 0 1
1 4 21 25 4 5 9
2 63 310 373 81 157 238
3 250 1252 1502 258 574 832
4 692 3920 4612 1053 2979 4032
5 1367 8115 9482 2653 8119 10772
6 2265 13769 16034 5000 15884 20884
7 3386 20882 24268 8089 26315 34404
8 4730 29454 34184 11909 39371 51280
9 6297 39485 45782 16454 55023 71477
10 8087 50975 59062 21708 73210 94918

Table A.1: A comparison of the size of the reachability graphs for the Time
Petri net Zy by increasing the number of tokens in place py from 0 to 10.
The firing rule is defined based on static conflict.

number of essential-states algorithm state class algorithm
tokens number of | number of | total number of | number of | total
in pg vertices edges number vertices edges number
0 1 0 1 1 0 1
1 4 21 25 4 5 9
2 86 441 527 94 186 280
3 550 2740 3290 570 1354 1924
4 1916 9975 11891 2181 5907 8088
5 9167 50618 59785 16588 53781 70369
7 15152 84449 99601 34118 114249 148367
8 22862 127989 150851 61123 208195 269318
9 32165 180510 212675 97479 335218 432697
10 42989 241713 284702 142712 493602 636314

Table A.2: A comparison of the size of the reachability graphs for the Time
Petri net Zy by increasing the number of tokens in place py from 0 to 10.
The firing rule is defined based on dynamic conflict.
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Table A.3: A comparison of the size of the reachability graphs for the Time
Petri net Zy by increasing the number of tokens in place p; from 0 to 10.
These values are independent of whether the firing rule is defined based on

static or dynamic conflict.
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number of essential-states algorithm state class algorithm

tokens number of | number of | total number of | number of | total

in py vertices edges number vertices edges number
0 1 0 1 1 0 1
1 2 4 6 2 2 4
2 4 8 12 3 3 6
3 9 18 27 6 6 12
4 17 35 52 10 11 21
5 26 55 81 16 19 35
6 35 75 110 28 34 62
7 44 95 139 39 51 90
8 53 115 168 53 70 123
9 62 135 197 68 92 160
10 71 155 226 83 114 197
11 80 175 255 98 136 234
12 89 195 284 113 158 271
13 98 215 313 128 180 308
14 107 235 342 143 202 345
15 116 255 371 158 224 382

Table A.4: A comparison of the size of the reachability graphs for the Time
Petri net Zy by increasing the number of tokens in place py from 0 to 15.
These values are independent of whether the firing rule is defined based on

static or dynamic conflict.
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number of essential-states algorithm state class algorithm

tokens number of | number of | total number of | number of | total

in p3 vertices edges number vertices edges number
0 1 0 1 1 0 1
1 4 21 25 4 5 9
2 79 383 461 87 169 256
3 523 2521 3044 539 1273 1812
4 1810 9258 11068 2051 5515 7566
5 4182 22274 26456 6051 18277 24328
6 7344 39718 47062 13742 44134 57876
7 11218 61345 72563 25174 83106 108280
8 15996 88100 104096 41145 138054 179199
9 21585 119380 140965 61281 207597 268878
10 28061 155778 183839 86457 294929 381386

Table A.5: A comparison of the size of the reachability graphs for the Time
Petri net Zy by increasing the number of tokens in place p3 from 0 to 10.
The firing rule is defined based on dynamic conflict.
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ly [1,1]

1) P C) P3

o Jost o Jea o Joo 2,5]

Figure A.2: The Time Petri net Z19

The next table compares the size of the two reachability graphs of Z,
based on essential-states and based on state classes for different initial place-
markings and different time intervals for the transition .
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